
08/8
TECO Reference Manual

Order No. AA-H608A-TA

ABSTRACT

This document describes the Text Editing and
Correcting Program for OS/8 users.

SUPERSESSION/UPDATE INFORMATION: This manual supersedes the TECO chapter of
the OS/8 Handbook (DEC-S&OSHBA-A-D).

OPERATING SYSTEM AND VERSION: OS/8V3D

To order additional copies of thisdocument, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation • maynard. massachusetts

First Printing, March 1979

The info~ation in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Bquipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the te~s of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (S) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-ll
VAX
DECnet
DATATRIEVE

DECsystem-10
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS
TRAX

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-ll
ITPS-10
SBI
PDT

""1

PREFACE

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.S
1.9

CHAPTER 2

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6
2.7
2.S
2.9
2.9.1
2.9.2
2.9.3
2.10

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.3
3.3
3.4
3.5
3.6
3.7
3.S
3.9

CONTENTS

INTRODUCTORY COMMANDS

FUNDAMENTALS
FILE SELECTION COMMANDS
INPUT AND OUTPUT COMMANDS
POINTER POSITIONING COMMANDS
TYPE OUT COMMANDS
TEXT MODIFICATION COMMANDS
SEARCH COMMANDS
SUMMARY
SAMPLE EDITING JOB

CONCEPTS

INTRODUCTION
MEMORY USE
DATA FILES
CHARACTER SET

Special Characters
Control Characters
Carriage Control Functions and Responses

DATA FORMAT -- LINES AND PAGES
EDITING BUFFER
BUFFER POINTER
GENERAL COMMAND STRING SYNTAX
ARGUMENTS

Text Arguments
Numeric Arguments
Commands That Return a Value

SUPER TECO

USING TECO

INTRODUCTION
CALLING TECO

R TECO Command
General Purpose Initialization Commands
MAKE Command
TECO Command
MUNG Command

FILE SELECTION COMMANDS
INPUT COMMANDS
BUFFER POSITION NUMERIC ARGUMENTS
BUFFER POINTER POSITIONING COMMANDS
TEXT TYPE-OUT COMMANDS
DELETION COMMANDS
INSERTION COMMru~DS

iii

Page

vii

1-1

1-1
1-2
1-4
1-5
1-6
1-6
1-7
l-S
l-S

2-1

2-1
2-1
2-2
2-3
2-3
2-4
2-5
2-5
2-6
2-6
2-7
2-S
2-S
2-S
2-10
2-10

3-1

3-1
3-1
3-1
3-1
3-2
3-3
3-4
3-5
3-5
3-6
3-6
3-6
3-7
3-7

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

CHAPTER 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
A ,.,
't • .!. I

4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.29.1
4.29.2
4.29.3
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.38.1
4.38.2
4.39
4.40

CONTENTS (Cont.)

OUTPUT AND EXIT COMMANDS
SEARCH COMMANDS
ITERATION COMMANDS
FLOW CONTROL COMMANDS
Q-REGISTERS
ERASING COM}1ANDS
ERROR MESSAGES
TECHNIQUES AND EXAMPLES

TECO COMMANDS

INTRODUCTION
A APPEND COMMAND
nA COMMAND
AAtext<AA> TYPE-OUT COMMAND
B POSITION INDICATOR
C BUFFER POINTER COMMAND
"c COMMAND
D DELETE COMMAND
"D DECIMAL RADIX COMMAND
<DELETE>
AE END-OF-PAGE FORM FEED FLAG SIGNAL
EB EDIT BACKUP COMMAND
EC EXIT CLOSE COMMAND
EF END FILE COMMAND
EG EXIT AND GO COMMAND
EH EDIT HELP COMMAND
EK EXIT KILL CO~mAND
EO VERSION COMMAND
ER EDIT READ cor4MAND
<ESCAPE> COMMAND
ET EDIT TERMINAL COMMAND
EU EDIT UPPER/LOWER COMMAND
EW EDIT WRITE COMMAND
EX EXIT COMMAND
AF COMMAND
FN FAST NONSTOP SEARCH/REPLACE COMMAND
FS FAST SEARCH/REPLACE CO~mAND
G GET COMMAND
<"G> COMMAND

<AG><Sp> Command Line Echo Command
<AG>* Command String Echo Command
<AG><AG> Command String Erasure Command

H WHOLE POSITION INDICATOR
I INSERT COMMAND
nI$ INSERT COMMAND
J JUMP COMMAND
K KILL COMMAND
L LINE COMMAND
M MACRO COMMAND
N NONSTOP SEARCH COMMAND
AN

<AN> Match Control Character
An End-of-File Indicator Command

o GOTO COMMAND
< 0> COMMAND

iv

Page

3-7
3-7
3-8
3-9
3-9
3-10
3-10
3-11

4-1

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-14
4-15
4-16
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-30
4-32
4-33
4-33
4-34
4-34
4-35
4-36
4-38
4-39
4-40
4-42
4-43
4-45
4-47
4-47
4-47
4-48
4-49

4.40.1
4.40.2
4.41
4.42
A A
<t.<t')

4.44
4.44.1
4.44.2
4.45
4.46
<t.<tl

4.47.1
4.47.2
4.47.3
4.48
4.49
4.49.1
4.49.2
4.50
4.51
4.52
4.53
4.54
4.54.1
4.54.2
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.63.1
4.63.2
4.63.3
4.64
4.65
4.66
4.67
4.67.1
4.67.2
4.68
4.69
4.69.1
4.69.2
4.70
4.71

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

CONTENTS (Cont ..)

<~O> Type Out Command
<AO> Octal Radix Command

P PAGE COMMAND
PW PAGE WRITE COMMAND
Q Q-REGISTER COMMAND
<"'Q>

<"Q> Type-Out Control Command
<"Q> Match Control Character

R REv~RSE COt~·UU~D
S SEARCH CO~~ND
"s

<"'S> Store Command String Command
<"'S> Freeze Output Command
<"S> Match Control Character

T TYPE COMMAND
"T TYPE-IN COMMAND

"T Input Command
"T Typeout Command

<TAB> INSERT COR~D
U COMMAND
<"U> COMMAND
"Uqtext$ COMMAND
W WINDOW CO~~~D

W Command
nW Command

X EXTRACT COMMAND
<"'X>
Y YANK COMMAND
Z POSITION INDICATOR
!tag!
" BRANCHING COMMANDS
% COMMAND
• POSITION INDICATOR

MODIFIER
S Modifier

: Numerical Type-out Modifier
: Q-register Type-out Command
COMMAND

< •.. > COMMAND
= NUMERICAL TYPE-OUT COMMAND
? COMMAND

? Trace Command
? Error Command

@ TEXT DELIMITER MODIFIER
\ COMMAND

\ Command
n \ Insertion Corranand

""x COMMAND
COMMAND

OCTAL & DECIMAL ASCII CHARACTER SET

TECO ERROR MESSAGES

TECO COMMAND SUMMARY

v

Page

4-49
4-49
4-50
4-52
4-54
4-55
4-55
4-55
4-56
4-57
4-58
4-58
4-58
4-58
4-59
4-61
4-61
4-61
4-62
4-63
4-64
4-65
4-66
4-66
4-66
4-67
4-69
4-70
4-71
4-72
4-73
4-77
4-78
4-79
4-79
4-80
4-80
4-81
4-82
4-84
4-85
4-85
4-86
4-87
4-88
4-88
4-88
4-89
4-90

A-I

B-1

C-1

Index-1

FIGURE

TABLE

3-1
3-2
3-3
3-4
3-5
3-6
3-7

2-1
2-2
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16

CONTENTS (Con t.)

FIGURES

Command String for Example 2
An Elementary TECO Macro for Example 3
A Second Macro for Example 3
File-Packing Macro
Loading and Running the File-Packing Macro
Unpacking Macro
Loading and Running the Unpacking Macro

TABLES

Special Characters
Arithmetic/Logical Operators
C Commands
D Commands
EH Commands
ET Commands
EU Commands
J Commands
K Commands
L Commands
P Commands
PW Commands
R Commands
T Commands
X Commands
Conditional Execution Commands

Commands
@ Commands

vi

Page

3-14
3-15
3-15
3-15
3-16
3-16
3-16

2-4
2-9
4-6
4-8
4-18
4-23
4-24
4-39
4-40
4-42
4-50
4-52
4-56
4-59
4-67
4-74
4-84
4-87

PREFACE

TECO is a text editing program that runs under the POP8 operating
system. TECO may be used to edit any form of ASCII text such as
program listings, manuscripts, correspondence and the like. Since
TECO IS a character-oriented editor rather than a line editor, text
edited with TECO does not have line numbers associated with it, nor is
it necessary to replace an entire line of text in order to change one
character.

This manual is divided into four parts. Chapter 1, which contains
basic information, introduces enough TECO commands to allow the novice
TECO user to begin creating and editing text files after only a few
hours of instruction. The introductory commands are sufficient for
any editing application; however, they are less convenient, in most
cases, than the advanced commands presented later.

Chapter 2 discusses the concepts underlying TECO. This discussion is
relatively command independent; instead, the emphasis is on how TECO
works.

Chapter 3 explains how to run TECO under the OS/8 monitor and presents
an overview of many of the TECO commands. These commands are grouped
by function.

Chapter 4 examines all TECO commands. The commands are listed in
alphabetic order. Where applicable, commands appear together in the
discussion or in the examples.

vii

DOCUMENTATION SET FOR 05/8

OS/8 SYSTEM GENERATION NOTES {AA-H606A-TA}

The System Generation Notes provide the information you need
to get a new 05/8 system running.

OS/8 SYSTEM REFERENCE MANUAL (AA-H607A-TA)

The System Reference Manual describes 05/8 system
conventions, keyboard commands, and utility programs.

OS/8 TECO REFERENCE MANUAL (AA-I1608A-TA)

The TECO Reference Manual describes the 05/8 version of this
character-oriented text editing and correcting program.

OS/8 LANGUAGE REFERENCE MANUAL (AA-H609A-TA)

The Language Reference Manual describes all languages
supported by OS/8, including BASIC, FORTRAN IV, and the PAL8
assembly language.

OS/8 ERROR MESSAGES (AA-H6l0A-TA)

This manual lists in alphabetical order all error messages
generated by OS/8 system programs and languages.

viii

CHAPTER 1

INTRODUCTORY COMMANDS

1.1 FUNDAMENTALS

TECO considers text to be any string of ASCII codes. Text is divided
into units of pages, lines, and characters. A page of text consists
of all the ASCII codes between two form feed characters, including the
second form feed. A character is one ASCII code. Thus, every page of
text contains one form feed character, which is the last character on
the page. Every line of text contains one line feed, which is the
last character on the line.

TECO maintains a text buffer in which text is stored. The buffer
usually contains one page of text consisting of up to several thousand
characters, but the terminating form feed character never appears in
the buffer. TECO also maintains a buffer pointer. The pointer is
simply a movable position indicator which is always located between
two characters in the buffer, or before the first character in the
buffer, or after the last character in the buffer. The pointer is
never located on a character.

Line feed and form feed characters are inserted automatically by TECO.
A line feed is automatically appended to every carriage return entered
into the buffer, and a form feed is appended to the content of the
buffer by certain output commands. Additional line feed and form feed
characters may be entered into the buffer as text. If a form feed
character is entered into the buffer, it will cause a page break upon
output. That is, all text preceding the form feed will appear on one
page, and the text following the form feed will appear on the next
page.

Finally, TECO also maintains an input file and an output file,-both of
which are selected by the user through the use of file specification
commands. The input file is any device from which text may be
accepted. For example, if a block of text is stored in a disk file,
the disk file would be specified as an input file when the text is
edited.

The output file is any device on which edited text may be written. If
the disk file mentioned above were to be edited, it could be written,
for example, onto another disk file.

TECO functions as a "pipeline" editor. Text is read from the input
file into the text buffer, and is written from the buffer onto the
output file. Once a portion of text has been written to the output
file, it cannot be accessed again without closing the output file and
re-opening it as. an input file.

TECO may be called from command level by typing:

.R TEeD For RT-ll

1-1

INTRODUCTORY COMMANDS

(terminated with a carriage return). TECO will respond by printing an
asterisk at the left margin to indicate that it is ready to accept
user commands. At this point, one or more commands may be typed at
the terminal, and TECO will execute the commands upon receipt of two
consecutive ESCAPE characters. ,The ESCAPE is a non-printing character
which may be labelled ESC, ALT, or PREFIX on some keyboards. TECO
echoes a dollar sign ($) whenever an ESCAPE is received. The dollar
sign character is used in examples throughout this manual to represent
ESCAPE.

You can also summon TECO with the MAKE and TECO CCL commands.

To create a new file, use the MAKE command. The format is

MAKE filespec

where filespec is the name of the new file and the device you wish to
store it on. TEeO opens the file you specify for output.

To edit an existing file, use the TEeo command. The format is

TEeo filespec

where filespec is the name of an already existing file you wish to
edit. TECO opens the file for input.

A TECO command consists of one or two characters which cause a
specific operation to be performed. Some TECO commands may be
preceded or followed by arguments. Arguments may be either numeric or
textual. A numeric argument is simply an integer value which might be
used to indicate such things as the number of times a command should
be executed. A text argument is a string of ASCII characters which
might be words of text, for example, or a file specification.

If a command requires a numeric argument, the numeric argument always
precedes the command. If a command requires a text argument, the text
argument always follows the command. All text arguments are
terminated by a special character (usually an ESCAPE) which indicates
to TECO that the next character typed will be the first character of a
new command.

If more than one command is typed in response to the asterisk
generated by TECO, the command string will be executed from left to
right until either all commands have been executed or a comman~ error
is recognized. If an error is encountered, a message is printed and
the rest of the command string is ignored. In any case, TEeo prints
another asterisk at the left margin as soon as it finishes execution
of a command string, so that additional commands may be entered.

The extensive text editing capability of TECO implies a large and
versatile command set. However, the novice TECO user will find that
little more than a dozen basic commands suffice for most editing
requirements. The following section introduces the basic TEeo
commands. The full command set will be described later in this
manual.

1.2 FILE SELECTION COMMANDS

Input and output files may be specified to TECO in several ways. The
following commands permit flexible file selection with TEeO.

1-2

All of
commands
argument
contents
operating

INTRODUCTORY COMMANDS

NOTE

the following file selection
are shown with a general

of "filespec". The actual
of this filespec argument are
system dependent.

TECO will accept input text from any input device in the operating
system. The input device may be specified by means of an ER command
terminated by an ESCAPE. The ER command causes TECO to open the
specified file and print an error message if the file is not found.
This command do~s not cause any portion of the file to be read into
the text buffer, however. The following examples illustrate use of
the ER command:

Command

ERfilespec$

Function

General form of the ER command where
-filespec" is the designation of the input
file. The command is terminated by an
ESCAPE, which echoes as a dollar sign.

The following examples illustrate the use of the ER command.

ERPR:$

ERF'ROG.MAC$

ERRXA1:PROG.FOR$

Prepare to read an input file from the paper
tape reader.

Prepare to read input rlle PROG.MAC from the
system's default device.

Prepare to read input file PROG.FOR from
RXAl:.

TECO will write output text onto any device in the operating system.
The output file may be specified by means of an EW command terminated
by an ESCAPE. If the output device is a file-structured device (e.g.,
a disk), a file name and extension (if any) must be supplied. If a
file name is specified but no device is explicitly defined, the
system's default device is assumed. The following examples illustrate
use of the EW command, which has the same format as the ER command:

Command

EWfilespec$

EWSYS:TEXT.LST$

EWPROG$

EWRXA1:TEXT.LST$

Function

General form of the EW command where
"filespec" is the designation of the output
file. The command is terminated by an
ESCAPE, which echoes as a dollar sign •.

Prepare to write output file TEXT.LST on
SYS: •

Prepare to write output file PROG on the
system's default device.

Prepare to write output file TEXT.LST on
RXAl:.

It is not always necessary to specify an input file. If the user
desires to create a file without using any previously edited text as
input, he may type commands to insert the necessary text directly into
the text buffer from the keyboard and, at the end of each page, write
the content of the buffer onto an output file. Since all input is
supplied from the keyboard, no input file is necessary.

1-3

INTRODUCTORY COMMANDS

An output file is unnecessary if the user desires only to examine an
input file, without making permanent changes or corrections. In this
case, the content of the input file may be read into the text buffer
page by page and examined at the terminal. Since all output is
printed on the user terminal, no output file is needed.

When the user is finished editing a file, he may use the EX command to
close out the file and exit from TECO. The current contents of the
text buffer, and any portion of the input file that has not been read
yet, are copied to the output file before TECO exits. Note that the
EX command takes no arguments.

Command

EX

Function

Move the remainder of the current input file
to the current output file, close the output
file, then return to the monitor.

The following examples illustrate the use of the EX command.

ERINPUT.MACSEWOUTPUT.MAC$$ Open an input file "INPUT.MAC" and
open an output file named
"OUTPUT.MAC". The double ESCAPE
($$) terminates the command string
and causes the string to be
executed. Note that the ESCAPE
which terminates the EW command may
be one of the two ESCAPEs which
terminates the command string.

ERFILE.MACSEWCOPY.MACSEX$$ Open an input file "FILE.MAC" and
open an output file named
"COPY.MAC", then copy all the text
in the input file to the output
fiie, ciose the output file and
exit from TECO.

TECO will only keep one input and one output file open and selected at
a time. The current input file may be changed by simply using the ER
command to specify a new file. The EX command or one of the other
file closing commands presented later may be used to close the output
file.

1.3 INPUT AND OUTPUT COMMANDS

The following commands permit pages of text to be read into the TECO
text buffer from an input device or written from the buffer onto an
output device. Once a page of text has been written onto the output
file, it cannot be recalled into the text buffer unless the output
file is closed and reopened as an input file.

Command

Y

Function

Clear the text buffer, then read the next
page of the input file into the buffer.
Since the Y command causes the contents of
the text buffer to be lost, it is not
permitted if an output file is open and there
is text in the buffer.

1-4

Command

n r

nP

INTRODUCTORY COMMANDS

Function

Write the content of the text buffer onto the
next page of the output file, then clear the
buffer and read the next page of the input
file into the buffer.

Execute the P command n times, where n must
be an integer in the range 1<=n<65535. If n
is not specified, a value of 1 is assumed.

1.4 POINTER POSITIONING COMMANDS

Tne buffer pointer provides the only means of specltylng the location
within a block of text at which insertions, deletions or corrections
are to be made. The following commands permit the buffer pointer to
be moved to a position between any two adjacent characters in the
buffer. TECO positions the pointer before the first character in the
buffer after every Y or P command.

Command

J

L

nL

C

nC

Function

Move the pointer to the beginning of the
buffer.

Move the pointer forward to a position
between the next line feed and the first
character of the next line. That is, advance
the pointer to the beginning of the next
line.

Execute the L command n times, where n may be
any integer. A positive value of n moves the
pointer to the beginning of the nth line
following the current pointer position. A
negative value moves the pointer backward n
lines and positions it at the beginning of
the nth line preceding the current position.
If n is zero, the pointer is moved to the
beginning of the line on which it is
currently positioned.

Advance the pointer forward
character.

across one

Execute the C command n times, where n must
be an integer in the range -32768<=n<=32767.
A positive value of n moves the pointer
forward across n characters (carriage
return/line feed counts as two characters).
A negative value of n moves the pointer
backward across n characters. If n is zero,
the pointer position is not changed.

These commands may be used to move the buffer pointer across any
number of lines or characters in either direction; however, they will
not move the pointer across a page boundary. If a C command attempts
to move the pointer backward beyond the beginning of the buffer or
forward past the end of the buffer, an error message is printed and
the command is ignored.

1-5

INTRODUCTORY COMMANDS

If an L command attempts to exceed the page boundaries in this manner,
the pointer is positioned at the boundary which would have been
exceeded. Thus the command "-IOOOOL tI would position the pointer
before the first character in the buffer. The command "IOOOOL" would
position the pointer after the last character in the buffer. No error
message is printed in either case.

1.5 TYPE OUT COMMANDS

The following commands permit portions of the text in the buffer to be
printed out for examination. These commands do not move the buffer
pointer.

Command

T

nT

HT

v

Function

Type the content of the text buffer from the
current position of the pointer through and
including the next line feed character.

Type n lines, where n must be an integer in
the range -32768<=n<=32767. A positive value
of n causes the n lines following the pointer
to be typed. A negative value of n causes
the n lines preceding the pointer to be
typed. If n is zero, the content of the
buffer from the beginning of the line on
which the pointer is located up to the
pointer is typed. This facilitates locating
the buffer pointer.

Type the entire content of the text buffer.

Type the current line.
sequence "OTT".

Equivalent to the

The OT command is particularly useful for determining the position of
the buffer pointer. This command should be used frequently to
determine that the pointer is actually located where the user expects
it to be.

1.6 TEXT MODIFICATION COMMANDS

The following commands permit the user to insert or delete text from
the buffer.

Command

Itext$

K

Function

Where "text" is a string of ASCII characters
terminated by an ESCAPE, which echoes as a
dollar sign. The specified text is inserted
into the buffer at the current position of
the pointer, with the pointer positioned
immediately after the last character of the
insertion.

Delete the content of the text buffer from
the current position of the pointer through
and including the next line feed character.

1-6

Command

nR

HK

D

nD

INTRODUCTORY COMMANDS

Function

Execute the K command n times, where n may be
any integer in the range -32768<=n<=32767. A
positive value of n causes the n lines
following the pointer to be deleted. A
negative value of n causes the n lines
preceding the pointer to be deleted. If n is
zero, the content of the buffer from the
beginning of the line on which the pointer is
located up to the pointer is deleted.

Delete the entire content of the text buffer.

Delete the character following the buffer
pointer.

Execute the D command n times, where n may be
any integer in the range -32768<=n<=32767. A
positive value of n causes the n characters
following the pointer to be deleted. A
negative value of n causes the n characters
preceding the pointer to be deleted. If n is
zero, the command is ignored.

Like the L command, the D and K commands may not execute across page
boundaries. If a K command attempts to delete text up to and across
the beginning or end of the buffer, text will be deleted only up to
the buffer boundary and the pointer will be positioned at the
boundary. No error message is printed. A D command attempting to
delete text across a page boundary will produce an error and the
command is ignored.

1.7 SEARCH COMMANDS

The following commands may be used to search for a specified string of
characters which may occur somewhere in the input file. They cause
the buffer pointer to be positioned immediately after the last
character in the specified string, if found.

Command

Stext$

Ntext$

Function

Where "text" is a string of ASCII characters
terminated with an ESCAPE which echoes as a
dollar sign. This command searches the text
buffer for the next occurrence of the
specified character string following the
current pointer position. If the string is
found, the pointer is positioned after the
last character on the string. If it is not
found, the pointer is positioned immediately
before the first character in the buffer and
an error message is printed.

Performs the same function as the S command
except that the search is continued across
page boundaries, if necessary, until the
character string is found or the end of the
input file is reached. If the end of the
input file is reached, an error message is
printed and it is necessary to close the
output file and reopen it as an input file
before any further editing may be done on
that file.

1-7

INTRODUCTORY COMMANDS

Both the S command and the N command begin searching for the specified
character string at the current position of the pointer. Therefore,
neither command will locate any occurrence of the character string
which precedes the current pointer position, nor will they locate any
character string which continues across a page boundary.

Both commands execute the search by attempting to match the command
argument, character for character, with some portion of the buffer
contents. If an N command reaches the end of the buffer without
finding a match for its argument, it writes the content of the buffer
onto the output file, clears the buffer, reads the next page of the
input file into the buffer, and continues the search.

1.8 SUMMARY

At this point, the basic TECO commands have been introduced. Recall
that TECO indicates it is ready to accept user commands by printing an
asterisk (*). Once TECO has printed an asterisk, one or more commands
may be typed at the terminal. Errors may be corrected by typing the
DELETE key to delete characters. The DELETE key may be labeled DEL or
RUBOUT on some keyboards. Each depression of the DELETE key deletes
one character, beginning with the last character typed, and then
prints the deleted character at the terminal. An entire command
string may be deleted in this manner, if necessary. Once the correct
command(s) have been entered, typing a double ESCAPE ($$) causes TECO
to execute the command(s) in the order in which they were entered, and
to print another asterisk so that additional commands may be typed.
Note that this manner of operation is different from most other
editors. In particular, carriage return has no special significance
to TECO. Only the double ESCAPE forces execution of the command
string.

If TECO encounters an erroneous command, it prints an error message
and ignores the erroneous command as well as all commands which follow
it. All error messages are of the form:

?XXX Message

where XXX is an error code and the message is a self explanatory
message relating to the command that generated the error. Every error
message is followed by an asterisk at the left margin, indicating that
TECO is ready to accept additional commands. If the first command
entered after a TECO-generated error message is a single question mark
character (?), TECO will print the erroneous command string up to and
including the character which caused the error message. This
facilitates locating errors in long command strings and determining
how much of a command string was executed before the error was
encountered.

At the conclusion of an editing job, the user may type EX to exit
TECO. If an input and output file are open at the time the EX command
is encountered, the remainder of the input file, including the current
contents of the text buffer, is copied to the output file, and the
output file is closed before TECO exits.

1.9 SAMPLE EDITING JOB

The following sample editing job is included to help the new user to
achieve a greater understanding of the basic TECO commands. The
entire terminal output from the editing run has been reproduced

1-8

INTRODUCTORY COMMANDS

intact, and numbers have been added in the left margin referencing the
explanatory paragraphs which follow.

1. At this point, the user calls TECO into memory. TECO
responds by printing an asterisk at the left margin. The
user then enters an EW commmand, opening an output file
called "FILEI.TXT" on DTI. There is no input file. Upon
receipt of the double ESCAPE ($$), TECO created the
designated output file, then printed another asterisk at the
left margin.

2. The user then enters a command string consisting of two
commands. The HK command clears the text buffer (not really
necessa~y, since it was already empty), and the I command
inserts 18 lines of text into the buffer, including 8 blank
lines. TECO executes these commands upon receipt of the
second double ESCAPE. At this point, the buffer pointer is
positioned at the end of the buffer, following the last line
feed character in the text. Note that the user made an error
while typing the word "MASSACHUSETTS". He typed "MASA", then
realized his mistake and struck the DELETE key once to delete
the second "A". TECO echoes the deleted character. The user
then types the correct character and continues the insertion.

3. The user then types -20L to move the pointer to the beginning
of the buffer and SETTS$ to position the pointer immediately
after the character string "ETTS", which terminates the word
"MASSACHUSETTS". He then uses an I command to insert one
space and a five-digit zip code. A second S command
positions the pointer after the word "INFORMATION". The 2C
command moves the pointer to the beginning of the next line
(carriage return and line feed count as two characters), and
the user deletes the words "PERTAINING TO" and replaces them
with the word "REGARDING".

4. The user continues editing by positioning the pointer after
the word "GUIDE". He then deletes this word and replaces it
with the word "MANUAL". Finally, he searches for the word
"SINCERELY", types OT to determine that the pointer was
correctly positioned between the Y and the comma which
follows it, and types OK to delete everything on the line
except the comma. He then inserts "VERY TRULY YOURS" in
place of the word "SINCERELY". An HT command causes the
edited text to be printed at the terminal.

5. The command string EX$$ causes the content of the buffer to
be written onto the output file and closes the output file.
The user then reenters TECO and reopens the file "FILEl.TXT"
as an input file and specifies the line printer as an output
file.

6. This command string reads the first (and only) page of
"FILEI.TXT" into the buffer, deletes the first 5 lines,
replaces them with a different address and salutation, then
prints the content of the buffer on the terminal for
verification and finally prints the new version of the letter
onto the line printer. Note that the previous version of the
letter still resides in file "FILEl.TXT" on DT1.

1-9

INTRODUCTORY COMMANDS

1< *EWDT1:FILE1.TXT$$
2(*HKIMR. JOHN P. JONES

COMPUTER ELECTRONICS CORPORATION
BOSTON, MASSACHUSETTS

DEAR MR. JONES:

I WAS PLEASED TO RECEIVE YOUR REQUEST FOR INFORMATION
PERTAINING TO THE NEW TEeO-11 TEXT EDITING AND CORRECTING
PROGRAM.

ENCLOSED IS A COpy OF THE TECO-11 USER'S GUIDE, WHICH
SHOULD ANSWER ALL OF YOUR QUESTIONS.

SINCERELY,

$$
3< *-20LSETTS$I 02150$$

*STION'2C13DIREGARDING$$
4(*SGUIDE$-5DIMANUAL$$

*SELY'OT$S
SINCERELY*OKIVERY TRULY YOURS.S
*HT'$
MR. JOHN P. JONES
COMPUTER ELECTRONICS CORPORATION
BOSTON, MASSACHUSETTS 02150

DEAR MR. JONES:

I WAS PLEASED TO RECEIVE YOUR REQUEST FOR INFORMATION
REGARDING THE NEW TECO-11 TEXT EDITING AND CORRECTING
PROGRAM.

ENCLOSED IS A COpy OF THE TECO-11 USER'S MANUAL, WHICH
SHOULD ANSWER ALL OF YOUR QUESTIONS.

VERY TRULY YOURS,

5<·. *EX$$
(TECO is rerun, operatins s~ste~ dependent)

! *ERDT1:FILE1.TXT$EWLP:$'
6< *YSKIMR. JAMES B. SMITH

DATEK ASSOCIATES, INC.
122 MAIN STREET WEST
AUSTIN, TEXAS

DEAR MR. SMITH:
$$
*HT$$
MR. JAMES B. SMITH
DATEK ASSOCIATES, INC.
122 MAIN STREET WEST
AUSTIN, TEXAS

DEAR MR. SMITH:

I WAS PLEASED TO RECEIVE YOUR REQUEST FOR INFORMATION

1-10

INTRODUCTORY COMMANDS

REGARDING THE NEW TECO-!! TEXT EDITING AND CORRECTING
PROGRAM.

ENCLOSED IS A COPY OF THE TECO-!! USER'S MANUAL, WHICH
SHOULD ANSWER ALL OF YOUR QUESTIONS.

VERY TRULY YOURS,

*EX$$

1-11

CHAPTER 2

CONCEPTS

2.1 INTRODUCTION

This chapter presents information describing those concepts of TECO
that are relatively independent of the commands you may enter. This
information, where applicable, is applied to specific commands in
Chapter 3.

2.2 MEMORY USE

TECO operates most efficiently on systems with at least 16K of memory.
However, TECO will run on 8K or 12K systems, albeit slower.

In all configurations, TECO allocates sufficient storage to contain a
4000 (decima1)-character editing buffer. In 8K, TECO allocates a
Q-register storage area which contains 2944 (decimal) characters.
(See Section 2.14 for a discussion of Q-registers.) In 12K, TECO
expands this by 2K. In 16K, TEeo allocates space to store I-line
error messages. These messages exist only in systems with 16K or more
memory and reside in a file internal to and accessible only by TECO.

In 8K and 12K systems, TECO uses a series of overlays. In 16K, these
overlays are permanently resident.

The overlay system is:

Level Mnemonic Commands

Overlay 1 I/O ER, ES, EW (initially resident)

Overlay 2 Quote " Conditionals, 0, and <>

Overlay 3 Error Error messages

Overlay 4 Exit EC, EF, EG, EK, EX

Overlay 5 Flags EH, EO, ET, EU, =

You will be able to increase the efficiency of TECO in 8K
configurations by grouping commands so as to minimize
swapping.

2-1

and 12K
overlay

CONCEPTS

2.3 DATA FILES

You must specify the file from which TECO is to extract information
and the file into which TECO places edited or examined information.
When you enter an input command, TECO normally brings part of the
input file into the editing buffer. (The editing buffer is discussed
in Section 2.5.) An output command then tells TECO to write the
contents of the editing buffer onto the output file~

NOTE

An output command is different from an
exit command. Generally, an output
command writes the contents of the
editing buffer onto the output file,
which remains open. An exit command may
or may not write to an output file. In
contrast, it normally closes the output
file.

TECO can only process a file sequentially; that is, TECO can access
the nth page in a file only after it reads the previous (n-l) pages.
Also, you cannot reaccess the information TECO places in the output
file until you close both the input and the output files. Then, and
only then, can you declare the former output file to be the new input
file. You may subsequently use an input command to bring the portion
of a file you wish to reaccess into the editing buffer.

When using such hard-copy devices as card readers and paper-tape
readers, you need only specify a device name to open a file for input
or output. For disk and DECtape files, you must specify filenames as
well as the device name. If you omit the device name, TECO assumes
DSK:.

NOTE

If OS/8 is not configured for the
devices you wish to use, consult the
BUILD section of the OS/8 System
Reference Manual for a listing of
available devices and the 05/8 Software
Support Manual for instructions on
adding other device handlers to your
configuration.

Filenames for file-structured devices consist of two parts: the first
part, the filename proper, consists of from one to six alphanumeric
characters; the second part, which is optional, is called the
"extension." If present, the extension consists of either one or two
alphanumeric characters. You must separate the filename from the
extension by a period. For example,

RXA1:MYFILE.FT

is a file specification which designates the FORTRAN file called
MMYFILE. This file resides on the floppy in drive 1.

If you do not enter an extension, CCL (the OS/8 Concise Command
Language Utility Program) supplies .PA. If you do not want the file
to have an extension, you must type a period (.) after the filename.

2-2

CONCEPTS

For example,

.TECO MYFILE.

is the command which retrieves the file MYFILE.
from DSK: (the system device).

NOTE

with no extension

The term "file specification" is
abbreviated as filespec throughout this
manual. For a complete discussion of
f~le specifications, see the OS/8 System
Reference Manual.

When you use floppies (diskettes), DIGITAL strongly recommends that
you keep your files small. If a file is large and you store other
files on the device, you may have difficulties with some of TECO's I/O
commands because there may be insufficient room to write the file onto
the device. Consequently, if you are having problems, you should
segment the file using EF commands (see Section 4.14).

2.4 CHARACTER SET

TECO uses the entire ASCII character set. ASCII characters work on
two levels in TEeo: the command level and the data level.

You can use every ASCII character from control-A (decimal value 01)
through delete (decimal value 127) as data in TECO. They can all be
read, written, and inserted. (The ASCII character set is listed in
Appendix A.)

The only character that is not completely legal as data is the null
character (decimal value 0). If you insert a null character, TECO
writes it to the output file. However, when TECO reads a null
character into the editing buffer (through the reopening of the file
as input), TECO removes it from the file. The null character echoes
as A@ on the terminal.

TECO interprets many of the ASCII characters as commands. When you
use them as commands, the lower-case characters have the same .meaning
as their upper-case equivalents.

NOTE

In this manual, commands always appear
as capital letters.

Appendix C is a list of TECO commands.

2.4.1 Special Characters

Because of their use as special immediate-action commands (e.g.,
monitor commands or erasing commands), you may only implicitly enter
certain characters into a command string. All of them, however, are
legal as data (except the null character) and you may insert them

2-3

CONCEPTS

using commands designed for this purpose. For example, you may insert
a <A C>, which has a decimal ASCII value of 3, into the editing buffer
using a 3I$ command, where 3 is the argument to the I$ command.

The characters to which this restriction applies are called "special
characters" and are listed in Table 2-1.

I

Command

<CTRL/C>

<CTRL/G><Sp>

<CTRL/G>*

<CTRL/G><AG>

<CTRL/O>

<CTRL/U>

DELETE

ESCAPE

Decimal

Table 2-1
Special Characters

. ASCII Value Function

3

7-32

7-42

7-7

15

21

127

27

A monitor Command

A retyping command (causes TECO to
retype line showing editorial
corrections)

A typing command (types current
command string)

An erasing command (erases command
string)

A monitor command (ends terminal
output if TECO is printing)

An erasing command (deletes
line)

current

An erasing command
character typed)

{deletes last

Standard text argument terminator
(two successive ESCAPEs terminate a
command string)

2.4.2 Control Characters

You can enter control characters (ASCII decimal values 0-31) by
holding down the CONTROL key while typing a character key.

NOTE

TECO prints a control character as a
circumflex followed by the character
that you type to produce the control
character. For example, <CTRL/A> prints
as AA.

On some terminals, the circumflex prints
as an up-arrow. For example,
<CONTROL/A> prints as AA.

You can enter many of the control characters into command strings by
typing a circumflex (or up-ar~ow) followed by the desired character.

2-4

CONCEPTS

For example, <CONTROL/D> is equivalent to <AD>. You should use this
method only when typing the control character as a command and not as
text. That is, in an alphanumeric argument, TEeo interprets the
circumflex-letter combination as two characters. In a command string,
however, TEeO interprets the circumflex-letter combination as one of
the control characters.

NOTE

Throughout this manual,
control character as
followed by a letter
circumflex construction.

entering a
a circumflex

is called the

2.4.3 Carriage Control Functions and Responses

A few of the control characters have special echoes to the terminal,
namely, bell, tab «CONTROL/I», line feed, form feed {<CONTROL/L>},
and carriage return. These characters echo on your terminal by
performing their particular action.

When you type a carriage return, the TECO monitor automatically
generates a line feed following it. The echo to the carriage return
type-in is a carriage return followed by a line feed. As TECO appends
a line feed character to every carriage return you type, you must type
a carriage return followed by a <DELETE> to enter a carriage return
without a line feed. However, if you enter a carriage return as
<CONTROL/J>, TECO does not append a line feed to it.

Except as text arguments, TECO ignores the characters "carriage
return" and "line feed" in command strings. TECO also ignores spaces
within command strings. Consequently, you may insert spaces, carriage
returns, and line feeds into command strings to improve their
readability.

ESCAPE echoes and prints as a dollar sign ($).

2.5 DATA FORMAT -- LINES AND PAGES

TECO lines can be of any length, subject to the limitations of
available memory. The characters that define the end of a line are
the line feed, the vertical tab, and the form feed. (These are the
characters which cause vertical movement.) The end of the editing
buffer may also be an end-of~line character if no line feed is
present. When TECO counts lines, it does so by counting these
end-of-line characters.

An end-of-line character belongs to the line that it terminates.

A text does not have to contain end-of-line characters; however, if
you do not include them, the TECO commands that are line-dependent
will not be useful. DIGITAL recommends that you enter data as a
series of lines.

Pages are delimited in TECO by form feed characters. Thus, a page of
text consists of all the ASCII code between two form feed characters.
A form feed character does not belong to either of the two pages that
it separates. Two consecutive form feed characters delimit a null
page.

2-5

CONCEPTS

A form feed character at the end of a file has no effect in TEeo.
Thus, you may omit it.

TEeo operates most efficiently if you divide files into pages of
approximately fifty or fewer lines. You may edit files with longer
pages or files containing no form feeds, but this process requires
more care because you may use more memory than is available. (See
Section 4.2 for a list describing how TEeo determines when to stop
reading characters into the editing buffer.)

2.6 EDITING BUFFER

You can edit a program by:

1. Reading text into the editing buffer

2. Making changes to the text in this buffer

3. Writing the modified text from the editing buffer out to the
new file.

This editing buffer is a block of memory within TEeo. When reading or
inserting data, TEeo places it into the buffer, and the data remains
there while you are editing it. It leaves the buffer only when you
type an output command.

The buffer usually contains one page of text consisting of up to 4000
characters. However, the terminating form feed character never
appears in the buffer. If TEeo terminates input to the editing buffer
because it reads a form feed character, TEeo sets the AE form feed
flag to -1.

TEeo normally passes data into and out of the buffer one page at a
time.

2.7 BUFFER POINTER

The "buffer pointer" construct is fundamental to TEeo because the
place indicated by this pointer determines the effect of many editing
commands. For example, character insertion and deletion always take
place at this position.

The buffer pointer is a position indicator.
position between two characters in the
points to a position immediately before
contents).

It always points to a
editing buffer (unless it

or after the buffer's

Either you or TEeO can move this pointer to any position in the
buffer. It cannot, however, point to a position beyond the boundaries
of the buffer; that is, you cannot move it farther forward than the
position immediately preceding the first character in the buffer or
farther backward than the position following the last character in the
buffer.

Although TEeO must sequentially process pages in a file, it can
address characters randomly within a page.

2-6

CONCEPTS

2.8 GENERAL COMMAND STRING SYNTAX

You can type TEeo commands by typing a command string (a command
string is a sequence of commands, one immediately after the other, and
concluding with two consecutive ESCAPEs).

The only formal delimiter in TECO is the ESCAPE character, which
terminates some alphanumeric arguments (see Section 2.9.1). However,
if you use the @ command modifier (see Section 4.68) to a command
accepting a textual argument, you may specify any delimiter you wish.
For example, Itext$ and @I/text/ (where / is an arbitrary delimiter)
are equivalent.

The action that tells TEeD to begin the execution of a command string
is the double ESCAPE ($$). The double ESCAPE is the only command
string terminator that TECO accepts.

You may type a command string after TECO prints a prompting asterisk.
An example of a command string is:

*Ylheadin~$2K4DNta~$2LT$$

Execution of this command string begins only after you type two
consecutive ESCAPEs. TECO indicates that it is beginning execution by
printing a carriage return/line feed. At this time, TECO starts
executing each command in the command string in turn, starting at the
command immediately following the asterisk. When TECO has executed
all commands in the string, it prints another asterisk to indicate
that it is ready to accept another command string.

NOTE

If you enter a command which causes TECO
to type out information, the asterisk
prints immediately after the type-out
rather than at the left margin if the
sequence does not end with a carriage
return/line feed.

If TECO cannot execute a command, execution of the command string
stops at that point and TECO prints an error message. However,
because TECO executes one operation before proceeding to the next, it
executes all commands preceding an error. Thus, TECO does not execute
the erroneous command (and any command that may follow). (Errors,
error messages, and recovery techniques are discussed in Section
3.l6.)

The only exceptions to the rule that TECO does not execute commands
until you enter the double ESCAPE are:

1. The special characters in Table 2-1

2. The? command, which types out all commands executed before
an error occurred.

3. The <~S> command, which stores a command string in Q-register
z.

2-7

CONCEPTS

2.9 ARGUMENTS

If a command requires a numeric argument, the argument always precedes
the command. If a command requires a text argument, the argument
always follows the command.

2.9.1 Text Arguments

Text arguments are character strings that follow a command. Some
examples of text arguments are: search strings, command string tags,
and file specifications.

Text that you place into the buffer is usually as the argument to an
insertion string.

A text argument always follows the command to which it applies.
Commands that take text arguments require that you terminate the
argument with an ESCAPE; however, the @ command modifier allows you
to choose an alternate delimiter to a text argument.

TECO uses the ESCAPE terminating a text argument as one of the two
ESCAPEs necessary to terminate a command string.

Example:

!ITEXT$STEXT1$$ An ESCAPE terminates the alphanumeric
argument TEXT. An ESCAPE also terminates the
second argument TEST; however, TECO also
uses this as one of the ESCAPEs terminating
the command string.

All ASCII characters are legal as text arguments. However, the
special characters listed in Table 2-1 may only be indirectly inserted
(for example, the nI$ command can insert any character).

2.9.2 Numeric Arguments

Numeric arguments always precede the command to which they apply. In
some cases, you need to enter only a single numeric argument; in
others, the command may require a pair of arguments.

NOTE

No TECO command accepts more than two
numeric arguments.

In many cases, numeric arguments must be positive; however, some
commands allow a numeric argument to be negative or zero. The number
and type of numeric arguments that you may use with a command are
described in Chapter 4.

When you use a numeric argument to specify a buffer position, the
number represents the number of characters in the buffer to the left
of that position. Thus, the nth position means the position to the
right of the nth character in the buffer, that is, between the nth and
(n+l)st characters.

Paired numeric arguments are always buffer-positioning arguments.
When you use two numeric arguments, separate them with a comma. Such

2-8

CONCEPTS

a pair indicates' all the characters in the editing buffer that lie
between the two buffer positions indexed by the two arguments. TnlS
definition is precise because the term ~buffer position- always points
to a position before or after a given character, not "on" or "at" the
character.

Exa~ple:

This argument specifies the 13th through the 20th
characters in the buffer. These characters are
specified because the 12 indicates the position
between the 12th and 13th characters, and the 20
indicates the position between the 20th and 21st
characters.

You may construct a numeric operator from arithmetic/logical
combinations. Table 2-2 lists the TEeo operators.

+

+

*
/

&

Table 2-2
Arithmetic/Logical Operators

Ignored, if used before the first term in a
string

Addition

Negation, if used before the first term in a
string

Subtraction

Multiplication

Integer divide (and drop the remainder)

Bitwise logical AND of the binary representa­
tions of two terms

Bitwise logical OR of the binary representa­
tions of two terms

+2=2

5+6=11

-2=-2

8-2=6

8*2=16

8/2=4
8/3=2

12&10=8

12110=14

When you use more than one arithmetic/logical operation in a single
numeric argument, TEeo performs the operations from left to right.

You may override this sequence through the use of parentheses ().
TEeo evaluates all operations withi~ parentheses before those outside
the parentheses. TEeo also accepts nested parentheses.

TEeo numbers are normally decimal integers. However, you may change
the radix to octal by typing AO. TEeO will then remain in octal radix
unless you change it by entering a AD command.

Example:

~0177=127 (deci~al)

3*-010=30 (octal)
2+3*4=20
2+<3*4)=14
2+(3*(16/(e-1»/2+(2*5)=24
2&(315)116=18
-«2+<3*4)-1&(6+8»/2)=-6

2-9

CONCEPTS

You may use the arithmetic/logical operators and parentheses to form
one or both of the numeric arguments in a pair.

Example:

260-(3*42),250f<77/3)P

is identical to:

144,275P

2.9.3 Commands That Return a Value

Generally speaking, there are two main categories of TEeo commands:
1) those that perform some operation, such as inserting text; and 2)
those that "return" a value, such as the number of characters in the
editing buffer. (Some commands do both.)

A command is said to return a value if the command both causes TEeo to
calculate the current value of some quantity and then takes on this
value. You may subsequently use this value as an argument to the next
command in the command string. If the command does not take a numeric
argument, TEeo ignores the number. For example, the ~N flag is equal
to -1 when TECO reads in the end of a file. Otherwise, it is equal to
O. Thus, the command string segment ••• ~N"E ••• causes the value of
the ~N flag to be an argument for the "E (execute if equal to 0)
command. If it equals 0, TEeo executes the commands immediately after
the E. Consequently, using such a command is equivalent to typing the
particular number that the command returns as a value, except that the
value is not usual]" known in advance.

You may use commands that return values with each other and with
explicit numbers. All the same rules apply. Each command that
returns a value has all the properties of a number that you explicitly
type.

If you concatenate commands that return values with
with digits), the value that TEeo returns is
example, you should not use such arguments as:

ZZ
Z48
-2Z
3+ZZ

2.10 SUPER TECO

each other
not defined.

(or
For

Inevitably, you will lose valuable files or directories because of
your error, a hardware error, or an operating system error. To
retrieve files whose names have been accidentally deleted from the
directory of a device, you can create a version of TEeo called SUPER
TEeO by typing a 2-word patch using ODT. (See the 05/8 System
Reference Manual for a complete description of ODT.) This patch is:

.GET SYS TECD

.!.DDT

2034/7420 7610
2117/7450 7410
"'c
..!.SAVE SYS STECD

2-10

CONCEPTS

To use STECO, mount the device on which you want to retrieve the file,
and then type

.R STECD
jERDEV:$$
~_STRING$$

where STRING is a part of the first page of the desired file (e.g.,
the title line). STECO then searches the entire device for the first
occurrence of STRING. 8ecause the device may contain older or similar
copies of the desired file, examine the text following each occurrence
of STRING. If the file is not the one you want, continue searching
until you find the correct file. Once you find the file, type:

~ERDEV:$EWDEV2:FILE$$
~N<STRING$NENDSTRING$EC$$

where

n is the number of times you had to search for STRING

ENDSTRING is a string at the end of the file.

This command operation retrieves your file and copies it onto another
device.

If, as sometimes occurs, meaningless characters precede the first good
line of your file, simply delete them.

2-11

CHAPTER 3

USING TECO

3.1 INTRODUCTION

This chapter describes how you call TECO from the OS/8 monitor and
presents the commands that TECO recognlzes. Because these commands
are grouped by function, a command may be mentioned in more than one
context.

3.2 CALLING TECO

You can call (or load) TECO by typing one of four commands to the
monitor.

You may load TEeo whenever the monitor prints a dot.
indicates that TECO is waiting for a new command.

The dot

If you do not type an extension after a filename, CCL (the OS/8
Concise Command Language Utility Program) assumes .PA.

3.2.1 R TECO Command

You can call TECO by typing:

.R TEeo
~

This command brings TECO into memory. It does not automatically
initialize any particular device or file for input or output.

After OS/8 loads TECO into memory, TECO prints an asterisk indicating
it is ready to receive a command. This state, in which TECO waits for
a command string type-in, is the command mode. At this point, you can
enter a file specification command such as EB, ER, or EW.

If you are creating a file, you need only type an EWfilespec command
to create the file at the keyboard.

3.2.2 General Purpose Initialization Commands

TECO is used chiefly to create new files and to edit existing files.
These two functions are so common that there are special OS/8 monitor
commands for calling TECO. These commands are MAKE and TECO.

3-1

USING TECO

You can follow both TECO and MAKE commands with a file specification.
If you do not use a filespec with a TECO command, CCL uses the name of
the last ASCII file specified in a TECO or MAKE command. If no
filename is given in a TECO command and no previous MAKE or TECO
command has been entered on that day, CCL prints the error message
"BAD RECOLLECTION". CCL also displays this message if you have not
typed an OS/8 DATE command. (See the OS/8 System Reference Manual for
a description of the DATE command.)

NOTE

rECO will remember a filespec only
between bootstraps or during the same
date of operations as entered in an OS/8
monitor DATE command.

3.2.2.1 MAKE Command - You type:

.MAKE filespec

to instruct TECO to create a new file. The filename.ext parameter of
the filespec is the name that you give the new file. The dev:
parameter of the filespec is the device on which the file will be
written; it can be any output device. If you omit dev: from the
filespec, TECO assumes DSK:.

The command

.MAKE filespec

is equivalent to:

.R TECO
*EWfilespec$$

The MAKE command opens an output file and gives it the name you
specify. Once TECO opens a file, you can create it with insert and
output commands.

You should choose the filename carefully when using the MAKE command.
If a file is already on the device with the same name, the MAKE
command overwirtes the old file. However, eeL prints the warning
message %SUPERSEDING. If you do not wish to supersede the file, you
must type <~C> to return to the monitor.

After the OS/8 monitor loads TEeO, TECO prints an asterisk indicating
its readiness to receive a command string. Usually, you would then
create th~ file by using an insert command.

3-2

Example:

.HAKE EARNNG.FT

*
.HAKE HYFILE.HA

*
*EX$'
~HAKE
XSUPERSEDING

~MAKE HYFILE.HA
~Ipase of text$$
~PI2nd paSe of text$$

~PIlast paSe of text$$
*EC$$

USING TECO

This command calls TECO for the creation
of a FORTRAN file named EARNNG.FT.

TECO is called and the output file
MYFILE.MA on DSK: IS CREATED. AFTER
YOU CLOSE THE FILE WITH THE EX command,
the monitor accepts the second MAKE.
This second command overwrites the first
unless you type <AC>.

This is the way in which you create most
files.

3.2.2.2 TECO Command - Use the command

.TECO filespec

to call TECO for editing an existing file on a file-structured device.
TECO interprets the filespec in the same way as it does for the MAKE
command, except that the device must be a file-structured device
(disk, diskette, or DECtape).

The filename and extension must be exactly the same as those of the
file that you are editing.

The TECO command opens the specified file for input and reads in the
first page of that file. After TECO outputs the new version, it
renames the original (input) version of the file Rfilename.BK R, and
gives the new version the name of the original file. This operation
is identical to that used for the EB command; that is;

TECO filespec

is equivalent to:

*EBfilespec$Y$$

(See Section 4.12.) Also,

.TECO filespec2<filespecl

is equivalent to:

.R TECO
*ERfilespecl$EWfilespec2$Y$$

You cannot use the TECO command with a file having the extension BK.

If a TECO filespec2<filespecl command would cause TECO to overwirte an
existing file, CCL prints the message 'SUPERSEDING. If you do not
wish TECO to overwrite the file, type a <A C>.

3-3

'USING TECO

If you have entered a TECO filespec command, CCL remembers the
filespec the next time you type a TECO command. If you have entered
TECO filespec2<filespecl, CCL remembers only filespec2.

After the OS/8 monitor loads TECO into memory, TECO prints a prompting
asterisk to indicate its readiness to receive a command string.

Example:

.TECO LIB40.HA This command initializes TECO for editing the
existing file LIB40.MA. At the completion of
editing, TECO automatically changes the name of
the original version of LIB40.MA to LIB40.BK and
gives the name LIB40.MA to the new version •

• TECO This command initializes TECO for editing the disk
file last referenced in a TECO or MAKE command.
If the last file referenced was LIB40.MA, then
this would be the file initialized.

3.2.3 MUNG Co •• and

The MUNG Command performs the actions defined in a TECO macro. The
MUNG command can take two forms, the first of which:

.MUNG filespec

is equivalent to:

.R TECO
*ERfilespec$Y HXY HK MY$$

The second form:

.MUNG filespec,text

is equivalent to:

.R TECO
*ERfilespec$Y HXY HK Itext$MY$$

When you enter a MUNG command, TECO places the first page of the file
specified in filespec into Q-register Y. If you omit the extension in
the filespec, CCL assumes TE.

If you enter a text argument, TECO places it into the text buffer.

Example:

The following demonstrates one way you could use the MUNG command.
The action that the macro performs is the formatting of a file into
50-line page segments. If the macro

J IEB$ ZJ 27I$ HXA HK MA Y
<!ST!~N;SOS

$aFA OST$ ·O,.PO,.K)EX

is in the file FIFTY and if you wish to format the file TEXT.TX into
50-line pages, then the command

~HUNG FIFTY,TEXT.TX

3-4

USING TECO

causes the operation to be performed. The following is a description
of how this macro operates (saa Saction 4.4 for a description of the
formatting portion of this macro):

1. The MUNG command performs an ER on file FIFTY.

2. The Y command brings the text into the buffer.

3. HXY stores the page in Q-register Y and the HK kills the
page.

4. MY places the string TEXT.TX into the buffer.

5. Control now passes to the macro, in which the JIEB$ command
string inserts an EB before TEXT.TX and ZJ27I$ inserts an
ESCAPE after it.

6. HXA inserts the string EBTEXT.TX$ into Q-register A.

7. HK kills the buffer.

8. The MA command executes the EBTEXT.TK command.

9. The remainder of the macro now formats the file TEXT~TX into
50-line pages.

3.3 FILE SELECTION COMMANDS

File selection is the specifying of both the device from which input
is to be taken and the device to which output is to go. In the case
of file-structured devices, you must specify a filename as well as the
device.

If you want only to create a file or to edit an existing
file-structured device, you may use either of the previously described
loading commands, that is,

.MAKE filespec

or

.TECO filespec

When you load TECO with the R TECO command, one or more of the file
selection commands must be used.

The file specification commands are:

EBfilespec
ERfilespec
EWfilespec

3.4 INPUT COMMANDS

Edit creating backup
Edit read from
Edit write to

You can enter input commands to bring data from a previously opened
input file into the editing buffer. However, you must use an input
command only after entering an ER command (or its equivalent). Input
always starts at the beginning of the input file. Successive input
commands bring other parts of the input file into the editing buffer.

3-5

USING TECO

The amount of data TECO brings into the buffer depends on the buffer
size, the input commands, and the data itself.

After TECO has written a page of text onto the output file, you cannot
recall the page into the text buffer unless you close the output file
and then reopen it as an input file.

The input commands are:

A Append next page to end of buffer
P Page input and output
Y Yank, bring next page into buffer

The N, FN, and _ search commands may also input data.

3.5 BUFFER POSITION NUMERIC ARGUMENTS

In many cases, you may use numeric arguments to specify buffer
positions. Because such arguments tend to be large and not easily
countable, the buffer positions which you may often use as numeric
arguments are represented by special characters. You may also use
these characters as values in arithmetic/logical operations. The
special characters are:

B Beginning of buffer, always zero
H Whole buffer, always equal to B,Z
Z End of buffer

Current position in buffer

3.6 BUFFER POINTER POSITIONING COMMANDS

You may use a buffer pointer positioning command to move the buffer
pointer. The buffer pointer positioning commands are:

C Continue forward movement
J Jump to character
L Line move
R Reverse character movement

In addition to these commands, the search (5, N, and) commands and
search/replace commands (FS and FN) also move the bufter pointer.

3.7 TEXT TYPE-OUT COMMANDS

You can type text type-out commands to display information in the
buffer, to type messages while executing a TECO macro, or to suppress
the typing of data. The text type-out commands are:

~A Type following text
T Type text

Type-out value equal to expression
\ Type ASCII value of number

The two commands <~S> and <~Q> are not type-out commands; instead,
they allow you to stop the display and later resume at the place where
you stop. The command <AO> tells TECO to omit printing the remainder
of the output on the terminal.

TECO also contains the EU flag which, depending on its value, can flag
upper- or lower-case output.

3-6

USING TECO

3.8 DELETION COMMANDS

The deletion commands remove characters from the editing buffer. The
deletion commands are:

D Delete character
K Kill line

The K command preceded by a single numeric argument is a line-oriented
deletion command. However, if you enter it with a pair of numeric
arguments, it becomes character-oriented.

A search/replace command (FS or FN) with a null second text argument
also deletes text from the buffer.

3.9 INSERTION COMMANDS

The insertion commands place characters into the editing buffer. The
insertion commands are:

I
nI$
<AI>

Insert
Insert number n into buffer
Insert and include tab
Equivalent to <AI> <TAB>

n\ Insert a number as individual characters into the buffer

3.10 OUTPUT AND EXIT COMMANDS

Output commands transfer data from the editing buffer to the output
file. An exit command generally transfers data to the output file.
However, output commands also terminate a TECO job and return to the
OS/8 monitor. One exit command, <A C>, jumps to the OS/8 monitor
without performing output.

The four output commands are:

EC Exit and close after output of file
EF End file at page
P Page output and input next
PW Page write and append form feed

The three exit commands are:

EG Exit and go to executing program
EX Exit to OS/8 monitor after output of file
AC Jump to OS/8 monitor

3.11 SEARCH COMMANDS

In many cases, you may find that the simplest way to reposition the
buffer pointer is to use a character string search. A search command
causes TECO to scan through the text until a specified string of
characters is found, and then to position the pointer at the end of
the string.

The string of characters for which you
argument following the search command.
1 to 31 characters long.

3-7

are searching is the text
This search string can be from

USING TEeo

If TEeo finds an exact match for the search string in the text, it
positions the buffer pointer immediately after the last character in
this match. If TEeo cannot find a match for the string, it positions
the pointer at the beginning of the buffer and notifies you of the
failure if you had typed an S or FS. If you use an N or FN search,
TEeO places the buffer pointer after all text in the file. The entire
file will have then been written to the output file.

If you type a colon modifier to a search command, then the search will
return a -1 if the search succeeds or a 0 if the search fails.

All searches begin at the current position of the buffer pointer.

If you do not include a text argument with a search command (for
example, S$$ or N$$), TEeo executes the search using the last previous
search command argument.

The search commands are:

FN Search all pages until found, then replace
FS Search current page until found, then replace
N Search all pages until found
S Search current page until found

Search, but discard pages until found (that is, no
output)

Four match control characters are allowed in a search string:

Match any character except the one following
Quote the next character (that is, accept command as a
character)
Match on separator
Match any character

3.12 ITERATION COMMANDS

An iteration command enumerates how many times TEeD will execute a
command string or it may determine whether a command within an
iteration loop has failed so that the looping may end. The iteration
commands are:

< ••• >

n;

Loop
Exit loop upon search failure
Exit loop if n is negative

3-8

USING TEeo

3.13 FLOW CONTROL COMMANDS

TEeD contains commands that enable you to write editing and character
manipulation programs. The iteration command < ••• > is a specialized
example. In addition, TEeo has an unconditional branch command, 0,
and a set of conditional execution commands. The flow control
commands

o
"C
"E
"F
"G
~L

"N
"R
"S
"T
"u
"<
">

are:

Goto
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute

3.14 Q-REGISTERS

if
if
if
if
if
if
if
if
if
if
if
if

alphanumeric character
equal
false
greater than zero
less than zero
nonzero
alphanumeric range
successful
true
unsuccessful
less than zero
greater than zero

Q-registers are essentially data storage areas. These registers are
the means by which you perform programmed editing and text block
movement. Data that you store in Q-registers is not disturbed by the
tlow of data into and out of the editing buffer. Thus, you may
preserve this data throughout an entire TEeo job, and also retrieve or
change this data at any time.

There are 36 Q-registers, each of which has a single character name.
The name is either one of the digits 0 through 9 or one of the letters
A through Z. Each Q-register is divided into two storage areas: The
first area stores numbers and the second stores strings.

You can store a single positive, negative, or zero decimal integer in
the range -4095<n<4095 in a Q-register. You can also increment, test,
or recall numbers in a Q-register. Hence, you may use Q-registers as
switches and counters, as well as data-save areas.

The Q-registers can hold from 3000 to 5000 characters, depending upon
your configuration. However, no single Q-register can hold more than
2047 characters. You can store two types of character strings:
ordinary text and TEeo command strings. TECO stores both identically.
The use you make of them determines if a string will be used as a text
or as a macro. (A macro is a series of TECO commands that are stored
in a Q-register and can be executed upon command.)

Text that you store in a Q-register is copied into the Q-register from
the editing buffer without destroying the copy in the buffer.

Storing text in a Q-register is useful for such tasks as making many
copies of a given segment of text throughout a file without retyping
it each time, moving a block of text from one position to another in a
file, or moving a block of text to another file.

You may store textual data representing TECD command strings in
Q-registers. You can then execute such a· command string many times
throughout an editing job, much like calling a subroutine. You may
edit such command strings as you would any other text.

3-9

USING TECO

The Q-register commands are:

Gq Get text
Mq Execute macro
Qq Return Q-register number
Uq Put number in Q-register
~uq Put text immediately into Q-register
Xq Extract text
%q Postfix, that is, return number incremented, then store

3.15 ERASING COMMANDS

If you make an error while typing a command string, you may correct
the error (if you terminate the command string with a double ESCAPE)
by using the DELETE key to individually delete characters. Other
erasing commands that you may find useful are: <~G><~G>, which erases
the entire command; and <~U>, which erases the last line typed.

Typing <~G><sp> will cause TECO to echo the last line typed. <~G>*
will echo the entire command. The <~G><sp> and <A G>* commands do not
move the buffer pointer and they do not close the command storage
register. Consequently, after you type one of these commands, you may
continue typing as if you had not entered one of these commands.

3.16 ERROR MESSAGES

TECO error messages are listed in Appendix B.

When TECO encounters an illegal command or a command that it cannot
execute, it prints an error message on the terminal. An error message
may consist of two parts: The first is a question mark followed by a
3-letter mnemonic code for the error message, and the second is a
brief, I-line statement of the error condition. The I-line message is
available only on systems with a configuration of at least 16K.

TECO normally prints both parts of the error message. The EH command
explaains how you may suppress the I-line statement.

When an error occurs:

1. The command to which it refers is not executed

2. The remainder of the command string is ignored

3. TECO prints an error message

4. TECO returns to command mode.

3-10

USING TECO

After TECO prints an err9r message, you may type the special command
? TEeo then prints all commands that it has executed in the command
string.

NOTE

This command displays the executed
portion of the command string
immediately after an error has occurred.
If you type any other command following
the printing of an error message, TECO
assumes that you are typing a new
command string, and you lose the ability
to use the? command for this error.

Also note that the (~S> command is often useful after an error occurs.

After TEeo finishes executing a command string (or if you abort a
command string by means of the (AG>(~G> command), you can store the
command string in Q-register Z by entering a (AS> command as the first
command after the prompting asterisk. The (AS> has this function only
when you use it as the first command in a command string. The (AS>
command is especially useful when an error occurs in a long command
string.

3.17 TECHNIQUES AND EXAMPLES

TECO may be used in several ways. The most elementary application
involves using TECO to create and edit ASCII files on-line. The user
enters short command strings, often consisting of a single command,
and proceeds from task to task until the file is completely edited.

Since every edited job is simply a sequence of TECO commands, an
entire job may be accomplished with one long command string consisting
of all the short command strings placed end to end with the
intervening double ALT MODE characters removed. This leads to the
concept of a TECO editing program, which is simply a long command
string that performs a certain editing task. Editing programs may be
written (using TECO) and stored in the same manner as any other ASCII
file. ~henever the program is needed, it may be read into the buffer
as text, stored in a Q-register, and executed by an Mq command (where
"qn is the Q-register name).

This is fine for clear-cut editing assignments, such as converting
from one format to another or editing certain characters out of a
file, but many editing jobs are so complex that a given editing
program will only solve a small class of problems. The solution, in
this case, is to write very specialized "editing subroutines." TECO
subroutines might perform such elementary functions as replacing every
occurrence of two or more consecutive spaces with a tabulation
character, for example, or ensuring that words are not hyphenated
across a page boundary. When an editing problem arises, the right
combination of subroutines may be loaded into various Q-registers,
augmented with additional commands if necessary, and called by a
"mainline" command string.

Editing subroutines are essentially macros; that is, sequences of
commands which perform commonly required editing functions. Thus,
another application of TECO is in the creation and use of a macro
library. As each editing job is undertaken, the user may look for

3-11

USING TEeo

sequences of operations which might be required in future editing
assignments. All of the TEeo commands required to perform such an
operation may be loaded into a Q-register and executed by means of an
Mq or nMq command. When the job is finished, the content of any
Q-register which contains a useful macro may be written onto an output
file (via the buffer) and saved in the macro library. The nMq
command, which was designed to facilitate use of macros, permits one
run-time numeric argument to be passed to the macro.

The following examples illustrate some of the techniques discussed
earlier. It would not be practical to include examples of the use of
every TEeo command, since most of the commands can be used for many
applications. Instead, you are encouraged to experiment with the
individual commands.

Example 1: Splitting, Merging, and Rearranging Files

Assume that a user has a file named PGM.PA on the system device and
that this file contains data in the following form:

AB FORM eD FORM EF FORM GH FORM IJ FORM KL FORM MN FORM OP

where each of the letters A, B, C, etc., represents 20 lines of text
and FORM represents a form feed character. The user intends to
rearrange the file so that it appears in the following format:

AOB FORM D FORM MN FORM EF FORM ICJ FORM KL FORM P FORM GH

The following sequence of commands will achieve this rearrangement.
(Search command arguments are not listed explicitly.)

.R TEee
tEBPGH.PA$V"
!NC ••

~J20Xl"
~20K"
!NG ••

~HX2"
~V"
~20L"
~Gl"
~NHH"

~HX1$'

~V$'
~J20X3$'
~20K"
!P ••

!G2 ••
~HPEF"
~EBPGH.PAY'
~20L'$
~G3$$

!ND$$

~PWHK"
~Gl"

!EX ••

Call TECO.
Specify input file and get first page.
Search for a character string in C to write A and
B on the output file.
Save all of C in Q-register 1.
Delete C from the buffer.
Search for a character string in G to write D, E
and F on the output file.
Save G and H in Q-register 2.
Delete GH from the buffer and read IJ.
Move pointer to the beginning of J.
Insert C, which was stored in Q-register 1.
Search for a character string in M to write ICJ
and KL on the output file.
Save MN in Q-register 1 (the previous content is
overwritten).
Delete MN and read OPe
Save all of a in Q-register 3.
Delete a from the buffer.
Write P onto the output file, leaving the buffer
cleared (the input file is exhausted).
Bring GH into the buffer from Q-register 2.
Write GH on the output file and close it.
Open the partially revised file.
Move the pointer to the beginning of B.
Insert all of a from Q-register 3.
Search for a character string in D to write AOB
on the output file.
Write D on the output file and clear buffer.
Bring all of MN from Q-register 1 into the
buffer.
Write MN onto the output file, then close the
file and exit to the OS/8 monitor.

3-12

USING TEeo

At this point, the file has been rearranged in the desired format. Of
course, this rearrangement could have been accomplished in fewer steps
if the commands listed above had been combined into longer command
strings. Note that the asterisks shown at the left margin in this
example are generated by TECO, and not typed by the user.

Assume, now, that the same input file mentioned earlier, containing
data in the form:

AS FORM CD FORM EF FORM~~~FORM OP

is to be split into two separate files, with the first file containing
AB FORM CD and the second file containing KL FORM M, while the rest of
the data is to be discarded; The following commands could be used to
achieve this rearrangement:

• R TEeO
iERFILE$EWFILE.lf$

~Y$$

~P$$

~HPEF$$

~<-K$$

~EWFILE.2'P ••

~20LO,.P$$

Call TECO •
Open the input file and the first output
file.
Read AB into the buffer.
write AB FORM onto the output file and read
CD into the buffer.
Write CD onto the output file (without
appending a form feed), and close the first
output file.
Search for a character string in K. After
this command has been executed, the buffer
will contain KL. No output is generated by
the search.
Open the second output file and write KL onto
it. Read MN into the buffer.
Move the pointer to the end of M, then write
M onto the output file.
Close the second output file and exit to the
OS/8 monitor.

As a final example of file manipulation techniques, assume that the
user has two files. One file is MATH.BK, which contains information
in the form:

AS FORM CD FORM EF FORM GH FORM IJ FORM KL

and the other is MATH.FT, which contains:

MN FORM OP FORM QR

If both of these files are stored on DECtape unit 1, the following
sequence of commands may be used to merge the two files into a single
file, MATH.NW, which contains all of MATH.FT followed by the latter
half of file MATH.BK in the following format:

MN FORM OP FORM QR FORM GH FORM IJ FORM KL

~R TEeO
*ERDTA1:HATH.FT$$
*EWHATH.NW$$

~Y$$

~NR$$

~PW$$

*ERDTA1:HATH.BK$$
~Y$$

Call TECO.
Open the first input file.
Open the output file on the OS/8 default
device.
Read MN into the text buffer.
Search for a character string in R to write
MN and OP onto the output file.
WriteQR onto the output file, appending a
form feed.
Open the second input file.
Read AB into the buffer. QR is overwritten.

3-13

USING TECO

!.<-G.. Search for a character string in G to delete
AB, CD and EF, leaving GH in the buffer.

~NK.. Search for a character string in K to write
GH and IJ on the output file, leaving KL in
the buffer.

~HPEF~G.. Write KL onto the output file (without
appending a form feed) and close the file,
then exit to the OS/8 monitor.

Example 2: Alphabetizing by Binary Search

Assume that TECO is running and the buffer contains many short lines
of text, each beginning with an alphabetic character at the left
margin (that is, immediately following a line feed). The lines might
consist of names in a roster, for example, or entries in an index.
Figure 3-1 shows a command string which will rearrange the lines into
rough alphabetical order. This command string groups all lines which
begin with the character "A" at the beginning of the page, followed by
all lines beginning with "B," and so on.

!START! J OAUA!

! ! CO NT ! L OAUB!

!QA-QB·G XA K -L GA lUZ'!

!QBUA!

!L Z-~·G -L OCONT$'!

, ..
Figure 3-1 Command String for Example 2

Example 3: An Elementary TECO Macro

Figure 3-2 shows a TECO macro which right justifies the content of the
text buffer on a GO-space line. This macro assumes that the buffer
contains paragraphs of text in manuscript form and that every line
which is not the last line of a paragraph contains between 40 and GO
characters.

When the macro is run, it counts the number of spaces and the number
of characters in each line. It then adds spaces between words until
the line contains a total of GO characters. Lines which contain fewer
than 40 characters are assumed to be paragraph terminators. These
lines are not justified. Figure 3-3 shows how the macro may be
stored, loaded and executed using DECtape unit 1 as the storage
device. In this example, DECtape file 'TEXT.AS· is the file to be
justified.

3-14

USING TEeo

J!1!OUN OUS!
!<GNA=32·E 1%8 • '!
!QNA-13=E OJUSTIFY$:!
!1%N$>!
!!JUSTIFY! GN-40·G!
!60-QN-QS<S $1 $S~N $>
!OL QSXN$ G5%S$ OJUSTIFY$'!
!60-GN·G 60-GN(S $1 $S~N f)"~!
!L Z-. ·G 01$'$$

Figure 3-2 An Elementary TECO Macro for Example 3

.R TECD
*ERDTA1:MACRO.TE$ Y HXI HK$$
*ERDTA1:TEXT.AS$ Y HIS$$

Figure 3-3 A Second Macro for Example 3

Example 4: Managing a Macro Library

A TECO macro library is most conveniently stored with TECO on the OS/8
system device. Macros are usually short enough to require a small
amount of storage space; however, it is impractical to store each
macro in a separate named file, because a large macro library stored
in this manner would make the device unmanageably large and might even
exhaust the available directory entries.

Figure 3-4 illustrates a macro that packs the user's TECO macro
library (or any other set of short ASCII files) into a single file
requiring only one directory entry. This macro could be stored on the
system device in a file named PACK.TE (the extension indicates a TECO
command string file). The user must also create a separate file
containing the name of each file to be packed. This file must be
formatted as follows:

filel.ex
file2.ex
file3.ex

filen.ex

where each file specification after the first is preceded and followed
by a carriage return/line feed combination. Assume that such a file
is created and stored as INDEX.AS on the system· device. If macro
PACK.TE is also on the system device, the following commands will pack
all files listed in INDEX.AS into file MACLIB.PK on the system device.

Y 10(A) HXO HK OU1 OU2
(GO Q1J :S
$; .U1 2R Oi4 HK
I ERDSK:$ G4 @I.t. HX3
H3 HK I\$ G4 I\$ OU5
lA! AZ·N PW HK OU5 OAt'
%2$) G2·E DB$' EF
lB! HK Q2\ I FILES PACKED
$ HT HK

Figure 3-4 File-Packing Macro

3-15

USING TECO

The packing macro prints a message, as shown, where "n" is the .lumber
of files that were packed. The files to be packed will be taken from
the system device. Files PACK.TE, INDEX.AS and MACLIB.PK may reside
on any file-structured device if the file designations in the above
command summary are changed accordingly. (See Figure 3-5.)

..!.R TECD
~ERSYS:PACK.TE$Y HXP HK$$
~ERSYS:INDEX.AS$EWSYS:MACLIB.PKSHP$S

N FILES PACKED
~

Figure 3-5 Loading and Running the File-Packing Macro

Once the packing macro has packed all the files into MACLIB.PK, the
individual files may be deleted. Alternatively, macros could be saved
in individual files on, say, DTAI and the packing macro could be used
to pack the files into one system device file simply by replacing the
imbedded "ERDSK:" command in the macro body with "ERDTAl:". If the
library index is also saved on the system device, an unpacking macro
may be used to create an unpacked copy of the macro library whenever
required, and the original library tape may be saved as a backup.

Figure 3-6 illustrates a macro that unpacks the output file produced
by the packing macro. This macro accepts a packed ASCII file (such as
MACLIB.PK), then unpacks the file and restores each entry as a
discrete file with the appropriate specification.

Assume that a user desires to access a macro or other ASCII file that
was packed into file MACLIB.PK, as shown in the previous example. If
file UNPACK.TE contains the unpacking macro, the following commands
will unpack the entries and restore them as individual, named files.

The unpacking macro prints a message, as shown, where "n" is the
number of files that were unpacked. Once the files are unpacked, they
will be directed to the system disk. Alternately, the unpacked files
could be directed to, say, DECtape unit 5 by modifying the "EWDSK:"
command in the macro body to read "EWDTA5:". (See Figure 3-7.)

OU2 <Y -Z; OA-92-E
:2S\$-L .-13·L 1,.-lX4
O,.K 02-E OAS' EF
!A! ~2$ I EWDSK: $ 64
@I.S. O,.X3 M3 O,.K~"
PW> 02-E OB$' EF
!B! 02 I FILES UNPACKED
$ HT HK

Figure 3-6 Unpacking Macro

.R TECO
..!ERSYS:UNPACK.TE$Y HXP HKS$
~ERINCEX.ASSMP$$

N FILES UNPACKED
1

Figure 3-7 Loading and Running the Unpacking Macro

3-16

CHAPTER 4

TECO COMMANDS

4.1 INTRODUCTION

InlS chapter describes all TEeo commands used on ~ne ~u~-o. Ine
commands are listed in their ASCII order with the following exception:
A control character is listed under its alphabetic equivalent. For
example, you will find ~F listed user F, and not preceding A as it
would in the normal ASCII collating sequence.

Within a letter grouping, the letter predominates over a symbol; for
example, A precedes ~A.

The nona1phabetic symbols follow the same rule. However, since the
ASCII collating order is difficult to remember, the order for the
entry of nona1phabetic symbols is:

H

%

< >
=
?
@
\
~

The ASCII character set is listed in Appendix A.

4-1

TECO COMMANDS

4.2 A APPEND COMMAND

Append next page to end of buffer.

FORMAT: A

The A (append) command reads in the next page of the input file
without clearing the current contents of the editing buffer. TECO
concatenates this information to that which is already in the buffer;
that is, TECO places it in the buffer following buffer position Z. An
A command does not change the position of the buffer pointer.

If the editing buffer does not have sufficient space to accommodate
the appended data, TECO issues the error message ?MEM STORAGE CAPACITY
EXCEEDED.

TECO terminates input begun by an A command when:

1. The end of the input file is reached;

2. A form feed character is read;

3. The buffer is 2/3 full and a line feed character is read;

4. The buffer is filled to within 128 characters of its
capacity; or

5. The buffer is full.

If TECO reads a form feed (that is, if input stops because of
condition 2), the form feed flag AE is set to -1. TECO does not place
the form feed flag into the buffer with the rest of the text.

The next input command you enter begins input of the character
following the form feed. If a form feed is not read, the form feed
flag is set to o. You may test the form feed flag, but this is
usually unnecessary.

The A command does not accept a numeric argument. Note that nA, where
n is a numeric argument, is a different command. If you wish to
append more than one page to the editing buffer, you can type n<A>,
where n is the number of pages you wish to append.

If the end of the input file was previously read (that is, if the EOF
flag has been set (see AN», the A command has no effect.

Examples:

~YA$$

~A$$

This command deletes the page of text currently in
the editing buffer, and reads in the text two
pages of the current input file, appending the
second page to the first.

This command enters the next page of the file into
the editing buffer and appends it to the data
already in the buffer. The previous contents of
the buffer are not altered and the pointer is not
moved.

If the contents of a file fit into memory as a
single unit, this command string will bring the
entire file into memory and remove all form feeds.
The AN; command will cause TECO to exit from the
loop when the end-of-file flag is set.

4-2

TECO COMMANDS

4.3 nA COMMAND

Return the ASCII code of a character.

FORMAT: nA

where n prints to the {n+l)th character following the buffer pointer.

The purpose of the nA command is to return a number equal to the ASCII
value for the (.+n+l)th character in the editing buffer.

For example, the expression l-lA is equivalent to the ASCII code for
the character immediately preceding the pointer and OA is equivalent
to the ASCII code of the character immediately following the pointer.

NOTE

You cannot omit n. If you omit the
position indicator, TECO will treat your
command as an append command. Because
TECO cannot determine if you meant to
type an nA or A command, no error
message can be issued.

If you attempt to reference a position outside of the buffer, TECO
prints the error message ?POP ATTEMPT TO MOVE POINTER OFF PAGE.

Exampie:

••• OA---I-E
lA--~B.EHQ' I •••

This command string segment will verify that
the string /B immediately follows the buffer
pointer. If it does, TECO executes the macro
in Q-register q. If not, TECO executes the
commands following the second apostrophe.
(The purpose of the AA command is to return
the ASCII value of the character following
it.) OA_AA/ is an argument which is the value
of the character following the pointer minus
the ASCII value of a / character.

4-3

TECO COMMANDS

4.4 -Atest<-A) TYPE-OUT COMMAND

Type delimited text.

FORMAT: <~A>text<~A>

where the first ~A may be a <circumflex-A> or <CONTROL/A> but the
second must be a <CONTROL/A>.

The ~Atext<~A> command types the "text" between the AAs on your
terminal. The text is usually a message that you wish typed out
during the execution of a command string.

The first AA is the actual command. Enter it as a circumflex-A or a
<CONTROL/A>. The second AA is a delimiter which indicates the last
character in the text argument. The second delimiter must be a
<CONTROL/A> because a ~ is a legal character within a text string.

The string "text" is the character string that TECO types out when it
encounters the AA command. The text string can contain any character
except ~A.

Example:

~OU1<!ST"'N;SOS
S·FAOST$ '12I$O,.PO,.K~A

OUTPUTTING ~AGE <-A> X2=)EC$$
OUTPUTTING PAGE 1
OUTPUTTING PAGE 2
OUTPUTTING PAGE 3
OUTPUTTING PAGE 4

1. OUI stores 0 in Q-register 1.

2. The angle brackets indicate TEeo will perform a repeated
sequence of operations.

3. The 50S command searches for the 50th occurrence of a line
feed. If the buffer does not contain 50 lines, the seaarch
fails and TECO executes the commands after the failure
conditional ("F).

4. TECO appends the next page and branches back to search for
the fiftieth line (AOST$).

5. If there are now 50 lines, TECO inserts a form feed into the
buffer, and the text in the buffer up to and including the
form feed is written to the output file.

6. O,.R removes this text from the buffer.

7. TECO then prints the message.

8. The %1 command increments the value in Q-register 1, and then
the = command prints it.

9. This continues until the end-of-file flag is set;
~N=-l.

10. TECO closes the file.

4-4

that is,

TECO COMMANDS

4.5 B POSITION INDICATOR

Position of beginning of buffer, always O.

FORMAT: B

The B buffer position indicator always equals O. It
position at the beginning of the buffer, that
preceding the first character in the buffer.

represents the
is, the position

You may also use the B command in arithmetic expressions.

Example:

Remove all characters from the beginning of the
buffer to the character immediately preceding the
buffer pointer position.

4-5

TECO COMMANDS

4.6 C BUFFER POINTER COMMAND

Move pointer forward.

FORMAT: nC

where n may be positive or negative.

You can use the C command to move the buffer pointer. You would
normally use this command when the pointer has to be moved across only
several characters. The C commands are listed in Table 4-1.

Command Argument

nC n)O

C 1 is assumed

OC a

-C -1 is assumed

nC n<O I

Table 4-1
C Commands

Move the
characters

Function

pointer forward over n
in the buffer from the

current position of the pointer; that
is, nC is equivalent to (• +n) J. nC is
also equivalent to -nR.

Move the pointer forward one position.
This is equivalent to -R.

No movement of the pointer.

Move the pointer backward one position.
This is equivalent to R.

Move the pointer backward over n
characters in the buffer from the
current position of the pointer; that
is, nC is equivalent to (• -n) J. nC is
also equivalent to nR.

If a C command attempts to move the buffer pointer across either
editing buffer boundary, TECO ignores the command and prints the error
message ?POP ATTEMPT TO MOVE POINTER OFF PAGE.

Examples:

C Advance the buffer pointer one space.

L4C Advance the pointer to the position following the
fourth character in the next line.

OIC Advance the pointer the number of characters
Q-register 1.

4-6

in

TECO COMMANDS

4.7 ·C COMMAND

Abort or exit.

FORMAT: AC

If TECO is in command mode (that is, awaiting a command), then (AC> is
an OS/8 monitor command which causes a jump back to the monitor.
However, if TECO is not in command mode, the (AC> is a TECO command
which aborts the present action and returns control to TECO. If you
abort TECO while it is executing with a (AC>: it prints the message
?XAB EXECUTION ABORTED.

If you wish to insert this command into a text or macro, you can type
it using the circumflex convention.

4-7

TECO COMMANDS

4.8 D DELETE COMMAND

Character deletion.

FORMAT: nO

where n may be positive or negative.

You can use a 0 command to individually delete characters and short
strings. The D commands are listed in Table 4-2.

Table 4-2
D Commands

Command Argument Function

nO n)O Delete the n characters following the
buffer pointer.

D 1 is assumed Delete the character following the buffer
pointer.

OD 0 This is a null command.

-0 -1 is assumed Delete the character preceding the buffer
pointer.

nO n(O Delete the n characters preceding the
buffer pointer.

After TECO executes the D command, it positions the buffer pointer
between the characters that preceded and followed the deletion. The
pointer will always be adjacent to one of the characters to which it
was adjacent before the deletion.

If you attempt to delete text up to and across the beginning or end of
the buffer, no text will be deleted and TECO prints the error message
?POP ATTEMPT TO MOVE POINTER OFF PAGE.

When deleting across carriage return/line feeds,
return/line feed counts as two characters.

the carriage

Examples:

The following examples assume that the buffer contains the
text shown at the right; the buffer pointer points to the
position between the M and the N.

ABCDE
FGHIJ
KLMNO
PQRST
UVWXY
Z

.,.!.6[1$$

.!.-D$$

.!.-2D2[1$$

Deletes NO, the carriage return/line feed, and PQ,
changing the third and fourth lines to KLMRST.

Deletes M •

Deletes the carriage return/line feed, and KLM,
changing the second and third lines to FGHIJNO.

Deletes LMNO, changing the third line to K •

Deletes NO and the carriage return/line feed, and
P, changing the third and fourth lines to KLMQRST.

4-8

TECO COMMANDS

4.9 AD DECIMAL RADIX COMMAND

Enter decimal mode.

FORMAT: AD

The entering of a ~D or a <CONTROLiD> changes the current radix to
decimal if TECO was not already in decimal. You would use this
command after you have changed the radix to octal with a AO command.

If the radix is in decimal, this command is a no-ope

The initial radix of TECO is decimal.

4-9

TECO COMMANDS

4.10 (DELETE>

Delete a character.

FORMAT: none.

Typing the DELETE key while entering a command string causes TECO to
delete the last character typed~ You may continue deleting characters
until you have erased the entire command string. An attempt to delete
past the prompting asterisk causes TECO to type a carriage return/line
feed followed by the printing of another asterisk.

The actual function of the delete character is to delete the last
typed character in the command string. Consequently, if the incorrect
character is not the last one in the string, you must delete all
characters back to that point.

Type (DELETE> twice to erase a carriage return and the TECO-generated
line feed following it.

If you have used the SET TTY SCOPE OS/8 monitor command, the (DELETE>
will cause an immediate erasure of the character, and the cursor will
be moved backwards. You can delete any nonexecuted character;
however, you cannot erase <~C> and <~G>, etc., because these execute
immediately.

If your terminal is not in "scope mode," TECO echoes a deletion by
typing the character deleted; for example, the string "real-time," if
followed by five deletions, would appear as "real-timeemit-" on your
terminal.

If your terminal is not in scope mode, you should use the <AG><Sp>
command when, through extensive editing, a command string becomes
unintelligible.

Example:

After typing the portion of the command string shown below, you
discover that you have misspelled the name "Ericson."

*3LKIlEIF ERICXON

To nullify this error, you would type three successive (DELETE>s. As
you do this, TECO responds by retyping the character being deleted.

*ILEIF ERICXON<OELETE>N<DELETE>O<DELETE>X<AG><sp>
ILEIF ERIC

4-10

TECO COMMANDS

4.11 AE END-OF-PAGE FORM FEED FLAG SIGNAL

This flag indicates if a form feed was read when the current buffer's
contents were placed into the buffer.

FORMAT: AE

If, when TEeo is loading data into the editing buffer,
because a form feed was read, it sets the AE flag to -1.
stopped because:

1. The end of the input file was reached;

input stops
If input was

2. The buffer is 2/3 full and a line feed character is read;

3. The buffer is filled to within 128 characters of its
capacity; or

4. The buffer is full

the flag remains as a O.

The P·and other similar output commands test this flag to determine
whether they should append a form feed when they write the contents of
the buffer to the output file.

Example:

This macro divides a file into pages of 50 lines each and also
preserves original form feeds.

<!ST!-N~50S
$·F-EU1 01·LP' 01·EA' OST' 121$ O,.P O,.K> EC$$

1. TEeo searches for the 50th line terminator.

2. If this search fails, TEeo stores the value of the form feed
flag in Q-register 1.

3. If this value is less than 0, TEeo writes the buffer to the
output file and reads in a new page.

4. If it equals zero, TEeo appends a new page to the buffer's
~ontents.

5. TEeo then branches back to ST to search again for the
fiftieth line.

6. If fifty lines were found, TEeo appends a form feed. This
text is written to the output file and then deleted. TEeD
again searches for the 50th line.

7. This continues until the end of the file is reached, that is,
AN is set to -1.

4-11

TECO COMMANDS

4.12 EB EDIT BACKUP COMMAND

Open an input and output file, creating a file with the same name as
the input file. The old file has its extension changed to BK.

FORMAT: EBfilespec$
@EB/filespec/

where / is an arbitrary delimiter which is not one of the characters
in filespec.

Use the EB command to open a file for editing in a manner similar to
the TEeo filespec command.

NOTE

You can use this command only for files
stored on a directory-structured device.

The EBfilespec command is equivalent to:

*ERfilespec$EWfilespec$

except that the input file has its extension changed to BK.

The operation of the EB command is as follows:

1. The EB command executes an automatic ERfilespec$ command,
opening the specified file for input and releasing any
previously opened input file.

2. Then, it opens a temporary file to receive the output of the
edited version of the input file.

3. The output device is the same as the input device.

4. Finally, the EB command sets an internal flag indicating that
special action must be taken when the EB file is closed (by
an Ee, EF, EX, or EG command). It also prohibits any further
EW or EB commands until the file is closed.

When you close a file opened with an EB command, the following action
takes place:

1. If a file with the name filename.BK already exists on the
device, TEeo deletes it.

2. TEeO renames the input file filename.ext to filename.BK.

3. Finally, TEeo renames the temporary output file filename.ext.

You cannot use the EB command with a file having the extension BK.

The TEeO filespec initialization command causes an automatic
EBfilespec to be executed (followed by an automatic Y command).

4-12

TECO CO~ANDS

Examples:

*EBAB.FT$$ This command selects the disk file AB.FT for
editing. When the editing is completed, the
file AB.FT is the new version. TEeo changes
the old version to the back-up file AB.BK.
and deletes any previous back-up-file AB.BK."

*@EB/RXA1:TEXT$.TX/ This command selects the file TEXT$.TX, where
the $ is an ESCAPE character from device RXAI
(floppy drive 1). If you had created a file
with the name TEXT.TX, it could not be
accessed through the OS/8 monitor except
through the use of t filespec construction.

4-13

TECO COMMANDS

4.13 EC EXIT CLOSE COMMAND

Transfer the remainder of the input file to the output file and then
close the input and output files.

FORMAT: EC

EC commands TECO to write the contents of the editing buffer and any
information in the input file not as yet brought into the editing
buffer onto the output file. The input and output files are closed.
After the execution of an EC command, TECO remains in command mode.

The EC command is similar to the EX command, which produces the
identical output and also closes the input and output files. However,
the EX command returns control to the OS/8 monitor.

If you use an EC command instead of an EX command, you do not have to
reload TECO, and you do not lose the data in the Q-registers.

Example:

*EC$$ This command closes the current file and writes its
contents to the appropriate file.

4-14

TECO COMMANDS

4.14 EF END FILE COMMAND

Ena the output file with the current page.

FORMAT: EF

The EF command is an output-file-closing command; that is, TECO
closes the file you opened with an EW command. You would normally use
an EF command to close the output file after all output to it is
complete. Furthermore, the EF command is most often used after a P
command, which outputs the last page of a file.

Examples:

*PWEF$$

NOTE

If you type an EF command in the middle
of the file, all succeeding pages that
would have been read to it with an EX or
EC command are omitted. If you are not
creating a file; it is far safer to exit
with an EC command rather than an EF
command because you could lose data if
you erroneously think you are at the end
of the file.

Output the current page to the output
file, and then close the output file.
Use this command string to close a
file after writing the last page.

Equivalent to the preceding example,
except that the buffer is not altered.

*EFEWTEXT.TE$$ Close the current output file and open
an output file TEXT.TE on the oSla
default device DSK:.

*ERPTR:$EFEWRXAO:FILE.MA$$ Read the input file from the paper
tape reader, close the current output
file, and open FILE.MA on RXAO: as an
output file.

~ERFILE.TX$EWFILE1.TX$

4PEFEWFILE2.TX$
4PEFEWFILE3.TX$EC$$

This command divides file FILE.TX into
three files: The first two files each
consists of four pages, while file
FILE3.TX contains the remainder of
FILE.TX. If you thought FILE.TX
consisted of 12 pages of data, you
could have concluded with a 4PEF
command string, rather than an EC.
However, if you were mistaken, you
would not have written the remainder
to an output file, and thus could lose
all text following the 12th page with
an EF command.

4-15

TECO COMMANDS

4.15 EG EXIT AND GO COMMAND

Exit from TEeo after output, then either:

1. Re-execute the last compile-class eeL command, or

2. Perform the action specified in the optional text argument.

FORMAT: EG

where:

text

@EG//
EGtext$
@EG/text/

is an OS/8 monitor command

/ is an arbitrary delimiter which is not one of the
characters in "text".

The EG command is a dual-purpose command.

1. It transfers the contents of the editing buffer
remaining text in the input file to the output file.
exits from TEeO. This is identical to an EX command.

2. An OS/8 monitor command will then be executed.

and any
It then

If you specify a text argument to an EG command, that text must be an
OS/8 monitor command. After the exit from TECO, that command will be
executed. Thus,

*EGtext$

is equivalent to:

*EX
.text

This command form is often used when the text you have created is a
batch command file. If it were, you would type EGSUBMIT filespec$$.

If you do not specify a text argument, TECO causes the last
compile-class command (for example, COMPILE, EXECUTE, or LOAD)
attempted before TECO was called to be re-executed (with the same
arguments). Generally, you would use the EG command to exit from an
editing job that was called by an EBfilespec or TECO filespec command.

As an example, suppose you give the command

.CDHPILE PLDT.FT

to request compilation of a FORTRAN source program, but the compiler
encounters errors in the code. You would then call TECO to correct
these errors with the command

.TECD PLDT.FT

4-16

TECO COMMANDS

After you have corrected the errors, you would exit from TECO with the
command

~EG$S

This command causes: 1) the rest of the file PLOT.FT to be output and
closed; and 2) the command COMPILE PLOT.FT to be re-executed
automatically.

Example:

The following is an example that can be called with a MUNG command.
It will compile all FORTRAN programs that are on your disk. You call
it with the OS/8 command •

• MUNG COMPIL,*.FT

Z-E EBTEMP.TM$ Y3KZJ-3KJ
<FS $$;> <S
$;-L I.COMPILE $L>
ISJOB
ZJIEND
$
EGSUBMIT TEMP.TM/T/H$
'zaN EWDIR.TM$
.JI$JOB
.DIR TEMP.TM<$
ZJI/F
.MUNG COMPIL
SEND
$

EGSUBMIT DrR.TM/H/T$'

In this example, the $ symbols indicate dollar signs rather than
ESCAPEs.

4-17

TECO COMMANDS

4.16 EH EDIT HELP COMMAND

Error message printing form command.

FORMAT: nEH

where:

n is an integer such that -1<n<3.

TECO error messages consist of two parts: The first, or code, is
always typed, while the second part, the brief message, is also typed
only with the 16K version of TECO.

By using the EH command, you may change TECO so that it prints only
the 3-letter code preceded by a? or both the code and a I-line error
message. TECO always prints an error message.

Table 4-3 lists the EH commands.

Command

lEH

2EH

OEH

Table 4-3
EH Commands

Function

Sets TECO so that it prints only the 3-letter code
part of the error message.

Sets TECO so that it prints both the error message
code and the l-line extended descriptions
automatically. On systems with less than l6K,a 2EH
command is a null command because there is
insufficient memory for the internal file which
contains the error messages.

Resets TECO to the system standard mode of error
message type-out (normally equivalent to 2EH).

You may return the current value of the EH setting by typing EH. To
be useful, this must be typed as a numeric argument to another
command.

4-18

TECO COMMANDS

4.17 EK EXIT KILL COMMAND

Detach output file from TECO without performing input or output.

FORMAT: EK

The EK command detaches ~ne output Il~e {if there is onej. It does
not delete any files. If, for example, after typing an EWfilespecl
command and deciding that this is an error, you wish to write to
filespec2 instead, then the command

EKEWfilespec2

W;ll detach filespecl without causing output.

You can also use the EK command to detach a file if it were going to
overwrite another file.

4-19

TECO COMMANDS

4.18 EO VERSION COMMAND

Return version number of TECO.

FORMAT: EO

An EO command returns a value which specifies the current version
number of TECO. This will be either a 5 Qr a 5xx, where 5 is the
current version and xx is any 2-digit number. If EO does not return
the 5, this manual may contain inapplicable or erroneous information
for your version.

This command
compatibility
implemented on
It is not used
the version of
manual.

NOTE

is included for
with versions of TECO

other DIGITAL computers.
except to see if you have
TECO described in this

4-20

TECO COMMANDS

4.19 ER EDIT READ COMMAND

Initializes a file so that TEeD may sequentially extract information
from it.

FORMAT: ERfilespec$
@ER/filespec/

where:

/ is an arbitrary delimiter which is not one of the
characters in filespec.

The ER command initializes a file so that TECO may read information
from it. An ER command also terminates input from any file that may
have been previously opened for input, in addition to opening a file
for input.

You may open one file for input, read only part of that file, and
then, with another ER command, release the first file and open a new
file for input. It is not necessary to read the end of one file
before opening a second. However, opening the second file does
terminate input from the first.

NOTE

OS/8 TECO permits only one input file to
be open at any time.

If you are creating a file, then you do not need to enter an ER
command. Instead, you enter the text directly into the text buffer
from the terminal keyboard.

Examples:

*ERf'ULSE.FT$$

~ERDTA1:INf'UT.TX$EWRKAO:OUTf'UT.TX$$

.!.ERRXA1:PROG$$

4-21

Select the
from the
device DSK:.

file
OS/8

PULSE.FT
default

Select the card reader for
input and the paper tape
punch for output.

Open an input file INPUT.TX
on DECtape unit 1 and an
output file OUTPUT.TX on
disk unit o •

Prepare to read input file
PROG or PROG.MA from RXA1:.

TECO COMMANDS

4.20 (ESCAPE) COMMAND

A signal to begin execution or a command delimiter.

FORMAT: none.

An (ESCAPE) character is the only predetermined command delimiter in
TECO. Use it to indicate the location of the last character in a text
argument. In this case, it is part of the previous command; for
example, in IABC$, the ESCAPE is part of the I command.

The <ESCAPE) is sometimes also used after an n%q command. You would
use it to ensure that the incremented value in the Q-register is not
used as an argument for the following command.

You may insert the <ESCAPE) into a text string if you preface the
command with an @ modifier. (See Section 4.68.) Using the @ modifier
allows you to choose any delimiter that is not one of the TECO special
characters listed in Table 2-1.

You may also insert the <ESCAPE) into a command string using a 271$
command.

TECO echoes an <ESCAPE) as a dollar sign ($) on a terminal.

A double ESCAPE ($$) signals TECO to begin execution of the command
string.

On some terminals, ESCAPE is labeled ALTmode or PREfix.
"ALTmode" is the traditional TECO name for ESCAPE.)

4-22

(The term

TECO COMMANDS

4.21 ET EDIT TERMINAL COMMAND

Flag and command to set typeout modes.

FORMAT: nET

where:

n is a combination of the numbers 1, 2, and 8.

The ET flag informs TEeo whether you have entered a SET TTY SCOPE or
SET TTY NO SCOPE command to the OS/8 monitor. If you have entered SET
TTY NO SCOPE, then this flag has a value of O. If you are in "scope
mode" then the flag is set to 2.

Use this command to control how TECO will type information to your
terminal. The three values this command can take are listed in Table
4-4. Because these numbers represent bits, they are additive; that
is, one ET value does not preclude another.

Command

lET

2ET

8ET

Example:

Table 4-4
ET Commands

Function

Setting this bit inhibits all
conversions. All characters
terminal exactly as they appear
command. For example, the
characters in the CONTROL/CHAR
This mode is useful for driving

of TECO's typeout
are output to the

in the buffer or <AA>
changing of control
form is suppressed.
displays.

Process <DELETE> and <AU> in scope mode. Scope mode
processing uses the cursor control features of the
CRT terminals to handler character deletion by
actually erasing characters from the screen.

Read without echoing for AT command. This allows
data to be read by the AT command without having the
characters echo at the terminal. Normal command
input will echo.

The following TECO command string erases the entire screen of a VTS2.

4-23

TECO COMMANDS

4.22 EU EDIT UPPER/LOWER COMMAND

Upper-case and lower-case flagging of output.

FORMAT: nEU

where:

n is a positive, negative, or zero integer.

The upper/lower-case flag determines the manner in which TECO is to
transmit characters to your terminal. If you have entered a SET TTY
LC command to the 05/8 monitor, TECO, when called into memory, sets
this value to -1. Otherwise, it will be set to o.

Use the nEU command to flag upper-case output characters with an
apostrophe ('). For example, if you are displaying a text, a form of
the EU command will tell TECO to precede every character entered in
lower case with an apostrophe. Although TECO prints the text in upper
case, you would clearly be able to distinguish upper- and lower-case
characters.

The EU commands are listed in Table 4-5.

Command Argument

nEU n)O
I I

OEU 0

nEU n(O

Table 4-5
EU Commands

Function

Flag upper-case characters
apostrophe.

Flag lower-case characters
apostrophe.

Do not flag characters.

4-24

with an

with an

TECO COMMANDS

4.23 FW EDIT WRITE COMMAND

Initialize the output file.

FORMAT: EWfilespec$
@EW/filespec/

where:

/ is an arOltrary delimiter which is not one of the
characters in filespec.

Use an EW command to open a file for output. If an output file is
currently open, a second EW command closes that file before opening
the new file. TECO permits only one output file to be active at any
one time.

If you type an EWfilespec command while a file is open, TECO deletes
the previously opened file. However, TECO does not permit you to type
an EW command if you had opened the file with an EBfilespec command.

You may not output any information without first entering an EW or
equivalent command.

TECO does not permit you to use multiple EW commands without changing
the input file.

The MAKE filespec initialization command causes TECO to execute an
automatic EWfilespec$ command.

Examples:

*ERRXA2:CREF.2$EWRXAO:CREF.3$$

*EWPROG.PA$$

*EWRXA1:0CON.TE$$

4-25

This command string selects the
file CREF.2 on diskette drive 2
for input and opens a file
called CREF.3 on diskette drive
o for output. If there is a
file named CREF.3 already on the
diskette, it will be
overwritten.

Prepare to write the output file
PROG.PA on the 05/8 default
device DSK:.

Prepare to write the output file
OCON.TE on RXAl:.

TECO COMMANDS

4.24 EX EXIT COMMAND

Exit from TECO to the OS/8 monitor.

FORMAT: EX

The EX command outputs the latter part of the input file and closes
the input and output files. Using the EX command is the easiest way
to finish editing a job.

For example, you may be editing a 30-page file and the last change you
make is on page 10. At this point you can give the command

In this case, the action TECO performs is equivalent to the command
string 2lPEF, with an automatic exit to the monitor at the end. Thus,
TECO:

1. Rapidly moves all the rest of the input file, including the
page currently in the buffer, to the output file

2. Closes the output file

3. Returns control to the monitor.

The EX command is equivalent to:

...!.

The EX command outputs a form feed character only if, after the output
of the editing bufferis contents, it examines the ~E end-of-page form
feed flag and finds that a form feed terminated input. In this way,
the EX command maintains existing page sizes.

4-26

TECO COMMANDS

4.25 -P COMMAND

Return value of console switch register.

FORMAT: "'F

After you enter an ~F or <CONTROL/F) command, TECO returns the number
input on the console switch register. (On the PDP-12, this is the
right switch register.) This number must be in the range O<n<4095.

4-27

TECO COMMANDS

4.26 FN FAST NONSTOP SEARCH/REPLACE COMMAND

Search remainder of the file until text is found and then replace it.

FORMAT:

where:

n

nFNtextl$text2$
nFNtextl$$
n@FN/textl/text2/
n@FN/textl//

is a positive number.
replacement occurs.

If text2 is omitted, no

/ is an arbitrary delimiter which is not one of the
characters in textl or text2.

Use an Fn N command to search for a character string in a page of the
input file which may not yet have been read into the buffer (function
of the N command) and to replace it with another string. The FN
command operates like the N command when searching for the string. If
the search fails, no replacement occurs.

If you omit text2 in an FN search, TECO deletes textl and does not
insert a string into the buffer to replace it. However, even when
text2 is omitted, its terminating delimiter must be present as shown
in the form

*FNtextl$$

The maximum length of a text argument is 31 ASCII characters. The FN
command, like all search commands, accepts a colon modifier.

The textl argument may contain the four match control characters:

~Na Match anything except wa w
~Q Use the next command as match character
AS Match on separator
AX Exempt position from match

If a search fails, TECO writes the entire input file to the output
buffer.

You may preface the FN command with a number n to indicate which
occurrence of a string is the object of the search. If a number
specifying which occurrence of a string is to be replaced is less than
1, then TEeo prints the error message ?NAS NEGATIVE OR ZERO ARGUMENT
TO S.

4-28

Examples:

*12FNSTRING$TEXT$$

*12<FNSTRING$TEXT$)$$

*12(@ FN/STRINGII)$$

TECO COM~~NDS

This command replaces the 12th
occurrence of STRING with TEXT.

The first 12 occurrences of STRING are
replaced with TEXT. Note the position
of the ESCAPEs. The ESCAPE following
the TEXT terminates the string TEXT.
Because the search is within an
iteration, a double ESCAPE cannot be
used because it would terminate the
command before the iteration were to be
entered into the command string.

This is similar to the above example
with the difference being that STRING is
not replaced. If the @- modifier were
not used, you would have to type $$.
This would prematurely terminate the
command and you would receive an error
message.

4-29

TECO COMMANDS

4.27 FS FAST SEARCH/REPLACE COMMAND

Search the remainder of the editing buffer until text is found and
then replace it.

FORMAT:

where:

n

j

nFStextl$text2$
nFStextl$$
n@FSjtextl/text2/
n@FS/textl//

is a positive number, textl and text2 are less than 32
characters long

is an arbitrary delimiter which is not one of the
characters in textl or text2.

The FS command searches for a character string within the current
editing buffer (function of the S command) and replaces it with
another string. If the string to be replaced is not found after the
current pointer position and before the end of the buffer, the search
fails and no replacement is made. If a search fails, TECO moves the
buffer pointer to the beginning of the editing buffer.

If you omit text2 from a FS command, textl is deleted without
replacement. However, when you omit text2, its terminating ESCAPE
must be present as shown in the form

*FStextl$$

Textl and text2, like all search commands, may not be longer than 31
ASCII characters.

The FS command may use the colon modifier, while textl may use the
following match control characters:

ANa Match anything except "a"
AQ Use the next command as match character
AS Match on a separator
AX Exempt position from match

You may preface the FS command with a number n to indicate which
occurrence of a string is the object of the search. If the number
specifying which occurrence of a string is to be replaced is less than
1, then TECO prints the error message ?NAS NEGATIVE OR ZERO ARGUMENT
TO S.

Examples:

*12FSOFSFOR$$

*12(FSOFFOR>$$

This command causes TECO to search the
current buffer for the 12th occurrence
of the string OF and to replace it with
the string FOR.

This command causes TECO to search for,
and then to replace, the first 12
occurrences of OF with FOR. Note that
the concluding double $$ follows the >.

4-30

~12FSINTEREST$$

~@12FS/INTEREST//$$

TECO COMMANDS

This command causes TECO to search the
current page for the 12th occurrence of
the string INTEREST and to delete it.
The two ESCAPEs, $$, must be typed
following the string to be deleted; the
first delimits the string for which you
are searching and the second tells TECO
that there is no replacement string.

This command is identical to the one
described immediately above~ It is very
useful if a double ESCAPE would
prematurely terminate your command
string.

4-31

TECO COMMANDS

4.28 G GET COMMAND

place Q-register qls contents in the editing buffer.

FORMAT: Gq

where:

q is a Q-register.

The command Gq (where q is one of the 36 Q-registers) fetches a copy
of the character string stored in the Q-register and inserts it into
the editing buffer at the current buffer pointer position. This
command does not alter the contents of the Q-register. TECO positions
the buffer pointer at the right end of the character string inserted.

Examples:

*ZJ-5XAJ8LGA$$

-lSTEXT 1 SOL • U 1
STEXT2$OL.U2
01,02XA
01,02K
NTEXT3$L GA$$

This command string puts a copy of the last five
lines of the page into Q-register A and then puts
a copy of these five lines immediately after the
eight lines in the page. It does not, however,
delete the five lines from their position at the
end of the page.

This command string stores all text from TEXTI to
TEXT2 in Q-register A, deletes that text from the
page, and then places this text on the line
following TEXT3.

If you type a before a Gq command, TECO types the contents of that
register on your terminal without inserting it into the buffer.

Example:

If the second command in the above examples were changed to:

STEXT1$OL.Ul
STEXT2$OL.U2
01,02XA
:GA$$

then the :GA command would verify that you have placed the proper text
into the Q-register.

4-32

TECO COMMANDS

1. Retype all text back to the last line terminator.

FORMAT: <AG><Sp>

where the command must be typed using a <CONTROL/G>.

2. Retype the entire command string.

FORMAT: <AG>*

where the command must be typed using a <CONTROL/G>.

3. Erase all commands that have been entered but not executed.

FORMAT: <AG><AG>

where the command must be typed using a <CONTROL/G> a

4.29.1 <AG><Sp> COMMAND LINE ECHO COMMAND

The <AG><Sp> command prints the line currently being input on your
terminal. This command is useful when the correcting of typographical
errors causes you to be unable to read easily what you have typed.

If the terminal has a bell, it will ring twice.

You cannot type this command using the circumflex construction.

This is identical in function with typing a line feed during the
entering of a command to the OS/8 monitor.

<AG><Sp> is normally unnecessary if you are entering information on a
CRT and you have entered the OS/8 SET TTY SCOPE command. The <AG><Sp>
command can be thought of as an erasing commmand although it is
actually an echoing command. Its function is to retype the current
line, omitting characters erased with other commands. Use it when you
type so many <DELETE>s on a line that you cannot determine what you
have typed.

After TECO types a line, continue typing the command string just as if
the command had not been typed. TECO neither stores this command in
nor removes anything from the command string.

Example:

~STAET:<DELETE>:<DELETE>T<Dt:LETE>ERT:<TAB>TRZE<""G><sp>
START: TRZE
$$

.!.

4-33

TECO COMMANDS

4.29.2 <AG>* COMMAND STRING ECHO COMMAND

The <~G>* command prints all the lines you typed from the last TECO
prompt (i.e., the asterisk) to be reprinted. This command differs
from the <~G><sp> command in that it types the entire command string,
rather than only the last line.

If the terminal has a bell, it will ring.

You cannot use the circumflex construction for this command.

4.29.3 <AG><AG> COMMAND STRING ERASURE COMMAND

Typing two consecutive <~G><~G> characters erases all commands entered
but not yet executed.

If the terminal has a bell, it will ring.

You cannot use the circumflex construction for this command.

4-34

TECO COMMANDS

4.30 B WHOLE POSITION INDICATOR

Incorporate entire buffer (B,Z) limits into a command argument.

FORMAT: H

The H command is equivalent to the numeric pair B,Z. Thus, in those
commands that take two numeric buffer position arguments, H represents
the combination B,Z (which is the entire buffer). This letter is
particularly useful with type-out and output commands.

Examples:

~HT$$

~HXA$$

Delete entire editing buffer.

Type entire buffer.

Insert entire buffer into Q-register A.

4-35

4.31 I INSERT COMMAND

Insert text into the buffer.

FORMAT:

where:

Itext$
@I/text/

TECO COMMANDS

text is only limited by available command string storage
space

/ is an arbitrary delimiter which is not one of the
characters in "text."

The I command followed by a text argument is the basic TECO insertion
command. Delimit the text argument by an ESCAPE.

This command inserts the ASCII text string, "text,· into the editing
buffer just ahead of the buffer pointer. After the insertion, TECO
positions the buffer pointer immediately after the last inserted
character. TECO does not insert the ESCAPE terminating the text
argument. "Text" may contain any character except the special
characters listed in Table 1-1.

The amount of core available for command string storage limits the
number of characters in the text. During normal editing jobs, DIGITAL
recommends that you limit insertions to about 10 to 15 lines each.

If a very long insertion command begins to exceed the TECO command
storage capacity, TECO rings the terminal bell once when ten
characters of storage remain and once after each additional character
entered. The bell also echoes as a AG. When this occurs, terminate
the command string immediately. Entering more than ten additional
characters into the current command string causes a fatal error.

The @I/text/ command is slightly more powerful than the I command. It
enables you to insert ·single (but not double) ESCAPE characters in
addition to the characters that can be inserted with the I command.
The @I form is useful for inserting TECO command strings into the
editing buffer.

Delimit the text argument to the @I command, both before and after, by
any single character which is not itself a part of the text to be
inserted. TECO does not require an ESCAPE to terminate the text
string; it is the second occurrence of the delimiting character that
terminates the text string. The text is inserted immediately
preceding the buffer pointer, as it is with the I command. TECD does
not insert the delimiting character.

4-36

Examples:

*JIline one
Tine two
line three
$$

*

*1
<DELETE>
$$
~

~@ I XTEXT$}~<IIELETE>$X$S

TECO COMMANDS

This example shows insertion of
lines of text at the beginning
buffer.

several
of the

Use this command string to delete the
tail of a line without removing the
carriage return/line feed at the end.
If the buffer contains:

ABCD
EFGH

and the buffer pointer is between the B
and the C, this command produces:

AB
EFGH

Use this command to insert a carriage
return without a line feed following it.
The single <DELETE> deletes the line
feed but not the carriage return.

This is a convenient method for
inserting multiple ESCAPEs when using
the @I command. Type the sequence
x<DELETE>, where x is any character
except an ESCAPE, between the successive
ESCAPEs. It ~ne x<DELETE> were not
typed, TECO would assume that you were
terminating the command string.

The following examples assume that the buffer contains ABCDEF with the
buffer positioned between the D and E.

*IXYZ$$

.!I
$$

3RI S4CI S$

Produces ABCDXYZEF with the buffer
pointer between the Z and the E •

Produces ABCD
EF

with the buffer
before the E.

Produces A BCDE F

4-37

pointer positioned

TECO COMMANDS

4.32 nI$ INSERT COMMAND

Insert a character into the buffer.

FORMAT: nI$

where:

n is the ASCII value of the character to be inserted.

The nI$ command inserts one character into the editing buffer. The n
numeric argument includes all characters that the I and @I commands
cannot insert. However, the nI$ command inserts only one character at
a time. The command nI$ inserts the character with the ASCII value n
into the buffer immediately preceding the pointer.

NOTE

The 1$ command inserts a null string
into the editing buffer. The nI$
command always inserts a character into
the buffer.

The nI$ command is most often used to insert the special characters
listed in Table 2-1.

Example:

If you are creating a macro that you wish to abort immediately if a
certain condition occurs, then you could type some command string
minus the <~C> and then add it with the insert command. For example,

*IABCDEFGHIJKILMN$$

If the <~C> were to be inserted after the K, then the command string

*3R31$HXA$$

would insert the AC, and then place the command string in Q-register
A.

The following command string could also be typed:

~IABCDEFGH1JK$ 31$ ILMN$$

4-38

TECO COMMANDS

4.33 J JUMP COMMAND

Meve buffer
__ :_&.. ____ , _.a..: __ _
l-IU.l.UI..CL LC.LQL.l.VC to the beginning of the buffer.

FORMAT: nJ

where n)O

The nJ command moves the buffer pointer to the
after the nth character in the buffer. The J
Table 4-6.

position immediately
commands are listed in

Command

nJ

OJ

J

ZJ

Table 4-6
J Commands

Function

Move the pointer to the position following the nth
charater in the text buffer.

move the pointer to the beginning of the buffere

Equivalent to OJ.

Move the pointer to the end of the buffer.

4-39

TECO COMMANDS

4.34 K KILL COMMAND

Line deletion.

FORMAT: nK
m,nK

where:

n may be positive, negative, or zero if there is one
argument. If there are two arguments, m<n.

The K commands are described in Table 4-7.

Command Argument

K 1 assumed

nK n)O

OK o

-K -1 assumed

nK n<O

m,nK m<n

HK B,Z

Table 4-7
K Commands

Function

Deletes everything from the buffer
pointer through the next line terminator.
If the pointer is at the beginning of a
line, the K command deletes the entire
line. Otherwise, the K command deletes
only the portion of the line following
the pointer (including the line
terminator).

Deletes everything from the buffer
pointer through the nth line terminator
following it.

Deletes everything from the pointer back
to the beginning of the current line.

Deletes everything from the pointer back
to the beginning of the line preceding
the current line.

Deletes everything from the pointer
to the beginning of the nth
preceding the current line.

back
line

Deletes the (m+l)st through the nth
characters in the buffer and positions
the pointer at the point of deletion
(that is, the pointer is set equal to m).

Deletes the entire contents
buffer.

of the

If the K command attempts to delete text up to and across the
beginning or end of the buffer, TECO deletes text only up to the
buffer boundary. The buffer pointer is positioned at the boundary and
no error message is printed.

TECO positions the buffer pointer between the character that preceded
and followed the deletion.

4-40

TECO COMMANDS

Examples:

The following examples assume that the buffer contains the
text shown at the right; the buffer pointer is positioned
between the M and the N.

ABe DE
FGHIJ
KLMNO
PQRST
UVWXy
Z

*HI\$$

..!. ,ZK$$

.,tK$$

-.!OLK$$

*L3K$$

-.tK[I$$

~OK$$

.,t-K$$

Deletes everythlng in the buffer, but does not delete
the form feed (if there is one) marking the end of the
page. To delete the form feed as well, type HKA.

Deletes everything from A through M.

Deletes everything from N through Z •

Deletes NO, changing the third and fourth lines to
KLMPQRST.

Deletes the entire third line.

Deletes the last three lines (everything from P
through Z).

Deletes NO and P, changing the third and fourth lines
to KLMQRST.

Deletes KLM •

Deletes FGHIJ
KLM.

4-41

TECO COMMANDS

4.35 L LINE COMMAND

Move the buffer pointer by lines.

FORMAT: nL

where:

n may be positive, negative, or zero.

Use the L command to move the buffer pointer over entire lines. The L
command and its arguments are shown in Table 4-8.

Command Argument

Table 4-8
L Commands

Function

~---------+--------------~~------------------.----------------------------4

L

nL

OL

-L

nL

1 assumed

n)O

o

-1 assumed

n<O

Advances the pointer to the beginning
of the line following the current line.

Advances the pointer to the beginning
of the nth line following the current
line.

Moves the pointer back to the beginning
of the current line.

Moves the pointer back to the beginning
of the line preceding the current line.

Moves the pointer back to the beginning
of the nth line preceding the current
line.

If you attempt to move the buffer pointer backward beyond the position
immediately prior to the first character in the buffer or forward
beyond the position immediately after the last character in the
buffer, TECO does not print an error message; however, TECO moves the
pointer to the beginning or end of the editing buffer.

Examples:

*ZJ-2L$$

*L4C.$

The J command moves the pointer to the beginning of
the first line in the buffer. The 3L command then
moves it to the beginning of the fourth line.

The ZJ command moves the pointer to the end of the
last line in the buffer. Then the -2L command moves
the pointer to the beginning of the next to last line
in the buffer (assuming that the last line is
terminated by a line feed).

Advance the pointer to the position following the
fourth character in the next line.

4-42

TECO COMMANDS

4.36 M MACRO COMMAND

Execute the command string stored in a Q-register.

FORMAT: Mq
nMq
m,nMq

where:

q is a Q-register ..

TECO command strings are composed of ASCII characters and, as such,
you can insert or read them into the editing buffer just like any
other text.

The command string stored in a Q-register is called a macro.

When a command string is in the editing buffer, you can edit it, but
you may not execute it because, when it is in the buffer, it appears
to be data to TECO. However, if you copy a command string from the
editing buffer into a Q-register (using an X command), then this
command string can be executed.

The command Mq (where q is one of the 36 Q-registers) executes the
text ln that register. Thus, entering an'Mq command is analogous to
calling a subroutine.

You may include any TECO command in the command string which is stored
in and executed from the Q-register. The only restriction is that the
commands must all be complete within the macro in the Q-register. For
example, a command and its argument must not be split apart, one in
the command string and the other in the Q-register. If you include
iterations and conditional execution strings, these must also be
complete within the register. If you use an a command in the macro,
the tag to which it branches must also be in the register.

The forms of the M command are:

Mq

nMq

M,nMq

Example:

Execute the contents of Q-register q.

Execute the contents of Q-register q and use n as a
numeric argument for the first command in the command
string.

Execute the contents of Q-register q and use m,n as a
numeric argument for the first command in the command
str i-ng.

The following shows the creation of a macro to format a file into
pages of 50 lines. The macro will be stored in a Q-register, and then
be called to operate upon two files.

*EWFIFTY .TEe ••
j@I/Y(!5T!-N; 50S

..lHXA$$

..tEe$$

.:!EBF I LE 1 • FT.$

..!MA$$

..!EBFILE2. FT.$
~MA$$

1

.-FA 05T.'12I$ O,.P O,.K> Ee/$$

4-43

TECO COMMANDS

1. This macro will be kept after it is created in the file
FIFTY.TE.

2. The Y brings in the first page of text.

3. The AN will signal if the end-of-file flag has been set.

4. If it has been set, AN; will cause a branching from the
iteration.

5. If the page has fewer than 50 lines, a new page is appended
to the buffer and the loop is continued.

6. If there are at least 50 lines, a form feed is appended, the
50 lines are output, and then killed.

7. This will continue until the AN flag is set, indicating the
end of the file has been reached.

8. After the macro has been completed, it is stored with the HXA
command into Q-register A.

9. FIFTY.TE is then closed.

10. FILE1.FT is then opened, and the Q-register is executed.

11. The procedure is repeated for FILE2.FT.

4-44

TECO COMMANDS

4.37 N NONSTOP SEARCH COMMAND

Search a file for a string until it is found.

FORMAT: nNtext$
n@N/text/

where n)O and / is an arbitrary delimiter which is not one of the
characters in "text." The N command combines the S command with
input/output functions. Use the N command to search for a character
string in a page of the input file which may not yet have been read
into the editing buffer.

The N command may accept a colon modifier.

"Text" may include the following match control characters:

Match anything except "a"
Use the next command as match character
Match on a separator
Exempt position from match

The N command differs from the S command in that the former does not
terminate at the end of the page currently in the buffer.

If TEeo does not find a match for the search string between the
current buffer pointer position and the end of the buffer, the current
page is output, the buffer is cleared, and the next page is read in.
The search then starts over at the beginning of the new page. This
process continues until a match is found or the input file is
completely written to the output file.

If an N search fails, the entire input file passes through the buffer
and is written to the output file. TECO also clears the editing
buffer but does not close the output file. Unless the: modifier was
used or the search is within an iteration, an error message is typed
to notify the user that the search has failed.

An N search cannot detect a match when
split across two buffers. It also

the matching characters are
cannot detect a match if the

characters are en separate lines unless you include the line separator
in the search string.

The output function of the N command is exactly like the P command.
If a form feed character was encountered when a given page was read
in, TECO appends a form feed character to that page when it is output;
otherwise, no form feed character is output.

If you do not include a text argument with a search command (for
example, N$$), TEeD executes the search using the last previous search
command argument.

You may use the N command with a single numeric argument. The command
nN, In which n must be greater than 0, causes a search for the nth
occurrence of the search string. When you omit n, TECO assumes n=l.

The search differs from the N search in that the former produces no
output. However, both will search through the entire file following
the buffer pointer until a match occurs.

4-45

Examples:

*NDIGITAL$$

~NLAST LIN F'Gl
1ST LIN PG:~
$$
1SRH FAILED

*
*NMASSACHUSETTS$$
1S?SRHLEft

...!EF$$

...!Ef.H)UTF'tJT • F I $$
*V$$

:!NMASSACHUSETTf.i$$

TECO COMMANDS

If page 5 of the text is currently in the
buffer and the string DIGITAL does not occur
until page 15, this command causes pages 5
through 14 to be output and page 15 to be
read in. The pointer will be set
immediately after the L in DIGITAL.

If this string actually exists in
but the two lines are not read into
buffer, the N search will fail.
words, a search can be dependent on
brings information into the buffer.

the file
the same
In other
how TECO

An N search should not be used when an S
search would suffice, because user errors
with the N command, such as the spelling
shown here, can cause considerable delay.
In this example, the error causes two passes
over the entire file instead of just one.

4-46

TEeo COMMANDS

4.38 AN

1. Do not match on character following the <AN>.

FORMAT: <AN>a

where a is an ASCII character and
<CONTROL/N>.

must be entered

2. Flag that indicates if the end of file has been reached.

FORMAT: AN

where the command can be entered as a <CONTROL/N> or
circumf1ex-N.

4.38.1 <AN> MATCH CONTROL CHARACTER

Use the <AN> match control command to accept any character in a
particular position during a search except the character following the
command. When TECO is searching for a string, any character except
that following the <AN) is acceptable as a match. It differs from the
<AX) match control character in that the <AX) will accept any
character in that position as a match.

The <"N)-character combination counts as one character in the search
string. However, it counts as 2 of the 31 characters permitted in a
search string.

The combination <AN><"'S)·is legal; it commands TEeO to accept any
character which is not a separator as a match for this string.

The circumflex construction may not be used.

4e38e2 An End-of-File Indicator Command

The AN command returns a value indicating if the end of the file has
been reached. It is most often used in conjunction with a command
that inputs data. The setting of the flag will then be the cause of
jumping from an iteration or the fulfillment of a condition for a
conditional execution command. It is initially set to O. When the
end of file has been "reached, it is set to -1.

Example:

..!.(YITITLE
$PW"'N;>$$

.!.<"'N;(FSABC$IIEF$;>
<FSXYZPQR;>
P> EX$$

This command string inserts TITLE at the top
of each page of a file.

This macro changes all occurrences of ABC to
DEF and of XYZ to PQR in an entire file.
The AN terminates the iteration when the AN
flag is set to -1.

4-47

TECO COMMANDS

4.39 0 GOTO COMMAND

Unconditional branch to a location.

FORMAT: Otag$

where:

tag is composed of ASCII
exclamation marks in the
ESCAPE in the 0 command.

characters delimited by
command string and by an

The purpose of the tag following the 0 is to name the destination of
the unconditional branch instruction. The tag location itself may be
either before or after the 0 command in the command string. However,
the branch cannot occur before the beginning of the current iteration.
For example, if you enter the following command string:

••• !tagl! ••• < ••• Otagl$ ••• >

TECO will produce an error message.

However, the command string segment

••• <!tagl! ••• Otagl$ ••• >

is legal.

The 0 command causes the command string execution pointer to be moved
to the first character following the exclamation point that terminates
the tag, and command execution continues from that point.

Tags are ignored except when an 0 command forces TECO to scan the
command string from them.

There is no restriction on the length of the tag (except that it must
fit into the buffer).

The tag must also be in the same macro level; that is, you cannot
branch from within a called macro to outside of the contents of the
Q-register nor can you branch from outside of a macro into it.

4-48

TECO COMMANDS

1. Stop terminal output during typing out.

FORMAT: <"'0>

where the command must be typed as <CONTROL/O>.

2. Change to octal radix.

FORMAT: "'0

During the execution of a type-out, you can stop the terminal output
by typing <"'0>. This command causes TECO to finish execution of the
command string, omitting all further type-outs. You can enter this
command only while TECO is actually typing out text at the terminal.
If it is not, TEeo ignores the "'0. The effect of this command does
not carryover to the next command string.

Typing a second <"'0> will cause the type-out to continue if the
command string has not finished executing.

This command cannot be typed as circumflex-O.

Occasionally, the asterisk that TEeD prints when a command finishes
execution is also suppressed. If this occurs, you can type
<CONTROL/U>. TECO then responds with an asterisk if it is waiting for
a command.

Example:

The following example assumes the buffer contains the text
shown at the right.

ABCDE
FGHIJ
KLMNO
PQRST
UVWXy
Z

*HT3K$$
ABCDE
EG"O

The user requests type-out of the whole buffer, but
stops it with a <"'0> (which echoes as "'0) immediately
after the G is typed. However, a second HT command
would show that the buffer now contains:

PQB.ST
UVWXY
Z

4.40.2 <AO> OCTAL RADIX COMMAND

The entering of a "'0 or <CONTROL/O> changes the current radix to octal
if TECD was not already in octal.

If the radix is in octal, this command is a no-oPe

The initial radix of TECO is decimal.

4-49

,.

TECO COMMANDS

4.41 P PAGE COMMAND

Write the buffer's contents to the output file.

FORMAT: nP
m,nP

where:

n may be positive, negative, or zero if there is one
argument. If there are two arguments, m<n.

The P command outputs the text buffer, clears the buffer, and reads
the next page of the input file into the buffer.

The P command performs two operations; when you type it with a single
numeric argument (or no argument), the P command performs both output
and input.

The P commands are described in Table 4-9.

Command Argument

P 1 assumed

I

nP n)O

m,nP m<n

Table 4-9
P Commands

Similar to
contents

Function

PWHKY. Outputs the entire
of the buffer, and then clears

the buffer and reads in the next page of
input. The buffer pointer is left at
the beginning of the page that is read
in. If there is no input file, or if no
more data is in the input file, the
buffer is left cleared. TECO appends a
form feed character to the end of the
output data only if the last input
command was terminated by a form feed.

Executes the P command n times. You can
use this command to skip over several
pages of text when no editing is
required. The nP command causes the n
pages of the input file -- starting with
the page currently in the editing buffer
-- to be output, and then the nth page
after the current page to be brought in.

When used with a pair of numeric
arguments, the P command only outputs
data; it neither clears any data from
the buffer nor moves the buffer pointer.
Also, the m,nP command never appends a
form feed to the output unless you have
inserted a form feed in the buffer
between the mth and nth characters. The
only action of m,nP is to output the
(m+l)st through the nth characters in
the buffer. (m,nP and m,nPW are
equivalent.)

(continued on next page)

4-50

I

I
I

Command Argument

HP H=B,Z

TECO COMMANDS

Table 4-9 (Cont.)
P Commands

Function

Writes the buffer without appending a
form feed to it; the buffer is not
cleared, and no new data is read in.
(HP and HPW are equivalent.) Although
this form may resemble a single
argument command (and thus could
output a form feed), it is really a
dual argument command.

As discussed above, you can use the nP. command to skip over several
pages to get to the next page where editing is required. The nP
command can also be used with a very large argument, e.g., 1000, in
order to skip to the end of the input file without doing any more
editing.

Examples:

*PT$$
FIRST LINE OF PAGE

~.,ZP12I$O,.P$$

*HK12I$HP$$

.MAKE FILE.FT

~Ipsse of text$$
*PI2nd psSe of text$$

Output the current page, clear the buffer,
read in the next page, and then type out
the first line of the new page.

This command string outputs the entire
contents of the buffer, but it arranges the
data as it is output. The .,ZP command
outputs first part of the page that follows
the buffer pointer. Then, the a,.p command
outputs that part of the data preceding the
pointer. No form feed character is
appended to either section of the output.

This performs the same action as the
preceding command string except that it
appends a form feed character to the part
of the page that is output last. (12 is
the ASCII code for form feed.)

This command string produces a single blank
page.

If page 6 of a file is in the editing
buffer, this command causes pages 6 - 13 of
the file to be output one after the other,
and then read in page 14.

This is the usual method for creating a
text file.

*PIlsst psSe of text$$
JtEC$$

4-51

TECO COMMANDS

4.42 PW PAGE WRITE COMMAND

Write contents of editing buffer to the output file and append a form
feed.

FORMAT: nPW

where:

n)O

m,nPW

if there is one argument. If there are two arguments,
m<n.

The PW command is the basic output command because it does nothing but
write data to the output file. Depending on the argument, the PW
command writes all or some part of the data in the editing buffer. It
does not, however, delete data from the buffer, and it never moves the
buffer pointer.

The PW command writes the entire buffer and it always appends a form
feed to the contents. The nPW command (n)O) also outputs n copies of
the text in the buffer, appending a form feed to each copy. The PW
command does not clear the buffer nor does it move the buffer pointer.
(The same is also true of a P command used with two arguments.)

Note also that when you use a PW command with a single argument, a
form feed character is always automatically sent to the output file
immediately following the data from the buffer. TECD appends the form
feed character to the outgoing data regardless of whether it
encountered a form feed character when the data was read in, that is,
regardless of the setting of the ~E form feed flag. This is not true
of the P command.

Table 4-10 lists the PW commands.

Command Argument

Pw 1 is assumed

nPW n)O

m,nPW m<n

HPW H=B,Z

Table 4-10
PW Commands

Writes the
the output
character.
and the
unchanged.

Function

contents of the buffer onto
file and appends a form feed

The buffer is not cleared
pointer position remains

Same as n<PW). This executes the PW
command n times.

Writes the contents of the buffer from
the (m+l)th character through and
including the nth character onto the
output file. A form feed character is
not appended to this output nor is the
buffer cleared. The buffer pointer's
position remains unchanged.

Equivalent to PW except that a form
feed is not appended to the output.

4-52

TECO COMMANDS

If the editing buffer is empty when TEeo executes a PW command, no
output of any kind takes place.

Examples:

..!f'WJKI J. DOE$
f'W$$

-!HK12I$f'W$$

This command outputs 300 copies of the current
page.

This command outputs
modifies the first line,
buffer again.

the
and

current buffer,
then outputs the

This produces two successive blank pages.

4-53

TECO COMMANDS

4.43 Q Q-REGISTER COMMAND

Return contents of a Q-register.

,ORMAT: Qq

where:

q is a Q-register designator.

Use the Qq command (where q is one of the 36 Q-registers) to read the
numeric value in a register. Qq has no function other than to return
the value in the specified Q-register as a numeric argument to another
command. It does not alter the value in the Q-register. Qq is often
used in conjunction with conditional commands.

Examples:

~QR-3UR$$ This command string subtracts 3 from the value in
Q-register R and then inserts the new value into
the register.

4-54

TECO COMMANDS

1. Execution command that resumes a type-out that was frozen by
a <~S>.

where you must type the command as <CONTROL/Q>.

2. Accept the next command as a character in a search.

where c is a TECO command. This command must be entered as
<CONTROL/Q>.

4.44.1 <AQ> TYPE-OUT CONTROL COMMAND

The <~Q> is an execution time command that resumes terminal output
which had been stopped by a <~S>.

The circumflex construction may not be used.

4.44.2 (A Q> MATCH CONTROL CHARACTER

<~Q> is a match control character that accepts the next character as
text. A <~Q> character in a search command argument indicates that
TECO should interpret the character following the command literally
rather than as a command. This character may be used to search for
~S, ~N, and ~S characters.

It does not count as one of the maximum 31 characters in the search
command argument.

The circumflex construction may not be used.

4-55

TECO COMMANDS

4.45 R REVERSE COMMAND

Move the buffer pointer backwards.

FORMAT: nR

where n may be positive, negative, or zero.

The R command is a buffer pointer positioning command, and is the
reverse of the C command. The forms of the R command are listed in
Table 4-11.

Command Argument

nR n)O

R 1 is assumed

OR 0

-R -1 is assumed

nR n(O

Table 4-11
R Commands

Function

Move the pointer backwards
characters in the buffer

over n
from the

current buffer pointer position. nR is
equivalent to -nC.

Move the pointer backward one character.

This is a null command.

Move the pointer forward one character.
This is equivalent to C.

Move the pointer forward over n
characters in the buffer from the
current buffer pointer position. nR is
equivalent to nC.

If an R command attempts to move the pointer across either buffer
boundary, TECO ignores the command and prints the error message ?POP
ATTEMPT TO MOVE POINTER OFF PAGE.

Example:

~OL2R$$ The OL command moves the pointer
beginning of the current line.
command moves it back past the
characters in the preceding line.

4-56

back to the
Then, the 2R

last two

TECO COMMANDS

4.46 S SEARCH COMMAND

Search for a character string.

FORMAT: nStext n@S/text/

where n)O and text is less than 32 characters long.

Use the S command to search for a character string within the current
editing buffer. If the string is not found between the current buffer
pointer position and the end of the buffer, the search fails. After
an unsuccessful S search, the buffer pointer is reset to the beginning
of the buffer, and, unless you have used the: modifier or the search
is within an iteration, TEeo prints the message.

Type the search string as an alphanumeric argument following the S.
Terminate it with an ESCAPE. "Text" can contain any character except
those listed in Table 1-1, Special Characters, but may not contain
more than 31 characters.

The S command may be used with a single numeric argument. The command
nS causes a search for the nth occurrence of the specified search
string. When n is omitted, n=l is assumed. n must be greater than O.

If you are searching for text that contains an ESCAPE, you can use an
@ modifier to the S command.

If you do not include a text argument with an S command (for example,
S$$), TECO executes the search using the last previous search command
argument.

The S command may use the following match control characters:

~Na Do not match on "aft
AQ Use next command as match character
AS Match on a separator
AX Exempt next position from matching

Examples:

!.SA<TA.B>.B$$

*SNIX$$
~SRH SEARCH FAILED

.!.@3S+$+IEF$$

This causes the pointer to be
immediately after the B, in
occurrence of the string A<TAB)B
current position of the pointer.

positioned
the first
after the

The string NIX is not found between the
current pointer position and the end of the
buffer. The error message is typed and the
pointer is moved to the beginning of the
buffer. You may have typed an incorrect
search string, the pointer may have been
positioned somewhere in the buffer after the
N, or the string NIX may not be in the
editing buffer.

The command @3S+$+ searches for the third
occurrence of the ESCAPE character following
the buffer pointer. When this ESCAPE is
found, the characters EF are inserted
immediately after it. The + characters
serve as the delimiters for the I-character
search string $. The + characters are not
part of the search string.

4-57

TECO COMMANDS

4.47 ·S

1. Store a completed or aborted command string in Q-register Z.

where you must type a (CONTROL/S>.

2. Freeze the output display.

where you must type a (CONTROL/S>.

3. Accept any nonalphanumeric character as a match for this
relative position in the search string.

FORMAT: ~S

4.47.1 (AS> STORE COMMAND STRING COMMAND

After TECO completes execution of a command string (or if you abort it
with (AG>(~G», you may store it in Q-register Z by typing a (~S> as
the first command in the next command string. The previous contents,
if any, of Q-register Z are destroyed.

This command causes the entire previous command string, less
the two concluding ESCAPEs, to be stored in Q-register Z.
abort the command string with a (~G>(~G>, neither (A G> will be
with the command string. This command ha~ this function only
is the first command in a command string.

one of
If you
stored

when it

If you had intended to use the (~S> but instead typed some other
command first, you may recover the ability to use this command by
typing enough (DELETE>s to cause TECO to respond with a carriage
return/line feed and a new asterisk. This technique will not work
perfectly if some of the characters typed before the (AS> were break
characters (ESCAPE, carriage return, etc.). If you typed some break
characters, some of the leading characters of the preceding command
string will be overwritten.

This command is especially useful when an error occurs in a long
command string.

4.47.2 (-S> FREEZE OUTPUT COMMAND

If you type a (CONTROL/S> while TECO is typing text, the monitor
freezes the output. The output resumes at the place of interruption
if you type a (CONTROL/Q>.

4.47.3 (-S) MATCH CONTROL CHARACTER

(AS) may also act as a match control character. When you enter it,
TECO accepts any separator (that is, any nonalphanumeric character) as
a match in a search.

4-58

TECO COMMANDS

4.48 I TYPE COMMAND

Type out text in the editing buffer.

FORMAT: nT

where n may be positive, negative, or zero.

You can type any part of the text in the editing buffer for
examinaclon by using cne T command. The text that TEeD types depends
on the position of the buffer pointer and the argument(s) given. The
T command never moves the buffer pointer.

When preceded with a single numeric argument, T is a line-oriented
command; when preceded with a pair of numeric arguments, T is a
character-oriented command. The T commands are described in Table
4-12.

Command Argument

T 1 assumed

i I
nT n)O

I I
I OT 0 I

-T -1 assumed

I
nT n<O

! I

m,nT m<n

Table 4-12
T Commands

Function

Types out everything
pointer through

from
the

terminator. If the pointer

the
next
is

beginning of a line, T causes the
line to be TECO typed out.
pointer is in the middle of a
causes that portion of the
following the pointer to be typed

Types out everything from the

buffer
line

at the
entire

If the
line, T

line
out.

buffer
pointer through the nth line terminator
following it. If the pointer is at the
beginning of a line, this command types
out the next n lines (incl uding the
current 1 i ne) •

Types out everything from the beginning
of the current line up to the pointer.
This command is especially useful for
determining the position of the buffer
pointer.

Types out everything in the line
preceding the current line, plus
everything in the current line up to the
pointer.

Types out everything in the n lines
preceding the current line, plus
everything in the current line up to the
pointer.

Types out the (m+l)st through the nth
characters in the buffer.

(continued on next page)

4-59

I

I
I

I
I
I

I

TECO COMMANDS

Table 4-12 (Cont.)
T Commands

Command Argument Function

.,.+nT n)O Types the n characters immediately
following the buffer pointer.

.,.-nT n<O Types the n characters immediately
preceding the buffer pointer.

HT H=B,Z Types out the entire contents of the
buffer.

Examples:

The following examples assume the buffer contains the text
shown at the right, with the buffer pointer positioned
between the M and the N.

ABCDE
FGHIJ
KLMNO
PQRST
UVWXY
Z

*OTT$$
KLMNO

..1-2T$$
ABCDE
FGHIJ
KLM*

.1., .+6T$$
NO
pa*
i:"";".-2T$$
LM

*OLT$$
KLMNO

Note that no carriage return/line feed eX1S~S
between the. beginning of the line on which the
pointer is located and the pointer itself;
therefore, none is typed. The second asterisk
indicates that TECO is ready for the next command.

This pair of commands causes the line to be typed
out without moving the pointer •

The six characters typed are NO, carriage return/
line feed, and PQ

This pair of commands types out the entire current
line and leaves the pointer at the beginning of
the line.

4-60

TECO COMMANDS

4.49 AT TYPE-IN COMMAND

1. Use the ASCII code for the next character typed at the
terminal as an argument.

FORMAT: AT

2. Type out the character whose ASCII code precedes the command.

FORMAT: nAT

where:

n is the ASCII code for a character.

4.49.1 AT INPUT COMMAND

AT is equivalent to the ASCII code for the next character you type at
the terminal. When TECO executes a command string, every AT character
encountered causes it to pause and accept one character typed at the
terminal. TECO then substitutes the ASCII code for this character for
the AT.

This command is useful only as a numeric argument for another command.

It is often used with an AAtext<AA> message string preceding it. The
message string informs the user that TECO is waiting for a character
to be typed in.

Example:

..!<SFUNCTION $~A
FUNCTION LETTER (MA>
:'TI$>$$
FUNCTION LETTER M
FUNCTION LETTER N
FUNCTION LETTER C

*~TUC$$

4.49.2 AT TYPEOUT COMMAND

Here, the AT command is used as the
argument for an nI$ command. This
command string inserts the letter typed
in following each occurrence of the
string FUNCTION that is found by the
search command.

Places the Jl.Cf"TT n ".a.. ... value
character in Q-register C.

of the typed

The nAT command types out the character whose ASCII code is n.

Example:

.!J(S
$;2ROTL

-K')$$

This macro will type out each line of a file. It
will then wait for you to type a K to delete the
line or anything else to type the next line.

4-61

TECO COMMANDS

4.50 <TAB> INSERT COMMAND

Insert text and <TAB> into the editing buffer.

FORMAT: <TAB>text$

The tab command is equivalent to the I command, except that the tab
command causes TECO to insert the tab itself as well as all the
following text up to the ESCAPE. In other words, if the first
character of a text string to be inserted by an I command is a tab,
you may omit the I.

The numer of characters in the text is limited by the amount of core
available for command string storage. During normal editing jobs,
DIGITAL recommends that you limit insertions to about 10 or 15 lines
each.

If a long insertion command begins to exceed the TECO command storage
capacity, TECO rings the terminal bell once when ten characters of
storage remain and once after each additional character entered. When
this occurs, terminate the command string immediately. Entering more
than ten additional characters into the current command string causes
a fatal error.

Example:

If the buffer contains ABCDEF with the buffer pointer positioned
between the D and E, then:

*<TAB)XYX$$ produces ABCD XYZEF

The pointer is now between the Z and E.

4-62

TECO COMMANDS

4.51 U COMMAND

Insert number into a Q-register.

FORMAT: nUq

where -4095(n(4095 and q is a Q-register designator.

The nUq command stores the integer n in Q-register q (where q is one
of ~ne 36 Q-registers). Anything previously in the numeric part of
the Q-register is destroyed.

Example:

..!SLINE l$OL.Ul
SLINE 2$.U2
Gl,12K$$

This command string will delete the text
beginning at line 1 and preceding line 2.

4-63

TECO COMMANDS

Erase the current line from the command string buffer.

where you must type <CONTROL/U>.

When you enter a <~U> while entering text, TECO erases all text in the
command string back to the last carriage return/line feed. You may
then resume entering the command string as if the deleted text had
never been entered; that is, the command string <AU> does not close
the command string register.

TECO echoes this command on the terminal as a ~U.

This command may not be entered using the circumflex construction.

You may use the <AU> to erase more than one command string line if you
type a <DELETE> after the <AU> has deleted the line.

4-64

TECO COMMANDS

4.53 ·Uqtext$ COMMAND

Enter the text following the command into a Q-register.

FORMAT: ~Uqtext$
@~uq!text!

where:

q is a Q-register designator

text is the character string to be inserted into the
Q-register

! is an arbitrary delimiter which is not one of the
characters in "text."

Text is normally placed into a Q-register by copying it from the
editing buffer (through the use of the Xq command). The ~U .command
gives you the option of directly inserting a text into a Q-register.
Specifically, TECO places the text and the ASCII character string
following the Q-register designator and preceding the ESCAPE into the
Q-register when it begins executing the command string.

You can enter the command directly only by using the circumflex
construction.

Because the text often contains ESCAPE characters, DIGITAL recommends
that you use the @ modifier form.

4-65

TECO COMMANDS

4.54 W WINDOW COMMAND

1. Perform a display cycle.

FORMAT: W

2= Show n lines before and after the cursor:

FORMAT: nW

where n)Q

NOTE

These commands are only
nonrefreshable CRTs.

4.54.1 W Command

used with

Perform a display cycle. Update the display from the current buffer.

4.54.2 nW Command

Set display mode to show n lines before and after the line containing
the cursor. The initial display shows three lines above and below the
cursor.

4-66

TECO COMMANDS

4.55 X EXTRACT COMMAND

Insert text into a Q-register.

FORMAT: nXq
m~nXq

where:

n is positive, negative, or zero if there is one
argument o If there are two arguments v m<ne

q is a Q-register designator.

The X command copies characters from the editing buffer into a
Q-register. TECO does not remove these characters from the editing
buffere Consequently: an X command is often followed with a K
command. Any data previously in the data part of the Q-register is
destroyed.

The X commands are listed in Table 4-13.

Command Argument

nXq n)O

j I
Xq 1 is assumed

I nVn 0

I
...... "l

-Xq -1 is assumed I

m,nXq m<n

HXq H=B,Z

Table 4-13
X Commands

Function

Copies everything, from the current
buffer pointer position to the nth
following line terminator character,
into Q-register q.

Copies the text of the current line,
from the buffer pointer position to
the next line terminator, into
Q-register q.

Copies the text from the begillning
current line preceding the buffer
pointer to the buffer pointer position
into Q-register q.

Copies the text of the line precedin 9
the current line, and the current line
to the buffer pointer position, into
Q-register q.

Copies the (m+l)st through the nth
characters into Q-register q.

Copies the entire editing buffer into
Q-register q.

I

If an X command requires more memory for storage than is available,
TECO prints the error message ?QMO Q-REGISTER MEMORY OVERFLOW and does
not execute the command.

4-67

Example:

TECO COMMANDS

This command string moves everything to the
left of the pointer from its position at the
beginning of the page to the end of the
page. The O,.XI command puts everything
from the top of the page to the pointer in
Q-register 1. The O,.K command then deletes
this data from the buffer. The ZJ command
moves the pointer to the end of the page.
At this point, the command Gl copies the
contents of Q-register 1 into the buffer at
the position of the pointer.

4-68

TECO COMMANDS

Accept any character in this relative position in a search string as a
match.

where the command must be typed <CONTROL/X).

An (AX> character indicates that this position in the character string
is unimportant and that TECO will accept any ASCII character in this
position as a match for the search string_

The circumflex construction may not be used.

4-69

TECO COMMANDS

4.57 Y YANK COMMAND

Read a new page into the editing buffer.

FORMAT: Y

The Y command first clears the editing buffer and then reads text into
the buffer until one of the following conditions is met:

1. The end of the input file is reached;

2. A form feed character is read;

3. The buffer is two-thirds full and a line feed is read (or
filled to within 128 characters of capacity); or

4. The buffer is complete+y filled.

The usual effect of the Y command is to clear the editing buffer
(execute an HK command) and then read the next page of the input file
into it. Less than the entire next page is read in only if that page
is too large to fit within two-thirds of the buffer's capacity.

If the end of the input file has previously been read, the Y command
only clears the buffer.

If a form feed is read (that is, if input stops because of condition
2), the form feed flag AE is set to -1. TECO does not write the form
feed into the buffer with the rest of the text. A succeeding input
command begins input at the character following the form feed.

If a form feed is not read, the form feed flag is set to 0, and the
next input command begins input at the character following the last
character previously read in. You may test the form feed flag, but
ordinarily this is not necessary.

TECO automatically executes a single Y command in response to the TECO
filespec initialization command. This causes the first page of the
input file to be read into the buffer before TECO prints the first
asterisk.

The Y command sets the buffer pointer to the position preceding the
first character in the buffer.

The Y command does not accept a numeric argument. If you wish to use
multiple Y commands, you may type n<y>, where n is the number of pages
to be ignored.

The Y command aborts if the text buffer is not empty and an output
file is open.

Examples:

..!ERREPORT.TE$Y$$

..!ERDTA3:DATA.FT$YYY$$

This command string opens the file
REPORT.TE for input and reads in the
first page of that file.

This command string reads in and
discards the first two pages of the
DECtape file DATA.FT, and then reads in
the third page of that file. If an
output file were open, you would have to
type 2<HK>Y.,

4-70

TECO COMMANDS

4.58 Z POSITION INDICATOR

Indicates the last position in the editing buffer.

FORMAT: Z

Z is a buffer position indicator that equals the number of characters
in the buffer. Thus, Z is a number that is the count of the
characters in the buffer.

While Z is often used as an argument to a command, you can also use it
in arithmetic expressions.

Example:

One common use of Z is to verify if characters have been read into the
editing buffer; for example, the command string segment

••• ZUl A Z-Ql"E •••

stores a number which is the count of the characters in the buffer and
appends a new page. The second Z indicates the new number of
characters in the buffer. If, when the former count is subtracted
from it, the remainder equals zero, then no characters were read in.

4-71

TECO COMMANDS

4.59 ltagl

A string of ASCII characters used to identify a location in a command
string.

FORMAT: !tag!

where! precedes and follows the ASCII string.

When an 0 command directs the execution of a command string from the
linear order of execution, the place to which TECD is directed is
called a tag. The tag is delimited both before and after with
exclamation points.

Tags may be thought of in much the same way as labels in other
programming languages.

The length of a tag is limited solely by the command string register.

Because you do not have to reference tags, they can serve as comments
within a command string or macro. (Normally, comments are included
only in lengthy TECD macros that will be maintained.)

4-72

TECO COMMANDS

4.60 • BRANCHING COMMANDS

Depending upon cne argument, skip any command that precedes an
apostrophe at the same nesting level.

FORMAT: n·X •••• 1

where:

n

•

x

is the argument to the conditional execution command

signals that the command is a conditional execution
command

is the condition to matched

represents the place to begin execution if the
condition is not satisfied.

In this command: n is the numeric argument on which TECO bases its
decision to execute a command string. The quotation mark (.) is the
first character of all conditional execution commands. Immediately
following the quotation mark is a character which must be one of those
listed in Table 4-14: Terminate this command string with an
apostrophe (I).

If n satisfies the condition, TEeo executes all the commands in the
usual manner until the apostrophe. If there is no branch command
within the range •••• ', then after TEeo executes the last command in
the range, command execution falls through the apostrophe, and
execution begins with the next command following it. If n does not
satisfy the condition, then TEeD skips all the commands before the
apostrophe, and command execution continues with the first command
following the apostrophe.

Use the quotation mark and apostrophe only in matching pairs. You may
nest them in the same manner that parentheses surrounding arithmetic
expressions can be nested.

As TECD scans for the matching single quote, it keeps an iteration
count for each level of nested iteration which it finds. TECD then
ignores any single quotes which occur at a nesting level greater than
o.

NOTE

All conditionals must end at the same
macro level in which they begin.

The conditional execution commands are in Table 4-14.

4-73

Command

Examples:

TECO COMMANDS

Table 4-14
Conditional Execution Commands

Function

Execute the commands that follow if n is an ASCII
character (A-Z, a-z, 0-9).

Execute the commands that follow if n=O.

Execute the commands that follow if n represents a
false (flag is off) (i.e., if n=O) •

Execute the commands that follow if n>O.

Execute the commands that follow if n(O.

Execute the commands that follow if not = O.

Execute the commands that follow if n is the ASCII
code for an alphanumeric character (A-Z, a-z, 0-9).

Execute the commands that follow if n represents
success (i. e., if n < 0) •

Execute the commands that follow if n represents
true (flag is on) (i.e., if n(O).

Execute the commands that follow if n represents
unsuccessful (i.e., if n=O).

Execute the commands that follow if n(O.
n"G.

Execute the commands that follow if n>O.
n·L.

Same as

Same as

*!START!J(TAB)PDP-8 TEea
$!INSERT PAGE HEADING!

!CHANGE 5K TO 6K!
!CHANGE WAR TO LOVE!
!GET NEXT PAGE AND!
!RESTART IF NOT NULL!

<S 5K$;R-D16$>
<SWAR$;-3DILOVE$)
PZ-NOSTART$
'EF$$

This small editing program also contains an example of the 0
unconditional branching command, that is, the OSTART$ command which
causes a jump back to !START!. String tags are also used purely for
documentation: for example, lINSERT PAGE HEADING!.

This example also shows how a conditional execution command may be
combined with an 0 command to produce a conditional branch.

1. After TECO performs all three of the editing functions on the
page, it executes the P command to write this page and read
in the next.

2. The program then tests Z (the number of characters in the
buffer) to determine if any data was read in.

4-74

TECO COMMANDS

3. If Z does not equal 0, data was read in; therefore, a branch
is taken to restart the program.

4. When Z-O, the command OSTART$ is skipped, and execution
branches to the concluding EF command.

This technique fails when a file contains null pages (consecutive form
feed characters). The -N end-of-file test may be preferred.

~YZ·N!tt! Z-4000+1-G4000j
OL 121$ O,.PO,.K ott$ 'ZJ
A .-Z·NOtt$, 'PEF$$
~

This slightly more complex command string shows how conditional
execution commands may be nested. If the first Y command produces no
data. the "N command sends execution to the matchinq apostrophe on the
right. This is the last apostrophe, immediately prior to the PEF.
Otherwise, TECO executes the commands following the nNe

The function of this command string is to convert a file with pages of
arbitrary length to one with pages of approximately 4000 characters
each.

The command string operates as follows:

1. Z-4000+l"G means if Z>4000 (that is, there are at least 4000
characters on the current page), execute the following
commands; otherwise, skip to the matching apostrophe
(between $ and Z).

2. If Z>4000, 4000J and OL moves the pointer to the end of the
last complete line before the 4000th character in the buffer.

3. Then, 121$ and O,.P outputs this much of the buffer with a
form feed character after it, and O,.K deletes that which has
been output.

4. Now, go back to 1"1 and test Z again. Stay in this loop
until Z<4000.

5. Execution then skips to the apostrophe. ZJ moves the pointer
to the end of the current buffer.

6. A appends another page., but leaves the pointer (.) at the
end of the previous page.

7. .-Z"N checks to determine if any data was actually read in.
If so, the loop is re-entered at I"!; otherwise, the end of
the file has been reached.

8. When .-Z=O, execution skips to the matching apostrophe and
then falls through the next apostrophe to the PEF that closes
the output file.

NOTE

Y<lST!-N; Z-4000"L AOST$ '4000J OL 121$
O,.P O,.R> EC$$

*<NSIN$;:SCOS$·S-3DITAN$'ZJ)$$

4-75

TECO COMMANDS

This example shows how the value returned by a colon search can be
used as the argument for a conditional execution command.

1. The N command searches through the file for the first
occurrence of SIN on any page.

2. When SIN is found, the command :SCOS$ checks for an
occurrence of COS following SIN on the same page5

3. The colon search command returns the value -1 if the search
is successful, and 0 if there is no COS following SIN on the
page.

4. This value is then used as the numeric argument for the "S
command.

5. If :SCOS$ has a value of -1, TAN replaces the occurrence of
COS that was found.

6. If :SCOS$ has a value of 0, the commands -3DITAN$ are
skipped.

7. We then jump to the end of this page, ignoring all further
occurrences of SIN and COS on it, and continue the iteration
process.

4-76

4.61 'COMMAND

Change the number stored in a Q-register by n.

FORMAT: n%q

where:

n is a number

q is a Q-register designatoro

The command n%q adds n to the integer in Q-register g and then returns
the new value in the same manner as a Qq command. If you omit n, 1 is
assumed (that is, l%q). Note that this command returns a value as
well as incrementing the stored value.

If you wish to increment the value in the Q-register but do not want
the returned value to be used as an argument for the next command,
type an ESCAPE after the n%q command (that is, n%q$).

4-77

TECO COMMANDS

4.62 • POSITION INDICATOR

Return a number equal to the number of characters preceding the buffer
pointer in the editing buffer.

FORMAT:

A period (.) equals the number of characters, that is, the number of
characters from the beginning of the buffer to the present buffer
pointer position, to the left of the current position of the buffer
pointer, and hence represents the buffer pointer position itself.

You can use the period in arithmetic expressions.

4-78

TECO COMMANDS

4.63 MODIFIER

1. Return a value if a search fails.

FORMAT: :nStext$
:n@S/text/

where:

S represents any search command

/ is an arbitrary delimiter which is not one of the
characters in "text."

2. Do not output a carriage return after typing out a number.

FORMAT: :=
:=

3 Cause a Gq command to type-out its contents without inserting
the contents into buffer.

FORMAT: 3:Gq

where:

q is a Q-register designator.

4.63.1 : S Modifier

Use the colon modifier to alter the execution of a search command in
the event a search fails. Normally, a search that fails causes TECO
to print an error message; if you use the colon modifier, however, no
error message is printed. Instead, every colon search returns a
numeric value that TECO can print out, store in a Q-register, or test
by a conditional branch.

A colon search command returns the value -1 if the search is
successful, and the value 0 if the search fails.

The general form of a colon search command is the same for S, FS, N,
and FN searches:

*nSstring$

The colon precedes the search command letter and its numeric argument,
if any. Both the colon and @ modifier may be used on a search command
in either order.

Just as the Z command takes on a value that may be used as a numeric
argument, so also the command :Sstring$ takes on a value of 0 or -1
after TECO executes the search. If this is the last command in a
command string, or if the command following it does not take a numeric
argument, the value returned by the colon is discarded. Consequently,
a command that takes a numeric argument should follow a colon search.

The colon search commands reposition the buffer pointer in the same
manner as other search commands, regardless of whether the returned
value is used.

4-79

TECO COMMANDS

The primary use of the colon search is in programmed editing. The
command is usually followed by a conditional command.

4.63.2 : Numerical Type-out Modifier

See the = and == discussion for information on how
type-out commands.

4.63.3 Q-register Type-out Command

See the G command for information.

4-80

modifies numeric

4.64

TECO COMMANDS

COMMAND

1. If an argument is positive or zero, ju'mp out of current
iteration field.

FORMAT: n;

where:

n is a number, either explicit or returned.

2. If the current search failed, jump out of current iteration
field.

FORMAT:

You can terminate repetition of a command string loop before the
iteration count is satisfied by using the conditional iteration exit
command, semicolon (;). You can use the; command only within angle
brackets. You may use it with or without a numeric argument.

When you use a semicolon without a numeric argument, it evaluates the
outcome of the last search (of any kind) that was executed before TEeo
encountered the semicolon. If this search was successful, command
execution continues within the loop, as if no semicolon were present.
If, however, the most recent search failed, the; command causes all
those commands that follow the semicolon in the loop to be skipped
over, and command execution passes to the first command following the
right angle bracket, which closes the innermost loop containing the
semicolon.

NOTE

Within a command loop, all searches are
colon searches. They do not generate
error messages when a failure occurs;
instead, they return a value of -1 if
successful and 0 if unsuccessful.

TECO executes all unmodified search
commands entered within command loops as
though they were preceded by a colon and
followed by a semicolon.

The semicolon command is most often used with a numeric argument.
TECO ignores the command n; if n<O. However, if n>O, the command n;
causes command execution to exit from the loop, just as a command
exits from the loop when a search fails.

4-81

TECO COMMANDS

4.65 < ••• > COMMAND

Continue executing the command string until conditions are met.

FORMAT: n< ••• >

where:

n is a positive number. If n is omitted, the
command is executed an infinite number of times
or until an exit condition occurs within the
loop.

You can cause a group of commands to be iterated (repeatedly executed)
any number of times by placing the commands within angle brackets.
The left angle bracket marks the beginning of a command string loop
and the right angle bracket marks the end of the loop.

These command string loops can be nested in the same manner that
arithmetic expressions are nested within parentheses. Loops should be
nested to no more than approximately ten levels; otherwise, a
pushdown list overflow may occur.

You may use a numeric argument to type the number of times a given
loop is executed. The argument is placed before the left angle
bracket in the form n< ••• >. This causes the group of commands within
the brackets to be iterated n times. In a command of the form < ••• >,
if the argument is less than or- equal to zero, Teco skips the commands
within the angle brackets. If no argument is given, the number of
iterations is assumed to be infinite.

You should use only the; and 0 commands to exit from a loop. The
flow control commands (B) should not be used.

Example:

*J8«TAR>$L>$$

*J<OLIJAN$
FS1969$1970$;)­
HT$$
JAN REPORT
I1EPT:
JAN 1970 SALES

WHOLESALE
RETAIL

JAN 1970 EXPENSES
OVERHEAII
AIIVERTISING

This commmand string inserts a tab
at the beginning of the first eight
lines in the buffer and leaves the
pointer positioned at the beginning
of the ninth line. The J command
starts the pointer off at the
beginning of the first line. The
first command in the loop, <TAB>$,
inserts a tab. Then the L command
moves the pointer to the next line
to prepare for the next iteration
of the loop.

This command string inserts JAN at
the beginning of the first line in
the buffer and at the beginning of
each line that contains 1970. It
also changes the 69 in every
occurrence of 1969 to 1970. The
action is similar to the way in
which the J command starts the
operation at the beginning of the
buffer. The first execution of the
OL does nothing. IJAN$ then

4-82

JAN 1970 RETURNS
JAN 1970 "'~I' .r- ,.. P'.V

.I.I"CVC.I"CIUn:T

TECO COMMANDS

inserts JAN at the beginning of the
first line e Now a search is made
for 1969. When it is found,
FS1969$1970$ changes 1969 to 1970.
This completes the first iteration;
execution loops the first iteration
and then loops back to the <. OL
moves the pointer to the beginning
of the line where the 1969 was
found. Here JAN is inserted and a
search is begun for the next 1969.
This continues until the search
command fails to find another 1969.
When the search fails, the pointer
is moved to the beginning of the
buffer. HT is the next command
which is executed. (This macro
assumes that no line contains more
than one 1969.)

~EBfilespec$50000<~hp>ex$$ This removes all form feeds from a
file.

-.!<FSREAD$WRITE$;>$$

..!.<@FN/ERRORII;>$$

This command causes a search of the
current page for all occurrences of
the string READ and replacement of
them with the string WRITE.

This command causes TECO to search
all of the following pages for the
string ERROR and delete every
occurrence of it. The @
construction must be used in this
case because it allows you to
specify a delimiter other than $.
The delimiter must be specified
twice after the string: the first
to delimit the string and the
second to indicate that a
replacement string is not present.
If $ were used as the delimiter. a
double $ would be present causing
an erroneous termination of the
command string.

4-83

TECO COMMANDS

4.66 - NUMERICAL TYPE-OUT COMMAND

Type out a number in decimal or octal (with or without a following
carriage return).

FORMAT: =
:=
==
:==

where a single =
in octal, and
after typing.

means type out in decimal, a double = means type out
the modifier means do not type a carriage return

Table 4-15 outlines these commands.

Command

n=

n:=

n==

n:==

Examples:

...!VZ==$$
2529

*IOA==$$
40

Table 4-15
= Commands

Function

Type the value of n in decimal followed by a
carriage return/line feed.

Same as n= except the carriage return/line feed is
suppressed.

Type the value of n as an unsigned octal number
followed by a carriage return/line feed.

Same as n== except the carriage return/line feed is
suppressed.

This reads in a page and then types out the
(decimal) number of characters in the page.

This types the octal representation of the
next character in the buffer.

*VNCHAF'TER $=$$
16

This command searches for the next chapter
heading and then types out the number of the
chapter. The buffer pointer points to the
location immediately following the 6.

4-84

TECO COMMANDS

4.67 ? COMMAND

15 Trace the execution of a TECO command string.

FORMAT: ?

where:

? is inserted into the command string.

2. If an error occurs, type out the commands executed in the
command string.

FORMAT: ?

where:

? must be the first character typed after the
prompting asterisk.

4.67.1 ? Trace Command

The use of a question mark causes TECO to enter trace mode. In trace
mode, TECO types out each command as it is executed. A second
question mark takes TECO out of trace mode.

The? command traces only the commands that TECO executes; that is,
if a branching command causes a command to be skipped over, TECO does
not print it.

Example:

*JHT?
!L!lA-9-N

!M!lA-5B-NCOM$
~CD<TAB>$

~LOL$$

AB: LINE 1
LINE 2

C: LINE 3
LINE 4

!L!lA-9-N!M!lA-5S-NCOM$lA-5S-NCO!M!lA-5S
-NCD $'LOL$lA-9-NLO!L!lA-9-N!M!lA-5S-
NCO!M!lA-5S-NCD $'LO!L!lA-9-NLO!L!lA-9!M
l1A-5S-NC?F'OF'

.!,J?HT$$
J?

AS: LINE 1
LINE 2

LINE 3
LINE 4

After the first? command, TECO begins typing out
each command as it is executed. This enables you
to see exactly what the command string is doing.
The attempt to move the pointer beyond the end of
the fourth (and last) line with the C command
causes the ?PDP error message.

The second question mark command turns off the
trace feature so that the HT following it is not
printed.

4-85

TECO COMMANDS

4.67.2 ? Error Command

In some cases, you may not be able to determine immediately which
command in the string caused an error. This could occur, for example,
if the command string had several commands of the same type. In such
a case, use the question mark command to obtain more information. The
question mark command, when you type it immediately and only
immediately after an error message type-out, causes TECO to type
out the entire command string up to and including the bad command.

NOTE

When you use this form of the ?
command, it is not necessary to type an
ESCAPE or any other delimiting character
following the question mark.

TECO always types a second question mark after the last character of
the group. The character at which the error was detected is the last
character before the question mark.

4-86

TECO COMMANDS

4.68 @ TEXT DELIMITER MODIFIER

Modifies the next command which takes a text argument to use the
delimiter form.

FORMAT: @x/text/

where:

x

/

is a command that takes a text argument (see Table
4-16)

is an arbitrary delimiter which is not one of the
characters in "text. n

Use an @ modifier to alter the method by which TECO reads a command's
text. The aeneral form and the commands for which the @ modifier is
applIcable ar~ listed in Table 4-16.

Table 4-16
@ Commands

@nS/text/ Search page
@nN/text/ Search file
@n /text/ Search file
@nFS/textl/text2/~ Search page and replace
@nFS/textl// Search page and delete
@nFN/textl/text2/ Search file and replace
@nFN/textl// Search file and delete
@I/text/ Insert text
n@I// Insert character
@EB/filespec/ Edit backup
@EG// Exit and execute last
@EG/text/ Exit and execute text
@ER/filespec/ Edit read
@EW/filespec/ Edit write
@"Uq/text/ Insert text in Q-register

Place the @ modifier before the command and before a numeric argument.
When you use the @ modifier, the text string is delimited not by the
command and an ESCAPE but by the first character you type after the
command and the next recurrence of this command. In the above
examples, the delimiting character is a slash. The delimiting
character may be any character except a character that appears in the
text itself.

Using the @ modifier, you may enter single (but not double) ESCAPEs
into a text string.

Use the @ modifier in the above commands to separate the strings with
a delimiting character other than an ESCAPE. This is useful in cases
where a double ESCAPE cannot terminate the command. For example, if
you are searching for a string, then deleting it without replacement,
you would ordinarily type a double <ESCAPE> after an FS or FN command.
However, if this were within a command string, the command would be
terminated at this point unless you used an @ modifier.

4-87

TECO COMMANDS

4.69 \ COMMAND

1. Returns the numbers following the buffer pointer.

FORMAT: \

2. Insert a character numeric string into the buffer.

FORMAT: n\

where:

n is the number to be inserted.

4.69.1 \ Command

The \ command (without a numeric argument) is equivalent to the value
of the digit string (optionally preceded by a + or - sign) immediately
following the current position of the buffer pointer. The value is
terminated by the first alphabetic character that TECO encounters. If
there is no digit, TECO types a O.

TECD interprets the digit string in the current radix.

Example:

*VNCHAPTER $\=$$
16

This command searches for the next chapter
heading and then types out the number of the
chapter. The buffer pointer is positioned
immediately following the 6 after this
command has been executed.

4.69.2 n\ Insertion Command

Use the n\ command to insert the ASCII representation of a number n
into the buffer. TECD inserts the number in the current radix. For
example, 349 inserts the ASCII characters 3, 4, and 9 into the buffer
immediately preceding the pointer. Note that n does not have to be a
number typed in by the user. It can be a value which some other TECD
command returns.

4-88

TECO COMMANDS

4.70 AAX COMMAND

Return the ASCII value of a character.

where:

x is an ASCII character.

The command, when followed by an arbitrary character x, is
equivalent to the ASCII value of that character. For example, ln the
command AAA, the character A is an argument for AAA and TECO does not
interpret it as a command.

Example:

~~~HUO$$ This command stores the ASCII value of the letter 
M (77) into Q-register O. 

4-89 



TECO COMMANDS 

4.71 COMMAND 

Search for a character string and discard all pages before the string 
is found. 

FORMAT: n textS 
n@_/text/ 

where: 

n 

/ 

indicates what occurrence of the string is to be found 

is an arbitrary delimiter which is not one of the 
characters in "text." 

The backarrow command is identical to the N command except that a 
search generates no output. Generally, where the N command executes a 
P, the executes a Y. You use the search for examination functions 
and for-discarding parts of a file. 

You can also use the command with a single numeric argument. The 
command n causes a search for the nth occurrence of the search 
string. When you omit n, TECO assumes n=l. n must always be greater 
than O. 

"text" may not be longer than 31 ASCII characters. 

"text" may include the match control characters: 

No match on character "a" 
Use following command as match character 
Match on separator 
Exempt position from match 

The command may use a: modifier. 

Example: 

You can use this command to determine if the 
string VERSION88 occurs in the input file 
five times. If it does, the pointer is 
positioned immediately after the fifth' 
occurrence, and everything in the input file 
preceding the page on which the fifth 
occurrence is located is discarded. If it 
does not, the entire file is discarded. 

4-90 



APPENDIX A 

OCTAL & DECIMAL ASCII CHARACTER SET 

ICHAR OCT Q!£I ICHAR OCT DECI ICHAR OCT DEC IICHAR OCT DEC I 

I 
NUL 000 0001 SP 040 032

1 I 
@ 100 064 I 140 096 

AA 001 001 ! 041 033 a 101 065 a 141 097 
AB 002 002 n 042 034. I B 102 066 b 142 098 
AC 003 003 i 043 035 

I 
C 103 067 c 144 099 

AD 004 004 $ 044 036 D 104 068 d 144 100 
AE 005 005 % 045 037 -E 105 069 e 145 101 
AF 006 006 & 046 038 F 106 070 f 146 102 
AG 007 007 047 039 G 107 071 9 147 103 
AH 010 008 ( 050 040 H 110 072 h 150 104 
TAB 011 009 ) 051 041 I III 073 i 151 105 
LF 012 010 * 052 042 J 112 074 j 152 106 
VT 013 011' + 053 043 K 113 075 k 153 107' 
FF 014 012 054 044 L 114 076 1 154 108 
CR 015 013 055 045 M 115 077 m 155 109 
AN 016 014 . 056 046 N 116 078 n 156 110 
AO 017 015, / 057 047 a -117 079 0 157 Ill, Ap 020 016 0 060 048 P 120 080 P 160 112 
AQ 021 017 1 061 049 Q 121 081 q 161 113 
"R 022 018 2 062 050 R 122 082 r 162 114 
.. s 023 019 3 063 051 S 123 083 s 163 115 
"T 024 020 4 064 052 T 124 084 t 164 116 
AU 025 021 5 065 053 U 125 085 u 165 1171 AV 026 022 6 066 054 V 126 086 v 166 118 
-W 027 023 7 067 055 W 127 087

1 

w 167 119 
"X 030 024 8 070 056 X 130 088 x 170 120 
"y 031 025 9 071 057 Y 131 089 y 171 121 AZ 032 026 072 058 Z 132 090 z 172 122 
ALT 033 027 ; 073 059 [ 133 091 173 123 
FS 034 028 < 074 060 \ 134 092 174 124 
GS 035 029 = 075 061 ! 135 093 175 125 
RS 036 030 -> 076 062 136 094 176 126 
US 037 031 ? 077 063 137 095 DEL 177 127 

A-l 





I 

Ab:~!~i~~ionl 
?ARG 

?BNI 

?CCL 

?FER 

?FUL 

?IEC 

?IFC 

APPENDIX B 

TECO ERROR MESSAGES 

Printout 
Message 

IMPROPER ARGUMENTS 

NOT AN ITERATION 

CCL.SV NOT FOUND OR EG 
ARGUMENT TOO BIG 

FILE ERROR 

OUTPUT COMMAND WOULD HAVE 

ILLEGAL CHARACTER X* AFTER E 

ILLEGAL CHARACTER X* AFTER F 

B-1 

Meaning I 

Number missing I 
before comma, or I 
two arguments 
specified to 0, or 
three numeric 
arguments 

Iteration close (» 
without matching 
open «) 

CCL not found or 
EG argument too 
long 

FILE 
mean: 

ERROR can 

1) input file not 
found on "ER" 
command 

2) cannot enter 
output file on "EW" 
or "EB" command 

3) device specified 
for file does not 
exist 

4) "ES" command 
given on non-file 
structured device 

Output command 
would have 
overflowed output 
file (panic mode) 

E followed by an 
illegal character 

F followed by an 
illegal character 



Printout 
Abbreviation 

?IFN 

?ILL 

?INP 

?IQC 

?IQN 

?MEM 

?NAC 

?NAE 

?NAP 

?NAQ 

TECO ERROR MESSAGES 

Printout 
Message 

ILLEGAL CHARACTER X*** IN FILE 
NAME 

ILLEGAL COMMAND X* 

INPUT ERROR 

ILLEGAL CHARACTER X* 
AFTER "n 

ILLEGAL Q REGISTER NAME X** 

STORAGE CAPACITY EXCEEDED 

NEGATIVE ARGUMENT TO, 

NO ARGUMENT BEFORE = 

NEGATIVE OR ZERO ARGUMENT 
TO P 

NO ARGUMENT BEFORE QUOTE 

?NAS NEGATIVE OR ZERO ARGUMENT 
TO S 

?NAU NO ARGUMENT BEFORE U 

?NAY NUMERIC ARGUMENT TO Y 

?NFO 

?NYI 

?NYI 

?OUT 

VERSION NUMBER TO FILE FOR 
OUTPUT 

CASE SUPPORT NOT IMPLEMENTED 

CASE SUPPORT NOT IMPLEMENTED 

OUTPUT ERROR 

B-2 

Meaning 

Illegal file name 
in "ER", "EW" or 
command 

Illegal command 

Parity error on 
input file 

" followed by an 
illegal command 

Non-alphanumeric 
Q-register name 

Text 
overflow 

buffer 

Negative argument 
to comma 

No numeric 
argument to the 
left of an equal 
sign 

Negative or zero 
argument to P 

No numeric 
argument to the 
left of a quote 

Negative or zero 
argument with a 
search 

No numeric 
argument to the 
left of a U 

Numeric argument 
specified with Y 
command 

Attempt to output 
without opening 
an output file 

Case support not 
implemented (use 
EO for version) 

Case support 
implemented 
W for watch) 

not 
(use 

Output file too 
big or output 
parity error 

I 
I 
I 

I 
I 



Printout 
Abbreviation 

?PDO 

?POP 

?QMO 

?SNI 

?SRH 

?STL 

?UTC 

?UTM 

?WLO 

?XAB 

?YCA 

TEeo ERROR MESSAGES 

Printout 
Message 

INTERNAL PUSHDOWN OVERFLOW 
I 

I 
I 
I 

ATTEMPT TO MOVE POINTER OFF 

I PAGE 

I Q REGISTER MEMORY OVERFLOW 

NOT IN AN ITERATION 

I SEARCH Fill LED 

SEARCH STRING TOO LONG 

UNTERMINATED COMMAND 

UNTERMINATED MACRO 

CANNOT WRITE OUT ERROR MESSAGE 
OVERLAY 

Y COMMAND ABORTED 

8-3 

Meaning 

Pushdown overflow 
(macros and 
iterations nested 
too deeply) 

Attempt to move 
pointer outside 
of text buffer 

Q-register 
storage overflow 

Semicolon on 
command level 

Failing search at 
command level 

Search string too 
large (greater 
than 31 
characters) 

Incomplete 
command (POL not 
empty at end of 
command string) 

Incomplete 
command (PDI not 
empty at end of 
macro) 

Write locked 
system device 

Execution aborted 

Y (or.) command 
aborted because 
data would be 
lost 





Command 

ERdev:filnam.exS 
EWdev:filnam.ex$ 
EBdev:filnam.exS 
y 
'A 

APPENDIX C 

TECO COMMAND SUMMARY 

Function 

Input file selection. 
Output file selection. 
I/O file selection with backup protection. 
Clear buffer and read one page of input file. 
Read one page of input file and append to current 
buffer content. 

BUFFER POINTER POSITIONS 
B Before first character. 

Current pointer position (number of characters to 
left of pointer). 

Z After last character (number of characters in 
buffer). 

m,n From m+lth character through and including nth 
character. 

H Entire buffer; equivalent to B,Z. 

ARITHMETIC OPERATORS 
-n Negation. 
m+n Addition. 
m-n 
m*n 
min 
m&n 
mtn 
( ) 

POINTER POSITIONS 
nJ 
nC 
nR 
nL 

TYPE-OUT COMMANDS 
nT 

m,nT 

n= 
"Atext"A 
"0 

Subtraction. 
Multiplication. 
Divide and truncate. 
Bitwise logical AND. 
Bitwise logical OR. 
Perform enclosed operations first. 

position pointer between nth and n+lth characters. 
Move pointer forward across n characters. 
Move pointer backward across n characters. 
Position pointer at beginning of nth line following 
current position. 

Type buffer content from pointer position to 
beginning of nth following line. 
Type m+lth character through and including nth 
character. 
Type the integer equivalent of expression n. 
Type the enclosed text. 
Inhibit typeout. 

C-l 



Command 

DELETION COMMANDS 
nO 
-nO 
nK 
m,nK 

INSERTION COMMANDS 
Itext$ 
<I>text$ 

nI 
@I/text/ 

n\ 

OUTPUT AND EXIT 
PW 
P 

m,nP 

EC 

SEARCH COMMANDS 
nStext$ 

nNtext$ 

n textS 

nFNtextl $text2$ 
:nStext$ 

n@S/text/$ 

FS 

FN 

TECO COMMAND SUMMARY 

Function 

Delete the n characters following the pointer. 
Delete the n characters preceding the pointer. 
Delete the n lines following the pointer. 
Delete the m+lth character through and including 
the nth character. 

Insert text delimited by I and ALT MODE. 
Insert tabulation, then text. <I> is a 
(control-I) character. 
Insert character whose ASCII code is n. 
Insert text delimited by arbitrary character 
as a slash. 
Insert the ASCII code for integer n. 

Write current page and append form feed. 

TAB 

shown 

Write current page, append form feed, clear buffer, 
and read next page. 
Write m+lth through nth characters without 
appending a form feed. 
Close the current output file. 
Close the current output file and exit to the OS/8 
monitor. 
Immediate exit to the OS/8 monitor. 
Exit to the monitor and do a START 200. 
Write the rest of the input file on the output file 
and exit to the monitor. 
Write the remainder of the input file on the output 
file and close the file. 

Begin at the pointer and search for the nth 
occurrence of the text delimited by the S and the 
ALT MODE on the current page. 
Equivalent to nStext$ except that the search is 
continued across page boundaries. 
Equivalent to nNtext$ except that no output is 
generated. 
Do nNtextl$ and then replace textl with text2. 
Equivalent to nStext$ except that it returns a 
value of -1. If the search succeeds, or 0, if the 
search fails. The colon may be used with Nand 

searches. 
Equivalent to nStext$ except that the text is 
delimited by the arbitrary character following the 
S, instead of ALT MODE. 
Accept any character in this position. 
Accept any separator in this position. Save last 
typed command. 
Accept any character except the following character 
in this position. 
Interpret the next character literally, rather than 
as a command. 
Search for a character string in the current buffer 
and replace with another string. 
Search for a character string in a page other than 
the current buffer and replace with another string. 

C-? 



TEeo COMMAND SUMMARY 

Command Function 

ITERATION AND FLOW CONTROL 
n< > 
n; 

!tag! 
Otag$ 
niiE 

n"N 
n"L 

n"G 

n"C 

n-m"A 

n-m"B 

Q-REGISTER COMMANDS 

Perform enclosed commands n times. 
If n is positive, jump out of the current iteration 
field. 
Define a position named "tag" at this location. 
Jump to the position defined by "tag." 
If n=O, execute the following command string. 
If n=O, execute the following command string. 
If n is less than zero, execute the following 
command string. 
If n is greater than zero, execute the following 
command string. 
If n is the ASCII code for an alphanumeric 
character, execute the following commands. 
If n is greater than or equal to m, execute the 
following commands. 
If n is less than m, execute the following 
commands. 

nUq Store n in Q-register q. 
Qq Equivalent to the value stored in Q-register q. 
n%I Add n to the content of Q-register q and return 

"'uqtext$ 
nXq 
m,nXq 

Gq 
Mq 

NUMERIC VALUES 
nA 
"'E 
"'F 
"'H 
...... X 
"'z 
"'0 
"'0 

\ 

"'V 

PROGRAMMING AIDS 
? 

? 

this value. 
Insert text into Q-register q. 
Load the n following lines into Q-register q. 
Load the m+lth character through the nth character 
into Q-register q. 
Insert the content of Q-register q into the buffer. 
Execute the content of Q-register q as a command 
string. 
Insert the specified string into the text storage 
area of the Q-register 

ASCII value of nth character following pointer. 
Form feed flag. 
Console data switches~ 
Always equals zero • 
Equivalent to the ASCII code for character "X." 
Command and Q-register storage words in use. 
Set octal radix. 
Set decimal radix. 
Equivalent to the value of the digit string 
following the pointer. 
Equivalent to the ASCII code for the next character 
typed. 
Equivalent to the number of the version of TECO 
being run. 

After an error message, identifies erroneous 
character. 
Except after an error message, toggles in and out 
of trace mode. 
Erases current command string. 

C-3 





A (append) command, 4-2 
Alphabetizing, 3-14 
Arithmetic operators, 2-9 
Asterisk usage, 3-1 
At sign (@) modifier, 4-87 

B position indicator, 4-5 
Backslash (\) insertion command, 

4-88 
Branching commands, 3-9 
Buffer pointer manipulation 

commands, 3-6 

C pointer, 4-6 
Calling TECO, 3-1 to 3-3 
Carriage control, 2-5 
Case control, 4-24 
Character set, 2-3 
Colon (:), 

modifier, 4-79 
search command, 4-81 

Command loops, 3-8 
Conditional execution commands, 

3-9 
CTRL/A type-out command, 4-4 
CTRL/C exit command, 4-7 
CTRL/N search command, 4-47 
CTRL/O inhibit type-out command, 

4-49 
CTRL/Q command, 4-55 
CTRL/S search command, 4-58 
CTRL/U command, 4-64 
CTRL/X search command, 4-69 

D (deletion) command, 4-8 
Deleting TECO commands, 3-10 
Deletion commands, 3-7 
Dot (.) buffer pointer, 3-6 

EC output command, 4-14 
EF output command, 4-15 
EG exit and go command, 4-16 
EH edit and help command, 4-18 
EK exit kill command, 4-19 
EO version command, 4-20 
ER input file selection command, 

4-21 
ESCape command, 4-22 

INDEX 

ET edit terminal command, 4-23 
EU edit upper/lower command, 4-24 
EW output file selection cO~~4nd, 

4-25 
EX output and exit command, 4-26 
Exclamation point (!), 4-72 
Exit TECO, 3-7 

File closing commands, 3-7 
File specification commands, 3-5 
FN search command, 4-28 

G (get) command, 4-32 

H position indicator, 4-35 

I (insertion) command, 4-36 
Input files, 2-2 
Insertion . commands , 3-7 
Iteration commands, 3-8 

J (jump) command, 4-39 

K deletion command, 4-40 

L (line) command, 4-42 
Line of text, 2-5 
Logical operators, 2-9 
Looping commands, 3-8 

M (macro) command, 4-43 
Macro library management, 3-14 to 

3-15 
Match control characters, 4-55, 

4-58 

N search command, 4-45 
Nesting loop commands, 4-83 
Numeric arguments, 2-8 

Index-l 



INDEX (Cont.) 

o flow control command, 4-48 
Operators, 2-9 
OUtput commands, 3-7 
Output files, 2-2 

P (page) command, 4-50 
Page of text, 2-5 
Percent sign (%) Q-register 

command, 4-77 
PW page command, 4-52 

Q (Q-register) command, 4-54 
Q registers, 3-9 
Quotation marks en) flow control 

commands, 4-73 

R (reverse) command, 4-56 
Retrieving lost files, 2-10 

S (search) command, 4-57 
Search commands, 3-7 
Super TEeO, 2-10 

T (type out) command, 4-59 
TAB insertion command, 4-62 
Text type-out commands, 3-6 

U command, 4-63 

X command, 4-67 

Y (yank) command, 4-70 

Z position indicator, 4-71 

Index-2 



. 
~ 
c 

m c 
o 
o 

OS/8 
TECO Reference Manual 
AA-H608A-TA 

NOTE: This form is for document co~~ents only. DIGITAL will 
use comments submitted on this form at the company!s 
discretion. If you require a ~~itten reply and are 
eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR 
form. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestion~ for improvement • 

Did you find errors in this manual? If so, specify the error and the 
page number. 

Please indicate the type of reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 
[] Other (please specifyl ____________________________________ __ 

Name Date ______________________ __ 

Organization ______________________________________________________________ ___ 

Street ______________________________________________________________________ __ 

City ___________________________ State _____________ Zip Code ____________ _ 

or 
Country 



- - Do Not Tear - Fold Here and Tape 

~DmDDmD IIIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45 

DIGITAL EQUIPMENT CORPORATION 

146 MAIN STREET 

MAYNARD, MASSACHUSETTS 01754 

No Postage 
Necessary 

if Mailed in the 
United States 

. - - Do Not Tear - Fold Here - - - - - - - - - - - - - - - - - - - - - -

~ 

.5 

....J 
"0 
~ .... 
o 

Q 
co c o 

:;;: -= u 


	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	4-82
	4-83
	4-84
	4-85
	4-86
	4-87
	4-88
	4-89
	4-90
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	Index-1
	Index-2
	replyA
	replyB

