
,~D~DDmD 08/8
Device Extensions

User's Guide
Order No. AA-D319A-TA

ABSTRACT

OS/8
Device Extensions

User's Guide
Order No. AA-D319A-TA

This document describes the software support for the KT8A
Memory Management Option and the RX02 and RL01 devices.

SUPERSESSION/UPDATE INFORMATION: This manual is an update of sections of the
05/8 Handbook (DEC-S8-0SHBA-A-D).

OPERATING SYSTEM AND VERSION: 05/8 V3D

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01764

digital equipment corporation · maynard, massachusetts

First Printing, December 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DtGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI

1.0
1.1
1.2
1.3

1.4
1.5
1.6
1.7
2.0
3.0
3.1

3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.2

3.2.3
3.3
3.4
3.5
4.0
4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.2
5.0
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.5

CONTENTS

INTRODUCTION AND OVERVIEW
Distribution Media
The RESORC Progr~
Changes in BASIC and FORTRAN IV for RL01 and
RX02 Users
System-Wide Changes for Users with the KT8A
Changes in PIP for RL01, RX02, and VXAO
The BOOT.SV Program
Changes in FUTIL

BOOTSTRAP AND BUILD INSTRUCTIONS
THE KT8A MEMORY MANAGEMENT OPTION

128K Monitor and CCL Commands -- SAVE, ODT, and
MEMORY
The SAVE Command
The ODT Command
The CCL Memory Command
128K PAL8
The FIELD Pseudo-Operator
Specifying Data and Instruction Fields -- CDF
and CIF
The ABSLDR
Determining Memory-Size at Run-Time
The VXAO Extended-Memory Device
The SAVECB Program

THE RX02 DUAL-DENSITY DISKETTE
RX02 Device Names
Formatting Diskettes for RX02
RX01 and RX02 Compatibility
Interleaving
Using RXCOPY with RX02
Formatting Diskettes with RXCOPY
RXCOPY Options

THE RL01 DISK
System Description
Disk Format
RL8A Controller Format
Instruction Set
OS/8 Data Space
Converting Block Numbers to Hardware Disk
Addresses
Handler Description
Loading and Bootstrap Procedure
Loading the RL01 Disk Pack
Booting from BOOT.SV
Booting from the Console Switches
ROM Bootstrap Switch Settings
Operating Instructions
Disk Formatting
System Building

iii

Page

1
2
2

3
3
3
4
4
4
6

7
7
8
11
11
12

12
14
14
15
16
17
17
18
18
19
20
21
21
21
22
24
24
26
27

27
29
30
30
31
31
31
31
32
36

APPENDIX A

APPENDIX B

INDEX

FIGURE

TABLE

1
2

1
2
3
4
5
6
7
8
9

10

CONTENTS (Cont.)

RX02 BOOTSTRAP PROGRAM

RLOl BOOTSTRAP PROGRAM

FIGURES

Memory-Size Subroutine
Devices A, B, C on RLOl Disk

TABLES

Device Extensions Modules
RX02 Bootstrap
RLOl Bootstrap
l28K ODT Command Summary
Field Specifications for l28K MEMORY Command
RX01-RX02 Compatibility
OS/8 Single Density Diskette Interleave Scheme
OS/8 Double Density Diskette Interleave Scheme
RLOl Handler Information
RLFRMT Formatter Messages

iv

Page

A-l

B-1

Index-l

15
22

1
4
5
9
11
18
19
20
29
33

1.0 INTRODUCTION ~ND OVERVIEW

The OS/8 V3D Device Extensions support the following new devices under
OS/8.

• The KT8A Memory Management Option (limited support)
• The RLOI Disk and Controller
• The RX02 Double-Density Diskette and Controller

In addition, the Extensions package is a support release for RTS/8 V3
and MACREL/LINK Version 2, both of which can use the extended memory
provided by the KT8A. RTS/8 V3 also supports the RLOI and RX02.

The Extensions package is a superset of some OS/8 modules. It remains
completely compatible with OS/8 V3D and contains the modules listed in
Table 1.

System Programs:

Name

OS8 MONITOR

ABSLDR.SV

PAL8.SV

CCL.SV

PIP.SV

RESORC.SV

BOOT.SV

RXCOPY.SV

FUTIL.SV

Table 1
Device Extensions Modules

New Version Number Comment

3S system head, capable I of
being run from the device,
supports 128K words of
memory

6A

13A

7A

14A

4A

7A

SA

8A

1

loads binary and image code
into fields >7

uses fields >7

ceL MEMORY command
recognizes up to 128K words
available in system

works with RLOl, RX02, VXAO,
and new system head

includes RLOl, RX02,
VXAO

and

includes primary bootstrap
for RLOl, RX02, and VXAO

formats single or
density diskettes,
single density to
density and double
to double density

double
copies
single

density

. recognizes new core control
block format for programs in
extended memory

(continued on next page)

Patches: (to be

Name

BPAT.BN

FPAT.BN

Handlers: (to be

RLSY.BN

Table 1 (Cont.)
Device Upgrade Kit Modules

added with LOAD and SAVE commands)

New Version Number Comment.

Patch for BASIC

Patch for FORTRAN

inserted with BUILD)

IV

RLOl System Handler

RLO.BN RLOI Non-system Handlers

RLI.BN

RL2.BN

RL3.BN

RLC.BN

VXSY.BN VXAO System Handler

RXSYI.BN RXOI System Handler

RXSY2.BN RX02 System Handler

RXNS.BN RXOI-RX02 Non-system Handler

This manual assumes that the user is familiar with the material in the
following documents:

OS/8 Handbook (DEC-S8-0SHBA-A-D)
OS/8 Handbook Update (DEC-S8-0SHBA-A-DN4)
OS/8 Software Support Manual (DEC-S8-0SSMB-A-D)
KT~A Memory Management Control User's Guide (EK-KT08A-UG-OOI)
RL~A Disk Controller Maintenance Manual (EK-RL8A-TM-OOI)

1.1 Distribution Media

The OS/8 Device Extensions are distributed on the following media&

RX02 diskette
RLOI disk
RK05 disk
TD8E DEC tape

1.2 The RESORC Program

The new RESORC program lists the system and non-system handlers for
the RX02 and RLOI devices. In addition, it lists a special
handler -- called VXAO -- that enables you to use the extended memory
provided by the KT8A as though it were a separate device.

RESORC now has an overlay structure, enabling a user who buys the
source program to enter information on user-written handlers.

2

1.3 Changes in BASIC and FORTRAN IV for RLOI and RX02 Users

RLOl and RX02 users must add the following patches to the BASIC and
FORTRAN IV run-time systems so that these programs recognize and
properly allocate space in memory for the second page of the system
handlers.

To patch the BASIC run-time system, enter the following commands.

where

~LOAD SYS:BRTS.SV/I
~LOAD dev:BPAT.BN
~SAVE SYS:BRTS.SV

dev is the distribution device

BPAT.BN is the BASIC patch

To patch the FORTRAN IV run-time system, enter the following commands.

where

~LOAD SYS:FRTS.SV/I
~LOAD dev:FPAT.BN
~ SAVE ~:)Y8: F/:nn. 8'J

dev is the distribution device

FPAT.BN is the FORTRAN IV patch

1.4 System-Wide Changes for Users with the KT8A

KT8A users must ensure that
handlers do not contain
steps.

user-written
the following

/Change instruction field
/Any PDP8 lOT instruction

programs and user-written
combination of instruction

CIF
lOT
JMP I /The instruction that does the CIF

If you enable the KT8A and turn on the interrupts (for example, to run
OS/8 as a background task under RTS8), the KT8A hardware will return
to the wrong place on traps between the CIF and JMP I instructions.

1.5 Changes in PIP for RLOl, RX02, and VXAO

The ne~ version of PIP recognizes the RL01, RX02, and VXAO devices.
PIP sets the proper length for directories on the ZERO command and
determines whether it is dealing with a double-density or
single-density diskette.

PIP also recognizes the new Monitor head. If you attempt to use the Y
option on the old version of PIP to move the new system head, PIP
responds with the error message

BAD SYSTEM HEAD

3

1.6 The BOOT.SV Program

The BOOT.SV program now includes a primary bootstrap for RLOl, RX02,
and VXAO. The format is

or

where

.BOOT dd

• BOOT
/dd

dd is a legal OS/8 device specification, including RL, RX,
or vx.

1.7 Changes in FUTIL

The new version of the OS/8 file utility program FUTIL recognizes the
new Core Control Block format for user-programs in extended memory.
For a complete description of FUTIL, see the OS/8 Handbook Update.

2.0 BOOTSTRAP AND BUILD INSTRUCTIONS

Since the Extensions
bootstrap the RXOl,
system device.

Table 2 and Table
and RLOl device.
the TD8E DEC tape
Handbook.

package includes
RX02, RLOl, or

3 contain the
The bootstraps
are included

the system head, you can
RK05 distribution medium as a

bootstraps for the RX02
for the PJ(05 disk and

in Chapter 1 of the OS/8

The new handlers must be inserted into OS/8 with the BUILD program.
For information on adding handlers to OS/8, see the BUILD chapter in
the OS/8 Handbook.

NOTE

The console instructions in Tables 2 and
3 describe a PDP8-A. For other PDP8
computers, see the OS/8 Handbook.

Table 2
RX02 Bootstrap

1. Press in order the MD and DISP buttons to display memory data
in the octal readout.

2. Press in order 0 and LXA to select memory field O.

3. Press in order 20 and LA to start loading instructions at
location 20.

(continued on next page)

4

Table 2 (Cont.)
RX02 Bootstrap

4. Deposit the following octal values, terminating each value
with D NEXT.

00020 1061
00021 1046
00022 0060
00023 3061

.00024 7327
00025 1061
00026 6751
00027 7301
00030 4053
00031 4053
00032 7004
00033 6755
00034 5054
00035 6754
00036 7450
00037 5020
00040 1061
00041 6751
00042 1061
00043 0046
00044 1032
00045 3060
00046 0360
00047 4U53
00050 3002
00051 205U

. 00052 5047
00053 0000
00054 6753
UU055 5U33
00056 6752
00057 5453
00U60 0420
00061 0020

5. After you have deposited all the values, press 0033 and LA to
start the program at location 33.

6. To start the bootstrap program, press INIT and RUN.

Table 3
RLOI Bootstrap

1. Press in order the MD and DISP buttons to display memory data
in the octal readout.

2. Press, in order, 0 and LXA to select memory field O.

3. Press, in order, 1 and LA to start loading instructions at
address 1.

(continued on next page)

5

Table 3 (Cont.)
RLOI Bootstrap

4. Deposit the octal values given below, following each value
with 0 NEXT.

Address Contents

00001 6600
00002 7201
00003 4027
00004 1004
00005 4027
00006 6615
00007 7002
00010 7012
00011 6615
00012 0025
00013 7004
00014 6603
00015 7325
00016 4027
00017 7332
00020 6605
00021 1026
00022 6607
00023 7327
00024 4027
00025 0377
00026 7600
00027 0000
00030 6604
00031 6601
00032 5031
00033 6617
00034 5427
00035 5001

5. After all values are deposited, press, in order, 0001 and LA
to allow the program to start at location 1.

6. Press, in order, IN IT and RUN to start the bootstrap program.

The complete RX02 and RLOI bootstrap programs are listed in Appendix A
and B.

3 ,.0 THE KT8A MEMORY MANAGEMENT OPTION

The OS/8 V3D Device Extensions provide limited support for the KT8A
Memory Extension and Management Option, which increases the amount of
allowable memory in PDP8 systems from 32K to a maximum of 128K words.

The KT8A supports all available sizes of continuous memory from 32K to
l28K.

System programs, devices, and languages that run in 32K under OS/8
will also operate with the new monitor. In addition, systems with the
KT8A and l28K software support will run user-written programs in
memory fields 0 to 37. OS/8 high-level languages and system programs,
however, do not make use of memory greater than 32K words.

6

This section describes the OS/8 commands and PAL8 instructions that
allow you to run user-written programs in fields 0 through 37. In
addition, it includes a subroutine for finding the amount of memory
available at run-time and describes a program that enables you to
ch~nge the Core Control Block of a program in complex SAVE operations.

This section also notes current software restrictions on the use of
the extended memory.

For a description of the KT8A device, including operating and
programming instructions, see the ~K~T~8~A~~M~e~m_o~r~y~_M~a~n~a~g~e~m~e~n~t~C~0~n~t~r~o~l
User's Guide (EK-KT08A-UG-OOl).

3.1 128K Monitor and CCL Commands -- SAVE, ODT, and MEMORY

The SAVE and ODT monitor commands now support fields 0 to 37. The CCL
MEMORY command finds the highest field available in hardware up to
field 37. MEMORY also limits the available fields in software, but
this feature is currently restricted to 32K.

NOTE

The OS/8 Monitor currently requires that
all user-written programs contain at
least one segment (I-page minimum) below
32K.

3.1.1 The SAVE Command - The SAVE command makes a memory-image file
of the program currently in memory, assigns it a name, and saves it on
a device. You can specify areas in memory that you want to save in
fields from 0 to 37.

The format of the command, including all optional arguments, is

where

SAVE device:file.ex ffnnnn-ffmmmm,ffpppp;ffssss=cccc

ffnnnn

ffmmmm

ffpppp

;ffssss

=cccc

is a 6-digit octal number representing a field from 0
to 37 (ff) and the first address of a continuous
portion of memory you want to save.

is the final address (in the same field) of the section
of memory you want to save.

is a 6-digit octal number representing the field and
address of one location in memory. If you specify a
single address on an even-numbered page in the command,
SAVE writes the entire page on which the location
occurs. If you specify an odd-numbered page, SAVE also
saves the preceding page.

is a 6-digit octal number representing the field and
starting address of the program you are saving.

is a 4-digit octal number representing the contents of
the Job Status Word for the program. (See below.)

7

If you omit the extension on the file name, SAVE appends .SV. If you
omit the other arguments, SAVE finds the locations it requires in the
current Core Control Block. (For a discussion of the Core Control
Block, see the OS/8 Handbook and the OS/8 Software Support Manual.)

The SAVE command places the following restriction on arguments in the
command line.

• You must specify the output device. SAVE does not default to
DSK.

• The first and last location of a segment in memory
(ffnnnn-ffmmmm) that you wish to SAVE must both exist in the
same field. You may not cross field boundaries. In the
following example, both entries specify field 22.

~SAVE SYS:EXAMPL 220055-220643

• When you specify an area on a page, SAVE takes the entire
page. If you call for another part of that page in the same
command line, SAVE sends a BAD ARGS error message to the
terminal informing you that it has already saved the page.

~SAVE RXA1:FLOP 120077-120122, 120146-120177

The first argument writes locations 77 to 122 in field 12 on
to RXAI and calls the file FLOP.SV. The second argument,
which specifies locations on the same page, produces the error
message

BAD ARGS

• Do not SAVE locations 7600-7777 in fields 0, 1, and 2. The
resident Monitor code resides in these areas of memory. To
avoid accidently destroying a portion of the Monitor, restrict
SAVE operations involving 7600 to fields above 2.

• If you specify an address on an odd-numbered page,
save it only if it also saves the preceding page.
does this automatically.

SAVE can
The system

If you wish to specify more locations in a SAVE command than you can
fit in a single command line, use the SAVECB program described in
Section 3.5.

NOTE

The Monitor START command currently
accepts field specifications in the
range of 0 to 7 only.

3.1.2 The ODT Command - aDT accepts and returns 6-digit addresses in
the following commands.

where

ffnnnn/
ffnnnnB
ffnnnnG

ff
nnnn

is a field from 0 to 37
is a location

8

The 0 and F command allow you to specify fields in the range of 0 to
37. To indicate the first eight fields, type a single octal digit
(0-7). Note that this is a change from previous versions of ODT,
which required you to enter field specifications as multiples of 10
(for example, field 2 as 20). Table 4 summarizes all of the OS/8 128K

ODT commands. For complete information on ODT, see the chapter on the
ODT program in the OS/8 Handbook.

Command

ffnnnn/

nnnn;

RETURN key

LINE FEED key

n+

n-

uparrow or
circumflex

Table 4
128K ODT Command Summary

Operation

Open location ffnnnn, where ff is a field from 0
to 37. ODT displays the contents of the
location, prints a space, and waits for you to
enter a new value for the location or close the
location. If you omit ff, ODT assumes field O.

Reopen the most recently opened location.

Deposit nnnn in the currently opened location,
close the location, and open the next location
in the sequence for modification. The semicolon
(;) lets you deposit a series of octal values in
sequential locations. To skip locations in the
sequence, type a semicolon for each location you
wish to leave unchanged.

CloSe the currently open location.

Close the currently open location, open the next
location in the sequence for modification, and
display its contents.

Open the current location plus n and display the
contents.

Open the current location minus n and display
the contents.

Close the location, read its contents as a
memory-reference instruction and open the
location it points to, displaying its contents.

• ODT makes no distinction between
instruction op-codes when you use this
command. It treats all op-codes as
memory-reference instructions.

• Take care when you use this command with
indirectly referenced auto-index
registers. If you use the command in
this way, the contents of the auto-index
register is incremented by one. Check
to see that the register contains the
proper value before proceeding.

(continuea on next page)

9

Command

(underline)

ffnnnnB

ffnnnnG

B

A

L

M

M <LF>

M <LF><LF>

nnnnW

D

F

CTRL/O

DELETE key

Table 4 (Cont.)
128K ODT Command Summary

Operation

Close the current location, read the contents as
a twelve-bit address, and open that location for
modification, displaying its contents.

Establish a breakpoint at location ffnnnn, where
ff indicates a field from 0 to 37. ODT permits
only one breakpoint at a time.

Transfer control of the program
ffnnnn, where the first two
represent a memory field.

to location
digits (ff)

Remove the breakpoint, if one exists.

Open for modification the location in which ODT
stored the contents of the accumulator when it
encountered the breakpoint.

Open for modification the location in which ODT
stored the contents of the Link when it
encountered the last breakpoint.

Open the Search Mask location, initially set to
7777. To change the Search Mask, type a new
value into the location.

Open the lower search-limit location.
the location (four octal digits)
search will terminate.

Open the upper search-limit location.
the location (four octal digits)
search will terminate.

Type in
where the

Type in
where the

Search the portion of memory defined by the
upper and lower limits for the octal value nnnn.
The search must be restricted to a single memory
field. See the F command.

Open for modification the location containing
the data field (0 to 37) that was in effect at
the last breakpoint. To change the field, enter
a number from 0 to 37.

Open for modification the word containing the
field (0 to 37) used by ODT in the last W or
uparrow command (search or indirect addressing)
or in the last breakpoint, depending on which
occurred most recently. To modify this
location, enter a number from 0 to 37.

Interrupt a lengthy search output and wait for
the next COT command.

Cancel a number previously typed, up to the
last non-numeric character entered. COT responds
with a question mark, after which you enter the
correct location.

10

3.1.3 The CCL Memory Command - The MEMORY command finds the highest
field available in hardware up to field 37. rt also limits the
available fields in software, but this feature is currently restricted
to 32K words.

The format of the command is

or

where

MEMORY

MEMORY nn

nn is an octal number in the range of 0 to 37 representing
the number of 4K fields available to OS/8.

Table 5 lists all the values of n (memory fields in octal) and the
corresponding memory-size.

Table 5
Field Specifications for l28K MEMORY Command

n Words of Memory

0 all available memory
1 8K
2 12K
3 16K
4 20K
5 24K
6 28K
7 32K

To limit memory, enter the highest file you want to make available to
OS/8 in the command line. For example, the following command limits
the available memory to 16K words.

~MEM 3

To find the amount of memory that OS/8 is using, type the command with
no argument.

~MEMORY

12K OF 32K MEMORY

In this example, MEMORY prints the information that a 32K system has
been limited to 12K words.

MEMORY caused the execution of the CCL.SV program.

3.2 128K PAL8

The following PAL8 instructions accept field specifications in the
range of 0 to 37, permitting you to run programs in areas above 32K.

11

3.2.1 The FIELD Pseudo-Operator - The pseudo-op FIELD instructs PAL8
to output a field setting so that it can recognize more than one
memory field.

The format of this pseudo-op is

FIELD ff

where

ff is an integer, a previously defined symbol, or an
expression in the range 0 to 37.

FIELD causes the PALS assembler to output a field setting from 0 to 37
during the second pass of assembly. This setting, which appears as
the high-order bits of the location counter in the program listing,
tells the ABSLDR which field to load information into.

For example, the following FIELD pseudo-op specifies memory field 26.
The next line sets the location counter to begin at 400. Note that
the FIELD instruction must precede the starting location.

FIELD 26
*400

ICORRECT EXAMPLE

The following example is incorrect and will not generate the code you
want.

*400
FIELD 26

IINCORRECT EXAMPLE

3.2.2 Specifying Data and Instruction Fields -- eDF and elF - The CDF
and CIF instructions let you specify field 0 to 37 as data and
instruction fields. Entering the argument requires knowledge of the
bit arrangement of these two instructions.

CDF

CIF

6201

6202

A CDE B
110 010 000 001

110 010 000 010

Bits A CDE B indicate the data or instruction field that the program
will jump to at the next indirect JMP or JMS. (The positioning of
ABCDE is eccentric as ACDEB maintains compatibility between KT8A and
existing 32K systems.)

To specify a field from 0 to 7, you use bits CDE only. The format of
the instruction is

where

CDF or CIF nO

nO

n

is an octal number that PAL8 ORs with the instruction
code

is an octal digit from 0 to 7 (bits CDE)

12

For example, this instruction

CIIF 60

specifies field 6 by causing PAL8 ~o do the following OR.

Instruction code
Argument

6201
60

A CDE B
110 010 000 001
000 000 110 000

6261 110 010 110 001

To specify a field from 10 to 17, use bits COE and set bit B. The
format of the instruction is

COF or CIF n4

n4 is an octal number that PAL8 ORs with the instruction
code

n is an octal value from a to 7 (bits COE)

4 is an octal value indicating a field range of 10 to 17
(sets bi t B)

For example, this instruction

C[lF 64

indicates field 16.

Keep in mind that to call for fields above field 7 (above 32K) with
COF and CIF, you must first load the KT8A Extended Mode Register with
the LXM instruction. For example, the following code deposits (7777
in field 12, location 10000

LXH
C[lF 24
TAIl (7777
IICA I (1000

To specify a field from 20 to 27, use bits COE and set bit A. The
format is

where

COF or CIF InO

InO is an octal number that PAL8 ORs with the instruction

1 is an octal value indicating field range 20 to 27 (sets
A)

n is a value from 0 to 7 (bits COE)

For example, this instruction

C[lF 160

indicates field 26.

13

To specify a field from 30 to 37, use bits CDE and set bit A and B.
The format is

where

CDF or CIF In4

In4 is an octal number that PAL8 ORs with the instruction

1 ••• 4

n

are octal values indicating a field range of 30 to 37
(set bits A and B)

is an octal digit in the range 0 to 7 (bits CDE)

For example, this instruction

C[lF 164

specifies field 36

One way to avoid confusion with this unusual bit configuration is to
define high fields with convenient mnemonics. For example:

F36=164
C[lF F36

3.2.3 The ABSLDR - The ABSLDR will load information into any field
from 0 to 37 that you specify in the FIELD pseudo-oPe However, the
ABSLDR option In is restricted to fields 0 to 7 only.

The =ffnnnn option sets the starting address of the program in memory
to ffnnnn, where ff is a field from 0 to 37 and nnnn is a location.
If you omit the option or specify 0, the ABSLDR inserts a starting
address of 0200 in field o.

3.3 Determining Memory-Size at Run-Time

It is frequently helpful to know the amount of memory currently
available to the program you are running.. The sub-routine in Figure 1
determines the amount of memory available in a 128K system at
run-time. The program returns a value in the range of 0 to 40 to
indicate the first non-existent field in the system.

To use this routine above 32K, you must first load the Extended Mode
Register with the LXM instruction. For complete information on the
Extended Mode Register, see the KT8A Memory Management Control User's
Guide.

14

/SUBROUTINE TO DETERMINE MEMORY SIZE PAL8-VI0A 04-AUG-78

UU2UO
00201
00202
00203
00204
00205
OU206
002U7
U0210
00211
00212
00213
00214
00215
00216
00217
00220
00221
00222
OU223
00224
00225
00226
00227
OU230
00231
00232
Ou233
UU234
OU235
00230
OU237
UU24U
U0241
UlI242
uU243

0000
73UO
6201
1242
lI222
7112
7012
7002
7430
1243
0235
3214
6201
164U
7000
3214
1216
3640
0037
1640
7400
1224
1241
7640
5235
1214
364CJ
2242
52U2
6201
1242
560U
0224
14(JU
lIUUl
00U4

/SUBROUTINE TO DETERMINE MEMORY SIZE

/THIS SUBROUTINE WORKS ON ANY PDP-8 FAMILY
/COMPUTER. THE VALUE, FROM 1 TO 40 OCTAL,
/OF THE FIRST NON-EXISTENT MEMORY FIELD IS
/RETURNED IN THE AC.

/NOTE -- THIS ROUTINE MUST BE PLACED IN FIELD 0

CORE,

CORO,

CORl,

COR2,

COR37,

CORX,

COREX,

CORLOC,
CORV,
CORSIZ,
C4,

o
CLA CLL
CDF 0
TAD
AND
CLL RTR
RTR
BSW
SZL
TAD
AND
DCA
CDF
TAD I
NOP
DCA
TAD
DCA I
37
TAD I
7400
TAD
TAD
SZA CLA
JMP
TAD
DCA I
ISZ
JMP
CDF
TAD
JMP I
CORX
140u
1
4

CORSIZ
COR37

C4
COREX
.+1

CORLOC

CORI
COR2
CORLOC

CORLOC

CORX
CORV

COREX
CORI
CORLOC
CORSIZ
CORO

CORSIZ
CORE

/(NEEDED FOR PDP-8L)
/GET FIELD TO TEST
/MASK USEFUL BITS
/TRANSFORMS
/"37" TO "174"
/FOR CDF

/SET UP CDF TO FIELD
/CDF IS PROCESSED HERE
/SAVE CURRENT CONTENTS
/(HACK FOR PDP-8!)

/7000 IS A "GOOD" PATTERN

/(HACK FOR PDP-8.,NO-OP)
/TRY TO READ BACK 7000
/(HACK FOR PDP-8.,NO-OP)
/GUARD AGAINST "WRAP-AROUND"
/TAD (1400)

/NON-EXISTENT FIELD EXIT
/RESTORE CONTENTS DESTROYED

/TRY NEXT HIGHER FIELD

/LEAVE WITH DATA FIELD 0
/lST NON-EXISTENT FIELD

/ADDRESS TO TEST IN EACH FIELD
/7UUO+74UO+1400=0
/CURRENT FIELD TO TEST

Figure I Memory-Size Subroutine

3.4 The VXAO Extended-Memory Device

The VXAO device handler enables you to use the extended memory
provided by the KT8A as though it were a separate device. You call
VXAO in the same way that you call any system device. For example,
this command

~COpy VXAO:SAMPLE<RXAO:SAMPLE

copies a program called SAMPLE into an area of memory above 32K words.

The VXAO device provides high speed I/O for users with diskettes or
users who want the performance of a fixed-head disk type of storage
device.

15

3.5 The SAVECB Program

SAVECB is a demonstration program that enables you to alter the
contents of a program's Core Control Block. You will find this
routine useful in a SAVE with arguments involving more fields in
memory than you can specify in a single SAVE command line. This is
likely to happen in systems with 128K words of memory, since the
number of fields you may wish to specify increases from 10 to 40
(octal) .

The format for summoning SAVECB is

where

R SAVECB
* file.SV

file.SV is the name of program whose CCB you want to
change

SAVECB responds with a number sign (#) to indicate that it is ready to
accept one of the following commands.

TYPE

Affmmmm-ffnnnn

Sffmmmm-ffnnnn

displays core control block of file.SV

adds segment to CCB

subtracts segment from CCB

To exit from the program, type

This writes the updated Core Control Block onto the system area of the
device. In order to change the program's CCB, you must load the
program with the R command (typing CTRL/C to abort execution) and then
create a memory-image file with SAVE.

For example, assume you want to save segments of program FLOP.SV as a
memory-image file called FLAP.SV. First, you modify the CCB with
SAVECB.

!R SAVECB
~ FLOf'.SV

SAVECB responds with a number sign (#). To inspect the CCB of your
program, type

!TYF'E

SAVECB displays the starting location of the program, its Job Status
Word, and the segments in memory that it uses.

START=OOOO JSW::::2000

CORE SEGMENTS:

040200-040377,020200-020377,016400-017377,000000-007577

To add segments to the CCB, enter them after the prompt.

!A30200-30600,40600-40777

16

Now examine the CCB again.

tTYPE

START=000200 JSW=2000

CORE SEGMENTS:

040200-040377¥040600-040777~030200-030600~020200-020377

016400-017377,000000-007577

To place this core control block in the system area on the device,
type @ after the prompt.

To make a memory-image file of the segments specified in the CCB run
FLOP.SV with the R command aborting execution with CTRL/C. Then save
the segments under the new name with a SAVE command without arguments.

~R FLOP.SV
~C

~SAVE FLAP.SV

To change a segment, first subtract the entire segment with the S
command. Then enter the altered version with the A command.

4.0 THE RX02 DUAL-DENSITY DISKETTE

The OS/8 V3D Device Extensions include system and non-system handlers
for RXOI and RX02, the devices for single-density and double-density
diskettes. The new handlers run on both RXOI and RX02 hardware.

NOTE

• The old OS/8 handlers, including
BOOT/RX, will not run on RX02.

• An RX02 with a single-density
hardware switch set is identical to
an RXOI.

4.1 RX02 Device Names

To specify an RX02 diskette in an OS/8 command line, enter
device names you use for RXOI. OS/8 recognizes the
permanent names.

DSK Default output device, usually same as SYS

SYS System device, usually the diskette in drive 0

RXAO The diskette in drive 0

RXAI The diskette in drive 1

17

the same
following

SYS is most accurately defined as the device that you have
bootstrapped. This is usually the device in drive O. However, the
hardware will also bootstrap a device in drive 1, making SYS and DSK
equivalent to RXAI. The permanent names RXAO and RXAI remain
unchanged.

4.2 Formatting Diskettes for RX02

Diskettes arrive from the factory already formatted for use in a
single-density RXOI drive. To format them for RX02, use the RXCOPY
program with the /0 option, specifying the diskette you want to
re-format as an output device. (If you enter a device by itself in
the command line, RXCOPY considers it to be an output device.)

Diskettes formatted for the RX02 device contain 981 blocks (besides
the directory) in a l2-bit mode.

4.3 RXOI and RX02 Compatibility

• A double-density system
double-density drive.
requires an Rxul drive.

diskette runs
Similarly, a

only on an RX02
single-density SYS

• RX02 accepts both single-density and double-density non-system
diskettes. The non-system handler determines which kind of
device it is dealing with and proceeds accordingly.

• RXOI hardware accepts
single-density use.

only

NOTE

diskettes

If you place an RX02 diskette on an RXOI
drive, you can currently write to it
without producing an error message.
Avoid this procedure, as it results in a
"mixed" diskett.e.

formatted for

Table 6 matches single-density and double-density diskettes -- both
system and non-system -- with the drives that they run on.

r-----

Diskette

Single-density

Double-density

Single-density

Double-density

Table 6
RXOI-RX02 Compatibility

Type Drive

Single density

System X

System

Non-system X

Non-system

18

type

Double density

X

X

X

4.4 Interleaving

OS/8 writes blocks on single-density diskettes with an interleave of
2. This means that it skips a block between each block that it reads
or writes. with double-density diskettes, ~OS/8 uses an interleave
scheme of 3, skipping two blocks. Tables 7 and 8 show the interleave
schemes for both sing1e- and double-density diskettes.

Table 7
OS/8 Single Density Diskette Interleave Scheme

OS/8 Logical Block (octal) Diskette Sectors (track/sector--decima1)

0 1/1 1/3 1/5 1/7

1 1/9 1/11 1/13 1/15

2 1/17 1/19 1/21 1/23

3 1/25 1/2 1/4 1/6

4 1/8 1/10 1/12 1/14

5 1/16 1/18 1/20 1/22

6 1/24 1/26 2/1 2/3

7 2/5 2/7 2/9 2/11

10 2/13 2/15 2/17 2/19

11 2/21 2/23 2/25 2/2

12 2/4 2/6 2/8 2/10

13 2/12 2/14 2/16 2/18

14 2/20 2/22 2/24 2/26

15 3/1 3/3 3/5 3/7

·
·
·

19

Table 8
OS/8 Double Density Diskette Interleave Scheme

OS/8 Logical Block (octal) Diskette Sectors (Track/sector--decimal)

0 1/1 1/4

1 1/7 1/10

2 1/13 1/15

3 1/19 1/22

4 1/25 1/2

5 1/5 1/8

6 1/11 1/14

7 1/17 1/20

8 1/23 1/26

9 1/3 1/6

10 1/9 1/12

11 1/15 1/18

12 1/21 1/24

13 2/1 2/4

·
·
·

OS/8 does not use Track 0, and you cannot access it in the l2-bit
mode.

4 .. 5 Using RXCOPY with RX02

RXCOPY copies both single-density and double-density diskettes on RX02
drives. If the output diskette does not match the input diskette,
RXCOPY will re-format it to the proper density.

In default mode, RXCOPY compares the two diskettes for identical
contents before it makes a copy. For a quicker transfer, use the /N
option, which inhibits the comparison.

For double-density transfers involving a comparison of contents,
RXCOPY will use 16K words of memory if it is available on the system
for faster operation. If possible, use the MEMORY command to provide
the necessary memory.

20

4.5.1 Formatting Diskettes with RXCOPY - RXCOPY with the /S and /0
option formats diskettes for single-density or double-density use. To
format a diskette, enter it by itself in the command line, followed by
the option. (RXCOPY considers a device entered by itself to be an
output device.)

For example, the following command sequence re-formats the diskette in
drive 1 from single-density to double-density.

~R RXCOPY
~RXA1:/D

To change it back to single-density, type

~R RXCOPY
~RXA1:/S

4.5.2 RXCOPY Options - RXeOPY provides the following options.

• /p

• /N

• /M

• /R

• /V

• /S

• /0

• /e

RXCOPY pauses and waits for user response before and
after transfers. To continue, type Y.

RXeOPY transfers the contents of one diskette to another
but does not check for identical contents.

RXCOPY checks both diskettes for identical contents and
lists the areas that do not match but performs no
transfer.

RXCOPY reads every block on the input device and lists
bad sectors but performs no transfer.

RXeOPY prints its current version number.

RXeOPY formats the diskette specified as an output device
to single-density.

RXCOPY formats the diskette specified for output to
double-density.

This option is equivalent to default copy and match.

5.0 THE RLOI DISK

This section describes "the booting, formatting and building of the
RLOl disk pack with the OS/8 Operating System, using the RLOl OS/8
software support package.

The RLOl disk pack -- a high-density mass storage device ~- utilizes
bad-block mapping. Bad blocks occur during the manufacture of disks
or develop as a result of use and age. Bad block~ that are present
after manufacture are recorded in factory-written lists. Each disk
preserves its own individual list. The RLFRMT formatter program
detects and lists new bad blocks that occur during disk operation in
the field. Each RLOl disk main~ains up to 45 bad blocks; this allows
the life of the disk to oe prolonged as a mass storage device.

The RLOl requires a PDP-8A,E,F or M with at least 12K of memory.
Non-omnibus PDP-8 family computers are not hardware-compatible with
the RL01.

21

System and non-system RLOI handlers are standard two-page OS/8
handlers~ Two-page handlers require 12K of memory because the second
page of the handler resides in the last page of field 2.

BATCH may be run using RLOI disks, even on a system with 12K words of
memory. However, disk formatting cannot be done under BATCH.

This section inc1udes a system description, detailing disk, RL8A
controller and software formats. In addition, it contains bootstrap
procedures and operating instructions, including a detailed
presentation of messages that are generated during disk formatting.

5.1 System Description

The RLOI disk pack has three logical "devices" that are designated as
Device A, Device B and Device C. Figure 2-1 shows device designation
on an RLOI disk.

The OS/8 Device Extensions provide for the standard OS/8 System and
Non-System I/O transfer of 1 to 32 (decimal) memory pages to or from
anyone of three RLOI "devices". The "devices" are located on anyone
of four RLOI disk drives.

Disk data-space consists of 777 (octal) tracks. As shown in Figure 2,
data on a single track is made up of 40 equal length sectors numbered
o through 47 (octal). This results in 20 (decimal) blocks, four
assigned to Device C and 16 to Device A or B.

DISK DATA SPACE
II A J J I B 1J
(TRACK 0 • (TRACK 777

ONE RL01 T RACK {

EVEN SECTORS

0 16 20 461

4 BLOCKS 16 BLOCKS

C AOR B

Track and Sector numbers are octal
Block numbers are decimal

ODD SECTORS

Figure 2 Devices A, B, C on RLOI Disk

Approximately 10,000 (decimal) OS/8 blocks are supported
40% as Device A, 40% as Device B, and 20% as Device C.
provides some user control over the tradeoff between the
devices and the length of each device.

--
--

47

--

per drive,
This scheme

number of

Device C has a different length from Devices A and B. In general,
Device C is used only when a maximum amount of data is to be stored on
the disk.

22

Each device supports up to 15 (decimal) bad blocks to provide
bad-block mapping. These blocks may be thought of as "spares", and
should never be accessed by the user. This support involves
"invisible" mapping of OS/8 block numbers into the set of actual good
disk blocks; no utility program need be changed (including SQUISH),
and user awareness of this feature is not required. Bad-block lists
are kept resident to reduce the extra reads required.

Bad-block lists that occur during disk manufacture are maintained in
factory-generated lists which are stored on track 777 of the disk.
The OS/8 system preserves five copies of the factory list, all of
which are identical.

When a disk is initially formatted using OS/8, the formatting program
(RLFRMT) ascertains that the disk is new. The program then reads in
the factory list, and checks the disk for any new bad blocks. The
factory list and the new bad-block list are then combined, and, after
the user's go-ahead, the formatting program writes the newly-generated
OS/8 bad-block list on track 0 of the disk.

When running OS/8, you may generate an I/O error because of a bad
block. You can check this by again running the formatter program.
RLFRMT ascertains that the disk is already formatted, so it reads in
the previous OS/8 bad-block list and checks the disk for any new bad
blocks. When you instruct it to proceed, the formatting program
writes the updated OS/8 bad-block list on track 0 of the disk. You
should not allow the bad block list to be written if an unexpectedly
large number of bad blocks are reported~ formatting to remove bad
blocks is a permanent, irreversible procedure.

During an I/O transfer, the handler first reads in the OS/8 bad-block
list for the device. The system effectively maps around the bad
blocks. This has the effect of making them appear to have
disappeared, so that standard OS/8 block numbers can be used.

All permanent information stored on RLOI disk packs (such as bad-block
lists) is protected from destruction by OS/8 handler calls by being
"outside of" the OS/8 data space.

An annulus data scheme reduces the average intra-device seek time.
This means that data continues from the track on surface 0 to the
track on surface I for each cylinder.

The bootstrap routine is under 32 (decimal) words in length, and
suitable for ROM implementation and/or direct toggle-in.

Three tries (two retries) are attempted before an I/O error is
reported.

NOTE

Unless otherwise noted, all numbers in
this section are octal.

23

5.1.1

Track

0
U
U
0
0
0
0
0
0
0

1
1

400
400

777

Disk Format - The format of the RLOI disk is as

Sector

0
2
4
6
10
12
14
16
20
22

o
2

20
22

o

Contents

Reserved for future use by DIGITAL
Reserved for future use by DIGITAL
Reserved for future use by DIGITAL
Reserved for future use by DIGITAL
Reserved for future use by DIGITAL
Reserved for future use by DIGITAL
Bad Block Lists for Devices A and
Bad Block List for Device C
Device A, Block 0 (first half)
Device A, Block 0 (second hal f)

Device C, Block 0 (first half)
Device C, Block 0 (second half)

Device B, Block 0 (first half)
Device B, Block 0 (second half)

.
Disk Pack Serial Number, List

B

of Manufacturing-Detected Bad Sectors
and Field-Detected Bad Sectors.

NOTE

RLFRMT.PA contains complete descriptions
of bad block list formats as comments at
the start of the program.

follows:

5.1.2 RL8A Controller Format - The following
software control of the system.

registers

Memory Address Register:

perform

The Memory Address Register is a l2-bit register that contains the
location at which the first transfer is to be performed.

o 1 2 3 4 5 6 7 8 9 10 11

I I I I I I I I I I I I J
Memory address ____ -'Y

Memory Address Register

24

Word Count Register:

The Word Count Register is a l2-bit register that contains the
negative of the number of words to be transferred at one time.

0 2 3 4 5 6 7 8 9 10 11

I I I I I I I
'--

J
~

Word count

Word Count Register

Sector Address Register:

The Sector Address Register contains the sector address in bits 0
through 5.

0 2 3 4 5 6 7 8 9 10 11

I
........

J
~

Sector address

Sector Address Register

Command Register A:

Command Register A contains the direction, surface and cylinder
address. It has the following format:

o

Direction ___ --I

0: towards lower cylinder
addresses (outside)

1: towards higher cylinder
addresses (inside)

Surface -------'
0: upper surface
1: lower surface

2 3 4 5 6 7

Cylinder address ------------------'
(or cylinder difference)

Command Register A

Command Register B:

8 9 10 11

Command Register B designates maintenance mode, byte mode, interrupt
enable, drive select, memory field and function. It has the following
format.

25

o 2 3 4 5 6 7 8 9 10 11

Maintenance mode

Byte mode ---------'
0: truncated

1: byte

Interrupt enable -------'
Drive select -------.------'

Memory field -------------------'
Function -----------------------~

0: maintenance

1: reset drive errors

2: get drive status
3: seek

4: read next header

5: write
6: read
7: read, no header check

Command Register B

5.1.3 Instruction Set - The following instructions operate the disk
system.

Note that the AC is cleared after a transfer from the AC to a register
in the controller. Also,-the AC is cleared first before a transfer is
made from a controller register to the AC.

The skip instructions are skip and then clear rOT's; that is, if a
given condition (function done) is true, the function-done flag will
be cleared at the completion of the skip rOT.

Octal Code

6600

6601

6602

6603

6604

6605

6606

6607

6610

6611

6612

Mnemonic

RLDC

RLSD

RLMA

RLCA

RLCB

RLSA

RLWC

RRER

RRWC

RRCA

Function

Clear device, all registers, AC and flags (do
not use to terminate a disk function)

Skip on function done flag, then clear it

Load memory address register from AC

Load command register "A" from AC

Load command reg ister liB II from AC, execute
command

Load sector address register from AC bits 0-5

Spare (will clear the AC)

Load word count register from AC

Read error register into AC bits 0-2 and 11

Read word count register into AC

Read command register II A" into AC

26

Octal Code Mnemonic Function

6613 RRCB Read command register "B" into AC

6614 RRSA Read sector address register into AC bits 0-5

6615 RRSI Read (silo) word (8-bi t) into AC bits 4-11

6616 Spare (does not clear AC)

6617 RLSE Skip on composite error flag, then clear it

5.1.4 OS/8 Data Space - The layout of OS/8 data space on Devices A,
B, and C is as follows:

Devices A and B

Block Track Sectors

0 0 20,22
1 0 24,26
2 0 30,32
3 () 34,36
4 0 40,42
5 0 44,46
6 0 1,3
7 0 5,7
10 0 11,13
11 ° 15,17
12 0 21,23
13 0 25,27
14 0 31,33
15 0 35,37
16 0 41,43
17 0 45,47
20 1 20,22

Device C

Block Track Sectors

0 1 0,2
1 1 4,6
2 1 10,12
3 1 14,16
4 2 0,2

5.1.5 Converting Block Numbers to Hardware Disk Addresses - Use the
following procedures.

For Devices A and B:

The sector address is 4 times the sector code minus 27. If the sector
address is negative, add 47.

27

Device A has MSB of cylinder = 0 (cylinders 0-177).
Device B has MSB of cylinder = 1 (cylinders 200-377).

The block number software format for Devices A and B is shown in the
following diagram.

o

BLOCK NUMBER:

LSB OF CYLINDER

S
U
R
F
A
C
E

SECTOR
CODE

11

Block Number Format for Devices A and B

For Device C:

The sector address is 4 times the sector code. The track is one plus
the track code. Tracks 0 and 777 cannot be addressed: this ensures
the integrity of the factory-detected and OS/8 bad-block lists, which
reside on these tracks.

The block number software format for Device C is shown in the
following diagram.

o 11

BLOCK NUMBER: ~·~--~-T-RA~C--K-C~O-D-E~--~--~~-4~--~~ -C SECTOR

CODE

Block Number Format for Device C

The track software format for Devices A, B, and C is shown in the
following diagram.

o

TRACK:

CYLINDER ADDRESS

Track Format for Devices A, B, and C

28

S
U
R
F
A
C
E

5.2 Handler Description

The standard OS/8 device designation format cannot be used with the
RLOI. Normally, the standard format would use "RLAO: to represent
Device A of unit (drive) O. The single-word format used internally to
store device names does not distinguish between "RK" devices and "RL"
devices, resulting in erroneous RESORC reports, and in other
anomalies. The RLOI therefore uses "RLOA" to represent unit 0, Device
A, and so forth. Table 9 provides information on the RLOI handlers.
SYS is the same device as RLOA (Drive 0, Device A).

Table 9
RLOI Handler Information

Device Entry File Device Device Octal Decimal
Name Point Name Type Code Length Length

Offset (Group (Octal) (Blocks) (Blocks)
(Octal) Name)

SYS 07 RLSY RLOI 26 7761 4081
RLOA 44 RLO RLOI 26 7761 4081
RLOB 40 RLO RLOI 26 7761 4081
RLOC 50 RLC RLOI 31 3751 2025
RLIA 45 RLI RLOI 26 7761 4081
RLIB 41 RLI RLOI 26 7761 4081
RLIC 54 RLC RLOI 31 3751 2025
RL2A 46 RL2 RLOI 26 7761 4081
RL2B 42 RL2 RLOI 26 7761 4081
RL2C 60 RLC RLOI 31 3751 2025
RL3A 47 RL3 RLOI 26 7761 4081
RL3B 43 RL3 RLOI 26 7761 4081
RL3C 64 RLC RLOI 31 3751 2025

A brief description of RLOI handler operation is as follows:

1. When initially called, each RLOI handler executes once-only
code to read in the bad block list for its drive. The
handler error return is taken (with AC=4000) if an I/O error
occurs or if the bad-block list is found to be invalid (a
valid bad-block list begins with a special identification
code) •

2. Get handler arguments.

3: Map each block to be transferred around bad blocks by
incrementing the block number once for each bad block (as
listed in the bad-block list for the requested device) less
than or equal to the present block. This procedure makes bad
blocks effectively "disappear."

4. Transfer one page/sector at a time, up to the requested
number of pages.

5. If an I/O error occurs for any RLOI read or write operation,
retry twice then take the System or Non-System Handler error
return with AC=4000.

29

5.3 Loading and Bootstrap Procedure

The following sequence of operations occurs during bootstrapping to
the RLOI.

1. BOOT-I, the primary bootstrap routine, is read into locations
00001-00035 from a ROM, from BOOT.SV, or toggled in through
the console switches. The starting address is 00001. BOOT-l
clears Drive 0 and reads and starts BOOT-2. If an I/O error
occurs, BOOT-l will repeat until it is successful.

2. BOOT-2 occupies locations 00000-00177. BOOT-2 reads the OS/8
Resident Monitor into the last pages of fields 0, 1, and 2.
If an I/O error occurs, BOOT-2 will "hang" as an indication
of failure to boot.

3. BOOT-2 then calls the Keyboard Monitor by jumping to location
07605.

NOTE

Never replace the system disk pack
without rebooting: each pack has its
own OS/8 block numbering scheme that is
determined during formatting.

Replace non-system disk packs only after the Monitor dot appears on
the terminal. This is done to ensure that the bad-block list read by
the handler is correct.

5.3.1 Loading the RLOI Disk Pack - Prepare an RLOI Disk Pack for
loading as follows:

1. Separate the protective cover from the disk pack, using the
following steps.

a. Lift the cartridge by grasping the handle with the right
hand.

b. Support the cartridge from underneath with the left hand.

c. Lower the handle and push the handle slide to the left
with the thumb of the right hand.

d. Raise the handle to its upright position to separate the
cartridge from the protection cover.

2. Place the cartridge in the drive shroud with the handle
recess facing the rear of the machine.

3. Rotate the cartridge a few degrees clockwise and
counter-clockwise to ensure that it is properly seated within
the shroud.

4. Gently lower the handle to a horizontal position to engage
the drive spindle.

5. Place the protection cover on top of the cartridge.

6. Carefully close the drive lid.

7. Push the "LOAD/RUN" pushbutton.

30

5.3.2 Booting from BOOT.SV - Boot from the BOOT.SV program by using
the BOOT or R commands as follows:

or

or

• BOOT
7RL

~BOOT RL

.R BOOT
/RL

5.3.3 Booting from the Console Switches - The following procedure
enters the bootstrap program into PDP-8/A memory.

1. Press in order the MD and DISP buttons to see what octal
numbers are being deposited.

2. Press, in order, 0 and LXA to select memory field O.

3. Press, in order, 1 and LA to start loading instructions at
address 1.

4. Deposit the octal values given in Table 3, following each
value with D NEXT.

5. After all values are deposited, press, in order, 0001 and LA
to allow the program to start at location 1.

6. Press, in order, INIT and RUN to start the bootstrap program.

5.3.4 ROM Bootstrap Switch Settings - Set the bootstrap
settings for ROM's labeled 465A2 and 469A2 as follows:

switch

Program 82-5 82-6 82-7 S2-8 Sl-l 81-2 Sl-3 Memory Address

RL8A OFF ON OFF OFF OFF ON OFF 4000

5.4 Operating Instructions

You must format new RLOI disk packs by running the RLFRMT program
prior to any 08/8 use (including system building). This is required
because RLFRMT constructs and writes specially formatted bad-block
lists on the pack.

08/8 RLOI operations on disks that have not been formatted with RLFRMT
result in error reports. Therefore, you should run RLFRMT even before
using BUILD to build a new system head.

Device C non-system handlers are provided to access all available
storage capacity of the RLOI disk packs. Transfers to or from Device
C are slower than those to or from Devices A and B. This is so
because, while Deviqe A and B use 80% of each track, Device Conly
uses 20% of each track (only 4 blocks are stored on each track).
Thus, the time spent in seeking new tracks will be higher for Device
C.

31

Because different RLOI packs may have different patterns of bad,
blocks, it is good practice to end an OS/8 session with the monitor
"BOOT" command (or "R BOOT"), so that other users will be able to type
"RL" to boot their disks. Of course, this procedure is unnecessary if
the computer system has a hardware bootstrap for the RLOI.

5.4.1 Disk Formatting - Format all new RLOI disk packs prior to any
use under OS/8, including system building. Mount the RLOI disk pack
(Section 4.2). Format the RLOI disk by using the following procedure:

1. Type

.!oR RLFRMT

to run the formatter program.

RLFRMT Vvp is printed on the terminal signifying the start of
the operation where:

v is the version number
p is the patch level letter

the program then prompts with

DRIVE?

2. Type the drive number (0-3) on which the pack is mounted.

The formatter program then reads all blocks on the disk to
detect any new bad blocks. The process takes 35 to 40
seconds. After this period, an initial display is presented
as follows:

UNFORMATTED (NEW) DISK PACK SERIAL NUMBER nnnnnnnnnn
FACTORY-DETECTED BAD BLOCKS: NONE
NEWLY-FOUND BAD BLOCKS: NONE
NEW OS/8 BAD BLOCKS: NONE
FORMAT PACK WITH THIS NEW LIST?

The messages are explained in Table 10, RLFRMT Formatter
Messages.

3. Type a "Y" or "N" (followed by a RETurn) in response to the
last message "FORMAT PACK WITH THIS NEW LIST?" to either
allow or prevent the writing of the new OS/8 bad-block lists.
The program signifies completion of this. operation by
displaying

DONE
DRIVE '~

Type CTRL/C to return to the OS/8 monitor. Remove the pack
or designate another drive for formatting.

32

The following example illustrates possible messages that may
be generated during a particular sequence of OS/8 RLOI
formatting operations if bad blocks are found.

OS/8 (OLD) DISK.
WARNING: ALL FACTORY-WRITTEN LISTS DESTROYED.

PREVIOUS OS/8 BAD BLOCKS: NONE
NEWLY-FOUND BAD BLOCKS: A 6374 A 6375 B 0360
B 4347 B 4350 C0514 C 0515 C 2073

WARNING: AN ADDITIONAL BAD BLOCK FOUND.
ZERO DISK BEFORE USE!

NEW OS/8 BAD BLOCKS: A 6374 A 6375 B 0360
B 4347 B 4350 C 0514 C 0515 C 2073

FORMAT PACK WITH THIS NEW LIST?

The formatter program then writes or does not write special OS/8 bad
block lists on the pack, depending on a "Y" or "N" user response.
These lists include only the factory-detected and newly-detected bad
blocks for new packs, or previous OS/8 and newly-detected bad blocks
for old packs. warnings are given for various conditions as
appropriate (see Table 10).

NOTE

Reformatting a previously-used disk pack
will make any newly-detected bad blocks
effectively disappear from the pack.
Any files located at or after any such
new bad blocks, however, will turn to
garbage due to the implicit renumbering
of all OS/8 blocks past those points.

Table 10 lists normal formatter messages, operator error messages, and
program error messages.

Table 10
RLFRMT Formatter Messages

1. Normal Messages

Message

RLFRMT Vvp

DRIVE ?

UNFORMATTED (NEW) DISK PACK

Meaning

Identifies start of operations.
"v" is version number, "pH is
patch level letter.

Requests user to type
number and RETURN key.

drive

Disk does not contain OS/8 bad
block lists, either because the
disk .is brand new or because
these lists have been destroyed
by non-DIGITAL software or
diagnostic programs.

(continued on next page)

33

Table 10 (Cont.)
RLFRMT Formatter Messages

1. Normal Messages (Cont.)

Message

OS/8 (OLD) DISK PACK

SERIAL NUMBER xxxxxxxxxx

FACTORY-DETECTED BAD BLOCKS

PREVIOUS OS/8 BAD BLOCKS

Meaning

Disk contains valid OS/8 bad
block lists. (A formatted pack
contains octal 0123 in words 100
- 177 of sector 16 (octal) of
surface a of cylinder 0).

The serial number is the ten
digit octal number assigned to
the pack at time of manufacture.

The list of bad blocks found at
manufacturing time is printed in
the format "d nnnn", where d=A,B,
or C (the device) and nnnn = the
block number on that device which
is bad.

The current OS/8 bad block lists
are printed.

NEWLY-FOUND BAD BLOCKS The list of bad blocks just found
by read-checking the entire disk
is printed.

NEW OS/8 BAD BLOCKS This list results from combining
the previously printed lists. It
is the list that is written on
the pack as the new OS/8 bad
block lists.

FORMAT PACK WITH THIS NEW LIST? User types "Y" or "N" to allow or
prevent writing the new OS/8 bad
block lists.

DONE Indicates that new OS/8 bad block
lists have been written on the
pack. The pack now may be
removed if desired. "DONE" is
always followed by "DRIVE?" to
allow formatting another pack.

2. Operator Error Messages

Message

PLEASE SPECIFY DRIVE NUMBER
(0-3) ON WHICH PACK TO BE
FORMATTED IS MOUNTED.

PLEASE WRITE-ENABLE DRIVE,
THEN HIT RETURN!

Meaning

RLFRMT could not interpret user
response to "DRIVE?". User can
try again.

RLFRMT found the selected drive
write-locked just before
attempting to write new OS/8 bad
block lists on the pack.

L-_________________________________ ~ __________________________ , __________ __

(continued on next page)

34

Table 10 (Cont.)
RLFRMT Formatter Messages

3. Warning Messages (formatting can still be done)

Message

WARNING: AN ADDITIONAL BAD
BLOCK FOUND. ZERO DISK
BEFORE USE!

WARNING: BAD BLOCK IN SYSTEM
AREA. DO NOT USE AS SYSTEM
DISK!

WARNING: ALL FACTORY-WRITTEN
LISTS DESTROYED

Meaning

If the user permits the new OS/8
bad block lists to be written,
the OS/8 block numbering scheme
will be changed due to a new bad
block found during the read-check
of the entire pack. This will
make "garbage" out of any files
located at and after the bad
block number.

A new bad block was found during
the read-check of the pack. This
new bad block was on Device A
between 0 and 66 inclusive.
Since no bad blocks are allowed
in this area for the system
device (due to bootstrapping
constraints), permitting the pack
to be formatted disallows future
use as a system device.
Non-system use is unaffected.

All copies of the manufacturing­
detected bad block list and disk
pack serial number have been
destroyed by non-Digital
software. Formatting continues,
assuming no factory-detected bad
blocks.

4. Error Messages (f~rmatting cannot be done)

Message

FATAL I/O ERROR

Meaning

If this message appears
immediately, it indicates that
the OS/8 bad block lists contain
physical I/O errors. The pack
should not be used further under
OS/8. If this message appears
after attempting to write new
OS/8 bad block lists, it
indicates that an I/O error
occurred. The most common cause
will be a write-locked drive.

(continued on next page)

35

Table 10 (Cont.)
RLFRMT Formatter Messages

4. Error Message (formatting cannot be done) (Cont.)

Message

CANNOT FORMAT DISK

OVER 15 BAD BLOCKS ON
ONE DEVICE

OVER 63 NEWLY-FOUND
BAD BLOCKS

5.5 System Building

Meaning

All error messages end with this
one, to indicate that the
formatting operation has failed.
This message is always followed
by "DRIVE?" to allow formatting
another pack.

The new OS/8 bad block lists to
be written contain more than the
maximum number of bad blocks
supported under OS/8.

Indicates RLOI hardware problem
detected during read-check of
disk or a pack with more than 63
bad blocks. RLOI diagnostics
should be run and the drive
and/or controller fixed before
attempting to format disk packs.

The following procedure is used for building a system.

1. Format the disk pack as described in Section 5.4.1.

2. Run BUILD from any device. BUILD is the system generation
program for OS/8 (see the OS/8 Handbook for a detailed
description of BUILD) .

3. Load RLSY.BN, RLO.BN, RLI.BN, RL2.BN, RL3.BN, or RLC.BN as
desired (see Table 9 for names of devices in each group) .
For example, a complete system for two disk drives would
include SYS, RLOB, RLOC, RLlA, RLlB, and RLIC. A partial
system to support all four drives could include SYS, RLOA,
RLOB, RLlA, RLIB, RL2A, RL2B, RL3A, and RL3B.

4. Issue the BOOT(strap) command. This will build an RLOI
system on RLOA, and start it. It then asks a question as to
whether a new (zero) directory should be written on the new
device. Answer yes to place a zero directory on the device.
RUN all programs with the RUN command until moved to the RLOI
disk pack.

36

00020
00021
00022
00023
00024
00025
00026
00027
00030
00031
OOon

00033
00034

00035
00036
00037
00U4U
00041
00042
00043
00044
00045
00046

00047
00050
00051
00052

APPENDIX A

RX02 BOOTSTRAP PROGRAM

7301 AC1=CLL CLA lAC
7326 AC2=CLL CtA CML RTL

PAL8-VlOA NO DATE

7327 AC6=CLL CLA CML lAC RTL IRX02'S MUST RUN ON AN OMNI-BUS !I
7330 AC4000=CLL CLA CML RAR
7350 AC3777=CLL CLA CMA RAR
7346 AC7775=CLL CLA CMA RTL

I
I DEVICE lOT SYMBOLIC EQUATES
I

6751 LCD=6751 ILOAD COMMAND
6752 XDR=6752 ITRANSFER DATA
6753 STR=6753 ISKIP IF READY TO TRANSFER
6754 SER=6754 ISKIP ON ERROR
6755 SDN~6755 ISKIP ON DONE

I
I
I

0020 *20

1061
1046
0060
3061
7327
1061
6751
7301
4053
4053
7004

6755
5054

6754
7450
5020
1061
6751
1061
0046
1032
3060
0360

4053
3002
2050
5047

I
READ,

LITRAL,
I

TAD
TAD
AND
DCA
AC6
TAD
LCD
AC1
JMS
JMS
7004

UNIT
CON360
CON420
UNIT

UNIT

LOAD
LOAD

ITRY NEXT COMBINATION OF DENSITY AND UNIT
IADDING IN 360
IKEEPING ONLY 420 BITS
ICYCLES 400,420,0,20,400""""
ICOMMAND TO READ DISK
IUNIT AND DENSITY
ICOMMA~D TO CONTROLLER
ITO SET SECTOR AND TRACK TO 1
ISECTOR TO CONTROLLER, LEAVES AC ALONE
lAND TRACK
ILEAVING A 2 IN AC~ SERVES AS LITERAL

I FOLLOWING IS PART OF WAIT LOOP, SAME SECONDARY BOOTS, OLD PRIMARY BOOT
I
START,

I

SDN
JMP LOAD+l

I NOW, DONE OR ERROR
I

CON360,
I
I
I

SER
SNA
JMP
TAD
LCD
TAD
AND
TAD
DCA
360

READ
UNIT

UNIT
CON360
LITRAL
RX1SAV

IHAS DONE COME UP~ CODE STARTS HEREI
INO, GO CHECK FOR READY TO TRANSFER

ISKIP ON ~N ERROR, TRY ANOTHER DENSITY ETC.
INASTY, AC-2 FOR ABOUT TO DO SILO, 0 ON START-UP
ISTART-UP, GO SET UP UNIT, THEN READ TO SILO
lAC ALREADY 2, PUT IN UNIT, DENSITY
ITO EMPTY THE SILO
ISET UP LOC 60 FOR OLD SECONDARY BOOT
IKEEPING ONLY DENSITY BIT
IADDING IN 7004, BECAUSE THAT'S WHAT SYS WANTS
IOLD SECONDARY BOOT MOVES IT TO HANPLER
ILITERAL; EXECUTES IN LINE AS A NO-OP
/FALLS THRU TO NEXT PAGE OF LISTING

I FOLLOWING CODE SAME AS OLD PRIMARY BOOT
I

I

JMS
DCA
ISZ
JMP

LOAD
2
50
47

IGRAB NEXT ITEM FRO" SILO
ITRADITION; SECONDARY BOOT STARTS LOADING AT 2 I
IINCREMENT LOAD ADDRESS
IGO BACK FOR ANOTHER

I SECONDARY BOOT LOADS OVER PRIMARY BOOT UNIT LOCATION 47 IS LOADED,
I THEN CONTROL PASSES TO SECONDARY BOOT
I

A-l

00053
00054
00055
00056
00057

RX02 BOOTSTRAP PROGRAM

0000 LOAD,
6753

o
STR
JMP
XDR
JMP

ISUBROUTINE TO GIVE AND TAKE DATA FROM CONTROLLER
lIS HE READY TO TALK TO US?

5033
6752
5453

START

LOAD
I

INO, IS HE PERHAPS DONE WITH SILO, OR IN ERROR?
IYES, DATA IN OR OUT;IF DATA TO CONTROLLER, AC UNCHANGED
INO MAGIC, JUST EXIT FROM SUBROUTINE

I 60 GOES TO OLD SECONDARY BOOT
I 61 HAS DENSITY AND UNIT THAT BOOTED SUCCESSFULLY
I
I
CON420, IUSE IT TO HOLD 420 LITERAL TO START OUT

00060 0420 RXISAV, 420 IUNIT
ft

20+7004 TO GO TO SYS HANDLER
00061 0020 UNIT, 20 I<DENSITy

ft

400>+<UNIT
ft

20> THAT BOOTED OK
I
$

A-2

00001
00002
00003
00004

00005

00006
00007
00010
00011
00012
00013
00014

00015
00016
00017
00020
00021
00022
00023
00024

00025
00026

00027
00030
00031

00032
00033
00034
00035

6600
7201
4027
1004

4027

6615
7002
7012
6615
0025
7004
6603

7325
4027
7332
6605
1026
6607
7327
4027

0377
7600

0000
6604
6601

5031
6617
5427
5001

APPENDIX B

RLOI BOOTSTRAP PROGRAM

AC0001=CLA lAC
AC0003=CLA CLL CML lAC RAL
AC0006=CLA CLL CML lAC RTL
AC2000=CLA CLL CML RTR

BOOT, RLDC
ACOOOI
JMS IO
TAD

JMS IO

RRSI
BSW
RTR
RRSI
AND C377
RAL
RLCA

AC0003
Jl-1S IO
AC2000
RLSA
TAD C7600

/CLEAR CONTROLLER REGISTERS
/CLEAR DRIVE REGISTERS

/AC=1004 (BYTE MODE READ HEADER
/FUNCTION). NOTE THAT THIS WORD
/MUST BE AT LOC 00041
/READ NEXT HEADER IN ORDER TO
/FIND OUT CURRENT CYLINDER
/READ HEADER BYTE #1
/GET LSB OF CYLINDER

/READ HEADER BYTE #2

/CONSTRUCT CYLINDER ADDRESS
fUSE IT AS DIFFERENCE WORD TO
/SEEK TO CYLINDER 0, SURFACE 0
/AC=SEEK FUNCTION
/SEEK TO TRACK 0
/AC=SECTOR 20 (OS8 BLOCK 0)
/LOAD SECTOR ADDRESS

RLWC /LOAD WORD COUNT FOR 1 PAGE
AC0006 /READ FUNCTION
JMS IO /READ SECONDARY BOOTSTRAP

/READING IN SECONDARY BOOTSTRAP PREVENTS "IO" FROM
/RETURNING. CONTROL CONTINUES IN SECONDARY BOOTSTRAP.

C377, 377
C7600, 7600

/SUBROUTINE TO DO I/O TO DISK
IO, 0

RLCB
RLSD

JMP .-1
RLSE
JMP I IO
JMP BOOT

B-1

/EXECUTE THE FUNCTION
/WAIT UNTIL DONE
/NOTE: THIS WORD AND NEXT
/ONE MUST BE LOCATED HERE
/IN ORDER TO MATCH UP WITH
/SIMILAR INSTRUCTIONS CON­
/TAINED IN THE SECONDARY
/BOOTSTRAP.

/NO ERROR; RETURN
/ERROR: TRY AGAIN

ABSLDR, 15

Bad-block mapping,
on RLOl, 22

BASIC,
patch for BRTS, 4

BATCH,
use with RLOl, 23

BOOT program,S, 32
Bootstraps,

for RLOl, 6
for RX02, 5

BUILD program,S, 37

CDF instruction,
use with extended memory, 13

CIF instruction,
use with extended memory, 13

Command registers,
RLOl, 26, 27

Core Control Block,
altering with SAVECB, 17
use with FUTIL, 5

Data space,
RLOl, 28

Device names,
RLOl, 23
RX02, 18

Disk format,
RLOl, 25, 33

Distribution media, 3

Extended mode register, 14

FIELD pseudo-operator,
use with extended memory, 13

FORTRAN,
patch for FRTS, 4

FUTIL, 5

Hardware disk address,
RLOl", 28

INDEX

Instruction set,
RLOl, 27

lOT instructions,
use with KT8A, 4

KT8A, 7-18

Loading instructions,
RLOl, 31

LXM instruction, 14

Memory address register,
RLOl, 25

MEMORY command, 12
Monitor head,

moving with PIP, 4

ODT, use with extended memory,
9-11

PAL8,
use with extended memory,

12-15
Patches,

for BRTS, 4
for FRTS, 4

PIP, 4

RESORC, 3
Restrictions on extended memory,

for ABSLDR, 15
for MEMORY, 12
for Monitor, 8
for START, 9

RL8A controller format, 25-27
RLFRMT, 33

messages, 34-37
RLOI disk, 22-37

bad-block mapping, 22
bootstrapping, 6, 32
building a system on, 37
command registers, 26-27
data space, 28

Index-l

INDEX (Cont.)

RLOl disk (Cont.),
devices A, B, and C, 23
disk format, 25, 33
handlers, 30
hardware disk addresses, 28
instruction set, 27
loading instructions, 31
memory address register, 25
RL8A controller, 25-27
RLFRMT, 33
ROM bootstrap, 32
sector address register, 26
word-count register, 26

ROM bootstrap,
for RL01, 32

RXOl diskette,
compatibility with RX02, 19
formatting with RXCOPY, 22
interleave scheme, 20

RX02 diskette,
device names, 18
formatting with RXCOPY, 19, 22
interleave scheme for dl.1al-

density, 21

SAVE command,
use with extended memory, 8-9

SAVECB program, 17
Sector address register, 26
START command,

restrictions on use, 9

VXAO device, 16

Word-count register, 26

Index-2

· ~

.~

m c o
o

READER'S COMMENTS

OS/8
Device Extensions
User's Guide
AA-D319A-TA

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for imp~ovement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify)---------------------------------------

Name Date ________________________ _

Organization __ __

Street __ __

City ____________ ~ ______________ State ______________ Zip Code ____________ __
or

Country

- - Do Not Tear - Fold Here and Tape - - - - - - - - - -

I II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45

DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

- - -- -I

No Posta~le
Neeessarv

if Mai led in the
United States -_ .. -_ .. -_ .. -_ .. -_ .. -_ .. -_ .. -_ .. , -_ .. -_ .. , --"I --"I

- - - - Do Not Tear - Fold Here - .- -I
,
1

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	A-1
	A-2
	B-1
	B-2
	idx-1
	idx-2
	replyA
	replyB

