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Preface

This manual presents a detailed technical description of the DWMVA I/O
adapter that connects a VMEbus to the XMI bus of a VAX 6000 computer
system. It provides complete discussions of the hardware operations of
the component modules and bit-level functional descriptions of all adapter
registers.

Audience
This manual is for software developers who write driver and application
programs for the DWMVA I/O adapter.

Document Structure
The manual consists of eight chapters and two appendixes.

• Chapter 1, Overview, describes the major components of the
DWMVA adapter, provides a summary of the buses, and introduces
the types of DWMVA transactions.

• Chapter 2, Address Mapping, discusses mapping of VME addresses
to XMI address space. The chapter explains how an XMI address is
translated to a VME address in a CPU transaction, and how a VME
address is translated to an XMI address in a DMA transaction.

• Chapter 3, VME System Control, describes the components and
functions of the VME system controller, including the VME arbitration
subsystem.

• Chapter 4, Transactions, discusses the two types of transactions,
CPU and DMA, processed by the DWMVA. CPU transactions are
initiated by the CPU and perform reads and writes on VME devices,
while DMA transactions are initiated by a VME device and perform
reads and writes to XMI memory. This chapter also discusses the
translation of commands over the XMI to the VMEbus and from the
VMEbus to the XMI data paths.

• Chapter 5, VMEbus Interface, discusses the substructures of the
VMEbus and describes the VMEbus signals.

• Chapter 6, Interrupts, discusses the VME-to-XMI interrupt protocol,
the interrupt request levels, and interrupt handler selection.

• Chapter 7, Registers, provides bit-level descriptions of functions
performed by the register sets on the two modules of the DWMVA
adapter.

• Chapter 8, Initialization, discusses the various methods used to
initialize the DWMVA adapter.

• Appendix A, VME Interface Signal List, gives the pin assignments
on the two connectors of the VME interface.
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Preface

• Appendix B, VME-to-XMI Byte Swapping, discusses how the
DWMVA implements byte swapping to allow VME data to appear
correctly on the XMI bus and XMI data to appear correctly on the
VMEbus.

A Glossary provides additional reference support.

Associated Documents
Other documents related to the DWMVA adapter include:

• DWMVA VME Adapter Installation Guide, EK–DWMVA–IN

Describes the installation of the DWMVA I/O adapter in a VAX 6000
computer system.

• BA62 VME Enclosure, EK–VME01–IN

Describes the BA62 enclosure that is used as an expansion cabinet to
provide a VMEbus backplane and to house the C3200 module.

• IEEE Standard for a Versatile Backplane Bus: VMEbus, IEEE Std
1014, 1987.

Provides complete specifications for the VMEbus.

• VMS Version 5.4-3 Release Notes, AA–PHUFA–TE

Includes a chapter (Open Bus Driver Support Features) that discusses
VMS support for VMEbus devices.

• VMS Device Support Manual, AA-PBPWA-TE

Describes the components of a VMS device driver and the basic rules
that device drivers must observe.

• VMS Device Support Reference Manual, AA-PBPXA-TE

Describes driver data structures, routines, and entry points.

x



1 Overview

The DWMVA adapter connects to the I/O segment of the VAX 6000
XMI bus and interfaces the synchronous XMI bus to the VMEbus, an
asynchronous industry-standard bus. The DWMVA implements the
handshaking protocol and acts as a channel for data flow between the
two buses. Figure 1–1 is a block diagram showing the DWMVA adapter on
the XMI bus.

Figure 1–1 DWMVA Adapter on the XMI Bus
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1.1 Major Components
The DWMVA subsystem consists of two modules:

• T2018 (DWMVA/A)

• C3200 (DWMVA/B)

The T2018 module is on the XMI bus and the C3200 module is on the
VMEbus. The two modules are connected through the IBUS, which is a
physical path between the system XMI bus and the VMEbus. Figure 1–2
shows a block diagram of the DWMVA adapter.
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Figure 1–2 DWMVA Block Diagram
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The T2018 module contains the XMI and IBUS interfaces, registers, a
data buffer, and state machines for transmitting and receiving data. The
XMI Corner is a circuit area on all XMI nodes that provides the interface
to the XMI bus. This corner handles the distribution of the XMI clock,
control, and data lines to the T2018 module. The T2018 allows access to
XMI addresses from VME through on-board 64K page map registers.

The C3200 module contains the following functional blocks: VME and
IBUS interfaces, control logic, registers, data buffers, the VME interrupt
handler, and the VME system controller (VSC).

1.2 Major Buses
Three major buses are used to exchange information between the host
computer system and an I/O device connected to the VMEbus:

• XMI bus

• VMEbus

• IBUS

The T2018 uses the XMI bus to communicate with the processor. The
C3200 communicates with a VME device through the VMEbus. The
IBUS provides communication between the T2018 module and the C3200
module.

1–2



Overview

1.2.1 XMI Bus
The XMI is a 64-bit wide, pended, synchronous bus that can process
multiple read requests at any given time. It has a cycle time of 64 ns,
allowing an effective bandwidth on the bus of 100 Mbytes/second. The
XMI protocol supports quadword, octaword, and hexword reads and writes
to XMI memory space. The DWMVA, however, allows only quadword
and octaword transactions to XMI memory. The DWMVA accepts only
longword transactions to its address space.

1.2.2 VMEbus
The VMEbus is an asynchronous, interlocked bus that processes one
transaction at a time. The VME protocol, defined by IEEE 1014, consists
of four subbuses: the data transfer bus, the arbitration bus, the priority
interrupt bus, and the utility bus. The VME supports 1-, 2-, 3-, and 4-byte
transfers as well as block transactions consisting of multiple 1-, 2-, or
4-byte transfers over the data transfer bus, a nonmultiplexed data/address
path. The VME has an effective bandwidth of 40 Mbytes/second.

Chapter 5 provides an overview of the VMEbus. For a more complete
treatment of the VMEbus, refer to the IEEE VMEbus specification. (See,
for example, VMEbus, A standard specification for a versatile backplane
bus, IEEE Computer Society Publication P1014, March 1987.)

1.2.3 IBUS
The IBUS is the communications path between the two modules of the
DWMVA. The IBUS data path consists of a 4-bit function field, IB I<3:0>,
and a 32-bit, multiplexed address/data field, IB D<31:0>. The IBUS can
transfer address or data every 200 ns, yielding an effective bandwidth of
16 Mbytes/second.

In addition to the bidirectional lines (address and data), the IBUS includes
many lines to carry control signals. The signals driven from the T2018 to
the C3200 are used to indicate the status of the T2018’s buffers, while the
signals from the C3200 to the T2018 are used to control the operation of
the IBUS.

1.3 Transactions
The DWMVA conducts two types of transactions:

• CPU transactions

• DMA transactions

A CPU transaction is initiated by a processor on the XMI bus. The
processor is the commander. The DWMVA becomes the responder. A
DMA transaction begins on the VMEbus and targets XMI memory through
the DWMVA adapter. Transactions are discussed in Chapter 4.

1–3



Overview

1.4 Interrupts
The DWMVA accepts longword-aligned VME interrupts and generates XMI
INTR transactions in response to them. The DWMVA (or any other XMI
device) does not issue interrupts to the VMEbus. Interrupts are discussed
in Chapter 6.
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2 Address Mapping

This chapter discusses the XMI I/O address space and explains how the
VME address space is mapped to the XMI I/O adapter space.

The XMI supports one terabyte (240) of address space, accessible with
40-bit addresses. Since a VAX 6000 series system supports 30- or 32-bit
addresses, the maximum space available to a single system on the XMI is
(232) bytes, which is 4 gigabytes.

The VAX 6000 series systems use one of three addressing modes depending
on the model and the environment.

• 30-bit addressing (Models 200 through 500)

• 32-bit addressing (Model 500 and above)

• 30-bit addressing in a 32-bit environment (Model 500 and above)

Figure 2–1 shows how memory and I/O space are divided in the 30-bit and
the 32-bit addressing modes.

Figure 2–1 XMI Memory and I/O Address Space
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2.1 XMI Memory Space
Memory address space is the lower part of the address space no matter
which address mode, 30-bit or 32-bit, is used. A VAX 6000 system using
30-bit addressing cannot access the 3 Gbytes of memory space between
address 2000 0000 (hex) and DFFF FFFF.

2.2 XMI I/O Space
The maximum amount of I/O space available for a VAX 6000 is 512
Mbytes regardless of the addressing mode. The I/O space is divided into
three sections:

• Private space

• Nodespace

• I/O adapter space

The I/O space is allocated as shown in Figure 2–2.

Figure 2–2 XMI I/O Space Address Allocation
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2.2.1 Private Space
The XMI private space is a 24-Mbyte address region located from E000
0000 to E17F FFFF (32-bit address) or from 2000 0000 to 217F FFFF (30-
bit address). References to XMI private space are serviced by resources
local to a node, such as local device CSRs and boot ROM. The references
are not broadcast on the XMI.

2.2.2 Nodespace
The VAX 6000 platform XMI nodespace is a collection of sixteen 512-
Kbyte regions located from E180 0000 to E1FF FFFF (32-bit address)
or from 2180 0000 to 21FF FFFF (30-bit address). Each XMI node is
allocated one of the fourteen 512-Kbyte regions for its control and status
registers (nodes 0 and F are not implemented). The starting address of
the 512-Kbyte region associated with a given node (BB) is computed as
follows:

BB = E180 0000 + Node ID * 8 0000 (32-bit address)

BB = 2180 0000 + Node ID * 8 0000 (30-bit address)

Table 2–1 gives the address ranges of the 14 XMI nodespace regions
implemented on the VAX 6000 series.

Table 2–1 XMI Nodespace Addresses

Slot Node Nodespace I/O Window Space (DWMVA)

1 1 E188 0000 – E18F FFFF1 E200 0000 – E3FF FFFF

2 2 E190 0000 – E197 FFFF E400 0000 – E5FF FFFF

3 3 E198 0000 – E19F FFFF E600 0000 – E7FF FFFF

4 4 E1A0 0000 – E1A7 FFFF E800 0000 – E9FF FFFF

52 5 E1A8 0000 – E1AF FFFF EA00 0000 – EBFF FFFF

6 6 E1B0 0000 – E1B7 FFFF N/A3

7 7 E1B8 0000 – E1BF FFFF N/A3

8 8 E1C0 0000 – E1C7 FFFF N/A3

9 9 E1C8 0000 – E1CF FFFF N/A3

102 A E1D0 0000 – E1D7 FFFF F400 0000 – F5FF FFFF

11 B E1D8 0000 – E1DF FFFF F600 0000 – F7FF FFFF

12 C E1E0 0000 – E1E7 FFFF F800 0000 – F9FF FFFF

13 D E1E8 0000 – E1EF FFFF FA00 0000 – FBFF FFFF

14 E E1F0 0000 – E1F7 FFFF FC00 0000 – FDFF FFFF

132-bit addresses are converted to 30-bit addresses by changing the most significant
byte from E to 2 and from F to 3.
2These slots cannot be used on VAX 6000 Models 200, 300, and 400 due to processor
restrictions.
3Slots in the center of the XMI card cage have no I/O connectors because of the
daughter card’s presence.
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2.2.3 I/O Adapter Address Space
The XMI I/O adapter address space consists of ten 32-Mbyte address
regions (windows) used to access I/O devices. The I/O adapter address
space accessed by the DWMVA is determined by the XMI slot in which
it is installed. Table 2–1 also shows the I/O window space for each XMI
adapter. All 4 gigabytes of the VME address space are accessible from a
32-Mbyte I/O window space.

The DWMVA accepts only longword-length references to its XMI adapter
address space. These references are then translated to their corresponding
VME transactions or, internally, as DWMVA register transactions.

2.3 VME Address Space
The VMEbus supports 4 gigabytes (232) of address space. Unlike the XMI,
the VME address space is not divided into memory and I/O spaces. To
address a byte in this space, VME data transfer bus lines DS0*, DS1*, and
LWORD* are used in conjunction with the VME address lines A01–A31.

The VMEbus allows devices of different address widths to coexist on the
bus at any given time. The address width can be 16 bits, 24 bits, or 32
bits. The master indicates the nature of the current address by asserting
an appropriate value on the VME address modifier lines (see Section 5.1.1).
Table 2–2 shows the address space accessible with each address mode.

Table 2–2 VME Address Modes

Address Mode Address Width Accessible VME Space

Extended 32 bits 4 Gbytes

Standard 24 bits 16 Mbytes

Short 16 bits 64 Kbytes

Figure 2–3 shows the VME address map.

NOTE: In VME-initiated (DMA) transactions, the DWMVA makes a
distinction between addresses it will accept and addresses it will
not by using the VME Address Range Enable Register (see VESR
in Chapter 7). If enabled, the DWMVA accepts any extended VME
address with VME address bits A29–A31 = 000. The DWMVA can
also be configured to accept standard VME addresses with VME
address bit A23 = 0. The DWMVA does not support short address
DMA transactions.
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Since the VMEbus and the XMI use different addressing schemes,
address translation is required to move data from one bus to the other.
The DWMVA translates XMI addresses to VME addresses in CPU
transactions, when data is moved from the XMI bus to the VMEbus.
Conversely, the DWMVA translates VME addresses to XMI addresses in
DMA transactions, when data is moved from the VMEbus to the XMI.

Figure 2–3 VME Address Map
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2.4 Address Translation in CPU Transactions
In a CPU transaction, the 4-Gbyte VME address space is mapped to the
32-Mbyte XMI adapter space by decoding the 32-bit CPU transaction
command as shown in Figure 2–4 and Figure 2–5.

Figure 2–4 CPU Transaction Command Format
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The fields of the CPU transaction command are described in Table 2–3.

Table 2–3 CPU Transaction Command

Bit Field Description

<31:25> XMI Node—This field is used to access a 32-Mbyte region of DWMVA
adapter space on the XMI. Each XMI node responds to a unique value
in this field.

<24:20> VAOR Select—The VAOR Select field selects one of the 32 CPU
Address Offset Registers that is used to supply the upper 12
address bits, address length, and data length information for the
CPU transaction. This field selects the offset value that is appended
to the VME address field (bits <19:0>) of the CPU transaction address
to generate the corresponding VME address. See Chapter 7 for
information on the CPU Address Offset Registers.

<19:0> VME Address—This field contains the lower 20 bits of the VME
address for the CPU transaction.
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Figure 2–5 shows how VME addresses are generated from XMI addresses.
The XMI address (CPU transaction address, shown at the top) provides the
lower 20 bits of the VME address. The other bits of the VME address as
well as the address length and data length information for the transaction
are provided by the appropriate fields of the CPU Transaction Address
Offset Register (see Chapter 7) determined by the VAOR Select field. This
address generation scheme allows access to any 32-Mbyte VME address
region through the 32-Mbyte XMI window. Each VME address region
consists of 32 1-Mbyte sections and is selected by one of the 32 values
provided by the VAOR Select field.

Figure 2–5 Building VME Addresses
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Address Mapping

2.5 Address Translation in DMA Transactions
This section discusses translation of VME addresses into XMI physical
(VAX) addresses in DMA read/write transactions. The DWMVA
implements five modes of VAX address translation:

• No address translation

• 34-bit VAX address translation

• 40-bit VAX address translation

• 40-bit VAX address translation using 4-Kbyte page size

• 40-bit VAX address translation using 8-Kbyte page size

The DWMVA defaults to no address translation mode at power-up or node
reset. The address translation mode is selected at system initialization by
loading the Mapping Register Mode Enable field (bits<19:17> of the T2018
Utility Register) with the appropriate configuration.

NOTE: Normally, the VMS operating system uses the 34-bit address
translation mode.
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2.5.1 No Address Translation
In no address translation mode the XMI physical address is identical to
the VME address. The upper address bits of the extended XMI address
format, XMI A<39:29>, are forced to zero. The steps used to generate
a VAX address from a VME address using no translation mode are as
follows:

1 Check Upper Address Bit

VME A29–A31 must be zero.

2 Generate XMI Address

Load zeros into XMI A<39:29>.
Load VME A0–A28 into XMI A<28:0>.

Figure 2–6 shows the 29-bit VAX address generation in no translation
mode.

Figure 2–6 No Translation Mode VAX Address

3
1

2
9

2
8 1

VME A01−A31

XMI A<39:0>

0

DSO*
DSI*
LWORD*

2
9

2
8 1 0

0 XMI Physical Address

Forced to zero by DWMVA

msb−p419a−91

0 0

00 0

3
9

00

2–9



Address Mapping

2.5.2 34-Bit VAX Address Translation
In 34-bit VAX address translation mode (see Figure 2–7), the DWMVA
can map only the first 32 Mbytes of VME memory address space to XMI
memory address space. Since the page size is 512 bytes, this is the
maximum range that can be mapped with 64K page map register (PMR)
entries.

Figure 2–7 34-Bit VAX Address Translation
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The translation of a VME DMA address to a 34-bit XMI address uses VME
address bits VME A09–A24 as an index into the PMRs. These bits select
the page map register entry (PMRE) that contains the required VAX page
frame number (PFN). Because in this mode the DWMVA only maps the
first 32 Mbytes of VME memory address space, the upper bits of the VME
address, VME A25–A31, must be zero. The validity of the PFN is checked
and if good the PFN is used to complete the DMA address translation.
The 34-bit physical address is obtained by combining the PFN field of the
PMRE (PMRE<24:0>) with VME address bits VME A0–A08. The unused
upper address bits (XMI A<39:34>) are forced to zero. The steps used for
34-bit address translation are as follows:

1 Check Upper Address Bits

VME A25–A31 must all be zero.

2 Access PMR for PMRE

VME address VME A09–A24 used as an index into the PMR to
fetch the PMRE.

3 Check PMRE Valid Bit

If PMRE<31> = 1, then PFN is valid.
If PMRE<31> = 0, then PFN is invalid and transaction is aborted.

4 ECC Check

If no error or correctable error, then PFN is good.
If uncorrectable error, then PFN is bad and the transaction is
aborted.

5 Generate XMI Address

Load zeros into XMI A<39:34>.
Load PMRE<24:0> into XMI A<33:9>.
Load VME A0–A08 into XMI A<8:0>.
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2.5.3 40-Bit VAX Address Translation
The 40-bit VAX address translation mode uses three different page sizes:
512 bytes, 4 Kbytes, and 8 Kbytes. The mapped address range depends on
the selected page size.

2.5.3.1 512-Byte Page Size
When using a 512-byte page size in the 40-bit VAX address translation
mode, the DWMVA maps only the first 32 Mbytes of VME memory
address space to XMI memory address space (see Figure 2–8). This is
the maximum range that can be mapped with 64K PMR entries.

Figure 2–8 40-Bit VAX Address Translation Using 512-Byte Page Size
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The translation of a VME DMA address to a 40-bit XMI address uses
VME address bits VME A09–A24 as an index into the PMRs. These bits
select the PMRE that contains the required PFN. Because in this mode
the DWMVA only maps the first 32 Mbytes of VME memory address space,
the upper address bits of the VME address, VME A25–A31, must be zero.
The validity of the PFN is checked and if good the PFN is used to complete
the DMA address translation. The 40-bit physical address is obtained by
combining the PFN field of the PMRE (PMRE<29:0>) with VME address
bits VME A0–A08. The steps used for 40-bit address translation are as
follows:

1 Check Upper Address Bits

VME A25–A31 must all be zero.

2 Access PMR for PMRE

VME address VME A09–A24 used as an index into the PMR to
fetch the PMRE.

3 Check PMRE Valid Bit

If PMRE<31> = 1, then PFN is valid.
If PMRE<31> = 0, then PFN is invalid and transaction is aborted.

4 ECC Check

If no error or correctable error, then PFN is good.
If uncorrectable error, then PFN is bad and the transaction is
aborted.

5 Generate XMI Address

Load zero into XMI A<39>.
Load PMRE<29:0> into XMI A<38:9>.
Load VME A0–A08 into XMI A<8:0>.
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2.5.3.2 4-Kbyte Page Size
When using a 4-Kbyte page size in 40-bit VAX address translation
mode, the DWMVA maps only the first 256 Mbytes of VME memory
address space to XMI memory address space (see Figure 2–9). This is the
maximum range that can be mapped with 64K PMR entries.

Figure 2–9 40-Bit VAX Address Translation Using 4-Kbyte Page Size
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The 40-bit translation of a VME DMA address using 4-Kbyte page sizes
uses VME address bits VME A12–A27 as an index into the PMRs. These
bits select the PMRE that contains the required PFN. Because in this
mode the DWMVA only maps the first 256 Mbytes of VME memory
address space, the upper address bits of the VME address, VME A28–
A31, must be zero. The validity of the PFN is checked and if good
the PFN is used to complete the DMA address translation. The 40-bit
physical address is obtained by combining the PFN field of the PMRE
(PMRE<26:0>) with VME address bits VME A0–A11. The steps used for
40-bit address translation using 4-Kbyte page sizes are as follows:

1 Check Upper Address Bits

VME A28–A31 must all be zero.

2 Access PMR for PMRE

VME address VME A12–A27 used as an index into the PMR to
fetch the PMRE.

3 Check PMRE Valid Bit

If PMRE<31> = 1, then PFN is valid.
If PMRE<31> = 0, then PFN is invalid and transaction is aborted.

4 ECC Check

If no error or correctable error, then PFN is good.
If uncorrectable error, then PFN is bad and the transaction is
aborted.

5 Generate XMI Address

Load zeros into XMI A<39>.
Load PMRE<26:0> into XMI A<38:12>.
Load VME A0–A11 into XMI A<11:0>.

2–15



Address Mapping

2.5.3.3 8-Kbyte Page Size
When using an 8-Kbyte page size in 40-bit VAX address translation mode,
the DWMVA can map 512 Mbytes of VME memory address space to XMI
memory address space (see Figure 2–10). This is the maximum range that
can be mapped with 64K PMR entries.

Figure 2–10 40-Bit VAX Address Translation Using 8-Kbyte Page Size

3
1

2
9

2
8

1
3

1
2 1

VME A01−A31

PMRE

0 PMR Index Address Page Offset

ACCESS PMR FOR PMRE

3
1

3
0

2
9

2
6

PFN

Check If PFN
Is Valid

1
3

1
2 1 0

Bit <39> (the I/O select) is forced to 0

msb−p422−91

0 0

DSO*
DSI*
LWORD*

XMI A<39:0>

3
8

0

XMI Physical Address

V 0 unused

2
5

3
9

0

2–16



Address Mapping

The 40-bit translation of a VME DMA address using 8-Kbyte page sizes
uses VME address bits VME A13–A28 as an index into the PMRs. The
validity of the PFN is checked and, if good, the PFN is used to complete
the DMA address translation. The 40-bit physical address is obtained by
combining the PFN field of the PMRE (PMRE<25:0>) with VME address
bits VME A0–A12. The steps used for 40-bit address translation using
8-Kbyte page sizes are as follows:

1 Check Upper Address Bits

VME A29–A31 must be zero.

2 Access PMR for PMRE

VME address VME A13–A28 used as an index into the PMR to
fetch the PMRE.

3 Check PMRE Valid Bit

If PMRE<31> = 1, then PFN is valid.
If PMRE<31> = 0, then PFN is invalid and transaction is aborted.

4 ECC Check

If no error or correctable error, then PFN is good.
If uncorrectable error, then PFN is bad and the transaction is
aborted.

5 Generate XMI Address

Load zeros into XMI A<39>.
Load PMRE<24:0> into XMI A<38:13>.
Load VME A0–A12 into XMI A<12:0>.
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3 VME System Control

The C3200 module contains the VME system controller (VSC) that
includes all the hardware necessary to provide timing and control to
the VME system. The VSC consists of the following elements:

• Bus timer

• VME arbitration

• IACK daisy-chain driver

• System clock driver

• Serial clock driver

In addition, the DWMVA requires an external power monitor provided by
the system integrator.

Figure 3–1 shows a block diagram of the VME system controller, including
the power monitor.

Figure 3–1 VME System Controller Block Diagram
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3.1 Bus Timer
The bus timer asserts BERR*1, the bus error line, to indicate to the
master that the data transfer was not completed. BERR* is asserted when
the first data strobe (DS0* or DS1*) stays asserted for longer than the
bus timeout period, and DTACK* and BERR* are deasserted. Figure 3–2
shows a block diagram of the bus timer.

Figure 3–2 Bus Timer Block Diagram
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The timeout value is set by software. The timeout period is programmed
in bits <18:16> of the DWMVA Device/Configuration Register, as shown in
Table 3–1.

Table 3–1 VME Transaction Timeout Selection

VDCR<18:16> Timeout Value

111 Timeouts disabled

110 3.28 ms

101 819 � s

100 128 � s

011 64.0 � s

010 32.0 � s

001 12.8 � s

000 800 ns

The transaction timeout period causes an interrupt if the Enable VME
Transaction Timeout Interrupt bit (VICR<21>) is set.

1 An asterisk (*) appended to a VME signal name indicates a low true signal.
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3.2 Arbitration
The VME system controller contains an arbitration subsystem that
supports arbitration algorithms and timeouts. The type of arbitration
is selected by software.

The arbiter is responsible for allocating the data transfer bus to
optimize bus usage and prevent two or more masters from using the
bus simultaneously.

3.2.1 Arbitration Subsystem Input/Output
The arbitration subsystem of the VME system controller uses the following
signals:

Bused signals

• BR0* through BR3*

• BBSY*

• BCLR*

Daisy-chained signals

• BG0IN* through BG3IN*

• BG0OUT* through BG3OUT*

The bus request lines, BR0* through BR3*, are asserted by a requester of
the data transfer bus. These lines are monitored by the arbiter, which in
turn asserts the appropriate bus grant line BG0OUT* through BG3OUT*.
The bus grant signals are propagated down the backplane in a daisy-
chained manner. The bus grant line, BGxOUT*, asserted by the arbiter,
is monitored by the option in slot 2 on the BGxIN* line of the option. If
this device is not currently requesting the bus, it passes the bus grant to
the next device on the backplane by asserting its BGxOUT* line, which
is received on the next module via the BGxIN* signal, and so on. If the
device receiving BGxIN* has a request pending at that particular level,
BBSY* is asserted by the device and all other devices are prevented from
using the bus. The logical connections of the arbitration bus are shown in
Figure 3–3.
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Figure 3–3 VME Arbitration Bus
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Other arbitration signals are BBSY*, the bus busy line, and BCLR*, the
bus clear line. After receiving a bus grant, a requester asserts BBSY* to
inform the arbiter that it has received the bus grant and is using the bus.
See Chapter 5 for a complete description of VMEbus signals.

3.2.2 Arbitration Algorithms
The arbiter logic on the C3200 module supports four arbitration
algorithms. The first three of these are defined in the VME specification;
the fourth is DWMVA specific. The type of arbitration is determined
by bits <30:29> of the DWMVA Device/Configuration Register. The
default arbitration set at power-up and at node reset is round robin.
The algorithms are described in Table 3–2.
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Table 3–2 VME Arbitration Algorithms

VDCR
<30:29> Algorithm Description

00 Round
robin

Grants the bus on a rotating basis. When the bus is granted
to requester BR(n)*, the highest priority requester for the
next bus cycle becomes BR(n-1)*. BR(n)* now becomes
the lowest priority device. BR(n)* is only allowed access to
the bus after all devices currently requesting the bus have
received bus grants, in descending order.

01 Prioritized Assigns the bus on a fixed priority basis, with BR3* having
the highest priority and BR0* the lowest. If a higher priority
device requests the bus while a lower priority device is
using it, the arbiter asserts BCLR*, requesting that the
low-priority device relinquish the bus to the higher priority
device.

10 Prioritized
and
round robin

Combines the prioritized and round robin arbitration
algorithms. The BR3* line has the highest priority, while
BR2*–BR0* are granted in a round robin fashion.

11 Single Accepts only requests on BR3* and relies on the
BG3OUT*/BG3IN* daisy-chain to arbitrate as well as
grant the requests.

The VMEbus implements an additional level of arbitration that is based
on placement of VME devices in the backplane. For example, if two
devices are configured to request the bus at BR3, the device in the lower
numbered slot (physically closer to the arbiter) has priority, because any
device receiving the BG3IN signal can choose to not propagate the signal
to the next slot through BG3OUT, if it is currently requesting the bus
(both devices are asserting BR3).

Bus request conflicts can be minimized by judicious assignment of BR
levels and backplane slots to the VME devices. In addition, the selection
of appropriate requester types enables the VME system integrator to
eliminate any lockout possibilities that the conflict condition may cause.
Refer to Section 3.2.5 for additional discussion on requester types.

3.2.3 Bus Request Level Assignment
The bus request levels for the C3200 module are determined by bits
<25:24> of the DWMVA Device/Configuration Register (see Table 3–3).
The bus request level for other VME devices is typically configured using
jumpers on the module.
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Table 3–3 VME Bus Request Level Codes

VDCR<25:24> Selected Bus Request Level

00 Bus Request Level 0 (BR0)

01 Bus Request Level 1 (BR1)

10 Bus Request Level 2 (BR2)

11 Bus Request Level 3 (BR3)

3.2.4 Arbitration Timeout Counter
The arbitration timeout counter prevents the VME from hanging in the
event of a failure by the DWMVA adapter. The timer causes the arbiter
to stop driving BGxOUT* if, after a period of time, the requester has
not asserted BBSY*. The arbitration timeout period is determined by
bits <21:19> in the DWMVA Device/Configuration Register (see Table 3–4).
The arbitration timeout causes an interrupt if the Enable VME Arbitration
Timeout Interrupt bit (VICR<21>) is set.

Table 3–4 VME Arbitration Timeout Selection

VDCR<21:19> Timeout Value

111 Timeouts disabled

110 3.28 ms

101 819 � s

100 128 � s

011 64.0 � s

010 32.0 � s

001 12.8 � s

000 800 ns

3.2.5 Data Transfer Bus Requesters
A requester is a functional block on the C3200 module that is responsible
for requesting the VME bus for CPU writes and reads to VME slaves.
The requester does not physically form part of the VSC. However, it is
functionally related to the VME arbitration, and is described here to
complete the arbitration discussion. Figure 3–4 shows a block diagram of
a VMEbus requester.

The requester is notified by on-board logic that the VMEbus will be
required to complete the current transaction. As a result, the requester
asserts BRx* on the VMEbus. The pending transaction halts until
the arbiter grants permission to use the VMEbus. The requester then
monitors the BGxIN* signals. When it detects an asserted BGxIN* signal
at the same level as the BRx it sent, it does not pass on that BGxIN*
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Figure 3–4 VMEbus Requester Block Diagram
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along the arbitration daisy-chain, but uses the bus grant to drive the bus
and complete its pending transaction.

The VME specification defines three types of requesters:

• Release when done (RWD)

• Release on request (ROR)

• FAIR

An RWD requester releases the bus by deasserting BBSY* when its master
no longer needs the bus for its current data transfer. An RWD requester
need not monitor BR3*–BR0*, since it will release the bus upon completion
of its transaction regardless of the values of the bus request lines.

An ROR requester does not deassert BBSY* when its master no longer
needs the bus, but instead holds the bus until it detects another requester
asserting a BRx* signal. This type of requester, therefore, monitors BR3*–
BR0* continuously once it has ownership of the bus. The release of the
bus upon detection of BRx* by another requester reduces the amount of
arbitration on the bus when the master of the ROR requester is generating
a large percentage of the bus traffic.

A FAIR requester is used in the case of more than one master sharing
the same bus request level. After it has been granted the bus, a FAIR
requester will not request the bus again as long as there are any active
bus requests pending at its bus request level. To implement a FAIR
requester, the bus requester logic must be able to monitor at least its own
bus request level line.

NOTE: The RWD and ROR capabilities describe the conditions under
which a requester relinquishes control of the data transfer bus.
The FAIR capability describes under what condition a requester
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will request control of the data transfer bus. Therefore, RWD and
ROR requesters can include the FAIR capability as well.

All three types of requesters are supported by the DWMVA. However, the
preferred type is an ROR FAIR requester. The DWMVA requester type is
RWD FAIR.

3.3 IACK Daisy-Chain Driver
The DWMVA provides an IACK daisy-chain driver as required by all
slot 1 VME devices. The IACK daisy-chain driver generates the signal
IACKOUT* each time an interrupt handler initiates an interrupt
acknowledge cycle by asserting IACK*. The IACKOUT* signal propagates
to the module in slot 2 of the VME backplane as IACKIN*. This module
propagates the interrupt acknowledge on its IACKOUT* line if it does
not have an interrupt pending at the level present on A01–A03. This
IACKOUT* enters the module at VME slot 3 as IACKIN*, and so on down
the backplane.

When the IACKIN* reaches the module with the current interrupt pending
at the correct level, that module does not propagate IACKOUT*. Instead,
the interrupting device returns its vector to the interrupt handler in
response to the interrupt acknowledge cycle.

The IACK daisy-chain driver is illustrated in Figure 3–5.
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Figure 3–5 IACK Daisy-Chain Driver
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IACK*

3.4 System Clock Driver
The system clock is an independent, nongated, fixed-frequency, 16 MHz,
50% (nominal) duty cycle signal (SYSCLK). The system clock driver is
located on the system controller module. SYSCLK is always driven by the
C3200 module, which must be installed in slot 1 of the VMEbus backplane.

3.5 Serial Clock Driver
The serial clock driver provides a programmable, special waveform signal
used by serial modules that reside on VME-compatible boards. SERCLK in
conjunction with SERDAT* provides a serial communication link between
boards. The C3200 module does not drive the SERDAT* line, but it does
provide the serial clock for any module on the VME backplane that needs
it. The clock source is software programmable to 32, 16, 8, and 4 MHz (see
description of VDCR in Chapter 7).
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3.6 Power Monitor
The power monitor detects power failures and signals the system by
issuing an IVINTR (see descriptions of AREAR and AESR in Chapter 7).
When power is then reapplied to the system, the power monitor ensures
that all other modules are initialized. Whenever any board asserts
SYSRESET*, the power monitor holds the signal asserted for a minimum
of 200 ms. Figure 3–6 shows a block diagram of the VME power supply.

Figure 3–6 Power Supply Block Diagram
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NOTE: The power monitor is provided by the system integrator through
an external module.
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4 Transactions

The DWMVA performs two types of transactions:

• CPU transactions

• DMA transactions

A CPU transaction is initiated by a processor on the XMI bus. The
processor is the commander. The DWMVA becomes the responder. A
DMA transaction begins on the VMEbus and targets XMI memory through
the DWMVA adapter.

This chapter explains how the two types of transactions are processed
through the C3200 module, between the IBUS and the VMEbus.
Figure 4–1 shows the data paths and the major logic sections on the
C3200 module.

Figure 4–1 C3200 Block Diagram
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4.1 Command Translation
The XMI and the VMEbus use different commands. A translation of
commands must take place over the XMI-to-VME data path for commands
initiated on the XMI to be executed on the VME, and vice versa.

4.1.1 XMI-to-VME Translation
The DWMVA generates VME commands when it is acting as the responder
to an XMI-initiated transaction. The DWMVA accepts only longword CPU
transactions. Hexword, octaword, and quadword Write Mask transactions
are illegal when targeted at I/O space.

Interlock Read/Unlock Write pairs on the XMI are translated into Read
Modify Write (RMW) commands on the VME. Due to differences in
protocol between the XMI and VME, some problems may occur and the
Interlock Read/Unlock Write may get separated into distinct read and
write transactions on the VMEbus, as explained in Section 4.2.2.4. If this
condition occurs, the C3200 sets an error bit and generates an interrupt,
if enabled to do so. The C3200 does not generate interrupts to the VME.
Table 4–1 shows the XMI-to-VME command translations.

Table 4–1 XMI-to-VME Command Translations

XMI VME

Longword Read Byte/Word/Longword Read

Quadword Read Illegal

Octaword Read Illegal

Hexword Read Illegal

Longword Masked Write Byte/Word/Longword Write

Quadword Masked Write Illegal

Octaword Masked Write Illegal

Hexword Masked Write Illegal

Longword Interlock Read Byte/Word/Longword Read - Start of VME RMW

Quadword Interlock Read Illegal

Octaword Interlock Read Illegal

Hexword Interlock Read Illegal

Longword Unlock Masked Write Byte/Word/Longword Write - End of VME RMW

Quadword Unlock Masked Write Illegal

Octaword Unlock Masked Write Illegal

Hexword Unlock Masked Write Illegal

IDENT Interrupt Acknowledge
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4.1.2 VME-to-XMI Translation
When the DWMVA processes a DMA transaction, it generates the
corresponding XMI command.

A VME read or write can be 1, 2, 3, or 4 bytes of data. The smallest
unit of data that can be addressed in XMI memory space is a quadword.
Therefore, VME reads translate into XMI quadword reads, and VME
writes into quadword masked writes.

Because VME block transfers are assumed to be quite long, the C3200
always issues octaword transactions when it decodes a VME block transfer.

Table 4–2 shows the VME-to-XMI command translations.

Table 4–2 VME-to-XMI Command Translations

VME XMI

Read Quadword Read

Write Quadword Write Mask

Block Read Octaword Read

Block Write Octaword Write Mask

Read Modify Write A VME RMW translates to the following XMI
sequence:

1 Quadword Interlock Read
2 Quadword Unlock Write

Address Only No-op

Interrupt INTR

4.2 CPU Transaction Process
The CPU initiates the following transactions:

• DWMVA register transactions

• VME device transactions

When a CPU targets the VMEbus as the destination of a transaction, the
T2018 accepts the command and stores it in its internal data buffer. The
T2018 then informs the C3200 module that it has a CPU transaction in its
buffer that is ready to be transmitted to the VMEbus.

The C3200 checks the status of the IBUS. If the IBUS is available, the
C3200 loads the CPU transaction into its internal CPU data buffer. Once
the buffer is loaded, the C3200 begins requesting the VMEbus. When the
C3200 receives the bus grant indicating that it is the VMEbus master,
it drives the CPU transaction onto the VME. The targeted VME slave
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responds with an acknowledgment. The CPU transaction is complete at
this point if it is a CPU write.

If the transaction is a CPU read, the C3200 latches read return data from
the VME slave into its internal buffer. The C3200 checks the status of the
IBUS. When the IBUS is available, the C3200 causes the read return data
to be loaded over the IBUS into the T2018’s CPU buffer. When the T2018
receives the data, it arbitrates for the XMI and returns the data to the
processor.

4.2.1 DWMVA Register Transactions
DWMVA registers can be read or written by an XMI processor. They are
not accessible by VME devices.

4.2.1.1 T2018 Register Read/Write
If the CPU transaction is a write to a T2018 register, the T2018 receive
state machine writes the data into the addressed control/status register
(CSR).

In a read transaction, the T2018 receive state machine sets its Busy flag
after the T2018 acknowledges a read command from an XMI commander.
The T2018 then arbitrates for the XMI as a responder. When granted use
of the bus, the T2018 sends the data from its addressed register to the
XMI commander. The T2018 receive state machine then clears its Busy
flag and returns to its idle state.

4.2.1.2 C3200 Register Read/Write
When the T2018 decodes a valid C3200 register address, it encodes the
CSR to be accessed on the address lines, loads the CPU buffer, and signals
the C3200 that a valid transaction is in the buffer. When the C3200
fetches the command and address over the IBUS, it determines if the
transaction being sent across the IBUS is destined for a device on the
VMEbus or is an access to one of the C3200’s internal CSRs.

In a write transaction to a C3200 register, handshaking takes place
between the T2018 and C3200 across the IBUS. First the T2018 receive
state machine loads command, address, and data into the T2018 CPU
buffer. Following this operation, the T2018 receive state machine sets
the CPU Busy flag. The C3200 reads the data and checks parity. If the
parity is good, the data is written into the addressed C3200 register. The
C3200 then signals the processor the termination of the transaction. This
clears the Busy flag in the T2018’s CSR. If the C3200 detects bad parity,
it asserts an error signal and does not write the data into the addressed
register.

In a read transaction, the command and address are received by the C3200
in the same way as for a C3200 register write. The data is fetched from
the addressed register on the C3200 and sent to the T2018 CPU buffer.
The C3200 notifies the T2018 transmit state machine that the T2018 CPU
buffer contains new data. The T2018 arbitrates for the XMI bus as a
responder, sends the data to the XMI commander, and clears its Busy flag.
The DWMVA has now completed the transaction and is ready to process
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another. If the C3200 detects bad parity during the IBUS transfer, it does
not return read data to the T2018 and asserts an error signal.

NOTE: Certain DWMVA register transactions cause address-only cycles on
the VME.

4.2.2 CPU-to-VME Device Transactions
The processor targets a VME device for a read or write transaction. There
are three modes of CPU transactions. The transaction mode is specified
by the address modifier code attached to the VME address. The address
modifier codes used by the C3200 during CPU (XMI-to-VME) transactions
are listed in Table 4–3.

Table 4–3 Address Modifier Codes for CPU Transactions

Code Access Type

2D Short supervisory access

3E Standard supervisory program access

0E Extended supervisory program access

4.2.2.1 VME Device Write
When a CPU transaction targets a node on the VMEbus, the data is
written into the C3200 internal buffer the same way as for a C3200
register write. Once the data is stored in the CPU buffer, the C3200
requests the VMEbus. After being granted use of the VMEbus, the C3200
broadcasts the address, address modifier, and data to be written over the
VMEbus. The C3200 waits for DTACK*, which indicates that the slave
successfully received the data over the VMEbus. When the transaction
is complete, the C3200 notifies the T2018 transmit state machine, which
in turn clears the Busy flag. The transaction is now complete, and the
DWMVA is ready to process a new transaction.

4.2.2.2 VME Device Read
A VME device read is similar to a device write. The sequence of events is
the same except that data is supplied to the DWMVA after the DWMVA
has broadcast the address and address modifier. In addition, the following
events must take place to complete the VMEbus read. The C3200 (master)
monitors DTACK* to detect if the VME device (slave) has placed valid data
on the VMEbus. The C3200 coordinates the flow of data from the VMEbus
to the DMA buffer on the C3200. The C3200 releases the VMEbus when
it has finished reading data from the VME device. The C3200 controls the
data flow from its DMA buffer over the IBUS to the T2018 and notifies
the T2018 transmit state machine that the data is read. Finally, the
T2018 arbitrates for the XMI bus as a responder, returns the data to the
commander, and clears its Busy flag, indicating that it is ready to accept a
new transaction.
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4.2.2.3 CPU Reads and Masked Writes
CPU reads and masked writes are used to select the specific byte or bytes
to be read from the DWMVA or to be written to VME space.

CPU masked writes to VME space can take place when the appropriate
mask bits are asserted on the 4-bit mask field over the IBUS as shown in
Table 4–4.

Table 4–4 CPU Masked Writes to VME Space

IBUS Mask Field
<3:0> Masked Write Command

0001 Write byte 0

0010 Write byte 1

0100 Write byte 2

1000 Write byte 3

0011 Write word 0

1100 Write word 1

01111 Write triple byte 0–2

11101 Write triple byte 1–3

1111 Write longword

1These commands are not supported on the VAX 6000.

When the CPU reads data from the DWMVA, a longword of data is
returned. Depending on the VME device and the address being read,
only specific bytes within the longword are guaranteed to be valid.

For example, any given VME device can have an 8-bit, 16-bit, or 32-bit
data path. A device with an 8-bit data path can return only one byte of
data for each read transaction. The same device can store only one byte
for each CPU write. Similarly, a 16-bit device returns a word, and a 32-bit
device returns one longword of valid data per CPU read transaction. If
a device is requested to read or write data wider than its data path, the
transaction times out and does not complete.

The two least significant bits of the CPU address and the VME data length
(8-, 16-, or 32-bit) information determine which bytes of CPU read return
data will be valid. The data length information is stored in the C3200
CPU Transaction Address Offset Register.

Table 4–5 shows how CPU masked read commands are selected.
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Table 4–5 CPU Reads of DWMVA

Data Length VAOR<17:16> CPU A<1:0> Read Command

01 (8-bit device) 00 Read byte 0

01 (8-bit device) 01 Read byte 1

01 (8-bit device) 10 Read byte 2

01 (8-bit device) 11 Read byte 3

10 (16-bit device) 00 Read word 0

10 (16-bit device) 10 Read word 1

11 (32-bit device) 00 Read longword

4.2.2.4 CPU Interlocks
The VMEbus has no transactions equivalent to Interlock Read/Unlock
Write on the XMI. Instead, the VMEbus implements RMW transactions in
response to XMI originated Interlock Reads and Unlock Writes. The RMW
on the VMEbus is an atomic operation; that is, no other transaction is
allowed on the bus between the read and write. The Interlock Read/Unlock
Write transactions on the XMI, however, can be separated.

An Interlock Read to VMEbus space could proceed in the following manner.
The C3200 would initiate a RMW cycle on the VME. Since there is no
restriction on the XMI that the Unlock Write must immediately follow
the Interlock Read, it is possible that another VME reference could be
addressed to the DWMVA before the DWMVA receives the Unlock Write.
The DWMVA would try to process that transaction and find the VME hung
in the middle of an incomplete RMW transaction.

The C3200 attempts to perform a RMW on the VME when it receives
an Interlock Read from the XMI. If, however, the next transaction it
receives over the IBUS after the Interlock Read is anything but an Unlock
Write, the C3200 releases the bus without doing the write portion of the
RMW. If this condition occurs, the C3200 correctly performs the Interlock
Read/Unlock Write (though as a separate read and write, not RMW), and
any intervening transactions. The C3200 sets an error bit and interrupts
the processor, if interrupts are enabled.

4.3 DMA Transaction Process
A DMA transaction is initiated by a VME device. The initiating device
becomes the master, the DWMVA becomes the slave, and the targeted
XMI memory becomes the responder. Only XMI memory can respond to
a DMA transaction. DMA transactions can consist of 1-, 2-, 3-, or 4-byte
single-access transfers or 1-, 2-, or 4-byte block reads and writes. Block
reads and writes can transfer up to 256 bytes and store the transferred
data in contiguous locations in XMI memory.

4–7



Transactions

XMI memory supports quadword, octaword, and hexword reads and writes.
The DWMVA is optimally designed to transfer octawords. During DMA
writes, large block transfers from the VME are sent to XMI memory
in octaword segments. In DMA block reads, the T2018 reads data in
octaword blocks from XMI memory. The C3200 transfers this data in
bytes, words, or longwords, depending on the transfer size requested by
the VME master.

VME protocol allows up to 256 bytes to be transferred during a single
block transfer. The C3200 contains two sets of buffers, referred to as the
VTI (VME-to-IBUS) and ITV (IBUS-to-VME). The VTI buffer can hold
two octawords of write data along with a command/address for each write
transaction. The ITV buffer can hold two octawords of read return data.

A DMA transaction begins on the VMEbus and targets XMI memory
through the DWMVA adapter. The C3200 monitors the VMEbus and if
it detects a transaction that falls within its address range, it accepts the
transaction and loads it in its internal buffer. The C3200 then transfers
the transaction over the IBUS to the T2018, provided the IBUS is not
busy.

In the case of a DMA write, the T2018 is the commander and arbitrates for
the XMI bus. The responder is memory on the XMI. If the transaction is a
read, the description above takes place with the addition of the following:
before memory can send the data that has been requested, the memory
board must arbitrate for the XMI. The T2018 receives the return data and
stores it within its data file. The T2018 notifies the C3200 that the read
return data is available. Provided the IBUS is not busy, the C3200 asserts
control signals on the IBUS to cause the T2018 data file to be read into
the buffers of the C3200. The C3200 then returns data to the VME master
that requested it. At this point, the VME master releases control of the
bus so that other devices can begin data transfers.

4.3.1 VME-to-XMI Memory Write
When the C3200 is addressed, it stores the write data in the C3200
DMA buffer and acknowledges the master by asserting DTACK*. If the
transaction is a block write, consecutive data transfers are made by the
VME master. Each transfer is acknowledged with assertion of DTACK*. If
the transaction is a single-access write, 1, 2, 3, or 4 bytes of data are sent
to the DWMVA in a single data cycle. For single-access writes, the C3200
issues a quadword-length masked write and sends the data to the T2018
over the IBUS. If the VME transaction is a block transfer, 1, 2, or 4 bytes
of data are transferred during each VME cycle. In this case, the C3200
builds octaword-length transfers in its DMA buffer and sends the octaword
masked write over the IBUS to the T2018 only when it has completed
filling data on the current octaword address boundary.

The data is sent from the C3200 DMA buffer to the available DMA buffer
on the T2018 upon notification from the C3200. After the T2018 DMA
buffer has been loaded by the C3200 data buffer, the T2018 transmit
state machine arbitrates as a commander on the XMI. After the T2018 is
granted the bus, it sends the data from its DMA buffer to XMI memory.
The T2018 Busy flag, which had been set once the T2018 had started
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accepting IBUS data, is now cleared. At this point the IBUS octaword
write transaction is complete. The VME block write can still be ongoing,
requiring additional octaword writes over the IBUS.

4.3.2 VME-to-XMI Memory Read
The XMI memory read is similar to the XMI memory write, except that in
an XMI read only the address is sent to initiate the transaction. Whether
the transaction is a block or single-access read is determined from the
signals on the address modifier lines AM01–AM05. If a single-access
read is detected, the C3200 issues a quadword read over the IBUS. If a
block read was decoded, the C3200 instead requests an octaword of data,
since it expects the next consecutive addresses to be read during the block
transfer.

The XMI memory is the responder on the XMI and returns the requested
data to the T2018, the commander. The T2018 accepts the data into one
of its DMA buffers. The T2018 notifies the C3200 that return data is
available. The C3200 accepts the data and stores the data into its ITV
buffer. The VMEbus has been stalled waiting for the return data and has
been dedicated to the DWMVA since the beginning of the transaction. The
C3200 sends the data over the VMEbus under the control of the DWMVA
master.

4.3.3 DMA Interlocks
The VME initiates RMW transactions in the same manner that it initiates
a normal read. The VME slave (DWMVA in this case) is unaware that
the intended transaction is a RMW until the VME master holds the bus
following the read return data and issues the corresponding write.

The resulting XMI transactions to a read followed by a write would be an
XMI read followed by an XMI write, because the RMW is an atomic VME
transaction, even though the intent was to do an Interlock Read/Unlock
Write pair on the XMI.

Since the DWMVA has no indication that the VME master intends to
do a RMW, it provides a mechanism that enables the DWMVA to cause
reads and writes to specific addresses to translate into Interlock Reads
and Unlock Writes, respectively. This is done by writing to the Byte Swap
RAM Access Register with the RMW bit set. See Chapter 7 for more
details.

If a VME master initiates a read that is not part of a RMW transaction
to a page set up for RMWs, the DWMVA issues the following sequence of
instructions:

1 Interlock Read

2 Unlock Write (with all data bits masked)

3 Set RMW Error II bit (VESR<28>)

4 Interrupt, if enabled
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In this manner, the read transaction will be completed and an interrupt
will occur to indicate that an interlock instruction was executed at an
unintended location.

If, on the other hand, a VME master initiates a RMW transaction to a
page that was not set up for RMWs, the DWMVA issues the following
sequence of instructions:

1 Read (not Interlock Read)

2 Write (not Unlock Write)

3 Set RMW Error I bit (VESR<27>)

4 Interrupt, if enabled

In this manner, both the read and write will be executed. However, since
the two instructions will not result in an Interlock Read/Unlock Write pair,
the DWMVA will issue an interrupt.
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5 VMEbus Interface

The VMEbus is a high-performance bus for use in microcomputer
systems that employ single or multiple microprocessors. It is the bus
that interconnects the DWMVA and VME devices.

The VMEbus includes four substructures:

• Data transfer bus

• Arbitration bus

• Priority interrupt bus

• Utility bus

This chapter discusses the VME interface of the DWMVA subsystem. The
material presented here is limited to the DWMVA implementation of the
VMEbus. Refer to IEEE Standard 1014 for a comprehensive discussion of
the VMEbus.

5.1 Data Transfer Bus
The data transfer bus (DTB) is a high-speed asynchronous parallel bus
used for nonmultiplexed address/data transfers. Masters use the DTB to
select storage locations provided by slaves and to transfer data to or from
those locations. Some masters and slaves use all of the DTB lines, while
others use only a subset.

After a master initiates a data transfer cycle, it waits for the addressed
slave to respond before terminating the cycle. The asynchronous definition
of the bus allows a slave to take all the time it needs to respond. When
a slave fails to respond because of some malfunction, or the master
addresses a location where there is no slave, the bus timer intervenes,
allowing the cycle to be terminated and freeing the bus for subsequent
transactions.

Table 5–1 shows the address, data, and control lines of the data transfer
bus.

Table 5–1 Data Transfer Bus Signals

Address Lines Data Lines Control Lines

A01–A31 D0–D31 AS*

AM0–AM5 DS0*

DS0* DS1*

DS1* BERR*

LWORD* DTACK*

WRITE*
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5.1.1 Address Lines
The smallest accessible unit of storage is a byte location. Each byte
location corresponds to a unique address and can be assigned to one of
four categories, according to the two least significant bits of its address, as
shown in Table 5–2.

Table 5–2 Categories of Byte Locations

Category Byte Address

Byte(0) ...XXXXXX00

Byte(1) ...XXXXXX01

Byte(2) ...XXXXXX10

Byte(3) ...XXXXXX11

The four byte locations in the same longword are referred to as a 4-byte
group or a Byte(0–3) group. Some, or all, of the bytes in a naturally
aligned longword can be accessed in a single DTB cycle.

Masters use address lines A02–A31 to select the longword to be accessed.
Four additional lines, DS1*, DS0*, A01, and LWORD*, are then used to
select the byte location(s) within the 4-byte group to be accessed during
the data transfer. Using these four lines, a master can access 1-, 2-, 3-, or
4-byte locations simultaneously, as shown in Table 5–3.

Table 5–3 Selecting Byte Locations Within Longwords

Access Type
Bytes
Selected DS1*1 DS0*1 A011 LWORD*1

Single Byte Byte(0) 0 1 0 1

Byte(1) 1 0 0 1

Byte(2) 0 1 1 1

Byte(3) 1 0 1 1

Double Byte Byte(0–1) 0 0 0 1

Byte(1–2) 0 0 1 0

Byte(2–3) 0 0 1 1

Triple Byte Byte(0–2) 0 1 0 0

Byte(1–3) 1 0 0 0

Quad Byte Byte(0–3) 0 0 0 0

1A value of 0 indicates low voltage level; a value of 1 indicates high voltage level.

The six address modifier lines of the VMEbus allow the master to pass
additional information to the slave during DTB cycles. The address
modifier function codes fall into three categories as follows:

• Short addressing AM codes indicate that address lines A02–A15 are
being used to select a Byte(0–3) group.
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• Standard addressing AM codes indicate that address lines A02–A23
are being used to select a Byte(0–3) group.

• Extended addressing AM codes indicate that address lines A02–A31
are being used to select a Byte(0–3) group.

Table 5–4 lists the address modifier codes accepted by the DWMVA. No
additional function codes are supported. All codes are treated the same.

Table 5–4 Address Modifier Codes

AM0–AM51 AM0–AM5 (hex) Function

111111 3F Standard supervisory block transfer

111110 3E Standard supervisory program access

111101 3D Standard supervisory data access

111011 3B Standard nonprivileged block transfer

111010 3A Standard nonprivileged program access

111001 39 Standard nonprivileged data access

001111 0F Extended supervisory block transfer

001110 0E Extended supervisory program access

001101 0D Extended supervisory data access

001011 0B Extended nonprivileged block transfer

001010 0A Extended nonprivileged program access

001001 09 Extended nonprivileged data access

1The DWMVA does not respond to short address transactions.

5.1.2 Data Lines
The DWMVA has 32 data lines (D0–D31). When the master selects 1-,
2-, 3-, or 4-byte locations, using the method described in Table 5–3, it
can transfer data between itself and those locations over the data bus.
Table 5–5 shows how the data lines are used to access byte locations.
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Table 5–5 Use of Data Lines to Access Byte Locations

Bytes
Accessed D24–D31 D16–D23 D08–D15 D0–D07

Byte(0) Byte(0)

Byte(1) Byte(1)

Byte(2) Byte(2)

Byte(3) Byte(3)

Byte(0–1) Byte(0) Byte(1)

Byte(1–2) Byte(1) Byte(2)

Byte(2–3) Byte(2) Byte(3)

Byte(0–2) Byte(0) Byte(1) Byte(2)

Byte(1–3) Byte(1) Byte(2) Byte(3)

Byte(0–3) Byte(0) Byte(1) Byte(2) Byte(3)

5.1.3 Control Lines
Table 5–6 lists the signal lines used to control the movement of data over
the data transfer lines.

Table 5–6 Control Line Signals

Signal Name

AS* Address Strobe

BERR* Bus Error

DS0* Data Strobe Zero

DS1* Data Strobe One

DTACK* Data Transfer Acknowledge

WRITE* Read/Write

See Section 5.5 for desriptions of the control signals.

5.2 Arbitration Bus
The arbitration bus controls the allocation of the data transfer bus in a
multiple processor system. The arbitration system on the VMEbus:

• Prevents simultaneous use of the bus by two masters

• Schedules requests from multiple masters for optimum bus use

The arbitration bus allocates bus mastership based on implementation of
round robin and prioritized arbitration algorithms.
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5.3 Priority Interrupt Bus
The priority interrupt bus provides the signal lines needed to generate
and service interrupts. Interrupters use the priority interrupt bus to send
interrupt requests to interrupt handlers. In a single-handler system, the
supervisory processor is the destination for all bus interrupts, servicing
them in a prioritized manner. In distributed systems, each processor
services only those interrupts directed to it, establishing dedicated paths
among all processors.

5.4 Utility Bus
The utility bus provides signal lines used to control utility functions such
as periodic timing, initialization, and diagnostics. The utility bus is used
for system power-up and power-down synchronization.

Three functional modules on the VME system controller, located in slot 1,
drive and receive the utility bus signals. These functional modules are the
serial clock driver, the system clock driver, and the power monitor. The
drivers are responsible for driving and meeting the required electrical
specifications given by the IEEE 1014 standard. The system clock
(SYSCLK) and the serial clock (SERCLK) are defined in Section 5.5.4.

The power monitor detects power failures and signals the system in
time to effect an orderly shutdown. When power is then reapplied to the
system, the power monitor ensures that all other modules are initialized.

5.5 VMEbus Signal Descriptions
This section provides descriptions of VMEbus signals.

NOTE: In adherence to the VMEbus conventions, low true VMEbus signals
are marked with an asterisk (*).

5.5.1 Data Transfer Bus Signals
A01–A31

Masters broadcast A02–A31 over the VMEbus to select the 4-byte group to
be accessed. A01 and three additional lines, DS0*, DS1*, and LWORD*,
described further below in this section, are then used to select which byte
location(s) within the 4-byte group are accessed during the data transfer.

AM0–AM5

The address modifier lines allow the master to pass additional information
to the slave during DTB cycles. This information is related to short,
standard, and extended addressing schemes and block versus nonblock
transfers.

AS*

A falling edge on the address strobe, AS*, informs all slaves that the
address is stable and can be captured.
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BERR*

The Bus Error signal is asserted by the slave or by the bus timer to
indicate to the master that the data transfer was unsuccessful. For
example, when a master tries to write to a location that contains read-only
memory, the responding slave can assert BERR*. Also, when the master
tries to access a location that is not provided by any slave, the bus timer
asserts BERR* after a specified period.

D0–D31

The VMEbus has 32 data lines. Devices can be configured to use either
eight data lines (D0–D07), 16 data lines (D0–D15), or 32 data lines (D0–
D31). Masters that have 16 data lines can access at the most two byte
locations simultaneously, while those with 32 data lines can access all four
bytes of a 4-byte group at one time.

DS0* and DS1*

The two data strobes are two of the four signals used to select the byte
location(s) within the 4-byte group.

DS0* and DS1* also serve additional functions. On write cycles, the first
falling edge of a data strobe indicates that the master has placed valid
data on the data bus. On read cycles, the first rising edge informs the
slave that it can remove its data from the data bus.

DTACK*

The slave asserts DTACK* (Data Acknowledge) to indicate that it has
successfully received the data on a write cycle. On a read cycle, the slave
asserts this signal to indicate that it has placed data on the data lines.

LWORD*

LWORD* is one of the four signals used to select the byte location(s)
within the 4-byte group.

WRITE*

WRITE* is a level-significant signal that is strobed by the falling edge of
the first data strobe. It is used by the master to indicate the direction of
data transfers. When WRITE* is asserted, data is transferred from the
master to the slave. When WRITE* is deasserted, data is transferred from
the slave to the master.

5.5.2 Arbitration Bus Signals
BBSY*

Once a requester has been granted control of the data transfer bus by way
of the bus grant daisy chain, it asserts BBSY* (Bus Busy). The requester
then has control of the DTB. The arbiter can grant the DTB to some
other requester only when the current requester releases the DTB by
deasserting BBSY*.
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BCLR*

The priority arbiter asserts BCLR* (Bus Clear) to inform the master,
currently in control of the DTB, when a higher priority request is pending.
The current master is not required to relinquish the bus within any
prescribed time. It can continue transferring data until it reaches an
appropriate stopping point and allow its on-board requester to deassert
BBSY*.

BG0IN*–BG3IN*

A master that receives BGxIN* (Bus Grant In) , and has a request pending
at the same level as the BGxIN, has access to the data transfer bus.
Otherwise, the master passes on the BGxOUT* so that the next module
in the VME card cage will receive BGxIN*. BGxIN* and BGxOUT*
propagate in a daisy-chain fashion along the VME backplane.

BG0OUT*–BG3OUT*

A device passes on BGxOUT* (Bus Grant Out) if its master does not have
a request pending at that particular level, BRx*.

BR0*–BR3*

Masters drive one of the four bus request levels, BR0*–BR3*, to gain
access to the data transfer bus.

5.5.3 Priority Interrupt Bus Signals
IACK*

The IACK* (Interrupt Acknowledge) line runs the full length of the
backplane and is connected to the IACKIN* pin of slot 1. When asserted,
the IACKIN* pin causes the IACK daisy-chain driver, located in slot 1, to
propagate a falling edge down the interrupt acknowledge daisy chain.

IACKIN*

Interrupters that receive IACKIN* (Interrupt Acknowledge In) and have
a request pending at the same level encoded on A01–A03 can respond to
the interrupt acknowledge cycle. If the pending request level does not
match the encoded request level on A01–A03, the interrupter passes on
IACKOUT* to the module in the next slot of the VME card cage.

IACKOUT*

IACKOUT* (Interrupt Acknowledge Out) is asserted by a VME device that
does not have either an interrupt pending or a pending interrupt level
matching the level encoded on A01–A03.

IRQ7*–IRQ1*

Interrupters request interrupts by asserting IRQx*. The interrupt handler
receives the interrupt request and gives highest priority to IRQ7*.
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5.5.4 Utility Bus Signals
ACFAIL*

ACFAIL* (AC power failure) is one of two signals (the other is
SYSRESET*) used in a power-up/power-down sequence.

SERCLK

The serial clock driver provides a programmable, special waveform signal.

SERDAT*

SERDAT* is used for data transmission.

SYSCLK

The system clock is independent and nongated. It pulses at 16 MHz
fixed-frequency and has a 50% (nominal) duty cycle. It provides a known
time base that is useful for counting off time delays. SYSCLK has no
fixed-phase relationship with other timings.

SYSFAIL*

SYSFAIL* is held low when the system is powered up and remains low
until system self-tests are complete.

SYSRESET*

SYSRESET* is one of two signals (the other is ACFAIL*) used in a power-
up/power-down sequence.
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6 Interrupts

The DWMVA provides a path for VME devices to interrupt the host
processor. The C3200 implements an interrupt handler that accepts and
processes interrupts initiated from VME devices.

6.1 Error Interrupts
The C3200 module generates two types of interrupts to report errors to
the system, INTR (interrupt) and IVINTR (implied vector interrupt). An
INTR type of interrupt is usually associated with errors detected in read
transactions. An IVINTR type of interrupt generally occurs during a write
transaction. The following errors cause the C3200 to initiate interrupts to
the XMI processor, if interrupts are enabled:

• VME system reset

• VME bus timeout

• VME arbitration timeout

• RMW error

• Interlock error

• Parity error

NOTE: When the C3200 module detects an error, it locks the data in the
error registers, which cannot be updated until the corresponding
error bit is cleared. If the C3200 module detects a subsequent
error before the previous error bit is cleared, the status bit ME
(AESR bit<14>) sets and the error registers remain locked with
data from the first error.

VME interrupts must be longword-aligned. Note that the C3200 does not
initiate any interrupts to the VMEbus, and that an XMI device cannot
interrupt a VME device.

6.2 Interrupt Sequence
Table 6–1 shows the sequential events that take place in servicing a VME
interrupt.
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Table 6–1 VME-to-XMI Interrupt Progression

VME Device DWMVA XMI Processor

Generates IRQ* on VME

Generates INTR to XMI

Accepts INTR
Generates IDENT

Accepts IDENT
Generates IACK* on VME

Responds to IACK* with
its vector

Passes VME device’s
vector to XMI processor in
response to IDENT

Accepts vector and
services interrupt

6.3 VME-to-XMI Interrupt Protocol
A VME device initiates an interrupt request to a host processor by
asserting the IRQx signal, where x is a value from 1 to 7. As soon as
an IRQx line is asserted, its corresponding pending bit is asserted in the
C3200 Error Summary Register, bits <10:4>.

The interrupter is the logic module that asserts IRQ lines, and the
interrupt handler is the logic module that monitors IRQ lines and manages
the interrupts. The interrupt is translated to an XMI interrupt if the
Enable VME Device Interrupt bits (<24:17>) and the corresponding VME
Interrupt Request Level Mask bits (<31:25>) are cleared in the C3200
Interrupt Configuration Register.

Before proceeding with the interrupt, the C3200 must arbitrate for the
VMEbus. The C3200 sends the interrupt request by issuing an INTR
command to the T2018. The BRn Interrupt Sent bits (<3:0>) of the
C3200 Error Summary Register are set when the C3200 issues an INTR
command. The T2018 then issues an INTR command at the corresponding
BRn level to the XMI. See Figure 6–1 for the XMI INTR command format.

An XMI processor issues an IDENT in response to the T2018 INTR
command. The T2018 transmits the IDENT command to the C3200.
When the IDENT command is received by the C3200, the BRn Interrupt
Sent field in the C3200 Error Summary Register (bits <3:0>) is cleared.
See Figure 6–2 for the XMI IDENT command format.
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Figure 6–1 XMI INTR Command Format
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Figure 6–2 XMI IDENT Command Format
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The interrupt handler asserts IACK*, acknowledging the selected
interrupt level coded on the A01–A03 address lines. Upon
acknowledgment, the corresponding IRQn Interrupt Pending bit in the
C3200 Error Summary Register is cleared.

The interrupter then responds asserting DTACK*, signaling the interrupt
handler that the status/ID is valid on the VMEbus D0–D07. This
status/ID is appended to the C3200 Vector Offset Register bits <15:8>
and transferred to the T2018 as the address vector of the interrupt routine
to be executed to service the VME device over the DWMVA. Since the XMI
vector must be longword-aligned, the two lower bits of the vector, D0–
D01, are dropped. Figure 6–3 shows how the XMI vector is formed. The
interrupt handler is of type D32, which means that it will generate 32-bit
interrupt acknowledge cycles and reads an 8-bit status/ID from D0–D07.
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Figure 6–3 Generating the XMI IDENT Response Vector
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Figure 6–4 shows the XMI IDENT response format.

Figure 6–4 XMI IDENT Response Format
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6.4 Interrupt Request Levels
The four bus request lines of the XMI, BR7–BR4, can accommodate
four interrupt request signals (IRQx*) from the VMEbus on one-to-one
correspondence. Since the VMEbus features seven interrupt request
levels, four selected interrupt levels must be mapped to the four XMI bus
request lines. The mapping can be random. The only condition is that
each interrupt request level be mapped to a single BR line. The operating
system can generate the desired mapping by configuring the mapping
bits in the C3200 Interrupt Configuration Register. Following operating
system initialization, the VME interrupt request levels are mapped to
XMI interrupt priority levels, as shown in Table 6–2. The remaining three
interrupt request levels must be disabled, as explained in the Interrupt
Configuration Register.
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Table 6–2 VME Interrupt Request Levels and XMI Defaults

VME Interrupt Request Level Default XMI Interrupt Priority Level

IRQ7 BR7

IRQ6 BR6

IRQ5 BR5

IRQ4 BR4

IRQ3 Disabled

IRQ2 Disabled

IRQ1 Disabled

The C3200 allows software selection of its own interrupt request level
through a write to bits <13:12> of the C3200 Device/Configuration
Register. The default request level is BR7 (IPL17).

6.5 C3200 Interrupter/Interrupt Handler Selection
The VME protocol allows multiple interrupt handlers on the VMEbus.
This is referred to as a distributed handler system. The VME also permits
single-handler systems for the case where only one interrupt handler is
on the bus. The DWMVA’s interrupt handler allows the DWMVA adapter
to respond to any of the VME interrupt request levels. This feature is
necessary when the DWMVA is the only interrupt handler on the bus.

When the C3200 is configured as the only interrupt handler in the VME
subsystem (the default configuration), all VME interrupts at selected
levels are accepted by the C3200 and passed on to the XMI through an
INTR transaction.

In a distributed handler system, the C3200 Interrupt Configuration
Register bits <31:25> allow masking of any or all of the VME Interrupt
Request Levels IRQ7*–IRQ1*. Depending on the state of these bits, the
DWMVA can be made to accept only certain interrupts, letting another
VME interrupt handler process others. The distributed handler system
should be configured so that all interrupts that must be handled by
the XMI processor have their corresponding mask bits set in the C3200
Interrupt Configuration Register. In this way, the C3200 interrupt handler
can be configured to accept none or any combination of up to four VME
interrupts.

6.6 VME Interrupter Types
The VME specification (IEEE P1014) defines two types of interrupters:
RORA and ROAK. A RORA interrupter releases its interrupt request line
following an access to its internal register in response to the interrupt.
A ROAK interrupter releases its interrupt request line following the
interrupt acknowledge cycle that acknowledges its interrupt. The C3200
module supports both types of interrupters, provided they are properly
initialized in the Interrupt Configuration Register (see Chapter 7).
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7 Registers

This chapter describes the DWMVA registers. The registers reside on
both modules: T2018 and C3200. Registers required for an XMI interface
reside on the T2018 module. Accordingly, the discussions are grouped in
two sections:

• T2018 registers

• C3200 registers

Each section starts with a listing of the module registers, then proceeds to
describe the individual registers. Table 7–1 indicates how the type of bits
or fields is referred to in register descriptions.

Register addresses are referenced to a base address and stated as BB +
nn, where BB is the nodespace starting address, and is computed by the
equation:

BB = E180 0000 + (8 0000 * XMI Node ID)

for 32-bit addresses, or equation

BB = 2180 0000 + (8 0000 * XMI Node ID)

for 30-bit addresses.

Table 7–1 Types of Registers and Bits

Acronym Type

RO Read only.

R/W Read/write

R/W, 0 Read/write; cleared on power-up.

R/W1 Read/write one to set; self-cleared; cannot be cleared by a write of zero.

R/W1C Read/write one to clear; unaltered by a write of zero.

R/W1C, 0 Read/write one to clear; unaltered by a write of zero; cleared on
power-up.

R/W1C, 1 Read/write one to clear; unaltered by a write of zero; set on power-up.

R0/W1 Read as zero/write one to set; self-cleared; cannot be cleared by a write
of zero.

WO Write only
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7.1 T2018 Registers
The DWMVA registers on the T2018 module fall into two categories:

• XMI required registers

• T2018 specific registers

The XMI required registers must be implemented on each XMI node to
establish communication between the node and the XMI. The unique
registers implement node-specific functions.

Table 7–2 lists the T2018 registers and gives their offsets from the base
address. Table 7–3 gives the values that should appear in the T2018
registers at power-up or following a hardware or software reset.

Table 7–2 T2018 Registers

Name Mnemonic1 Address2

Device Register XDEV BB + 0000 0000

Bus Error Register XBER BB + 0000 0004

Failing Address Register XFADR BB + 0000 0008

Responder Error Address Register AREAR BB + 0000 000C

Error Summary Register AESR BB + 0000 0010

Interrupt Mask Register AIMR BB + 0000 0014

Implied Vector Interrupt Destination/Diagnostic
Register

AIVINTR BB + 0000 0018

Diagnostic 1 Register ADG1 BB + 0000 001C

Utility Register AUTLR BB + 0000 0020

Control and Status Register ACSR BB + 0000 0024

Return Vector Register ARVR BB + 0000 0028

Failing Address Extension Register XFAER BB + 0000 002C

VME Error Address Register ABEAR BB + 0000 0030

Page Map Register (first location) PMR BB + 0000 0200

: : :

Page Map Register (last location) PMR BB + 0004 01FC

1X used as the first letter of the mnemonic indicates an XMI required register.
2BB refers to the base address of an XMI node (the address of the first location in the
nodespace).
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Table 7–3 Initialization Values of the T2018 Registers

Initialization Bit States
Register (Bin) (Hex)

AREAR 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

AESR 1000 0000 0000 0000 0000 0000 0010 0000 8000 0020

AIMR 0000 0000 0000 X000 0000 0000 000X 0X00 000X 00XX

AIVINTR XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX

XXXX XXXX

ADG1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

AUTLR 0100 0011 1111 0000 0000 0000 0000 0000 43F0 0000

ACSR 0000 0000 0000 0000 0000 0001 1000 0000 0000 0180

ARVR 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

XFAER 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ABEAR 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ADG1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

PMR 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

X denotes an indeterminate bit state.
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Device Register (XDEV)

Device Register (XDEV)

The Device Register contains information to identify the node and is loaded
during node initialization. A zero value indicates an uninitialized node. This
register should not be modified by the operating system.

ADDRESS XMI nodespace base address + 0000 0000
3
1

1
6

1
5 0

Device Revision Device Type (2002)

msb−p412−91

bits<31:16>
Name: Device Revision

Mnemonic: DREV

Type: RO

DREV identifies the functional revision level of the module in
hexadecimal. This field always reflects the letter revision of the
module as follows:

T2018 Revision DREV (decimal) DREV (hex)

An 1 0001

Bn 2 0002

Cn 3 0003

Dn 4 0004

En 5 0005

Fn 6 0006

Not used 7 0007

Hn 8 0008

Not used 9 0009

Jn 10 000A

Kn 11 000B

Ln 12 000C

Mn 13 000D

Nn 14 000E

Not used 15 000F
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Device Register (XDEV)

bits<15:0>
Name: Device Type

Mnemonic: DTYPE

Type: RO, 2002 (hex)

DTYPE identifies the type of node on the XMI. This field is 2002 (hex)
for the DWMVA.
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Bus Error Register (XBER)

Bus Error Register (XBER)

The Bus Error Register stores the error bits flagged in operations involving the
DWMVA and logs the failing commander ID. This register includes an Error
Summary bit that is the logical OR of all the other error bits.

The status of this register remains locked up until software resets the error
bit(s).

ADDRESS XMI nodespace base address + 0000 0004
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 4 3 2 1 0

FCID

Reserved
Disable XMI
Timeout (DXTO)
Reserved

Failing Commander ID
Self−Test Fail (STF)
Reserved
Node−Specific Error
Summary (NSES)

Responder Errors

Read/IDENT Data NO ACK (RIDNAK)
Write Sequence Error (WSE)
Parity Error (PE)
Inconsistent Parity Error (IPE)

Reserved
Reserved
Corrected Confirmation (CC)
Reserved
Reserved
Node Reset (NRST)
Error Summary (ES)

msb−p390−91

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Commander Errors

0 0 0 0

Miscellaneous

Transaction Timeout (TTO)
Reserved
Command NO ACK (CNAK)
Read Error Response (RER)
Read Sequence Error (RSE)
No Read Response (NRR)
Corrected Read Data (CRD)
Write Data NO ACK (WDNAK)
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Bus Error Register (XBER)

bit<31>
Name: Error Summary

Mnemonic: ES

Type: RO, 1

ES represents the logical OR of the error bits in this register. It is set
whenever any error bit listed in the following table is set.

XBER Bit Mnemonic Name

<27> CC Corrected Confirmation

<24> IPE Inconsistent Parity Error

<23> PE Parity Error

<22> WSE Write Sequence Error

<21> RIDNAK Read/IDENT Data NO ACK

<20> WDNAK Write Data NO ACK

<19> CRD Corrected Read Data

<18> NRR No Read Response

<17> RSE Read Sequence Error

<16> RER Read Error Response

<15> CNAK Command NO ACK

<13> TTO Transaction Timeout

<12> NSES Node-Specific Error Summary

<10> STF Self-Test Fail

bit<30>
Name: Node Reset

Mnemonic: NRST

Type: R/W, 0

Writing a one to NRST initiates a power-up reset of the VME. Reads to
this bit location return zero. When NRST has a one written to it, the
DWMVA:

• Resets all logic on the T2018 module to an initialized (power-up)
state, regardless of what state it is in.

• Causes the C3200 to reset to an initialized (power-up) state and
assert SYSRESET* on the VMEbus, thus initializing all devices on
the VME.

While performing its node reset, the DWMVA does not affect the
operation of the XMI bus.
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Bus Error Register (XBER)

bit<29>
Name: Node Halt

Mnemonic: NHALT

Type: RO, 0

Reserved; reads as zero.

bit<28>
Name: XMI BAD

Mnemonic: XBAD

Type: RO, 0

Reserved; reads as zero.

bit<27>
Name: Corrected Confirmation

Mnemonic: CC

Type: R/W1C, 0

CC sets when the DWMVA detects a single-bit CNF error (a single-bit
CNF error is corrected automatically by the XCLOCK chip in the XMI
Corner). If CC is set, ES (XBER<31>) is also set.

bit<26>
Name: XMI Trigger

Mnemonic: XTRIG

Type: R/W1C, 0

This bit indicates the state of the XMI TRIGGER line and is used by
Digital during development.

bit<25>
Name: Write Error Interrupt

Mnemonic: WEI

Type: RO, 0

Reserved; reads as zero.
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Bus Error Register (XBER)

bit<24>
Name: Inconsistent Parity Error

Mnemonic: IPE

Type: R/W1C, 0

IPE sets when the DWMVA detects a parity error on an XMI cycle and
at least one other node (the responder) detected good parity during
the cycle (the confirmation for the cycle was ACK). This bit sets for all
XMI inconsistent parity errors, whether the DWMVA is the target of
the current XMI cycle or not.

bit<23>
Name: Parity Error

Mnemonic: PE

Type: R/W1C, 0

When set, PE bit indicates that the DWMVA detected a parity error on
an XMI cycle.

bit<22>
Name: Write Sequence Error

Mnemonic: WSE

Type: R/W1C, 0

When set, WSE indicates that the DWMVA aborted a write transaction
directed to it due to missing data cycles.

bit<21>
Name: Read/IDENT Data NO ACK

Mnemonic: RIDNAK

Type: R/W1C, 0

When set, RIDNAK indicates that a Read or IDENT data cycle (GRDn,
CRDn, LOC, RER) transmitted by the DWMVA received a NO ACK
confirmation.
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Bus Error Register (XBER)

bit<20>
Name: Write Data NO ACK

Mnemonic: WDNAK

Type: R/W1C, 0

When set, WDNAK indicates that a Write data cycle (GRDn,
CRDn, LOC, RER) transmitted by the DWMVA received a NO ACK
confirmation.

bit<19>
Name: Corrected Read Data

Mnemonic: CRD

Type: R/W1C, 0

When set, CRD bit indicates that the DWMVA received a CRDn read
response.

bit<18>
Name: No Read Response

Mnemonic: NRR

Type: R/W1C, 0

When set, NRR indicates that a read transaction initiated by the
DWMVA failed due to a read response timeout.

bit<17>
Name: Read Sequence Error

Mnemonic: RSE

Type: R/W1C, 0

When set, RSE indicates that a transaction initiated by the DWMVA
failed due to a read sequence error.

bit<16>
Name: Read Error Response

Mnemonic: RER

Type: R/W1C, 0

When set, RER indicates that the DWMVA received a Read Error
Response.
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T2018 Registers
Bus Error Register (XBER)

bit<15>
Name: Command NO ACK

Mnemonic: CNAK

Type: R/W1C, 0

When set, CNAK indicates that a command/address cycle transmitted
by the DWMVA received a NO ACK confirmation and all reattempts
have failed (retry timeout). This can be caused by either a reference to
a nonexistent memory location or a command cycle parity error. This
bit is set only if the reattempts fail.

CNAK does not set unless all retries have failed and TTO (XBER<13>)
is set.

bit<14>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; reads as zero.

bit<13>
Name: Transaction Timeout

Mnemonic: TTO

Type: R/W1C, 0

When set, TTO indicates that one of the following has occurred:

• The DWMVA did not receive an XMI grant before the timeout
period expired.

• The DWMVA received a NO ACK response to a command/address
cycle and all reattempts have failed (CNAK set).

• The DWMVA did not receive read data in response to an ACKed
read command before the timeout period expired (NRR set).
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Bus Error Register (XBER)

bit<12>
Name: Node-Specific Error Summary

Mnemonic: NSES

Type: RO, 0

The NSES sets when the DWMVA detects a node-specific error
condition. The exact nature of the error is contained in the Error
Summary Register (AESR) bits listed in the following table.

AESR Bit Mnemonic Name

<31> None DWMVA Cable OK

<14> ME Multiple Errors

<13> CORR PMR ECC ERR Correctable PMR ECC Error

<12> UNCORR PMR ECC ERR Uncorrectable PMR ECC Error

<11> IPFN Invalid PFN

<10> CORR DMA ECC ERR Correctable DMA ECC Error

<9> UNCORR DMA ECC ERR Uncorrectable DMA ECC Error

<8> INV VME ADR Invalid VME Address

<7> IE Internal Error

<6> None I/O Write Failure

<5> None VME AC LO

<4> IBUS DMA-A DATA PE IBUS DMA-A Data Parity Error

<3> IBUS DMA-A C/A PE IBUS DMA-A Command/Address Parity
Error

<2> IBUS DMA-B DATA PE IBUS DMA-B Data Parity Error

<1> IBUS DMA-A C/A PE IBUS DMA-B Command/Address Parity
Error

<0> IBUS I/O RD PE IBUS I/O Read Data Parity Error

bit<11>
Name: Extended Test Fail

Mnemonic: ETF

Type: RO, 0

Reserved; reads as zero.

7–12
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Bus Error Register (XBER)

bit<10>
Name: Selt-Test Fail

Mnemonic: STF

Type: R/W1C, 1

When set, STF indicates that the DWMVA has not yet passed its self-
test. The CPU node clears this bit upon successful completion of the
DWMVA self-test.

bits<9:4>
Name: Failing Commander ID

Mnemonic: FCID

Type: RO, 0

FCID logs the commander ID of a failing transaction. FCID is set only
if all reattempts fail.

bit<3>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; reads as zero.

bit<2>
Name: Disable XMI Timeout

Mnemonic: DXTO

Type: R/W, 0

When set, DXTO disables the transaction timeout counter, causing
Timeout Limit (AUTLR<23:20>) to be ignored. The DWMVA either
retries a transaction on the XMI or waits for returning DMA read
data in response to a successful XMI read for an indefinite period. The
DWMVA never aborts the transaction or sets TTO.

bits<1:0>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; read as zero.
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Failing Address Register (XFADR)

Failing Address Register (XFADR)

The Failing Address Register logs address and length information associated
with a failing transaction. The following error bits, when set, lock this register
and XFAER:

• Write Data NO ACK, XBER<20>

• No Read Response, XBER<18>

• Read Sequence Error, XBER<17>

• Read Error Response, XBER<16>

• Command NO ACK, XBER<15>

• Transaction Timeout, XBER<13>

• Internal Error, AESR<7>

ADDRESS XMI nodespace base address + 0000 0008

3
1

3
0

2
9 0

Failing Address

msb−p413−91

Failing Length (FLN)

bits<31:30>
Name: Failing Length

Mnemonic: FLN

Type: RO, 0

The FLN logs the value of XMI D<31:30> during the command/address
cycle of a failed XMI commander transaction. This field is loaded on
every command/address cycle issued by the DWMVA. It is locked,
however, only after all retries of the transaction fail. FLN unlocks
when the error that caused the lock is cleared.
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Failing Address Register (XFADR)

bits<29:0>
Name: Failing Address

Mnemonic: None

Type: RO, 0

The Failing Address field logs the value of XMI D<29:0> during the
command/address cycle of a failing transaction. Failing Address is
loaded on every command/address cycle issued by the DWMVA. It is
locked, however, only after all retries of the transaction fail. FLN
unlocks when the error that caused the lock is cleared.
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Responder Error Address Register (AREAR)

Responder Error Address Register (AREAR)

The Responder Error Address Register (AREAR) logs the failing address of
an I/O write, read, or IDENT from an XMI commander node directed to the
DWMVA or the VME. AREAR is loaded when the DWMVA ACKs the XMI’s
command/address cycle.

AREAR is locked when the DWMVA is unable to complete the requested
operation because of a detected error. The following error bits, when set, lock
this register, the Responder Failing ID (AESR<25:20>), and the Responder
Failing Command (AESR<19:16>):

• Write Sequence Error, XBER<22>

• Read/IDENT Data NO ACK, XBER<21>

• Uncorrectable PMR ECC Error, AESR<13>

• Correctable PMR ECC Error, AESR<12>

• Internal Error, AESR<7>

• I/O Write Failure, AESR<6>

• IBUS I/O Read Data Parity Error, AESR<0>

ADDRESS XMI nodespace base address + 0000 000C

3
1

3
0

2
9 0

Responder Failing Address

msb−p414−91

Responder Failing Length (RFLN)

bits<31:30>
Name: Responder Failing Length

Mnemonic: RFLN

Type: RO, 0

RFLN loads XMI D<31:30> during the cycle that the DWMVA accepts
the command/address from an XMI commander. This field locks only if
the transaction fails and unlocks when all the error conditions clear.
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Responder Error Address Register (AREAR)

bits<29:0>
Name: Responder Failing Address

Mnemonic: None

Type: RO, 0

Responder Failing Address logs the value of XMI D<29:0> during the
cycle that the DWMVA accepts the command/address from an XMI
commander. It locks only if the transaction fails and unlocks when all
the error conditions clear.
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Error Summary Register (AESR)

Error Summary Register (AESR)

The Error Summary Register logs error conditions related to the T2018
module. This register also captures the Failing Command, Failing Commander
ID, and flags on an unexplained error detection on the T2018.

ADDRESS XMI nodespace base address + 0000 0010

3
1

3
0

2
6

2
5

2
0

1
9

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RFID RFCMD

IBUS I/O RD PE
DWMVA Cable OK IBUS DMA−B C/A PE

Reserved

Reserved

Invalid PFN
UNCORR PMR ECC ERR
CORR PMR ECC ERR
Multiple Errors

Internal Error
INV VME ADR
UNCORR DMA ECC ERR
CORR DMA ECC ERR

IBUS DMA−A C/A PE
IBUS DMA−A DATA PE
VME AC LO
I/O Write Failure

IBUS DMA−B DATA PE

msb−p392−91

bit<31>
Name: DWMVA Cable OK

Mnemonic: None

Type: RO, 1

DWMVA Cable OK sets to one on initialization if the four IBUS cables
are correctly connected and if the C3200 has dc power from the VME
backplane. If DWMVA Cable OK clears and the C3200 has VME dc
power, then one or more of the cables is not connected or is incorrectly
installed.
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bits<30:26>
Name: Reserved

Mnemonic: None

Type: RO, O

Reserved; read as zero.

bits<25:20>
Name: Responder Failing ID

Mnemonic: RFID

Type: RO, 0

RFID logs the XMI node ID of a failed DWMVA I/O write, I/O read,
or XMI IDENT transaction. The DWMVA loads this field every time
it accepts a command/address cycle. This field locks if the transaction
fails and unlocks when the error condition clears.

bits<19:16>
Name: Responder Failing Command

Mnemonic: RFCMD

Type: RO, 0

RFCMD logs the XMI command of a failed DWMVA I/O write, I/O
read, or XMI IDENT transaction. The DWMVA loads this field
every time it accepts a command/address cycle. This field locks if
the transaction fails and unlocks when the error condition clears.

bit<15>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; reads as zero.

bit<14>
Name: Multiple Errors

Mnemonic: ME

Type: R/W1C, 0

When set, ME indicates that an error(s) occurred in a second
transaction before software acknowledged and cleared the error(s)
from the first transaction. The following bits have no effect on ME:

• VME AC LO, AESR<5>

• Self-Test Fail, XBER<10>
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bit<13>
Name: Correctable PMR ECC Error

Mnemonic: CORR PMR ECC ERR

Type: R/W1C, 0

When set, CORR PMR ECC ERR indicates that a correctable ECC
error occurred during an I/O read access to a PMR. The set state of
this bit locks the AREAR and generates an interrupt if INTR CORR
ECC ERR (AIMR<10>) is set.

bit<12>
Name: Uncorrectable PMR ECC Error

Mnemonic: UNCORR PMR ECC ERR

Type: R/W1C, 0

When set, UNCORR PMR ECC ERR indicates that an uncorrectable
ECC error occurred during an I/O read access to a PMR. The set
state of this bit locks the AREAR and generates an interrupt if INTR
UNCORR ECC ERR (AIMR<9>) is set.

bit<11>
Name: Invalid PFN

Mnemonic: IPFN

Type: R/W1C, 0

When set, IPFN indicates that the Valid bit of a PMRE accessed
during a DMA transaction was not a one. The set state of IPFN causes
ABEAR to lock the VME address of the failed DMA transaction and an
interrupt request is generated if INTR IPFN (AIMR<11>) is set.

If the transaction was a DMA write, or otherwise might cause a
data loss, an IVINTR is generated if Enable IVINTR Transactions
(AIMR<31>) is set.

bit<10>
Name: Correctable DMA ECC Error

Mnemonic: CORR DMA ECC ERR

Type: R/W1C, 0

When set, CORR DMA ECC ERR indicates that a fetch from the PMR
during a DMA address translation detected and corrected an error.
The set state of this bit locks the ABEAR. CORR DMA ECC ERR
sets only when the DWMVA operates in an address translation mode.
When this bit sets, an interrupt is generated if INTR CORR ECC ERR
(AIMR<10>) is set.
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bit<9>
Name: Uncorrectable DMA ECC Error

Mnemonic: UNCORR DMA ECC ERR

Type: R/W1C, 0

When set, UNCORR DMA ECC ERR indicates that a fetch from the
PMR during a DMA address translation detected an uncorrectable
error. The set state of this bit locks the ABEAR. UNCORR DMA ECC
ERR sets only when the DWMVA operates in an address translation
mode. When this bit sets, an interrupt is generated if INTR UNCORR
ECC ERR (AIMR<9>) is set.

If the transaction was a DMA write, or otherwise might cause a
data loss, an IVINTR is generated if Enable IVINTR Transactions
(AIMR<31>) is set.

bit<8>
Name: Invalid VME Address

Mnemonic: INV VME ADR

Type: R/W1C, 0

When set, INV VME ADR indicates that the VME address for the
requested DMA transaction is invalid (not in memory space).

In no translation mode or 40-bit address translation mode using 8-
Kbyte page size, a DMA transaction is invalid if VME address bit A29
equals one.

In 40-bit address translation mode using 4-Kbyte page size, a DMA
transaction is invalid if VME address bits A28–A29 do not equal zero.

In 40-bit address translation mode, a DMA transaction is invalid if
VME address bits A25–A28 do not equal zero.

The set state of INV VME ADR causes the ABEAR to lock the VME
address of the failed transaction. An interrupt request is generated if
INTR INV VME ADR (AIMR<8>) is set.

If the transaction was a DMA write, or otherwise might cause a
data loss, an IVINTR with WRT ERROR INT set in the Type field is
generated if Enable IVINTR Transactions (AIMR<31>) is set.

bit<7>
Name: Internal Error

Mnemonic: IE

Type: R/W1C, 0

IE is set when an UNEXPLAINED internal error to the T2018 gate
array is detected. This error generally indicates a hardware problem
where control logic has encountered UNDEFINED conditions. When
IE is set, the DWMVA issues an IVINTR transaction with WRT
ERROR INT set in the Type field, if Enable IVINTR Transactions
(AIMR<31>) is set.
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The following conditions cause IE to set:

• A state machine in the T2018 gate array reaches an illogical state.

• A parity error is detected internal to the gate array on the transfer
of PMR write data for a PMR write request, indicating that the
PMR location’s data is corrupt. This error condition also causes I/O
Write Failure (AESR<6>) to set.

• A parity error is detected on the transfer of write data for a
loopback write command during a loopback mode. This also causes
the loopback write transaction to abort and I/O Write Failure
(AESR<6>) to set.

• A parity error is detected on the return of DMA read data that is
looped back as CPU read data during a loopback mode. This also
causes the loopback read transaction to abort.

bit<6>
Name: I/O Write Failure

Mnemonic: None

Type: R/W1C, 0

The I/O Write Failure bit sets if the C3200 module is unable to
complete an I/O write transaction to either its register space or to
VME address space. The set state of this bit causes the generation of
an IVINTR transaction with WRT ERROR INT set in the Type field,
if Enable IVINTR Transactions (AIMR<31>) is set. Software uses this
bit and other error bits to determine the cause of a DWMVA-generated
IVINTR transaction.

When I/O Write Failure is set, the contents of the T2018 Responder
Error Address Register lock.
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bit<5>
Name: VME AC LO

Mnemonic: None

Type: R/W1C, 1

The VME AC LO bit sets when the AC FAIL L signal is asserted,
indicating that the VME power has fallen below specifications. The
DWMVA issues an IVINTR with WRT ERROR INT set in the Type
field when AC FAIL L is asserted, if Enable IVINTR Transactions
(AIMR<31>) is set, so that software can determine the cause of
this IVINTR transaction. Software then clears VME AC LO in the
interrupt service routine that executes as a result of the IVINTR.

The following conditions cause VME AC LO to set:

• An XMI power-up sequence.

• Software sets NRST (XBER<30>) to initiate a node reset.

• Software sets Control Reset (ACSR<30>) to initiate a diagnostics
node reset.

• VME power falls below specifications, causing a VME power
failure.

• Software causes a VME node reset to execute a remote booting
routine.

This bit is cleared by self-test at power-up.

bit<4>
Name: IBUS DMA-A Data Parity Error

Mnemonic: IBUS DMA-A DATA PE

Type: R/W1C, 0

IBUS DMA-A DATA PE sets when the T2018 module detects a parity
error on the IBUS when the C3200 module was loading a DMA-A
data buffer location. When this bit is set, the DWMVA issues an
IVINTR with WRT ERROR INT set in the Type field, if Enable
IVINTR Transactions (AIMR<31>) is set.
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bit<3>
Name: IBUS DMA-A C/A Parity Error

Mnemonic: IBUS DMA-A CA PE

Type: R/W1C, 0

IBUS DMA-A C/A PE bit sets when the T2018 module detects a parity
error on the IBUS when the C3200 module was loading a DMA-A
data buffer command/address location. When this bit is set, and the
failing DMA transaction is a write or interrupt, the DWMVA issues an
IVINTR with WRT ERROR INT set in the Type field. The DWMVA
issues an error interrupt if INTR DMA-A CA PE (AIMR<3>) is set.

bit<2>
Name: IBUS DMA-B Data Parity Error

Mnemonic: IBUS DMA-B DATA PE

Type: R/W1C, 0

IBUS DMA-B DATA PE sets when the T2018 module detects a parity
error on the IBUS when the C3200 module was loading a DMA-B
data buffer location. When this bit is set, the DWMVA issues an
IVINTR with WRT ERROR INT set in the Type field, if Enable
IVINTR Transactions (AIMR<31>) is set.

bit<1>
Name: IBUS DMA-B C/A Parity Error

Mnemonic: IBUS DMA-B CA PE

Type: R/W1C, 0

IBUS DMA-B CA PE sets when the T2018 module detects a parity
error on the IBUS when the C3200 module was loading a DMA-B
data buffer command/address location. When this bit is set, and the
failing DMA transaction is a write or interrupt, the DWMVA issues an
IVINTR with WRT ERROR INT set in the Type field. The DWMVA
issues an error interrupt if this error bit is set and INTR DMA-B CA
PE (AIMR<1>) is also set.
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bit<0>
Name: IBUS I/O Read Data Parity Error

Mnemonic: IBUS I/O RD PE

Type: R/W1C, 0

IBUS I/O RD PE sets when the T2018 module detects a parity error
on the IBUS when the C3200 module was loading the I/O data location
during an XMI commander-initiated I/O read or IDENT. The DWMVA
issues a Read Error Response (RER) to the commander when the error
occurs during an I/O read transaction. If the error occurs during an
IDENT transaction, the DWMVA returns the contents of the Return
Vector Register (ARVR) as the vector. The DWMVA issues an interrupt
to the XMI when this bit is set, if INTR I/O RD PE (AIMR<0>) is also
set.
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Interrupt Mask Register (AIMR)

The Interrupt Mask Register enables/disables the generation of an error
interrupt transaction when the corresponding error bit in either the Bus Error
Register (XBER) or the Error Summary Register (AESR) is set.

ADDRESS XMI nodespace base address + 0000 0014

3
1

3
0

2
8

2
7

2
6

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

MBZ

ENABLE
IVINTR

INTR CC
INTR IPE
INTR PE
INTR WSE

INTR CRD
INTR NRR
INTR RSE
INTR RER

INTR TTO

INTR IPFN

INTR IO WRT FAIL

INTR RIDNAK
INTR WDNAK

MBZ

INTR CORR ECC ERR

INTR IE

0 0
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INTR CNAK/NXM

INTR VME AC LO

INTR UNCORR ECC ERR

INTR DMAB DATA PE

INTR DMAA DATA PE

INTR INV VME ADR

INTR DMAB CA PE
INTR I/O RD PE

INTR DMAA CA PE
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bit<31>
Name: Enable IVINTR Transactions

Mnemonic: ENABLE IVINTR

Type: R/W, 0

When ENABLE IVINTR is set and IVINTR Destination Register is
properly configured, IVINTRs are enabled and can be issued on the
XMI bus. The following error conditions generate IVINTRs:

• Invalid PFN, AESR<11>, only if the failing transaction was a DMA
write

• Uncorrectable DMA ECC error, AESR<9>, only if the failing
transaction was a DMA write

• Invalid VME address, AESR<8>, only if the failing transaction was
a DMA write

• Internal Error, AESR<7>

• I/O Write Failure, AESR<6>

• VME AC LO, AESR<5>

• IBUS DMA-A Data Parity Error, AESR<4>

• IBUS DMA-A C/A Parity Error, AESR<3>, only if the failing
transaction was a DMA write

• IBUS DMA-B Data Parity Error, AESR<2>

• IBUS DMA-B C/A Parity Error, AESR<1>, only if the failing
transaction was a DMA write

• Transaction Timeout, XBER<13>, only if the failing transaction
was a DMA write

CAUTION: This bit must be set to ensure proper error reporting in the
case of asynchronous write failures and occurrence of a
pending VME powerfail (VME power failure not initiated by
XMI AC LO, XMI DC LO, or DWMVA node reset).

bits<30:28>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.
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bit<27>
Name: Interrupt on Corrected Confirmation

Mnemonic: INTR CC

Type: R/W, 0

If INTR CC IS SET, the DWMVA generates an interrupt when
Corrected Confirmation (XBER<27>) sets.

bits<26:25>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bit<24>
Name: Interrupt on Inconsistent Parity Error

Mnemonic: INTR IPE

Type: R/W, 0

If INTR IPE is set, the DWMVA generates an interrupt when
Inconsistent Parity Error (XBER<24>) sets.

bit<23>
Name: Interrupt on Parity Error

Mnemonic: INTR PE

Type: R/W, 0

If INTR PE is set, the DWMVA generates an interrupt when Parity
Error (XBER<23>) sets.

bit<22>
Name: Interrupt on Write Sequence Error

Mnemonic: INTR WSE

Type: R/W, 0

If INTR WSE is set, the DWMVA generates an interrupt when Write
Sequence Error (XBER<22>) sets.

bit<21>
Name: Interrupt on Read/IDENT NO ACK

Mnemonic: INTR RIDNAK

Type: R/W, 0

If INTR RIDNAK is set, the DWMVA generates an interrupt when
Read/IDENT NO ACK (XBER<21>) sets.
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bit<20>
Name: Interrupt on Write Data NO ACK

Mnemonic: INTR WDNAK

Type: R/W, 0

If INTR WDNAK is set, the DWMVA generates an interrupt when
Write Data NO ACK (XBER<20>) sets.

bit<19>
Name: Interrupt on Corrected Read Data

Mnemonic: INTR CRD

Type: R/W, 0

If INTR CRD is set, the DWMVA generates an interrupt when
Corrected Read Data (XBER<19>) sets.

bit<18>
Name: Interrupt on No Read Response

Mnemonic: INTR NRR

Type: R/W, 0

If INTR NRR is set, the DWMVA generates an interrupt when No
Read Response (XBER<18>) sets.

bit<17>
Name: Interrupt on Read Sequence Error

Mnemonic: INTR RSE

Type: R/W, 0

If INTR RSE is set, the DWMVA generates an interrupt when Read
Sequence Error (XBER<17>) sets.

bit<16>
Name: Interrupt on Read Error Response

Mnemonic: INTR RER

Type: R/W, 0

If INTR RER is set, the DWMVA generates an interrupt when Read
Error Response (XBER<16>) sets.

bit<15>
Name: Interrupt on Command NO ACK

Mnemonic: INTR CNAK

Type: R/W, 0

If INTR CNAK is set, the DWMVA generates an interrupt when
Command NO ACK (XBER<15>) sets.
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bit<14>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bit<13>
Name: Interrupt on Transaction Timeout

Mnemonic: INTR TTO

Type: R/W, 0

If INTR TTO is set, the DWMVA generates an interrupt when
Transaction Timeout (XBER<13>) sets.

bit<12>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bit<11>
Name: Interrupt on Invalid PFN

Mnemonic: INTR IPFN

Type: R/W, 0

If INTR IPFN is set, the DWMVA generates an interrupt when Invalid
PFN (AESR<11>) sets.

bit<10>
Name: Interrupt on Correctable ECC Error

Mnemonic: INTR COR ECC ERR

Type: R/W, 0

If INTR COR ECC ERR is set, the DWMVA generates an interrupt
when Correctable PMR ECC Error (AESR<13>) or Correctable DMA
ECC Error (AESR<10>) sets.

bit<9>
Name: Interrupt on Uncorrectable ECC Error

Mnemonic: INTR UNCOR ECC ERR

Type: R/W, 0

If INTR UNCOR ECC ERR is set, the DWMVA generates an interrupt
when Uncorrectable PMR ECC Error (AESR<12>) or Uncorrectable
DMA ECC Error (AESR<9>) sets.
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bit<8>
Name: Interrupt on Invalid VME Address

Mnemonic: INTR INV VME ADR

Type: R/W, 0

If INTR INV VME ADR is set, the DWMVA generates an interrupt
when Invalid VME Address (AESR<8>) sets.

bit<7>
Name: Interrupt on Internal Error

Mnemonic: INTR IE

Type: R/W, 0

If INTR IE is set, the DWMVA generates an interrupt when Internal
Error (AESR<7>) sets.

bit<6>
Name: Interrupt on I/O Write Failure

Mnemonic: INTR IO WRT FAIL

Type: R/W, 0

If INTR IO WRT FAIL is set, the DWMVA generates an interrupt
when I/O Write Failure (AESR<6>) sets.

bit<5>
Name: Interrupt on VME AC LO

Mnemonic: INTR VME AC LO

Type: R/W, 0

If INTR VME AC LO is set, the DWMVA generates an interrupt when
VME AC LO (AESR<5>) sets.

bit<4>
Name: Interrupt on DMA-A Data Parity Error

Mnemonic: INTR DMA-A DATA PE

Type: R/W, 0

If INTR DMA-A DATA PE is set, the DWMVA generates an interrupt
when IBUS DMA-A Data Parity Error (AESR<4>) sets.

bit<3>
Name: Interrupt on IBUS DMA-A C/A Parity Error

Mnemonic: INTR DMA-A CA PE

Type: R/W, 0

If INTR DMA-A CA PE is set, the DWMVA generates an interrupt
when IBUS DMA-A C/A Parity Error (AESR<3>) sets.
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bit<2>
Name: Interrupt on DMA-B Data Parity Error

Mnemonic: INTR DMA-B DATA PE

Type: R/W, 0

If INTR DMA-B DATA PE is set, the DWMVA generates an interrupt
if IBUS DMA-B Data Parity Error (AESR<2>) sets.

bit<1>
Name: Interrupt on IBUS DMA-B C/A Parity Error

Mnemonic: INTR DMA-B CA PE

Type: R/W, 0

If INTR DMA-B CA PE is set, the DWMVA generates an interrupt if
IBUS DMA-B C/A Parity Error (AESR<1>) sets.

bit<0>
Name: Interrupt on IBUS I/O Read Data Parity Error

Mnemonic: INTR I/O RD PE

Type: R/W, 0

If INTR I/O RD PE is set, the DWMVA generates an interrupt if IBUS
I/O Read Data Parity Error (AESR<0>) sets.
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Implied Vector Interrupt Destination/Diagnostic
Register (AIVINTR)

The Implied Vector Interrupt Destination/Diagnostic Register is used for two
different purposes:

• As a mask during DWMVA-initiated transactions

• As a data path tester during diagnostics

DWMVA-initiated transactions use bits <15:0> only of the register to define the
Implied Vector Interrupt (IVINTR) destination. Diagnostics use all 32 bits.

ADDRESS XMI nodespace base address + 0000 0018
3
1

1
6

1
5 0

Diagnostic Read/Write IVINTR Destination

(Diagnostic Read/Write)
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bits<31:0>
Name: Diagnostic Read/Write

Mnemonic: None

Type: R/W, Undefined

The Diagnostic Read/Write bits are used by diagnostics to verify the
integrity of the T2018 main data path. Diagnostics should ensure
that the processor’s IPL level is raised above IPL 30, so that in case
the occurrence of an error causes the T2018 to issue an IVINTR
transaction, an unexpected interrupt does not result.

bits<15:0>
Name: IVINTR Destination

Mnemonic: None

Type: R/W, 0

The IVINTR Destination mask field determines which nodes on the
XMI will be targeted by the DWMVA when the DWMVA issues an
IVINTR transaction. Each bit, when set, selects the corresponding
node to participate in the IVINTR transaction. Multiple bits can be set
to engage simultaneously as many XMI nodes as desired. When bits
<15:0> are used as an IVINTR destination mask, bits <31:16> must be
written as zero.
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Diagnostic 1 Register (ADG1)

The Diagnostic 1 Register is used by diagnostics to test parity and other logic
on the T2018 module and the IBUS.

CAUTION: This register must NOT be accessed by the user. It is reserved for
use by Digital service personnel.

ADDRESS XMI nodespace base address + 0000 001C

3
1

3
0

2
9

2
8

2
7

2
6

2
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Diagnostic ECC

Force Illegal Command
Force Data NO ACK
Error Summary Test

Force TLOCKOUT

T2018 Loopback Enable

Force Bad IBUS Receive Parity
Force Bad IBUS Transmit Parity
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Transmit Lockout Status
Receive Lockout Status
Auto Retry Disable

Substitute ECC

Flip FADDR Bit<1>
Flip ADR Bit<29>

Force Octaword Transfers
Force DMA−A Buffer Busy
Force DMA−B Buffer Busy

Interrupt Sent Status

Latch Check Bits
Force ECC Error

ECC Disable
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Utility Register (AUTLR)

The Utility Register contains fields for software programmable selection of
timeout values and for moving the DWMVA window address space to an I/O
address range other than the power-up or reset default values.

ADDRESS XMI nodespace base address + 0000 0020

3
1

2
8

2
7

2
4

2
3

2
0

1
9

1
8

1
7

1
6

1
4

1
3 0

VME Window Space

Reserved
34−bit Address Enable (34 ENA)
Mapping Register Mode Enable (MR MD)
Timeout Limit (TLIM)
Lockout Deassertion (LDEASRT)
Lockout Limit (LLIM)
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bits<31:28>
Name: Lockout Limit

Mnemonic: LLIM

Type: R/W, 4 (hex)

The value loaded into LLIM determines the maximum number of
consecutive IREADS that the DWMVA retries, before it asserts the
XMI LOCKOUT L signal.

The default value loaded into this field at power-up and at node reset
is 4 (hex). Software can load the field with a value between 0 and F
(hex) at system initialization. The values for this field are as follows:

LLIM(hex) IREAD Attempts LLIM(hex) IREAD Attempts

0 1 8 8

1 1 9 9

2 2 A 10

3 3 B 11

4 4 (default) C 12

5 5 D 13

6 6 E 14

7 7 F 15
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bits<27:24>
Name: Lockout Deassertion

Mnemonic: LDEASRT

Type: R/W, 3 (hex)

The value loaded into LDEASRT determines the maximum time XMI
LOCKOUT L can remain asserted on the XMI. This field enables the
lockout deassertion time to vary between 1 to 15 ms. The default
value at power-up and at node reset is 2 to 3 ms. Software can load
this field with a value between 1 and F (hex) at system initialization.
The values for this field are as follows:

LDEASRT(hex) Timeout (ms) LDEASRT(hex) Timeout (ms)

0 00-1 8 7–8

1 0–1 9 8–9

2 1–2 A 9–10

3 2–3 (default) B 10–11

4 3–4 C 11–12

5 4–5 D 12–13

6 5–6 E 13–14

7 6–7 F 14–15

bits<23:20>
Name: Timeout Limit

Mnemonic: TLIM

Type: R/W, F (hex)

The value loaded into TLIM determines the time that the DWMVA
retries a transaction on the XMI or waits for returning read data
in response to a successful XMI read command before aborting the
transaction and setting the Transaction Timeout (TTO) bit in the
XBER.

The DWMVA has two timeout limits, a normal timeout limit that
ranges from 0 to 15 ms, and a short timeout limit that ranges from 0
to 960 � s. The value of Short Timeout Enable (ACSR<9>) determines
whether the DWMVA uses the normal or short timeout. Software
can load the field with a value between 0 and F (hex) at system
initialization. The default value at power-up and at node reset is 3
(hex), for a timeout of 14 to 15 ms.

The programmable values of timeout are as follows:
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ACSR<9>=0 ACSR<9>=1
Normal Timeout Short Timeout

TLIM (hex) (ms) ( � s)

0 0–1 0–64

1 0–1 0–64

2 1–2 64–128

3 2–3 128–192

4 3–4 192–256

5 4–5 256–320

6 5–6 320–384

7 6–7 384–448

8 7–8 448–512

9 8–9 512–576

A 9–10 576–640

B 10–11 640–704

C 11–12 704–768

D 12–13 768–832

E 13–14 832–896

F 14–15 (default) 896–960

bits<19:18>
Name: Mapping Register Mode Enable

Mnemonic: MR MD

Type: R/W, 0

MR MD selects the translation mode (including no translation) to
convert a VME address into an XMI physical address. Software
sets up this field at system initialization. The T2018 defaults to no
translation mode after a power-up or node reset. This field selects the
translation mode as follows:

MR
MD<19:18> Translation Mode

00 No translation (Default)

01 40-bit address translation using 512-byte page sizes

10 40-bit address translation using 4-Kbyte page sizes

11 40-bit address translation using 8-Kbyte page sizes

The 34-bit translation mode is selected through bit <17> of this
register.
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bit<17>
Name: 34-Bit Address Enable

Mnemonic: 34 ENA

Type: R/W, 0

When set, 34 ENA masks the upper 5 bits of the translated address.
Thus, the T2018 transmits a 34-bit VAX address with a DMA
command.

This option is only valid while the T2018 is in the 40-bit VAX address
translation mode using 512-byte page sizes (AUTLR<19:18> = 1). This
bit has no effect if set during another translation mode.

bits<16:14>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; read as zero.

bits<13:0>
Name: VME Window Space

Mnemonic: VWS

Type: R/W, 0

The 14-bit VWS enables software to reconfigure the DWMVA I/O
address space to any 32-Mbyte address region within the 512-Mbyte
range of the I/O adapter address space.

Referenced to the VME window address space are stated as bb + nn,
where bb is the VME I/O window space base address.

VME I/O window space is normally accessed if VWS ENA (bit <5>) is
clear in the Control and Status Register (ACSR). The VME I/O window
space base address (bb) is computed from the equation:

bb = E000 0000 + (200 0000*XMI node ID) + (2000*VME node ID)

If VWS ENA is set, the VME I/O window space base address is
computed from the equation:

bb = E000 0000 + (200 0000*AUTLR<13:0>) + (2000*VME node ID)

Note that using node 0 in VME window space is illegal. Therefore,
AUTLR<13:0> should be set up before VWS ENA is set in the ACSR.

If an I/O command directed to the VME is not targeted for a VME
CSR, and ACSR<5> is set while AUTLR<13:0> field equals zero, the
I/O command is NO ACKed by the DWMVA.
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Control and Status Register (ACSR)

The Control and Status Register contains control and status information for
the T2018 module operation.

ADDRESS XMI nodespace base address + 0000 0024

3
1

3
0

2
9

2
8

1
7

1
6

1
0 9 8 7 6 5 4 3 2 1 0

ECC Syndrome Reserved

Reserved

Short Timeout Enable (SHORT TMO ENA)

Reserved
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Reserved

Control Reset

Lockout Response Enable (LOCKOUT RESPONSE ENA)

VME Window Space Enable (VWS ENA)

Return Vector Disable (RETURN VECTOR DIS)

PMR Ready

Lockout Assert Enable (LOCKOUT ASSERT ENA)

Responder Request Enable (RES REQ ENA)

Reserved

Multiple Interrupt Enable (ME ENA)

bit<31>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; reads as zero.

bit<30>
Name: Control Reset

Mnemonic: CTL RESET

Type: WO, 0

CTL RESET is used for diagnostic purposes only. Writing a one to this
bit initiates a partial node reset. Reads of this bit location return zero.

Writing a one to this bit causes the DWMVA to execute a control reset,
even if it is in a hung state or busy processing another transaction.

When this bit is set to one, the DWMVA:

• Resets all logic on the T2018 module, including the PMRs (except
the I/O registers), to an initialized (power-up) state.

• Resets the C3200 module and the VME.
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• Disables IVINTRs by resetting AIMR<31>, the IVINTR enable
bit.

The state of CTL RESET does not affect XMI operations.

bit<29>
Name: PMR Ready

Mnemonic: None

Type: RO, 0

When clear, PMR Ready prevents access of the PMRs from the XMI
and VME (that is, address translation is disabled).

This bit is set when PMR INIT IN PROG H is deasserted. It is cleared
on power-up, XMI node reset, or upon assertion of PMR INIT IN
PROG H.

bits<28:17>
Name: ECC Syndrome

Mnemonic: None

Type: RO, 0

The ECC Syndrome field is loaded with the ECC syndrome bits when
an ECC error is detected. This field is locked when an ECC error is
detected and remains locked until the error condition has been cleared.
Error bits that lock this field are given in the following table.

Register<bit> Name

AESR<13> Correctable PMR ECC Error

AESR<12> Uncorrectable PMR ECC Error

AESR<10> Correctable DMA ECC Error

AESR<9> Uncorrectable DMA ECC Error

bits<16:10>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; read as zero.
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bit<9>
Name: Short Timeout Enable

Mnemonic: SHORT TMO ENA

Type: R/W, 0

When set, SHORT TMO ENA enables the DWMVA to use a smaller
timeout range, from 0 to 960 � s, instead of the normal timeout range
of 0 to 15 ms.

bit<8>
Name: Lockout Response Enable

Mnemonic: LOCKOUT RESPONSE ENA

Type: R/W, 1

When set, LOCKOUT RESPONSE ENA enables the DWMVA to
respond to the XMI LOCKOUT L signal on the XMI. The DWMVA
defaults to the Full XMI Lockout mode after a power-up or a node
reset.

bit<7>
Name: Lockout Assert Enable

Mnemonic: LOCKOUT ASSERT ENA

Type: R/W, 1

When set, LOCKOUT ASSERT ENA enables the DWMVA to assert
the XMI LOCKOUT L signal. The DWMVA defaults to the Full XMI
Lockout mode after a power-up or a node reset.

bit<6>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; reads as zero.
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bit<5>
Name: VME Window Space Enable

Mnemonic: VWS ENA

Type: R/W, 0

When set, VWS ENA enables the VME Window Space field
(AUTLR<13:0>), allowing software to reconfigure the VME I/O address
space into any 32-Mbyte region of the 512-Mbyte I/O address space.

bit<4>
Name: Responder Request Enable

Mnemonic: RES REQ ENA

Type: R/W, 0

When set, RES REQ ENA bit causes the DWMVA to arbitrate for
the XMI as a commander using XMI RES(n) REQ L instead of XMI
CMD(n) REQ L.

If XMI SUP L is asserted when the DWMVA wins the XMI, it aborts
the transaction and retries again when XMI SUP L is deasserted,
allowing the DWMVA to gain a higher priority than other XMI
commander nodes.

bit<3>
Name: Multiple Interrupt Enable

Mnemonic: ME ENA

Type: R/W, 0

When set, ME ENA allows INTRs to be issued, if enabled, upon the
logging of every error detected by the DWMVA, regardless of the
current state of the Error Summary bit, XBER<31>. Self-Test Fail,
XBER<10>, does not affect ME ENA.

When this bit is clear (the default), one INTR is issued, if enabled,
upon detection of an error, if the Error Summary bit is currently
clear. If a subsequent error occurs, a second INTR is not issued while
the first error is outstanding. After an INTR is issued for the first
error detected, further INTRs are disabled, and remain disabled until
the Error Summary bit is cleared. Software reads the XBER after
servicing the INTR to ensure that all errors have been detected.
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bit<2>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; reads as zero.

bit<1>
Name: Return Vector Disable

Mnemonic: RETURN VECTOR DIS

Type: R/W, 0

When set, RETURN VECTOR DIS prevents the DWMVA from
returning the contents of the DWMVA Return Vector Register in
response to an unsolicited or failed IDENT. Instead, the DWMVA
issues a Return Error Response to the XMI.

bit<0>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; reads as zero.
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Return Vector Register (ARVR)

The DWMVA returns the vector in ARVR<15:2> when the module either
receives an unsolicited IDENT or receives an IDENT that fails on the VMEbus.
This feature of the DWMVA is controlled by the Return Vector Disable bit in
the Control and Status Register (ACSR <1>). When the Return Vector Disable
bit is set, the DWMVA responds with an RER.

ADDRESS XMI nodespace base address + 0000 0028

3
1

1
6

1
5 2 1 0

Reserved DWMVA Vector
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bits<31:16>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; read as zero.

bits<15:2>
Name: DWMVA Vector

Mnemonic: None

Type: R/W, 0

The DWMVA Vector field is loaded by software at system initialization.
The value in this field should be the same as the value stored in the
Vector Register (VVR).

bits<1:0>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; read as zero.
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Failing Address Extension Register (XFAER)

The Failing Address Extension Register logs the address extension,
command, and mask information associated with a failed XMI commander
transaction. The DWMVA locks XFAER only if the transaction fails. The
following error bits, when set, lock this register and XFADR:

• Write Data NO ACK, XBER<20>

• No Read Response, XBER<18>

• Read Sequence Error, XBER<17>

• Read Error Response, XBER<16>

• Command NO ACK, XBER<15>

• Transaction Timeout, XBER<13>

• Internal Error, AESR<7>

ADDRESS XMI nodespace base address + 0000 002C

3
1

2
8

2
7

2
6

2
5

1
6

1
5 0

Failing Mask

Failing Address Extension
Reserved
Failing Command (FCMD)

msb−p391−91

bits<31:28>
Name: Failing Command

Mnemonic: FCMD

Type: RO, 0

FCMD logs XMI D<63:60> during the command/address cycle of a
failed XMI commander transaction. This field is loaded on every
command/address cycle issued by the DWMVA, but locks only if the
transaction fails and unlocks when the error that caused the lock is
cleared.
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bits<27:26>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; read as zero.

bits<25:16>
Name: Failing Address Extension

Mnemonic: None

Type: RO, 0

Failing Address Extension logs XMI D<57:48> during the command/
address cycle of a failed XMI commander transaction or bits<38:29>
of the address specified in the transaction for DMA reads and DMA
writes.

Failing Address Extension is loaded on every command/address cycle
issued by the DWMVA, but locks only if the transaction fails and
unlocks when the error that caused the lock is cleared.

bits<15:0>
Name: Failing Mask

Mnemonic: None

Type: RO, 0

Failing Mask logs XMI D<47:32> during the command/address cycle
of a failed XMI commander transaction or the write mask for DMA
writes. The field is undefined for other transactions.

Failing Mask is loaded on every command/address cycle issued by the
DWMVA, but locks only if the transaction fails and unlocks when the
error that caused the lock is cleared.
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VME Error Address Register (ABEAR)

The VME Error Address Register logs address and length information of failed
IBUS DMA and interrupt transactions that are detected by the T2018 module.
The logged addresses are in VME format. The invalid VME command/address
is logged on the first occurrence of one of the following errors:

• Invalid PFN, AESR<11>

• Correctable DMA ECC Error, AESR<10>

• Uncorrectable DMA ECC Error, AESR<9>

• Invalid VME Address, AESR<8>

• Internal Error, AESR<7>

• IBUS DMA-A Data Parity Error, AESR<4>

• IBUS DMA-A C/A Parity Error, AESR<3>

• IBUS DMA-B Data Parity Error, AESR<2>

• IBUS DMA-B C/A Parity Error, AESR<1>

The ABEAR locks the VME address until the error status bit is cleared by
software. Once the error status bit is cleared, another VME error causes the
overwrite of the previous error address.

ADDRESS XMI nodespace base address + 0000 0030

3
1

3
0

2
9 0

Failing VME Address

VME Failing Address Length (VME FLN)
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bits<31:30>
Name: VME Failing Address Length

Mnemonic: VME FLN

Type: RO, 0

VME FLN logs IBUS D<31:30> during a failed IBUS DMA or interrupt
transaction. This field is locked with IBUS D<31:30> anytime one of
the AESR error bits is set, and the register is not already locked.
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bits<29:0>
Name: Failing VME Address

Mnemonic: None

Type: RO, 0

The Failing VME Address field logs IBUS D<29:0> during a failed
IBUS DMA or interrupt transaction. This field is locked with IBUS
D<29:0> anytime one of the AESR error bits is set, and the register is
not already locked.
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Page Map Registers (PMRs)

The T2018 module contains 64K page map registers (PMRs) which are used
to store page frame numbers (PFNs) for extended address translation. The
format of the PMRs is identical.

ADDRESS XMI nodespace address BB + 0000 0200 to
BB + 0004 01FC

3
1

3
0

2
9

2
6

2
5 0

Page Frame Number

MSB for 40−bit Address Translation −− 8−Kbyte Pages
MSB for 40−bit Address Translation −− 4−Kbyte Pages
MSB for 40−bit Address Translation −− 512−byte Pages
Page Map Register Entry 30 (PMRE 30)
Valid (PMR V)
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* * *

bit<31>
Name: Valid

Mnemonic: PMR V

Type: R/W, 0

System software sets PMR V when it loads a valid PFN into the PFN
field of the PMR. The bit is used by the DWMVA during address
translation to determine the validity of the PFN stored in the PMR.

bit<30>
Name: Page Map Register Entry Bit 30

Mnemonic: PMRE 30

Type: R/W, 0

PMRE 30 is undefined for normal operation. Diagnostics uses this bit
to write an entire 32-bit page map register entry.
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bits<29:0>
Name: Page Frame Number

Mnemonic: PFN

Type: R/W, 0

If the DWMVA is configured in any address translation mode for DMA
operations, system software must load a valid PFN entry into this field
for the associated PMR of every VME page it queues for transfer.

The following table indicates which VME address bits are concatenated
with the appropriate PFN bits to generate the required XMI address
in DMA transactions.

Address
Mode

Page Size
(Bytes) XMI Address Bits Forced to Zero

34-bit 512 PFN<24:0> + VME A0–A8 = XMI A<33:0> XMI A<39:34>

40-bit 512 PFN<29:0> + VME A0–A8 = XMI A<38:0> XMI A<39>

40-bit 4K PFN<26:0> + VME A0–A11 = XMI A<38:0> XMI A<39>

40-bit 8K PFN<25:0> + VME A0–A12 = XMI A<38:0> XMI A<39>
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7.2 C3200 Registers
The registers on the C3200 module fall into two categories:

• C3200 error and configuration registers

• C3200 VME initialization/test registers

Error registers report error conditions that may occur on the C3200
module during various transactions. Initialization registers are used to set
up initial conditions for the operation of the DWMVA. The test registers
are used by diagnostics.

Table 7–4 lists all registers on the C3200 module.

Table 7–4 C3200 Registers

Name Mnemonic Address1

Error and Configuration Registers

Device/Configuration Register VDCR BB + 0000 0040

VME Error Summary Register VESR BB + 0000 0044

VME Failing Address Register VFADR BB + 0000 0048

Interrupt Configuration Register VICR BB + 0000 004C

Vector Offset Register VVOR BB + 0000 0050

Vector Register VVR BB + 0000 0054

Byte Swap RAM Access Register RAR BB + 0000 0058

VME Initialization/Test Registers

CSR Access Register VCAR BB + 0000 005C

VME Address Range Enable Register VAER through VCAR2

Diagnostic Register VDR through VCAR2

Failing Data Register VFDR through VCAR2

CPU Transaction Address Offset Registers VAOR through VCAR2

1BB refers to the base address of an XMI node (the address of the first location in the
nodespace).
2The address of the register is the contents of the Register Select field of the VCAR.
The code stored in the Register Select field must select the register to be accessed for
the current transaction.

Table 7–5 gives the values that should appear in the C3200 registers
following a hardware or software reset.
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Table 7–5 Initialization Values of the C3200 Registers

Initialization Bit States
Register (Bin) (Hex)

VDCR 1000 0011 0011 1111 0000 HHHH 1110 1000 833F 0XE8

VESR 0000 0000 0000 1111 1100 0000 0000 0000 000F C000

VFADR XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXX0

XXXX XXXX

VICR 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

VVOR 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

VVR 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

RAR 0000 0000 0000 0000 0000 0000 0000 XXXX 0000 000X

VCAR XXXX XXXX XXXX XXXX XX00 0000 0000 0000 XXXX XX00

VAER 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

VDR 0000 0000 1000 0000 0000 0000 0000 0000 0080 0000

VFDR 0000 0000 X000 0000 0000 0000 0000 0000 00X0 0000

VAOR 0000 0000 0000 0000 XXXX XXXX XXXX XXXX 0000 XXXX

H - Denotes a hardwired bit. The state of the bit depends on the revision level of the C3200 module.
X - Denotes an indeterminate bit state.
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Device/Configuration Register (VDCR)

The Device/Configuration Register defines the operating modes and selects
the operating parameters of the C3200 module such as:

VME arbitration type
VME arbitration timeout period
VME transaction timeout period
C3200 interrupt priority level
C3200 VMEbus request level
Page size mode

This register also contains an Error Summary bit that is the logical OR of all
the error bits in the VME Error Summary Register.

ADDRESS XMI nodespace base address + 0000 0040

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

1
9

1
8

1
6

1
5

1
4

1
3

1
2

1
1 8 7 0

Device Type

Device Revision
C3200 Interrupt Priority Level Select
SERCLK Period Select
VME Transaction Timeout Period Select
VME Arbitration Timeout Period Select
Reset C3200
WRITE*
Bus Request Level Select
Page Size Mode
VESR Error Summary
VME Arbitration Type Select
Enable VME Arbitration
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1

bit<31>
Name: Enable VME Arbitration

Mnemonic: None

Type: R/W, 1

When set, the Enable VME Arbitration bit causes the C3200 to act as
an arbiter for the VME subsystem. This bit should always be set.
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bits<30:29>
Name: VME Arbitration Type Select

Mnemonic: None

Type: R/W, 00

The VME Arbitration Type Select bits determine the algorithm that
the C3200 VME arbiter uses to arbitrate VMEbus requests. The states
of these bits define the algorithm to be used as follows:

VDCR
<30:29> Arbitration Type

00 Round robin (RRS)

01 Priority (PRI)

10 Prioritized round-robin (PRS)

11 Single-level (SGL)

NOTE: When the SGL arbitration algorithm is selected and the C3200
is enabled as the VME arbiter, the C3200 VME requester
requests the bus through BR3*. This means that bits <25:24> of
this register must be set to 11.

bit<28>
Name: VESR Error Summary

Mnemonic: None

Type: RO, 0

The state of the VESR Error Summary bit reflects the logical OR of all
error bits in the VESR. The error bits that contribute to the state of
the VESR Error Summary bit are:

Interlock Error
RMW Error
VME Transmit Parity Error
IBUS Transmit Parity Error
IBUS Receive Parity Error
VME Transaction Timeout
VME Arbitration Timeout
BERR*
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bits<27:26>
Name: Page Size Mode

Mnemonic: None

Type: R/W, 00

The Page Size Mode field determines the page size that the C3200 will
use in accessing its byte swap RAM. The bits are decoded as follows:

VDCR<27:26> Page Size

00 4 Kbytes

01 8 Kbytes

10 512 bytes

11 Undefined

bits<25:24>
Name: Bus Request Level Select

Mnemonic: None

Type: R/W, 11

The Bus Request Level Select bits determine the arbitration level at
which the C3200 will request the VMEbus. The bus request levels are
coded as follows:

VDCR<25:24> Selected Bus Request Level

00 BR0 (Level 0)

01 BR1 (Level 1)

10 BR2 (Level 2)

11 BR3 (Level 3)

NOTE: If the C3200 is enabled as arbiter of the VMEbus and the SGL
arbitration algorithm is selected, the C3200 must request the
bus through BR3*. This means that bits <25:24> must be set to
11.

bit<23>
Name: WRITE*

Mnemonic: None

Type: RO, 0

The WRITE* bit holds the state of the VME WRITE* signal at the
moment a timeout occurs. This bit is loaded on every cycle and locked
upon detection of a timeout.

NOTE: The WRITE* signal is asserted low on the VMEbus but is
represented as a high state bit (set to 1) in this register.
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bit<22>
Name: Reset C3200

Mnemonic: None

Type: R0/W1, 0

A one written to the Reset C3200 bit causes the C3200 to reset its
state machines. All registers on the C3200 retain their values. This
bit always reads as zero and does not cause a VME system reset.

bits<21:19>
Name: VME Arbitration Timeout Period Select

Mnemonic: None

Type: R/W, 7 (hex)

The VME Arbitration Timeout Period Select field determines the
period of the VME Arbitration Timeout Counter. These bits are only
valid if VME Arbitration is enabled for the C3200 (bit <31> of this
register is set). The timeout period is decoded as follows:

VDCR<21:19> Arbitration Timeout Period

111 Timeouts disabled

110 3.28 ms

101 819 � s

100 128 � s

011 64.0 � s

010 32.0 � s

001 12.8 � s

000 800 ns

NOTE: This field MUST be set to a value by operating system software
to assure proper VME error reporting.
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bits<18:16>
Name: VME Transaction Timeout Period Select

Mnemonic: None

Type: R/W, 7 (hex)

The VME Transaction Timeout Period Select field determines the
timeout value for the VME Transaction Bus Timer. The bits are
decoded as follows:

VDCR<18:16> Transaction Timeout Period

111 Timeouts disabled

110 3.28 ms

101 819 � s

100 128 � s

011 64.0 � s

010 32.0 � s

001 12.8 � s

000 800 ns

NOTE: This field MUST be set to a value by operating system software
to assure proper VME error reporting.

bits<15:14>
Name: SERCLK Period Select

Mnemonic: None

Type: R/W, 0

The SERCLK Period Select field determines the base frequency to be
used for the SERCLK signal. The SERCLK line is driven by the C3200
module. The base frequency is determined as follows:

VDCR<15:14> SERCLK Frequency

00 32 MHz

01 16 MHz

10 8 MHz

11 4 MHz
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bits<13:12>
Name: C3200 Interrupt Priority Level Select

Mnemonic: None

Type: R/W, 00

The C3200 Interrupt Priority Level Select field selects the IPL to be
used by the C3200 to interrupt the XMI processor for internal DWMVA
error conditions. The field is decoded as follows:

VDCR<13:12> Bus Line Selected IPL

00 BR4 IPL14

01 BR5 IPL15

10 BR6 IPL16

11 BR7 IPL17

bits<11:8>
Name: Device Revision

Mnemonic: DREV

Type: RO, Hardwired

DREV indicates the revision level of the C3200 module. The value in
this field is hardwired on the module with jumpers.

bit<7:0>
Name: Device Type

Mnemonic: None

Type: RO, Hardwired to E8

The Device Type field identifies the device as the C3200 part of a
DWMVA subsystem. This field is hardwired to a value of E8 (hex).
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VME Error Summary Register (VESR)

The VME Error Summary Register reports error conditions that occur during
the operation of the C3200 module. This register also reflects the current
state of the BERR* signal on the VMEbus.

ADDRESS XMI nodespace base address + 0000 0044

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
4

1
3

1
2

1
1

1
0 4 3 0

BRn Interrupt
Sent

IRQn Interrupt Pending
VME SYSRESET
DS0*
DS1*
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VME Address Modifiers
Bus Grant Level during Timeout
VME Arbitration Timeout
VME Transaction Timeout
IBUS Receive Parity Error
IBUS Transmit Parity Error
VME Transmit Parity Error
RMW Error I
RMW Error II
Interlock Error
Bus Error
SWAP Ram Parity Error

bit<31>
Name: Swap RAM Parity Error

Mnemonic: None

Type: R/W1C, 0

When set, the Swap RAM Parity Error bit indicates that a parity error
was detected while reading the contents of the byte swap RAM, which
causes the C3200 to issue an IBUS INTR transaction, if the interrupt
is enabled. This bit logs the first occurrence of a parity error and must
be cleared by software before it can log another.

7–59



C3200 Registers
VME Error Summary Register (VESR)

bit<30>
Name: Bus Error

Mnemonic: BERR*

Type: R/W1C, 0

BERR* reflects the current state of the BERR* signal on the VMEbus.
It is set when BERR* is low and cleared when BERR* is high. This bit
is writeable to allow diagnostics to cause the assertion of BERR*.

bit<29>
Name: Interlock Error

Mnemonic: None

Type: R/W1C, 0

The Interlock Error bit is set when an interlock error is detected by
the C3200. An interlock error occurs when an Interlock Read, issued
by an XMI device, is not followed immediately by an Unlock Write.
The C3200 performs an Interlock Read, the first part of an Interlock
Read/Unlock Write transaction pair, as the start of a Read Modify
Write operation on the VME. If the next XMI transaction the C3200
receives is not the corresponding Unlock Write, the C3200 sets this
bit, interrupts the XMI processor if the interrupt is enabled, and
relinquishes control of the VMEbus. The C3200 continues to execute
on the VME all XMI transactions it receives, including an Unlock
Write transaction that does not immediately follow an Interlock Read.

bit<28>
Name: RMW Error II

Mnemonic: None

Type: R/W1C, 0

The RMW Error II bit is set when the C3200 detects a normal read
transaction to an address that is set up in the swap RAM to expect
Read Modify Write transactions. The C3200 issues an Interlock Read
in response to the VME read command. After the C3200 returns read
data to the VME master, the C3200 issues an Unlock Write with 0
data and all mask bits cleared to unlock the XMI, if it finds out that
the transaction was not a Read Modify Write. At this point the C3200
issues an interrupt, if the interrupt is enabled.

bit<27>
Name: RMW Error I

Mnemonic: None

Type: R/W1C, 0

The RMW Error I bit is set when the C3200 detects an attempt by a
VME master to perform a Read Modify Write transaction to an address
that is not set up for RMWs. The bit is set during the write portion
of the RMW transaction pair. The C3200 completes both transactions
and issues an interrupt, if the interrupt is enabled.
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bit<26>
Name: VME Transmit Parity Error

Mnemonic: None

Type: R/W1C, 0

The VME Transmit Parity Error bit is set when the C3200 detects
a parity error on the output of the IBUS to VMEbus buffer prior to
transmitting data on the VMEbus. The transaction is aborted if a
parity error is detected. If no parity error is detected, the parity bit is
dropped after this checker, since there is no parity protection on the
VMEbus.

bit<25>
Name: IBUS Transmit Parity Error

Mnemonic: None

Type: R/W1C, 0

The IBUS Transmit Parity Error is set when the C3200 detects a
parity error at the output lines of the VMEbus to IBUS buffer prior
to transmitting data on the IBUS. When this bit is set, the C3200
issues an interrupt, if the interrupt is enabled. This interrupt cannot
be disabled.

bit<24>
Name: IBUS Receive Parity Error

Mnemonic: None

Type: R/W1C, 0

The IBUS Receive Parity Error bit is set when the C3200 detects a
parity error on data it has received from the T2018 across the IBUS.
The C3200 aborts the transaction when this bit is set and issues an
interrupt, if the interrupt is enabled.

bit<23>
Name: VME Transaction Timeout

Mnemonic: None

Type: R/W1C, 0

The VME Transaction Timeout bit is set by the VMEbus timer logic on
the C3200 module when a VMEbus timeout occurs. When this bit is
set, the address of the transaction is stored in the C3200 VME Failing
Address Register if the C3200 was the bus master when the timeout
was detected.

The set state of the VME Transaction Timeout bit also indicates that
the VMEbus timer has asserted BERR* on the VMEbus, causing the
timed-out transaction to be removed from the bus and allowing bus
access to other VME devices. When this bit is set, an interrupt is
issued, if the interrupt is enabled.
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bit<22>
Name: VME Arbitration Timeout

Mnemonic: None

Type: R/W1C, 0

The VME Arbitration Timeout bit is set by the arbitration timer logic
when an arbitration timeout occurs. The set state of this bit causes
the arbiter to deassert the current bus grant level it is driving and
rearbitrate all pending bus requests. When this bit is set, an interrupt
is issued, if the interrupt is enabled.

bits<21:20>
Name: Bus Grant Level During Timeout

Mnemonic: None

Type: RO, 0

The Bus Grant Level During Timeout bits hold the encoded value of
the BGn* being driven when a timeout occurs. These bits are loaded
on every arbitration cycle and locked upon detection of a timeout.

bits<19:14>
Name: VME Address Modifiers

Mnemonic: None

Type: RO, 3F

The VME Address Modifiers field holds the state of the VME AM0–
AM5 lines when a timeout occurs. This field is loaded on every cycle
and locked upon detection of a timeout.

bit<13>
Name: DS1*

Mnemonic: None

Type: RO, 0

The DS1* bit holds the state of the VME DS1* signal when a timeout
occurs. This bit is loaded on every cycle and locked upon detection of a
timeout.

NOTE: The VME DS1* signal is asserted low on the VMEbus. The low
state of the signal is reflected as a state of 1 on this bit.
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bit<12>
Name: DS0*

Mnemonic: None

Type: RO, 0

The DS0* bit holds the state of the VME DS0* signal when a timeout
occurs. This bit is loaded on every cycle and locked upon detection of a
timeout.

NOTE: The VME DS0* signal is asserted low on the VMEbus. The low
state of the signal is reflected as a state of 1 on this bit.

bit<11>
Name: VME SYSRESET

Mnemonic: None

Type: R/W1C, 0

The VME SYSRESET bit is set when the C3200 receives a
SYSRESET* from the VMEbus. When set, this bit specifically
indicates to the interrupt service routine that the C3200 has issued
an interrupt in response to a VME-originated SYSRESET*. This
interrupt is not maskable.

NOTE: The VME SYSRESET* signal is asserted low on the VMEbus.
The low state of the signal is reflected as a state of 1 on this bit.

bits<10:4>
Name: IRQn Interrupt Pending

Mnemonic: None

Type: RO, 0

The IRQn Interrupt Pending field is used to indicate the status of
VMEbus-originated interrupt requests. The seven bits of the field, bit
<10> to bit <4>, are in one-to-one correspondence, respectively, with
the seven VME interrupt request levels, IRQ7*–IRQ1*. The particular
bit in the field is set when the corresponding interrupt request level is
asserted on the VMEbus. The bit is cleared automatically for a ROAK
(Release On Acknowledge) interrupter when an IACK* to that request
level is issued on the VMEbus. However, when the interrupter is a
RORA (Release On Register Access) type, the bit must be cleared by
the operating system software.
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bits<3:0>
Name: BRn Interrupt Sent

Mnemonic: None

Type: RO, 0

The BRn Interrupt Sent field is used to indicate the status of XMI
interrupts sent by the C3200 module. The four bits of the field, bit
<3> to bit <0>, are in one-to-one correspondence, respectively, with
BR7—BR4. The particular bit is set when an interrupt is generated at
the corresponding level to the XMI. The bit is cleared upon receiving
the associated IDENT transaction.
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VME Failing Address Register (VFADR)

The VME Failing Address Register reflects the state of VME A01–A31 address
lines in a timed-out transaction.

ADDRESS XMI nodespace base address + 0000 0048

3
1 1 0

VME Failing Address

LWORD*

msb−p402−91

bits<31:1>
Name: VME Failing Address

Mnemonic: None

Type: RO, Undefined

A valid VME Failing Address field holds the state of VME A01–
A31, the address being accessed by the C3200 in a timed-out
transaction. This field is only valid if the VME Transaction Timeout
bit (VESR<23>) is set and the C3200 was the VMEbus master during
the timeout.

NOTE: This field is undefined if read when the VME Transaction
Timeout bit is not set.

bit<0>
Name: LWORD*

Mnemonic: None

Type: RO, 0

The LWORD* bit indicates the state of the VME LWORD* signal at
the moment of a timeout. This bit is latched on every cycle and locked
upon detection of a timeout.

NOTE: The VME LWORD* signal is asserted low on the VMEbus. The
low state of the signal is reflected as a state of 1 on this bit.
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Interrupt Configuration Register (VICR)

The Interrupt Configuration Register holds the VME Interrupt Request Level
Mask and defines the priority levels of all C3200-generated interrupts. This
register also contains the Enable bits for the C3200 interrupts.

The four bus request lines of the XMI, BR7–BR4 can accommodate four
interrupt request signals (IRQX*) from the VMEbus. Since the VMEbus has
seven interrupt request levels, four selected interrupt levels must be mapped
to the four XMI bus request lines. The mapping can be random. However,
each interrupt request level must be mapped to a single BR line. At system
initialization the operating system generates the default mapping shown in
Table 6–2 and explained in the following bit descriptions.

ADDRESS XMI nodespace base address + 0000 004C

3
1

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
4

1
3

1
1

1
0 8 7 5 4 2 1 0

IRQ1 IACK Select
IRQ2 IACK Select

IRQ3 IPL/IACK Select
IRQ4 IPL/IACK Select
IRQ5 IPL/IACK Select
IRQ6 IPL/IACK Select
IRQ7 IPL/IACK Select

Enable VME Transaction Timeout Interrupt
Enable VME Arbitration Timeout Interrupt
Enable VME/IBUS Parity Error Interrupt
Enable Byte Swap RAM Parity Error Interrupt
Enable BERR* Interrupt
VME Interrupt Request Level Mask

msb−p403−91

Enable RMW Error I Interrupt
Enable RMW Error II Interrupt
Enable Interlock Error Interrupt

bits<31:25>
Name: VME Interrupt Request Level Mask

Mnemonic: None

Type: R/W, 0

The VME Interrupt Request Level Mask field is used to set up the
VME interrupt levels to be received by the C3200 and passed to the
processor in the form of XMI interrupt transactions. The seven bits
in the field, bit <31> to bit <25> are in one-to-one correspondence,
respectively, with the VME IRQ7*–IRQ1* signals. Any interrupt
request level (one or more) can be independently enabled or disabled
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without affecting the operation of the pending interrupts at other
interrupt request levels.

NOTE: This field must be set by the operating system software to
enable interrupts from VME devices. The operating system sets
this field to a value of 111 1000, which disables IRQ3*–IRQ1*.

bit<24>
Name: Enable BERR* Interrupt

Mnemonic: None

Type: R/W, 0

Setting the Enable BERR* Interrupt bit causes an interrupt to be
generated on the XMI when an asserted BERR* signal is detected.

bit<23>
Name: Enable Byte Swap RAM Parity Error Interrupt

Mnemonic: None

Type: R/W, 0

When the Enable Byte Swap RAM Parity Error Interrupt bit is set,
the DWMVA generates an XMI interrupt upon detecting a byte swap
RAM parity error.

bit<22>
Name: Enable VME/IBUS Parity Error Interrupt

Mnemonic: None

Type: R/W, 0

When the Enable VME/IBUS Parity Error Interrupt bit is set, the
DWMVA generates an XMI interrupt upon detecting one of the
following conditions:

• VME Transmit Parity Error

• VME Receive Parity Error

• IBUS Transmit Parity Error

• IBUS Receive Parity Error

bit<21>
Name: Enable VME Arbitration Timeout Interrupt

Mnemonic: None

Type: R/W, 0

When the Enable VME Arbitration Timeout Interrupt bit is set, the
DWMVA generates an XMI interrupt when the VME arbitration timer
detects an arbitration timeout.
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bit<20>
Name: Enable VME Transaction Timeout Interrupt

Mnemonic: None

Type: R/W, 0

When the Enable VME Transaction Timeout Interrupt bit is set, the
DWMVA generates an XMI interrupt when the VME bus timer detects
a transaction timeout on the VMEbus.

bit<19>
Name: Enable Interlock Error Interrupt

Mnemonic: None

Type: R/W, 0

When the Enable Interlock Error Interrupt bit is set, the DWMVA
generates an XMI interrupt when it detects an interlock error.

bit<18>
Name: Enable RMW Error II Interrupt

Mnemonic: None

Type: R/W, 0

When the Enable RMW Error II Interrupt bit is set, the DWMVA
generates an XMI interrupt upon detecting a Read Modify Write
transaction issued to the DWMVA by a VME device. For details on
this error see the VME Error Summary Register, bit <28>.

bit<17>
Name: Enable RMW Error I Interrupt

Mnemonic: None

Type: R/W, 0

When the Enable RMW Error I Interrupt bit is set, the DWMVA
generates an XMI interrupt upon detecting a Read Modify Write
transaction issued to the DWMVA by a VME device. For details on
this error see the VME Error Summary Register, bit <27>.

bits<16:14>
Name: IRQ7 Interrupt Priority Level/IACK Select

Mnemonic: None

Type: R/W, 0

The IRQ7 Interrupt Priority Level/IACK Select bits can be written
to cause IRQ7* to translate to an interrupt priority level on the XMI
other than the default (IPL14). These bits are also used to determine if
the device interrupting at IRQ7* is a RORA or ROAK type interrupter.
The bits are decoded as follows:
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VICR<16:14> Bus Line IPL Interrupter Type

000 BR4 IPL14 ROAK

001 BR4 IPL14 RORA

010 BR5 IPL15 ROAK

011 BR5 IPL15 RORA

100 BR6 IPL16 ROAK

101 BR6 IPL16 RORA

110 BR7 IPL17 ROAK

111 BR7 IPL17 RORA

The operating system initializes this field to a value of 110.

NOTE: See Chapter 6 for more details on RORA/ROAK devices.

bits<13:11>
Name: IRQ6 Interrupt Priority Level/IACK Select

Mnemonic: None

Type: R/W, 0

The IRQ6 Interrupt Priority Level/IACK Select bits can be written
to cause IRQ6* to translate to an interrupt priority level on the XMI
other than the default (IPL14). These bits are also used to determine if
the device interrupting at IRQ6* is a RORA or ROAK type interrupter.
The bits are decoded as follows:

VICR<13:11> Bus Line IPL Interrupter Type

000 BR4 IPL14 ROAK

001 BR4 IPL14 RORA

010 BR5 IPL15 ROAK

011 BR5 IPL15 RORA

100 BR6 IPL16 ROAK

101 BR6 IPL16 RORA

110 BR7 IPL17 ROAK

111 BR7 IPL17 RORA

The operating system initializes this field to a value of 100.

NOTE: See Chapter 6 for more details on RORA/ROAK devices.
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bits<10:8>
Name: IRQ5 Interrupt Priority Level/IACK Select

Mnemonic: None

Type: R/W, 0

The IRQ5 Interrupt Priority Level/IACK Select bits can be written
to cause IRQ5* to translate to an interrupt priority level on the XMI
other than the default (IPL14). These bits are also used to determine if
the device interrupting at IRQ5* is a RORA or ROAK type interrupter.
The bits are decoded as follows:

VICR<10:8> Bus Line IPL Interrupter Type

000 BR4 IPL14 ROAK

001 BR4 IPL14 RORA

010 BR5 IPL15 ROAK

011 BR5 IPL15 RORA

100 BR6 IPL16 ROAK

101 BR6 IPL16 RORA

110 BR7 IPL17 ROAK

111 BR7 IPL17 RORA

The operating system initializes this field to a value of 010.

bits<7:5>
Name: IRQ4 Interrupt Priority Level/IACK Select

Mnemonic: None

Type: R/W, 0

The IRQ4 Interrupt Priority Level/IACK Select bits can be written
to cause IRQ4* to translate to an interrupt priority level on the XMI
other than the default (IPL14). These bits are also used to determine if
the device interrupting at IRQ4* is a RORA or ROAK type interrupter.
The bits are decoded as follows:

VICR<7:5> Bus Line IPL Interrupter Type

000 BR4 IPL14 ROAK

001 BR4 IPL14 RORA

010 BR5 IPL15 ROAK

011 BR5 IPL15 RORA

100 BR6 IPL16 ROAK

101 BR6 IPL16 RORA

110 BR7 IPL17 ROAK

111 BR7 IPL17 RORA

The operating system initializes this field to a value of 000.
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bits<4:2>
Name: IRQ3 Interrupt Priority Level/IACK Select

Mnemonic: None

Type: R/W, 000

The IRQ3 Interrupt Priority Level/IACK Select bits can be written
to cause IRQ3* to translate to an interrupt priority level on the XMI
other than the default (IPL14). These bits are also used to determine if
the device interrupting at IRQ3* is a RORA or ROAK type interrupter.
The bits are decoded as follows:

VICR<4:2> Bus Line IPL Interrupter Type

000 BR4 IPL14 ROAK

001 BR4 IPL14 RORA

010 BR5 IPL15 ROAK

011 BR5 IPL15 RORA

100 BR6 IPL16 ROAK

101 BR6 IPL16 RORA

110 BR7 IPL17 ROAK

111 BR7 IPL17 RORA

bit<1>
Name: IRQ2 IACK Select

Mnemonic: None

Type: R/W, 0

The IRQ2 IACK Select bit is used to define what type of interrupter
interrupts at IRQ2. The Bus Request level for IRQ2 is fixed at BR4
(IPL14).

VICR<1> Selected Interrupter Type

0 ROAK

1 RORA
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bit<0>
Name: IRQ1 IACK Select

Mnemonic: None

Type: R/W, 0

The IRQ1 IACK Select bit is used to define what type of interrupter
interrupts at IRQ1. The Bus Request level for IRQ1 is fixed at BR4.

VICR<0> Selected Interrupter Type

0 ROAK

1 RORA
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Vector Offset Register (VVOR)

The Vector Offset Register stores the offset value to be appended to the
vector returned by a VME device in response to an IACK cycle on the VME.
This register also allows selection of diagnostic mode for the operation of the
C3200 module.

ADDRESS XMI nodespace base address + 0000 0050

3
1

1
6

1
5 8 7 6 5 4 3 0

Reserved

CPU IBUS Mask

Disable VME
Diagnostic Mode
Test Fail
Reserved
DWMVA Interrupt
Vector Offset

msb−p404−91

bits<31:16>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; read as zero.

bits<15:8>
Name: DWMVA Interrupt Vector Offset

Mnemonic: None

Type: R/W, 0

The DWMVA Interrupt Vector Offset field provides the offset value to
be appended to the vector returned by a VME device in response to an
IACK cycle on the VME. The VME vector thus formed is transmitted
to the XMI in response to an IDENT cycle targeting the VME device.
This register allows multiple DWMVAs to reside in a system and
provides a logical partition for storing their interrupt service routines.
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bit<7>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; reads as zero.

bit<6>
Name: Test Fail

Mnemonic: None

Type: R/W, 0

The Test Fail bit is set by diagnostics at the beginning of a diagnostic
test suite. It clears automatically when all tests pass.

bit<5>
Name: Diagnostic Mode

Mnemonic: None

Type: R/W, 0

The Diagnostic Mode bit is used to select loopback mode for
diagnostics.

bit<4>
Name: Disable VME

Mnemonic: None

Type: R/W, 0

The Disable VME bit disables VME drivers to ensure that diagnostics
do not corrupt devices on the VME.

bits<3:0>
Name: CPU IBUS Mask

Mnemonic: None

Type: RO/Write through IBUS I field, 0

The CPU IBUS Mask field is reserved for diagnostic use.
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Vector Register (VVR)

The Vector Register contains the DWMVA Interrupt Destination Mask and the
DWMVA Interrupt Vector. It includes two diagnostic read/write bits that allow a
32-bit vector to be captured in the VVR for diagnostic reads and writes.

ADDRESS XMI nodespace base address + 0000 0054

3
1

1
6

1
5 2 1 0

DWMVA Interrupt Vector

Diagnostic Read/Write

DWMVA Interrupt Destination Mask

msb−p405−91

0 0

bits<31:16>
Name: DWMVA Interrupt Destination Mask

Mnemonic: None

Type: R/W, 0

The DWMVA Interrupt Destination Mask field determines which XMI
nodes will be targeted when the DWMVA issues an INTR transaction.
Each bit in the field corresponds to one of the XMI nodes. When a
bit in this field is set, the corresponding node will be targeted for the
interrupt. Any number of XMI nodes can be set for interrupts.

bits<15:2>
Name: DWMVA Interrupt Vector

Mnemonic: None

Type: R/W, 0

The DWMVA Interrupt Vector field provides the vector to be returned
by the C3200 in response to an IDENT command issued as a result
of an INTR transaction generated by an error condition on the C3200
module. Interrupts generated by VME devices other than the DWMVA
do not return this vector. Instead, they supply their own vector, which
is appended to the value in the C3200 Vector Offset Register.
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bits<1:0>
Name: Diagnostic Read/Write

Mnemonic: None

Type: R/W, 0

The Diagnostic Read/Write field allows a 32-bit vector to be captured
in the C3200 Vector Register for diagnostic reads and writes.
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Byte Swap RAM Access Register (RAR)

The Byte Swap RAM Access Register is a pseudo-register that maps all
references to its address to a 64K by 4 RAM on the C3200 module.

To write the byte swap RAM with byte swapping and Read Modify Write
information, the RAR must be written with the address of the page to be
mapped, the Read/Write bit (RAR<4>) must be set, and RAR<2:0> must be
set to the appropriate RMW and byte swap values.

A read of the byte swap RAM requires two transactions to the Byte Swap
RAM Access Register. First, the RAR must be written with the address of the
page to be read and the Read/Write bit (RAR<4>) cleared. Next, the RAR
should be read. In response to this read, the RMW and byte swapping mode
fields will appear as bits <2:0> of the read return data.

ADDRESS XMI nodespace base address + 0000 0058

3
1

2
9

2
8 9 8 5 4 3 2 1 0

Byte Swap RAM Address

Byte Swap
ModeReserved

RMW Mode
Parity Bit
Read/Write

msb−p406−91

bits<31:29>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; read as zero.
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bits<28:9>
Name: Byte Swap RAM Address

Mnemonic: None

Type: R0/W, 0

The Byte Swap RAM Address field provides the address of the byte
swap RAM location to be read or written. The address is decoded on
the module in conjunction with the Page Size bits (<27:26>) in the
Device Configuration Register. The options are summarized as follows:

VDCR RAR BITS for
<27:26> Page Size Swap RAM Address

00 4 Kbytes <27:12>

01 8 Kbytes <28:13>

10 512 bytes <24:9>

bits<8:5>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; read as zero.

bit<4>
Name: Read/Write

Mnemonic: None

Type: WO, 0

The Read/Write bit is used to select a read of the RAM or a write to
it for the current transaction. If this bit is set, the data in bits <2:0>
of this register will be written to the RAM address decoded by bits
<28:9> of the register. If, however, the Read/Write bit is cleared with a
write to this register, the address written will be applied to the RAM,
but the write enable line will not be asserted, thus causing the RAM
to place the addressed location’s data on its data outputs. To complete
the read transaction, a read must be performed to the Byte Swap RAM
Access Register. This will return the data back to the XMI host.

bit<3>
Name: Parity Bit

Mnemonic: None

Type: RO, Undefined

The Parity bit is meaningful only when reading the register. When
the register is written to cause a byte swap RAM write, the hardware
generates even parity on the lower three bits of this register and stores
all four bits in the RAM. When data is read back, the parity bit is
returned to the host along with the data.
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bit<2>
Name: RMW Mode

Mnemonic: None

Type: R/W, Undefined

The RMW (Read Modify Write) Mode bit is written by software to
indicate whether a given page should translate VME-originated reads
(start of RMW) into Interlock Reads to the XMI. If this bit is set, reads
generated on the VME are sent to the XMI as normal reads. If it is
cleared, any read generated to this page from the VME is translated to
an Interlock Read on the XMI.

bits<1:0>
Name: Byte Swap Mode

Mnemonic: None

Type: R/W, Undefined

The Byte Swap Mode field selects the byte swap mode to be used
for VME-initiated transactions for a given page. The bits decode as
follows:

Bits<1:0> Swap Mode

00 No swap

01 Byte swap

10 Word swap

11 Longword swap

NOTE: Details of byte swapping are given in Appendix B.
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CSR Access Register (VCAR)

The CSR Access Register provides indirect access to some C3200 registers
not directly accessible through a CPU address. The VCAR must first be
written with the code corresponding to the address of the targeted register
(CSR).

A write transaction writes the upper 18 bits of the data to the destination
register specified in the Register Select field (VCAR<5:0>). The Write bit
(VCAR<7>) must be set when writing the code to the VCAR.

A read to one of these registers requires two transactions to complete, a write
followed by a read. During the write transaction, the address of the register
to be read is written to the VCAR Register Select field with the Write bit clear.
To obtain read return data from the selected register, the CPU requesting the
data must next perform a read transaction on the VCAR. The read return data
from this access will originate from the register selected in the write phase of
the transaction.

To read the contents of the VCAR itself, first a write must be performed to
the register with the Write bit (VCAR<7>) set. A subsequent read to VCAR
causes the contents of the register itself to be returned. (A read of the VCAR
is used for diagnostics.)

ADDRESS XMI nodespace base address + 0000 005C

3
1 8 7 6 5 0

CSR Write Data

Register
Select
Reserved
Write

msb−p407−91
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bits<31:8>
Name: CSR Write Data

Mnemonic: None

Type: WO, Undefined

The CSR Write Data field is used as the 18-bit data path for a write
transaction to the C3200 register selected by the code written to bits
<5:0> of this register. The 18 bits of data will only be written to the
selected register if the Write bit (VCAR<7>) is set while writing to the
VCAR.

bit<7>
Name: Write

Mnemonic: None

Type: R/W, 0

Setting the Write bit causes the data written into VCAR<31:14>
to be loaded into the register specified by the Register Select field
(VCAR<5:0>). This bit must be written concurrently with the data and
Register Select bits to cause the correct write transaction.

Writing a zero to this bit indicates that a read is to be performed to
the register specified by the Register Select field. The read return data
is supplied by the selected register in response to a read to the VCAR.

In the case where the Write bit is set and a VCAR read is performed,
the data returned in bits <31:14> will be the contents of the register
decoded in bits <5:0> and the data returned in bits <13:0> will be the
contents of the VCAR itself. If no register is indicated in bits <5:0>,
the response to a read VCAR will be zero.

bit<6>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; reads as zero.
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bits<5:0>
Name: Register Select

Mnemonic: None

Type: R/W, 0

The Register Select field indicates which CSR is being accessed for a
given transaction. The register must be selected in the same cycle that
the Write bit is written.

The CSRs accessed through the VCAR are listed in the following table:

VCAR
<5:0> Register Decoded

0–4 Reserved
5 VME Address Range Enable Register
6 Diagnostic Register
7 VME Failing Data Register
8–F Reserved
10–1F Reserved for diagnostic use
20 CPU Transaction Offset / Length Register 00
21 CPU Transaction Offset / Length Register 01
22 CPU Transaction Offset / Length Register 02
23 CPU Transaction Offset / Length Register 03
24 CPU Transaction Offset / Length Register 04
25 CPU Transaction Offset / Length Register 05
26 CPU Transaction Offset / Length Register 06
27 CPU Transaction Offset / Length Register 07
28 CPU Transaction Offset / Length Register 08
29 CPU Transaction Offset / Length Register 09
2A CPU Transaction Offset / Length Register 10
2B CPU Transaction Offset / Length Register 11
2C CPU Transaction Offset / Length Register 12
2D CPU Transaction Offset / Length Register 13
2E CPU Transaction Offset / Length Register 14
2F CPU Transaction Offset / Length Register 15
30 CPU Transaction Offset / Length Register 16
31 CPU Transaction Offset / Length Register 17
32 CPU Transaction Offset / Length Register 18
33 CPU Transaction Offset / Length Register 19
34 CPU Transaction Offset / Length Register 20
35 CPU Transaction Offset / Length Register 21
36 CPU Transaction Offset / Length Register 22
37 CPU Transaction Offset / Length Register 23
38 CPU Transaction Offset / Length Register 24
39 CPU Transaction Offset / Length Register 25
3A CPU Transaction Offset / Length Register 26
3B CPU Transaction Offset / Length Register 27
3C CPU Transaction Offset / Length Register 28
3D CPU Transaction Offset / Length Register 29
3E CPU Transaction Offset / Length Register 30
3F CPU Transaction Offset / Length Register 31
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C3200 Registers
VME Address Range Enable Register (VAER)

VME Address Range Enable Register (VAER)

The VME Address Range Enable Register contains the Enable bits for the
selection of the VME address range. It is addressed through the Register
Select field of the CSR Access Register (VCAR) with a code of 05 (hex). This
register is used in VME-generated transactions only.

NOTE: The DWMVA does not respond to short address transactions.

ADDRESS VCAR Register Select Code 05

3
1

2
7

2
6

2
5

2
4 0

MBZ Must Be Zero

VME Standard Address Range Enable
VME Extended Address Range Enable

msb−p408−91

bits<31:27>
Name: Must be zero

Mnemonic: MBZ

Type: R/W, 0

Reserved; must be zero.

bit<26>
Name: VME Extended Address Range Enable

Mnemonic: None

Type: R/W, 0

The VME Extended Address Range Enable bit controls DMA
transactions in extended address space from VME masters to the
XMI through the DWMVA. When this bit is set, the DWMVA accepts
all VME transactions with VME A29–A31 equal to zero, provided they
have valid address modifier codes (see Table 5–4). When this bit is
clear, the DWMVA does not accept extended address transactions.
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C3200 Registers
VME Address Range Enable Register (VAER)

bit<25>
Name: VME Standard Address Range Enable

Mnemonic: None

Type: R/W, 0

The VME Standard Address Range Enable bit controls DMA
transactions in standard address space from VME masters to the
XMI through the DWMVA. When this bit is set, the DWMVA accepts
all VME transactions with VME A23 equal to zero, provided the
transactions have valid address modifier codes (see Table 5–4).
When this bit is clear, the DWMVA does not accept standard address
transactions.

bits<24:0>
Name: Must Be Zero

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.
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Diagnostic Register (VDR)

Diagnostic Register (VDR)

The Diagnostic Register controls diagnostic operations performed on the
C3200 module.

NOTE: This register is reserved for use by Digital.

ADDRESS VCAR Register Select Code 06

3
1

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
0

1
9

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 0

Reg Decode=06
Reserved
Write Bit (VCAR)
Reserved
CLR SYSCLK
Reserved
Test Timeout
Force RAM PE

IR XMI Err Bit Set L (from DWMVA/A)
VMEbus Select Lines
A01−A03
Enable BBSY
Monitor Match Bit Asserted
Disable ITV Data Formatting
Force IBUS Transmit Parity Error
Force VTI−1 Full
Force DMA OW Write
IRQ* Level Select

msb−p409−91

Force DMA Read (self clearing)
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Failing Data Register (VFDR)

Failing Data Register (VFDR)

The Failing Data Register holds the VME failing data bits at transaction
timeout.

ADDRESS VCAR Register Select Code 07

3
1 0

VME Failing Data

msb−p410−91

bits<31:0>
Name: VME Failing Data

Mnemonic: None

Type: RO, 0

The VME Failing Data field holds data of the transaction at
transaction timeout. Data is latched to this register on every cycle
and is locked on transaction timeout. The data is unlocked when the
VME Transaction Timeout bit (AESR<23>) is cleared.
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CPU Transaction Address Offset Registers (VAOR)

CPU Transaction Address Offset Registers (VAOR)

The 32 CPU Transaction Address Offset Registers contain the VME
address offsets to be appended to XMI <19:0> to form a VME address (see
Figure 2–5). These registers also define the VME data lengths and address
lengths.

ADDRESS VCAR Register Select Codes 20–3F

3
1

2
0

1
9

1
8

1
7

1
6

1
5 0

VME Address Offset Undefined

VME Data Length
VME Address Length

msb−p411−91

bits<31:20>
Name: VME Address Offset

Mnemonic: None

Type: R/W, 0

The contents of the VME Address Offset field is appended to XMI
<19:0> to form a VME address.

bits<19:18>
Name: VME Address Length

Mnemonic: None

Type: R/W, 0

The VME Address Length field indicates the address length of a VME
transaction to be generated in response to a CPU transaction to a
given address. These bits are encoded as follows:

VAOR
<19:18> VME Address Length

00 Extended address

01 Invalid

10 Short address1

11 Standard address

1The DWMVA does not respond to short address transactions.
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CPU Transaction Address Offset Registers (VAOR)

bits<17:16>
Name: VME Data Length

Mnemonic: None

Type: R/W, 0

The VME Data Length field indicates the length of a VME transaction
to be generated in response to a CPU read transaction to a given
address. These bits are encoded as follows:

VAOR
<17:16> VME Data Length

00 Invalid

01 Byte

10 Word (2 bytes)

11 Longword (4 bytes)

The data length of a write transaction is determined by the mask field
of the IBUS.

bits<15:0>
Name: Reserved

Mnemonic: None

Type: RO, undefined

Reserved; initial states are undefined.
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8 Initialization

The DWMVA subsystem can be initialized in two ways:

• As an XMI node

• As a specific I/O adapter

As an XMI node, the DWMVA can be initialized at one of two levels:

• System level—Through system power-down/power-up or XMI power-up
sequence emulation. When the system is powered up, XMI AC LO L
and XMI DC LO L are sequenced so that all XMI nodes are reset. The
XMI emulates a power-up when software asserts the XMI RESET L
line (by writing to IPR55), causing the power supply to sequence XMI
AC L and XMI DC L as in hardware power-up.

• Node level—Through a node reset caused by writing bit <30> of the
DWMVA Bus Error Register.

The C3200 state machines can be initialized locally by writing one to bit
<22> of the Device/Configuration Register.

Following DWMVA initialization:

• All DWMVA logic is reset to a known state.

• The DWMVA asserts XMI STF L as required by the XMI specification.
This signal remains asserted until self-test completes successfully.

• The DWMVA asserts SYSRESET* to cause all devices on the VME to
perform initialization.

• With the deassertion of the reset condition, all DWMVA registers
assume their default state. Any desired nondefault values must be
written to the registers.
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A VME Interface Signal List

The VME interface is made up of two 96-pin connectors, referred to as
J1 and J2. Table A–1 and Table A–2 list the pin assignments for these
connectors.
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VME Interface Signal List

Table A–1 DWMVA-to-VME Interface (J1 Connector)

Row A Row B Row C
Pin Number Signal Mnemonic Signal Mnemonic Signal Mnemonic

1 D00 BBSY* D08

2 D01 BCLR* D09

3 D02 ACFAIL* D10

4 D03 BG0IN* D11

5 D04 BG0OUT* D12

6 D05 BG1IN* D13

7 D06 BG1OUT* D14

8 D07 BG2IN* D15

9 GND BG2OUT* GND

10 SYSCLK BG3IN* SYSFAIL*

11 GND BG3OUT* BERR*

12 DS1* BR0* SYSRESET*

13 DS0* BR1* LWORD*

14 WRITE* BR2* AM5

15 GND BR3* A23

16 DTACK* AM0 A22

17 GND AM1 A21

18 AS* AM2 A20

19 GND AM3 A19

20 IACK* GND A18

21 IACKIN* SETCLK A17

22 IACKOUT* SERDAT A16

23 AM4 GND A15

24 A07 IRQ7* A14

25 A06 IRQ6* A13

26 A05 IRQ5* A12

27 A04 IRQ4* A11

28 A03 IRQ3* A10

29 A02 IRQ2* A09

30 A01 IRQ1* A08

31 -12V +5V STDBY +12V

32 +5V +5V +5V
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VME Interface Signal List

Table A–2 DWMVA-to-VME Interface (J2 Connector)

Row A Row B Row C
Pin Number Signal Mnemonic Signal Mnemonic Signal Mnemonic

1 User-defined +5V User-defined

2 User-defined GND User-defined

3 User-defined RESERVED User-defined

4 User-defined A24 User-defined

5 User-defined A25 User-defined

6 User-defined A26 User-defined

7 User-defined A27 User-defined

8 User-defined A28 User-defined

9 User-defined A29 User-defined

10 User-defined A30 User-defined

11 User-defined A31 User-defined

12 User-defined GND User-defined

13 User-defined +5V User-defined

14 User-defined D16 User-defined

15 User-defined D17 User-defined

16 User-defined D18 User-defined

17 User-defined D19 User-defined

18 User-defined D20 User-defined

19 User-defined D21 User-defined

20 User-defined D22 User-defined

21 User-defined D23 User-defined

22 User-defined GND User-defined

23 User-defined D24 User-defined

24 User-defined D25 User-defined

25 User-defined D26 User-defined

26 User-defined D27 User-defined

27 User-defined D28 User-defined

28 User-defined D29 User-defined

29 User-defined D30 User-defined

30 User-defined D31 User-defined

31 User-defined GND User-defined

32 User-defined +5V User-defined
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B VME-to-XMI Byte Swapping

The DWMVA adapter implements byte swapping in hardware to allow
XMI devices to interpret data previously stored on the VMEbus. Byte
swapping is necessary for three reasons:

1 The VMEbus format is big endian, while the XMI bus format is little
endian.

2 The format used by big endian processors (common on VME devices) to
store data depends on the type of data—character or integer.

3 The VME protocol allows a given byte to be transferred on different
VME byte lanes in VME transfers of different lengths.

The DWMVA adapter swaps bytes so that VME data appears correctly on
the XMI bus and XMI data appears correctly on the VMEbus.

VME data is justified to the low-order byte lanes. XMI data, however,
is relative only to its position within a quadword, not the length of the
transfer.

The architecture of big endian processors introduces another level of
complexity. The order in which bytes are stored in memory is different
depending upon the type of data stored. Integer bytes, words, and
longwords are all stored differently while character data is represented
in still another fashion. This requires that the DWMVA subsystem
understand what type of data it is transferring so that data can be
swapped correctly.

Figure B–1 illustrates the big endian byte lane formats.

B.1 Definition of Terms
The following definitions apply to terms used in this appendix.

Byte 0 - The byte in a longword that is addressed when the two lowest
order address lines (XMI A<1:0> and VME A01,DS1*) are 00.

Byte 1 - The byte in a longword that is addressed when the two lowest
order address lines (XMI A<1:0> and VME A01,DS1*) are 01.

Byte 2 - The byte in a longword that is addressed when the two lowest
order address lines (XMI A<1:0> and VME A01,DS1*) are 10.

Byte 3 - The byte in a longword that is addressed when the two lowest
order address lines (XMI A<1:0> and VME A01,DS1*) are 11.
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VME-to-XMI Byte Swapping

Figure B–1 Big Endian VME Byte Lane Formats

3
1 0

Longword
Access

Triple
Byte
Access

Word
Access

Byte
Access

Byte 0 Byte 1 Byte 2 Byte 3

msb−p436−91

Byte 0

Byte 1 Byte 2 Byte 3

Byte 1 Byte 2

Byte 1

Byte 1

Byte 0

Byte 3

Byte 2

Byte 1

Byte 2

Byte 3

Byte 0

Byte 2

Byte Lanes - The VME data lines used for a given length transfer.
Different bytes (Byte 0–Byte 3) will be transferred on different byte
lanes depending on the size of the transfer. Table B–1 illustrates the
relationship of data lines to byte lanes.

Byte Swapping - The process of changing the address at which a byte is
referenced relative to the base address, where the base address is the
lowest byte address within a set of contiguous bytes used to store data.
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VME-to-XMI Byte Swapping

Table B–1 Byte Lanes for Different Sizes of VME Transfers

Byte VME VME VME VME
Lanes D24–D31 D16–D23 D08–D15 D0–D07

Byte Access

Byte0 Byte0

Byte1 Byte1

Byte2 Byte2

Byte3 Byte3

Word Access

Byte0–1 Byte0 Byte1

Byte1–2 Byte1 Byte2

Byte2–3 Byte2 Byte3

Triple Byte Access

Byte0–2 Byte0 Byte1 Byte2

Byte1–3 Byte1 Byte2 Byte3

Longword Access

Byte0–3 Byte0 Byte1 Byte2 Byte3

B.2 Byte Swapping in Data Storage
Big endian and little endian processors store data in architecturally
different ways. The big endian processor architecture defines the byte
stored at the higher address to be the least significant, and the byte stored
at the lowest address to be the most significant. Little endian processor’s
storage convention is the opposite. Therefore, integer longwords stored
by either processor are transposed for the other. The byte order for word
data is transposed within words but words are not transposed within the
longword.

Both processors store character byte strings the same way, beginning at
byte address 0. Therefore, passing character data between processors
requires no translation. Clearly, a hardware solution for aligning integer
bytes will not work for byte strings.

Figure B–2 and Figure B–3 illustrate the conventions used by little endian
and big endian processors for word and longword integer data. Storage of
byte string data is shown in Figure B–4.
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VME-to-XMI Byte Swapping

Figure B–2 Little Endian Integer Data Storage

Longword Data

MSB LSB

Address

Address

11 10 01 00

Word Data
Word 1 Word 0

−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−

LSB MSB

msb−p438−91

MSB LSB

11 10 01 00

Figure B–3 Big Endian Integer Data Storage

Longword Data

LSB MSB

Address

Address

11 10 01 00

Word Data
Word 1 Word 0

−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−

MSB LSB

msb−p439−91

LSB MSB

11 10 01 00

Figure B–4 Byte String Storage

4th Char 3rd Char 2nd Char 1st Char

Address 11 10 01 00

msb−p440−91
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VME-to-XMI Byte Swapping

The fundamental issue of sharing data over the VMEbus is the
requirement of the big endian data format that any type of processor have
complete knowledge of the data structure to interpret the data correctly.
Different translation algorithms are required for integer bytes and integer
words stored as 16-bit values, integer words packed as longwords, and
longwords. Furthermore, correct interpretation of byte streams requires
yet another algorithm. Thus, an application must recognize the data type
to make the right translation.

The term "byte swapping" reflects the differences in the way that little
endian and big endian processors reference bytes within longwords. Little
endian processors store data in 32-bit longwords, with the most significant
byte addressable at byte(3) and the least significant at byte(0). Word data
is stored as if arrived in a stream. The MSB of the first word is stored at
byte(1) and the LSB at byte(0). The MSB of the second word is stored at
byte(3) and the LSB at byte(2). Bytes that are stored individually appear
as if they were stored as a longword.

Big endian processors store longword integer data with the most
significant byte at byte(0) and the least significant at byte(3). Word data
is stored with the MSB of the first word at byte(0) and the LSB at byte(1).
The MSB of the second word appears at byte(2) and the LSB at byte(3).
Bytes stored individually appear as if they were stored as a longword.

B.3 DWMVA Byte Swapping Requirements
Four categories of swapping are required for VME-to-XMI and XMI-to-
VME transactions. These categories are referred to as Mode 0, Mode 1,
Mode 2, and Mode 3. The swapping mode is selected by configuring bits
<1:0> of the DWMVA Byte Swap RAM Access Register. Table B–2 shows
the units swapped with the four swapping modes.

Table B–2 Byte Swapping Modes

RAR<1:0> Mode Swapped Unit

00 0 No Swap

01 1 Byte Swap

10 2 Word Swap

11 3 Longword Swap
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VME-to-XMI Byte Swapping

B.3.1 Mode 0—No Swap

Mode 0 does not perform any swapping. For example, if the longword
0123 4567 hex (byte 67 = MSB) is written on the VMEbus and Mode 0 is
selected on the DWMVA, the data pattern that appears on the XMI bus
will be 6745 2301 (byte 67 = MSB). Figure B–5 shows Mode 0 swapping
for 4-byte, 3-byte, 2-byte, and 1-byte transfers.
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VME-to-XMI Byte Swapping

Figure B–5 Mode 0 (No Swap) Transfers

4−Byte Transfer: Byte 0−3
VME Device
Byte Address VME Byte Lanes DWMVA XMI

Byte 0 D24−−D31 <31:24>

msb−p441−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

3−Byte Transfer: (a) Byte 0−2
VME Device
Byte Address VME Byte Lanes DWMVA XMI

Byte 0 D24−−D31 <31:24>

msb−p442−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–5 Cont’d on next page
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VME-to-XMI Byte Swapping

Figure B–5 (Cont.) Mode 0 (No Swap) Transfers

3−Byte Transfer: (b) Byte 1−3
VME Device
Byte Address VME Byte Lanes DWMVA XMI

Byte 0 D24−−D31 <31:24>

msb−p443−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

2−Byte Transfer: (a) Byte 0−1
VME Device
Byte Address VME Byte Lanes DWMVA XMI

Byte 0 D24−−D31 <31:24>

msb−p444−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–5 Cont’d on next page
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VME-to-XMI Byte Swapping

Figure B–5 (Cont.) Mode 0 (No Swap) Transfers

2−Byte Transfer: (b) Byte 1−2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

<07:00>

msb−p445−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07

2−Byte Transfer: (c) Byte 2−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p446−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–5 Cont’d on next page
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VME-to-XMI Byte Swapping

Figure B–5 (Cont.) Mode 0 (No Swap) Transfers

Byte Transfer: (a) Byte 0
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p447−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Byte Transfer: (b) Byte 1
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p448−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–5 Cont’d on next page
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VME-to-XMI Byte Swapping

Figure B–5 (Cont.) Mode 0 (No Swap) Transfers

Byte Transfer: (c) Byte 2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p449−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Byte Transfer: (d) Byte 3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p450−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>
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VME-to-XMI Byte Swapping

B.3.2 Mode 1—Byte Swap

Mode 1 swaps the bytes within each of the two words making up a
longword of data. For example, if the longword 0123 4567 hex (byte 67 =
MSB) is written on the VMEbus and Mode 2 is selected on the DWMVA,
the data pattern that appears on the XMI bus will be 4567 0123 (byte 45 =
MSB). Figure B–6 shows Mode 1 swapping for 4-byte, 3-byte, 2-byte, and
1-byte transfers.
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VME-to-XMI Byte Swapping

Figure B–6 Mode 1 (Byte Swap) Transfers

4−Byte Transfer: Byte 0−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p451−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

3−Byte Transfer: (a) Byte 0−2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p452−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–6 Cont’d on next page
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VME-to-XMI Byte Swapping

Figure B–6 (Cont.) Mode 1 (Byte Swap) Transfers

3−Byte Transfer: (b) Byte 1−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p453−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

2−Byte Transfer: (a) Byte 0−1
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p454−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–6 Cont’d on next page
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VME-to-XMI Byte Swapping

Figure B–6 (Cont.) Mode 1 (Byte Swap) Transfers

2−Byte Transfer: (b) Byte 1−2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p455−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

2−Byte Transfer: (c) Byte 2−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p456−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–6 Cont’d on next page
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VME-to-XMI Byte Swapping

Figure B–6 (Cont.) Mode 1 (Byte Swap) Transfers

Byte Transfer: (a) Byte 0
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p467−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Byte Transfer: (b) Byte 1
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p468−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–6 Cont’d on next page
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VME-to-XMI Byte Swapping

Figure B–6 (Cont.) Mode 1 (Byte Swap) Transfers

Byte Transfer: (c) Byte 2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p469−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Byte Transfer: (d) Byte 3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p470−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>
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VME-to-XMI Byte Swapping

B.3.3 Mode 2—Word Swap
Mode 2 swaps the words within a longword. For example, if the longword
0123 4567 hex (byte 67 = MSB) is written on the VMEbus and Mode 2 is
selected on the DWMVA, the data pattern that appears on the XMI bus
will be 2301 6745 (byte 23 = MSB). Figure B–7 shows Mode 2 swapping
for 4-byte, 3-byte, 2-byte, and 1-byte transfers.
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VME-to-XMI Byte Swapping

Figure B–7 Mode 2 (Word Swap) Transfers

4−Byte Transfer: Byte 0−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p471−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

3−Byte Transfer: (a) Byte 0−2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p472−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–7 Cont’d on next page
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Figure B–7 (Cont.) Mode 2 (Word Swap) Transfers

3−Byte Transfer: (b) Byte 1−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p473−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

2−Byte Transfer: (a) Byte 0−1
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p474−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–7 Cont’d on next page
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Figure B–7 (Cont.) Mode 2 (Word Swap) Transfers

2−Byte Transfer: (b) Byte 1−2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p475−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

2−Byte Transfer: (c) Byte 2−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p476−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–7 Cont’d on next page
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VME-to-XMI Byte Swapping

Figure B–7 (Cont.) Mode 2 (Word Swap) Transfers

Byte Transfer: (a) Byte 0
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p477−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Byte Transfer: (b) Byte 1
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p478−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–7 Cont’d on next page
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Figure B–7 (Cont.) Mode 2 (Word Swap) Transfers

Byte Transfer: (c) Byte 2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p479−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Byte Transfer: (d) Byte 3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p480−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>
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VME-to-XMI Byte Swapping

B.3.4 Mode 3—Longword Swap

Mode 3 swaps longwords. For example, if the longword 0123 4567 hex
(byte 67 = MSB) is written on the VMEbus and Mode 3 is selected on the
DWMVA, the data pattern that appears on the XMI bus will be 0123 4567
(byte 01 = MSB). Figure B–8 shows Mode 3 swapping for 4-byte, 3-byte,
2-byte, and 1-byte transfers.
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Figure B–8 Mode 3 (Longword Swap) Transfers

4−Byte Transfer: Byte 0−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p461−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

3−Byte Transfer: (a) Byte 0−2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p462−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–8 Cont’d on next page
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Figure B–8 (Cont.) Mode 3 (Longword Swap) Transfers

3−Byte Transfer: (b) Byte 1−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p463−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

2−Byte Transfer: (a) Byte 0−1
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p464−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–8 Cont’d on next page

B–26
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Figure B–8 (Cont.) Mode 3 (Longword Swap) Transfers

2−Byte Transfer: (b) Byte 1−2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p465−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

2−Byte Transfer: (c) Byte 2−3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p466−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–8 Cont’d on next page
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Figure B–8 (Cont.) Mode 3 (Longword Swap) Transfers

Byte Transfer: (a) Byte 0
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p457−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Byte Transfer: (b) Byte 1
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p458−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Figure B–8 Cont’d on next page
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Figure B–8 (Cont.) Mode 3 (Longword Swap) Transfers

Byte Transfer: (c) Byte 2
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p459−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>

Byte Transfer: (d) Byte 3
VME Device
Byte Address

DWMVA XMI
VME Byte Lanes

Byte 0 D24−−D31 <31:24>

msb−p460−91

Byte Address

Byte 1 D16−−D23 <23:16>

Byte 2 D08−−D15 <15:08>

Byte 3 D00−−D07 <07:00>
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GLOSSARY

arbiter: In VMEbus terminology, a functional module that accepts bus requests
from the requester modules and grants control of the data transfer bus to one
requester at a time.

arbitration: In VMEbus terminology, the process of assigning control of the data
transfer bus to a requester.

backplane: The area in a computer that connects circuit boards. When used in
reference to the VMEbus, the backplane is a printed circuit board with 96-pin
connectors and signal paths.

block read cycle: A data transfer bus cycle used to transfer a block of 1 to 256
bytes from a slave to a master. The transaction uses a string of 1, 2, or 4-byte
data transfers. Once the block transfer is started, the master does not release
the data transfer bus until all bytes have been transferred. The block read cycle
differs from a string of read cycles in that the master broadcasts only one address
and address modifier. The slave then increments this address on each transfer
so that the data for the next transfer is retrieved from the next higher location.

block write cycle: A data transfer bus cycle used to transfer a block of 1 to 256
bytes from a master to a slave. The transaction uses a string of 1, 2, or 4-byte
data transfers. Once the block transfer is started, the master does not release
the data transfer bus until all bytes have been transferred. The block write
cycle differs from a string of write cycles in that the master broadcasts only
one address and address modifier. The slave then increments this address on
each transfer so that the data for the next transfer is stored in the next higher
location.

bus timer: A functional module that measures the duration of each data transfer
on the data transfer bus and terminates the data transfer bus cycle if a transfer
takes too long. Without this module, if the master tries to transfer data to or
from a nonexistent slave location, it could wait forever for a slave to respond.
The bus timer prevents this by terminating the cycle.

C3200: One of two modules that make up the DWMVA. The C3200 module
(DWMVA/B) is on the VMEbus.

commander: A device on the XMI that initiates a transaction, whether read
or write. During a write, the commander supplies the data, while in a
read transaction, the commander receives the read return data. The device
that initiates the transaction will be the commander for the duration of the
transaction.

daisy chain: A type of signal line that is used to propagate a signal level from board
to board, starting with the first slot and ending with the last slot. There are four
bus grant daisy chains and one interrupt acknowledge daisy chain on the VME
backplane.
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data transfer bus: One of the four buses provided by the VME backplane. The data
transfer bus (DTB) allows masters to direct the transfer of binary data between
themselves and slaves.

data transfer bus cycle: A sequence of level transitions on the signal lines of the
data transfer bus that result in the transfer of an address and data between a
master and a slave.

DTB: See data transfer bus.

destination: The receiver of information during a transfer on either the XMI or
VMEbus.

DWMVA: An I/O option consisting of a T2018 (DWMVA/A) module, a C3200
(DWMVA/B) module and a set of three cable assemblies, which provides a logical
path between the XMI bus and the VMEbus through the IBUS.

DWMVA/A: See T2018.

DWMVA/B: See C3200.

hexword: 256 bits of data; XMI defined.

IACK: Interrupt Acknowledge.

IACK daisy-chain driver: A functional module that activates the interrupt
acknowledge daisy chain whenever an interrupt handler acknowledges an
interrupt request. The daisy chain ensures that only one interrupter will respond
with status/ID when more than one has generated an interrupt request on the
same level.

IBUS: Bus that connects the T2018 module to the C3200 module.

IDENT: XMI transaction generated by the XMI commander in response to the
interrupt request on the XMI.

interrupt acknowledge cycle: A data transfer bus cycle, initiated by an interrupt
handler, that reads a status/ID from an interrupter. An interrupt handler
generates this cycle when it detects an interrupt request from an interrupter and
it has control of the data transfer bus.

interrupter: A functional module that generates an interrupt request on the
interrupt bus and then provides status/ID information when the interrupt
handler requests it.

interrupt handler: A functional module that detects interrupt requests generated by
interrupters and responds to those requests by asking for status/ID information.

INTR: XMI Interrupt transaction for device interrupts.

IVINTR: Implied Vector Interrupt transaction. A single-cycle interrupt command on
the XMI bus.

master: A VME specification term for a device that performs the same role as a
commander on the XMI.
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octaword: 128 bits of data; XMI defined.

priority interrupt bus: One of the four buses provided by the VME backplane. The
priority interrupt bus allows interrupter modules to send interrupt requests to
interrupt handler modules and interrupt handler modules to acknowledge these
interrupt requests.

quadword: 64 bits of data; XMI defined.

read cycle: A data transfer bus cycle used to transfer 1, 2, 3, or 4 bytes from a
slave to a master. The cycle begins when the master broadcasts an address and
an address modifier. Each slave captures this address and address modifier
and checks to see if it is to respond to the cycle. If the slave is to respond, then
it retrieves the data from its internal storage, places it on the data bus, and
acknowledges the transfer. Then the master terminates the cycle.

Read Modify Write cycle: In VMEbus terminology, a data transfer bus cycle that is
used both to read from and write to a slave’s byte location(s) without permitting
any other master to access the same location during that cycle. This cycle is most
useful in multiprocessing systems where certain memory locations are used to
control access to certain system resources. (For example, semaphore locations.)

requester: A functional module that resides on the same board as a master or
interrupt handler and requests use of the data transfer bus whenever its master
or interrupt handler needs it.

responder: A device on the XMI that is targeted by the commander. The device acts
as a responder for the duration of the transaction. See slave.

slave: A VME term for a device that performs the same role as a responder on the
XMI.

source: A source is the provider of information during a transfer on either the XMI
or VME.

T2018: One of two modules that make up the DWMVA. The T2018 module
(DWMVA/A) is on the XMI bus.

transaction: An operation consisting of single or multiple data transfers. CPU
reads, CPU writes, DMA reads, and DMA writes are transaction types. Each
transaction begins with a command and address transfer. During writes, the
command/address transfer is followed by data transfers from the commander
(in VME terminolgy, master) initiating the transaction. Data transfers are
performed by the responder (in VME terminolgy, slave) during read transactions.

transfer: Command/address or data that is sent over a bus from the source to the
destination. A change in the command/address or data defines the end of a
particular transfer and the beginning of another. Transactions can consist of
multiple transfers.

utility bus: One of four buses provided by the VME backplane. This bus includes
signals that provide periodic timing and coordinate the power-up and power-down
of the system.
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VMEbus: An industry-standard bus defined by IEEE 1014. It is an asynchronous
interlocked bus with separate data and address lines.

VSC: VME system controller. Performs functions defined by IEEE 1014. It is a
protocol for the VMEbus that describes the clock drivers, power monitor, bus
arbiter, IACK driver, and bus timer.

write cycle: A data transfer bus cycle used to transfer 1, 2, 3, or 4 bytes from a
master to a slave. The cycle begins when the master broadcasts an address and
address modifier and places data on the data transfer bus. Each slave captures
this address and modifier and checks to see if it is to respond to the cycle. If so,
the slave stores the data and then acknowledges the transfer. The master then
terminates the cycle.

XMI: A synchronous, pended bus used in VAX 6000 systems. It has multiplexed data
and address lines. The XMI is the interconnect between CPU modules, memory,
and I/O adapters.

XMI Corner: An area on an XMI module that connects to the backplane and provides
an electrically identical interface for every XMI node.
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A
ABEAR register

See VME Error Address Register
ACSR register

See Control and Status Register
Address mapping • 2–1
Address Offset Register

See CPU Transaction Address Offset Registers
Address space

I/O adapter • 2–4
node • 2–3
private • 2–3

Address translation
34-bit • 2–10
40-bit • 2–12
CPU transactions • 2–6
DMA transactions • 2–8
no translation • 2–9

ADG1 register

See Diagnostic 1 Register
AESR register

See Error Summary Register
AIMR register

See Interrupt Mask Register
AIVINTR register

See Implied Vector Interrupt Destination/Diagnostic
Register

Arbitration • 3–3
algorithms • 3–4
subsystem input/output • 3–3
timeout counter • 3–6

AREAR register

See Responder Error Address Register
ARVR register

See Return Vector Register
AUTLR register

See Utility Register

B
BERR* bit

See Bus Error bit

Big endian • B–1
34-Bit Address Enable bit • 7–38
40-bit address translation

512-byte page size • 2–12
4-Kbyte page size • 2–14
8-Kbyte page size • 2–16

34-bit VAX address translation • 2–10
40-bit VAX address translation • 2–12
BRn Interrupt Sent field • 7–64
Bus Error bit • 7–60
Bus Error Register • 7–6
Bus Grant Level During Timeout bit • 7–62
Bus request level assignment • 3–5
Bus Request Level Select bit • 7–55
Bus timer • 3–2
Byte Swap Mode bit • 7–79
Byte swapping • 7–79, B–2

data storage • B–3
mode 0 • B–6
mode 1 • B–12
mode 2 • B–18
mode 3 • B–24
requirements • B–5

Byte Swap RAM Access Register • 7–77
Byte Swap RAM Address field • 7–78

C
C3200 interrupter • 6–5
C3200 Interrupt Priority Level Select bit • 7–58
C3200 register initialization values • 7–51
C3200 register read/write • 4–4
C3200 registers • 7–51 to 7–88
Cable OK bit • 7–18
CC bit

See Corrected Confirmation bit
Clock driver, serial • 3–9
Clock driver, system • 3–9
CNAK bit

See Command NO ACK bit
Command NO ACK bit • 7–11
Command translation • 4–2
Configuration Register • 7–53
Control and Status Register • 7–39
Control Reset bit • 7–39
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CORR DMA ECC ERR bit
See Correctable DMA ECC Error bit

Correctable DMA ECC Error bit • 7–20
Correctable PMR ECC Error bit • 7–20
Corrected Confirmation bit • 7–8
Corrected Read Data bit • 7–10
CORR PMR ECC ERR bit

See Correctable PMR ECC Error bit
CPU IBUS Mask field • 7–74
CPU interlocks • 4–7
CPU masked writes • 4–6
CPU reads • 4–6
CPU Transaction Address Offset Registers • 7–87
CPU transaction process • 4–3
CRD bit

See Corrected Read Data bit
CSR Access Register • 7–80
CSR Write Data field • 7–81
CTL RESET bit

See Control Reset bit

D
Data transfer bus requesters • 3–6
Device/Configuration Register • 7–53
Device Register • 7–4
Device Revision field • 7–4, 7–58
Device Type field • 7–5, 7–58
Diagnostic 1 Register • 7–34
Diagnostic Mode bit • 7–74
Diagnostic Read/Write bits, AIVINTR • 7–33
Diagnostic Read/Write field, VVR • 7–76
Diagnostic Register • 7–85
Disable VME Error bit • 7–74
Disable XMI Timeout bit • 7–13
DMA interlocks • 4–9
DMA transaction process • 4–7
DREV field

See Device Revision field
DS0* bit • 7–63
DS1* bit • 7–62
DTYPE field

See Device Type field
DWMVA block diagram • 1–1
DWMVA Cable OK bit • 7–18
DWMVA Interrupt Destination Mask field • 7–75
DWMVA Interrupt Vector field • 7–75
DWMVA Interrupt Vector Offset field • 7–73
DWMVA major components • 1–1

DWMVA register transactions • 4–4
DWMVA Vector bit • 7–44
DXTO bit

See Disable XMI Timeout bit

E
ECC Syndrome bit • 7–40
Enable BERR* Interrupt bit • 7–67
Enable Byte Swap RAM Parity Error Interrupt bit •

7–67
Enable Interlock Error Interrupt bit • 7–68
Enable IVINTR Transactions bit • 7–27
Enable RMW Error II Interrupt bit • 7–68
Enable RMW Error I Interrupt bit • 7–68
Enable VME Arbitration bit • 7–53
Enable VME Arbitration Timeout Interrupt bit • 7–67
Enable VME/IBUS Parity Error Interrupt bit • 7–67
Enable VME Transaction Timeout Interrupt bit • 7–68
ENIT bit

See Enable IVINTR Transactions bit
Error Interrupts • 6–1
Error Summary bit • 7–7
Error Summary Register • 7–18
ES bit

See 34-Bit Address Enable bit
See Error Summary bit

ETF bit
See Extended Test Fail bit

Extended Test Fail bit • 7–12

F
Failing Address Extension field • 7–46
Failing Address Extension Register • 7–45
Failing Address field • 7–15
Failing Address Register • 7–14
Failing Commander ID field • 7–13
Failing Command field • 7–45
Failing Data Register • 7–86
Failing Length field • 7–14
Failing Mask field • 7–46
Failing VME Address bit • 7–48
Failing VME Length bit • 7–47
FCID field

See Failing Commander ID field
FCMD field

See Failing Command field
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FLN field
See Failing Length field

I
I/O adapter

address space • 2–4
window space • 2–3

I/O space • 2–2
I/O Write Failure bit • 7–22
IACK daisy-chain driver • 3–8
IBUS • 1–3
IBUS DMA-A C/A Parity Error bit • 7–24
IBUS DMA-A CA PE bit

See IBUS DMA-A C/A Parity Error bit
IBUS DMA-A Data Parity Error bit • 7–23
IBUS DMA-A DATA PE bit

See IBUS DMA-A Data Parity Error bit
IBUS DMA-B C/A Parity Error bit • 7–24
IBUS DMA-B CA PE bit

See IBUS DMA-B C/A Parity Error bit
IBUS DMA-B Data Parity Error bit • 7–24
IBUS DMA-B DATA PE bit

See IBUS DMA-B Data Parity Error bit
IBUS I/O RD PE bit

See IBUS I/O Read Data Parity Error bit
IBUS I/O Read Data Parity Error bit • 7–25
IBUS Receive Parity Error bit • 7–61
IBUS Transmit Parity Error bit • 7–61
IE bit

See Internal Error bit
Implied Vector Interrupt Destination/Diagnostic

Register • 7–33
Inconsistent Parity Error bit • 7–9
Initialization values

C3200 registers • 7–51
T2018 registers • 7–2

Interlock Error bit • 7–60
Interlocks, CPU • 4–7
Interlocks, DMA • 4–9
Internal Error bit • 7–21
Interrupt Configuration Register • 7–66
Interrupt Destination Mask field • 7–75
Interrupter, C3200 • 6–5
interrupter types, VME • 6–5
Interrupt handler selection • 6–5
Interrupt Mask Register • 7–26
Interrupt on Command NO ACK bit • 7–29
Interrupt on Correctable ECC Error bit • 7–30

Interrupt on Corrected Confirmation bit • 7–28
Interrupt on Corrected Read Data bit • 7–29
Interrupt on DMA-A Data Parity Error bit • 7–31
Interrupt on DMA-B Data Parity Error bit • 7–32
Interrupt on I/O Write Failure bit • 7–31
Interrupt on IBUS DMA-A C/A Parity Error bit • 7–31
Interrupt on IBUS DMA-B C/A Parity Error bit • 7–32
Interrupt on IBUS I/O Read Data Parity Error bit •

7–32
Interrupt on Inconsistent Parity Error bit • 7–28
Interrupt on Internal Error bit • 7–31
Interrupt on Invalid PFN bit • 7–30
Interrupt on Invalid VME Address bit • 7–31
Interrupt on No Read Response bit • 7–29
Interrupt on Parity Error bit • 7–28
Interrupt on Read Error Response bit • 7–29
Interrupt on Read/IDENT NO ACK bit • 7–28
Interrupt on Read Sequence Error bit • 7–29
Interrupt on Transaction Timeout bit • 7–30
Interrupt on Uncorrectable ECC Error bit • 7–30
Interrupt on VME AC LO bit • 7–31
Interrupt on Write Data NO ACK bit • 7–29
Interrupt on Write Sequence Error bit • 7–28
Interrupt protocol, VME-to-XMI • 6–2
Interrupt request levels • 6–4
Interrupts • 1–4, 6–1
Interrupt sequence • 6–1
Interrupt Vector • 7–75
Interrupt Vector Offset • 7–73
INTR CC bit

See Interrupt on Corrected Confirmation bit
INTR CNAK bit

See Interrupt on Command NO ACK bit
INTR COR ECC ERR bit

See Interrupt on Correctable ECC Error bit
INTR CRD bit

See Interrupt on Corrected Read Data bit
INTR DMA-A CA PE bit

See Interrupt on DMA-A C/A Parity Error bit
INTR DMA-A DATA PE bit

See Interrupt on DMA-A Data Parity Error bit
INTR DMA-B CA PE bit

See Interrupt on IBUS DMA-B C/A Parity Error bit
INTR DMA-B DATA PE bit

See Interrupt on DMA-B Data Parity Error bit
INTR I/O RD PE bit

See Interrupt on IBUS I/O Read Data Parity Error
bit

INTR IE bit
See Interrupt on Internal Error bit

INTR INV VME ADR bit
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INTR INV VME ADR bit (Cont.)

See Interrupt on Invalid VME Address bit
INTR IO WRT FAIL bit

See Interrupt on I/O Write Failure bit
INTR IPE bit

See Interrupt on Inconsistent Parity Error bit
INTR IPFN bit

See Interrupt on Invalid PFN bit
INTR NRR bit

See Interrupt on No Read Response bit
INTR PE bit

See Interrupt on Parity Error bit
INTR RER bit

See Interrupt on Read Error Response bit
INTR RIDNAK bit

See Interrupt on Read/IDENT NO ACK bit
INTR RSE bit

See Interrupt on Read Sequence Error bit
INTR TTO bit

See Interrupt on Transaction Timeout bit
INTR UNCOR ECC ERR bit

See Interrupt on Uncorrectable ECC Error bit
INTR VME AC LO bit

See Interrupt on VME AC LO bit
INTR WDNAK bit

See Interrupt on Write Data NO ACK bit
INTR WSE bit

See Interrupt on Write Sequence Error bit
Invalid PFN bit • 7–20
Invalid VME Address bit • 7–21
INV VME ADR bit

See Invalid VME Address bit
IPE bit

See Inconsistent Parity Error bit
IPFN bit

See Invalid PFN bit
IRQ1 IACK Select bit • 7–72
IRQ2 IACK Select bit • 7–71
IRQ3 Interrupt Priority Level/IACK Select field • 7–71
IRQ4 Interrupt Priority Level/IACK Select field • 7–70
IRQ5 Interrupt Priority Level/IACK Select field • 7–70
IRQ6 Interrupt Priority Level/IACK Select field • 7–69
IRQ7 Interrupt Priority Level/IACK Select bit • 7–68
IRQn Interrupt Pending field • 7–63
IVINTR Destination field • 7–33

L
LDEASRT bit

LDEASRT bit (Cont.)

See Lockout Deassertion bit
Little endian • B–1
LLIM bit

See Lockout Limit bit
LOCKOUT ASSERT ENA bit

See Lockout Assert Enable bit
Lockout Assert Enable bit • 7–41
Lockout Deassertion bit • 7–36
Lockout Limit bit • 7–35
LOCKOUT RESPONSE ENA bit

See Lockout Response Enable bit
Lockout Response Enable bit • 7–41
LWORD* bit • 7–65

M
Mapping, address • 2–1
Mapping Register Mode Enable bit • 7–37
Masked writes • 4–6
ME bit

See Multiple Errors bit
ME ENA bit

See Multiple Interrupt Enable bit
Memory read, XMI • 4–9
Memory write, XMI • 4–8
MR MD bit

See Mapping Register Mode Enable bit
Multiple Errors bit • 7–19
Multiple Interrupt Enable bit • 7–42

N
NHALT bit

See Node Halt bit
Node Halt bit • 7–8
Node Reset bit • 7–7
Nodespace • 2–3
Node-Specific Error Summary bit • 7–12
No Read Response bit • 7–10
NRR bit

See No Read Response bit
NRST bit

See Node Reset bit
NSES bit

See Node-Specific Error Summary bit
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O
Offset Register

See CPU Transaction Address Offset Registers

P
Page Frame Number bit • 7–50
Page Map Register Entry Bit 30 • 7–49
Page Map Registers • 7–49
Page Size Mode bit • 7–55
Parity bit • 7–78
Parity Error bit • 7–9
PE bit

See Parity Error bit
PFN bit

See Page Frame Number bit
Pinouts

J1 • A–2
J2 • A–3

PMRE 30 bit
See Page Map Register Entry Bit 30

PMR Ready bit • 7–40
PMR registers

See Page Map Registers
PMR Valid bit • 7–49
PMR V bit

See PMR Valid bit
Power monitor • 3–10
Private space • 2–3

R
RAR register

See Byte Swap RAM Access Register
Read Error Response bit • 7–10
Read/IDENT Data NO ACK bit • 7–9
Read Sequence Error bit • 7–10
Read/Write bit • 7–78
Register

Bus Error • 7–6
Byte Swap RAM Access • 7–77
Control and Status • 7–39
CPU Transaction Address Offset • 7–87
CSR Access • 7–80
Device • 7–4

Register (Cont.)

Device/Configuration • 7–53
Diagnostic • 7–85
Diagnostic 1 • 7–34
Error Summary • 7–18
Failing Address • 7–14
Failing Address Extension • 7–45
Failing Data • 7–86
Implied Vector Interrupt Destination/Diagnostic •

7–33
Interrupt Configuration • 7–66
Interrupt Mask • 7–26
Page Map • 7–49
Responder Error Address • 7–16
Return Vector • 7–44
Utility • 7–35
Vector • 7–75
Vector Offset • 7–73
VME Address Range Enable • 7–83
VME Error Address • 7–47
VME Error Summary • 7–59
VME Failing Address • 7–65

Register initialization values, C3200 • 7–51
Register initialization values, T2018 • 7–2
Register read/write, C3200 • 4–4
Register read/write, T2018 • 4–4
Registers • 7–1

C3200 • 7–51 to 7–88
T2018 • 7–2 to 7–50

Register Select field • 7–82
Register transactions • 4–4
RER bit

See Read Error Response bit
Reset C3200 bit • 7–56
Responder Error Address Register • 7–16
Responder Failing Address field • 7–17
Responder Failing Command field • 7–19
Responder Failing ID field • 7–19
Responder Failing Length field • 7–16
Responder Request Enable bit • 7–42
RES REQ ENA bit

See Responder Request Enable bit
Return Vector Disable bit • 7–43
RETURN VECTOR DIS bit

See Return Vector Disable bit
Return Vector Register • 7–44
RFCMD field

See Responder Failing Command field
RFID field

See Responder Failing ID field
RFLN field
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RFLN field (Cont.)

See Responder Failing Length field
RIDNAK bit

See Read/IDENT Data NO ACK bit
RMW Error I bit • 7–60
RMW Error II bit • 7–60
RMW Mode bit • 7–79
ROAK • 7–63
RORA • 7–63
RSE bit

See Read Sequence Error bit

S
Self-Test Fail bit • 7–13
SERCLK Period Select bit • 7–57
Serial clock driver • 3–9
Short Timeout Enable bit • 7–41
SHORT TMO ENA bit

See Short Timeout Enable bit
STF bit

See Self-Test Fail bit
Swap RAM Parity Error bit • 7–59
System clock driver • 3–9
System control

arbitration • 3–3
bus timer • 3–2
IACK daisy-chain driver • 3–8
power monitor • 3–10
serial clock driver • 3–9
system clock driver • 3–9

System control, VME • 3–1

T
T2018 register initialization values • 7–2
T2018 register read/write • 4–4
T2018 registers • 7–2 to 7–50
Test Fail bit • 7–74
Timeout Limit bit • 7–36
TLIM bit

See Timeout Limit bit
Transactions • 1–3, 4–1

CPU • 4–3
DMA • 4–7
VME device • 4–5

Transaction Timeout bit • 7–11
Translation

Translation (Cont.)

command • 4–2
VME-to-XMI • 4–3
XMI-to-VME • 4–2

TTO bit
See Transactions Timeout bit

U
UNCORR DMA ECC ERR bit

See Uncorrectable DMA ECC Error bit
Uncorrectable DMA ECC Error bit • 7–21
Uncorrectable PMR ECC Error bit • 7–20
UNCORR PMR ECC ERR bit

See Uncorrectable PMR ECC Error bit
Utility Register • 7–35

V
VAER register

See VME Address Range Enable Register
Valid bit • 7–49
VAOR register

See CPU Transaction Address Offset Registers
VAX address translation

See Address translation
VCAR register

See CSR Access Register
VDCR register

See Device/Configuration Register
VDR register

See Diagnostic Register
Vector Offset Register • 7–73
Vector Register • 7–75
VESR Error Summary bit • 7–54
VESR register

See VME Error Summary Register
VFADR register

See VME Failing Address Register
VFDR register

See Failing Data Register
VICR register

See Interrupt Configuration Register
VME AC LO bit • 7–23
VME Address Length field • 7–87
VME Address Modifiers field • 7–62
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VME Address Offset field • 7–87
VME Address Range Enable Register • 7–83
VME address space • 2–4
VME Arbitration Timeout bit • 7–62
VME Arbitration Timeout Period Select bit • 7–56
VME Arbitration Type Select bit • 7–54
VMEbus pin assignments • A–1
VMEbus signal descriptions • 5–5
VME Data Length field • 7–88
VME device read • 4–5
VME device transactions • 4–5
VME device write • 4–5
VME Error Address Register • 7–47
VME Error Summary Register • 7–59
VME Extended Address Range Enable bit • 7–83
VME Failing Address field • 7–65
VME Failing Address Register • 7–65
VME Failing Data field • 7–86
VME FLN bit

See VME Failing Address Length bit
VME Interrupter types • 6–5
VME Interrupt Request Level Mask field • 7–66
VME interrupts • 6–1
VME Standard Address Range Enable bit • 7–84
VME SYSRESET bit • 7–63
VME system control • 3–1
VME-to-XMI interrupt protocol • 6–2
VME to XMI memory read • 4–9
VME to XMI memory write • 4–8
VME-to-XMI translation • 4–3
VME Transaction Timeout bit • 7–61
VME Transaction Timeout Period Select bit • 7–57
VME Transmit Parity Error bit • 7–61
VME Window Space Enable bit • 7–42
VME Window Space field • 7–38
VVOR register

See Vector Offset Register
VVR register

See Vector Register
VWS ENA bit

See VME Window Space Enable bit
VWS field

See VME Window Space field

W
WDNAK bit

See Write Data NO ACK bit
WEI bit

WEI bit (Cont.)

See Write Error Interrupt bit
Window space • 2–3
WRITE* bit • 7–55
Write bit • 7–81
Write Data NO ACK bit • 7–10
Write Error Interrupt bit • 7–8
Write Sequence Error bit • 7–9
WSE bit

See Write Sequence Error bit

X
XBAD bit

See XMI BAD bit
XBER register

See Bus Error Register
XDEV register

See Device Register
XFADR register

See Failing Address Register
XFAER register

See Failing Address Extension Register
XMI BAD bit • 7–8
XMI bus • 1–3
XMI I/O space • 2–2
XMI memory read • 4–9
XMI memory write • 4–8
XMI-to-VME translation • 4–2
XMI Trigger bit • 7–8
XTRIG bit

See XMI Trigger bit
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