1. IDENTIFICATION

1.1 Digital-7-60-N

1.2 Type 34 Display Test

1.3 April 28, 1965

ABSTRACT

The test program causes a variety of patterns to be displayed on the Type 34 CRT to aid an operator's efforts to maintain and align the display. With one exception, the operator is able, by means of the switch register, to go from pattern to pattern specifying parameters without having to restart the program.

- 3. REQUIREMENTS
- 3.1 Storage

The program occupies 10518 registers; locations 1, 100-144, and 200-1232.

- 3.2 Subprograms and/or Subroutines (Not Applicable)
- 3.3 Equipment

Standard PDP-4/7. Type 34 Oscilloscope Display. Type 370 Light Pen optional.

- 3.4 Miscellaneous (Not Applicable)
- 4. USAGE
- 4.1 Loading
- 4.1.1 Set the address switches to the starting address (17770 or 7770) of the RIM Loader.
- 4.1.2 Place the binary program tape in the reader.
- 4.1.3 Press START.
- 4.2 Calling Sequence (Not Applicable)
- 4.3 Switch Settings
- 4.3.1 ACS bits 0-2 select the pattern to be displayed according to the octal number contained in them as follows: (individual routines are explained in Section 6.)
 - 0 Blank screen; no operation.
 - 1 Vertical line.
 - 2 Horizontal line.
 - 3 Diagonal line.
 - 4 Horizontal segmented sweep.
 - 5 Vertical segmented sweep.
 - 6 Blank screen; no operation.
 - 7 Blank screen; no operation.

The only pattern not selectable by these switches is the axial point plotter, which is separate from the others and must be entered by manually starting at address 100.

4.3.2 Axial Point Plotter

Starting at address 100 causes the program to immediately halt so that the following settings can be made before pressing CONTINUE:

ACS bit 0 = 1 to plot on X-axis from coordinate in ACS bits 8-17. ACS bit 0 = 0 to plot on Y-axis from coordinate in ACS bits 8-17.

Changes in ACS bits 8-17 may be made while program is displaying, with immediate results.

4.3.3 Horizontal and Vertical Segmented Sweep Patterns

ACS bits 9-17 select the segments of the CRT face to be illuminated by the chosen sweep pattern.

Bit a 1	Selects Segment Number
	(see diagram 11.1)
17	1
16	2
15	3
14	4
13	5
12	6
11	7
10	8
9	9

4.3.4 Light Pen Pattern

The letter P appears on the screen when ACS 0 - 17 = 0.

4.4 Start Up and/or Entry

4.4.1 Preliminary Procedures

Initial settings of 34 Display controls:

1.	Vertical sensitivity	lv/cm
2.	Horizontal sensitivity	lv/cm
3.	Sensitivity verniers	Adjust to suit*
4.	Horizontal display	Horizontal amp only
5.	Vertical input switch	DC
6.	Horizontal input switch	Any
7.	Sweep time/cm	Any
8.	Trigger controls	Anv

^{*}The exact setting of sensitivity and position controls should be such that the patterns produced by the program fill the CRT reticle entirely. The horizontal, vertical, and diagonal line patterns are programmed to pass through the center of the CRT and barely touch the extremities of the reticle grid.

9. Position controls
10. Focus
11. Intensity

Approximately 12 o'clock*
Adjust to suit***
Adjust to suit**

Set the switch register to the desired initial operating conditions before entering the program.

4.4.2 Entry

For axial plotting, set the address switches at 100. For all other patterns, set the address switches at 200. Press START.

4.4.3 Restart

Restarting is normally unnecessary as provisions have been made to transfer from pattern to pattern while the program is in progress by merely changing the setting of ACSO-2, the only exception being the manual transfer to or from the axial plotting mode.

4.5 Errors in Usage

Address	Comments		
100	Not an error halt. Occurs to allow operator time to set initial conditions for Axial Plot Program.		
730	DCF has failed to clear Display flag, or DSF always skips.		
734	Display flag has failed to cause an interrupt.		

4.6 Recovery from Such Errors

Address	Comments
100	Set initial conditions into ACS (4.3) and press CONTINUE.
730	No recovery. Program must be restarted.
734	Press CONTINUE to resume program.

^{*}The exact setting of sensitivity and position controls should be such that the patterns produced by the program fill the CRT reticle entirely. The horizontal, vertical, and diagonal line patterns are programmed to pass through the center of the CRT and barely touch the extremities of the reticle grid.

^{**}The intensity should be adjusted so that the unintensified beam just disappears from view.

^{***}It may be desirable, when using the sweep patterns to check the continuity of the phosphor coating, to defocus the beam and increase the intensity. Be sure to return the intensity to its former level.

- 5. RESTRICTIONS (Not Applicable)
- 6. DESCRIPTION
- 6.1 Discussion
- 6.1.1 Axial Plotting Mode

This program beginning at address 100 immediately executes a HLT instruction to allow the operator time to set up the AC switches for desired initial conditions. Upon continuing, these switches are examined. Program control branches to either an X-plot routine or a Y-plot routine (PLOX or PLOY) depending upon the polarity of ACS 0. Each routine loads its "active" coordinate register with the coordinate in ACS 8-17 and clears the other coordinate register. The point so referenced is then displayed and control is returned to the beginning of the program.

6.1.2 Dispatch

The dispatch routine (BEG) is entered at address 200. SR bits 0-2 are examined and program control is transferred to the subroutine responsible for the display of the pattern named by the number in these switches. If this number is 0 and all other ACS are 0 as well, control is transferred to the Light Pen subroutine. Return from all pattern subroutines except the Light Pen subroutine is accomplished automatically at the termination of a single pattern display or when all switch conditions have been met (segmented sweep). The Light Pen subroutine relinquishes program control only when the ACS register becomes nonzero. The return from pattern subroutines is to the dispatch routine where the same pattern subroutine is entered without a noticeable break if SR bits 0-2 are unchanged. A change in these bits causes a new subroutine to be entered and a new pattern displayed.

6.1.3 Vertical Line Subroutine (VLT)

This subroutine plots all points having an X-coordinate of 1000, beginning with X = 1000, Y = 0 and ending with X = 1000, and Y = 1777. After plotting the last point, the dispatch routine is reentered. The line displayed bisects the center.

6.1.4 Horizontal Line Subroutine (HTS)

This subroutine plots all points having a Y-coordinate of 1000, beginning with X = 0, Y = 1000 and ending with X = 1777, Y = 1000. After plotting the last point, the dispatch routine is reentered. The line displayed bisects the center.

6.1.5 Diagonal Line Subroutine (DLT)

This subroutine plots all points having equal X- and Y-coordinates, beginning with X = 0, Y = 0 and ending with X = 1777, Y = 1777. After plotting the last point, the dispatch routine is reentered. The line displayed bisects the center.

 ${f PDP}$

6.1.6 Common Line Pattern Subroutine (COM)

This subroutine is common to VLT, HTS, and DLT and accomplishes the actual incrementation of the coordinates and decides whether or not the pattern is complete.

6.1.7 Segmented Sweep Routines

6.1.7.1 General

The Segmented Sweep Routines provide a means of checking the uniformity of the phosphor coating on the CRT. In order to facilitate checking, the CRT reticle is divided into nine overlapping segments, (see diagram 11.1). Vertical or horizontal lines are swept over a segment several times causing the phosphor to remain illuminated. The SR bits 9-17 specify which segments are to be swept. If more than one switch is "on," the segments are illuminated in order. The sweep routines can also be used to check for AC ripple and decoder network deficiencies. The line which sweeps a segment contains every fourth point only. Thus, individual points are visible and the wake of the sweep has a ribbed appearance. Uneven trace spacing indicates improper adjustment of the decoder network. If the line appears wavy, ripple is present somewhere in the display circuitry. These conditions may be present concurrently. The sweep routines use a set of subroutines to do the actual sweeping. Description of these subroutines follow the description of the sweep routines.

6.1.7.2 Horizontal Segment Sweep Routine (HST)

The Horizontal Segment Sweep Routine first initializes the segment counter to segment 1. The program then sets the line and point increments for the plot subroutines. The segment counter contains all 0's except for one bit, the position of which determines the current segment (see diagram 11.1), before each sweep, the segment counter is ANDed with the contents of the switches. If the AC then contains 0, the program skips the segment, rotates the counter left one space, and tests again. After illuminating segment 9, the program returns to the dispatch routine.

When a given segment is selected, the AC contains the contents of the segment counter after the AND operation. The program then determines whether the segment is in the left, middle, or right portion of the screen.

The segment is then illuminated by using the plot subroutine four times to sweep right, left, right, left over the segment. If the adjacent segment on the right is to be illuminated, the program uses the plot subroutines a fifth time, sweeping to the right. This last sweep ends at the leftmost boundary of the adjacent segment to provide a smooth transition from one segment to the next.

If the adjacent segment is not to be illuminated, the segment counter is rotated until another segment is illuminated, or SR 9-17=0 and returns to the dispatch routine.

6.1.7.3 Vertical Segmented Sweep Routine (VST)

Except for the following differences, this program is the same as the horizontal sweep routines.

The segments are swept down, up, down, up and the smooth transition is to the segment below.

Since the vertical program sweeps the sections in a different order (1, 4, 7, 2, 5, 8, 3, 6, 9), the segment counter is either rotated left three spaces or right five spaces, depending on the number of the current segment.

6.1.7.4 Plot Subroutines

These subroutines can display a vertical line which sweeps either from left to right or from right to left. Similarly, a horizontal line can be swept upward or downward. The subroutine requires four parameters: the end points of the line and the boundaries of the sweep. Furthermore, two rates must be specified, the point rate and the line rate. The point rate determines the distance between displayed points on the line. For example, a point rate of 1 plots every point on the line; 4, every fourth point.

The line rate similarly determines the distance between displayed lines—again, I plots every line; 4, every fourth line. Only one bit of a rate number may be 1. After the six parameters are set, a JMS is executed. The JMS address determines the direction of the sweep and the orientation of the line.

6.1.8 Light Pen Routine (PEN)

This routine displays the letter P on the CRT. The light pen is used to sense this display. If the pen is operating correctly the program will complete the display by adding the letters EN and will continue to display the word PEN until the pen no longer sees light. When the program is first entered, the Light Pen flag is cleared by DCF and the Light Pen Skip flag instruction DCF is executed. If a skip occurs, the program halts at address 730, indicating that the DCF instruction failed to clear the flag or that DSF always skips. A loop responsible for the display of P is then entered. As part of this loop, the switch register is checked to determine that this register has remained in a 0 state. This allows the operator to exit from the Light Pen routine, and display other patterns at any time.

Actual display of the letter P is delegated to a subroutine (P), which in turn calls upon a line drawing routine (LINE) to trace the elements of the figure. The loop is reentered after the P is drawn and a program flag (SKIP) is interrogated to determine if an interrupt due to the light pen sensing light has occurred. If no light pen interrupt has occurred, the Light Pen flag is sensed to see if one was attempted. A halt at location 734 indicates to the operator that the pen saw light and sets its flag, but that no interrupt resulted; otherwise, the loop recycles.

When an interrupt due to the light pen occurs, program control shifts to a sub-routine (PENSE) which sets a program flag (SKIP) and returns control to the point of interruption.

6.2 Examples and/or Applications

6.2.1 Horizontal and Vertical Patterns

These patterns are useful for determining raster position and symmetry. The lines should be straight, just touch the edge of the reticle grid, and pass through the center of the screen.

6.2.2 Diagonal Line Pattern

This pattern is useful in the evaluation of decoder network operation and the detection of dropped, picked up, or interchanged bits. Proper operation yields a straight line, one point in width, proceeding from the lower left to the upper right of the reticle grid.

6.2.3 Horizontal and Vertical Segmented Sweep

SR 9-17 select any of nine segments on the screen to be checked as shown in diagram 11.1. Each segment selected is illuminated in turn by a vertical line moving horizontally or by a horizontal line moving vertically across the screen four or five times.

6.2.3.1 Uniformity of Phosphor Coating

Nonuniform or burnt-out spots on the screen will appear as burnt-out spots.

6.2.3.2 Ripple

If the lines appear wavy, ripple is present somewhere in the display circuitry.

6.2.3.3 Decoder Network

If the line traces are spaced unevenly, the decoder network is not functioning properly.

- 6.3 Scaling (Not Applicable)
- 7. METHODS

(see Section 6.1.)

- 8. FORMAT (Not Applicable)
- 9. EXECUTION TIME

Time between plots can be lengthened by the placement of a suitable LAM instruction in register 1176 (TIME + 1). The present contents, LAM-1, can be replaced by LAM-N where N > 1. Each increment will increase time between displays by 4.25 µsec.*

PDP 7

10. PROGRAM

10.4 Program Listing

DISPLAY TEST FUR PDP-4/7 700702 RPS 700601 unf 700701 RPS 700501 DSF BEG 200 BV 554 CHEX 1120 CLEAR 1155 COM 260 DCF 700702 DIR 1225 DISPAT 213 251 DLT DLICOM 227 DSF 700701 EN 1004 ENUCK 1213 EXEC 1123 GOH 322 GOV 454 HSI 270 HIS 241 HISCOM 225 IXH 333 IXV 464 LH 341 LINE 1047 LINER 1102 LNS 1203 MH 365 MV 526 762 PAP 100 PDN 657 PEN 725 PEND 740 PENNY 731 PENSE 750 612 PH PICKUP 1216 PLF 600 PLUX 111 PLUY 105 PHI 567 PIS 1204

GOV	454
IXV	464
TV	205
MV	526
ΒV	554
PRI	567
PLF	600
PH	612
PUP	
	046
PDN	657
PV	071
PEN	725
PENNY	731
PEND	
	740
PENSE	750
P	762
EN	1004
LINE	1047
LINER	1102
CHEX	1120
EXEC	
SEHVE	1143
CLEAR	1155
TIMEK	1175
LNS	1203
PTS	1204
P 1	1205
P2	1206
ρĞ	1207
P4	1210
P5	1211
P6	1212
ENUCK	1213
	1210
LUAY	1214
LUAX	1215
	1016
PICKUP	1216
SAU	1217
SKIP	
	1220
YEND	1221
Y	1222
XEND	
	1223
X	1224
DIH	1225
	1629
XMX	1226
XMN	1227
YMX	1230
YMN	1231
SEG	
	1232
DSF	100701
DCF	700702
UVI	100105


```
TYPE 34B DISPLAY TEST FOR PDP-4/7
DCF=700702
DSF#700701
11
               JMP SERVE
1001
/ROUTINE: TO: PLOT A POINT ON EITHER AXIS
PAP,
               HLT
               JMS TIMEK
               LAS.
               SPAVOLA
                                     /BIT Ø UP. VARY X COORDINATE
               JMP PLOX.
                                     /LOAD X REGISTER WITH ZERO
PLOY.
               DXL
               LAS
                                     /PLOT COORD. IN AS 8-17
               DYS
               JMP PAP+1
                                     /LOAD Y REGISTER WITH ZERO
PLOX.
               DYL
               LAS
                                     /PIOT COORD. IN AS 8-17
               DXS
               JMP PAP+1
2001
/DISPATCH ROUTINE
BEG.
               IOF
               JMS CLEAR
               LAS
               SNA
               JMP
                   PEN
               RTL
               RIL
               AND
                   17
               TAD JUMP DISPAT
               DAC
                   .+1
               HLT
DISPAT,
               JMP
                   BEG+2
                                     /Go TO VERT. LINE TEST
               JMP
                   VLTCOM
                                     /Gn TO HORIZ. LINE TEST
               JMP
                   HTSCOM
                                     /Go TO DIAG. LINE TEST
               JMP
                   DLTCOM
                                     /Gn TO HORIZ. SWEEP TEST
               JMP
                   HST
                                     /Go TO VERT. SWEEP TEST
                   VST
               JMP
               JMP
                   BEG+2
               JMP BEG+2
VLTCUM,
               JMS VLT
               JMP BEG+2
HISCUM,
               JMS HTS
               JMP BEG+2
```


PDP

LIBRARY

```
JMS DLT
DLTCUM,
               JMP BEG+2
/VERTICAL LINE TEST
VLT,
               LAW 1000 -
               DXL
               CLA
               DYS
               JMS COM
               JMP .-2
               JMP I VLT
/HORIZONTAL LINE TEST
HIS.
               LAW 1000
               DYL
               CLA
               DXS
               JMS COM
               JMP .-2
               JMP I HTS
/DIAGONAL LINE TEST
DLT.
                CLA
                DXL
                nYS
                JMS COM
                JMP DLT+2
                JMP I DLT
/COMMON LINE TEST ROUTINE
DUM,
                NOP
                NOP
                TAD (1
                AND (1777
                                     JUNFINISHED LINE
                SNA
                ISZ COM
                                     /FINISHED LINE
                JMP I COM
THORIZONIAL SWEEP TEST
HST,
               LAC (1
                                     /INITIALIZE SEGMENT INDICATOR
                DAC SEG
                LAS
                AND SAEG
                SNA
                                     /CURRENT SEGMENT NOT REQUESTED
                JMP IXH
                                     /SFT Y LIMITS FOR TOP THREE
               LAC P4
                DAC YHMN
```

```
LAC PO
              DAC Y+MX
              LAC SEG
              AND (7
              SLA
              JMP GUH
              LAU P2
                                   THEOUESTED SEGMENT NOT IN TUP THREE
              DAC YMN
                                   ISFT Y LIMITS FOR MIDDLE THREE
              LAC PS
              DAG YMX
              LAC SEG
              AND (70
              SZA
              JMP GOH
              LAC PI
                                   IRFO. SEGMENT NOT IN MIDDLE THREE
              MAC YMN
                                   ISPT Y LIMITS FOR MIDDLE THREE
              IAU PS
              DAG YMX
GUH,
              LAU SER
              AND (111
              SLA
                                   PREQUESTED SEGMENT IN LEFT THREE
              JMP LH
              I AU SEG
              VND (555
              SZA
              HM 4ML
                                   INFQUESTED SEGMENT IN MIDDLE THREE
                                    IREQUESIED SEGMENT IN RIGHT THREE
              HR YML
IXH,
              LAC SEG
              RALYCLL
               AND (777
              SNA
              JMH HEG
                                   VLAST SEGMENT DISPOSED OF
                                    ICHECK NEXT HORIZ. SEQUENTIAL SEGM
              JMP HST+1
ANOUTINE TO CONTROL ILLUMINATION OF LEFT SEGMENT
LH.
              IAC PI
              DAC X+MN
                                   /SET X LIMITS
              LAC PS
              DAC X+MX
              JMS PRT
                                   ISWEEP RIGHT
              JMS PLF
                                   ISWEEP LEFT
              JMS PHT
                                   ISHEEP RIGHT
              JMS PLF
                                   ISWEEP LEFT
              LAS
              4NU (777
              RARYCLL
              AND SEG
              SNA
              HXI 9ML
                                   /CHECK NEXT SEGMENT
```


INFXT SEQUENTIAL SEGMENT ILLUM.

```
CMA
               ADD P2
               DAC XMX
               JMS PRT
                                    /SWEEP RIGHT
               JMP IXH
PROUTINE TO CONTROL ILLUMINATION OF MIDDLE SEGMENT
MH,
               LAC P2
               DAC XMN
                                    /SFT X LIMITS
               IAC PS
               DAC XMX
               JMS PRT
                                    /SWEEP RIGHT
               JMS PLF
                                    /SWEEP LEFT
               JMS PRT
                                    ISWEEP RIGHT
               JMS PLF
                                    /SWEEP LEFT
               LAS
               AND (777
               RARYCLL
               AND SEG
               SNA
               HXI 9ML
                                    JCHECK NEXT SEGMENT
               LAC LNS
                                    INFXT SEQUENTIAL SEGMENT ILLUM.
               CMA
                          /RESET X LIMIT
               ADD P4
               DAC XMX
               JMS PRT
                                    /SWEEP HIGHT
               JMP IXH
/ROUTINE TO CONTROL ILLUMINATION OF RIGHT SEGMENT
RH,
               LAC P4
               D'AC XMN
                                    /SFT X LIMITS
               LAC P6
               DAC XMX
               JMS PRT
                                    /SWEEP RIGHT
               JMS PLF
                                    ISWEEP LEFT .
               JMS PRT
                                    ISWEEP RIGHT
               JMS PLF
                                    /SWEEP LEFT
               HXI 9ML
                                    JCHECK NEXT SEGMENT
```

LAC L+NS

VERTICAL SWE		
VST,	LAC (1	
		/INITIALIZE SEGMENT INDICATOR
	LAS	
*	AND SEG	
	SNA	
	JMP IXV	CHRRENT SEGMENT NOT REQUESTED
	AND (333	
	SZA	
	JMP VS1	/RFG. SEGMENT NOT IN RIGHT THREE
		TREGO SEGMENT NOT AN NAGUL LINNE
	LAC P4	/SPT X LIMITS FOR RIGHT THREE
	DAC XMN	
	LAC P6	
	DAC XMX	
	JMP GOV	
VS1.	AND (555	
, ,	SZA	
	JMP VS2	/RFQ. SEGMENT IN LEFT THREE
	IAC P2	
		VREQ. SEGMENT IN MIDDLE THREE
	DAC XMN	ISET X LIMITS FOR MIDDLE THREE
	LAC P5	
	DAC XMX	
	JMP GOV	
VS2,	LAC P1	/SFT X LIMITS FOR LEFT THREE
	DAC XMN	
	LAU P3	
	DAC XMX	
GOV,	LAC SEG	
	AND (770	
	SNA	
		All a company that make the first
	JMP TV	/RFQ. SEGMENT IN TOP THREE
	ANU (70	
	ANA	
	JMP BV	/RPG. SEGMENT IN BOTTOM THREE
	JMP MV	/RFQ. SEGMENT IN MIDDLE THREE
1XV.	LAC SEG	
	RALYCLL	
	AND (777	
	SNA	
	JMP BEG	/LAST SEGMENT DISPOSED OF
	RTL	ATV21 SEGMENT DISLOSED OF
	AND (777	
	SZA	ICHECK NEXT VERTICALLY SEQUENTIAL
	JMP VST+1	
	I AC SEG	/Different Rotation Needed (SEGS 7.8.9)
	RTR	
	RTH	
	RAK	
	JMP VST+1	ICHECK NEXT VEHICALLY SEQUENTIAL
	- · · · · · · · · · · · · · · · · · · ·	ACHERY MENT ABBLICANTHE SERBENITAL


```
/ROUTINE TO CONTROL ILLUMINATION OF TOP SEGMENT
TV.
              LAC P6
                                    /SET Y LIMITS FOR TOP SEGMENT
              DAC YMX
              LAC P4
              DAC YMN
               JMS PDN
                                    /SHEEP DOWN
               JMS PUP
                                    /SWEEP UP
               JMS PDN
                                    /SWEEP DOWN
               JMS PUP
                                    /SWEEP UP
              I AS
               AND (777
               CLL
               RTH
               RAK
               AND SEG
               SNA
               VXI 9ML
                                    JCHECK NEXT SEGMENT
              LAC PS
                                    INFXT SEQUENTIAL SEGMENT ILLUMINATED
               DAC YMN
                                    /RESET Y LIMIT
               JMS PDN
                                    /SWEEP DOWN
               JMP IXV
PROUTINE TO CONTROL ILLUMINATION OF MIDDLE SEGMENT
MV,
              LAC LNS
               CMA
                                    /SFT Y LIMITS
               AUD P5
               DAC YMX
              LAC P2
               DAC YMN
               JMS PUN
                                    /SWEEP DOWN
               JMS PUP
                                    ISWEEP UP
               JMS PDN
                                    /SWEEP DOWN
               JMS PUP
                                    /SWEEP UP
              LAS
               AND (777
              CLL
              RIK
               PAR
               AND SEG
              SNA
               JMP IXV
                                    /CHECK NEXT SEGMENT
              LAC P3
                                    INFXT SEQUENTIAL SEGMENT ILLUMINATED
              DAC YMN
                                    /RFSET Y LIMIT
               JMS PDN
                                    /SWEEP DOWN
              JMP IXV
```



```
PROUTINE TO CONTROL ILLUMINATION OF BOTTOM SEGMENT
BV,
              LAC LNS
              CMA
              ADD P3
              DAC YMX
              AC P1
              DAC YMN
               JMS PDN
                                   ISWEEP DOWN
              JMS PUP
                                   ISWEEP UP
              JMS PUN
                                   /SWEEP DOWN
              JMS PUP
                                   /SWEEP UP
              JMP IXV
PROUTINE TO CONTROL PLOTTING TO THE RIGHT
PRT.
                                   /SFT DIRECTION INDICATOR TO "RIGHT"
              DZM D+IR
              LAC XMN
              DXL
              DAC +X
              LAC XMX
                                              VSET RIGHT HAND LIMIT
              DAC X+END
               JMS PH
                                   /EXCUTE
              JMP I PRT
                                    /RFTURN
AROUTINE TO CONTROL PLOTTING TO THE LEFT
PLF,
              LAC (400000
              DAC DIR
                                   VSET DIRECTION INDICATOR TO "LEFT"
              LAC XMX
              DXL
              DAC X
              LAC XMN
              DAG XEND
                                   /SET LEFT HAND LIMIT
              JMS PH
                                    /EYECUTE
              JMP I PLF
                                              IRETURN
INDUTINE TO EXECUTE HORIZONTAL SWEEPING
PH,
              0
              LAC YMN
              DAU +Y
              DYS
                                   /DISPLAY A POINT
              NOP
              CMA
              AUU YMX
              SAU (LAM
```



```
JEND OF LINE
               JMP .+4
                                    JUNFINISHED LINE
               LAC PTS
                                    IRFSET Y COORDINATE
               TAU Y
                                    IDISPLAY NEXT POINT
               JMP PH+2
               LAC X
               CMA
               AUD XEND
               SAU (LAM
                                    JEND OF SWEEP
               JMP I PH
                                    JUNFINISHED SWEEP
               LAC DIR
               RALYCLL
               LAC LNS
               SZL
               CMA
                                    VRESET X COORDINATE
               VUD X
               SAU (LAM
               CLA
               DXL
               DAC X
               JMP PH+1
                                    ISTART NEXT LINE
PROUTINE TO CONTROL UPWARDS PLOTTING
PUP,
                                    /SET DIRECTION INDICATOR TO "UP"
               DZM DIR
               LAC YMN
               DYL
               DAC Y
               LAC YMX
                                               ISET UPPER LIMIT
               DAC Y-END
                                    /EXECUTE
               JMS PV
                                               IRETURN
               JMP I PUP
PROUTINE TO CONTROL DOWNWARDS PLOTTING
PUN.
               LAC (400000
                                    /SET DIRECTION INDICATOR TO "DOWN"
               DAC DIR
               LAC YMX
               DYL
               DAC Y
               LÁC YMN
                                    /SFT LOWER LIMIT
               DAU YEND
                                    /EXECUTE
               JMS PV
                                               IRETURN
               JMP I PDN
INDUTINE TO EXECUTE VERTICAL SWEEPING
```

PV.

LAC XMN


```
ADD XMX
               SAU (LAM
                                    /END OF LINE
               AMP . +4
              LAG PTS
                                    JUMPINISHED LINE
                                    INFSET X COORDINATE
               TAU X
                                    /DISPLAY NEXT POINT
               JMP PV+2
               LAU Y
               CMA
               AUD YEND
               SAU (LAM
               JMP T PV
                                    JEND OF SWEEP
                                    JUMPINISHED SWEEP
               LAU DIR
               RALYCLL
               LAC LIVS
               SZL
               CMA
                                    VRESET Y CORORDINATE
               AUD Y
               SAU (LAM
               CLA
               DYL
               DAC Y
               JMP PY+1
                                    ISTART NEXT LINE
/LIGHT PEN HOUTINE
               DUF
               nSF
               JMH HENNY
               HLT
                                    FOR FAILED TO CLEAR DISPLAY FLAG
               nsf
               JMF .+3
               NUP
               HLT
                                    IDISPLAY PLAG FAILED TO CAUSE INTERRUPT
               LAS
               SZA
               JMH BEG.
               DZM S+KIP
               TUN
```

10+SPLAY A PHINT

nXS

NOP CMA

PEN,

PENNY,

PEND.

PENSE,

JMS P 15% SKIP JMP PENNY JMS EN nCF

JMH PEND

nor nSF


```
LAM
               DAU SKIP
               LAC 0
               RAL
               LAU SAC
               JMP I Ø
INDUTINE TO DRAW THE LETTER P
P.
               nZM X
               LAW 400
               DAC Y
               JMS LINE
               000177
               tSZ X
               JMS LINE
               100377
               LAW 776
               DAC Y
               JMS LINE
               200000
               LAW 376
               DAC X
               JMS LINE
               300001
               4 I 4ML
```

JMP .+2

JMP PEN+3

INDUTINE TO DRAW EN EN, LAW 777 DAC Y LAW 600 DAC X JMS LINE 101177 LAW 400 DAC Y JMS LINE 300000 152 Y JMS LINE 000776 ISZ X LAW 600 nAC Y JMS LINE 161177 LAW 1777


```
DAC X 77 NE X 77 NE 20040 Y 7 NE 20040 Y 7 NE 20040 Y 7 NE 20040 Y 7 NE 20040 Y 1 N
```

```
/ROUTINE TO DRAW A LINE
LINE
               LAC I LINE
               RIL
               RIL
               AND 17
               RALYCLL
               TAU (LAC EXEC
               DAC PHICKUP
               XCT PICKUP
               DAC X+ADJ
               ISZ PICKUP
               XCT PICKUP
               DAC Y-ADJ
               LAC I LINE
               ISZ LINE
               AND (1777
               DAC E+NDOK
               LAC YADJ
               RAH
               LAC (CHEX+1
               SNL
               TAD (1
               DAC CHEX
               LAC X
               DXL
               LAC Y
```

nYS


```
JMS TIMEK
LINEK,
               LAC X
                TAD XADJ
               DAC X
               nXL
               LAC
               TAD YADJ
               DACY
               DYS
               XCT I CHEX
                AND (1777
               SAD ENDCK
               JMP I LINE
                JMP LINER
CHEX.
               LAC Y
               LAUX
EXEC.
               0
                1
                ١.
                Ø
               Ø
               LAM
               LAM
                Ø
               LAM
               LAM
               LAM
               LAM
```

```
VINTERRUPT ROUTINE
SERVE,

DAU S+AC
DSF

JMP .+2

JMP PENSE

JMS CLEAR

LAC Ø

RAL

LAC SAC
ION

JMP I Ø
```

/CLEAR FLAGS ROUTINE


```
CLEAR.
                10T 3302
                                       /Php-7 CLEAR ALL
                CLOF
                RHH
                PCF
                KKB
                TOF
                700704
                                       /Incr
                CPUF
                LSUF
                LPCF
                CHRE
                NOP
                NOP
                NOP
                JMP I CLEAR
/TIME DELAY
TIMEK,
                LAM-1
                DAC CLEAR
                ISZ CLEAR
                JMP .-1
                JMP I TIMEK
/VARIABLES
LNS.
                2
PIS.
                4
91,
                Ø
P2,
                46 W
PS,
                574
P4,
                1204
P5,
                1320
P6,
                1774
VARIABLES
SIART
```


DIAGRAMSegmented Sweep Program

12. REFERENCES (Not Applicable)

