
1-8 5
3 1 65

PROGRAMMED DATA
PROCESSOR-8

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1-8 5

PDP-8 COURSE WORKBOOK

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright 1965 by Digital Equipment Corporation

The PDP-8 Course Workbook was
written and edited by the training
department of the Digital Equip­
ment Corporation.

ii

CONTENTS

Chapter Page

2

3

4

5

6

7

8

9

10

l l

The Concept of A Digital Computer............................ 1-1

The Concepts of Digital Computer Programming ...•...•....•.•...

Introduction to PDP-8 Systems•..........••...•.•......••

Basic PDP-8 Instruction List•.........•.•.•.•.••...•...

Introduction to the PDP-8 Assembler (PAL) .•.••.•...........•.•.

Introduction to the PDP-8 Symbolic Tape Editor•........•.

Introduction to the PDP-8 Octal Debugging Tape•...•..•.

Input-Output Instructions and Routines ...•....•......•....•.•.•.

Program Interrupt Feature of the PDP-8 System ••.•.......•.•.•.•.

Program Library: Subroutines and Programs .•...••..•••...•.••.••

Introduction to the PDP-8 DEC Debugging Tape (DDT-8)

iii

2-1

3-1

4-1

5-1

6-1

7-1

8-1

9-1

l 0-1

l 1- l

INTRODUCTION

This workbook is written to assist the student in understanding PDP-8 computer systems. By

using it as a class text, study guide, and workbook in conjunction with the PDP-8 Handbook

(F-85) and Program Writeups, al I aspects of the course can be covered and the fundamental

concepts of programming the PDP-8 can be mastered.

The workbook describes the PDP-8 and gives sample problems in programming and homework

assignments. It is suggested that the student solve the problems and retain them for future

reference.

This book is accompanied by a series of lectures and laboratory periods designed to further

assist the student in understanding the operating features of the PDP-8 system. During these

periods, the uses and capobil ities of the software packages provided with each computer in­

stol lation ore discussed. By the end of the course, each student should be able to use al I the

equipment in the PDP-8 system.

IV

CHAPTER 1

THE CONCEPT OF A DIGITAL COMPUTER

A digital computer can be defined as a device capable of automatically carrying out a sequence

of operations on data expressed in discrete {digital) form. Each operation is one of four kinds:

l. An input of data from a device outside the computer.

2. An arithmetic or processing operation on data stored within the computer.

3. An output of data from the computer to the external equipment.

4. A sequence-determining operation in which the computer chooses which of

two (or more) alternative sequences of operation it will perform. This choice

is based upon the condition of the data in the computer or the status of peri­

pheral equipment at the time of sequence determination.

Using these four operations, present-day computers are capable of performing extended and

varied sequences of arithmetic operations. As such, they are very flexible and useful in

rapidly executing computations which would take months or years of tedious work if done by

hand. However, even in the solution of simple problems, the machine must be told the step­

by-step procedure for arriving at the correct solution.

For each machine, such as the PDP-8, there is given set of instructions which may be used to

process data and solve problems. The circuitry and wiring within the computer itself determine

how each instruction is executed, and the order in which the instructions are carried out is

determined by a stored program.

When digital computers, such as the PDP-8, execute an instruction, they do it in discrete

steps called cycles. During the first cycle, the fetch cycle, the cor:nputer obtains the instruc­

tion and determines how to perform it. If the instruction does not require an operand from

memory, the instruction wil I be executed during the fetch cycle. For al I instructions which

1-1

refer to a location in the memory, a second cycle must be performed. This execute cycle

actually performs the operation specified by the instruction. In the PDP-8, the cycle time is

1 .6 microseconds.

Since digital computers operate at high speeds, the sequence of instructions must be available

within microseconds. The essential elements of a system which can prestore data are shown

in Figure 1. The instructions are fed into the machine via the input and stored in the memory.

The operations and data manipulations are performed in the arithmetic element, and processed

data is fed to the output element. All elements can be controlled manually from the console

or automatically by the computer itself. The control element is not clearly identifiable. In

a machine, control is quite dispersed and often involves a heterogeneous mass of circuitry.

INPUT

MEMORY

CONTROL
UNIT

ARITHMETIC
UNIT

DATA INFORMATION •
CONTROL INFORMATION •

Figure 1 Main Elements of PDP-8 System

OUTPUT

This workbook describes the available means for storing a sequence of instructions in memory

and causing the computer to execute these instructions.

1-2

CHAPTER 2

THE CONCEPTS OF DIGITAL COMPUTER
PROGRAMMING

A. GENERAL

Each digital computer has a special code in machine language which tells the computer

what to do. The specific codes for the PDP-8 will be described in a later chapter. For

the moment, it would be instructive to review the fundamental concepts of digital com­

puter programming. If you do not understand the following concepts, it might be useful

to obtain a copy of a reference book in basic programming.

Each oreo in the memory of the computer which can contain the unit of information re­

ferred to os a word (12 pieces of binary information) is cal led a register. Each register

hos a number associated with it, called the address, which determines its position in

memory.

B. STRAIGHT-LINE PROGRAMMING

This type of programming deals with the step-by-step, uninterrupted sequence of program

steps. An example of straight-I ine programming is shown below:

Example: Program the equation A - B(4-3D)

0/ Load d

l/ Mui f (f contains 3)

2/ Complement

3/ Add g (g contains 4)

4/ Mui b

5/ Complement

6/ Add a

7/ Halt

NOTE: Each instruction os shown would not necessarily occupy
one location in memory. They are shown this way for descriptive
purposes only.

2-1

In the above example, registers f and g contain the constants 3 and 4, respectively. Reg­

isters a, b, and d contain the parameters A, B, and D, respectively. The registers 0

through 7 contain the program itself.

It is important to note that the program will be stored in memory along with the data to be

used in the solution of the problem. The computer cannot tel I the difference between

stored data and instructions. The programmer enables the computer to differentiate be­

tween the two.

C. PROGRAM LOOPS

Sometimes it is necessary to repeat a portion of a program each time changing only a

small portion of the original program to obtain different results. By using a program loop,

the programmer can obtain this repetitive operation.

Example: Solve the equation 35{A+B) for al I integral values

of A starting with 0 and store the solutions in

consecutive registers starting at address h.

0/ Load f {f contains 0)

1/ Add b {b contains B)

2/ Mui g {g contains 35)

3/ Deposit into h

4/ Load 3

5/ Add c {c contains l)

6/ Deposit into 3

7/ Load f

10/ Add c

11/ Deposit into f

12/ Jump to 0

The first four instructions actually solve the problem. The next three instructions incre­

ment the address of the storage register by one, and the following three instructions in­

crement the value of A by one. Note that the program steps can be treated as data since

they may be modified {see steps 5 and l 0). The jump instruction al lows the computer to

repeat the above routine endlessly.

2-2

•

The jump instruction al lows the programmer to break the normal sequence of program steps.

In the above example, the jump back to the beginning is said to be unconditional because

each time the control circuitry analyzes the instruction, it wil I always execute the same

command, 11 Return to the beginning. 11 The jump instruction can transfer program execution

to any location in the sequence of instructions.

D. PROGRAM BRANCHING

As shown in the previous example, looping is useful in repetitive calculations. It also is

used to loop a predetermined number of times and then continue in the main program.

This procedure is tallying.

Example: Find the 10th power of 2

0/ Load f {f contains -10, the ta 11 y number)

1/ Deposit into g

2/ Load m {m contains 1)

3/ Deposit into k

4/ Load k

5/ Mui h {h contains 2)

6/ Deposit into k

7/ Load g {g contains -10)

10/ Add m {m contains 1)

11/ Deposit into g

12/ Skip if zero

13/ Jump to 4

14/ Continue

In the example above, the first four instructions initialize the routine. In this case, for

only one pass through the sequence, they could be left out completely; however, they

are inserted to show the necessary steps to initialize the tallying routine. A general rule

is to initialize any register which is changed during program execution. The next three

steps do the actual program work on the data, and the next four steps check to see if the

routine has executed ten loops. If it has not, the tally number wil I be negative and the

routine will continue to loop. As soon as the tally number becomes zero, the program

2-3

wil I skip instruction 13 and branch back into the main program. The branch is also useful

as it enables the computer to make a decision. For example, if the partial answer to a

problem is positive, the computer wil I continue with the main sequence. If, the partial

answer is negative, the computer will jump to a different portion of the program.

Branch instructions may be referred to as conditional skip instructions. They al low the

computer to skip or not skip an instruction depending upon existing conditions.

E. SYMBOLIC ADDRESSING

Symbolic addressing is not a concept in programming but is a means by which the programmer

can write understandable programs.

The computer uses only machine language and requires that al I data and instruction steps

be stored in memory in binary numbers. To avoid the use of only ones and zeros in writing

programs, it is useful to have a computer program, as the PAL (PDP-8 Assembler), which

can interpret mnemonic codes and symbolic addresses by translating them into their binary

equivalent.

A symbolic address is an address specified by a letter designation rather than a specific

numerical location. The PAL Assembler converts these letters into machine language num­

bers. The program can begin at any location because al I program locations are relative

to each other.

A more complete treatment of symbolic addressing on the PDP-8 wil I fol low in Chapter 5.

Also, the 3-letter mnemonic names for the instructions themselves (TAD, DCA, ISZ, JMP)

will be discussed in a later chapter.

Example: Symbolic Addressing

A, ADD Kl

DEPOSIT INTO K2

D, SUBTRACT K3

MULTIPLY BY K2

JUMP TO A

2-4

/GET NUMBER

/STORE IT

/SUBTRACT

/MULTIPLY

/KEEP LOOPING

Kl I 230

K2, 0

K3, 56

The above example indicates the format of a program using symbolic addressing.

F. FLOW CHART TECHNIQUES

1 • General

Flow charting is a technique to diagramatically represent an initial phase of creating

a program. The detail or extent of flow charting is entirely up to the programmer.

An experienced programmer might represent a program in two or three distinct steps;

whereas a novice might gain more in thinking through a program by using a block

for each basic program function. In either case, a flow-chart block should be a

condensation, not a representation of each program step.

2. Flow Chart Symbols

0

()

3. Example

Used to represent a program function or operation; one entry,

one exit.

Used to connect two program points; a convenience symbol or

chart label, not a program operation.

A decision symbol, one entry, multiple exits, a conditional

branch.

Beginning or stopping point of a program.

Representation of flow.

Flow chart of a routine to add numbers together.

2-5

START

Case I Case II

STOP

Case Ill

2-6

MODIFY
PROGRAM

NO YES
STOP

Case I represents a brief diagram. Case II and Case Ill present more detailed diagrams.

G. SUMMARY

Remember that the function of a flow chart is to assist the programmer. If it is not needed,

it may be omitted. A flow chart clearly represents all paths of program flow and gives

the programmer a tool to do his program coding.

REVIEW QUESTIONS - CHAPTER 2

These questions are not necessarily covered in the workbook but review basic terms and ideas

that the student should understand before continuing with the workbook.

l. What is a word? A bit? A register? An address? A location?

2. What is the octal numbering system?

3. If a computer has 4096 memory locations, what is the largest address in octal?

4. List some common input devices for a computer.

5. In location 340 is stored the instruction tad 350.

In location 350 is stored the number 0005.

If a program is operating and reaches location 341, what wi 11 be the contents

of the accumulator?

What is the operand of the instruction in 340?

6. What are the answers to the following problems?

56(8)

+ 17 (8)

l 01 (10)

+ 101(2)

2-7

CHAPTER 3

INTRODUCTION TO PDP-8 SYSTEMS

A. GENERAL

The Digital Equipment Corporation PDP-8 computer is a high-speed, sol id-state, digital

computer capable of hand I ing up to 64 input-output devices. It uses a 12-bit word and

operates on 2 1s complement arithmetic. The input-output devices used most often are a

perforated-tape reader, a perforated-tape punch and an on-I ine/off-1 ine teleprinter (Tele­

type UnitASR-33). The standard memory for the PDP-8 consists of 4096(lO) words and can

be expanded in increments of 4096(l0) to 32,768(l0) words. The basic cycle time is

l .6 microseconds.

B. CENTRAL PROCESSOR ELEMENTS

l. Control Element

The control element is widely dispersed and not precisely definable. Components

that fal I under the control category are associated with most of the other elements

and peripheral equipment. The control element governs the complete operation of

the prescribed instruction, and initiation of input-output commands.

2. Arithmetic Element

The arithmetic element is the central part of the computer and may be compared with

a desk calculator. It can add (on demand by an instruction) a given number to what­

ever number currently is contained in itself. It can make simple logical decisions

based on the contents of the arithmetic unit. Finally, the arithmetic element can

mechanize operations which have no counterpart in ordinary arithmetic. For example,

it performs Boolean AND and OR operations. The arithmetic element is a manipulator

of numbers and is composed of the accumulator and the I ink.

3-1

a. Accumulator

The accumulator is a 12-bit register that performs addition, logic (negation, and

AND), and counting operations. It is connected to the memory module through

the memory buffer and can transfer or receive information from the memory module

and transfers information from the console. Information from the standard 1/0
devices and most other input-output devices are transferred into the accumulator

through the input mixer. When the data interrupt is used with a high-speed

device (drum, mag tape, DECtape), the accumulator is bypassed, and informa­

tion goes directly through the memory buffer.

b. Link

The link is a 1-bit register used in conjunction with the AC. The link may be

rotated along with the AC either to the right or to the left. It may be considered

to be left of AC0 and right of AC 11 • It may be cleared, complemented, and

sensed. The latter feature makes it available as a program flag. The I ink may

be regarded as the overflow register for arithmetic addition. If overflow occurs,

the Ii nk is comp I emented.

3. Memory

The memory is not a part of the central processor. However, it is included here as

a preview to the description of its associated registers, which are included in the

central processor. The memory contains stored information or data to be processed

and the instructions of the programs to do the processing. The magnetic core memory

of a standard PDP-8 holds 4096 words of 12 binary bits. The memory capacity may

be expanded in increments of 4096 words to 32,768 words. Memory may be further

supplemented by magnetic tape unit, drum options, or the addressable tape, DECtape.

4. Memory Addressing Element

This element is composed of two discrete units.

3-2

a • Memory Address Register

The memory address register contains 12 bits and controls the access to memory

while each instruction is being executed. During every 1.6-microsecond memory

cycle, the memory address register addresses a single core register in the com­

puter memory. The memory cycle is divided into two portions, a read portion

and a write portion. During the read portion, a single 12-bit computer word is

read from the addressed core register into the memory buffer. During the write

portion of the cycle, the word contained in the memory buffer is written back

into the addressed core register. For both read and write portions of the memory

cycle, the addressed core register is specified by the contents of the memory

address register.

b. Program Counter Register

The program counter is a 12-bit register and may be modified under program con­

trol. It indicates to the control circuitry the location of the next instruction to

be executed. It can be preset from the switch register by the load address switch.

In normal operation, it starts at its preset value and indexes by one each time

a program instruction is executed. It can be reset during program execution by

a jump instruction. The contents of the program counter are displayed on the

console.

5. Memory Buffer Register

The memory buffer register contains 12 bits and is connected to core memory. All

information which enters and leaves the memory must come through this register.

Information can be transferred between the memory buffer, the accumulator, the

instruction register, and the program counter.

6. Instruction Register

The instruction register contains the 3-bit operation code of the instruction currently

being performed by the computer. Information enters this register from the MB.

3-3

C. INPUT-OUTPUT CONTROL

The input-output control provides control circuitry enabling input-output {1/0) devices

to transmit information into or receive information from the central processor. A brief

summary of this unit is given in Section B, .Chapter l of the PDP-8 Handbook {F-85).

The discussion of this unit, from a programming point of view, will be left to the chapters

on the 1/0 devices and interrupt facility.

D. COMPUTER COl'ITROL STATES

The computer performs one memory cycle {l .6 microseconds) in one and only one of four

states. These states are:

Fetch

Defer

Execute

Break

The four states of the computer are described in detai I in Chapter l of F-85.

3-4

CHAPTER 4

BASIC PDP-8 INSTRUCTION LIST

A. GENERAL

The I ist of available instructions for the PDP-8 is shown in Appendix 1 of the PDP-8 Hand­

book (F-85). The instructions are grouped according to their function. A description of

what each instruction does can be found in Section A, Chapter 2 of the PDP-8 Handbook.

There are two basic groups of instructions: memory reference and augmented. Memory

reference instructions require an operand; augmented instructions do not require an operand.

The addressing technique requires a complete understanding of the page addressing of the

PDP-8.

1. Page Addressing

The memory of the PDP-8 is divided into blocks of 12810 or 2008 locations called

pages. These pages are not phys i ca I pages in memory nor are the areas of the mem­

blocked off in any manner. Pages occur as a result of the size of the address portion

of the instruction. In order to minimize needless confusion, a number of definitions

are given below.

a. Current Page

The page containing the instruction being executed. This page is determined by

bits 0-4 of the program counter.

b. Page Address

A 7-bit number contained in bits 5-11 of an instruction which designates one of

2008 core memory locations. Bit 4 of the instruction indicates the page to which

the page address refers.

4-1

Bit 4

0

Page

Page 0

Current page

Thus, bits 5-11 specify one of the 2008 locations on the page determined by

bit 4.

c. Absolute Address

A 12-bit number used to address any location in core memory.

d. Effective Address

The address of the operand as specified in an instruction or by an absolute address.

To the programmer, the page feature means that there are 4008 locations available

for direct addressing with memory reference instructions. The programmer has 2008
locations on the page where the program is running and all 2008 locations of page 0

(absolute locations 08-177 8) directly addressable. Any location in the entire 4K of

memory may be addressed by the use of indirect addressing in the instruction. The

absolute address of the operand is placed in the location specified by bits 4-11 of

the instruction.

Four methods of obtaining the operand at the effective address are used as specified

by combinations of bits 3 and 4.

Bit 3

0

0

Bit 4

0

0

4-2

Effective Address

The operand is on page 0 at the address

specified by bits 5 through 11.

The operand is on the current page at

the page address specified by bits 5

through 11.

The absolute address of the operand is

taken from the contents of the location

on page 0 designated by bits 5 through 11.

Bit 3 Bit 4 Effective Address

The absolute address of the operand is

taken from the contents of the location

on the current page at the page address

specified by bits 5 through 11.

The augmented instructions in the PDP-8 require more understanding than the speci­

fication of each instruction. Their microprogramming feature lends itself to shorter,

more powerful programs.

2. Operate Group

The operate group, in general, performs its actions on the accumulator and link.

These instructions do not require a memory reference.

The instructions may be referred to as microinstructions because the performance of

an operation is specified by the presence of a l in a bit of the instruction. Specific

instructions may be logically ORed together to perform a number of operations. The

event times indicate the order in which the operations are performed. Two instructions

occurring at the same event time can be combined subject to the restrictions given

in Section A, Chapter 2 of the PDP-8 Handbook.

Within the operate group itself there are two groups.

Group l is principally for clear, complement, rotate, and increment instructions.

This group is designated by a 0 in bit 3 of the operate instruction.

Group 2 is used in checking the contents of the accumulator and link to determine

sequence of operations to be fol lowed. This group is designated by a l in bit 3 .•

The programmer never needs to worry about the bits being in the correct place when

using the assembler; mnemonic symbols for the instruction takes care of this. The in­

structions from Group l and Group 2 can never be combined because of the use of

bit 3.

4-3

Within Group 2, there are two groups of skip instructions. They may be referred to

as Group 2a and Group 2b.

Group 2a

SMA

SZA

SNL

Group 2b

SPA

SNA

SZL

Group 2a is designated by a 0 in bit 8; Group 2b, by a 1 in bit 8. Instructions from

Group 2a and 2b should never be combined, for the same reason as above.

If the programmer does combine legal skip instructions, it is important to note the

conditions under which a skip will occur.

a. Group 2a

If these skips are combined in a single instruction, the inclusive OR of the con­

ditions determines the skip.

SZA SNL

The next instruction is skipped if:

b. Group 2b

the AC contains 0000, or

the Ii nk is a 1 , or

both conditions exist.

If the skips are combined in a single instruction, the logical AND of the condi­

tions determines the skip.

SNA SZL

The next instruction is skipped only if:

the AC differs from 0000 and the I ink is 0.

4-4

One combination is a skip instruction combined with a CLA instruction. The

condition is sensed and the accumulator is cleared to enable a TAD instruction

to load the AC in the next instruction.

3. Input-Output Group

The instructions in this class are used to enable information transfers between the

central processor and external devices via the interface.

The mass of circuitry which controls the transfer of information to and from the com­

puter is cal led the input-output control. Specific IOT commands are discussed in a

later chapter of this workbook.

REVIEW QUESTIONS - CHAPTER 4

l. If you perform a CMA instruction, are you dealing with l's or 21s complement arithmetic?

2. Describe the action and use of:

a. The JMS instruction

b. the AND instruction

c. The combined use of DCA and TAD instruction

3. a. What is the contents of the AC after a C LA CMA instruction?

b. What is the contents of the register containing the microinstruction SPA SNL?

Would this accomplish the desired function? If not, why not?

In the fol lowing programs, the number fol lowed by a slash indicates the address where the given

instruction or number is located. The address following any mnemonic instruction is an

absolute address.

4. The following program adds some numbers together, stores the total away, and halts.

What is the sum and in what location is it stored?

1000/

1001/

1002/

4-5

CLA CLL

TAD 1020

IAC

1003/ 1450

1004/ RAL

1005/ SNL

1006/ 5202

1007/ RAR

1010/ 3603

1011/ HLT

1020/ 4012

1021/ 2000

50/ 1021

Change location 1020/ from 4012 to 1012 and do the problem again.

5. The original contents of AC is 1234; the I ink is l . The fol lowing program is executed.

Will the program ever stop? If so, what are the final contents of the AC and the link?

1000/ RTL

1001/ DCA 1021

1002/ ISZ 1017

1003/ TAD 1020

1004/ NOP

1005/ DCA 1011

1006/ TAD 1017

1007/ DCA 1014

1010/ TAD l 021

l 011/ HLT

1012/ IAC

1013/ RAR

1014/ NOP

1015/ RAR

1016/ JMP 1015

1017/ 7401

1020/ 7006

1021/ HLT

4-6

6. The fol lowing program is executed. What are the contents of the PC when the computer

halts?

200/ CLA CMA

201/ DCA 213

202/ ISZ 213

203/ HLT

204/ TAD 214

205/ TAD 215

206/ TAD 216

207/ DCA 221

210/ TAD 201

211/ TAD 217

212/ DCA 213

213/ IAC

214/ NOP

215/ 2

216/ 400

217/ TAD 5

220/ HLT

221/ JMP 200

4-7

A. GENERAL

CHAPTER

INTRODUCTION TO
ASSEMBLER

5

THE PDP-8
(PAL)

The PAL Assembler is a program which translates a symbolic source program tape into a

form suitable for execution by the PDP-8 and punches out this form on a binary output

tape (binary object tape). The source program permits the programmer to express the

operations for the computer to perform in a more legible form than the binary code in

which the PDP-8 must receive its instructions.

By using this assembler program (PAL), the programmer may use mnemonic names or symbols

for the instructions and assign symbolic addresses in the program. For example, if the

programmer uses the characters DCA in his source program, the Assembler wi 11 tra_nslate

them to the value 30008 as stored in memory. The Assembler process substitutes the binary

value of each symbol for the symbol itself and punches it out on the binary output tape.

During assembly, the assembler program keeps a current location counter, which indicates

the address of the register where the next instruction or data word will be stored. Do not

confuse this with the program counter which is in the PDP-8 machine. For each word

assembled, this address is increased by one. The initial address may be preset to al low

assembly at any locations and may be reset at any time during assembly by the appropriate

control character in the source language program. Unless otherwise specified, assembly

starts in location 200.

The Assembler performs its action in two passes (the source language tape is processed

twice to produce the one binary object tape). Certain functions which cannot be handled

on the first pass must be handled by the second pass. The output from Pass l is a symbol

table typed on the ASR-33 showing the tags used in the program and their corresponding

octal values, and any error indications.

5-1

During Pass 2, the values of the tags are inserted in the corresponding symbolic address

within the memory reference instruction, and the binary output tape is generated. The

program writeup of the PAL Assembler is available from the program library and should be

used during the writing and subsequent assembling of programs.

B. HOW TO ASSEMBLE A SYMBOLIC PROGRAM WITH PAL

The detailed description of the assembly process is given in the program writeup. For the

programmer 1s ease of operation, the assembly procedure is shown as a flow diagram on the

following page.

C. MISCELLANEOUS

1. Flow Diagrams

A flow diagram will save the programmer time in writing and executing his program.

It will save space in memory if he draws a flow diagram which clearly illustrates the

general sequence of operations, the point of which the various sequence determina­

tions should be made, and the program flow following the sequence determination.

It is suggested that no coding be done in the flow diagram; only verbal descriptions

of operations in the program should be used. Examples of flow diagrams wil I be given

throughout the rest of this workbook.

2. Program Structure

Inexperienced programmers, should draw a flow diagram that clearly ii lustrates the

sequential operation of the program. Then, the instructions should be written in

assembler language to accomplish the function described in each block of the flow

diagram.

For short, simple programs, such as the ones for homework, the organization in mem­

ory is straightforward.

There are three distinct portions to each program. For ease of debugging, keep the

areas separate and well marked in the symbolic program. The portions are:

5-2

GO TO
PASS 2

TOGGLE THE READ-IN

MODE LOADER INTO MEMORY

USE THE RIM LOADER TO

LOAD BINARY LOADER

INTO MEMORY

USE BINARY LOADER TO

LOAD PAL INTO MEMORY

PUT SYMBOLIC
TAPE INTO READER

SET SWITCH REGISTER
TO 200. LIFT

"LOAD ADDRESS"SWITCH UP

SET SWITCH REGISTER
BIT1=1 BITO=O

SET PAGE NUMBER
IF DESIRED

TURN OFF PUNCH

DEPRESS "START"

TURN ON READER AND
WAIT FOR END OF

PASS 1 AND SYMBOL PRINT

THERE ANY ERROR
NO PRINTOUTS

CORRECT SYMBOLIC
TAPE AND REASSEMBLE

5-3

NO

SET SWITCH REGISTER
BIT 1= 0
BIT O= I

TURN ON PUNCH

DEPRESS "CONTINUE"

WAIT UNTIL LIT

CODE IS PUNCHED

TURN ON READER
AND WAIT FOR END

OF PASS 2

FINISHED

Initialization

Program

Constants and Variables

The program would be similar to the following for short programs:

(l)
Initialization

(2)
Program

(3)
Constants
Variables

Start by writing Part 2 first. As the program is written, generate the constants and

variables as they are needed. Any storage register which is reserved for data that

may change during the program is referred to as a variable. Then, after the program

is written, go back to initialize any registers or instructions which have been changed

or modified during the programs. Every program should be written so that it could

be run a second time and give the correct result. All program examples will contain

three segments clearly indicated.

3. Use of Page 0

Since page 0 is directly addressable from any core page in memory, often-used por­

tions of the program should be put on page 0.

Examples of such portions would be:

Smal I subroutines (type in and typeout)

Variables

Constants

Temporary storage registers

Subroutine pointers

5-4

If the program is contained completely on one page, there is no real advantage to the

use of page 0. However, if the program takes several pages, the use of page 0 wil I

be of great value.

D. LOADING PROCEDURES

Since the student in the programming class will soon be running programs on the PDP-8, it

is wise to fol low the steps in loading and running program. A short description of the

loaders and tapes is given below.

l. Read-In Mode (RIM) Loader

The RIM Loader is a program used to load a RIM format tape from the reader into memory.

The RIM Loader must be toggled initially into memory from the console of the computer

but should never need to be toggled again.

In order to avoid destruction by the maintenance program (Maindec series), the RIM

Loader should be toggled into locations 20 through 40. The program and description

for loading it are found in F-85, Appendix 5. The RIM Loader can then be used to

I oad the same program into the top end of memory to free page 0 for use in program­

m rng. Thus the RIM Loader may be located in locations:

0020-0040

7700-7720

(for maintenance program)

(other)

The starting address for the respective RIM Loaders is 20, or 7700.

To load a tape in RIM Format using the RIM Loader:

a. Check to see if the RIM Loader program is correct in memory.

If not, toggle it in.

b. Put RIM Format tape in reader.

c. Always put leader/trailer code over reader head - never blank

tape.

5-5

d. Set SR to 20, or 7700 depending upon the location of the

loader program.

e. Depress the LOAD ADDRESS switch.

f • Depress the START switch.

g. Computer is now running and waiting to load any program from

any tape which is in RIM Format regardless of the starting address

of that program.

h. Turn on the reader and wait until tape is completely read in.

When the reader stops, the program is in memory.

From the programmer's viewpoint, the RIM Loader is usually used to load the Binary

Format Loader.

2. Binary Format {BIN) Loader

The Bl N Loader is a program used to load a PAL Binary Format tape from the reader

into memory.

The Bl N Loader tape is loaded by the RIM Loader program.

A description of the BIN Loader is given in Appendix 5 of F-85.

The BIN Loader is loaded into location 7721-7777.

The starting address for the BIN Loader is 7777.

To load a tape in PAL Binary Format using the Bl N Loader:

a. Put PAL Binary Format tape into reader.

b. Set SR to 7777.

c. Depress LOAD ADDRESS switch.

d. Depress START switch.

5-6

e. The computer is now running and waiting to load a program

from any tape that is in PAL Binary Format regardless of the start­

ing address of that program.

f. Turn on the reader and wait until the tape is read in. When

the reader stops, the program is in memory.

NOTE: If the AC does not contain 0 when the computer halts,
the tape has read in incorrectly and should be loaded again.

The BIN loader is used to load:

PAL

Symbolic Tape Editor

Octal Debugging Tape

Any tape from Pass 2 of the PAL Assembler

Any other tape from the program I ibrary in PAL Binary Format

When the program is loaded correctly from the PAL Binary Format tape into memory,

determine the starting address (SA) of the program from the label on the tape.

Start the program which was just read in by putting the starting address (SA) into the

switch register, depress LOAD ADDRESS and START.

E. EXAMPLE PROGRAM FOR ASSEMBLER

1. Problem

Write a routine using a program loop and a branch condition to add up numbers stored

in location 2008 through 207 8 , and store the answer in location 4108 . Write the pro­

gram starting in location 600.

5-7

2. Flow Diagram

STARTIN 600

INITIALIZE COUNTERS
AND POINTERS

ADD NEXT NUMBER
TO PARTIAL SUM

INDEX POINTER TO OBTAIN
SUCCEEDING NUMBER

NO

HALT

3. Program Listing

/ADD UP NUMBERS
*600
BEGN, HLT
/LOAD 200-207 WITH NUMBERS. HIT 11CONTINUE 11 ON CONSOLE

I
/THE NEXT FIVE INSTRUCTIONS INITIALIZE THE ROUTINE

CLA /CLEAR THE ACCUMULATOR
TAD MlO /LOAD AC WITH -10 TO INITIALIZE TALLY
DCA CNTR /DEPOSIT IN COl.JNTER
TAD 2HUN /LOAD AC WITH FIRST ADDRESS IN BUFFER
DCA BUFF

I
/THE NEXT SEVEN INSTRUCTIONS ARE THE PROGRAM ITSELF
ADDR, TAD I BUFF /ADD NEXT NUMBER FROM BUFFER

ISZ BUFF /INDEX POINTER
ISZ CNTR /INDEX COUNTER. IS IT ZERO?
JMP ADDR /NO, JUMP TO ADD NEXT NUMBER
DCA I ANSR /YES, DEPOSIT TOTAL IN 410
HLT /STOP. HIT 11CONTINUE 11 TO REPEAT PROGRAM
JMP BEGN+l

5-8

I
/THE NEXT THREE REGISTERS CONTAIN THE CONSTANTS FOR THE PROGRAM
MlO, 0-10 /NEGATIVE TALLY NUMBER
2HUN, 200 /FIRST ADDRESS IN BUFFER
ANSR, 410
I
/THE NEXT TWO REGISTERS ARE RESERVED FOR THE VARIABLES IN THE PROGRAM
CNTR, 0
BUFF I 0
I
$

4. Output From the Assembler

PASS 1:
BEGN
MlO
CNTR
2HUN
BUFF
ADDR
ANSR

SYMBOL TABLE
600
615
620
616
621
606
617

PASS 2: BINARY TAPE AND "PRINTED MESSAGE (?)"

BF<:

<?& ?7

The printed message output has no relevance to the programmer. The binary codes

which are being punched on the tape in binary format simply coincide with the codes

for the teleprinter output. The same buffer is used for output to the punch and printer.

REVIEW QUESTIONS - CHAPTER 5

l. Ten numbers are stored in locations 2008 through 211 8• The letter B is stored in 2128 •

Wri.te a routine starting in location 6008 which will determine how many of the ten numbers

are larger than Band store this quantity in location 5008 • Use a flow diagram to lay out

the program.

5-9

2. Deposit 7777 8 in all odd memory locations, and 0000 in all even memory locations, start­

ing with the address set on the switch register, and ending 10008 locations later. Use a

flow diagram as above. Assume that the SR setting is such that the program will not be

destroyed.

3. Write a subroutine cal led MOVE to move a block of data from one area in memory to

another area in memory. The subroutine is entered with the number of words to be relo­

cated in the AC. The initial address of the existing block of data and the initial address

of the new locatiori are located in the two registers immediately following the JMS MOVE

instruction. Return to the main program with the AC cleared. Use auto-index registers.

TAD N

JMS MOVE

IAl

IA2

/NUMBER OF WORDS TO BE MOVED IN AC

/SUBROUTINE CALLED

/INITIAL ADDRESS OF ORIGINAL DATA BLOCK

/INITIAL ADDRESS OF MOVED DATA BLOCK

/RETURN WITH AC CLEAR

5-10

CHAPTER 6

INTRODUCTION TO THE PDP-8 SYMBOLIC
TAPE EDITOR

A. GENERAL

The PDP-8 Symbolic Tape Editor al lows the programmer to correct or generate symbolic

tapes in ASC 11 code with the PDP-8 computer from the keyboard of the ASR-33 teleprinter.

Upon command, the Symbolic Tape Editor will punch out the corrected or generated sym­

bolic program on paper tape in a format acceptable to the PAL Assembler. This program

greatly reduces the tedious correction of symbolic tapes using the ASR-33 off line.

For a complete description of the Editor, see the PDP-8 Symbolic Tape Editor writeup.

B. MODES OF OPERATION

There are two ways in which characters typed on the ASR-33 are interpreted, depending

upon the mode of the Editor. There are two modes of operation-command and text mode.

1 • Command Mode

Characters typed by the programmer on the ASR-33 wil I be interpreted as commands

telling the Editor to perform, or enable the programmer to perform, operations on the

text of the program. Commands to the Editor must take one of the fol lowing forms

with 0, 1, or 2 arguments where). is the nonprinting character representing RETURN.

If an incorrect form is typed, the Editor wil I type back a ? and return to I is ten for

the next command.

NOTE: When the RETURN key is depressed while the Editor is
operating, the LINE FEED code wil I be generated by the program.

6-1

2. Text Mode

Characters typed by the programmer on the ASR-33 wil I be interpreted as text to the

symbolic program. The text wil I be inserted in the program in the manner described

by the command immediately preceding it.

3. Transition Between Modes

When the Editor program is started, it is in command mode {the program wil I be waiting

for a command).

The means of transferring between modes is shown pictorially below:

{
TYPE A COMMAND OF THE}

/ DESIRED FORM, AND THEN ~ I HIT THE RETURN KEY \

COMMAND I TEXT
MODE MODE

_ { T:~J;~:~~~~:~~~:: }_)
WILL RING TO INDICATE

THE TRANSITION

NOTE: After the operator issues a command to insert, change, or
append text to his program, the Editor will remain in the text mode
until the CTRL/FORM key combination is depressed. This combina­
tion generates a special character cal led form feed, which tel Is
the Editor to return to command mode. The Editor returns to the
command mode automatically without bel I-ringing after executing
a delete or list command.

C. LOADING SEQUENCE TO CORRECT A SYMBOLIC TAPE

1 . Load the binary format loader.

2. Load Symbolic Tape Editor with binary format loader.

6-2

3. Use locating 01768 as the starting address for the Editor.

4. Put symbolic tape of program to be corrected in reader.

5. Type R); turn on reader.

6. If tape has no form feed code on end, hit CTRL/FORM combination after tape has

read in.

7. Editor is now waiting for first command.

D. SUMMARY OF COMMANDS

l • Input Commands

2.

3.

A)
R)

Editing Commands

nl ;
K)

nD)
n,mD)

L)
nL ;

n,mL)
nC ;

n,mC)

Output Commands

p)
nP)

n,mP)
F ;

Append incoming text from teleprinter.

Append incoming text from reader.

Insert fol lowing text before I ine ~·

Delete {kil I) entire page of text.

Delete linen of text.

Delete I ines ~through~ inclusively.

List entire page of text.

List linen of text.

List line~ through m of text.

Change I ine ~of text.

Change I ine ~through m of text.

Punch entire text.

Punch linen of text.

Punch line~ through~ of text.

Punch form feed.

6-3

E. SEQUENCE FOR PUNCHING OUT A CORRECT SYMBOLIC TAPE

l. Give the desired punch command: P ~, n,mP) or F ~. The computer will halt.

2. Turn on the punch.

3. If desired, switch the ASR-33 to LOCAL and generate as much Leader/Trailer code

as needed. Switch teleprinter to ON-LINE.

4. Hit Continue on computer console.

5. If desired, generate Leader/Trailer.

6. When tape is punched, turn off punch before typing next command. Otherwise, the

codes for the letters wi II appear on the symbolic tape.

7. Punching out the symbolic program does not delete it from memory. To read another

tape into the buffer, delete the entire page of text (K)).

F. EXAMPLE TO SHOW USE OF SYMBOLIC TAPE EDITOR

/ADD UP NUMBERS
*600
BEGN, HLT
/LOAD 200-207 WITH NUMBERS. HIT 11CONTINUE 11 ON CONSOLE
I
/THE NEXT FIVE INSTRUCTIONS INITIALIZE THE ROUTINE

CLA /CLEAR THE ACCUMULATOR
TAD MlO /LOAD AC WITH -10 TO INITIALIZE TALLY
DCA CNTR /DEPOSIT IN COUNTER
CLA /CLEAR THE ACCUMULATOR
TAD 2HUN /LOAD AC WITH FIRST ADDRESS IN BUFFER
DCABUFF

I
/THE NEXT SEVEN INSTRUCTIONS ARE THE PROGRAM ITSELF
BEGN, TAD BUFF /ADD NEXT NUMBER FROM BUFFER

ISZ BUFF /INDEX POINTER
ISZ I CNTR /INDEX COUNTER. IS IT ZERO?
JMP BEGN NO, JUMP TO ADD NEXT NUMBER
DCA ANSR YES, DEPOSIT TOTAL IN 410
HLT /STOP. HIT 11CONTINlJE 11 TO REPEAT PROGRAM
JMP BEGN+l

6-4

I
/THE NEXT THREE REGISTERS CONTAIN THE CONSTANTS FOR THE PROGRAM
MlO, 0-10 /NEGATIVE TALLY NUMBER
2HUN, 200 /FIRST ADDRESS IN BUFFER
ANSR 410
I
/THE NEXT TWO REGISTERS ARE RESERVED FOR THE VARIABLES IN THE PROGRAM
CNTR,
BUFF,
$

An assembly using PAL was attempted on the above program. On Pass 1, the Assembler

typed out BEGN DT and halted. The program listing indicated that BEGN was duplicated.

The Symbolic Tape Editor program was read in with the binary loader and the fol lowing

sequence of commands was issued. Note that the CTRL/FORM combination and RETURN

are nonprinting. Assume that the programmer used these keys correctly.

R
15L
BEGN, TAD BUFF /ADD NEXT NUMBER FROM BUFFER
15C
ADDR, TAD BUFF /ADD NEXT NUMBER FROM BUFFER
18L

JMP BEGN NO, JUMP TO ADD NEXT NUMBER
18C

JMP ADDR NO, JUMP TO ADD NEXT NUMBER
14 I 19L
/THE NEXT SEVEN INSTRUCTIONS ARE THE PROGRAM ITSELF
ADDR, TAD BUFF /ADD NEXT NUMBER FROM BUFFER

ISZ BUFF /INDEX POINTER
ISZ 1 CNTR /INDEX COUNTER. IS IT ZERO?
JMP ADDR NO, JUMP TO ADD NEXT NUMBER
DCA ANSR YES, DEPOSIT TOTAL IN 410

p

After typing P; , the complete program I isting was typed out but it was not included here.

As mentioned in Chapter 5, anything that is punched is typed. Punching out the text

does not delete it. If an error occurs in punching, simple correct the error in the usual

manner and punch out another tape.

The corrected tape was assembled, and the output of Pass 1 yielded the following symbol

table.

6-5

BEGN
MlO
CNTR
2HUN
ADDR
BUFF
NO
JUMP
TO
ADD
NEXT
NUMB
ANSR
YES
DEPO
TOTA
IN

There are three things to note.

600
616
621
617
607
621
612

UA
UA
UA
UA
UA
UA

613
UA
UA
UA

1. CNTR and BUFF were assigned the same location. This indicates that a violation

occurred. The program I isting indicates that the tags C NTR and BUFF are the only words in a

statement. (Read the official PAL writeup section entitled "Language Details - 3(c)"

to see that this is an illegal format.)

2. Symbolic address ANSR is an undefined address. This indicates that the tag ANSR was

not interpreted as such. The program listing indicates that the programmer left out the

comma.

3. Comments YES and NO were interpreted as tags. Words following interpreted as

address.

Observation of I is ting shows that the control character L was omitted.

The following is the sequence of instructions used with the Symbolic Tape Editor to correct

the listing (see next page). The listing as generated during punchout is also shown. It

should be noted that this program is stil I incorrect, it assembled correctly as the symbol

table shows. However, the program will not run as the programmer expects. This pro­

gram wil I be corrected as an example using ODT in the next chapter.

6-6

/-7L
/THE NEXT TWO REGISTERS ARE RESERVED FOR THE VARIABLES IN THE PROGRAM
.=0028
29, 30C
CNTR, 0
BUFF, 0
26L
ANSR 410
26C
ANSR, 410
26, 30L
ANSR, 410

I
/THE NEXT TWO REGISTERS ARE RESERVED FOR THE VARIABLES IN THE PROGRAM
CNTR, 0
BUFF, 0
18L

18, 19C

p

JMP ADDR

JMP ADDR
DCA ANSR

NO, JUMP TO ADD NEXT NUMBER

/NO I JUMP TO ADD NEXT NUMBER
/YES, DEPOSIT TOTAL IN 410

/ADD UP NUMBERS
*600
BEGN, HLT
/LOAD 200-207 WITH NUMBERS. HIT 11 CONTINUE 11 ON CONSOLE

I
/THE NEXT FIVE INSTRUCTIONS INITIALIZE THE ROUTINE

CLA /CLEAR THE ACCUMULATOR
TAD MlO /LOAD AC WITH -10 TO INTIALIZE TALLY
DCA CNTR /DEPOSIT IN COUNTER
CLA /CLEAR THE ACCUMULATOR
TAD 2HUN /LOAD AC WITH FIRST ADDRESS IN BUFFER
DACBUFF

I
/THE NEXT SEVEN INSTRUCTIONS ARE THE PROGRAM ITSELF
ADDR, TAD BUFF /ADD NEXT NUMBER FROM BUFFER

ISZ BUFF /INDEX POINTER
ISZ I CNTR /INDEX COUNTER. IS IT ZERO?
JMP ADDR /NO, JUMP TO ADD NEXT NUMBER
DCA ANSR /YES, DEPOSIT TOTAL IN 410
HLT /STOP. HIT 11 CONTINUE 11 TO REPEAT PROGRAM
JMP BEGN+l

I
/THE NEXT THREE REGISTERS CONTAIN THE CONSTANTS FOR THE PROGRAM
MlO, 0-10 /NEGATIVE TALLY NUMBER
2HUN, 200 /FIRST ADDRESS IN BUFFER
ANSR, 410

6-7

I
/THE NEXT TWO REGISTERS ARE RESERVED FOR THE VARIABLES IN THE PROGRAM
CNTR, 0
BUFF, 0
I
$
BEGN 600
MlO 616
CNTR 621
2HUN 617
ADDR 607
BUFF 622
ANSR 620

6-8

CHAPTER 7

INTRODUCTION TO THE PDP-8 OCTAL
DEBUGGING TAPE

A. GENERAL

ODT is the debugging program for the PDP-8 computer which allows the programmer to

correct binary tapes produced by the PAL Assembler from the console of the ASR-33 tele­

printer. This program al lows the programmer to:

1. Print out the contents of the registers in his program in octal.

2. Insert correction in octal.

3. Run his program all under the control of ODT and punch out a corrected

binary tape.

Refer to the program writeup for a complete description.

B. LOADING PROCEDURES

1. Load binary object tape from PAL into memory with binary loader.

2. Load ODT into memory with binary loader.

3. Start ODT at 1200 or 7200 depending on edition use.

C. RESTRICTIONS

1. No more than one breakpoint can exist at one time. The last breakpoint

specified will be the one that will be in effect when ODT runs the program.

2. A breakpoint may not be inserted at a JMS instruction.

3. The interrupt cannot be on when using ODT to debug a program. The

interrupt portions of the program may be debugged using ODT. However,

no ION instructions should be encountered in the debugging. If they are,

they should be replaced temporarily by NOP instructions.

7-1

If a programmed halt is encountered in the object program, simple start ODT running again

from the computer console and proceed as before.

D. PUNCH COMMANDS

The sequence of instructions for punching a program which has been debugged and is in

core is as fol lows:

1. Turn Teletype to off line. Turn punch ON. Punch leader code (200) by

depressing the CTRL, SHIFT, REPT. and@ keys simultaneously.

2. Turn Teletype on line, turn punch OFF.

3. Type in low address of memory area to be punched followed by a semi­

colon. Type in high address and then depress ALT MODE key. At this

point, the computer will halt.

4. Turn on punch, depress CONTINUE on console and the specified area

in memory will be punched out in binary format. If more areas in memory

are to be punched, return to step 2.

5. After punching the last area in memory onto your tape, hit the asterisk

(*) key. (Be sure to depress SH I FT to get into upper case.) A check sum

block will be generated, and the computer will halt.

6. Turn Teletype off I ine; punch trailer {same as leader).

7. Turn Teletype on line, turn punch off and hit CONTINUE on the console.

ODT is now waiting for the next command.

If any characters other than those described in the program writeup are typed, ODT wi 11

respond with a ? and ignore the diaracter.

E. PATCHING

ODT does not al low the programmer to insert any instructions between existing instructions

in the program. To insert instructions, add a patch into an available area in memory.

Usually, patches are placed near the end of the current page in memory.

7-2

To insert a patch fol lowing a given instruction, replace that instruction with a jump to an

available place on the same page. The displaced instruction is the first instruction written

in the patch. The desired instructions for the patch are inserted fol lowed by a jump back

to the correct location in the main program.

F. EXAMPLE

Suppose the program for adding numbers is typed in the following manner. During assembly,

no error indicators were typed out, but when the assembled program was read in, the

computer ran approximately 2 seconds and stopped. The correct answer did not appear in

its proper location.

The symbol print from assembly is shown with a guided example for using ODT to examine,

correct, and punch out the correct program. The programmer should return and make the

corresponding corrections on the symbolic tape, then reassemble. Th is gives a permanent

copy of the corrected program without wasted core space and execution time.

/ADD UP NUMBERS
*600
BEGN, HLT
/LOAD 200-207 WITH NUMBERS. HIT 11 CONTINUE 11 ON CONSOLE
I
/THE NEXT FIVE INSTRUCTIONS INITIALIZE THE ROUTINE

CLA /CLEAR THE ACCUMULATOR
TAD MlO /LOAD AC WITH -10 TO INITIALIZE TALLY
DCA CNTR /DEPOSIT IN COUNTER
CLA /CLEAR THE ACCUMULATOR
TAD 2HUN /LOAD AC WITH FIRST ADDRESS IN BUFFER
DCABUFF

I
/THE NEXT SEVEN INSTRUCTIONS ARE THE PROGRAM ITSELF
ADDR, TAD BUFF /ADD NEXT NUMBER FROM BUFFER

ISZ BUFF /INDEX POINTER
ISZ I CNTR /INDEX COUNTER. IS IT ZERO?
JMP ADDR /NO, JUMP TO ADD NEXT NUMBER
DCA ANSR /YES, DEPOSIT TOTAL IN 410
HLT /STOP. HIT 11 CONTINUE 11 TO REPEAT PROGRAM
JMP BEGN+l

I
/THE NEXT THREE REGISTERS CONTAIN THE CONSTANTS FOR THE PROGRAM

7-3

MlO,
2HUN,
ANSR,

I

0-10
200
410

/NEGATIVE TALLY NUMBER
/FIRST ADDRESS IN BUFFER

/THE NEXT TWO REGISTERS ARE RESERVED FOR THE VARIABLES IN THE PROGRAM
CNTR, 0
BUFF, 0

I
$
BEGN
MlO
CNTR
2HUN
ADDR
BUFF
ANSR

600
616
621
617
607
622
620

The program as shown ran for about 2 seconds and halted. The correct answer from the

addition was not found in location 410. ODT was read in using the binary loader and

was started in 1200. The program I isting and symbol table printout were used constantly

during the debugging process.

First, the initializing routine was checked to make sure the counters were initialized cor­

rectly. The breakpoint was inserted at locations 607 and ODT started the program running

at location 601 • Note that whatever ODT typed is underlined on the printout (the under-

1 ining was done by the author-not ODT).

607 11

601'
0607) 0200

The breakpoint typeout indicated that the AC contained 200. This is incorrect because

the DCA command should have cleared the accumulator. Thus, location 606 was opened.

606/ 0000 3222
622/ 0000

Finding it 0000, the listing was observed. The command DCA was not properly delimited.

Then the instruction 3222 (DCA BUFF) was deposited and the register closed. Register

622 (BUFF) was opened and was not initialized. The command to go is given with the

first breakpoint still in.

7-4

601 1

0607) 0000

622/ 0200
621/ 7770

The registers are now correctly initialized.

A new breakpoint is inserted to trap the program just before the jump to add the next num­

ber. The programmer knew that the numbers in location 200-207 were all 0001 and ex­

pected the AC to contain l when the trap occurred. The results are:

612 11

0612) 0200

The programmer examined the listing and saw why the AC was 0200 instead of 0001; he

should have used the instruction TAD I BUFF instead of TAD BUFF. Thus he set bit 3 of

the instruction to a l using ODT.

607/ 1222 1622

Then the programmer checked to see if the counter indicated that one number had been

added. It did not! Scrutiny of the I isting indicated that he had made bit 3 to a l in this

instruction. He had confused the use of indirect addressing. This is a common error

frequently done by an inexperienced programmer. The instruction register was opened

and modified as shown be low.

621/ 7770
611/ 2621 2221

At this point, the breakpoint was cancelled and the program restarted. The computer

halted immediately instead of running for two seconds. ODT was restarted at 1200 and

location 410 was opened. It sti II contained the incorrect answer.

II

601 1

410/ 3570

7-5

The breakpoint was inserted again at the JMP instruction and the program restarted by

ODT. The sequence of proceed commands indicated that the routine was adding the num­

bers correctly indicating the programmer concluded that the deposit instruction was wrong.

The listing was observed and the programmer saw that DCA ANSR should have been

DCA I ANSR-misuse of indirect addressing. Address ANSR was opened and, the answer

was found there. The correct indirect reference and pointer were inserted and the registers

closed.

612 11

601'
0612) 0001
I .
0612) 0002

0612) 0003
I .
0612) 0004

0612) 0005
613/ 3220 3620
620/ 0010 410

The breakpoint was cancelled and the proceed command given. The computer halted, it

was restarted at 1200 and register 410 opened. The correct answer was contained therein.

The sequence of command is shown below:

II

4 l 0/ 00 l 0 0000

The answer location was cleared and the program rerun and checked, fol lowed by the com­

mand sequence to punch and the contents of the corrected program. Only the low and

high address observed on the printout.

600;622F<:
i
-*<*?&>

The binary tape was preserved, and the symbolic tape was corrected using the Symbolic

Tape Editor.

7-6

G. SUMMARY OF PREPARATION AND CORRECTION OF PROGRAMS

At this point, the programmer may be confused concerning the use of each of the three

main programs-PAL, Symbolic Tape Editor, and ODT.

The fol lowing flow diagram illustrates the relationship between the programs and the place

of each in the preparation of correct programs.

CORRECT SYMBOLIC TAPE
USING THE SYMBOLIC TAPE

EDITOR. PUNCH OUT
CORRECT TA PE

FIND AND CORRECT THE
ERROR IN THE BINARY
PROGRAM USING THE

OCTAL DEBUGGING TAPE

PUNCH OUT THE CORRECT
BINARY TAPE

YES

NO

7-7

TYPE UP SYMBOLIC PROGRAM
WITH ASR-33 OFF LINE OR
WITH THE SYMBOLIC TAPE

EDITOR

ASSEMBLE THE SYMBOLIC
TAPE WITH PAL

LOAD THE BINARY OBJECT
TAPE FROM ASSEMBLER

INTO MEMORY

FINISHED

CHAPTER 8

INPUT-OUTPUT INSTRUCTIONS AND ROUTINES

A. GENERAL

An introduction to the elements of the input-output control is given in Section B, Chapter l

of the PDP-8 Handbook. The programmer doesn 1t need to know the function of each of the

elements in the control for elementary programming applications. Further information on

the control may be found in the PDP-8 Maintenance Manual.

The PDP-8 is capable of servicing 64 different 1/0 devices, each requiring three commands.

To the person watching the 64 1/0 devices, the computer is hand I ing al I 64 devices si­

multaneously. However, to the programmer, the computer is handling each device in­

dependently and checking the status of all the others and servicing them, if necessary.

If each device only requires one command to service it, the PDP-8 can handle up to 192

separate devices. The 1/0 instructions and suggested program sequences for each device

are given in Section B of the PDP-8 Handbook. In this workbook, the printer/punch,

reader/keyboard, high-speed reader, and high-speed punch will be discussed. The

techniques used with 1/0 devices will be directly applicable to any equipment available

on the PDP-8.

The specifications and commands for al I devices is described in F-85. This section will

deal primarily with the general 1/0 device and its programming techniques.

l . Device Flag

Al I 1/0 devices have a device flag. This flag indicates the state of the device. If

the flag is set (a l) the device is free; that is, it can be used if it is an output device,

or has information (if it is an input device). If the flag is cleared (a O) the device is

busy; that is, currently not available as a result of issuing 'it a command (if it is an

output device) or not having any information (if it is an input device).

8-1

The figure below illustrates the device flag.

PDP-8

[D 1 } ... F 1

l Dz 1 _,.
Fz

w
J -.

[D3 } F3 • ~

' 1 INTERRUPT

Note that the device flags are physically located in the control processor and that

each device, whether input or output has a unique flag. All the flags, however, are

wired to the interrupt system. This is described in more detail in a later chapter of

th is workbook.

Each flag has two basic instructions associated with it.

l. Skip of the flag is set.

2. Clear the flag.

A separate device instruction is furnished to complete the action

3. Operate the device.

Thus if the programmer initially clears a device flag and operate the device, the flag

associated with that device will be automatically set to a l when the device action is

complete.

Usually the skip instructions are immediately followed by jump instructions to I isten

or wait for a flag to be set.

8-2

Example:

A,

CLR

TAD
IOT
SKP
JMPA

/CLEAR A DEVICE FLAG

/EXECUTE AN OUTPUT COMMAND
/SENSE DEVICE FLAG
/WAIT
/CONTINUE

The 1/0 commands can be microprogrammed to include the clearing operation in the

output IOT command. When computer power is turned on, the flags can go to either

a set or cleared state. Therefore, the flags should be cleared first (a must for interrupt

programs).

There isn't any rule for the programmer to use to determine when to examine a flag

or wait for a device; he must use his judgment. Situations may occur where compu­

tation could proceed while waiting for a device (storing or examining characters

while reading paper tape), then the device waiting time can be utilized, as ii lustrated

below in flow chart form:

Example 1:
START

STOP

8-3

Example 2:

a. Problem

Write a program to type out the characters corresponding to the codes for 308

letters stored in consecutive locations starting at l 0008 . The program starts at

location 600. Use a flow diagram.

b. Flow Diagram

NO

START

INITIALIZE REGISTER
AND TELEPRINTER

LOAD AC WITH
CODE FOR CHARACTER

JUMP TO SUBROUTINE TO
TYPE IT OUT

PRINT CHARACTER
IN AC

RETURN TO MAIN
PROGRAM

HALT

NO

8-4

RETURN TO
GET NEXT CODE

c. Program Listing

/ROUTINE TO TYPE 30 CHARACTERS
*600
BEGN, HLT
/LOAD LOCATIONS IN TABLE WITH CODES FOR CHARACTERS. HIT 11 CONTINUE 11

I
/THE FOLLOWING 10 INSTRUCTIONS INITIALIZE PROGRAM AND PRINTER MECHANISM

CLA /CLEAR AC
TAD CR /LOAD AC WITH CODE FOR CARRIAGE RETURN
JMS TYPE /TYPE IT OUT IN SUBROUTINE
TAD LF /LOAD AC WITH CODE FOR LINE FEED
JMS TYPE /TYPE IT OUT
CMA /LOAD AC WITH 11 TABL-l 11 FOR
TAD TABL /AUTO-INDEX REGISTER
DCA Z IRl /STORE IN LOCATION 11
TAD M30 /INITIALIZE CHARACTER COUNTER
DCA CNTR

I
/MAIN PROGRAM
GET, TAD I Z IRl /LOAD AC WITH CODE FOR CHARACTER

JMS TYPE /TYPE IT OUT
ISZ CNTR /INDEX COUNTER. IS IT ZERO?
JMP GET /NO, RETURN TO GET NEXT CHARACTER
HLT /YES, FINISHED. HIT 11CONTINUE 11 TO REPEAT PROGRAM
JMP BEGN+l

I
/TYPEOUT ROUTINE
TYPE, 0

TLS
TSF

/LINKING REGISTER TO MAIN PROGRAM
/TYPE OUT CHARACTER IN AC
/IS THE PRINTER FLAG A l?

JMP .-1 /NO, CHECK IT AGAIN. CHARACTER NOT YET TYPED
CLA
JMP

I

/YES, CHARACTER TYPED. CLEAR AC & RETURN TO PROGRAM
I TYPE

/CONSTANTS AND VARIABLES
TABL, 1000 /INITIAL ADDRESS OF TABLE OF CHARACTERS
M30, 0-30 /2 1S COMPLEMENT OF 30 FOR COUNTER
CR, 215 /CODE FOR CARRIAGE RETURN
LF, 212 /CODE FOR LINE FEED
CNTR, 0 /CHARACTER COUNTER

I
/USE AN AUTO-INDEX REGISTER WHEN SCANNING SEQUENTIAL LOCATIONS
*11
IR l, 0

I
$

8-5

Example 3:

a. Problem

Write a routine which will accept characters typed on the keyboard. The code

for each character is to be stored consecutively in a table whose I imits are set

on the switch register (two settings required-upper and lower). When the codes

have filled the table, the computer is to type out the word "BURP:" and halt

with all ones in the AC.

b. Flow Diagram

NO

START

INITIALIZE REGISTER

SET UPPER AND LOWER
LIMITS OF TABLE

JUMP TO SUBROUTINE TO
LISTEN FDR CHARACTER

INFORMATION READY
READ INTO AC

STORE IT AWAY
IN TABLE

TYPEOUT LETTERS

CLEAR AND COMPLEMENT AC

HALT

8-6

NO

c. Program Listing

/TYPEIN ROUTINE
*400
/THE FOLLOWING INSTRUCTIONS INITIALIZE THE ROUTINE
STRT, KCC
LODl, HLT

LAS
DCA TOP

LOD2, HLT
LAS
CIA
DCA MBOT

INIT, CMA
TAD TOP
DCA Z IRl
TAD BRPT
DCA Z IR2
JMS Z CRLF

/MAIN PROGRAM
TYPI, KSF

JMP .-1
KRB
TLS
DCA

CKCK, TAD
TAD
SPA

I Z IRl
Z IRl
MBOT

JMP TYPI

I

/CLEAR AC AND KEYBOARD FLAG
/SET INITIAL ADDRESS OF TABLE. HIT CONTINUE
/LOAD AC WITH SWITCH REGISTER
/STORE INITIAL ADDRESS IN "TOP"
/SET FINAL ADDRESS OF TABLE. HIT CONTINUE
/LOAD AC WITH SWITCH REGISTER
/COMPLEMENT AND INDEX FOR FUTURE USE
/STORE IN 11 MBOT 11

/INITIALIZE AUTO-INDEX REGISTER
/FOR STORING CODES.

/INITIALIZE AUTO-INDEX REGISTER FOR TYPING "BURP!"
/INITIALIZE TELEPRINTER POSITION AT "CRLF"

/IS THE KEYBOARD FLAG A 1
/NO, CHECK IT AGAIN
/YES, CODE READY. LOAD INTO AC
/TYPE IT OUT
/STORE IT AWAY IN TABLE
/LOAD AC WITH POINTER
/ADD 2'S COMPLEMENT OF BOT. OF TABLE
/IF ANSWER IS NEGATIVE, TABLE NOT FULL. GET NEXT CHAR.

/THIS PORTION OF MAIN PROGRAM TYPES OUT INDICATION THAT TABLE IS FULL
BURP, TAD I Z IR2 /TABLE FULL. LOAD AC WITH CODE FOR TYPEOUT

JMS X TYPO /TYPE IT OUT
TAD MEXC /ADD 2'S COMPLEMENT OF 11 ! 11 TO AC
SZA C LA /IS ANSWER ZERO?
JMP BURP /NO, WORD NOT TYPED YET
JMS Z CRLF /YES, LAST CODE WAS 11 ! 11 • INITIALIZE TELEPRINTER
C LA CMA /SET AC TO ALL ONES.
HLT /STOP. RESTART BY HITTING "CONTINUE"
JMP STRT

I
/CONSTANTS AND VARIABLES
TOP, 0
MBOT, 0
BRPT, BRPT

302
325

/BRPT = THIS LOCATION
/B
/U

8-7

322
320
241

/R
/P
;:

MEXC, 0-241 /2 1S COMPLEMENT OF II : 11

I
/SMALL, OFTEN-USED SUBROUTINES PLACED ON PAGE 0
*40
CRLF,

TYPO,

CR,
LF,
I

0
TAD
JMS
CLA
TAD
JMS
CLA
JMP
0
TSF
JMP
TLS
JMP
215
212

CR
TYPO

LF
TYPO

/LINKING REGISTER FOR SUBROUTINE
/TYPE OUT CARRIAGE RETURN

/TYPE OUT LINE FEED

I CRLF /RETURN TO MAIN PROGRAM
/LINKING REGISTER FOR SUBROUTINE

. -1

I TYPO

/LOCATIONS FOR AUTO-INDEX REGISTERS
*ll
IRl I 0
IR2, 0
$

Example 4: Rotation and Masking in Packing and Unpacking

a. Problem

Write a routine to accept octal numbers typed on the keyboard as on absolute

address. Follow the address by a slash (/). The routine will then type four

spaces fol lowed by the contents of the specific address. Al I addresses are assumed

to be right justified. If the address specified is too large or if any character

other than 0-7 or/ is typed, the routine wil I type a question mark and wait for

the next address.

8-8

b. Flow Diagram

TYPE OUT FOUR SPACES

INITIALIZE COUNTER
FOR UNPACKING

LOAD REGISTER
INDICATED BY

ADDRESS REGISTER

STORE AWAY IN
TEMPORARY LOCATION

ROTATE ONCE MORE
BECAUSE OF LINK

MASK OFF BITS 0-8

ADD IN 260

TYPE IT OUT

NO

START

INITIALIZE REGISTERS AND
TELEPRINTER POSITION

JUMP TO SUBROUTINE TO
LISTEN FOR CHARACTER

TYPE CHARACTER BACK LOAD AC WITH CODE FOR'?'
OUT WHEN ARRIVES TYPE IT OUT

LOAD TEMPORARY
LOCATION

8-9

NO

MASK OFF BITS 4-8
STORE AWAY IN

TEMPORARY LOCATION

LOAD PARTIALLY
ASSEMBLED CODE

ROTATE 3 BINARY BITS
TO THE LEFT

ADD TEMPORARY
LOCATION TO IT

STORE IN ADDRESS
REGISTER

c. Program Listing

/OCTAL PRINT - SINGLE LOCATION
*1000
/THE FOLLOWING INSTRUCTIONS INITIALIZE THE ROUTINE
INIT, TLS /SET TELEPRINTER FLAG

KCC /CLEAR AC AND KEYBOARD FLAG
JMS Z CRLF /INITIALIZE TELEPRINTER
DCA HOLD /DEPOSIT ZEROS IN LOCATION TO HOLD ADDRESS
TAD M5 /INITIALIZE COUNTER TO COUNT NUMBERS IN THE ADDRESS
DCA CCTR

I
/THE FOLLOWING ROUTINE TESTS INCOMING CHARACTERS
USN, JMS Z TYPI /JUMP TO LISTEN FOR INCOMING CHARACTER
PROC, DCA TEM /STORE IT AWAY FOR REFERENCE

TAD TEM /LOAD IT INTO AC
TAD SLSH /ADD NEGATIVE CODE FOR SLASH
SNA CLA /IS THE RESULT ZERO?
JMP SPCR /YES, CHARACTER WAS 11/. 11 JUMP TO TYPE SPAC
TAD TEM /NO, CHECK TO SEE IF
TAD M260 /CODE IS LESS THAN 260
SPA CLA /IS SUM GREATER THAN ZERO OR EQUAL TO ZERO?

2LTL, JMP Z TYP? /NO, CODE< 260. TYPE"?"
TAD TEM /YES, GET CODE AGAIN
TAD M267 /CHECK TO SEE IF CODE
SMA SZA CLA/IS GREATER THAN 267?

2BIT, JMP Z TYP? /YES, CODE> 267
ISZ CCTR /NO, INDEX CHARACTER CNTR. HAVE 5 COME IN?
SKP /NO, SKIP NEXT INSTRUCTION

2MNY I JMP z TYP? /YES I TYPE II? II

I

TAD TEM /GET CODE AGAIN
AND MASK /MASK OFF BITS 9-8
DCA TEM /STORE SINGLE OCTAL DIGIT IN TEM
TAD HOLD /LOAD ASSEMBLED WORD
RTL /ROTA TE THREE BITS TO THE LEFT
RAL
TAD
DCA
JMP

TEM /ADD IN LA TEST NUMBER
HOLD /STORE IN ADDRESS REGISTER. RETURN FOR NEXT CHARACTER
USN

/ROUTINE TO TYPE OUT FOUR SPACES
SPCR, TAD M4 /LOAD AC WITH MINUS 4

DCA SCTR /STORE IT IN SPACE COUNTER
TAD SPCD /LOAD AC WITH SPACE CODE
JMS Z TYPE /TYPE IT OUT
ISZ SCTR /INDEX SPACE COUNTER. IF NOT ZERO, TYPE ANOTHER SPACE
JMP .-3

8-10

I
/ROUTINE TO UNPACK AND TYPE OUT DESIRED REGISTER
UNPK, TAD M4 /INITIALIZE COUNTER TO TYPE OUT

DCA CCTR /4 LETTERS
TAD I HOLD /ADD CONTENTS OF EFFECTIVE ADDRESS

ROLO, RTL /ROTA TE 3 PLACES TO THE LEFT
RAL
DCA TEM /STORE RES UL TANT WORD
TAD TEM /LOAD IT AGAIN
RAL /ROTATE ONCE MORE BECAUSE OF LINK

MSKR, AND MASK /MASK OFF ALL BUT DESIRED OCTAL DIGIT
TAD NMCD /ADD IN 260 TO MAKE IT CODE FOR NUM
JMS Z TYPE /TYPE IT OUT
TAD TEM /ADD PARTIALLY ROTATED WORD
ISZ CCTR /INDEX COUNTER HAVE WE TYPED 4 LETTERS
JMP ROLO /NO, JUMP BACK AND TYPE OUT NEXT CODE
JMP INIT+l /JUMP BACK TO INITIALIZE ROUTINE

/CONSTANTS AND VARIABLES
NMCD, 260 /CODE FOR NUMBERS
HOLD, 0 /REGISTER TO HOLD ASSEMBLED ADDRESS
CCTR, 0 /VARIABLE FOR CHARACTER COUNTER
M5, 0-5 /CONSTANT FOR CHARACTER COUNTER
MASK, 7 /MASK TO LEAVE ONLY l OCTAL CODE
M267, 0-267 /NEGATIVE VALUE FOR UPPER LIMIT OF NUMBERS
M260, 0-260 /NEGATIVE VALUE FOR LOWER LIMIT OF NUMBERS
TEM, 0 /TEMPORARY LOCATION
SLSH, 0-257 /NEGATIVE CODE FOR SLASH
SCTR, 0 /VARIABLE LOCATION FOR COUNTING SPACES
M4, 0-4 /TALLY NUMBER TO COUNT 4 SPACES
SPCD I 240 /CODE FOR SPACE

I
*40
/SUBROUTINE TO TYPEOUT CHARACTER
TYPE, 0 /LINKING REGISTER TO MAIN PROGRAM

TSF /IS PRINTER FLAG A l?
JMP .-1 /NO, CHECK IT AGAIN
TLS /YES, TYPE OUT NUMBER IN AC
CLA CLL /CLEAR AC AND LINK, RETURN TO MAIN PROGRAM
JMP I TYPE

I
/SUBROUTINE TO LISTEN FOR KEYBOARD
TYPI, 0 /LINKING REGISTER TO MAIN PROGRAM

KSF /IS KEYBOARD FLAG A l?
JMP .-1 /NO, CHECK IT AGAIN
KRB /YES I READ KB IN AC
TLS /TYPE IT BACK OUT. RETURN TO MAIN PROGRAM
JMP I TYPI

I
/THIS ROUTINE TYPES A QUESTION MARK AND JUMPS TO INITIALIZE ROUTINE

8-11

TYP?,

AGIN,
QUMK,

I

TAD
JMS
JMP
INIT+l
277

QUMK
z TYPE /TYPE II ? 11

I AGIN /JUMP BACK TO INITIALIZING ROUTINE
/POINTER TO MAIN PROGRAM
/CODE FOR QUESTION MARK

/THIS ROUTINE TYPES A CARRIAGE RETURN-LINE FEED COMBINATION
CRLF, 0 /LINKING REGISTER

CR,
LF I
$

TAD CR /LOAD AC WITH CODE FOR CARRIAGE RETURN
JMS Z TYPE /TYPE IT OUT
TAD LF /LOAD AC WITH CODE FOR LINE FEED
JMS Z TYPE /TYPE IT OUT
JMP I CRLF /RETURN TO MAIN PROGRAM
215
212

Example 5:

a. Write a tape duplicator which wil I read characters from a paper tape and

store them in a word storage block starting at 4008 and ending at 70008 • At the

same time, the punch should be punching the contents of the storage. Use the

1/0 time available while punching to read as many characters as possible; thus

operating punch and reader at full speed. Devise a method of determining when

the end of the tape has been reached.

The solution to this example shown on the fol lowing pages does not use the pro­

gram interrupt. This type of programming simply illustrates how one can do a

large number of program steps while a relatively slow 1/0 device is operating.

In this solution, approximately 5 characters are read from paper tape and stored

in memory while one character is being punched. Likewise, the routine for

determining when the end of the tape has been reached is operating while infor­

mation is being obtained from the reader.

The end-clock routine for determining the end of the tape is as follows. Each

time the computer finds that the reader flag is a 0, it indexes a counter before

returning to check the flag again. The counter is preset to overflow after looping

approximately 30 mil I iseconds in that sequence of instructions. It usually takes

only 3.3 milliseconds to read a line of tape. If a feed hole doesn't appear under

the reader head, the flag is not set to a 1 and the counter indexes until over­

flow. The computer then assumes the end of the tape has been reached.

8-12

b. Flow Diagram

CUT READER PORTION
OUT OF PROGRAM

NO

YES

START

INITIALIZE ALL REGISTERS
CHANGED DURING P~OGRAM

SET UP A COUNTER TO
INDICATE END OF TAPE

PUNCH TWO FOLDS OF
BLANK TAPE

(400 LINES)

READ READER BUFE:ER
AND STORE CODE IN

BUFFER AT 200

PUNCH IS READY. PUNCH
OUT NEXT CHARACTER

8-13

DUPLICATE NEXT
BLOCK OF TAPE

END-OF-TAPE

YES

HALT

c. Program Listing

/TAPE DUPLICATOR FOR HIGH SPEED READER AND PUNCH ON PDP-5
*200
BEGN, HLT
/LOAD TAPE TO BE DUPLICATED INTO READER. HIT CONTINUE.

I
/THE FOLLOWING ROUTINE PUNCHES 400 LINES (2 FOLDS) OF LEADER
LEDR, CLA /SET UP COUNTER TO PUNCH 400 (OCTAL)

TAD M400 /LINES OF LEADER
DCA LCTR

PUNL, PLS

I

PSF
JMP
ISZ
JMP

.-1
LCTR
PUNL

/PUNCH OUT LEADER (AC=O)
/CHECK TO SEE IF PUNCH FLAG IS 1
/NO, CHECK IT AGAIN
/YES, INDEX LEADER COUNTER. SKIP ON OVERFLOW

/INITIALIZING ROUTINE
INIT, TAD BUFF /INITIALIZE AUTO-INDEX REGISTERS

DCA Z IRl
TAD BUFF
DCA Z IR2
TAD RDIN /INITIALIZE PROGRAM TO INCLUDE READER LOOP
DCA CHGl
TAD RDIN
DCA CHG2

I
/MAIN PROGRAM
READ, TAD MG

DCA ECHK
RFC
RSF
SKP
JMP .+4

TCHK, ISZ ECHK
JMP .-4
JMP RSTP
RRB
DCA I Z IRl

BCHK, TAD Z IRl
TAD MEND
SNA CLA
JMP RSTP

PUN, PSF
CHGl I JMP READ

TAD I Z IR2
PLS
CLA

/SET UP COUNTER TO INDICATE END OF TAPE

/FETCH FIRST CHARACTER
/CHECK TO SEE IF READER FLAG IS A l
/NO, CHECK IF END OF TAPE
/YES, JUMP TO READ READER BUFFER
/INDEX ENDCHECK. IS IT ZERO?
/NO, CHECK READER FLAG AGAIN.
/YES, CUT READER PORTION OUT OF PROGRAM. END OF TAPE
/READ READER BUFF
/STORE IN BUFFER
/LOAD READER POINTER INTO AC
/ADD NEGATIVE ADDRESS OF END OF BUFFER
/ARR THE TWO NUMBERS EQUAL?
/YES, JUMP TO STOP READER. BUFFER FULL
/NO, IS THE PUNCH AVAILABLE?
/NO, JUMP BACK TO READ OR PUNCH NEXT CHARACTER
/YES, PUNCH READY. GET NEXT CODE
/PUNCH IT OUT

8-14

TAD
TAD
SZA

Z IR2
MEND
CLA

JMP .+5
TAD ECHK
SNA CLA
JMP STOP
JMP INIT
TAD Z IR2
TAD M400
SNA CLA
JMP READ
TAD Z IR2
CMA IAC
TAD Z IRl
SZA CLA

CHG2, JMP READ
STOP, CLA CMA

HLT
JMP LEDR

/LOAD AC WITH PUNCH POINTER
/COMPARE WITH LAST LOC. IN BUFFER
/ARE THE TWO NUMBERS EQUAL?
/NO, BUFFER NOT PUNCHED YET.
/YES, LOAD AC WITH END-OF-TAPE COUNTER
/IS IT ZERO?
/YES, END OF TAPE REACHED.
/NO, MORE TAPE TO DUPLICATE
/LOAD AC AGAIN WITH PUNCH POINTER
/COMPARE WITH BEGINNING OF BUFFER
/ARE THE TWO NUMBERS EQUAL?
/YES, READ NEXT CHARACTER. ITS FIRST TIME
/LOAD AC ONCE MORE WITH PUNCH POINTER
/COMPARE WITH READER POINTER

/ARE THE TWO NUMBERS EQUAL?
/NO, JUMP TO READER OR PUNCH LOOP
/YES, DUPLICATION COMPLETE
/HALT WITH ALL ONES IN THE AC

/BY HITTING CONTINUE, YOU MAY DUPLICATE ANOTHER TAPE

I
/FOLLOWING ROUTINE CHANGES ALL 11 JMP READ 1S11 TO 11 JMP PUN 1S11

/TO ALLOW PUNCH TO CATCH UP WITH READER. THEY ARE REINITIALIZED EACH
/TIME PUNCH HAS PUNCHED OUT THE BUFFER
RSTP, CLA /READER STOP SEQUENCE

TAD PNIN /LOAD INSTRUCTION 11 JMP PUN 11

DCA CHGl /DEPOSIT IN LOCATIONS WHICH CHANGE
TAD PNIN /WHEN READER FILLS BUFFER
DCA CHG2
JMP PUN

/VARIABLES
ECHK, 0
LCTR, 0

I
/CONSTANTS
M400, 0-400
BUFF I 377
END, 7000
MEND, 1000
PININ, JMP PUN
RDIN, JMP READ
MG, 0-1000

I
* 11

/COUNTER TO DETERMINE END OF TAPE
/COUNTER TO DETERMINE END OF LEADER

/CONSTANl TO l NITIALIZE LEADER COUNTER
/CONSTANT INDICATING BEGINNING OF BUFFER
/END OF BUFFER
/TW0 1 S COMPLEMENT OF END OF BUFFER
/INSTRUCTION TO CHANGE 11 JMP READ 11

/INSTRUCTION TO CHANGE 11 JMP PUN 11

/CONSTANT TO INITIALIZE END OF TAPE COUNTER

/DEFINITION OF AUTO-INDEX REGISTERS.
IRl I 0 /READER POINTER
IR2, . 0 /PUNCH POINTER

I
$ 8-15

REVIEW QUESTIONS - CHAPTER 8

Write routines for the following problems. All routines should be in PDP-8 Assembler language

and symbolic addressing should be used.

l. Type out in octal the contents of memory, starting and ending at the locations of your

choice. Type two columns, the left representing the address of the location and the

right representing the contents of that location.

2. Write a routine which will accept octal instructions typed on the keyboard and store

them in memory. The starting address for the sequence of instructions is determined

by typing an A, the absolute octal address, and a carriage return. The following I ist

of 4-digit instructions {each terminated by CR) will be inserted consecutively in memory

unti I another A is hit to specify a new starting address. To make the program useful

type an E, erasing al I numbers typed after the preceding carriage return and enabling

correction of errors in typing.

3. Write a routine which will punch out on paper tape the contents of memory starting and

ending as specified by the operator. Be sure to put on the tape the starting address of

the block and a suitable termination word that indicates the end of tape.

4. Write a routine to read from paper tape and store in memory the information punched by

the above program (#3).

8-16

CHAPTER 9

PROGRAM INTERRUPT FEATURE OF THE
PDP-8 SYSTEM

A. GENERAL

The program interrupt feature of the PDP-8 computer al lows a logic I ine to interrupt the

program that is running, to sense certain alarm conditions or event signals, or to service

an 1/0 device. This feature speeds up processing of 1/0 data, because many computer

instructions may be performed while waiting for an 1/0 device to become ready again.

Also, the time may be effectively shared between two, three, four, five or more separate

devices.

When an interrupt occurs, the contents of the program counter (the current address in the

main program) are automatically stored in memory location 0, and an interrupt begins by

forcing the computer to execute a program beginning at location 0001. The above opera­

tions occur automaticaly in 3.2 microseconds. To avoid destruction of the auto-index

registers, the instruction in 0001 should be a jump to a interrupt servicing routine. The

interrupt system is turned OFF automatically when the interrupt is initiated, and therefore

must be turned ON again by the program immediately before returning to the main pro­

gram. After the device causing the interrupt has been examined and serviced by a sub­

routine, the computer should return to the main routine by the execution of a

JMP I Z 0000. If another interrupt request is waiting, it will be accepted immediately.

If there is a second interrupt request while the computer is servicing the first request,

the second request is ignored unti I the first request hos been satisfied. However, the

device flag is set and may be checked by the servicing routine before returning to the

main program. It is good practice to examine the program flags for other devices before

leaving the interrupt routine. This should be done prior to turning on the interrupt and

executing the JMP I Z 0000.

The two instruction associated with the interrupt system are:

ION
IOF

6001
6002

9-1

Enable the interrupt system
Disable the interrupt system

B. TYPES OF INTERRUPTS

There are two kinds of interrupts: data break and program interrupt. If the computer gets

a request for these two at the same time, a priority circuit wil I handle the data break

request before the program request. If two or more program interrupts occur at the same

time, the interrupt is initiated; and with program examination of the device flags, a

priority of 1/0 devices can be assigned.

l • Data Break

The data break feature al lows high-speed transfer of data from an 1/0 device such as

a magnetic tape unit, a drum, or a microtape unit. The data break is controlled by

hardware in the control unit for the specific 1/0 device. The programmer does not

need to be concerned with the handling of the data, this is governed by the control

unit. This control unit will steal one cycle per data transfer from the computer while

it is executing the program and will deposit the data in or fetch data from memory,

but wil I not disturb the arithmetic registers or the program counter.

2. Program Interrupt

In general applications, the program interrupt is used more frequently than the data

break. It is particularly useful in hand I ing data from the relatively slow 1/0 devices

such as the high-speed reader, high-speed punch or teleprinter. It al lows the main

program to run continuously, and the program wi II be interrupted only when a data

transfer is ready. If data is coming into the computer, it is stored at this time, and

instructions are modified to take care of the next input of data. If data is going from

the machine, the instructions are modified to select the correct data for the next

output.

C. USE OF THE PROGRAM INTERRUPT

At the beginning of a program using the interrupt, the programmer should clear al I the

device flags connected to the computer. The state of the flags cannot be assumed, and

spurious interrupts might occur if this precaution were not taken.

9-2

The following program will illustrate a typical use of the system routine, using the high­

speed punch and reader. The 1/0 flags will be tested to see which 1/0 device should be

handled. Each of the subroutines, that handle the equipment returns to the interrupt

routine and continues to check flags to assure that another device further down in priority

has not requested an interrupt during the 1/0 handling routine. If such a device has set

a flag, it will be serviced at this time before the AC and link are restored and the inter­

rupt system is enabled. After the interrupt system is turned on, the computer should re­

turn immediately and al I flags checked again. This is not the only interrupt routine

which can be used. Some programmers may prefer to jump out of the interrupt routine

without checking any other flags. Either procedure may be used.

ILLUSTRATION OF INTERRUPT AND SYSTEM ROUTINE

*0 0
JMP I 2
1000

*1000
INTR DCA TEMP /STORE AWAY AC

RAL /ROTA TE LEFT
DCA LINK /STORE AWAY LINK
RSF /CHECK READER FLAG
SKP
JMS REDR /SERVICE READER
PSF /CHECK PUNCH FLAG
SKP
JMS PUN /SERVICE PUNCH

EXIT, TAD LINK /RESTORE THE LINK
RAR CLL
TAD TEMP /RESTORE AC
ION /ENABLE INTERRUPT SYSTEM
JMP I Z 0 /RETURN TO MAIN PROGRAM

REDR, 0 /THIS SUBROUTINE SHOULD PROCESS
/DATA FROM READER IN WHATEVER
/WAY PROGRAMMER DECIDES AND

CLA /SHOULD CHANGE INSTRUCTIONS FOR
JMP I REDR /MANIPULATION OF NEXT INPUT.

PUN, 0 /THIS SUBROUTINE SHOULD GET
/DA TA TO BE PUNCHED OUT, AND

CLA /SHOULD CHANGE INSTRUCTIONS
JMP I PUN /FOR NEXT OUTPUT.

9-3

D. CRITERIA FOR DETERMINING TIMING AND PRIORITY

l. Timing

In writing an interrupt program for a real-time application, there are two important

parameters which must be determined: the frequency of data transfer to or from each

device and the stabi I ity of data to or from each device.

The latter consideration is seldom critical because of the buffers on each standard

device. However, in some applications, (processing of radar signals) it may be impor­

tant.

The first general rule may be phrased as: The time of the processing subroutine for

all devices must be shorter than the time between the data transfers from the higher

frequency device.

If this condition is not met, information may be lost from the device. To minimize

subroutine time, the programmer may choose to use JMP instructions in servicing de­

vices rather than JMS instructions and JMP back at end of the subroutine rather than

JMP I.

2. Priority

In the standard interrupt foci I ity of the PDP-8, the programmer has control over the

sequence in which the various devices are checked. The second general rule is:

Check the 1/0 devices in order of frequency. The faster devices should be checked

first.

Again, if the stability time of the data is important, this should be considered.

9-4

CHAPTER 10

PROGRAM LIBRARY: SUBROUTINES AND
PROGRAMS

A. GENERAL

It is often necessary to repeat a group of instructions during the execution of a program.

Do not write out the instruction each time a function is needed. Instead, the instructions

needed are written once and the main program transfers to this group of instructions each

time they are required. This group of instructions is cal led a subroutine. These subroutines

normally perform basic functions and may be used in the solution of many problems.

A great deal of the programmer's time and effort may be saved by using the subroutines

which are available from the PDP-8 Library. By using these subroutines and the cal I ing

sequence as required, the programmer can write a program very quickly to accomplish a

rather complex sequence of operations. The symbolic tapes of the subroutines are supplied,

as well as listings of each subroutine. The tapes may be appended to the main program,

and any page specifications and address assignments may be es tab I ished by the programmer

using the Symbolic Tape Editor.

Programs are constantly being added to the library. The subroutines and programs listed

on the following pages represent only a partial list of those presently available. The

requests and needs of the customer are often the criterion to write a program for the I ibrary.

B. USE OF THE SUBROUTINES

l • Assembly

Most of the subroutines in the I ibrary have an origin setting at the beginning and a

$ delimiter at the end of the tape. At the time of assembly, it may be necessary for

these to be removed from the final symbolic tape.

l 0-1

With the Symbolic Tape Editor, the operator can easily append the subroutines onto

the main program and the Editor wil I punch out the entire program. The text storage

area of the Editor holds over 6410 instructions (one half memory page) with comments.

If the program is longer than one half memory page, the use of the form feed block

on the symbolic tape will ease the job of editing.

Considerable thought should be given to the organization of subroutines on the core

pages. The writeup for each subroutine contains the number of locations required.

The subroutines should be placed together to use as many registers on a core page as

possible.

2. Requirements

Some of the subroutines in the I ibrary require other subroutines to make them work

properly. Under the category labeled Needed on the official writeup, the author

I is ts the required equipment and/ or subroutines to make the particular subroutine work

properly. Failure to heed the requirements will result in wasted time as the program

won't work. If both subroutines are to be used without modification, they should be

on the same page.

3. Intercommunication Registers

If the subroutine is not on the current page of the main program and not on Page 0,

the programmer may put an intercommunication register on the current page for ease

in referencing the subroutine. The address portion of the intercom register is the tag

of the starting address of the subroutine. On assembly, the initial address of the

subroutine is placed in the intercom register. An example of this technique will be

shown using the Square Root subroutine.

a. Example Using Intercom Register

JMS I SQIN
/AC CONTAINS SQUARE
/SUBROUTINE CALLED
/AC CONTAINS SQUARE ROOT

10-2

SQIN, SQRT /INTERCOM TO SQRT

If the square root subroutine were placed on Page 0, the subroutine cal I would

be:

JMS Z SQRT

4. Tags in the Subroutine

/AC CONTAINS SQUARE
/SUBROUTINE CALLED
/AC CONTAINS SQUARE ROOT

The tags in the subroutine are specified by the author when writing it. If a tag in the

main program is identical to a tag in a subroutine, PAL will type out BEGN DT and

halt. Therefore, the listing of the pertinent subroutine be observed and all tags

should be noted. The programmer must then use different tags.

5. Single- and Double-Precision Routines

Both single- and double-precision routines are available from the PDP-8 Program

Library. Single-precision routines deal with one computer word (i.e., 12 bits). Using

one word, the machine can represent 2's complement numbers in the range of +2047

to -2048. If more range is desired, the programmer should use double-precision

routines (two computer words, 24 bits). By using 24 bits, the machine can represent

signed 2's complement numbers in the range of+ 8, 388,607 to - 8, 388,608.

The fol lowing is an example of a double-precision addition. A double-precision op­

erand is stored in locations 20 and 21. The second operand is stored in locations 22

and 23. The high-order portions are in locations20 and 22. Add the two numbers

and store the results in locations 24 and 25 with the high-order portion in location 24.

CLA CLL
TAD
TAD
DCA
RAL

z
z
z

21
23
25

10-3

TAD
TAD
DCA

C. SELECTED ROUTINES

z
z
z

20
22
24

l. The PDP-8 Program Library is constantly being updated and new programs added. No

attempt will be made to present all the programs that are available from the library

in this workbook. Your instructor will issue the latest program abstract.

Following is a selected group of library subroutines, which are used most often.

Single- and double-precision routines are similar therefore, only single-precision

is presented here.

2. Arithmetic Routines

The rules for using a 2 1s complement, fixed-point computer for performing arithmetic

operations are referred to as sealing of binary numbers. The PDP-8 subroutines are

written for general-purpose, fixed-point arithmetic. This scaling or scale factor con­

cept must be used to obtain meaningful results. A complete discussion of the rules

and techniques of scaling is available from Digital's Applied Programming Department.

a. 2's Complement Multiply Subroutine

The multiplicand must be present in the location following the JMS MULT in­

struction before the subroutine is ca 11 ed.

The subroutine multiplies two 11-bit signed numbers together resulting in a 22-

bit signed product. If the product is positive, bits 0 and l of the high-order word

will be O; if negative, bits 0 and l will both be l. This provides consistency

with 2's complement arithmetic.

The subroutine returns with the high-order word of the product in the AC and

the low-order bits in location MPl. If the main program is on another core

page, MPl may be referenced by an intercom register.

10-4

b. 2 1s Complement Divide Subroutine

The definitions of divisor, dividend, and quotient are:

5 (Dividend) = 2 (quotient) with a remainder
2 (Divisor) of 1.

The divide subroutine is general-purpose to divide 2 1s complement, fixed-point,

scaled binary numbers. The dividend is 24 bits and must be greater in magnitude

than the divisor. When dividing scaled binary numbers, the scale factor of the

quotient is the difference between the scale factor of the dividend and the scale

factor of the divisor.

Example: Divide 408 by 208

Dividend 0000 0040 Sea le Factor = B23
Divisor 0020 Scale Factor = B 11
Quotient 0001 Scale Factor= B 12

In this example, the scale factor of the quotient is outside the 12-bit word.

To preserve accuracy of the quotient, the programmer should adjust the scale

factors before entering the divide subroutine. The scale factors are adjusted by

shifting operations which are performed by combinations of rotates on the PDP-8.

In the above example, the scale factor of the quotient should have been Bl l.

This could be obtained by resealing the dividend to 822 by shifting the dividend

one place to the left. When the divisior:i is performed, a binary number scaled

B22 by a binary number scaled B 11 wil I be divided. The quotient wil I be scaled

B 11 (B22 - B 11) •

The following is a suggested program sequence to accomplish rescaling before

cal I ing the subroutine. Assume that the high- and low-order portions of the

signed, 23-bit dividend are located in HDIV and LDIV, respectively.

CLA CLL
TAD LDIV
RAL

10-5

CALL,

DCA
TAD
RAL
JMS

CALL+ l
HDIV

DIV

Where such a technique is used, the largest acceptable dividend before manipula­

tion is:
±222 - l = ±4, 194, 30310

3. Conversion Routines

a. Single-Precision, Decimal-to-Binary Input

This subroutine will accept a signed string of decimal digits from the keyboard

of the ASR-33. The number typed will be converted to its binary equivalent,

which wil I be in the accumulator on return from the subroutine.

b. Single-Precision, Binary-to-Decimal Conversion and Output (DEC-5-32-A)

This subroutine will convert a signed 11-bit number to its decimal equivalent

which will be typed out by the ASR-33 printer.

4. Teletype Output Programs

a. Teletype Output Package

This package contains several subroutines to perform different functions. The

purpose of the subroutines is to provide an easy means of typing out l, 2, or a

string of characters and special characters such as carriage return/line feed com­

binations, tabs or spaces. This package also contains a routine to interpret a

BCD code and type it out as a single decimal digit.

The codes for the characters used in the subroutine are referred to as trimmed

codes. Instead of being composed of 8 binary bits, the codes contain only the

last 6 binary bits of the ful I code. The untrimmed codes for each character are

10-6

shown in Appendix 2 of the PDP-8 Handbook. The fol lowing table shows the

function, the subroutine cal I, and the contents of the AC when the subroutine

is cal led. Control always returns to the main program with the AC and I ink

cleared {except for the last function).

Regular tab is equal to 8 spaces because location TTAB contains 7770 {- 8 decimal).

Location TTAB may be changed as desired by the programmer. For example,

TTAB would contain 7772 for 6 spaces. The tab subroutine is similar to the tab

on a regular typewriter. For an excel lent description of the tab, refer to the

program writeup. The special considerations for typing a string of characters

are also contained in the writeup. The most important features are described here.

The last 2 codes in a table of packed, trimmed codes must be 0001. This

signals the subroutine to discontinue typing of characters.

To type a carriage return or I ine feed only, the trimmed code must

be preceded by two zeros. {i.e., pack the codes 0015 or 0012,

respectively.)

On entering the subroutine, the AC must contain the absolute initial

address of the table of trimmed codes. The fol lowing table indicates

the technique for writing the program in assembler language.

TBll,

ENDL,

2324
etc.

0001

/TRIMMED CODES FOR STRING

/END SIGNAL

In order to specify the typeout of this string of characters, the cal I ing se­

quence would be:

TAD TUN
JMS TSC

10-7

/LOAD AC WITH TABLE l DESIGNATOR
/SUBROUTINE CALLED
/RETURN WITH AC AND LINK

TUN,

Function

Type l character

Type 2 characters

Type a string of
characters

Type CR/LF

Type l space

Type tab

Type BCD digit

Convert trimmed code
to 8 bit code

TBll

D. FLOATING-POINT ROUTINES

l . General

Call

JMS TYl

JMS TY2

JMS TSC

JMS TCR

JMS TSP

JMS TYT

JMS TDIG

JMS CON

/CLEARED

/INTERCOM REGISTER TO TABLE l

Contents of AC

Trimmed codes in AC bits 6-11

First code in AC bits 0-5
Second code in AC bits 6-11

Initial address of stored codes

Bits 0-7-0, Bits 8-11 BCD

Enter with code in AC, bits 6-11
Exit with code in AC, 4-11

The floating-point package is provided for users who have problems involving deci­

mal fraction arithmetic and do not want to program fixed-point arithmetic. Fixed­

point programming involves a thorough knowledge of the limits of the values of the

parameters both in the input/output stages and before and after each elementary

calculation. To facilitate calculations of this type, a complete set of floating-point

instructions are available through the use of the interpretive Floating-Point Arithmetic

Package. In this program, the instructions operate on numbers in a floating-point

format where the binary point (counterpart to the decimal point) is maintained auto­

matical I y by the program.

l 0-8

The addition of two floating-point numbers in the computer corresponds to the addition

of the two numbers with decimal points. Example: Add the numbers 50 and - 0 .635.

50.000
- 0.635

49.365

The decimal points must I ine up before the numbers can be added correctly. The same

addition could have been performed with the numbers expressed as shown.

2
0.50 x l 0 0

-0.635 x l 0

0.49365 x l o2

Again the numbers must be arranged so that the exponent values are the same, and

leading zeros must be supplied.

0.50000 x 10~
0.00635 x l 0

0 .4 9365 x 102

The final fraction contains more digits than either of the two numbers involved. Under

certain cir::~:;-;:;: nces, there may be leading zeros which contain no significant in­

formation. The floating-point package will normalize the number {i.e., adjust the

exponent part of the number to eliminate insignificant zeros).

When writing programs using the floating-point package, the programmer will need

to know a conversion procedure for decimal to floating and floating to decimal. A

floating-point word in the PDP-8 occupies three registers one register for the ex­

ponent and two registers for the mantissa. The fol lowing is a brief description of the

conversion process.

a. Convert the number lO(lO) to floating-point. First convert the number to fixed­

point binary.

l 0-9

Move the binary point to the left of the most significant bit and count the places

moved. This number is the exponent. Write the mantissa at the extreme left,

but not in bit 0. Bit 0 is used to indicate the sign. The number will look like

this in octal notation:

!00041 124001

Exponent Mantissa

b. Convert the number 25(l0) to floating point.

25 (10) = 1100 l. (2)

Move the binary point and count the places moved. The exponent will be 5.

Write the mantissa to the left. The number will be as shown below (octal).

looo5j 131001

Exponent Mantissa

c. Convert -lO(lO) to floating-point. Convert to binary, working only with the

absolute magnitude of the number. Move and count the binary point. Put the

exponent and mantissa in as before. Take the 2 1s complement of the mantissa.

The floating-point number looks I ike this:

100041 15400]

Exponent Mantissa

d. Convert the number -.0625 to floating-point •

• 0625(10)= .0001

Move and count the binary point to the right. Move the point to the left of the

first binary one. The exponent is - 3. Expressing - 3 in 2's complement is

7775(B)" Put the mantissa at the left, but to the right of bit 0, take the 2 1s com-

plement of the mantissa yields 16000] !ooooJ

10-10

The complete floating-point number will look like this.

17775] 16000]

Exponent Mantissa

2. Interpretive Floating-Point Arithmetic Package

a. . Tape Format

This routine is long and assembly in each program is needless. Thus, the program

is available only in binary format and may be loaded with the regular binary

loader.

b. Internal Format of Floating-Point Words

The heart of the floating-point package is a 3-register block (448 -468) called

the floating accumulator (FA). All data calculations and transfers are made

through the floating accumulator, similar to the 12-bit accumulator (AC).

Floating-point data in the FA and in storage registers is composed of two parts:

Mantissa. Th is portion occupies two registers (45 and 46 of the

FA) and contains the norma I ized data word.

Exponent. This register (44) indicates the magnitude of the exponent.

The magnitude limits are ±2047 10.

Unless the programmer is doing special manipulations, he does not need to be

concerned with the details of this format. The commands and the program keep

consistent control over the data.

NOTE: A floating-point word occupies three registers. If a
floating-point storage register is set aside, three (12-b it) registers
must also be set aside.

l 0-11

3. Floating-Point 1/0 Package

This routine performs the same routines that the input-output conversion subroutines

perform. When the input routine is cal led, it wil I accept a signed decimal number

typed on the ASR-33, convert it to floating-point format, and store the number in

the floating accumulator. On output it will print out in decimal format the floating­

point number contained in the floating accumulator. This routine is only available

in binary format.

a. Floating-Point Input Conversion (FINK)

The floating-point input conversion routine is of the form:

±ddd.dddE±dd

The d's represent decimal digits. The E must be typed preceding the digits which

represent the decimal exponent of the number. Either of the signs, the decimal

point, or the entire exponent may be omitted. If the decimal point is omitted,

it is assumed to be to the right of the last significant digit of the mantissa. Any

character which is not legally a part of the above format terminates input of the

number. The input will allow up to 6 digits in the data word and 2 digits in the

exponent. Al I rubout codes are ignored.

b. Floating-Point Output Conversion (FOUT)

The floating-point output routine converts the number in the floating accumulator

to decimal and types it out in the fol lowing format:

±.dddddd±dd

The decimal point is always in front of the leftmost digit. The last two digits

(i.e., those after the second sign) indicates the exponent of the 6-digit decimal

fraction. If the magnitude of the exponent exceeds 99, XX will be printed.

c. Sample Problem to Demonstrate the Use of the Floating-Point Package

Four decimal numbers are typed on the ASR-33 representing the coefficients A,

B, C, and D of a third-order nonlinear equation. The floating-point routine

10-12

TRMl I

TRM2,

TRM3,

TRM4,

ADUP,

calculates the value of the equation and prints the answer on the ASR-33. The

values of X and Y are stored on the current page.

The equation is:

+ + (D/A)Y3

The portion of the program, which will accept the four decimal parameters from

the keyboard, calculate the expression, type out the answer, and leave it in the

floating accumulator, is shown below.

JMS I Z FINK /READ A INTO F.A.
JMS I Z FPNT /TRANSFER CONTROL TO FLOATING POINT
FPUT A /STORE IT FOR FUTURE USE
FMPY x /CALCULATE FIRST TERM
FMPY x
FMPY x
FPUT STRl /STORE F.A. IN STORAGE AREA l
FEXT /EXIT FROM FLOATING POINT MODE
JMS I Z FINK /READ B INTO F.A.
JMS I Z FPNT /TRANSFER CONTROL TO FLOATING POINT
FMPY x /CALCULATE SECOND TERM
FMPY x
FMPY x
FPUT STR2 /STORE F.A. IN STORAGE AREA 2
FEXT /EXIT FROM FLOATING POINT MODE
JMS Z FINK /READ C INTO F.A.
JMS I Z FPNT /TRANSFER CONTROL TO FLOA Tl NG POINT
FMPY x /CALCULATE THIRD TERM
FMPY y
FMPY y
FPUT STR3 /STORE F.A. IN STORAGE AREA 3
FEXT /EXIT FROM FLOATING POINT MODE
JMS Z FINK /READ D INTO F.A.
JMS I Z FPNT /TRANSFER CONTROL TO FLOATING POINT
FDIV A /CALCULATE FOURTH TERM
FMPY y
FMPY y
FMPY y
FSUB STR3 /ADD UP THE TERMS
FADD STR2
FADD STR l

10-13

OUTP,

x,

Y,

STR 1,

STR2,

STR3,

A,

FEXT
JMS

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

/EXIT FROM FLOATING POINT MODE
Z FOUT /PRINT OUT ANSWER

/X PARAMETER STORED HERE

/Y PARAMETER STORED HERE

/STORAGE REGISTERS

Example 6: Expensive Adding Machine

a. Problem

Write a program which will accept decimal digits from the ASR-33 preceded by

an operator(+, -, X, or/) and terminated by a nondigit character (a space is

suggested). The indicated operation wil I be performed in floating-point arith­

metic. When an equal sign is typed, the routine wil I generate a carriage return/

I ine feed combination and print the value of the expression. If any other char­

acter is typed as input, the routine will ignore it and return to listen for a mean­

ingful character.

The program that is shown as a solution does not inherently contain an error cor­

rection facility. However, if an error is made, simply type a space followed by

an equal sign. The incorrect answer wil I be typed out and the operator may re­

turn to type in the correct sequence of dig its.

10-14

The value of the expression up to that point is calculated after each termination

character. The ordinary rules of algebra concerning order of operations do not

hold. This routine is a calculating routine not a compiling routine.

NOTE: Use a 4K version of the PAL Assembler marked PAL 4K33
(EOT) to assemble a symbolic program using the floating-point commands.

b. Flow Diagram

TYPE OUT"="
TYPE CR a LF
TYPE NUMBER

CONTAINED IN F.A.

START

INITIALIZE TELEPRINTER
POSITION

LISTEN FOR INCOMING
CHARACTER

LOAD INTO~
WHEN IT ARRIVES

10-15

TYPE our•-•

TYPE OUT"/"

TYPE OUT"~

PERFORM SPECIFIED
OPERATION.LEAVE

ANSWER IN F. A.

ENTER FLOATING 110 IN
SPECIFIED ROUTINE TO

LISTEN FOR CHARACTER

REMAIN IN FLOATING 1/0

LISTEN FOR NEXT
CHARACTER

c. Program Listing

/EXPENSIVE ADDING MACHINE - FLOATING POINT
/SET UP THE INTER-COM REGISTERS FOR FLOATING POINT
*5
FINK, 7400
FOUT, 7200
FPNT, 5600

I
/TYPEOUT SUBROUTINE FOR PAGE ZERO
*173
TYPE, 0 /LINKING REGISTER TO MAIN PROGRAM

TSF
JMP .-1
TLS
JMP I TYPE

I
/THE STARTING ADDRESS IS 200
/I NI TIA LIZA TION ROUTINE
BEG, KCC

I

TLS
TAD
JMS
CLA
TAD
JMS
CLA
DCA
DCA
DCA

C215
Z TYPE

C212
Z TYPE

ACC
ACC+l
ACC+2

/CLEAR KEYBOARD FLAG AND AC
/GIVE TYPEOUT COMMAND TO SET FLAG
/INITIALIZE TELEPRINTER POSITION

/CLEAR OUT SPACE FOR
/FLOATING NUMBER

/SECTION TO LISTEN FOR INCOMING CHARACTER
GOPR, KSF /GET OPERATOR

JMP .-1
KRB

I
/DISPATCH ROUTINE

TAD M253
SNA
JMP ADD
TAD M2
SNA
JMP SUB
TAD M2
SNA
JMP DVD
TAD Ml6
JMP EQL

/ADD TO CODE MINUS 253
/WAS IT A PLUS SIGN, CODE 253?
/YES I JUMP TO ADD
/NO, ADD -2 TO RESULT
/WAS IT A MINUS SIGN, CODE 255?
/YES, JUMP TO SUBTRACT
/NO, ADD -2 TO RESULT
/WAS IT A SLASH, CODE 257?
/YES, JUMP TO DIVIDE
/WAS IT AN=, CODE 275?
/YES I JUMP TO EQUATE

10-16

/ADD ROUTINE

TAD
SNA
JMP
JMP

M33

MLT
GOPR

ADD, TAD C253
JMS
CLA
TAD
JMS
JMS
JMS
FADD

Z TYPE

C240
Z TYPE
I Z FINK
I Z FPNT
ACC

FPUT ACC
FEXT
JMP GOPR

/ADD - 33 TO RESULT
/WAS IT AN 11 X11 , CODE 330?
/YES, JUMP TO MULTIPLY
/ILLEGAL CHARACTER, TRY AGAIN

/TYPE A 11+11 SIGN

/TYPE A SPACE AFTER OPERATOR
/ENTER FLOATING 1/0 TO GET NUMBER
/ENTER INTERPRETIVE MODE
/ADD CONTENTS OF 11ACC 11 TO CONTENTS OF
/FLOATING AC
/STORE IN ACC
/LEAVE INTERPRETIVE MODE

/END OF ADDITION. GET NEXT OPERATOR
I
/SUBTRACT ROUTINE
/THE FOLLOWING ROUTINES ARE ESSENTIALLY THE SAME AS THE
/ 11ADD 11 ROUTINE SO WILL NOT BE COMMENTED
SUB, TAD C255

JMS Z TYPE /TYPE MINUS SIGN
CLA
TAD
JMS
JMS
JMS
FPUT
FGET
FSUB
FPUT
FEXT

C240
Z TYPE
I Z FINK
I Z FPNT
ACC+3
ACC
ACC+3
ACC

JMP GOPR
/END OF SUBTRACTION. GET NEXT OPERATOR
I
/DIVIDE ROUTINE
DVD, TAD

JMS
CLA
TAD
JMS
JMS
JMS
FPUT
FGET
FDIV

C257
Z TYPE

C240
Z TYPE
I Z FINK
I Z FPNT
ACC+3
ACC
ACC+3

/TYPE SLASH FOR DIVIDE

10-17

FPUT ACC
FEXT
JMP GOPR

/END OF DIVISION. GET NEXT CHARACTER

I
/MULTIPLY ROUTINE
MLT, TAD C330

JMS Z TYPE /TYPE MULTIPLY OPERATOR, 11 X 11

CLA
TAD C240
JMS Z TYPE

JMS
JMS
FMPY
FPUT
FEXT

I Z FINK
I Z FPNT
ACC
ACC

JMP GOPR
/END OF MULTIPLICATION. GET NEXT OPERATOR

I
/EQUALS ROUTINE
EQL, TAD

JMS
CLA
TAD
JMS
CLA
TAD
JMS
JMS
FGET
FEXT
JMS
CLA

C275
Z TYPE /TYPE EQUALS OPERA TOR

C215
Z TYPE /TYPE CR

C212
Z TYPE /TYPE LF
I Z FPNT
ACC /GET ANSWER IN F.A.

/LEAVE INTERPRETIVE MODE
I Z FOUT /TYPE OUT ANSWER

JMP BEG+2
/JUMP TO INITIALIZE PROGRAM FOR NEXT CALCULATION
/CONSTANTS
C215,
C212,
M253,
M2,
Ml6,
M33,
C253,
C240,
C255,
C257,

215
212
0-253
0-2
0-16
0-33
253
240
255
257

l 0-18

C330, 330
C275, 275
ACC, 0

$

0
0

l 0-19

A. GENERAL

CHAPTER II

INTRODUCTION TO THE PDP-8

DEC DEBUGGING TAPE (DDT-8)

DDT-8 is a debugging program for the PDP-8 computer which allows the programmer to cor­

rect a binary program which contains errors. DDT-8 occupies locations 5240 to 7600 and

location 4. Its internal symbol table extends down to 5000 and al lows an input of 200

{decimal) symbols. Its starting address is 5400. DDT-8 is operated from the ASR-33 Key­

board, and the output may be on the ASR-33 Printer-Punch or the High-Speed Punch, de­

pending on the operator's choice and available equipment.

B. DEFINITIONS

l. Symbol - A string of letters or letters and numbers, the first character of which must

be a letter. Up to six characters may be used.

2. Number - A string of up to four octal digits.

3. Expression - A string of symbols and numbers separated by a plus{+), minus {-), or

space.

4. Open Register - When a register is opened, its contents are printed out, and the reg­

ister becomes available for modification.

5. Closed Register - When a register is closed, any modifications requested are made and

further access to the register is denied until it is opened again.

DDT will respond to operator errors by typing a question mark (?)and will ignore the error.

C. LOADING PROCEDURE

l. Load binary object tape into memory using the Binary Loader.

11- l

2. Load DDT-8 into memory using the Binary Loader.

3. Set switch register to 5400, depress LOAD ADDRESS, depress START.

4. DDT-8 is now running and awaiting the first command.

D. CONTROL CHARACTERS

NOTE: Use of a left bracket ([) indicates depression of ALT MODE
key which is echoed as a left bracket ([). The switch register is
positive when the leftmost switch (bit) is down (O) and negative
when it is up (1).

l. Arithmetic

a. Plus (+) - Separation character meaning arithmetic plus.

b. Minus(-) - Separation character meaning arithmetic minus.

c. Space - Separation character indicating that the fol lowing expression is to be

taken as an address.

d. Period{.) - Has the numerical value of the current location.

e. Equal (=) - Convert the last expression printed into its octal equivalent.

2. Program Examination and Modification

a. Slash V) - Open the register whose address precedes the slash. The operation

causes the contents of the register to be printed out and makes it available for

modification.

b. Carriage Return (~) - Closes the register opened by the slash. Any expression

typed before carriage return wi 11 become the contents of the register.

c. Line Feed - Has the same effect as carriage return, however, it opens the next

consecutive register.

d. Up Arrow (t) - Opens the register specified in the address portion of the instruc­

tion contained in the open register. Use of this character does not follow an in­

direct chain.

11-2

e. [0 - Convert to octal mode. Causes contents of registers examined to be typed

out in octal.

f. [S - Convert to symbolic mode. Causes contents of registers examined to be typed

out in symbolic.

3. Search

a. N[W - Causes a word search for the expression or number N. The search will

take place between the limits in locations [Land [U of DDT and the contents of

the registers will be masked (logical ANDed) by the contents of [M.

b. [L - Permits access to the register which contains the lower limit of the search

(operates in the same way as the slash), originally 0001.

c. [U - Permits access to the register which contains the upper limit of the search,

initia I ly 5000.

d. [M - Allows access to the register which contains the mask of the search, originally

7777.

4. Breakpoints

a. Y[B - Inserts a breakpoint before location Y. The breakpoint is inserted only

when a G or C command is given. When a breakpoint is encountered, control

goes to DDT and the AC and I ink are saved.

The location of the breakpoint is typed out fol lowed by a right parenthesis and the

contents of the AC at that point. Breakpoints may be removed by typing [B alone

with no address indicated.

NOTE: Only one breakpoint may exist at any time. The last
specified breakpoint is the one which DDT establishes when the
GO or CONTINUE command is given.

11-3

b. Y[G - Go to address Y and begin execution of the user's program at that point.

Control goes to the user's program and its execution begins. The computer will

stay in the user's program until a breakpoint is reached at which time control will

return to DDT. If no trap occurs (no breakpoint established or reached due to

branching) the computer wil I stay in the user's program until a programmed halt

occurs, at which time the computer will halt. DDT will have to be restarted by

putting 5400 in the switch register, depressing LOAD ADDRESS, and then depressing

START.

c. [C - Continue from trap. This command will cause control to go from DDT to the

user's program with the AC and link returned to their original condition before

the breakpoint was encountered. Control will stay in the user's program until a

breakpoint is reached, at which time control goes back to DDT. If the breakpoint

is in a loop and it is desired to go around the loop a specific number of times, the

command N[C may be typed, at which time DDT wil I al low the program to loop

N times before the breakpoint is encountered.

d. [A - Opens the register which contains the contents of the AC at a breakpoint.

e. [y - Opens the register which contains the contents of the link at a breakpoint.

5. Symbol Definition

a. [R - Read symbol table. If it is desired to define symbols to use in the symbolic

mode and these symbols are on the binary tape produced from the Assembler, place

this portion of the tape in the reader, type [R, and then turn on the reader. If

the symbols on the tape are less than 200 (decimal), they will be read into the

buffer area of DDT which is reserved for the definitions of tags used in a program.

Then hit CONTINUE. If a new symbol table is being created, the contents of

the switch register should be negative; however, if it is desired that the symbols

coming in append the table currently in the buffer, the contents of the switch

register should be positive. To define symbols not on a binary tape, use the

fol lowing procedure:

11-4

1. Set switch register to positive or negative.

2. Type [R.

3. Type CARRIAGE RETURN-LINE FEED.

4. Type symbol to be defined, at least one space, the address of the symbol,

CARRIAGE RETURN-LINE FEED.

5. Repeat step 4 for each symbol to be defined.

6. When all symbols have been defined, type EOT and hit CONTINUE. After

the symbol tab I e has been read in by DDT, the bottom address of the externa I

symbol table wi 11 be typed out. The operator's program must not exceed this

address.

6. Punch

a. Y;Z[P - Punch contents of locations Y through Z inclusive in binary format on

tape.

b. [T - Punch leader-trailer.

c. [E - Punch checksum and trailer.

d. Procedure to punch binary tape on ASR-33.

1. Turn the Teletype to on I ine; turn punch off.

2. Set switch register to negative.

3. Type [T, turn punch on, depress CONTINUE. Leader will be generated.

4. Turn punch off, type in low address of area to be punched followed by a

semicolon (;), then the high address of the area to be punched, then type

[p.

5. Turn punch on, depress CONTINUE.

6. Repeat steps 4 and 5 for more blocks to be punched.

7. With Teletype on I ine and punch off, punch checksum and trailer by typing

[E, turn punch on and hit CONTINUE.

11-5

8. Turn punch off after tape is punched. DDT is now awaiting the next command.

To use the high-speed punch (15A), use the same procedure as with ASR-33 except

the switch register should be set to positive and the punch on ASR-33 is left off.

11-6

mamanmn

5233 PRINTED IN U.S.A. 5-3/65

.

