
EK-DWBUA-TM-004

Prepared by Educational Services
of

Digital Equipment Corporation

Ist Edition, January 1986

v Digital Equipment Corporation 1986

All Rights Reserved

The information in this document is subject to change without notice and should

not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that

may appear in this document.

Printed in U.S.A.

This document was set on a DIGITAL DECset Integrated Publishing System.

The following are trademarks of Digital Equipment Corporation:

N DECwriter RSX

@fln an DIBOL Scholar
DEC MASSBUS ULTRIX

DECmate PDP UNIBUS

DECset P/OS VAX

DECsystem-10 Professional VAXBI

DECSYSTEM-20 Rainbow VMS
DECUS RSTS VT

Work Processor

PART |

.1

2

1.2.

» »2

1.2

1.3

W

)

=

*

g
f
l
;
—
-
f
i
m
“
f
i
-
‘
f
l
d

-

2.1

.2

N
N

3

2.3.1

3.2N
N

b

24

24.1

2.4.2

PART 1l

CHAPTER 3

W

W

W

W

W

b
—
s

W

W

w

b

i

D
N
—

N o

N
W

 W
w

L
4

3

3

3.

3

3

3

Page

INSTALLATION

INTRODUCTION

PRO.UC.I. DESCR!' [l‘N &w&flUWW%U*#U&UQ*I*QQ*"Q%*#M'U'fiflfll**m*»‘fli’.fl.Ih%fi&‘D‘»wnw.ww%ubbbuwhlblwtofilul-lt

SPEC!FICAT!ONSWM!Q»nuwufivumquwn*m«qmuum*ouwwovanaOakwwmbwwa, i 3 vw-ubifi“.'ii!nlfl!l‘fififlfiflbfi‘i‘*wflnbtfl*&.anl‘

Bus Lmdlngwvlamfltufiwdqw&ha&.arn&n'w»mwwmwmwmlmnwlulwl‘wtuwwumwvc«fltuw»#wn*#flw*hum»bf
l&uv*fiath*uwuhau»i&wwuo«wn

?Ower chuircments hlcwluumw«wnmawmflmQtn\HHH&OOmv0&004»nwnmbbwawuwbnbtqnuumwwfiuUo«muiavuwtwgnwnonvnqonuwnt

Current Requlrcments fi'l‘n‘QQHQlh’fifififllb‘bflbhflflifldw*fll“UImQWfiUb‘ii*bfi&flmhpmtfi*»*vl%»*lwb%iww&'itw»nunna

SU! pORlED UNIBUS mEVlCESuflwwwfllUfiwuwwafimiwawomwnmfiwmwtwtl»mfimuwauw*wuwnwnw«wuuwnw-mn»oquwmmyu

LR R]

L

LA

1

|

1

|

IN "ALLATION AND TEST

0! ‘lON COMPO’NENTSQ"'%NWU&*Wbflfi‘fl'iflfl'"flfl~fi«“ywfl*#*fi‘h#'fl“lfi**b*‘fl“*WWUUUUQO.‘D*wfl‘*‘wifllflfl‘%*'va‘illfldrivhww
2

lNSTALLATlON »dlwuwwfiowfit«*unu»flm'nm‘mouw»ttwcquw#w'&**unn‘vaflummammwnmmnwm»w«nuwnblmuwnutflmmununnunnuwa«fi&t-aauuvn 2”

TEST fi'%’l“&‘“fifl'*l‘.’l*fi-w § 2

&lf*Tcs‘- Michiagn%tlc Program 4»"&%00’vmt*uqutu»uufi*w‘am*wtwwtuutnabu&nmfiu‘nnt*wmmwwnwuwcows

Macrm‘ag“mtlc Prmgram BEREBRARREER LRA A A & u***@‘*flfl"fifl'WW*%fiflfi“&Wflfi&*w'filw*bn'v&*niHI**.i*iovv*-fih

TROUBLESHMT!NG ttaawlfihwummhbwwuu»wa‘uu«mwu»‘wm#ufiwtnwnwwmw«muwnmquuwmamwtw&una»«wanubwmfl&&tquu*n»uumwuvomw 2 9
Tmlfi and th Equlpmentwfifiwwflwn«n.wwnwwfidfluiw»wwumww&uw&&wfiunwm\woivduntuwwuwvw#»»wtuvcommm&tuwuw»ntau--unn 2“9

2-9

5

LA LEE L S| w.-w-wutw»wvcnmtu»mnmv&nawweuwmvunvmiufimuvmwnu-nw»owa
u»uw;acnwouu«sw

murc‘*fl"flw'fiI*Ul*’l‘wfi*lh*wflfli'&fi*‘&*d‘mI#H‘&‘fl*i.‘.‘&'fl‘fiflQW*G*WD#Q
‘U*fi‘n‘i..lfiiwfl‘w&mviw&*ithlnfl"vl%&lhm

e p u lntsflmfitnlou%fifl#mwiwwliww»flmm«wuwwfimwwfiQl\wit.d@iflmia»&fl'fiwwamwm»flnnwtuwumuwuw»mwwwnwtq»qdmvwQuwnutuammwu 2 l

TECHNICAL DESCRIPTION

PROGRAMMING

F
-

SYSTEM AD”RESS S ACEQQ‘DO*W*vvtfifi\hwbi‘fiwuwuwuwuv»tu’am&fiwmv%dwuwmnfintwnmw&unw»wu»wwu;wnunwununwtu».vv-uw 3 ‘
Addrcss Smm Dlstrlbu&mon flt&tflwh*.lwdinm»wmwnflwabn&imnunwfiwflmvuvwbvvw*uQ&wfit«uoutwauw¨utoanmuuluuntt* 3 l

Sys&cm l/o Smmfllnwtu»nfi‘mtfiwmvlfi#nwohlhlwfivnm0»»flwnla&qwuwuwwwnu%ucuu&twnwmuudw»wu»o**uim»wu»ufiiflmtvimcntvwaw 3 2
DWBUA ADDR S!CE miwuvuhtnuuwwudhwwamw‘hlawwm*wo»afiumwwwwu\amwwnmu»»wwuauunu*c».*wu»aw»nnaumwwawanu*u 3‘3

RcslSter "rl Cham‘etfirmtum“twwflQufiwflw*tmww'!un*wufilwifiuwwnwimuwuau»nviwmiwb»muw&hwfl.w'vaiuuuwanwuonnwo 3 6
hAXBI Rmu‘lmd R@smtcrs fl%tifitlfllflil‘w*«ia*»&wfifl'amwvwvwnwnow»w&wwwwumuwtt&»wuoumthmw-authwnunnuurmhd 3

 6
Errflr lntcrrupt Cfintr’l R¢$l3t¢rO&fimwflfiiawm*w«lwnw&l*m‘cbfi»uiwfiltdrt&ww&womuuvww*&*;vownu».nnom- 3“7
lntgrrupt ; tlnat‘an Remstfir **WQ”OWW*“#O%D*fiUWfiU‘Qfi'WOUVflU*&m‘fld&'&llfi&Wfl'fl»w'nb*'&'bflflm‘u*&lOw 3 8

cific Device Registers 3-9
BI‘C Sm e T T T R T L S R R A S A A R A A

Starting Address REISIET.....c.oiveriirmecniiiinieine s 3-10
s

-

Endlng Ad‘ ; Rfigl&t@r *wut'w*’lifihibn#n'wi&mw&wvww&wvfltw*tn«vuoni&wuwuuuvawuviamuwumwnnwmwq«wwu« 3 l l
-

Ml Caulrol Rflglstfi‘r ulm%w*u*wuu‘qwumdn»n*w*tt‘m*uwmw«wattwtn.mv»wmw«tuuuuvcm»w»ww»nku*mm«awuvvoutu 3 12
User Interface Interrupt Control Register 3-13

&fiu*unwww»&»w«ammbwwwnwbnwuuwwqaw»wtuw
fiw&auwntt

Gcna"a‘l E ur Rfim&tfl‘malmvOudwflniflwmu«»wu&nlflm&nnuuvuuwmiwanu«n»nn«na*lvcumvnuuuwa«.pw*m.wurtu 3 i

LRARB

'.U'fi"%00"’.““0"*".'0*."‘fil'**“f
i#%l*w*fl

3.24

3.24.1

3.24.2

3.243

3.24.4

3.245

3.24.6

3.24.7

3.24.8

N O

W

L

L

W

L

W

W

W

W

W

W

W

N

—

A
R
A
R
R
R
R
L
L
L

.

.

W

W

W

W

W

b
l

e
O

0
0
2
N

34 10

34.11

CHAPTER 4

L

N

-

ra
ti

 o
l
o
l

ol

 o
l

Sl

 o
l
 o
l
 o

l
ol

S

e
e

W

o

o

W
i

—

W

9

=

p
g
w
w
w
p
p
w
w
r
r
:
f
l
-
—

B
N

-

CONTENTS (Cont)

Page

DWBUA Internal Registers.............. vervvevenrrranns e raerereseeara————————————annnnnnns veeverennns 3-15

Receive Console Data Register.................... et reeeereeee eeas 3-15

DWBUA Control and Status Register.........ccccceevvvevnnnnerereenennen. rereeenes 3-16
Vector Offset Register.................... rereererererecteressesessenssrssenssssseanessersenseeeens 3°18

Failed UNIBUS Address Registerc.cocceveveeiirinereennnnnn, cereeeenrareennns 3-19
VAXBI Failed Address Register................ cereeeeeeanes cererreeenraeenans veeeens 3-20

Microdiagnostic Registers...........ccceeueennnns viresesiseissitinanistorenaancs voesenorsirhoit. 3-21

Data Path Control and Status chxsters ceeeeerereeeerenanraesessraneeesrnseneeeessnnnees 3722

Buffered Data Path Space........ vievesatarsnssvisesessrasisireiniiaseseans eeeeereee e 3-23

UNIBUS Map Registers............ eeiisesernitai i e ttesektntreseasibneraesesessanseseratonse 3-23

INITIALIZATION ... Cheesiiinnateesinrbereessansastssssaretrsssansasebe 3-25

DWBUA Hardware INitialiZationvvveerserrerree. Crererrreresensrneeesssssaaneserens329

UNIBUS Initializationccccceecveeeecnnnennns eererareeeerreenanne eeeaees vreeserrrenesrnees 3°25

PROGRAMMING CONSIDERATIONS.................... veivsseanteessissennasessasnsasansaneans 3-25

UNIBUS Map Registers.................... ceeeereeereriereesenaeaeaaneeaan eeerrereenreeesataeeenes 3-25

Contiguous Allocation....................... Ceeeernnreeeenrraeaas reeereernreeenaanraneearareens 3-27

Mapping to VAXBI I/O Space.............. Ceveersessassesniabeins ceeenrens veraeas veennes 3227

BYTE OFFSET Bit............. ceeeererreerenanns reeeeerraeeeerraarereesnrreeeerrateeennnnes 3-27

UNIBUS Power Down........... eeeraeerereeeeaaens ceanieniaieraranssainninetisiasasas reeereeeraeens 3-27

Use of Buffered Data Paths..........cccooiiiiiiiiiiiiiiiccceecceeeeee, 3-27

VAXBI Access to the DWBUA Internal Regxsters civaireeseiesenrornearersssnnd 3-28

Data Lengthccooovniiiiiiiiiieinnee ceeesanesssieeersaresirenssirbrenesnnssennnesesnnressnnasersaed 3-28

IRCI/UWMCI Commands. cvvereeneerannns Cvevevashises ivveassiviirsesesensssenneees crasnssernreninnt 3-28

UNIBUS DATIP veeessesneneessesnanassenntiasesiiatisassnninsisrissestnasssraransessrnnress . 3-28

Hung UNIBUS ...ttt csssesesssesssasssnesssessssesssssssesnsesseenss 3728
VAXBI Bus Error ..o, ceceseisssiabrsreararsessersessnnrsnsansaas e 3-28

UNIBUS DeViCeScococunrrecnrreecrrreeeeveeee eeseseirissrinsanns eeerrreennte e e e e 3-28

Access to Nonexistent chxsters .. 3-29

FUNCTIONAL DESCRIPTION

INTRODUCTION ...t eneee e ceeeerrreseseraerresreresessrsesessaenessssraessannes&= 1

BLOCK DIAGRAM........ eeeeeeeeeessaeeeennaaeeertaeeaasaeeanraas eeerereeeeeesraeeeeerarnaeeseerrreenanns 4-1

TRANSACTIONS................... ceeeeernrreeeernrraeens cevevessturiessiitiieridadusinensesnrasaessrssasaansnbens 4-4

VAXBI-to-DWBUA Transactmns veettreeestreeeseenecesesasessreressnnrbestone 4-4

DWBUA Responses to VAXBMO-DWBUA Tmnsacuons 4-4
VAXBI-to-DWBUA Commands......... OO URORIPUUPPRIRUPPPRR- S

Example: VAXBI WRITE to a UN!BUS Map chxster ereeerssorais 4-6
VAXBI-to-UNIBUS Transactionsccoccevevueveeiuermieereeneerseeeseesensernseseenens ... 4-7

DWBUA Responses to VAXBI»!G—UN!BUS Transactions.................. e 47

VAXBI-to-UNIBUS Commands..........cccccervieerieniiiiineececcnieee e 4-10

Example: VAXBI READ of UNIBUS Data 4-12
UNIBUS-10-VAXBI TTanSactionscccoeeveueemrverersererensesesessssssesensesesesseseses 4-14

DWBUA Responses to UNIBUS-WVAXBI Transactions..........c..c....... 4-14
UNIBUS-to-VAXBI Commands Through the Direct Data Path........... 4-16
Example: DATO(B) Using the Direct Data Path...................ccocie. 4-18

UNIBUS-to-VAXBI Commands Through a Buffered Data Path.......... 4-20

v

4.3.3.5 Example: DATO Using a Buffered Data Path.........cccccocoveiiiniicninnene. 4-22

4.3.3.6 Example: DATI Using a Buffered Daza th: 4-24

4.4 REPRESENTATWE TIMING DIAGRA};;’ L vevvereeraesnessensenss 225

APPENDIX A DWBUA-SUPPORTED UNIBUS DEVICES

APPENDIX B GLOSSARY

APPENDIX C SELF~TEST MlCRODlAGNOSTIC TESTS

~ APPENDIX D

E.l VAXBI-TO-UNIBUS TRANSACTIONS........cocccrrrmrrren BN sK
E.l.]l Quadword and Octawmd Transfers E-1
E.1.2 BIIC Error EVENT Codes..... wsisasnes '

E.1.3 Mask Values........ccoeeevneenenee teessuesenssestessaressaesanssesesasesatessatasaasssstss ovesin
- E.14 Nonexistent UNIBUS AGATESS ...voveeneecvnsisesssssessssessssssssssssssssssssassssssssssssssressss E-2

~ E.LS Invalid VAXBI Command........ ageranirens ivdasarissenes E-2
E.L6 lmproper Use ofa D UA Remstcr e sion

E.2.1 VAXBI Errm' in UN! nitiated Transfer
E.2.2 megal Map Emms...........(iasry

APPENDIX F UNIBUS EXERCISER TERMINATOR

F.1 UNIBUS EXERCISER TERMINATOR DESCRIPTIONccociiiiniiininiciniennens F-1
F.2 UNIBUS EXERCISER TERMINATOR REGISTERS ...t F-1
F.2.1 Control Register FOrmatcccoceiiiiiiininininisccsnieee reeerreeeernseserrasennns F-1
F.2.2 Control Register Bit Descriptio , F-2
F.3 NPR DATA TRANSFERS.....cooiiiennreeiiins st F-3
F.3.1 UET WRITE .oooeeeeeete e rneseeesesesise e s s ss sttt ssasansaaassnsasasassssasasansnsscssasoes F-3
F.3.2 UET READieirriirnneenenecnecaneenseeeeesssesssessaessssessassastesaressanestessasesants F-3
F.4 BR INTERRUPTS ..o tieiitereicecriissanaes sseses st s ss st b st s s F-3

APPENDIX H REGISTER INITIAL STATES

APPENDIX1 DATA PATH OPERATION

*

*

*

*

APPENDIX J PORT LOCK, RETRY, AND INTERRUPT MECHANISMS

| DIRECT DATA PATH
2 BUFFERED DATA PATH serisiesrsesansessosenssrsernessnniae I-2
2.1 DefiNItioNScoeveeveerierenneienrarcennseene reeeresessssensersesrnesanes Ceeeessseresssssanesnnnane I-3

2.2 BYTE OFFSET Bit Clear vere ceresasnanens i

2.3 BYTE OFFSET Bit Set... ETUTS TN RN OIS C AT < ARACS SRR SRS .1 LA I I-4

2.4 Examplescccocvecenrcencnnnsnncanencns ceersseerasessanenns e —————————— I-6

APPENDIX K MSYN-SSYN TIME INTERVALS

APPENDIX L DWBUA PARITY CHECKING

J«l PORI LmK MECHANISM uuGRBRBEBESEIRONN ORI NN SR N RN B RN AR jfll

J.2 RETRY MECHANISM ... riiiiiiiieeceniienreentsseeeseceesssssssssssssssssssssossssssnsssssnanssasseses

J.3 UNIBUS INTERRUPTS.......... ceannes . SRR

J.3.1 Interrupt/IDENT &querwc cereereereneeneesenes reavessietasiossasnmainainn SEIN "

J.3.2 Passive RelB ASSIVE I CICASE.. uueniiatniareccnssorercoassnssssnsssssesssesssesssssessssssssssesssssssssosssansasnssessnnsass

r
r
r
r
c
e
r
r l PARITY CHECKING,,---,-, O T S IS s SO SUUUNE.30 L-l

2 INTERNAL RAM

3 "PARITY ERRORS.........cociviiieninsersssissssssassscssssssscssessssssasssssssssssssassssssssssssassasassnsssnss
3.1 Parity Errors on UNIBUS Mup Remtm cossasessssserstssasannminyat
3.2 Parity Errors on BDP Buffers.................... - cereeressesnesnennsneerenssL2
3.3 Parity Errors on Vector Registers... RS - costaesssasassnsonsarsissine ‘
3.4 Parity Errors on DWBUA Internal Reaisters ...
4 PARITY LOGIC TESTINGcootivierenrnennnrennsssesssensassssssssasasssssassssssasssssosassasssssase

INDEX

vi

. Figure No. Page

-l Typical ,,,,,,,,, rressersissencessuaves 1-1

. - 2-1 DWBUA ST SO TP PRSI INRISIRIID 2-1
- 2-2 DWBU. igurati ‘ e i ivnsiossasisnssesssaissansons 2-2
23 M7166 Paddlmmd \mm UN!N {f,S Cahlcs,.,....m,.,m,....,. T L0 verereeesesssrennes 23

2-4 UNIBUS Backplane....... : e el varenesusasensasiansrasel 2-4
2-5 VAXBI Transition Hcadcr lmmllatmn i vvesebeisirasitashiistaiaitiessensssnenereustrans vesontoasensnio .2-5

2-6 UNIBUS Cable Connections........... sersiistesarssseesnsanssesnssrasesbesssenssasen 2-6
2-7 T1010 MOQUIE ...ocneverrereiraecscsisncsnesassesnssssnsscsnene ceereenneerenane ceeveesrerreesaenansas 2-7

2-8 Troubleshooting Flow cxsiviosite Viebisieinasuessassinsiiisasestisasantasesns creeeen 2713
3-1 System Address Space Dusmbutwn Ciesessesseuestssstasentsssseessnnssastsessstesasetsrneesanesssessesass 3-1
32 System 1/0 Space LT vesvedbeisrerbennssbesterasurantassensansiren reeevennes 32
3-3 DWBUA Node Space and Wmdew Spam. ceesreesereeeaaennaesssssnne veenreenas veeerreeneesrsaesaes 3-3
34 DWBUAAddress Space A el ot B HE e samarssnnssossrassnsares 3-4
35 Error lmm‘rupt Cammi gnpstar,m,.*.;,ym T B reeesnveseesnessessesnnessanse 371

3-6 'lmmumDestin REGISIETooccnrirreeisansranss L liiioenesansasnsossnsesansens .3-8

37 ddress i s e IE L E T saristnssassserperranss 3-10
3-8 Endmg Addmss R@mfim e o iosniiabionsisisininisagsorsosarnsasaassassssssse 321|

39 CT CONLIOl REGISIET.. ...ooviveuiieesiuieisirnssssnnassesssisssssssassnanasssssssssessassessasssstasssssssnenss 3-12
310 Uw' Interface Interrupt C ,mml Regis Wr esiiivesoarerasnusiianssnsves 3-13

3-11 General Purpose REGISIET D........ccociiieminmuciiimininsamsssnnesssscnsonssassasiassnnisassssssessissens .3-14
3-12 Receive Console Data Re z‘»;fm ; e aap e ceeeesrnreeesraeeenes 3-15
313 DWBUA Control and Status Regi m (oo iliviiihbsasinsisinsnivensonsinnsneses 3-16
3-14 Vccwr Offset Register......... WORE & R MOAR cvvesersnsssenasasssnsees 3-18
3-15 ,UNIIUS Address Re L TR I 3-19
3-16 ed Ac | r.. Ay ik wesionfobusanessnssssinnsranereehe 3-20

- 3-17 saesrsrivistnismsants 3-21
348 Data Path Control and Status REGIICT ...covrrsmrr s 3°22

: 3~20 JN viap R Rl ciiiis cessssesssnssnssassensesusaneeny evidossesssssencsansasnsenases 3"“23
32 tiaBioation SHELE DEAGERI ...ci.res.ecsrmesssssssimssrisss TSRO 3-26

- 4] o ck Dhagram Assashis bbb i visadaseseussetesnsarasronrsavess 4-1
42 VAXBI WRITE to a UNIBUS Map Register FIOW LNATAM...ocoovvvvvocscssessreneeeees .. 4-6
43 VAXBI READ of UNIBUS Data Flow DIagram.......cccostsusmeccsnsncnsnssensnnecs veerreenes .4-12
44 DATO(B) Using the Direct Data Path FloW INABIAMcooereemmmscsessemsssssenesissreneens 4-18
45 | veserevessensnss 4-22
4-6 inga B J enetusirresenssiesnasernings 4-24
47 » VA)CII~wUNl”fi WRITE Timing Diagram... rhopsnss ressearsassnsenaeenees 4-26
48 VAxmwm-uwmus READ Timing Diagram RA 4-27

- 49 'DATO(B) Through a Buffered Data Path Tin BEIAM....oucucneninmenenenrneneneicnenes 4-28
- 4-10 DATI ThroughBDP with Autopurge Timing. e ens i ese s resssensaintonsasstart 4-29

- 4-1] DATI Through BDP v s iarinaee ceeeeereeeneeeneeeras 4-30

. -~ F1 Bt UET CammlRegiste eiedniigh eensenesasss st F-1

1-2 DATI Wlth UNIBUS Addess Bit <01> Set....... reevesiosetseens sasess e veeeeseresesesenserans I-2

: I-3 BDIBUF and UDIBUFFm ,,,,,,,,,,,,,, ceveveueresenstereneaenanasensaees . B
I-4 DATO(B) Through BDP, BYTE0 SET Clear, Startmg at Octaword

Boundary.......cccceneeennianiennnees teresessusseessesnsesessstassesassansetsessnsaasssste 1-6

I-5 DATOB Through BDP, BYTE OFFSET Clear, Smmng at Byte 8....coceiiirnennnene I-7

vii

Figure No.

I-6

I-7

J-1

J-2

- DWBUA monses to UNIBUS-to-vAxm mmu N * o

Tme Page

DATO(B) Through BDP, BYTE OFFSET Clear, LWAEN Sct.‘., I-7
DATO Through BDP, BYTE OFFSET Set... . veerrenseeseesnenses 18
DATO Through BDP, BYTE OFFSET and LWAEN Sct veesrerennenseasseensesessesassansacso8
IDENT Flow Diagramccccceuvcrivirnneernieresnsssnesnsasnene, rervessneesseeesanessasesananss J73

Interrupt/IDENT Timing Dmmm veesrveresaanenes J-5

TABLES

Title Page

DWBUA Power Requirements... : b idabiosensasnesarsonsasassinesne 1-2

-DWBUA Current Rmmremcms i veeessnneesrensenane 192

DWBUA Components- UNIBUS lmmlwdin BABZ«»AC/AD BOXcvvvreverrereeesssnnns 2-2
DWBUA Components- UNIBUS Installedin BAH] - 1 S 2
Macrodiagnostic Program Sections... ' . veesnesnnrernesrasases 229
‘Tools and Test Equipment for Mamtcnancc Ptmdum vreerererersaeesnsessneeesses 279

Symptoms and Possible Causes....... PR N————— 3 | |

Multiple VAXBI Base Addresses.. widaihi ki cessseesaessassssnsssanssssacsses 211
UNIBUS Power....... — . i GidiTinnb s he iR sbim s e eisennsssesarressdbin) 2-16

UNIBUS Quiescent Levels................ FRRARIPRN R L1 13 aa—— 7} {
Register Bit Characteristics.. esseraeesessadeinssbbbisrtsonishiviniasiisuisiadonssrnserersassansssasinsies 370
Microdiagnostic Register Addresses. ARSIFE PRI/ TR—YLy
Data Path Control and Status Rmmcrw AR I N S SR W Ly ¥ .
DWBUA Block Dwgmm Descriptions | vecsserressnssnssrasensens G220
DWBUA Responses to VAXBMo-DWBUA Tmmactwm esesnessnensssssnsnressesnnsans ol
VAXBM@«-D‘WBUA Commands... veestsnvosvassiibiunt

- Bus Masters and Slaves for VAXBIM-UNIBUS Tm‘ ctions
DWBUA Responses to VAXBM@-UNIBUS Transactions

VAXBI-to-UNIBUS Commands.. ' eabisnddiny

Bus Masters and Slam for UNIE US—to-VAXBlTransactions

) Sclfmet Mt

| ‘erodmgnmuc Tests ik sisioadbilarbtommns .
DWBUA Responses to B“C EVENT Codefi.,.;.;.;....' SEUPL AT RISS -1 |
UNIBUS Exerciser Terminator Remstm..... soidbboisbonbiiainsasssassasssssansansensisosasFo
Transfer Command Bits......... si it i dddiiniesseosssnsesessessasseifipains F o2
Node Space and WindowSpwcAddmm Vi b iedesiaiabesssennsssssessasansssiadesis =1
Register Initial Statescccoeevviiiiciiicnnninns Shbineedhiiibiadnes resessreeessssessrnssansssaanssees H=1
MSYN %YN ltme lntma!fi *Q‘Ufl‘fl“fi&fifiQ‘UQ*WQ*“lfifikfl‘l.‘.fi&fl*l‘fi“fl"*fi‘* fi K”Z

viil

cations, m&d mtmctmm fm' mstallmg and

Rewnr-sa ,| mary of thc VAXB! bus anda description o 3]

NOTE: For ease of use and for reader comprehension, the DWBUA adapter (VAXBI to UNIBUS

Adapter) will be referred to as DWBUA throughout thm dm; nent. The VAXBI bus will be referred to
‘as VAXBI, and UNIBUS bus will be referred to as UNIBUS.

high-speed synchronous
access to any UNIBUS

1.

2. Througha Buffcrcd Data Path (BDP); the DWBUA internall buffm as much as one octaword
(16 bytes) M data per tmmfm' to maxi m thc VA | dwidth.

All VAXBI-initiated tmnwctmm; transfer : h U NIBUS-initiated transac-

tions can transfer damthrough either the L ta Path or a |

port failures to the VAXBI

MKVES-0711

1-1

1.2 SPECIFICATIONS

1.2.1 Bus Loading

The DWBUA is 0.5 dc unit load on the UNIBUS.

" The DWBUA is 3.5 ac unit load on the UNIBUS.

(14Table 1-1 DWBUA Power Requirements i

| B PR 'POWER (Watts) |

~12.00 <0012 003 054 06

1.2.3 Current Requirements

VOLTAGE __Maximum :
5.00 13 8.1 107
-12.00 <0.001 0.003 0045 0048

1.3 SUPPORTED UNIBUS DEVICES |

A subset of the available UNIBUS devices is supported in a configuration with a DWBUA. See Appendix
A for details.

. DWBUA MODULE

UET MODULE

TRANSITION HEADER

Table 2-1 DWBUA Componeats - UNIBUS Installed in BA32-AC/AD Box

Component | Qty Part Number Location

DWBUA module 1 T1010 VAXBI cardcage

JNIBUS paddiecard 1 M7166 UNIBUS cardcage

Transition header 1 12-22246-01 VAXBI cardcage

UNIBUS cables “ 1 17-00631-01 M7166 to transition header

at " Part Number Location

DWBUA module L TIoI ~ VAXBI cardoage

UET module e M9313 UNIBUS cardcage

UNIBUS paddlecard - M7166 UNIBUS cardcage

Transition header 1 122224601 VAXBI cardcage

UNIBUS cables 2 17400632-04 M7166 to transition header

DEC STD 123 t |

power bus cable 1 - 17-00931-03 Processor cabinet to UNIBUS cabinet

The DWBUA components are put together in the configuration shown in Figure 2-2.

1222246 TRANSITION HEADER

17-00632 CABLES j M7166 l

M8313

MKVES-2674

2-2

M7166 Paddlecard
wi

2. Insert the M7166 paddlecard into slot 1, scgments A and B, of the UNIBUS backplane (Fi ure

3. Insert the M9313 UET module \inm the last slot, segments A and B, of the UNIBUS backplane
(Figure 2-4). HIEn AR ol betssrey shvse sitwidter nd

MKV8S5-0763

Figure 2-4 UNIBUS Backplane

2-4

s,

MKVE8S-0714

eader InstallationFigure 2-5 VAXBI Transition Hi

6. Refer to Figure 2-6 and connect the f@“f; UNIBUS cablcs 0 the transitian header assembly.

J1 - segment E (left)

J2 - segment E (right)
J3 - segment D (left)
J4 - segment D (right)

The connectors are keyed.

igure 2.6 UNIBUS Cable Connections

2-6

2.3 TEST

231 Self-Test Microdiagnostic Program

NOT E -

A UNIBUS Exmiser Termflmtm- (JET) modul fi

A aud B.. of tlle UN]BUS bm’kphm The DWBUA

The DWBUA sclf~test microdiagnostic pmgram runs at powerup or when the VAXBI Controland Status
Register RESTART bit (BICSR <10>)is set. Successful completion of the self-testis indicated by the

lighting of the yellow LED on the T1010 module. The location of the LEDis shownin Figure 2-7.

The DWBUA self-test mwrodzagnmtac consists of 18 separate tests, which are describedin Appendix C.

2.3.2 Macmdiamostic ngmm ‘

The macrodiagnostic program for the DW BUA isEVCBB.Itis a level 3 ¢ mgnwnc: (it runs standalone

under the VAX dmgn tic ”supcrvusor) and it nmwm faflum t»thc fa:lmg mnctmn

Descriptions of the mam' iagnostic tests can be foundin Ap {idxx D.

To run EVCBB, do thefallowmg.

~ NOTE

Opemwr input is underlined.

I. Run the diag mtic@siipemsor.

2. Attach the DWBUA:

DS> ATTACH !n:i_fi,i:f{_; BUA HUB DWn node br <RET>

ofthe DWBUA. “n”is a number betwwnfla 3.DWnis themtm

“node”is the “VAXM rmdc ID, expressed as a decimal numbcr (0 m 15).

Refer to theappropriate system user guide to deter-
mine the node ID number.

“br” is the UNIBUS BR intcrrupt level, a number between 4 and 7. The recommended value
is 7.

3. Run the macrodiagnostic:

DS> RUN EVCBB[/SECTION:xxx]<RET>

Inclusion of the SECTION name (“‘xxxTM in the abovev command) is optional. If no SECTION
name is included, the DEFAULT section is run. The SECTION names and the tests they
include are listed in Table 2-3.

2-8

T m m Cmmmwc mainte-

UNIBUS. It does,

Scction 23 amd Awflndm o fm' information m'thci DWBUA adapter’

"Follow the steps in the order listed.

1. START - Is the DWBUA malfunctioning?

The DWBUA may be suspect if: B |

a. The system cannot be booted from a UNIBUS dcv’ice.' |

b. No UNIBUS devices can be used. ’

c. The system console indicates that the node number corrcspondmg to DWBUA adapter’s

node ID is malfunctioning. |

d anemes: 'i?*v& ermrs o"ur ‘whenusms any UNI;US dcwce i

e. The system cmshcs

N THE SYSTEM- Wait 30 seconds for the stored power to drain off.

3. OPEN THE CABINET Open the system cabmet S0 that lhe ycllaw hghts on the modulas can

4. POWER UP THE SYST EM This starts the DWBUA sclfwwst

5. CHECK THE LIGHT ON THE T1010 MODULE- If the yaflow lm ‘?M on t!m ‘rmm modulc

is lit, the DWBUA has passed self-test. The problemis most ltkcly not in the T1010 module,

UNIBUS cabling, or the terminator card (UET). If the lightis OFF, go to Step 7.

6. RUNEVCBB-Ift systam is opemmmi run the system level diagnostic, EVCBB, to further

verify that the problem is not in the DWBUA. Refer to the macmdmgnmuc printout and
documentation to isolate the fmlmg FRU if this diagnostic should fail.

If one of thc sympwms listedin Stcp exists, but the DWBUA self~tem pasm the problemis

probably somewhere other than in the DWBUA. Refer to Table 2-5for sug
troubleshom

L] - PRm wft e o fi

Exmmve errors when usmz any devm on the UNIBUS . Dcvwcs on the bus or syswmuwxde pmblems

System crashes - "*"Systemwftware

2-10

gested areas to .

bb+00) for each

w the DWBUA

es areas described.

Address and contents returned. Node 0

18 mt a D‘WflUA

This is the base address of node 1.

Node 1 is not a DWBUA.

This is the base address of node 6.

Node 6 is a DWBUA.

1.

EXAMINE GPRO - Use the console to examine GPRO at the addre:

" FINDGPRO ADDRESS - bb + FO

previous step. 5108 dowct Defied 5

Example 2-2: Findmg the Address of cpno o

Node 1 GPRO= 20002000 + FO= 200020F0

Node 2 GPRO= 20004000 + FO= 200040F0

; Node 3GF’Rg20006000 + FO 200060F0

ess calculated in the last

step. GPRO bits <31:16> contain the test number that failed in the self-test. Refer to Appendix
C for a description of the self-test mncrodmgnmuc tests.

leure M’ the DW BUA self-»test can mmt acces-

sing of the DWBUA internal registers. To access

these registers to explore the cause of the self-test

failure, set the BCICSR (bb+28) bit <08>

(UCSREN). ~'

ISOLATE FRU - Use the flowchart in Figure 2-8 to isolate the FRU at fault.

"NOTES

1. The T1010 module is suspect throughout this
troubleshooting procedure since it is the engine

running the test.

cedure to verify the fix.

3. When replacing a component, follow the
removal and replacement procedures in the

" installation manual for the system being used.

2-12

| READ GPrO|

"GPRO= ; | me—

m': VALUE N\, YES | 1101018 8AD.
- ROM ‘ | ; .570% | RePLACE MODULE.

enp |

NO

| SUSPECT FRU:

- T1010

- M8313 |

- UNIBUS DEVICE |

| (BETWEEN THE

T1010 AND THE

~ M9313 BLOCKIN

THE BUS GRANT)

GPRO\ YES UNIBUS DEVICE
?/ (RESPONDING TO

WRONG ADDRESS)

SUSPECT FRU
- M9313

- UNIBUS

ADDRESS)

SUSPECT FRU:

- M9313

- T1010

-~ UNIBUS DEVICE [
(RESPONDING

TO WRONG

ADDRESS)

SUSPECT FRU:

- UNIBUS

YES | (ooseuniBUS|
1 casies.saD |

POWER, HUNG

BUS)

UNIBUS IS SUSPECT I 2 l

MKVES0000

Figure 2-8 Troubleshooting Flow (Sheet 1 of 3)

2-13

| VAXBI IS SUSPECT

| SUSPECT FRU:

-T1010 REPLACE T1010

~ VAXBI FIRST. IF PROBLEM

(INTERMITTENT STILL EXISTS,
VAXBI COULD [TM"] CONTINUE.
CAUSE THIS i L

ERROR)

SUSPECT FRU:

-T1010

- VAXBI

(VAXBI MAY BE

CORRUPTED. |
CHECK FOR BAD]
VAXB! TERMINATOR

NO AND FOR MULTIPLE

OR MISSING NODE

ID PLUGS.)

REMOVE ALL MODULES

IN THE VAXBI

EXCEPT THE T1010

| AND THE MODULE IN

SLOT 1.

| ISOLATE BACKWARD

. TOWARD THE MINIMUM

VAXB!I CONFIGURATION

BY REMOVING THE

VAXBI FLEXIBLE BUS

EXTENDER CABLE AND
MOVING THE VAXBI

TERMINATOR CLOSER

TO THE SECTION THAT

HOLDS THE T1010.

4

END

THE PROBLEM IS

BEYOND THE SCOPE

OF THIS PROCEDURE.

SEE VAXBI AND

SYSTEM DOCUMENTATION

FOR FURTHER TROUBLE-

|SHOOTING

MKVES-0710

Figure 2-8 Troubleshooting Flow (Sheet 2 of 3)

2-14

3 o UNIBUS IS SUSPECT

| ISOLATE UNIBUS

- JOPTIONS BY

1 REPLACING EACH

| OPTION IN TURN

|WITH A BUS GRANT

| CARD (G7273) UNTIL

'THE ERROR CONDITION

1S CLEARED OR THE

|UNIBUSIS uunommno,i

ISOLATE UNIBUS

BACKPLANE SEGMENT

BY MOVING THE UET

%“s’é:%” SEGNMENT ISOLATE UNIBUS
1 FIRST SEGMENT. | OPTIONS IN THE
| —— | | FAILED UNIBUS

SEGMENT 8Y
| REPLACING EACH

‘ OPTION IN TURN

" | WITH A BUS GRANT

CARD {G7273)

UNTIL THE ERROR IS

CLEARED OR UNIBUS

IS UNPOPULATED.

MKVES-071]

Figure 2-8 Troubleshooting Flow (Sheet 3 of 3)

2.4.3 Helpful Hints

The DWBUA self-test may not run to successful completion if the system includes VAXBI nodes that use

burst mode or that cxccsmvcly stall the VAXBI bus. The: DWBUA self-test may fail if the¢nfiguratwnis

large and has extensive VAXBl bus activity.

Try these hints if the self-test has passed but the DWBUA still does not w

listed relate to the UNlBUS

ork correctly. Most of the items

1. PROBLEM: SSYN timeout errors on UNIBUS devices.

SUGGESTED ACTION: Verify VAXBI/DWBUA node ID and arbitration mode.

‘The DWBUA must be node 0 (except systems based on BABZ*AC/AD boxes). and the

software must sct theDWBUA to fixed-high priority. Vcnfy this by reading the Device Type

Register(bb+00) for node 0 to ensure thm thc deviceis a DWBUA (see Appendix H). Also
b+04) for node O; the contents of <5:0> shouldread the VAxm Control and Status

be 8 (hex), fixgdwhagh arbitration.

2-15

2. PROBLEM: Flaky, intermittent operation of UNIBUS devices, involving several or all options
on the UNIBUS.

SUGGESTED ACTION: Verify the UNIBUS power and quiescent le\;cls (Tables 2-7 and 2-8).

Table 2-7 UNIBUS Power

UNIBUS DC

Voltage P.S. Ripple

Voltage Level p-p Maximum

(Volts) (Volts) (mV)

+5 +5.0 (£5%) 100

+12 +12.0 (x3%) 200

Table 2-8 UNIBUS Quiescent Levels

Quiescent Level

Line (Volts)

BG +.45 (x.35)
NPG

ACLO +4.9 (+.35)

DC LO

BBSY +3.4 (.2)

All others +3.4 (£.2)

SUGGESTED ACTION: Check if the configuration is correct.

a. Verify that the DWBUA is node O on the VAXBI (except systems based on
BA32-AC/AD boxes). | |

Verify that all NPR grant jumper wires (CAl to CBI) have been removed from the

UNIBUS backplane on every slot that has an NPR option.

Check that every empty UNIBUS slot contains a grant continuity card.

Two different grant continuity cards can be used. The first, G727A, goes into the

UNIBUS backplane slot D and provides grant continuity for the four interrupts (BR4 -

BR7) but not for the NPR. When the G727A grant card is used in the empty slots, a

jumper (CA1 to CB1) is needed for NPR grants. The second grant card, G7273, provides

grant continuity for both BR and NPR grants, and is much easier to install.

Verify that the vector and address jumpers are correct for each option and that no two

options are selected for the same address or vector.

Use the PAULI program to verify the configuration.

2-16

SUGGESTED ACTION: Verify that the configuration is supported.

Check that no untested devices or unsupported devices are on the bus

SUGGESTED ACTION: Look for bus loading problems on large UNIBUS configurations.

Calculate the ac and dc loading of the configuration. Most modules represent 1 dc load and | ac

load. A UNIBUS (without a repeater) can support 20 dc loads and 20 ac loads. (Refer to the
PDP-11 Bus Handboak for details.)

PROBLEM: One option does not work or the entire UNIBUS fails when the option is installed.

SUGGESTED ACTION: Verify that the option is supported on this UNIBUS.

a. Check the RM document to ensure that the revisions are correct for the hardware and

software.

b. If the option works but does not work correctly on the full system, run the option on a

shortened UNIBUS.

c. Check that the jumper wire from CAl1 to CB1 has been removed from the UNIBUS slot
in which this option is being installed.

2-17

O

Iy

A

Part |l

Technical Description

—

-

sy

g
R

PROGRAMMING

3.1 SYSTEM ADDRESS SPACE

The 1024 megabyte system address space on the VAXBI is divided into memory space (from address 0000

0000 through 1FFF FFFF hexadecimal) and 1/0 space (from address 2000 0000 through 3FFF FFFF

hexadecimal). Physical memory is assigned addresses starting at 0000 0000. Most 1/0 space is reserved

for special uses. | = |

Figure 3-1 shows the system address space distribution.

0000 0000

Space

512 M8

1FFF FFFF

* 2000 0000
~ W/O Space |

VAXBI 0

21FF FFFF

2200 0000
I/0 Space

23FF FFFF

/O Space 2400 0000

| 25FF FFFF

1/0 Space 26000
VAXBI 3 .

27FF FFFF

2800 0000

Reserved

| 3FFF FFFF

MKVE5-0829

Figure 3-1 System Address Space

Distribution

3.1.2 System I/O Space

The 512 megabyte system 1/O space is divided into several dedicated sections, as shown in Figure 3-2.

The locations of the DWBUA adapter’s node space and window space depend on the DWBUA adapter’s
assigned node ID. If, for example, the DWBUA is assigned node 1, its node space and window space are

located as shown in Figure 3-3. Appendix G lists the starting and ending addresses of the node space and

window space for each node ID.

2000 0000

NODE0

8KB
2000 2000

NODE 1 T
8KB

NODE SPACE -

®

®

2001 E00O

NODE 16

8KE w
2002 0000

RESERVED

128KB
2004 0000

NODE PRIVATE

SPACE 3.76MB
2040 0000

NODE0

256KB
2044 0000

'NODE1

256KB

WINDOW SPACE -

L ®

2 207C 0000
NODE 15

256KB 2080

RESERVED 24MB 0000
2200 0000

RESERVED FOR MULTIPLE

VAXBI SYSTEMS 48OMB | ____

MKXVES0004

Figure 3-2 System I/O Space

/f DWBUA NODE SPACE (8KB)

NODE O (2000 2000- 2000 3FFF)
- CONTAINS:

NODE _NODE1 VAXB! REQUIRED REGISTERS

SPACE . X BIIC SPECIFIC DEVICE
| N REGISTERS

et \] DWBUA INTERNAL REGISTERS |

* NoDE'S |
MsfiwwB

Nam mwm'e

"] owsua WINDOW SPACE (256KB)

|(2044 0000 - 2047 FFFF)

| CONTAINS:

WINDOW UNIBUS DEVICE REGISTERS

SPACE " UNIBUS MEMORY SPACE

T RESERVED FOR MULTIPLE |
VAXBI SYSTEMS

| MK V850693

3.2 DWBUA ADDRESS S
The DWBUA adamcrs node smcc is divided into three sets of registers: VAXBI mqmred registers, BIIC
specific device registers, and DWBUA registers. Figure 3-4 is a map of the DWBUA address space.

NOTE

' The nddms of each register is noted as “bk

ollowing procedure to calculate the lmm
“bb”

1. Determine the DWBUA adapter’s node ID.
This is a hexadecimal number between 0 and F.

2. Solve for ‘?bb” in the following equation:

bb = (2000 0000,¢) + ([2000,¢) X [node ID)¢))

3-3

31 00

bb+00 DEVICE TYPE REGISTER VAXE!

bb+04 VAXB!I CONTROL AND STATUS REGISTER "REQUIRED

bb+08 BUS ERROR REGISTER REOGC':ISSS

bb+0C ERROR INTERRUPT CONTROL REGISTER |\ N giiC

bb+10 INTERRUPT DESTINATION REGISTER CHIP)

bo+14 | IPINTR MASK REGISTER

bb+18 | FORCE IPINTR/STOP DESTINATION REGISTER
bb+1C IPINTR SOURCE REGISTER

bb+20 STARTING ADDRESS REGISTER

bb+24 ENDING ADDRESS REGISTER gggcIFIC

bb+28 BCI CONTROL REGISTER DEVICE

bb+2C WRITE STATUS REGISTER | / REGISTERS

bb+30 FORCE IPINTR/STOP COMMAND REGISTER| \ ‘rene
bb+34 | | NOT USED CHIP)

bb+40 | USER INTERFACE INTERRUPT CONTROL REGISTER

bb+44 NOT USED
bb+FO

SbHFE GENERAL PURPOSE REGISTERS

bb+100 | '
NOT USED

bb+ IFC

bb+200 RECEIVE CONSOLE DATA REGISTER

bb+204
~ | NOT USED
bb+71C

MKVE50882

Figure 3-4 DWBUA Address Space (Sheet 1 of 2)

bb+720 DWBUA CONTROL AND STATUS REGISTER

bb+724 VECTOR OFFSET REGISTER
bb+728 'FAILED UNIBUS ADDRESS REGISTER

bb+72C VAXBI! FAILED ADDRESS REGISTER

bb+740 |

bb+744 RESERVED FOR USE BY
bb+74C | DIGITAL EQUIPMENT CORPORATION

bb+750 [|

bb+764

bb+768

bb+76C

bb+770 | RESERVED FOR USE BY

bb+77C DIGITAL EQUIPMENT CORPORATION

bb+780 | L

| owBuA

| INTERNAL

| REGISTERS

\ (LOCATED

[IN DWBUA

| Loaic)

DATA PATH CONTROL AND STATUS REGISTERS

NOT USED

NOT USED
bb+78C

bb+790
BUFFERED DATA PATH SPACE

NOT USED

UNIBUS MAP REGISTERS

" NOT USED

Figure 3-4 DWBUA Address Space (Sheet 2 of 2)

3.2.1 Register Bit Characteristics

The characteristics listed in Table 3-1 can apply to individual bits, to fields, or to entire registers. In the
register descriptions in the following sections, the bit characteristics are identified after the name of each
bit or field.

Bits indicated as “0” in the register diagrams are not implemented. These bits are READ-ONLY locations

that always return “0”.

Table 3-1 Register Bit Characteristics

Register Bit

Characteristic Description

DCLOC Cleared following successful completion of the DWBUA
self-test; initiated by the deassertion of BCI DC LO L

RO READ-ONLY |

R/W READ/WRITE

sC Special Case; operation defined in the detailed description

STOPC Cleared by a STOP command directed to the DWBUA

WiIC | Write | to Clear

wO WRITE-ONLY:; always reads 0

3.2.2 VAXBI Required Registers |

The VAXBI required registers are implemented in the BIIC on the DWBUA. The discussion that follows

focuses on the specific uses of these registers by the DWBUA. The state of each register following
successful completion of the DWBUA self-test is included in the discussion of that register. VAXBI
required registers that are not described here, or bits that are not included in the register descriptions, are

initialized to the state defined in Appendix H.

The DWBUA, as a VAXBI node, is required to implement a number of registers. These registers are:

Device Type Register

VAXBI Control and Status Register

Bus Error Register

Error Interrupt Control Register®

Interrupt Destination Register*e

6

o

&

O

NOTE

Registers marked with * are examined here in detail.

3-6

3.2.2.1 Error Interrupt Control Register - The Error Interrupt Control Register (bb+0C) controls the

operation of interrupts initiated by a BIIC detected bus error. The LEVEL and VECTOR fields of this
register must be initialized by the operating system. These fields are zero after successful completion of
the DWBUA self-test. Figure 3-5 is an illustration of the Error Interrupt Control Register.

31 o 25 24 23 22 212019 1615 1413 08 07 0201 00
bb+0C 1 T lol | | wevee | 0 | ~ VECTOR o o]

INTAB _ ‘ |
INTC.

SENT ‘

FORCE

MKV85.0690

Figure 3-5 Error Interrupt Control Register

INTAB " Interrupt abort This bit is set if a VAXBI INTR command sent by
<24> (WIC, DCLOC, SC) the DWBUA is aborted.

INTC Ints upt complete This bit is set when the vector for an error inter-
<23> (W1C, DCLOC, SC) rupt has been successfully transmitted, or if a

g VAXBI INTR command sent by the DWBUA has

aborted. "

SENT The DWBUA has sent the VAXBI INTR com-
<2l> mand, and it is waiting for IDENT from the

VAXBI.

FRCE When this bit is set, the DWBUA forces an inter-
<20> (R/W, DCLOC) rupt to occur regardless of the state of the Bus

Error Register (bb+08). The DWBUA sets the

FORCE bit when a DWBUA error has occurred

and the DWBUA error interrupt enable (BUAEIE)

bit is set. |

The FORCE bit is cleared upon initialization. The

operating system must clear this bit after servicing

the error interrupt.

LEVEL Level (R/W, DCLOC) The LEVEL field determines the level(s) at which
<19:16> INTR commands are transmitted under the control

of this register. Bit <16> corresponds to interrupt

level 4, bit <17> to level 5, bit <18> to level 6,

and bit <19> to level 7. The operating system

must initialize the LEVEL field.

VECTOR (R/W, DCLOC) The VECTOR field contains the vector used dur-

<13:02> | ing error interrupt sequences. It is transmitted
| when the DWBUA wins a VAXBI IDENT ARB

cycle on an IDENT transaction that matches the

conditions in the Error Interrupt Control Register.

The operating system must initialize the VECTOR

field. |

3-7

3.2.2.2 Interrupt Destination Register - The format of the Interrupt Destination Register (bb+10) is
shown in Figure 3-6. | .

3 24 23 16 15 08 07 00

bb+10 | —_ o | INTERRUPT DESTINATION |

Figure 3-6 Interrupt Destination Register

INTERRUPT (R/W, DCLOC) This field determines which VAXBI nodes receive
DESTINATION INTR commands sent by the DWBUA. Each bit
<15:00> | in the INTERRUPT DESTINATION field corre-

sponds to one VAXBI node. Bit O corresponds to

node 0, bit 1 to node 1, and so on. During an

IDENT command, the decoded master’s ID

(VAXBI node number) is compared to the corre-

sponding bit in the INTERRUPT DESTINATION

field. The DWBUA adapter’s BIIC responds to the

IDENT if that corresponding bit is-set and if the

level transmitted in the IDENT command matches

the level of an interrupt pending in the BIIC.

The DWBUA self-test sets the bit in the INTER-

RUPT DESTINATION field which corresponds to

the DWBUA adapter’s VAXBI node ID. The oper-

ating system must change this field to reflect the

node ID of the interrupt-handler node. If an inter-

rupt occurs before the INTERRUPT DESTINA-

TION field is set by the operating system, the

INTAB bit in one of two registers is set. The regis-

ter in which the INTAB bit is set depends on the

type of interrupt: interrupt - User Interface Inter-

rupt Control Register (bb+40); error interrupt -

Error Interrupt Control Register (bb+0C).

3-8

‘ ~ il am lmplmmmwdin the BHC on the DWBUA. Thc dmumcm that

follaws focum on the swctfic uses of these registers by theDWBUA. The state of eachregister following
su@mful complatwn @f thc DWBUA self-test is includedin the dmuman of that wgwtcr BIIC specific
devi mms that are not descr ibed hcrc or bits that are not included in the register dmnpuons, are

The BIIC specific device registers control DWBUA-specific functions of the BIIC. The BIIC specific
device registers are:

IPINTR Mask Regmcr
R/STOP Destination Register

Force lPlNTROP Command Register
User Interface Interrupt Control Register*
General Purpose Registers*®

NOTE

Registers marked with * are examined here in detail.

3-9

3.2.3.1 Starting Address Register - The Starting Address Register (bb+20) defines the lower limit of
the DWBUA adapter’s window space. Figure 3-7 is the Starting Address Register format.

31 _ 24 23 1615 08 07 | 00

bb+20 STARTING ADDRESS

MKVES-0783

Figure 3-7 Starting Address Register

STARTING ADDRESS This field determines bits <29:18> of the lowest
<31:00> | UNIBUS address. The DWBUA self-test leaves in

this register the lower limit of the DWBUA adapt-

er’s window space, based on the node ID of the

DWBUA. The range is 2040 0000 to 207C 0000
(bits <17:0> must be zero). |

3-10

DWBUA adapter’sthe upper limit of

format.

3 24 23 1615 08 07 00

bb+24 | | L ~ ENDING ADDRESS |

MKV85-0784

Figure 3-8 Ending Address Register

ENDING ADDRESS This field defines bits <29:18> of the highest
<31:00> | UNIBUS address. The DWBUA self-test leaves in

this register the (upper limit + 1) of the DWBUA

adapter’s window space, based on the node ID of

the DWBUA. The range is 2044 0000 to 2080

D000 (bits <17:0> must be zero).

3-11

3.2.3.3 BCI Control Register - The BCI Control Register (bb+28) format is shown in Figure 3-9.

31 24 23 18 17 16 151413 12 11 10 09 08 07 06 05 04 03 02 00

bb+28 | 0 | 0 [TT T T TTTTTITTITITTo]
BURSTEN I |
INPINTR/STOP FORCE

MSEN

BOCSTEN

STOPEN

RESEN

INDENTEN

INVALEN

WINVALEN

UCSREN—

BICSREN

INTREN

IPINTREN

PNXTEN

RTOEVEN

MKVEs0888

Figure 3-9 BCI Control Register

STOPEN STOP Enable When set, this bit enables the DWBUA to respond
<l3> (R/W, DCLOC) to a VAXBI STOP command directed to it. The

DWBUA adapter’s BIIC asserts BCI SEL L and

the appropriate BCI SC <2:0> code.

IDENTEN IDENT Enable When set, this bit enables the DWBUA to acquire

<ll> (R/W, DCLOC) interrupt vectors from UNIBUS devices when a
processor issues an IDENT. The DWBUA adapt-

er’s BIIC asserts BCI SEL L and the appropriate

BCI SC <2:0> code. This bit affects only the out-

put of SEL and the IDENT SC code.

UCSREN User CSR Space When this bit is set, the DWBUA can respond to a

<08> Enable. VAXBI READ or WRITE command with an

(R/W, DCLOC) " address in DWBUA CSR space. The DWBUA
adapter’s BIIC asserts BCl SEL L and the appro-

priate BCl SC <2:0> code.

NOTE

The DWBUA sets the above three bits upon success-

ful completion of its self-test. All other bits in this

register should be clear.

3-12

3.2.3.4 UserInte nterrupt Control Register -~ Figure 3-10 is the User Interface Interrupt Control

Register (bb+40) fmnat

31 28 27 24 23{’ 20 9 i 10 15 14 13 08 07 02 00

vo+so| INTAB | wtC | __FORC lo] VECTOR “Too]

MKVE50687

sxVECTOR

Figure 3-10 User Interface Interrupt Control Register

FORCE Force | This field must be zero.
<19:16> |

EX VECTOR =xternal vector This bit is set by the DWBUA self-test, and it

<|5> S must remain set. It enables the DWBUA to use the
external vector for transfer of UNIBUS interrupt

vectors which have the concatenated vector offset

applied. |

3-13

3.2.3.5 General Purpose Registers— The only General Purpose Register (GPR) uwd by the DWBUAis
GPRO (bb+FO0). Figure 3-11 shows the format of GPRO.

31 | 2423 | 1815 . 01 00

bb+FO | 0 | IEN | ' 0 | uspur|
MKVES-0086

Figure 3-11 General Purpose Register 0

IEN Internal Error This field is a copy of the IEN field of the
<23:16> Number BUACSR (bb+720). This field contains the self-

(RO) test error number if the DWBUA self-test fails anc
if the DWBUA functions sufficiently to write to

this register. (See Appendix C.) This field is clear

if the DWBUA self-test passes.

UBPUP UNIBUS Power Up This bit is set when the UNIBUS power is ON. It
<00> (RO) is cleared by the DWBUA when UNIBUS power

goes down. This bit is set upon successful comple-

tion of the DWBUA self-test. (The DWBUA fails

self-test if the UNIBUS is not powered up.)

General Purpose Registers 1-3 are not used by the DWBUA. They are cleared by the BIIC self-test.

3-14

" mmm' by thc D’ * BUA The DWBUA responds mth N ?0 ACK to any access to this
rcgmcr Auy VAXBI node that might access this register should have a way to detect this timeout. Figure

2 shows the format of the Receive Console Data Register.

3 24 23 1615 0807 | 00

bb+200 | RECEIVE CONSOLE DATA |

MKVES5-1807

Figure 3-12 Reccive Console Data Register

3-15

3.2.42 DWBUA Control and Status Register - The DWBUA Control and Status Register (BUACSR;
bb+720) contains error and other operating information about the DWBUA.. Figure 3-13 shows the

format of the DWBUA Control and Status Register.

When an error occurs during DWBUA operation, the VAXBI is interrupted if interrupts are enabled.

Error interrupts are sent to the VAXBI in two ways. | |

e The BIIC sends an error interrupt to the VAXBI if an error occurs during a VAXBI transaction.

e The FORCE bit in the Error Interrupt Control Register (bb+0C) is set by the DWBUA if an
error occurs either on the DWBUA or during a UNIBUS operation, and if error interrupts are

enabled.

31 30292827 26252423 212019 181716 15 14 | 08 07 00

w720l 1 o1 1 1 1 1] o | 1ol 111 0 | |

AR — l
BIF |

USSTO

UIE

IMR

BUABDP

BUAEIE

UPI

REGOMP

ONE

IEN

Figure 3-13 DWBUA Control and Status Register

ERR | Error (RO, DCLOC) This bit is a logical “OR” of all error bits in the
<3l> BUACSR.

BIF VAXBI Failure This bit is set if a DWBUA- initiated VAXBI
<28> (W1C, DCLOC) transaction fails. A VAXBI failure has occurred if

the DWBUA receives any of the following in

response to one of its VAXBI commands:

- NO ACK

- Illegal confirmation code

- Read data substitute status code

See Table E-1 for a list of BIIC EVENT codes

that cause the BIF bit to set.

3-16

IMR

- BADBDP

<20>

UPI
<\7>

REGDMP
<|6>

ONE
<]5>

IEN

<07:00>

(W1C, DCLOC)

UNIBUS Interlock

Invalid Map

Register

(WIC, DCLOC)

Mnuffemd Data

(Wic" DCLOC)
DWBUA Error

Interrupt Enable

(R/W, DCLOC)

'UNIBUS Powet

Initialization h
(WO)

Mncrodmgmsnc

Internal Error

Number

(RO)

XBl-to- UNIBUS com-

pts access to a UNIBUS address and

dm not receive SSYN within 19.2 us after asser-
tion of MSYN.

Thm Mtis set an a VAX

This bit is set if a UNIBUS DATIP command is

not immediately followed by a DATO(B) com-

mand. This happens when BBSY is dropped by a

device after the DATIP command. |

This bit is set if a UNIBUS Map Register (bb+800
- bb+FFC) which has its VALID bit clear is

accessed during a UNIBUS-to-VAXBI transaction.

This bit is set if (nonexistent) Buffered Data Path 6

or 7 is selected.

If an error occurs, the DWBUA initiates an error

interrupt on the VAXBI if this bit is set.

Writing a one to this bit causes a power-up initial-

ization on the UNIBUS.

Writing a one to this bit causes the microcode con-

trol to dump its internal registers to the

Microdiagnostic Registers (bb+730 - bb+740). A

READ of the Microdiagnostic Registers area can

then be performed to read the values.

The ONE bit is a READ-ONLY bit that should

always read one. This bit is used for error handling

by the operating system; if it reads zero, an error

has occurred.

This field contains the self-test error number if the

DWBUA self- test fails and if the DWBUA func-

tions sufficiently to write to this register. This field

is clear if the DWBUA self-test passes.

3-17

3.2.4.3 Vector Offset Register — The Vector Offset Register (VOR; bb+724) contains a 5-bit field
which is concatenated with the incoming UNIBUS vector to form the new VAXBI vector.

The Vector Offset Register format is shown in Figure 3-14.

31 14 13 09 08 | 00
bb+724 | 0 |vecToRr oFrseT] 0 |

MKVE86-0884

Figure 3-14 Vector Offset Register

VECTOR (R/W) The five bits in this field are concatenated with the

OFFSET incoming UNIBUS vector (UNIBUS bits <08:02>,
<13:09> in the range of 000 to 774) to form the new 14-bit

VAXBI vector <13:00>. The VECTOR OFFSET

field bits are READ/WRITE; they must be set by

the opcratmg system.

NOTE

Bits <31:14> and <08:00> must be zero.

3-18

| "ailed UNIBUS Address R oister - When a VAXBI-to-UNIBUS transaction results in a SSYN

timeout, the failed UNIBUS Adc egister (FUBAR; bb -728) holds the failed UNIBUS address sent
by the VAXBI master. U (IBUS address bits <17:02> are stored in FUBAR <15:00>.

The FUBAR is written only on the first occurrence of an address failure. Subsequent failures do not
modify the contents of the FUBAR until the USSTO bit of the BUACSR is cleared.

Figure 3-15 shows the format of the Failed UNIBUS Address Register.

31 | 16 15 00

bb+728 | | FAILED UNIBUS ADDRESS |

Figure 3-15 Failed UNIBUS Address Register

FAILED (RO) This field contains bits <17:02> of the first failed
UNIBUS | | UNIBUS address. Subsequent failures are not

ADDRESS recorded until the USSTO bit of the BUACSR s
<15:00> cleared.

3-19

3.2.45 VAXBI Failed Address Register - The VAXBI Failed Address Register (BIFAR; bb+72C)
holds the address of a failed DWBUA-initiated VAXBI transaction. The BIFAR is written on the first
occurrence of a VAXBI address failure only. The BIF bit of the BUACSR is set when the BIFAR is
written; subsequent failures do not modify the contents of the BIFAR until the BIF bit has been cleared.

Figure 3-16 shows the format of the VAXBI Failed Address Register.

31 24 23 16 15 08 07 00

bb+72C | VAXBI FAILED ADDRESS |
MKV85-0682

Figure 3-16 VAXBI Failed Address Register

VAXBI (RO) | This register contains the VAXBI address of the

FAILED first DWBUA- initiated failure on the VAXBI.
ADDRESS Subsequent failures are not recorded until the oper-
<31:00> | ating system clears the BIF bit in the BUACSR.

3-20

results in
diagnostic Registers

a NO ACK response

agnostic Registers (bb+730 - bb+740) receive the
Paths. This information is received from the

'REGDMP bit in the BUACSR.

are READ-ONLY; a VAXBI WRITE transz

from the DWBUA.

ction to any of these registers

gnostic Registers are listed in Table 3-2.

Address

bb+730

bb+734

bb+738

bb+73C

- bb+740

31
bb+730 to [

bb+740

The five Micmdiagnmtiq Registers have an identical format which is shown in Figure 3-17.

UNIBUS ADDRESS

<31:18>

STRT_.0

<10>

BDIBUF
<09>

UDIBUF
<08>

16 15 11100@%107 00

BDIBUF

UDIBUF

RESERVED

MK VE50681

‘Figure 3-17 Microdiagnostic Register

(RO)

(RO)

(RO)

(RO)

This field holds UNIBUS address bits <17:04> of
ctaword transfer through the specific

When set, this bit mdwatcs that the first transac-

tion through the Buffered Data Path began at an

aligned octaword address. B

This bit is set to indicate that the BDP buffer con-

tains VAXBI data.

This bit is set to indicate that the BDP buffer con-

tains UNIBUS data.

3-21

3.2.4.7 Data Path Control and Status Registers ~ The DWBUA has six Data Path Control and Status
Registers (DPCSR; bb+750 - bb+764). DPCSRO is for the Direct Data Path, and the remaining five
correspond to the five Buffered Data Paths. The addresses of the Data Path Control and Status Registers
are shown in Table 3-3.

Table 3-3 Data Path Control and Status Register Addresses
DPCSRx Address

DPCSRO bb+750

DPCSRI1 | bb+754

DPCSR2 bb+758

DPCSR3 - bb+75C

DPCSR4 bb+760

DPCSRS bb+764

The six Data Path Control and Status Registers have an identical format, which is shown in Figure 3-18.

31 | 2423 2120 01 00
m;zm[0 | opseL | 0 i | PURGE|

MKVEs-0880

Figure 3-18 Data Path Control and Status Register

DPSEL Data Path Select These three bits denote the data Path: 0 = Direct
<23:21> (RO) | ~ Data Path; 1 - 5 correspond to the five Buffered

Data Paths. This field is written by the DWBUA

self-test.

PURGE Purge When set by the operating system, the PURGE bit

<00> (WO) causes the specific BDP buffer to be purged. This
is a WRITE-ONLY bit.

Purging a BDP buffer has different effects, depending on the buffer’s status. For DPCSRO (the Direct
Data Path Control and Status Register), the BDP buffer is not purged and no further action occurs. For

the other five Data Path Control and Status Registers, writing a one to the PURGE bit has the following

results: |

' UNIBUS data in buffer: The data is written to the VAXBI and the flags are cleared,
indicating that the buffer is empty.

VAXBI data in buffer: The flim are cleared to indicate that the buffer is empty.

Empty buffer: | ~ No action occurs.

3-22

ce - T| tav 1 with eachBuffered Data Pathis
‘ : 790E:M‘IDO) Although ‘the BDP buffers are not usually

igword accessible for diagnostic

3.2.49 UNIBUS Map Re¢ The 512 'UNIBUS Map Registers (bb+8300 - bb+FFC) are
READ/WRITE accessible to the opemtmg system. These registers are invalidated by writing zeros to
their VALID bits or by BCIDCLO.

A UNIIUS chm er translates an 18-bit UNIBUS address to a 30-bit VAXBI address. This
translation is tllusmd ui Figure 319,

UNIBUS MAP REGISTER UNIBUS ADDRESS

LA T O
~ L-——:‘:’, v,

~ - /
4

I | mez

09 08 02 01 00

VAXBI PHYSICAL ADDRESS

1= wmm TRANSACT!
MK V850879

Figure 3-19 UNIBUS-to-VAXBI Address Translation

The UNIBUS Map Register format is shown in Figure 3-20.

31 30 29 272625 24 23 2120 00

| RESERVED | | eop| PN |bb+800 to

bb+FCC

VALID

I0ADR

RESERVED

LONG WORD ACCESS ENABLE

BYTE OFFSET

PAGE FRAME NUMBER:
MKVE50678

Figure 3-20 UNIBUS Map Register

' 3-23

VALID

<3l>

IOADR
<30>

LWAEN

<26>

BYTE

OFFSET

<25>

DATA PATH

SELECT

<23:21>

PAGE

FRAME

NUMBER

<20:00>

(R/W, DCLOC)

(R/W, DCLOC)

Longword Access
Enable

(R/W, DCLOC)

(R/W, DCLOC)

(R/W, DCLOC)

(R/W, DCLOC)

Clearing this bit prevents a UNIBUS transfer from
“mapping to the VAXBI. A transaction that uses a

UNIBUS Map Register with a clear VALID bit
does not receive SSYN. When this happens, the

IMR bit in the BUACSR is set and an error inter-

rupt is sent to the VAXBI (if interrupts are

enabled).

This bit designates 1/0 address space. When a
UNIBUS device initiatesa transfer to a UNIBUS

Map Register with contents FFFFFFFF (hex), the
DWBUA ignores the transfer. That is, the

DWBUA does not issue SSYN, does not set the

IMR bit in the BUACSR, and does not issue an

interrupt. (The transfer is ignored if the IOADR,

VALID, LWAEN, and BYTE OFFSET bits are

set and if DPSEL <2:0> is 6 or 7. If IOADR and

VALID are set, but some of the other bits are not

set, the DWBUA sets IMR causing an interrupt.)

When set, this bit specifies that the maximum

length of a buffered transaction is one longword.

The buffer is purged by an octaword WMCI opera-

tion when an aligned longword of data has been

collected. When LWAEN is clear, the buffered

transaction depth may be as long as one octaword

before the contents are sent to the VAXBI. This

bit is ignored when set in a UNIBUS Map Register

with the Direct Data Path selected.

thn this bit is set, the UNIBUS address is treat-
ed as if it is incremented by one.

This 3-bit field determines which of the data paths

is used. A O in this field indicates the Direct Data

Path; 1 through 5 correspond to the five Buffered

Data Paths.

A 6 or a 7 in this field causes the DWBUA to

assert the BADBDP bit in the BUACSR. The

DWBUA then sends an error interrupt to the

VAXBI if interrupts are enabled.

This 21-bit address field is concatenated with

UNIBUS address bits <8:0> to form a 30-bit

physical address on the VAXBI.

3-24

3.3 INITIALIZATION

3.3.1 DWBUA Hardware Initialization

Upon successful completion of the self-test, all DWBUA internal registers and Buffered Data Path flags
are cleared, with the exception of the Data Path Control and Status Registers and the upper 16 UNIBUS
Map Registers.

3.3.2 UNIBUS Initialization

The UNIBUS can be initialized in several ways.

I. The DWBUA monitors the UNIBUS AC LO signal. When this signal is asserted, the DWBUA
initializes the UNIBUS (but not the DWBUA), clears the UBPUP bit in GPRO, and, if
interrupts are enabled, issues an error interrupt. When UNIBUS AC LO is deasserted and
UNIBUS initialization is complete, another interrupt is sent if interrupts are enabled.

2. The DWBUA initializes the UNIBUS (but not the DWBUA) if a processor sets the UPI bit in
the BUACSR. Two interrupts are issued if interrupts are enabled. ,»

3. The DWBUA asserts UNIBUS AC LO whenever Bl AC LO L is asserted: therefore, a brown-
out or black-out that affects the VAXBI causes the UNIBUS to be initialized.

4 The DWBUA asserts UNIBUS AC LO when a processor sets the SST bit in the BICSR. This
mechanism for initializing the DWBUA also initializes the UNIBUS.

The state diagram for UNIBUS initialization, Figure 3-21, applies to all of the cases above.

During UNIBUS initialization, which takes at least 80 ms, the UBPUP bit in GPRO (bb+FO0) is cleared by -
the DWBUA indicating that UNIBUS power is down. The DWBUA sends an error interrupt to the
VAXBI if interrupts are enabled. | |

During UNIBUS initialization, the DWBUA internal registers are not accessible. The DWBUA sends an
ACK response to all WRITE commands from the VAXBI and ignores the data; all READ commands are
supplied with zero data. The BIIC registers may be accessed, and they respond normally to all VAXBI
transactions. Once power is restored on the UNIBUS, UBPUP is set in GPRO and the VAXBI is
interrupted if interrupts are enabled.

3.4 PROGRAMMING CONSIDERATIONS

3.4.1 UNIBUS Map Registers |

The DWBUA register set includes 512 UNIBUS Map Registers. When its VALID bit is set, a UNIBUS
Map Register maps one 512-byte page of UNIBUS address space to a page of VAXBI space.

The user must ensure that VALID pages do not correspond to CSR addresses of devices on the UNIBUS.
To do this, leave the contents of the upper 16 UNIBUS Map Registers unchanged after DWBU

A
initialization.

The upper 16 UNIBUS Map Registers are initialized to FFFFFFFF. (If memory is placed on the
UNIBUS for special applications, the UNIBUS Map Registers which correspond to that memory should
be initialized to FFFFFFFF. This is the responsibility of the application software.) The DWBU

A 1ignores

any transaction involving a UNIBUS Map Register that contains FFFFFFFF.

The lower 496 UNIBUS Map Registers are initialized to zero (also known as invalidated - that is, their
VALID bits are cleared) by the DWBUA on receipt of BCIDCLO.

3-25

(START)

M Y
CLEAR UBPUP

BITIN

GPRO

SEND AN INTERRUPTS

SSERT UNIBUS ACLO |
DISABLE ARBITRATORE
WAIT 3.5 us

ENABLE

ARBITRATOR

)

ASSERT UNIBUS

DLCOAND

INIT

, RESET UNIBUS

l - INIT LINE
WAIT§ us ‘
DEASSERT

UNIBUS DCLO BUACSR SEND AN

BUAEIE BIT ERROR INTERRUPT
‘ ASSERTEQ | TO vaAxs |

WAIT 70 MS I

(END)

MKVES0877

Figure 3-21 UNIBUS Initialization State Diagram

3-26

When a UNIBUS device initiates a transfer that corresponds to one of the upper 16 UNIBUS Map
Registers, the DWBUA ignores the transfer and expects the UNIBUS device to-respond. If a UNIBUS-
initiated transfer accesses a UNIBUS Map Register with the VALID, PPIE, LWAEN, and BYTE
OFFSET bits asserted and DPSEL<2:0> tmml to 6 or 7, the DWBUA ignores the corresponding
UNIBUS transfer.

3.4.1.1 Contiguous Allocation- One or more UNIBUS Map Registers must be allocated for each
transfer. When more than one is allocated, the UNIBUS Map Registers must be contiguous in UNIBUS
space, since sequential transfers are contiguous in UNIBUS space. This means that the set of UNIBUS
Map Registersis contiguous in VAXBI node space. The contents of the UNlBUS Map Registers do not
normally point to a comxgueus area of VAXBI memory space.

3.4.1.2 Mapping to VAXBI 1/0 Space - UNIUS Map Registers can be usedto map to VAXBI 1/0
space, although no reason for doing so is known and many restrictions exist.

A UNIBUS device cannot modify the UNIBUS Map Registers of the DWBUA to which it is conpected.
An attempt to modify a UNIBUS Map Register results in the UNIBUS device never receiving SSYN. In
addition, the DWBUA may hang.

3.4.1.3 BYTEOFFSET Bit - If the BYTE OFFSET bit in the UNIBUS Map Registeris set and if the

transfer uses n UNIBUS Map Registers, then the BYTE OFFSET bit should be set for all n registers and
the n+1th register should be allocated and invalidated. If the n+1th register is VALID when a UNIBUS

deviceissues a DATO with a UNIBUS address corresponding to the last word of the nth page, then two
VAXBI WRITEs can occur: one includes the last byte of the nth page, and the other includes the first byte

of the n«ch page.

If the BYTE OFFSET bitis not set, it is notnecessary to allmmc the n+1th UNIBUS Map Register since
the DWBUA does not prefetch data from VAXBI memory space.

3.4.2 UNIBUS Power Down

When UNIBUS power goes down, the UNIBUS requires a minimum of 80 ms to complete its power-

down/power-up sequence. During this sequence, the DWBUA cannot respond normally to VAXBI trans-

actions. Any attcmpwd access to window space or to node space (cxmm the first 256 bytes, which are in

- BIIC space) receives ACK. For WRITE commands, the DWBUAignores the data; for READ commands,

the DWBUA returns zero data. Further, the IRCI command does not set the DWBUA adapter’s internal

interlock.

3.4.3 Use of Buffered Data Paths |

VAXBI memory may be corrupted if a UNIBUS device issues nonsequential DATO(B) transactions

through a BDP. In particular, a DATO with UNIBUS address 8*n followed by a DATO with UNIBUS

address 8*n+14 causes the entire octaword in the BDP to be written to VAXBI memory space. A DATOB
with UNIBUS address 8*n followed by a DATOB with UNIBUS address 8*n+15 has the same effect.

This conforms to the standard restriction on UNIBUS devices which use BDPs (sequential transfers only)

and causes the programming restrictions described in the next two paragraphs.

UNIBUS Map Registers associated with BDPs must not be double-allocated. A set of UNIBUS Map
Registers may be allocated to only one transfer. Concurrently allocating a set of UNIBUS Map Registers
to two transfers may cause VAXBI memory space to be corrupted.

A BDP must be purged (by writing one to the PURGE bit in the corresponding DPCSR) before the
UNIBUS Map Registers allocated to a transfer may be allocated to another transfer, and before the
contents of the UNIBUS Map Registers may be changed.

3-27

After 2 UNIBUS power outage occurs and power is restored, all of the BDPs must be purged using the
PURGE bit in the DPCSRs. 1 ,,

During a UNIBUS-initiated DATO using a Buffered Data Path transaction, the DWBUA issucs SSYN
before determining if the corresponding VAXBI transaction is required. (That is. the DWBUA issues

SSYN beforc determining if the buffer is full.) This means that if an crror occurs during the VAXBI

transfer. the DWBUA cannot report that error to the UNIBUS device. If the transaction is a DATI, the

DWBUA completes the corresponding VAXBI transfer before it issues SSYN to the UNIBUS device.

3.4.4 VAXBI Access to the DWBUA Internal Registers

All IRCI transactions to the DWBUA internal registers are treated as READ commands and do not sct

the interlock on the DWBUA. All UWMCI and WMCI transactions to DWBUA registers are treated as

WRITE transactions. and the mask bits are ignored by the DWBUA.

The DWBUA responds with NO ACK to all accesses to the unused register locations in the DWBUA
internal register space. A WRITE (or UWMCI or WMCI) transaction to the READ-ONLY registers of

the DWBUA also results in a NO ACK response.

3.4.5 Data Length | |

The DWBUA responds only to VAXBI transactions with a data length of longword. Quadword, octaword.

and RESERVED data length transactions result in a NO ACK responsc.

3.4.6 IRCI/UWMCI Commands | | |

When an IRCI transaction is issued to a DWBUA adapter’s window space. the DWBUA first performs a

DATIP transaction on the UNIBUS using the address supplicd with thc IRCI command. The DWBLA

then sets its interlock. Once interlocked. the DWBUA responds with RETRY to all transactions issued 1o

DWBUA window space or node space (except BIIC spacc) until a UWMCI transaction is reccived. The

DWBUA ignores the address supplied with the UWMCI command. The DWBUA assumes that the

LWMCI is addressed to the same word as the IRCI command and performs the DATO(B) to that word

address (taking into account the mask bits supplied with the UWMCI data).

3.4.7 UNIBUS DATIP

When a UNIBUS device issucs a DATIP. the DWBUA responds with RETRY to any VAXBI transaction |
issucd 1o DWBUA window space or node space (except BIIC space) until a DATO(B) is sent by the
UNIBUS master device. | |

3.4.8 Hung UNIBUS
If a UNIBUS device hangs the UNIBUS (for example. by not deasserting MSYN) the DWBUA will

RETRY any VAXBI transaction issued to DWBUA window space or node space (except BIIC space).

3.49 VAXBI Bus Error |

If the DWBULA encounters an error on the VAXBI during a DWBU A-initiated transaction. it sets the BIF

bit in the BLACSR. The DWBUA also clears the mask bits and the internal BDP flags. thereby indicating

that the buffer is empty for the current BDP. If this error occurs during a W(M)CI transaction. no

indication exists of the data path for which the VAXBI transaction failed. The DWBULA may withhold

SSY\. resulting in SSYN timeout to the UNIBUS device that initiated the transfer.

3.4.10 UNIBLUS Devices ~ |

The DWBUA allows those UNIBUS devices that perform data transfers (instcad of sending vectors)

during the INTR cycle 1o be attached to the UNIBUS. These devices. however. causc a passive relcasc

every time they assert the BR lines to perform a DMA transfer.

3-28

3.4.11 Access to Nonexistent Registers

The DWBUA responds with NO ACK to any VAXBI command with an address in unused DWBUA
register space. It also responds with NO ACK to WRITE (WCI, WMCI, UWMCI) commands to READ-

ONLY registers.

READ transactions to unimplcmu:mcd BIIC registers read zero data. WRITE (WCIL. WMCL UWMCH)

’ commands to these registers receive an ACK responsc; but the data is dropped.

3-29

O,

s,

e

CHAPTER 4

FUNCTIONAL DESCRIPTION

4.1 INTRODUCTION |

The functional description of the DWBUAis presentedin two parts. In the first part, the components on

the block diagram are described. nd part explains the way in which the DWBUA interfaces
between the two buses.

4.2 BLOCK DIAGRAM

Figurc 4-1 is the DWBLA block diagram. Table 4-1 contains lunctional descriptions of the blocks in
Figure 4-1.

< ' ' : ~ BACKPLANE INTERCONNECT >

BCI BUS

vaxgiDATA 8ADRS| | VAXBI ADDRESS MASTER PORT SLAVE PORT
TRANSCEIVERS LATCH CONTROL CONTROL

v
-

w k

= | aooRess
® | PROCESSOR |

| INTERNAL |

“— ram |

UNIBUS DATA | UNIBUS ADDRESS| | MICROCODE UNIBUS PORT
TRANSCEIVERS | | TRANSCEIVERS CONTROL CONTROL

< UNIBUS >
MK V850715

Figure 4-1 DWBUA Block Diagram

4-1

Table -1 DWBUA Block Diagram Descriptions

Block Description

BIIC Transfers data between VAXBI and DWBUA

DWBUA adapter’s only connection to VAXBI

Master Port Control Controls:

. UNIBUS transactions to VAXBI

. DWBUA transactions to VAXBI

. DWBUA transfers to BIIC for self-test

Slave Port Control Receives transactions from VAXBI; verifies that they are
intended for DWBUA or its UNIBUS

Controls:

L Transfers to DWBUA internal registers

® Transfers to UNIBUS

VAXBI Data and Address Transceivers Pass data between BCI bus and BDP bus (bidirectional)

Transfer addresses from BDP bus to BCI bus (dnidirccfional)

VAXBI Address Latch Latches addresses from BCI bus

Puts addresses dnto BAD bus
UNIBUS Data Transceivers Pass data between UNIBUS and BDP bus (bidirectional)

UNIBUS Address Transceivers Pass addresses between UNIBUS and BAD bus (bidirectional)

Consists of:UNIBUS Port Control

° Interlock circuitry (locks out all other transactions while

a transaction is being processed)

° UNIBUS control transceivers

L UNIBUS arbitration circuitry

Data Path Gate Array Controls IRAM addresses

Controls IRAM writes

Stores and controls Buffered Data Path mask bits

Performs BDP bus word rotates

Translates UNIBUS addresses

4-2

internal RAM (IRAM) 2K x 32 RAM

Contains:

. DWBUA Internal Registers

. UNIBUS Map Registers

L Temporary storage for self-test

* Buffered Data Path b“fi@fs (one octaword of storage for
each of the five Buffered Data Paths)

Provides address and byte count smmgc

Perfmm address matching for BDP tmmctmm

Generates and stores

Stores and tests flags for BDP transactions

Pcr rms byte mmtmn for hyw offset

Microcode Control Commls data pmh

Controls address processor

Sends instructions to master port control

Interlocks transactions between UNIBUS and VAXBI

BCI Bus "Bl chip interface bus

interface bus

Provides all communication between the BIIC and the

DWBUA

BAD Bus Buffered address bus

Internal address bus for all but VAXBI addresses

BDP Bus Internal data and VAXBI address bus

4-3

4.3 TRANSACTIONS -

The DWBUA acts as a translator between the VAXBI and the UNIBUS. It interprets commands received

from one bus into a format that the other bus can understand, and it provides controls and responses that
enable the completion of these commands. These sequences of commands, controls, and responses are

called DWBUA transactions. In this section, some typical transactions handled by the DWBUA are

examined in detail.

DWBUA transactions are divided into three categories:

e VAXBI-to-DWBUA

e VAXBI-to-UNIBUS

e UNIBUS-to-VAXBI

4.3.1 VAXBI-to-DWBUA Transactions

4.3.1.1 DWBUA Responses to VAXBI-to-DWBUA Transactions - The VAXBI sends READ and
WRITE commands to the DWBUA. The purpose of these commands is to read data from or to write data

to the DWBUA adapter’s internal registers. The VAXBI node that initiates the transaction is the VAXBI

master, and the DWBUA is the VAXBI slave in all VAXBI-to-DWBUA transactions.

Table 4-2 DWBUA Responses to VAXBI-to-DWBUA Transactions

VAXBI-to-DWBUA Transaction DWBUA Response

READ of DWBUA internal register 1. STALL
| | 2. Register data with read data status code

3. ACK

READ of unused DWBUA register space NO ACK

WRITE to DWBUA internal register 1. STALL
2. ACK (if no parity error on the VAXBI*)

3. Register updated |

WRITE to unused DWBUA register NO ACK

space or READ-ONLY register

* If a parity error occurs, the register is not updated.

4-4

READ
IRCI

RCI

WRITE

WCI

WMCI

UWMCI

ACl‘i/RE'l‘R\(

ACK/RETRY

ACK/RETRY
ACK/RETRY
ACK/RETR

Y

ACK/RETRY

§ g

Pmty Error
Parity Error

Pamy Error

-

‘
- N

w
W
a
h
a
r
W
L
W
L

¥

-

W

W

NOTES FOR TABLE 4-3:

(1) Longword length only.

(2) IRCI commands are accepted, but they are treated as READ commands. The DWBUA does not
interlock.

(3) UWMCI commands are accepted, but they are treated as WRITE commands. The DWBUA does
not interlock. The mask bits are ignored.

(4) WMCI commands are accepted, but thacy are treated as WRITE commands. The mask bits are

ignored, and the full longword of datais assumed 1o be vahd

(5) If a parity error occurs on the VAXBI, the DWBUA ignores the transaction.

4-5

4.3.1.3 Example: VAXBI WRITE to a UNIBUS Map Register - The VAXBI-to-DWBUA transaction
used as an examplein this section is a VAXBI WRITE to a UNIBUS Map Register. The purpose of this
transaction is for the operating system to set up a UNIBUS Map Register for a future UNIBUS-to-
VAXBI transaction. A UNIBUS Map Register corresponds to a block of addresses on the UNIBUS. In a

future direct memory access (DMA) transaction (not necessarily the one following this transaction), data
will be transferred between this block of UNIBUS addresses and a VAXBI address.

Figure 4-2 is a flow diagram of the VAXBI WRITE to a UNIBUS Map Register transaction. The

numbered paragraphs that follow refer to the corresponding numbers in Figure 4-2.

AND ADDRESS SEND

- LATCH VAXB! DATA .

STALL TO VAXBI

SEND ACK ‘TO VAXBI l

DATA TO BDP BUS

TRANSLATE ADDRESS

- VAXBI TO IRAM

WRITE DATA TO

UNIBUS MAP

REGISTER

3

i

TRANSACTION

FINISHED

MKVEs-0687¢

Figure 4-2 VAXBI WRITE to a UNIBUS

Map Register Flow Diagram

The VAXBI command, address, and data are received by the DWBUA. The slave port control

determines that the transaction is for the DWBUA. The VAXBI address is latched in the VAXBI
address latch, and the VAXBI data is latched in the VAXBI data and address transceivers. The
VAXBI address is the address of the UNIBUS Map Register that will be written. The VAXBI data
will be written into this UNIBUS Map Register.

The initial DWBUA response to the VAXBI is STALL.

The DWBUA checks for a parity error on the VAXBI. If either the data or the command/address

has a parity error, the transaction is immediately terminated.

The DWBUA responds to the VAXBI with ACK. The VAXBI interprets the transaction as complete.

The DWBUA checks for a parity error on the VAXBI. The DWBUA terminates thé transaction
immediately if the data received in the VAXBI cycle in which ACK was sent has a parity error. The

DWBUA issues an error interrupt to the VAXBI if errors are enabled.

@ The data in the VAXBI data and address transceivers is put onto the BDP bus.

The VAXBI address is translated into an internal RAM address, specifically to the address of the

UNIBUS Map Register to be written.

The data on the BDP bus is written to the UNIBUS Map Register in the internal RAM. The

transaction is complete.

4.3.2 VAXBI-to-UNIBUS Transactions

4.3.2.1 DWBUA Responses to VAXBI-to-UNIBUS Transactions - In a VAXBI-to-UNIBUS transac-

tion. the VAXBI master sends to the DWBUA a command that requires the DWBUA to read from or to

write to a UNIBUS device.

Bus Master Slave

VAXBI Node initiating transaction =~ DWBUA

UNIBUS DWBUA UNIBUS device

The DWBUA monitors the UNIBUS BBSY signal before it attempts to perform the DATO(B) transac-

tion on the UNIBUS. (If BBSY is deasserted,theDWBUA asserts BBSY and gains UNIBUS mastership.)

If the DWBUA does not gain UNIBUS mastership within 51 us, UNIBUS timeout occurs. |

4-7

Table 4-5 details the DWBUA responses to three types of VAXBI commands that require DWBUA

_interaction with devices on the UNIBUS: READ, WRITE (’WMCL WCl), and IRC1/UWMCI.

Table -5 DWBUA Responses to VAXBI-to-UNIBUS Transactions
VAXBI-to-UNIBUS |

Transaction DWBUA Response

READ Initial response - STALL
Initiates UNIBUS DATI command

Continues STALL responses to VAXBI until:

® SSYN received from UNIBUS slave, or

e SSYN timeout occurs (1)

Sends to VAXBI:

® Data from UNIBUS

L Read data status code (2)

° ACK ~

WRITE (WMCI, WCI) Initial response - STALL

Checks for parity error on the VAXBI (3)

Sends ACK to VAXBI |

Initiates UNIBUS DATO(B) command (4)

Waits for SSYN from UNIBUS device or for SSYN timeout (5)

IRCI/UWMCI

IRCI

UWMCI (7)

Initial response - STALL

Initiates UNIBUS DATIP command

Continues STALL responses to VAXBI until:

® SSYN received from UNIBUS slave, or

° SSYN timeout occurs (1) |

Sends to VAXBI:

L Data from UNIBUS

° Read data status code (2)

° ACK ”

Sets interlock (6)

Initial response - STALL

Checks for parity error on the VAXBI (8)

Sends ACK to VAXBI

Releases interlock

Initiates UNIBUS DATO(B) command (5,9)

NOTE

When the DWBUA is busy, it sends RETRY to the

VAXBI. It does this when: B

VAXBI attempts access of UNIBUS address space

while the DWBUA is processing a UNIBUS trans-

action, or

Current transaction requires DWBUA mastership

of the VAXBI.

4-8

NOTES FOR TABLE 4-5:

(1) The DWBUA does the following in response to a SSYN timeout during a“WREAD transaction:

a. Sends zero data with read data substitute status codc to the VAXBI

b. Sends an ACK response to the VAXBI

c. Sets the USSTO bit in the BUACSR

'd. Issues an 'crtur interrupt to the VAXBI (if interrupts are enabled)

(2) If the UNIBUS PB (parity bad) line is asserted, the DWBUA sends zero data with a read data

substitute status code to the VAXBI. |

(3) If a parity error has Voccurmd on the VAXBI, the DWBUA terminates the transaction.

(4) The DWBUA issues a DATO or a DATOB dependingon the mask buts.

(5) The DWBUA does the following in response to a SSYN timeout during the UNIBUS portion of a
WRITE transaction:

a. Sets the USSTO bit in the BUACSR

b. Issues an error interrupt to the VAXBI if interrupts are enabled

(6) After the DWBUA sets its interlock, it sends a RETRY response to all VAXBI commands except
UWMCI.

(7) The DWBUA may receive a UWMCI command without having received a preceding IRCI com-

mand. When this happens. the DWBUA processes the UWMCI] command as a WMCI command.

(8) If the VAXBI command/address or data has a parity error. the corresponding UNIBUS DATO(B)
command is not issued and the DWBUA adapter’s interlock is not released, hanging the DWBUA.

(9) The DWBLUA assumes that the UWMCl is targeted for the same address as the IRCI. so it ignores
the incoming address.

49

4.3.2.2 VAXBI-to-UNIBUS Commands -

Table 46 VAXBI-to-UNIBUS Commands

VAXBI COMMAND UNIBUS DWBUA
Command ‘Response Possible

Code Name Translation to VAXBI Errors See Note

0000 Reserved None NO ACK None 1
0001 READ DATI ACK/RETRY USSTO 2,12
0010 IRCI DATIP ACK/RETRY USSTO 3,12

0011 RCI DATI ACK/RETRY USSTO 4,12
0100 WRITE DATO ACK/RETRY USSTO 5,

VAXBI PE 12,13

0101 WCI DATO ACK/RETRY USSTO 6,
VAXBI PE 12,13

0110 " UWMCI DATO(B) ACK/RETRY USSTO 3,7,
VAXBI PE 12,13

0111 WMCI DATO(B) ACK/RETRY USSTO 7.
VAXBI PE 12,13

1000 INTR None NO ACK None 8
1001 IDENT BGn ACK/RETRY SACK 9,14
1010 Reserved None NO ACK None 1

1011 Reserved None NO ACK None 1

1100 STOP SEE NOTES ACK ‘None 10
1101 INVAL None NO ACK None 11

1110 BDCST None NO ACK None 11
1111 IPINTR None NO ACK None 11

4-10

rrrrrr

(1) These codes are reserved by Digital Equipment Corporation for future expansion. The DWBUA
responds to the codes with NO ACK,

(2) All VAXBI READ:s of UNIBUS space are limited to longword length only. VAXBI address bit
A<01> determines Which word is read from the UNIBUS.

(3) IRCI/UWMCI commands operate as UNIBUS DATIP/DATO(B) sequences. The DWBUA s
interlocked by the IRCI command; the UWMCI command releases the interlock. All other READ
and WRITE commands directed to the DWBUA receive RETRY responses while the DWBUA s

interlocked. Due to UNIBUS constraints, the address supplied for a UWMCI command must be the

same as for the IRCI command. Hence, the DWBUA uses the address of the IRCI command while

servicing the UWMCI command, ignoring the address supplied with the latter command.

(4) A VAXBI RCI command is treated as a READ command.

(5) VAXBI-to-UNIBUS WRITEs are limited to longword length only. VAXBI address bit A<
01>

determines which word is written. | |

(6) A VAXBI WCI command is treated as a WRITE command.

(7) Data length is longword only. VAXBI address bit A<01> determines which word of a longword is
written. If either of the two mask bits is not set in the selected word, the DWBUA will respond to the

command with ACK. This may corrupt the UNIBUS data or may cause a SSYN timeout. Mask

information for the word not selected by VAXBI bit A<O1> is ignored by the DWBUA.

(8) Since interrupts are only permitted in the UNIBUS-to-VAXBI direction, the DWBUA responds to all
INTR commands with NO ACK.

(9) The DWBUA responds to IDENT commands with a previously failed interrupt vector (if present) at

an appropriate level. If there is no failed vector, the DWBUA will fetch an interrupt vector from the

UNIBUS device by issuing a BG at the corresponding level of the IDENT command.

(10) The STOP command resets all pending interrupts and DMA requests from the UNIBUS. The
DWBUA does not alter the contents of any register implemented in the user CSR space. The
DWBUA responds to all subsequent VAXBI commands, but does not attempt to gain mastership of
the VAXBI. This effect of the STOP command is reset only by BCI DCLO.

(11) INVAL, BDCST, and IPINTR are ignored by the DWBUA. The DWBUA responds to these codes
with NO ACK.

(12) USSTO - The corresponding UNIBUS transaction has resulted in a SSYN timeout. (The DWBUA
did not receive SSYN within 19.2 us after asserting MSYN.) The USSTO bit in the BUACSR s set.
and an error interrupt is sent to the VAXBI (if interrupts are enabled).

(13) VAXBIPE - Parity error on the VAXBI. The DWBUA ignores the transaction.

(14) SACK - SACK is not asserted by the interrupting UNIBUS device. The DWBUA sends zero data
for the vector.

4-11

4.3.2.3 Example: VAXBI READ of UNIBUS Data - The VAXBI-to-UNIBUS transaction used as an

example in this section is a VAXBI READ of UNIBUS data. In this transaction, the VAXBI master reads

data from a device on the UNIBUS.

Figure 4-3 is a flow diagram of the VAXBI READ of a UNIBUS data transaction. The numbered
paragraphs that follow refer to the corresponding numbers in Figure 4-3.

l ISSUE DATI

¢

©, *SSYN NO A'm
TIMEOUT RECEIVED

?

YES

LATCH DATA

DEASSERT MSYN | '

\

ODATA&RDSTO |

VAXBI SET USSTO

ERROR INTERRUPT |

TO VAXBI

DATA, RS

| SEND UNIBUS

TO VAXBI

SEND ZERO

| DATA. RDS @
TO VAXBI

{ TRANSACTION

__FINISHED

MKVSS-0878

Figure 4-3 VAXBI READ of UNIBUS Data Flow Diagram

4-12

®
O
O

®

0
0
©

©
The VAXBI command and address are received by the DWBUA. The slave port control determines
that the transaction is for the DWBUA. The DWBUA response to the VAXBI is STALL.

The VAXBI addrcss is latched in the VAXBI address latch.

The DWBUA monitors the BBSY signal on the UNIBUS. If it is asserted, the DWBUA waits until it

is deasserted. Since the DWBUA is the UNIBUS arbitrator, it has the highest priority on the

UNIBUS. When BBSY is deasserted by the present UNIBUS master, the DWBUA asserts BBSY
and gains bus mastership. | | |

The DWBUA issues a DATI command. The address in the VAXBI address latch is sent over the

BAD bus to the UN!BUS address transceivers. Address and control bits are sent out on the UNIBUS.

The DWBUA asserts MSYN. The slave device puts the data onto the UNIBUS D lines.

The DWBUA monitors SSYN and waits for it to be asserted. |

If SSYN is not asserted within 19.2 us from assertion of MSYN, a SSYN timeout occurs.

SSYN timeout causes the DWBUA to send zero data and RDS to the VAXBI, set the USSTO bit of

the BUACSR, and issue an error interrupt to the VAXBIif interrupts are enabled. The transaction is

terminated.

The UNIBUS slave s@nds the data and SSYN to the DWBUA. Data is received at the UNIBUS data
transceivers.

Parity for the data is checked.

If the data has a parity error, zero data and a read data substitute (RDS) status code are sent to the
VAXBI. The RDS status code warns the VAXBI that the data contains an uncorrectable error. The

transaction is terminated.

If parity is good, the UNIBUS data is sent over the BDP bus to the VAXBI data transceivers. From

there it is sent over the BCI bus to the BIIC and out to the VAXBI. A read data status code is sent to

the VAXBI, indicating that the data is error free.

When all of the data has b .n’scm;m the VAXBI, the DWBUA sends three ACKs to the VAXBI,
indicating that the transactionis ¢ omplete.. |

4-13

4.3.3 UNIBUS-to-VAXBI Transactions

4.3.3.1 DWBUA Responses to UNIBUS-to-VAXBI Transactions—- In a UNIBUS-to-VAXBI transac-

tion, the UNIBUS master sends a command to the DWBUA that requires the DWBUA to read from or to
write to a VAXBI node.

Table 4-7 Bus Masters and Siaves for UNIBUS-to-VAXBI Transactions

Bus | Master Slave

UNIBUS Device initiating tramacuon 'DWBUA

VAXBI DWBUA VAXBI node

The DWBUA responds to three UNIBUS commands that require DWBUA interaction with other VAXBI

nodes: DATI, DATO(B), and DATIP/DATO(B). These responses are listedin Table 4-8. The DWBUA

responses to UNIBUS commands are independent of the data path used.

Table -8 DWBUA Responses to UNIBUS-to-VAXBI Transactions

UNIBUS-to-VAXBI

Transaction DWBUA Response

DATI (1) Data (2)
SSYN (3)

DATO(B) (4) SSYN (5)
Data to VAXBI (6)

DATIP/DATO(B) (7)

DATIP (8) { gs‘%z()”

‘ | SSYN (5)

DATO(B) () { Data to VAXBI (6)
NOTE

If the DWBUA is processing a VAXBI transaction wben

the UNIBUS request is received, the DWBUA withholds

the bus grant until the VAXBI transaction has W«l

4-14

NOTES FOR TABLE 4-8:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9

A DATI command from a UNIBUS device reads data from the DWBUA.

If a VAXBI error occurs while the DWBUA is fetching the data from the VAXBI, SSYN may be
withheld. If it is withheld, 2 SSYN timeout results. The DWBUA sets the BIF bit of the BUACSR
and the BIIC issues an error interrupt on the VAXBI if interrupts are enabled.

The DWBUA issues SSYN in response to a DATI command only when the VAXBI slave responds to
the VAXBI portion of the transaction with ACK. Any other response from the VAXBI slave results

" in the DWBUA withholding SSYN.

When the DWBUA processes a DATO(B) command, it accepts data from a UNIBUS device.

The DWBUA issues SSYN before it completes the corrcsponding VAXBI transaction.

If an error occurs while the DWBUA is writing the data to the VAXBI node, the DWBUA sets the
BIF bit of the BUACSR, and the BIIC issues an error interrupt on the VAXBI if errors are enabled.
SSYN may be withheld from the UNIBUS device; withholding SSYN resuits in an SSYN timeout.

The DATIP/DATO(B) command sequence may be performed only through the DWBUA adapter’s
Direct Data Path. An attempt to perform this command sequence through a Buffered Data Path
results in an SSYN timeout. The BYTE OFFSET bit in the UNIBUS Map Register corresponding to
the Direct Data Path is ignored and treated as if it is clear: if the bit is set, the command is treated as
if the bit is clear.

A SSYN timeout occurs if a DATIP through the Direct Data Path results in»a failure on the VAXBI.

UNIBUS protocol requires that a DATIP be followed immediately by a DATO(B) command. BBSY
and the address lines must not be deasserted between the two commands. Any deviation from

this
czuses the DWBUA to set the UIE bit of the BUACSR. If a DATO(B) is received, but a VAXBI
failure occurs during the UWMCI that is generated, then the BIF bit of the BUACSR is set. Each of
these errors causesan error interrupt on the VAXBI if interrupts are enabled.

4-15

4.3.3.2 UNIBUS-to-VAXBI Commands Through the Direct Data Path -

A complete description of data path operation can

Table 49 UNIBUS-to-VAXBI Commands Through the Direct Data Path

UNIBUS

UNIBUS Address Command Transfer Possible
Command <3:0> to VAXBI Length Errors See Note

BYTE OFFSET BIT =0

DATI ANY READ LONGWORD A, B 4

DATIP ANY IRCI LONGWORD A, B C 1,4

DATO ANY WMCI or UWMCI LONGWORD A, B 24
DATOB ANY WMCI or UWMCI LONGWORD A, B 4

BYTE OFFSET BIT = 1 -

DATI ANY READ LONGWORD A, B 34

DATIP ANY N/A N/A N/A 1

DATO ANY WMCI LONGWORD A, B 3,4
DATOB ANY - WMCI LONGWORD A, 4

4-16

(1) A DATIP command is valid only through the Direct Data Path. If a DATIP is attempted through a
Buffered Data Path or through the Direct Data Path with the BYTE OFFSET bit set, the UNIBUS
command is ignored and the DWBUA does not issue SSYN. This causes an SSYN timeout. During
this time. all VAXBI transactions to the DWBUA reccive a RETRY response until the UNIBUS

: device negates BBSY.

If a DATIP command is not followed bya DATO(B), the DWBUA sets the UIE bit of the BUACSR
and forces an error interrupt (if interrupts are enabled).

2) A UNIBUS DATO(?B) through the Direct Data Path translates to a longword WMCI transaction
with the mask bits set for each valid data byte.

|

(3) The DWBUA performs two longword trasactions on the VAXBI for a word length transfer through
the Direct Data Path if both the BYTE OFFSET bit and UNIBUS address bit A<l> are set.

(4) Possible Errors:

(A) BIF - The VAXBI transactionhas returned an event code that the DWBUA recognizes as an

error code: BTO, RDSR, ICRMC. NCRMC, ICRMD, BPM, or MTCE. The BIF bit is set in

the BUACSR and an error interrupt is sent to the VAXBI if interrupts are enabled. The
DWBUA may withhold SSYN, resulting in an SSYN timeout to the UNIBUS device that

initiated the transfer.

(B) IMR - The VALID bit is not set in the UNIBUS Map Register for the incoming UNIBUS
address. The IMR bit is set in the BUACSR and an error interrupt is sent 1o the VAXBI if
interrupts are §cnablcd.

(C) UIE - The UNIBUS master deasserted BBSY after the DATIP, before executing the accompa-

nying DATO(B). The UIE bit is set in the BUACSR and an error interrupt is sent to the
VAXBI if interrupts are enabled.

4-17

4.3.3.3 Example: DATO(B) Using the Direct Data Path - In this transaction the UNIBUS master

writes data to a VAXBI node. The data is not temporarily stored in a BDP buffer, as it is during a

Buffered Data Path transaction; instead, it goes directly to the VAXBI.

Figure 4-4 ’is a flow diagram of the DATO(B) using the Direct Data Path transaction. The numbered
paragraphs that follow refer to the corresponding numbers in Figure 4-4.

| 1ISSUE WMCI LW @
TO VAXB! |

| LATCH UNIBUS
DATA

£RROR
~ RECEIVED

| NO NO ACK N\
RECEIVED @

ZIVED

| YES | YES

| SETBIFBIT

IN BUACSR

TRANSACTION

FINISHED

MKVE5-0874

Figure 4-4 DATO(B) Using the Direct Data Path

Flow Diagram

4-18

The UNIBUS master sends the address, control bits, and data to the DWBUA, and it then issues
MSYN. The DWBUA decodes the control bits and determines that the command is a DATO(B).

The DWBUA requests the VAXBI and starts a WMCI LW (write mask with cache intent -
longword) transaction. This is the VAXBI transaction that corresponds to a UNIBUS DATO. The
mask bits are determined by the command (DATO or DATOB). The UNIBUS address is longword
aligned. | | ;

2) The UNIBUS data w latched in the UNIBUS data transceivers.

The data goes from the UNIBUS data tmmivcrs to the BDP bus, through the VAXBI data
transceivers, and to the VAXBI. | |

The VAXBI slave sends ACK to the DWBUA, indicating that it has received the data. After ACK is

received, the BIIC sends the DWBUA a master transaction complete signal.

If ACK s not received, the DWBUA looks for an error.

O
O
©

If an error is received, the BIF bit in the BUACSR is set and the transaction is terminated. SSYN

may not be issued, resulting in an SSYN timeout.

The DWBUA tssuas SSYN, completing the UNIBUS transaction.

(7) The DWBUA monitors MSYN. When it is deasserted, the VAXBI transaction is complete.

4-19

4.3.3.4 UNIBUS-to-VAXBI Commands Through a Buffered Data Path -

Table 4-10 UNIBUS-to-VAXBI Commands Through a Buffered Data Path

UNIBUS

UNIBUS Address Buffer Command Transfer Possible See
Command <3:0> Status to VAXBI Length Errors Note

BYTE OFFSET BIT =0

DATI ANY EMPTY READ OCTAWORD B,C,D 3,5

DATI ANY IN/M NONE N/A 6

DATI ANY IN/D READ OCTAWORD B.C,D 5,6
DATI ANY OouT WMCI or READ OCTAWORD B,C.D 5,6

DATIP -~ ANY N/A N/A N/A . 2

DATO ANY IN or WMCI OCTAWORD B,C,D 45,
EMPTY 6,7

DATO ANY OUT/M WMCI OCTAWORD B,C,D 5,6,7

DATO ANY OouT/D WMCI - OCTAWORD B,C,D 5,6,8
DATOB ANY IN or WMCI OCTAWORD B,C,D 5,6,7

- EMPTY | -

DATOB ANY OoOuUT/M WMCI1 OCTAWORD B.C,D 5,6,7

DATOB ANY OouT/D WMCI OCTAWORD B,C,D 5,6,8

BYTE OFFSET BIT =1

DATI 0to C EMPTY READ OCTAWORD A, B, D 5
DATI Oto C IN/M NONE N/A 6
DATI 0to C IN/D READ OCTAWORD A.B,D 5,6

DATI 0to C OuUT - READ LONGWORD A, B 5,6
DATI E EMPTY READ OCTAWORD A, B, D 5
DATI E IN/M READ OCTAWORD A.B,D 5,6

DATI E IN/D READ OCTAWORD A,B, D 5,6
DATI E OouT READ LONGWORD A.B 1,5.6
DATIP ANY N/A NONE N/A 2
DATO 0to C IN or NONE N/A 6

EMPTY

DATO 0to C OouT/M NONE N/A 6

DATO OtoC OuUT/D WMCI OCTAWORD B.C,D 5.6
DATO E IN or WMCI OCTAWORD B,C,D 5,6

EMPTY |

DATO E ouT/M WMCI OCTAWORD B,C.D 5.6
DATO E OUT/D WMCI OCTAWORD B,C,D 5,6
DATOB ANY IN or WMCI OCTAWORD B,C,D 5,6,7

EMPTY

DATOB ANY OUT/M WMCl OCTAWORD B.C,D 5,6,7

DATOB ANY OUT/D WMCI OCTAWORD B.C,D 5,6,8

NOTES FOR TABLE 4-10:

(1) This special case is treated differently from other Buffered Data Path transfers to avoid delay in
issuing SSYN. In this case, the low byte of the requested DATI word is fetched by performing a

longword READ through the Direct Data Path. The high byte is fetched from either the cuirent BDP
buffer or the VAXBI with a longword READ through the DDP. The current BDP status remains
unchanged during this transaction.

4-20

(2)

(3)

(4)

(5)

(6)

A DATIP transamiop is valid only through the DDP.

A UNIBUS DATI command through a Buffered Data Path resultsin an octaword READ of VAXBI
space, if the requested data is not in the BDP buffer. If the UNIBUS data is stored in the BDP buffer.
however. the buffer must be purged by performing an octaword WMCI on the VAXBI

 before
reading the data from the VAXBI. The entire octaword is loaded into the buffer; subsequent accesses
within the octaword through the same Buffered Data Path cause the DWBUA to fetch the data from
the buffer, with no VAXBI transaction requested.

Data for a DATO(B) command through a BDP is stored until the buffer is full. The DWBUA then
performs a VAXBI octaword WRITE (nonmasked) if the buffer contains an entire octaword of valid
data from the UNIBUS device. A VAXBI octaword WMCI is performed if the buffer contains less

than a complete octaword of valid data.

Possible Errors:

(A) BIF - The VAXBI transaction has returned an event code that the DWBUA recognizes as an
error code: BTO, RDSR, ICRMC, NCRMC, ICRMD, BPM, or MTCE. The BIF bit is set in
the BUACSR and an error interrupt is sent to the VAXBI if interrupts are enabled. The
DWBUA may withhold SSYN, resulting in an SSYN timeout to the UNIBUS devi

ce that
initiated the transfer.

(B) IMR - The VALID bit is not set in the UNIBUS Map Register for the incoming UNIBUS
address. The IMR bit is set in the BUACSR and an error interrupt is sent to the VAXBI if
interrupts are enabled.

(C) UIE - The UNIBUS master deasserted BBSY after the DATIP, before executing the accompa-
nving DATO(B). The UIE bit is set in the BUACSR and an error interrupt is sent to the
VAXBI if interrupts are enabled.

(D) BADBDP - The UNIBUS Map Register that corresponds to the incoming UNIBUS address
has a 6 or 7 in the BDP SEL field. (It is attempting to select Buffered Data Path 6 or 7.) The
BADBDP bit is set in the BUACSR and an error interrupt is sent to the VAXBI if interrupts

are enabled.

Buffer status

IN/M - The BDP buffer contains the UNIBUS DATI data received from the VAX
BI, and the

addresses match. |

IN/D - The BDP buffer contains the UNIBUS DATI data received from the VA
XBI, and the

addresses do not match. | ,

OUT - The BDP??buffer containsthe UNIBUS DATO data to be sent to the VAXBI.

EMPTY - The BDP buffer is empty |

(7) The command to the VAXBI is sent after SSYN s issued.

(8) The commandto the VAXBI may be sent after SSYN 1s issued.

4-21

4.3.3.5 Example: DATO Using a Buffered Data Path - In this transaction the UNIBUS master writes

data to a VAXBI node. Each DATO writes two bytes of data into a BDP buffer. The BDP buffer can hold

sixteen bytes, so eight of these transactions are required in order to fill completely the BDP buffer. The
buffer is written in one operation to the VAXBI node.

Figure 4-5 is a flow diagram of the DATO using a Buffered Data Path transaction. The numbered
paragraphs that follow refer to the corresponding numbers in Figure 4-5. |

LATCH

UNIBUS DATA | @

STORE UNIBUS

'ADDRESS IN ‘

ADDRESS PROCESSOR | |

: l@

FLAG " YES

WRITE

BUFFER

TO VAXBI

‘ ISSUE SSYN

1

" SEND DATA IN |

UNIBUS DATA

| TRANSCEIVERS TO

| BDP BUFFER |

| i1ssue wmci ow |

W&

RECEIVED MSYN
? C_ DEASSERTED

SET BIF BIT | | Y

N 3UACSR | (TRANSACTION
FINISHED

MKVE5-0873

Figure 4-5 DATO Using a Buffered Data Path Flow Diagram

4-22

©
®

6
0
6

0
0
6

9
O

@
0

The two bytes of UNIBUS data are latched in the UNIBUS d
The UNIUS master mnds address, control bits, and dma to the DWBUA,”aud then issues MSYN.

ata transceivers.

The UDIBUF bit in the Data Path Control and Status Register is checked.

If the UDIBUF bit is clear, the UNIBUS address goes over the BAD bus to the address processor
where it is stored.

The DWBUA sets the UDIBUF bit, indicating that UNIBUS data is stored in the BDP buffer.

If the UDIBUF bit is set, the DWBUA must determine if the present data is part of the same
octaword as the data already in the BDP buffer. To determine if the present data is part of the same
octaword, bits <17:4> of the address stored in the address processor are compared with the incoming
UNIBUS address.

If the compared addresses do not match, the selected BDP buffer is autopurged. That is, the data in
the BDP buffer is written to the VAXBI with an octaword WMCI command. In this way,

 the
DWBUA ensures that the existing data is not overwritten and lost.

The DWBUA issues SSYN, completing the UNIBUS portion of the transaction.

The two bytes of data are sent from the UNIBUS data transceivers over the BDP bus to the BDP
buffer in the internal RAM, to the appropriate location within the octaword.

The DWBUA checks the BDP buffer to determine if it is full.

If the BDP buffer is full, the DWBUA becomes the VAXBI master and sends the contents of the
BDP buffer to the VAXBI. The command used to do this depends on whether or not all of the data in
the BDP buffer is valid.

a. Al data valid - octaword WRITE

b. Some data not valid - octaword WMCI

The mask bits sent with the WMCI data correspond to all of the valid data words written in the BDP
buffer. After the transaction is complete, the DWBUA resets the mask for the entire BDP buffer.

The DWBUA waits for the VAXBI slave node to issue ACK., ending the transaction.

If ACK is not received, the DWBUA looks for an error code.

If an error has occurred on the VAXBI, the DWBUA sets the BIF bit in the BUACSR and the
transaction is terminated.

The DWBUA waits until MSYN is deasserted by the UNIBUS master and then it ends the
transaction.

4-23

4.3.3.6 Example: DATI Using a Buffered Data Path — In this transaction the UNIBUS
 master reads

data from a VAXBI node. The VAXBI sends sixteen bytes of data to a BDP buffer. This buffer is read by
the UNIBUS device two bytes at a time, S0 eight DATI transactions are needed to read the entire buffer.

Figure 4-6 is a flow diagram of the DATI using a Buffered Data Path transaction. The
numbered

paragraphs that follow refer to the corresponding numbers i
n Figure 4-6.

NO DATAIN N\ YES
BUFFER

’ NO)uumus;
DATA IN ‘ - NO Wflfim5

BUFFER _/ MATCH?
YES

?

NO YES

STORE UNIBUS |

| ADORESS IN ~ @
ADDRESS PROCESSOR

TRANSLATE ADRS

UNIBUS = VAXBI |72

~ READ OCTAWORD |\

FROM VAX8!

-

7 s
ACK

NO ERROR? NO ' ReCEIVED
?

YES YES ‘

l
[uroate Facs | (®)

[tatcH 1Ram ADRS|

SET BIF BIT SEND DATA TO
IN BUACSR \8) UNIBUS

TRANSCEIVERS

1 msué Py J

1

MSYN
DEASSERTED

?

YES

L

TRANSACTION

FINISHED

Figure 4-6 DATI Using a Buffered Data Path

Flow Diagram

MKVESOB28

4-24

The DWBUA checks the BDIBUF bit in the Data Path Control and Status Register.

If the BDIBUF bit is clear, the BDP buffer does not contain VAXBI data. fhc UDIBUF bt is tested.

if the UDIBUF bit is set, the BDP buffer contains UNIBUS data. The buffer contents are

autopurged. ‘

The UNIBUS address is stored in the address processor.

The UNIBUS address is translated into a VAXBI address. A VAXBI READ is initiated and an

octaword of data is returned by the VAXBI slave. The data goes into the BDP buffer.

The DWBUA waits for the VAXBI slave node to issue ACK.

If ACK is not received, the DWBUA looks for an error code.

If an error occurred on the VAXBI, the BIF bit in the BUACSR is set and the transaction is

teminated.
|

If the BDIBUF bit in the DPCSR is set, bits <17:4> of the address stored in the address processor are

compared with the UNIBUS address latched in the UNIBUS address transceivers.

5

O

P
O

O
O
0

O
O

|0) BDIBUF and UDIBUF bits are updated.

The UNIBUS address (from the address processor) is latched.

The requested data word goes from the BDP buffer and is latched in the UNIBUS data transceivers.

The DWBUA issues SSYN.

The DWBUA waits for MSYN to be deasserted by the UNIBUS master. When MSYN is deas-

serted, the transaction is finished.

4.4 REPRESENTATIVE TIMING DIAGRAMS

The timing diagrams in this section represent typical DWBUA transactions. The following assumptions

apply that:

1. No errors occur during the transaction.

2. The transaction follows a straight-line path through the flows.

3. No time scale is employed. The diagrams indicate relative timing only.

In the following diagrams, the device name that appears in parentheses under any waveform is the device

that asserts that signal.

4-25

A

EEBO-
SBANN-PASS).i,lwi.._'4—A

NASW4 \ i
AA4

4-26

I VWA
SNBINN

427

w
e
s
d
e
r
q
 S
u
i
u
n] yred wieq pasajyng € y

S
n
o
s
y
y
 (
4
)
O
L
V
A

6
%
 3
y

'9CB0-SBANN

"
a
3
4
1
N
D
3
Y
 L
O
N
 3
9
4
N
d
0
L
N
V

3LIHMHOIDWNMSIONVWWOO,
B

NA
SS

NASW

A

A
 ALAJAAA

_
B

yaayv

4-28

1
=

 3
N
8
i
a
n

FYVY1

viva

-wFW9

AV

_IND

-

i A

v

viva

4-29

O
o
=
4
N
n
8
I
A
N

yaayv

wa

4-30

APPENDIX A

DWBUA-SUPPORTED

UNIBUS DEVICES

A DWBUA UNIBUS configuration supports a subset of the available UNIBUS devices. The following
devices cannot be put on a DWBUA-controlled UNIBUS. |

e Any PDP-11 processor

e Any device that attempts to perform UNIBUS arbitration

e Any device that has an SSYN timeout period of less than 20 us

Any device that issues MYSN after using a BRn to arbitrate for the UNIBUS may not work satisfactorily.

Contact the local DIGITAL service office for a list of currently supported devices.

T

e

O,

APPENDIX B

GLOSSARY

ACK - Acknowledge. As a VAXBI command response, ACK indicates that the VAXBI slave acknowl-

edges that it is capable of executing the command at this time. As a VAXBI data response, ACK indicates

that no error has been detected and that the cycle is not to be STALLed.

AUTOPURGE - The act of writing the contents of a partially filled DWBUA BDP buffer to the VAXBI.

A buffer is autopurged when it is partially filled with UNIBUS data and one of the following occurs: a

DATI is requested through the same BDP; or a DATO(B) is requested and its address is not within the

same octaword as the data currently stored in the buffer. Data is written from the buffer using a VAXBI

~ octaword WMCI command with the prestored mask bits set for each valid data byte.

BAD - DWBUA Buffered Address.

BASE ADDRESS - The starting address of a VAXBI node’s node space.

bb - Base address.

BBSY - Bus busy; a UNIBUS signal. This signal is sent by the bus master to all other bus devices to

indicate that the bus is in use. "

BCI - VAXBI Chip Interface. This is a synchronous interface bus that provides for all communication

between the BIIC and the DWBUA.

BDCST - Broadcast; a VAXBI command. This command announces a significant event without incurring

the overhead of an interrupt. The use of this command is reserved to Digital Equipment Corporation.

BDP - DWBUA Buffered Data Path.

BIIC - Bus Interconnect Interface Chip. This chip is a general purpos interface to the VAXBI.

BUACSR - DWBUA Control and Status Register; a DWBUA internal register.

DATI - Data In; a UNIBUS command This command requests a transfer of data from the UNIBUS
slave to the UNIBUS master. The transfer is always word length.

DATIP - Data In Pause; a UNIBUS command. DATIP is identical to DATI, except DATIP informs the

UNIBUS slave that the present transfer is the first part of a read/modify/write cycle. DATIP must be

followed by DATO(B) to the same word address.

DATO(B) - Data Out (Byte); a UNIBUS command. This command transfers a word (DATO) or byte

(DATOB) of data from the UNIBUS master to the UNIBUS slave.

DDP - DWBUA Direct Data Path.

B-1

DMA - Direct Memory Access.

DPCSR - Data Path Control and Status Register; a DWBUA internal rcgistcr:

DWBUA - VAXBI to UNIBUS Adapter.

’FUBAR - Failed UNIBUS Address chisterf. a DWBUA internal register.

IDENT - Identify; a VAXBI command. This command is used by processors and other intelligent

interrupt fielding nodes to solicit vector information.

INTERLOCK - A mechanism in the DWBUA that locks out transactions while waiting for a specific
command. It is used when the DWBUA receives an IRCI from the VAXBI or a DATIP from the

UNIBUS. It locks out all other transactions (except STOP from the VAXBI) until it receives the UWMCI
or the DATO(B) that completes the current transaction. |

INTR - Interrupt; a VAXBI command. This oommand signals interrupts to other nodes on the VAXBI.

INVAL - Invalidate: a VAXBI command. This command from a processor or another intelligent node

signals to other nodes that they may have in their caches data that is no longer valid.

IPINTR - Interprocessor interrupt; a VAXBI command. This command is used by a processor to

interrupt another processor or an intelligent adapter.

IRAM - DWBUA Internal RAM.

IRCI - Interlock READ with Cache Intent; a VAXBI command. The data READ from the slave is placed
in the master’s cache. This is the first part of a read/modify/write cycle: IRCl must be followed by

UWMCIL

LWAEN - Longword Access Enable; a UNIBUS Map Register bit.

MBZ - Must Be Zero.

MSYN - Master Sync; a UNIBUS signal issued by the bus master and received by the bus slave.
Assertion of MSYN requests the slave, defined by the UNIBUS address lines, to perform the function

required by the UNIBUS control lines. Negation of MSYN indicates to the slave that the master considers
the data transfer concluded.

NO ACK - No Acknowledge. As a VAXBI command response, NO ACK indicates that no slave has been

selected or that an error occurred during transmissionof the command/address cycle. As a VAXBI data

response, NO ACK indicates that an error has been detected in the transaction.

NODE - See VAXBI Node.

NODE ID - A hexadecimal number between 0 and F (or a decimal number between 0 and 15) that

indicates which of the sixteen logical locations a particular VAXBI node occupies.

NODE SPACE - An 8K byte block of /O addresses. Each node, based on its node ID, is allocated 2
unique node space. The DWBUA adapter’s node space holds the DWBUA registers.

OCTAWORD - Sixteen contiguous bytes starting on an arbitrary byte boundary.

" PORT LOCK - This mechanism locks the VAXBI and UNIBUS ports while the DWBUA is servicing a
transaction.

By

PURGE - The act of emptying a BDP buffer by setting the corresponding DPCSR PURGE bit

RCI - READ with Cache Intent; a VAXBI command. The data read from the slave is placed in the

master’s cache. e | |

READ - A VAXBI command. The master node reads data from the slave.

RETRY - A VAXBI command response. This response indicates that the slave cannot immediately

execute the command sent to it.

SACK - Selection Acknowledged; a UNIBUS signal. A device that has requested the bus, 'acknowlcdgcs
that it has been granted the bus, and that it accepts.

SSYN - Slave Sync; a UNIBUS signal issued by the bus slave and received by the bus master. Assertion

of SSYN informs the bus master that the slave has concluded its part of the current data transfer.

Negation of SSYN informs all bus devices that the slave has concluded the current data transfer.

STALL - As a VAXBI command response, STALL indicates that the slave needs additional time to

acknowledge the command, is not ready to return the first data word on a READ command or vector data

on an IDENT command, or is not ready to accept a data word on a WRITE command. As a VAXBI data
response, STALL is sent by the slave to delay the transmission of data.

STOP - A VAXBI command. This command selectively forces nodes to a state in which they do not issue
VAXBI transactions, yet they retain as much error information as possible.

UA - UNIBUS address.

UNIBUS - An asynchronous bus consisting of 56 lines.

UNIBUS ARBITRATOR - A logic circuit that compares priorities from devices requesting the use of the

data section of the UNIBUS. The arbitrator determines which device will next be granted control of the
UNIBUS. A UNIBUS must have one and only one arbitrator. For the configuration described in this

manual, the DWBUA is always the UNIBUS arbitrator.

UWMCI - Unlock WRITE Mask with Cache Intent; a VAXBI command. This command completes a

read/modify/write cycle that began with an IRCI command.

VAXBI - VAX Bus Interconnect. It joins a processor to a combination of devices that can include 1/0

controllers, 1/O bus adapters, memories, and other processors. This is a double-clock, synchronously

operated interconnect with bus events occurring at fixed intervals. Bus arbitration and address and data
transmissions are time multipiexed over 32 data lines. Data transmission is at fixed lengths of 4, 8, 0or 16

bytes on naturally aligned addressing boundaries.

VAXBI NODE - An interface that occupies one of sixteen logical locations on a VAXBI. A VAXBI node

consists of one or more VAXBI modules.

VOR - Vector Offset Register; a DWBUA internal register.

WCI - WRITE with Cache Intent; a VAXBI command. The master node writes data to the slave and

alerts other nodes to issue a VAXBI INVAL, if necessary, for the address written.

B-3

WINDOW SPACE - A 256K byte block of 1/0 addresses. Each node, based on its node ID, is allocated a

unique window space. The DWBUA adapter’s window space holds the UNIBUS ‘device registers and the

UNIBUS memory space. The Starting Address Register and Ending Address Register must be set to

enable this space.
,

WMCI - WRITE Mask with Cache Intent; a VAXBI command. This command is similar to WCI, except

the master selects the bytes of the addressed location that it wants to modify. |

WRITE - A VAXBI command. The master node writes data to the slave.

B-4

APPENDIX C

SELF-TEST

MICRODIAGNOSTIC TESTS

The self-test microdiagnostic tests run in the order shown in Table C-1. Tests 1 through A check the
DWBUA logic, tests B through D check the VAXBI port logic, and tests E through 12 check the VAXBI
port logic and the UNIBUS and its port logic.

Test |

1 29116 RAM Test Verifies addressability and data integrity of last 16 loca-
tions of address processcr RAM space. (Locations are

used for storage of constants and DWBUA register

addresses.) Other locations are verified in a later test.

2 DWBUA BAD Bus and BAD Verifies Buffered Address (BAD) Bus, BAD Register,
Register Test and BAD Output Mux of Data Path Gate Array.

3 BDP/MAP IRAM March Test Standard march test (1-0 data pattern) of Internal RAM
(IRAM). Verifies that each RAM location is uniquely

addressable; checks each location for data integrity. This

test cannot differentiate between data and address

failures.

4 BDP Bus Latch Test Verifies high words of both the rotating and nonrotating
BDP bus latches.

5 IRAM Mas& Chip Select Test Verifies the chip select logic used when accessing the
IRAM in mask mode.

6 BDP Stored Address Test Checks that the DWBUA can properly execute Buffered
Data Path transactions by verifying correct storage of

buffered addresses.

7 IRAM Address Increment Test Verifies that the Data Path Gate Array can properly
| increment an IRAM address.

8 Tmmlatton Buffer Test Verifies the integrity of the Translation Buffer.

9 2910 Condition Code Test Performs a branch test on all condition codes that are
| not tested in other parts of this self-test.

A 29116 Instruction Test Verifies that address processor can execute all functional
microcode instructions that are not otherwise cxccmcd

during this self-test.

Table C-1 Self-Test Microdiagnostic Tests (Cont)

Description
Test

Number Test Name

B Starting/Ending Address
Registers Test

C BDP Write Mask Test

D VAXBI WMCI/READ Test

E UNIBUS DATO/DATI Test

F VAXBI-to-UNIBUS
IRCI/JUWMCI Test

Performs VAXBI transactions. Writes to the BIIC Start-

ing Address and Ending Address Registers with the

range of UNIBUS window space: reads the node ID

from the BIIC CSR, computes the corresponding values

for the two registers, and then writes to each of these

registers.

Verifies the write mask flip-flops in the Data Path Gate

~ Array. These flip-flops store the mask for a VAXBI

octaword WRITE mask transaction. (This transaction is

executed whenever a Buffcred Data Path is purged.)

Verifies that the DWBUA can perform VAXBI READ

and WRITE transactions to the BIIC by performing

word-length transactions on the VAXBI. (These opera-

tions are used by UNIBUS-to-VAXBI Direct Data Path

transactions.) This test uses the BIIC General Purpose

Registers, and it verifies that both word and byte length
transactions are possible from the UNIBUS to the
VAXBI. "

Uses the UET module to verify that the DWBUA can

write to and read from the UNIBUS. Performs a

VAXBI WMCI instruction to set up the VAXBI

Address Transceiver with the UET module’s Address

Register address and to set a data pattern on the BDP

bus. The test then operates similarly to the DWBUA

functional microcode. Failure of this test indicates a

_problem in the UNIBUS cabling, power, or UET

module.

This test ensures that VAXBI IRCI/UWMCI com-

mands can be processed by the DWBUA. The DWBUA
verifies that the corresponding DATIP/DATO(B)

sequence functions properly on the UNIBUS. The test

initially writes a known data pattern (AAAA hex) to the

UET Data Register. A DATIP is then issued to read

this register. The DATIP is immediately followed by a

DATOB. The address is driven on the UNIBUS through

the duration of the DATIP/DATOB sequence. The data

for the DATOB (5555 hex) is loaded into the Data Path

Gate Array prior to initiation of the DATIP. After com-

pletion of the DATOB, the data from the DATIP is

read from the Data Path Gate Array and verified in the

address processor. A DATI is then issued to the UET
Address Register to verify that the DATOB completed

properly.

pstic Tests (Cont)

10 UNIBUS DATI/DATO Test Verifies that a UNIBUS DATI command can execute
through the the Direct Data Path. UNIBUS Map Regis-

ters are set up and the corresponding UNIBUS address

is written into the UET Address Register. A DATI is

issued, and the test then waits for the UNA port request

to come into the DWBUA. If it does, the incoming

address is enabled through the UNIBUS Map Register.

The test verifies that the correct UNIBUS Map Register

was referenced by a microcode jump with values from

that register.

11 DWBUA Error Test Attempts special-case transactions between the VAXBI
and UNIBUS and verifies proper execution of these

transactions. These special cases are: VAXBI READ of

an unused UNIBUS address; and a DWBUA RETRY

response to the VAXBI due to the servicing of a concur-

rent UNIBUS request.

12 VAXBI INTR/IDENT Test Verifies that a UNIBUS device can successfully inter-
rupt the VAXBI and pass along its vector information.
Writes the UET CSR to generate a UNIBUS request.

The UET module is written and a UNIBUS BR is

asserted. This causes the BIIC to initiate a VAXBI inter-

rupt to the DWBUA. The DWBUA receives a VAXBI

IDENT command at the level corresponding to the
INTR that was issued. The test generates the IDENT

command.

C-3

IO

R

I

R

il

APPENDIX D

NOTE
diagnos fic error mmmms iMimte the

Test

1 | BUA Control and Device Type Register

1 BUA Self-Test and Register Subtest

2 BUA Revision and Device Type Subtest

2 BUA Registers Test

VAXBI BER Read/Write Subtest

- VAXBI EICRRmd_Subtm
gister Read/Write Subtest

W
b

W
k

-

3 Map RAM March th

4 UNIBUS Rmd/Wtitc Test

W

N

-

| 'WordRmdw‘ ,Byw anSubtest

UNIBUS INTLK READ/UNLOCK WRITE Test

UNIBUS to VAXBI Addressing Test

Data Path Select Test

Direct Data Path DATI Test

O

o
0

~
3

O

W

Direct Data Path DATOB Test

10 Buffered Address Register Test

D-1

Number Name

11 Buffered Data Path DATI Test

12 Buffered Data Path DATO Test

13 Buffered Data Path DATOB Test

14 Buffered Data Path Autopurge Test

15 Byte Offset DATI Test

16 Byte Offset DDP DATO Test

17 Byte Offset BDP DATO Test

18 Byte Offset DDP DATOB Test

19 Byte Offset BDP DATOB Test

20 Page Boundary Transfer Test

1 UET DATI Subtest
2 UET DATO Subtest

3 UET DATI/DATO Subtest

4 UET DATO/DATI Subtest

21 BDP Byte to Octaword Transfer Test

1 Address Match Octaword DATOB Subtest

2 Address Match Octaword DATI Subtest

22 BDP Longword Access Enable Test

23 Bus Transceiver Test |

1 VAXBI to UNIBUS Bus Transceiver Subtest
2 UNIBUS to VAXBI Bus Transceiver Subtest

24 Map Invalid Test

25 Map Entry Functional Test

26 CSR Status Bit Test

| BIF and NEX Error Subtest

2 REGDUMB Subtest

3 USSTO Error Subtest

4 BADBDP Error Subtest

5 IMR Error Subtest

D-2

Test ‘

27 Interrupt Test

: 1 - UET BR7 Interrupt Subtest
2 UET BR6 Interrupt Subtest

3 UET BRS Interrupt Subtest
4 UET BR4 Interrupt Subtest

28 VAXBI Error Test

1 UNIBUS Parity Bit Subtest

2 UET Invalid BDP DATIP Subtest

29 Bus Init Test

| ! UNIBUS Init Subtest
2 VAXBI STOP Command Subtest

30 FUBAR Register Test

31 | UBE Multi Transfer Test

32 UBE Block Transfer Test

D-3

-

APPENDIX E

ERROR CONDITIONS

E.1 VAXBI-TO-UNIBUS TRANSACTIONS

E.1.1 Quadword and Octaword Transfers

The DWBUA accepts only vahd longword transfers. The DWBUA responds to all quadwmd and octaword
transfers with NO ACK.

E.1.2 BIIC Error EVENT Codes

Table E-1 lists the DWBUA responses to BIIC error EVENT codes. In the responses listed, the DWBUA
sends error interrupts to the VAXBI only if interrupts are enabled.

Table E-1 DWBUA Responses to BIIC EVENT Codes

EVENT CODE

HL HLL IAL The current IDENT commandis ignored. The
o busus grant is withheld from the UNIBUS

L HHHL BPS o ~ > current slave WNTEwtype tmmctmn
L HHHH STO is 1momd and the datais not updated

L HHULH ICRSD lf m transaction is a READ—type, it is

L HHULL BBE ignored . The BIIC sends an error interrupt.
HHHILL BTO ~ The BUACSR BIF bitis asserted. The BIIC
L L HHH RDSR sends an error interrupt. SSYN may be

L L HHIL ICRMC withheld from the UNIBUS device which

L L HL H NCRMC would result in an SSYN timeout.

L L L HH ICRMD

L L L HL RTO*

L L L L H BPM

L L L LL MTCE

* The DWBUA receives this error EVENT code only if the RTOEVEN bit in the DWBUA

adapter’s BCICSRis asserted.

Thc mask valucina WRIT’E mask command is legal only if at least one mask bitis set in the word pointed

to by address bit A1, and no mask bits are set in the other word of the longword. (The DWBUA responds
with ACK regardlmdf the mask values.) The following are the only legal mask values:

Al=0 00yy: yy #[00]
Al=1 yy00

Any mask values that do not conform to this format are tllcgal These illegal values either corrupt

UNIBUS data or cause an SSYN timeout to the DWBUA.

E.1.4 Nonexistent UNIBUS Address

A valid WRITE or READ command is sent to a nonexistent UNIBUS address.

e The DWBUA response to the WRITE command is ACK. It then sets the USSTO bit in the
'BUACSR, issues an error interrupt if interrupts are enabled, and writes the UNIBUS address to
the Failed UNIBUS Address Register (bb+728).

e The DWBUA ‘scnds zero data and an RDS status code in response to the READ command. It
also sets the USSTO bit in the BUACSR, issues an error interrupt if interrupts are enabled, and
writes the UNIBUS address to the Failed UNIBUS Address Register (bb+728).

E.1.5 Invalid VAXBI Command |

A VAXBI command that the DWBUA considers as invalid results in a NO ACK response from the

DWBUA. The VAXBI commands that the DWBUA considers invalid are:

RESERVED (BCI 1<3:0> = HHHH)

INTR

RESERVED (BCI 1<3:0> = LHLH)

RESERVED (BCI 1<3:0> = LHLL)

INVALIDATE

BROADCAST

IPINTR

E.1.6 Improper Use of a DWBUA Register

An attempt to improperly use a DWBUA register results in a RETRY response from the DWBUA.

Improper use of a DWBUA register is:

e Attempted WRITE to 2a READ-ONLY bit in a DWBUA internal register.
e Attempted access of an unused address in the DWBUA register space.

E.2 UNIBUS-TO-VAXBI TRANSACTIONS

E.2.1 VAXBI Error In UNIBUS-Initiated Transfer

e Direct Data Path and DATI through a Buffered Data Path

The DWBUA does not issue SSYN to the UNIBUS device when a VAXBI error is encountered

during a DDP transaction or during a DATI through a BDP. The DWBUA asserts the BUACSR BIF

bit and writes the VAXBI address to the VAXBI Failed Address Register (bb+72C).

e DATO(B) through a Buffered Data Path

The DWBUA issues SSYN to the UNIBUS device before it checks for VAXBI errors during a

DATO(B) through a BDP. The DWBUA causes an SSYN timeout during the next transfer within the

present UNIBUS arbitration cycle. If the current transfer, however, is the last transfer within the
present UNIBUS arbitration cycle, the UNIBUS device cannot be notifiedof the VAXBI error. The

DWBUA asserts the BUACSR BIF bit and writes the VAXBI address to the VAXBI Failed Address

Register (bb+72C).

E.2.2 lllegal Map Entries

DMA access through an invalid map page

A UNIBUS device might attempt a DMA access through an invalid map page (that is, the UNIBUS
Map Register’s VALID bit is clear). If this happens, the DWBUA asserts the BUACSR IMR bit,
issues an error interrupt (if interrupts are enabled), and withholds SSYN, causing an SSYN timeout
for the UNIBUS device.

DMA access through an illegal BDP

If a UNIBUS device attempts a DMA access through BDP 6 or 7, the DWBUA asserts the

BUACSR BADBDP bit, issues an error interrupt (if interrupts are enabled), and withholds SSYN,

causing an SSYN timeout for the UNIBUS device.

DATIP through a BDP

If a UNIBUS device attempts a DATIP through any Buffered Data Path, the DWBUA withholds

SSYN, causing an SSYN timeout for the UNIBUS device.

E.2.3 Illegal UNIBUS Transaction |

DATO(B) must follow a DATIP, but if BBSY is interrupted during the DATO(B), the DWBUA asserts

the BUACSR UIE bit and issues an error interrupt (if interrupts are enabled).

o

APPENDIX F

UNIBUS

EXERCISER TERMINATOR

Th° UNIBUS Exercwcr Tmmmwr (UET) (m M9313 modulc)is locatedin sections A and B of the last
UNIBUS slot The UET enablcs dmgnmnc mstmg of the DWBUA adapter’

s capabilities to handle

F.2 UNIBUS EXERCISER TERMINATOR REGISTERS

Register

(octal) e/E Notes

772140 Addw Register A<15:00> Word load only. Byte loading causes timeout.

772142 Data Register D<15:00> Both byte and word loading allowed.

772144 Control Register CR<15:00> Word load only. Byte loading causes timeout.

F.2.1 Control Register Format ..,

1514”12111009080706050403020100

L T I TTTTTTTITTT1]

UET INIT —-

BR7

BR6

BRS ;

BR4 - , ~
PE e e , b |

PB — —_—

Al7

A16

c1

co

NPR

MK V850821

Figure F-1 UET Control Register Format

F.2.2 Control Register Bit Descriptions

UET Init

CR<15>

‘Unused

CR<l14:12>

BR7-BR4

CR<11:08>

PE

CR<7>

TO

CR<6>

PB

CR<5>

Al7, Al6

CR<4:3>

Ci1, CO

CR<2:1>

NPR

- CR<0>

Initialize UET to simulate reset or powerup. This WRITE-ONLY bit

always reads 1. It does not clear CR<4,3>.

Always read as 1.

Write 1 to initiate interrupt.

Parity Error detected during UET DATL Clocked on each UET DATI
and cleared by UET Init. | *

Timeout (SSYN not returned). Clocked on each transfer; cleared by
UET Init.

Parity Bit. When set, the PB line will be asserted when the UET Data
Register is read. This bit is cleared by UET Init.

High-order UNIBUS addressing bits.

Transfer command bits (see Table F-2)

Write 1 to initiate transfer.

Table F-2 Transfer Command Bits

C1 Cco Command

0 0 UETDATI
-0 1 UET DATIP

1 . 0 UET DATO

1 1 UET DATOB

NOTE

CR<11:08> and CR<0> (BR7 - BR4 and NPR
respectively) remain set until the grant is returned at

which time they are cleared. These bits are also

cleared by writing a 0 to the bit or by writinga 1 to

UET Init (CR<15>). Multiple interrupts may occur

if more than one bit is set.

F-2

F.3 NPR DATA TRANSFERS

F.3.1 UET WRITE

A UET WRITE consists of the following sequence of events:

1. Load Address Register A<15:00>

2. Load Data Register D<15:00>

3. Load Control Register to initiate the transfer:

a. CR<4:3> = A<17:16> of UNIBUS Address

b. CR<2:1> =10 for DATO, 11 for DATOB
¢. CR<0> = Generate NPR

F.3.2 UET READ

A UET READ consists of the following sequence of events:

1. Load Address Register A<15:00>

2. Load Data Register D<15:00>

3 Load Control Register to initiate the transfer:

a. CR<4:3> = A<17:16> of UNIBUS Address

b. CR<2:1> = 00 for DATI, 01 for DATIP

c. CR<0> = Generate NPR

NOTE

The UET does not need a DATO(B) following a

DATIP. After it has completed the DATIP, the

UET drops BBSY and releases the UNIBUS.

F.4 BR INTERRUPTS

The following sequence of events implements a BR interrupt:

. Load the Data Register D<15:00> with the vector address.

5 Load Control Register bits CR<11:08> with the BR (BR7 - BR4) level.
A"

RS

o

I

T

APPENDIX G

NODE SPACE AND WINDOW

SPACE ADDRESSES

NODE SPACE ADDRESSES WINDOW SPACE ADDRESSES

NODE

0 2000 0000 2000 1FFF 2040 0000 2043 FFFF
1 2000 2000 2000 3FFF 2047 FFFF

2 2000 4000 2000 SFFF 2048 WO 204B FFFF
3 2000 6000 204C 0000 204F FFFF
4 2000 8000 2050 0000 2053 FFFF

5 2000 A000 2054 0000 2057 FFFF
6 2000 C000 2058 0000 205B FFFF

8 2001 0000 2063 FFFF
9 2001 2000 2067 FFFF
A 2001 4000 206B FFFF

B 2001 6000 206F FFFF

C 2001 8000 | 2073 FFFF
D 2001 A000 2001 BFFF 2074 0000 2077 FFFF

E 2001 C000 2001 DFFF 20‘78 0000 207B FFFF
F 2001 E000 2001 FFFF 207F FFFF

APPENDIX H

REGISTER

INITIAL STATES

The initial state of each register is its state after successful complclion of the BIIC and DWBUA self-tests.

Table H-1 Register Initial States

Address Initial

(bb+) Register State Notes

00 Device Type xxxx0102 xxxx = DWBUA revision

04 VAXBI Control xx01280y xx = VAXBI interface revision
and Swtus y = DWBUA node ID (hex)

08 Bus Error

oC Error Interrupt
Control

10 Interrupt 0000xxxx xxxx = decoded DWBUA node ID
Destination (one bit set)

14 IPINTR Mask xxxx0000 xxxx = IPINTR mask

18 Force IPINTR/ 0000xxXx xxxx = force IPINTR/STOP

1C IPINTR Source xxxx0000 xxxx = IPINTR source

20 Starting Address xxxx0000 xxxx = starting address of DWBUA adapter’s window
space (between 2040 and 207C, last digit 0, 4, 8, or C)

24 Ending Address xxxx = starting address of window space after DWBUA
(between 2044 and 2080, last digit 0, 4, 8, or C)

28 BCI Control STOPEN, IDENTEN, and UCSREN bits set

2C Write Status

30 Force IPINTR/ 00001800

40 User Interface 00008000
Interrupt Control

FO UBPUP = |; self-test passedGPR 0

Table H-1 Register Initial States (Cont)

Address Initial

(bb+) Register State Notes

F4-FC GPR 13 00006000

720 DWBUA Control 00008000

- and Status

724 Vector Offset 00000000

728 Failed UNIBUS 00000000
Address

72C VAXBI Failed 00000000
Address

730-740 Microdiagnostic 00000000

750 DPCSR 0 00000000 DPCSR is Data Path Control and Status Register

754 DPCSR | oozooooo |

758 DPCSR 2 00400000

75C DPCSR 3 00600000

760 DPCSR 4 00800000

746 DPCSR § 00A 00000 |

800-FBC UNIBUS Map 00000000 Initially invalid

FCO-FFC UNIBUS Map FFFFFFFF 1/0 space addresses

APPENDIX I

DATA PATH

OPERATION

The DWBUA starts the VAXBI section of a UNIBUS-initiated transaction immediately after it receives
the UNIBUS command. The DWBUA issues SSYN to the UNIBUS transaction only if the VAXBI
transfer completes successfully. (If an error occurs during the VAXBI transfer, the BUACSR BIF bit is set
and an error interrupt is issued by the BIIC if interrupts are enabled. The DWBUA may not issue SSYN
to the UNIBUS device, causing an SSYN timeout.)

The following two spex cases must be noted for UNIBUS-initiated transactions through the Direct Data
Path. In both cases, the BYTE OFFSET bit in the corresponding UNIBUS Map Register is set, causing
the UNIBUS address to be incremented by one before the corresponding VAXBI transaction is completed.

CASE 1 - DATO WITH UNIBUS ADDRESS BIT <01> SET

Two VAXBI longworci WMOCI transactions, with the data and mask bits shown in Figure I-1, are
performed.

UNIBUS
| n -

DATO VAXB!I LONGWORD WRITE
A<1>=1 VAXBI ADDR VAXBI DATA MASK BITS

LW ADDR 1 000

LW + 1 ADDR [! l lfl 0 001

MKV85-0823

Figure I-1 DATO with UNIBUS Address Bit <01> Set

CASE 2 - DATI WITH UNIBUS ADDRESS BIT <01> SET

Two VAXBI longword READ transactions are performed. They obtain data for the UNIBUS transaction

as shown in Figure I-2. |

VAXBI LONGWORD READ

VAXBI ADDR VAXBI DATA

UNIBUS LW ADDR I D ! l '
DAT! »
A<1>=1

w+taoor | | | |c]

MK V850822

Figure I-2 DATI with UNIBUS Address Bit <01> Set

For improved UNIBUS bandwidth, the DWBUA completes the corresponding UNIBUS DATO or
DATOB transaction (by issuing SSYN) prior to performing the VAXBI WMCI transfer. The DWBUA
does not issue SSYN as early for Direct Data Path DATI and DATIP transactions as it does for Buffered
Data Path transactions, since the VA XBI transfer must first be completed in order to obtain the requested
data. |

1.2 BUFFERED DATA PATH
The DWBUA has five Buffered Data Paths (BDP). Each BDP consists of three sections: a 16-byte buffer,
a 16-bit address register, and a 16-bit status register.

1. Buffer - Each Buffered Data Path has a 16-byte buffer available for storage of as much as one
octaword of data. The buffered data is naturally aligned at an octaword address. (When the
LWAEN bit is set in the UNIBUS Map Register for the current UNIBUS-to-VAXBI transac-
tion, the buffer is virtually reduced to longword in length.) |

2. Address Register - The address register is a 16-bit register that contains UNIBUS address bits
<17:04> in its most significant 14 bits. These 14 bits correspond to the data currently stored in
the buffer. The least significant two bits of the address register are zero.

3. Status Register - Internal flags monitor the status of the data in the buffer. These flags are:

BDIBUF - VAXBI Data in Buffer

UDIBUF - UNIBUS Data in Buffer

STRT__0 - Start Zero

UDIBUF and BDIBUF are updated only during the first transaction through a Buffered Data

Path. They indicate that either UNIBUS Data (UDIBUF) or VAXBI Data (BDIBUF) is being

held in the buffer, as shown in Figure I-3.

UNIBUS-to-VAXBI buffered transactions do not necessarily cause the DWBUA to generate a

VAXBI transfer. Rather, the DWBUA stores as much as one octaword of data locally.

I-2

UDIBUF

0 BUFFERIS | UNIBUS DATA

EMPTY IN BUFFER

BDIBUF

VAXBI DATA VAXBI DATA

IN BUFFER IN BUFFER

Figure I-3 BDIBUF and UDIBUF Flags

When UDIBUF is set, the DWBUA also updates the STRT__0 flag. The STRT_O flag

indicates that the first transaction through this Buffered Data Path began at an aligne

octaword address (UA <3:0> = 0000). When the last byte in the buffer is written, the DWBUA
tests the STRT_O flag. If STRT_0 is set, the DWBUA assumes that the buffer contains a full

octaword of valid data. The DWBUA then purges the data by performingan octaword WRITE
(nonmasked) transaction. If STRT__O is not set, the DWBUA performs an octaword WMCI
operation when writing the buffer to the VAXBIL |

Each Buffered Data Path has its own status register and address register. These registers can be
read by using the REGDMP feature, as explained in Section 3.2.4.1.

1.2.1 Definitions

Three common terms used in discussing Buffered Data Path behavior are Address Match, Autopurge, and
~ Write-to-VAXBI. These terms are defined as follows.

1.

~ <17:04> of the incoming UNIBUS add

Address Match - The BDP address register holds the UNIBUS address of the current octaword
of data stored in the buffer. When another UNIBUS-to-VAXBI transaction is received, bits

| ress are compared to the stored address. If the addresses

match, the DWBUA manipulates the data in the buffer. If the addresses do not match,
however, and the buffer contains UNIBUS data, then the DWBUA performs an autopurge.

Write-to-VAXBI - This term describes the process of writing UNIBUS data in a buffer to the

VAXBI when the buffer is full. When LWAEN is not set and the buffer is full, the DWBUA

checks the buffer’s STRT—O flag. If the flag is set, the DWBUA assumes that a full octaword
of data is being held in the buffer. The Write-to-VAXBI will be performed using a VAXBI
octaword WRITE. If the STRTO flag is not set or if the LWAEN bit is set, then the
DWBUA assumes that the buffered transaction began with a nonaligned octaword address.

Only part of the buffer contains valid data and the Write-to-VAXBI is performed using 2
VAXBI octaword WMCIL.

Autopurge — If the buffer is not full and UNIBUS data is in the buffer, two occurrences will
cause the data in the buffer to be written to the VAXBIL They are:

a. A DATIlis rc:qmstcd though the Buffered Data Path.

b. A DATO(B) is requested, but the addresses of the transaction and the data in the buffer
do not match.

Data is wmtcn from the buffer using a VAXBI octaword WMCI command with the prestored
mask bits set for each valid data byte. This act of writing the partially filled buffer to the
VAXBI due to an address mismatch or mixed transaction types is known as autopurge.

1.2.2 BYTE OFFSET Bit Clear

The following three cases describe the behavior of the DWBUA depending on the contents of the BDP

buffer. For each case, assume that a UNIBUS-to-VAXBI transaction is requested, and the BYTE

OFFSET bit in the UNIBUS Map Register is not set.

CASE 1 - THE BUFFER IS EMPTY

The UNIBUS master is attempting a DATI through a valid UNIBUS Map Register. The DWBUA

performs an octaword READ of VAXBI data and fills the BDP buffer. The DWBUA then places the

requested data on the UNIBUS, issues SSYN, updates the BDP flags by setting BDIBUF and clearing
UDIBUF, and stores the address value for the Buffered Data Path.

" The UNIBUS master is attempting a DATO(B) through a valid UNI BUS Map Register. The DWBUA

updates the BDP flags by setting UDIBUF and clearing BDIBUF, stores the incoming UNIBUS address,
issues SSYN, and stores the data in the appropriate bytes of the BDP buffer with the correct mask bits set.

CASE 2 - THE BUFFER CONTAINS UNIBUS DATA

1. The UNIBUS master requests a DATI.

The BDP buffer contains UNIBUS data; the current data in the buffer is autopurged. Once the

autopurge is complete, the DWBUA treats the DATI request as it did in CASE 1 (since the buffer is
empty).

2. The UNIBUS master requests a DATO(B).

The BDP buffer contains UNIBUS data. The DWBUA checks for an address match. If the addresses
do not match, the incoming UNIBUS address and data are temporarily stored within the DWBUA
and the data currently in the BDP buffer is autopurged. Once the autopurge is complete, the
DWBUA issues SSYN. The DWBUA then loads the BDP address register with the address of the
temporarily stored data. The DWBUA stores the data in the appropriate bytes of the BDP buffer,
with the correct mask bits set.

If the addresses do match, the DWBUA first issues SSYN, then stores the data in the BDP buffer. If
the DATO(B) writes the last byte in the buffer, the DWBUA performs a Write-to-VAXBI and marks
the buffer as empty. | ~

CASE 3 - THE BUFFER CONTAINS VAXBI DATA

The UNIBUS master requests a DATI; the buffer contains VAXBI data. The DWBUA checks for an
address match. If the addresses do not match, the buffer is treated as if it were empty. The buffer is
overwritten with the new octaword of VAXBI data (see CASE 1) If the addresses do match, the requested
data is taken from the buffer, placed on the UNIBUS, and SSYN is issued.

The UNIBUS master requests a DATO(B); the buffer contains VAXBI data. The DWBUA treats the
buffer as if it were empty (see CASE 1) |

1.2.3 BYTE OFFSET Bit Set

When the UNIBUS Map Register BYTE OFFSET bit is set, the DWBUA services requests in much the

same way as when that bit is clear. The only exception is that the incoming UNIBUS address is
incremented prior to address matching and storage. The following special cases, however, can occur when

the BYTE OFFSET bit is set.

I-4

o,

CASE 1 - UNIBUS ADDRESS A<3:0> = 1110 (BYTE OFFSET BIT IS SET)

The address is incremented so that A<3:0> = 1111. A word length transaction to this address crosses an

octaword boundary.

1. The UNIBUS master requests a DATI.

If the BDP buffer contains VAXBI data, the DWBUA checks for an address match. If the

addresses match, the DWBUA temporarily stores the last byte of the octaword. If the addresses

do not match, the DWBUA requests a VAXBI octaword READ. When this READ transaction
is complete, the DWBUA temporarily stores the last byte of the octaword.

Once the low byte of data is stored within the DWBUA, the high byte of data is fetched by

incrementing the incoming UNIBUS address at an octaword level, remapping, and requesting a

VAXBI octaword READ for the next higher octaword address. Because the next octaword

address must be remapped, the next UNIBUS Map Register must have the same value in the

DATA PATH SELECT field as the current UNIBUS Map Register. If it does not, data

integrity for all Buffered Data Paths cannot be assured. When the READ transaction is

complete, the first byte of the second octaword is fetched and concatenated with the temporari-

ly stored low byte to form a word of UNIBUS data. This word is placed on the UNIBUS and

SSYN is issued. | |

If the BDP buffer contains UNIBUS data, the DWBUA treats the transaction in a special way.

The DWBUA does not autopurge the buffer as it does in a non-byte offset transaction. Instead,

the DWBUA READ:s a longword of VAXBI data through the Direct Data Path. This longword

of data contains the low byte of the requested word. which is stored internally. Next, the

DWBUA maps the next longword of data. which falls in the next octaword boundary in VAXBI

memory. The corresponding map register must have the same value in the Data Path Sclect

field as the current map register in order 1o assure data integrity. The DWBUA then READ:s

the longword and fetches the high byte of data, which it concatenates to the previously stored

lower byte, forming a word of UNIBUS data. The DWBUA places this word on the UNIBUS

and issues SSYN. Thus, in this special case, the data stored in the buffer remains unchanged.

and the transaction is carried out through the Direct Data Path.

The UNIBUS master requests a DATO.

If the buffer is empty or if it contains VAXBI data, the low byte of the incoming data is written

into the last byte of the buffer, and a Write-to-VAXBI is performed. This generates an

octaword WMCI transaction with only one byte of valid data. If the buffer contains UNIBUS

data, the DWBUA checks for an address match. If the addresses match, the low byte of the

incoming UNIBUS data is written to the last byte of the octaword. and a Write-to-VAXBI is

performed. If the addresses do not match, the buffer is autopurged. When the autopurge IS

complete, the low byte of the incoming UNIBUS data is written to the last byte of the octaword

buffer. A Write-to-VAXBI is performed, wherc only the last byte of the octaword contains

valid data.

Once the low byte has been written to the VAXBI, the high bytc is written into the buffer with

the appropriate mask. The flags arc updated by setting UDIBUF and clearing BDIBUF, the

incoming address is incremented to the next octaword and stored, and SSYN is issued. The

BDP is left in the state it would be if a DATOB had been performed to an octaword-aligned

address with no byte offset.

CASE 2 - UNIBUS ADDRESS A<1:0> = 10 (BYTE OFFSET AND LWAEN BITS ARE SET)

This case is handled similarly to CASE 1, the non-LWAEN case. The only difference is that the multiple

transactions that are generated (as explained above) occur each time a longword boundary is crossed,

rather than at octaword boundaries.

1.2.4 Examples

Figures [-4 through I-8“show the contents of a BDP buffer for various multiple DATO(B) transactions.
Each valid byte of data in the buffer has its corresponding mask bits set; all other mask bits for the BDP

buffer are clear.

UNIBUS (DMA)

(DATO OR DATOB)

xo0[8| A

xo2|D|c

xoa | F| €

x06 ||G

xi0| 4| ¢

xiz| L |k

xta | N | TM

X16:..........:..

IS SENT TO THE VAXBI

pjlc|B| A]| X0

H| G| F | E] X4

LIk |J]| 1] X8

PlO|N]|M]XC

IF NO BYTE OFFSET, THE FOLLOWING

WRITE TO VAXBI

OCTAWORD WRITE

MKV85-0818

Figure 1-4 DATO(B) Through BDP, BYTE OFFSET Clear, Starting at

Octaword Boundary

UNIBUS (DMA) IF NO BYTE OFFSET, THE FOLLOWING

(DATOB) IS SENT TO THE VAXBI

xo [| | ! X0

X02 | | xa

xos | | LIk || 1]xs

xo6 | H | Plo|N|[Mm]xc

xio| s |1

x12 | L | K

xia [N | M

X16:.f.,......;.....

WRITE TO VAXBI

OCTAWORD WMCI

MKVB5-0819

Figure -5 DATOB Through BDP, BYTE OFFSET Clear, Starting at Byte 8

UNIBUS (DMA) IF NO BYTE OFFSET, BUT LWAEN IS SET,
(DATO OR DATOB) THE FOLLOWING IS SENT TO THE VAXBI

x00 [| X0

X02 Blal|l X4 WRITE TO VAXBI

xoa | | X8 OCTAWORD WMCI

x06 | B | XC

X10 o| c

xiz| F|E | xo

xia | | | "| x4 WRITE TO VAXBI

xie| | Fle|o|c[xs ocTaworowwmci

N | XC

MKVES-0820

Figure 1-6 DATO(B) Through BDP, BYTE OFFSET Clear, LWAEN Set

1-7

UNIBUS (DMA)

(DATO)

xoo [8]A

X021 0} C

xos | F|E

X06 | H| G '

X10 | J I

X12] L | K

xie [n TM

xie[p |0

IS SENT TO THE VAXBI

c|le|a

G| F|E

k| J |

o|nN|m

IF BYTE OFFSET IS SET. THE FOLLOWING

X0

X4

X8

XC

X0

WRITE TO VAXBI

OCTAWORD WMCI

BYTE P REMAINS IN BUFFER.

MKVE85-0816

Figure -7 DATO Through BDP, BYTE OFFSET Set

UNIBUS (DMA)

(DATO)

X00

X02

X04

X06

X10

x12| 8| A

X14 | D | C

X16

X0

X4

X8

XC

X0

X4

X8

XC

IF BYTE OFFSET AND LWAEN ARE SET, o

THE FOLLOWING IS SENT TO THE VAXBI ' |

WRITE TO VAXBI

OCTAWORD WMCI

DATA REMAINS IN

BUFFER.

MKVE8S5-0817

Figure I-8 DATO Through BDP, BYTE OF FSET and LWAEN Set

I-8

APPENDIX J

PORT LOCK, RETRY,

The DWBUA has a port lock mechanism to ensure that it processes only one transaction at a time. This
mechanism locks the VAXBI and UNIBUS ports from accepting new transactions until the DWBUA is
able to service another request. While the DWBUA is locked, it sends RETRY to all valid i

ncoming
VAXBI transactions except the STOP command. (The DWBUA immediately sends an ACK response to

the STOP command.) The DWBUA also disables its UNIBUS arbitrator from issuing grants to UNIBUS
devices while it is locked. ‘

The DWBUA is locked during the following four occurencesand sends a RETRY response to all VAXBI

transactions sent to it. SR

1. The DWBUA has accepted a VAXBI transaction; the lock is released when the DWBUA has
~ completed servicing the transaction. If. however, the VAXBI transaction is an IRCI, the
DWBUA sends a RETRY response to all transactions until a UWMCI command is sent to the
DWBUA.

2. A UNIBUS DMA request is granted. The lock is released when UNIBUS BBSY is ncgated by
the UNIBUS master. .

3. The DWBUA issues a VAXBI transaction (such as autopurge or the forcing of an error

interrupt on the VAXBI). The port lock is released when this transaction is completed.

4. The DWBUA is the VAXBI master; the slave VAXBI node responds to its transaction with a
RETRY. The DWBUA then sends a RETRY response to all subsequent incoming VAXBI
transactions, until itst RETRYed master transaction has successfully completed.

J.2 RETRY MECHANISM
The RETRY mechanism reduces the number of RETRY responses sent by the DWBUA

to VAXBI
master nodes. It works by disabling and enabling the UNIBUS arbitrator.

When the DWBUA sends a RETRY response to a valid VAXBI command that it would otherwise accept,

the DWBUA also disables its UNIBUS arbitrator. The UNIBUS arbitrator is enabled again when the
DWBUA. as a slave node on the VAXBI, sends an ACK response to any VAXBI command.

A VAXBI node that receives a RETRY response from the DWBUA should keep requesting the DWBUA
until it receives an ACK response. In this way, the VAXBI node ensures that its transaction will be the
next one serviced by the DWBUA.

J-1

J.3 UNIBUS INTERRUPTS

Interrupts are permitted only from the UNIBUS to the VAXBI.

J.3.1 Interrupt/IDENT Sequence

A BR of any level generates a VAXBI INTR transaction at the same level. The DWBUA does this by
asserting the corresponding BCI INT line. The BIIC then performs the VAXBI INTR transaction.

The DWBUA responds to any VAXBI IDENT that meets two conditions:

1. The DWBUA must have a pending interrupt at the same level, and

2. The VAXBI master’s decoded ID must match the ID in the Interrupt Destination Register
(bb+10).

Figure J-1 is a flow diagram of the IDENT transaction. In the explanation that follows the figure, the
numbered paragraphs refer to the numbers in the figure.

Figure J-2 is a timing diagram of the Interrupt/IDENT sequence. The foilowing assumptions apply:

1. No errors occur during the transaction. B

2. The transaction follows a straight-line path through the flows.

3. No time scale is employed. The diagram indicates relative timing only.

* In this diagram, the device name that appears in parentheses under any waveform is the device that asserts
that signal. |

J.3.2 Passive Release

When some UNIBUS devices become bus master under BR-BG transactions, they drop BBSY and SACK
and never issue an interrupt vector or assert INTR. This is known as a passive release. Passive release

causes the DWBUA to send a zero vector back to the VAXBI, but the DWBUA does not flag an error

interrupt. | | ’

NO EVSx
< RECEIVED

VECTORA

DENT LEVE!

C?

INO

~ SEND BGn 1~
TO UNIBUS

oo

e

v ,

SACK ~
NO _~~ AND INTR

_ RECEIVED

? w !

[ves [ves

OR THE VECTOR

CONTENTS

USE STORED
VECTOR

USE 0"
AS VECTOR _

1

l SEND VECTOR
TO IDENT WITH ‘
READ STATUS

MI
s1

AKRNEx TM

RECEIVED

?

NO ~

1 YES ~ Yves

STORE VECTOR
AT LEVEL "n”

i

TRANSACTION

FINISHED

Figure J-1 IDENT Flow Diagram

MK V850830

J-3

®

O
O

®

O

The DWBUA checks that it has been selected by verifying that it has received an “External Vector

Selected” EV code (EVSx). Receiving this EV code means that the DWBUA had an interrupt
pending at the IDENT level and that the DWBUA adapter’s Internal Destination Register (bb+10)

contains the same decoded ID as the IDENT. The DWBUA then checks for the “IDENT Arb Lost”

EV code to ensure that it has won the IDENT arbitration.

The DWBUA begins to service an incoming IDENT command only after it verifies that it has been
selected for the IDENT and that it has won the IDENT arbitration. If these conditions are not met,

the Interrupt/IDENT transaction is aborted.

The DWBUA determines if it had a previous failed IDENT command at the present IDENT level.

If it did not have a previous failed IDENT command at the present IDENT level, the DWBUA issues

a BG to the interrupting UNIBUS device at the level indicated by the IDENT command.

The DWBUA checks that SACK and INTR have both been received. This indicates that the

interrupting UNIBUS device has given its expected response, placed the interrupt vector on the

UNIBUS data lines, asserted INTR, and then deasserted SACK. The DWBUA issues SSYN and

completes the UNIBUS transaction.

If the interrupting UNIBUS device fails to respond to the BG, the UNIBUS terminator asserts, and
then deasserts, SACK. When SACK is deasserted without the prior assertion of INTR, the DWBUA
detects a SACK timeout. |

The DWBUA continues servicing the IDENT transaction normally, but it uses “0TM as the interrupt

vector. |

@ The DWBUA ORs the received vector with the contents of its Vector Offset Register (bb+724). This
becomes the interrupt vector.

The DWBUA uses the internally stored vector as the interrupt vector.

The interrupt vector is placed on the BCI D lines along with a Read Data Status code.

When the DWBUA receives the “Ack Received for Non-Error Vector” EV code (AKRNEX), the

IDENT has completed properly, and the DWBUA returns to its idle state.

If the DWBUA receives an “Illegal CNF Received for Slave DataTM EV code (ICRSD). the VAXBI
master has not successfully received the IDENT vector.

The DWBUA stores the failed IDENT command vector. This vector will be provided for any

subsequent IDENT command at that particular level.

J-4

J
E
R
O
-
S
B
A

 N
N

~1vis_

——
SNLVLS

-
40123A

4NDvaNASSASa8XV
Suoe

iiiye

8

R

APPENDIX K

MSYN-SSYN

TIME INTERVALS

NOTE

The MSYN- SSYN time intervals listed in Table

K«-»l may change with enhancements to the DWBUA
ption Tm times listed were valid at the time of

puwimfion of this manual.

The following conventions are used in Table K-1.

All transactions listed in brackets ([]) are performed after SSYN is issucd to the UNIBUS

device.

Out-data means thm the BDP buffer contains the UNlBUS DATO data to be sent to the

VAXBI.

In-data means that the BDP buffer contains the UNIBUS DATI data received from the

VAXBI.

Table K-1 MSYN - SSYN Time Intervals

Byte UNIBUS Max Time

Offset UNIBUS Address MSYN - SSYN See

Path Bit Command <3:0> Data Path Status VAXBI Transaction (us) Note

DDP O DATI ANY N/A LW READ 2.2

DDP O DATIP ANY N/A LW IRCI 2.2]

DDP 0 DATO ANY N/A LW WMCI or LW UWMCI 2.2 2

DDP O DATOB ANY N/A LW WMCI or LW UWMCI 2.2

DDP | DATI ANY N/A LW READ, LW READIf A I1=1 5.5 3
DDP | DATIP ANY N/A N/A SSYN timeout

DDP | DATO ANY N/A LW WMCI, LW WMCI if A I=1 6.0 3

DDP | DATOB ANY N/A LW WMCI 4.0

BDP O DATI ANY Empty OW READ 4.1 4

BDP O DATI ANY In-data & match No BI transaction 1.0

BDP O DATI ANY In-data, no match OW READ 4.1

BDP O DATI ANY Out-data . OW WMCI, OW READ 7.6

BDP 1 DATI Ot C Empty OW READ 4.6

BDP | DATI O0to C In-data & match No Bl transaction 2.6

BDP 1 DATI Ot C In-data, no match OW READ | 4.7

BDP 1 DATI Ot C Out-data OW WMCI, OW READ 9.0

BDP | DATI E Empty OW READ, OW READ 9.2

BDP | DATI E In-data & match OW READ 6.1

BDP | DATI E In-data, no match OW READ, OW READ 9.2

BDP | DATI E Out-data LW READ, LW READ 7.2 5

BDP X DATIP ANY N/A N/A SSYN timeout

BDP 0 DATO ANY Empty or in-data oW WMCI] 1.2 7

BDP O DATO ANY Out-data & match [OW WMCI] 0.9

BDP O DATO ANY Out-data, no match OW WMCI, [OW WMCI] 5.2

BDP | DATO OtoC Empty or in-data No Bl transaction 2.3

BDP 1 DATO Ot C Out-data & match No BI transaction 2.3

BDP | DATO OtoC Out-data, no match OW WMCI 6.2

BDP | DATO E Empty or in-data oW WMCI 6.3

BDP | DATO E Out-data & match OW WMCI 6.3

BDP | DATO E Out-data, no match OW WMCI, OW WMCI 10.1

BDP O DATOB ANY Empty or in-data [OW WMCI] 1.2

BDP O DATOB ANY Out-data & match [OW WMCI] 1.0

BDP O DATOB ANY Out-data, no match OW WMCI, [OW WMCI] 50

BDP | DATOB ANY Empty or in-data [OW WMCI] 2.3

BDP | DATOB ANY Out-data & match [OW WMCI] 2.4

BDP | DATOB ANY Out-data, no match OW WMCI, [OW WMCI] 6.1

K-2

NOTES FOR TABLE K-1:

(1

(6)

(7)

A DATIP command is valid only through the Direct Data Path. If a DATIP is attempted through a
Buffered Data Path, or through the Direct Data Path with the BYTE OFFSET bit set, the UNIBUS
command is ignored and the DWBUA does not issue SSYN (causing an SSYN timeout). During this

time. all VAXBI transactions to the DWBUA receive a RETRY response until the UNIBUS device
negates BBSY.

If a DATIP command is not followed by a DATO(B), the DWBUA sets the UIE bit of the BUACSR
and forces an error interrupt, if interrupts are enabled.

A UNIBUS DATO(B) through the Direct Data Path translates to a longword WMCI transaction

with the mask bits set for each valid data byte.

The DWBUA performs two longword transactions on the VAXBI for a word length transfer through
the Direct Data Path if both the BYTE OFFSET bit and UNIBUS address bit A<!> arec set.

A UNIBUS DATI command through a Buffered Data Path results in an octaword READ of VAXBI

space, if the requested data is not in the BDP buffer. If the UNIBUS data is stored in the BDP buffer,

however. the buffer must be purged by performing an octaword WMCI on the VAXBI before
reading the data from the VAXBI. The entire octaword is loaded into the buffer; subsequent accesses

within the octaword through the same Buffered Data Path cause the DWBUA to fetch the data from

the buffer. with no VAXBI transaction requested.

This special case is treated differently from other Buffered Data Path transfers to avoid delay
 in

issuing SSYN. In this case, the low byte of the requested DATI word is fetched by performing
 a

longword READ through the Direct Data Path. The high byte is fetched from either the current BDP
buffer or the VAXBI with a longword READ through the DDP. The currcnt BDP status remains

unchanged during this transaction.

A DATIP transaction is valid only through the DDP.

Data for a DATO(B) command through a BDP is stored until the buffer is full. The DWBUA then

performs a VAXBI octaword WRITE (nonmasked) if the buffer contains an entire octaword of valid
data from the UNIBUS device. A VAXBI octaword WMCI is performed if the buffer contains less

than a complete octaword of valid data.

APPENDIX L
DWBUA PARITY CHECKING

The DWBUA uses its 32-bit internal RAM as an internal storage source. When this RAM is updated, the
newer version of the DWBUA stores odd parity for the updated data in a separate RAM. The DWBUA

checks for a parity error every time the internal RAM is read, thus verifying data integrity. This appendix
describes the DWBUA adapter’s parity checking and parity error reporting scheme.

L.2 INTERNAL RAM

The DWBUA adapter’s internal RAM contains the UNIBUS Map Registers, BDP buffers, vector

registers, and other DWBUA internal registers. The internal RAM is read during such operations as: a
VAXBI-requested READ of a DWBUA internal register; a UNIBUS-initiated transfer, which requircs

reading of a UNIBUS Map Register; a data transfer involving reading a BDP buffer; and any other
operation that requires the DWBUA to read the contents of its internal RAM. A parity error can occur

during any of these operations. The DWBUA handles a parity error slightly diffcrently in each case.

In the newer version of the DWBUA, which is capable of detecting parity errors, the DWBUA Control
and Status Register contains these two additional bits:

PARITY (WIC, DCLOC) This bit is set if the DWBUA found a parity error while
ERROR reading its internal RAM.
<29> |

¢

PARITY (R/W, DCLOC) While this bit is set, the DWBUA does not generate any

DISABLE L parity when writing to its internal RAM. This causes a pari-
<21> | | ty error when the same IRAM location is read later. This bit

o is for use in Digital Equipment Corporation diagnostics only
and should not be used for any other purpose.

When the DWBUA detects a parity crror while rcadiné its internal RAM, it asserts the PARITY ERROR
bit in the BUACSR and sends an error interrupt to the VAXBI bus if interrupts arc cnabled. The following
sections describe the other effects of a parity error detection during various operations.

L.3.1 Parity Errors on UNIBUS Map Registers |

A DWBUA UNIBUS Map Register cnables mapping of an 18-bit UNIBUS address to the corresponding
32-bit VAXBI address. If a parity error occurs duringa UNIBUS Map Rcgister READ, it can causc the
DWBUA to transfer the data to a different location from the actual targeted address. H

ence, the
DWBUA does not initiate the corresponding VAXBI transfer if it detects a parity error while reading a
UNIBUS Map Register.

L-1

When a UNIBUS device initiates a transfer, the DWBUA reads the corresponding UNIBUS Map

Register before servicing the UNIBUS data transfer. If a parity error occurs during this time, the
DWBUA withholds an SSYN, causing the UNIBUS device that initiated the transfer to detect an SSYN
timeout. The DWBUA then proceeds to report a parity error to the VAXBI. The data transfer associated
with the error is not completed.

The UNIBUS Map Register may also be read when the DWBUA WRITEs or READs data during a
DATO(B) or DATI transfer through a Buffered Data Path. If a parity error occurs while the UNIBUS
Map Register is being read, the DWBUA does not start the VAXBI transfer. The DWBUA withholds
SSYN to the UNIBUS, if SSYN has not been prevmusly issued, causing an SSYN timeout to the
UNIBUS device. The DWBUA then reports a parity error to the VAXBI. The DWBUA also clears the
UDIBUF. BDIBUF, and STRT—O flags for the current Buffered Data Path, indicating that thc BDP
buffer is empty. ,

L.3.2 Parity Errors on BDP Buffers

The DWBUA BDP buffers are in the internal RAM. These buffers are read under the follcwmg
condmons

1. The BDP buffer contains the VAXBI data that is requestcd by the UNIBUS device-initiated
DATI transfer. If a parity error occurs while this datais being read from the BDP buffer, the
DWBUA does not send the data to the UNIBUS device. The DWBUA withholds SSYN,
causing an SSYN timeout. The DWBUA then reports a parity error to the VAXBI.

2. When a BDP buffer is full or has been autopurged. the DWBUA initiates an octaword WRITE
(WMCI) transfer on the VAXBI. The DWBUA reads its internal RAM for each longword of

data to be shipped. If a parity error occurs during the read of any one of the four longwords of
data, the DWBUA completes the VAXBI transfer with the data that has the parity error. The
DWBUA then reports the error to the VAXBI. The DWBUA clears its BDP flags, indicating
that the Buffered Data Path is clean. The DWBUA may withhold SSYN if it has not been
previously issued, causing an SSYN timeout. Hence. it may not be possible for the VAXBI
processor to detect which data in the VAXBI memory has a parity error.

L.3.3 Parity Errors on Vector Registers

The DWBUA may receive an ICRSD event code when it ships vector data from the UNIBUS during an
IDENT command. When this happens. the DWBUA stores the failed vector in its internal RAM.

Subsequently, the next time the DWBUA receives an IDENT command at the same level, the DWBUA
uses the stored data as the vector. If the DWBUA detects a parity error during the reading of the failed
vector, it sends zero data, a READ DATA status code, and an ACK response to the VAXBI master which

initiated the IDENT command. This should be treated as a passive release by the IDENTing master. The
DWBUA then reports a parity error as specifiedin Section L.3.

L.3.4 Parity Errors on DWBUA Internal Registers
When the VAXBI master device READs (RCI, IRCI) from a DWBUA internal register, the DWBUA

reads the data from the internal RAM and sends the data to the VAXBI master device with a READ
DATA status code and an ACK response. If the DWBUA detects a parity error while reading the data
from the internal RAM, it sends zero data, a READ DATA SUBSTITUTE Read Status code, and an
ACK response. The DWBUA then reports a parity error as specified in Section L.3.

L-2

L4 PARITY LOGIC TESTING
The DWBUA self-test tests most of the logic associated with parity generation and detection. It forces bad
parity for each location of the internal RAM and ensures that the DWBUA detects a parity error. The

DWBUA cannot, however, perform an octaword WRITE (WMCI) transfer on the VAXBI during its self-
tcst..rT‘;\is means that the logic that detects a parity error during one of the four data cycles cannot be
veriiea,

The PARITY DISABLE bit in the BUACSR is a special bit for diagnostic purposes. It disables the parity

generation logic. Assertion of PARITY DISABLE allows the DWBUA Level 3 diagnostic. EVCBB, to
force a parity error and to verify that the DWBUA detects the error. EVCBB forces a parity error in chch
of the functions listed under Section L.3 and verifies that the DWBUA responds appropriately. EVCBB

also forces a parity error during the octaword WRITE (W MCI) command on one of the longwords of data
and verifies that the DWBUA has detected the parity error and reported the error appropriately.

SO

oo

INDEX

A

Access of unused address, E-2

ACK, defined, B-1

Address match, defincd I-3

Address processor, 4-3

Address space

access of unuse

DWBUA, 3-3

system, 3-1

Address translation, UNIBUS to VAXBI, 3-23
Autopurge, I-3

defined, B-1

BAD bus, 4-3

BAD, defined, B-1

BADBDP bit, 3-17, 4-21

Base address

calculation, 3-3

defined, B-1

bb

calculation of, 3-3

defined, B-1

BBSY

defined, B-1

timeout, 4-7

BCI bus, 4-3

BCI Control Register, 3-4, 3-12

initial state.. H-1

BDCST 4‘10 4~ll

defined, B-1

BDIBUF, 3-21, I-2, I-3
BDP bus, 4-3

BDP, defined, B-1

BI AC LO L signal, 3-25

BICSR SST bit, 3-25

BIF bit, 3-16, 4-23, 4-29

BIIC, 4-2

BIIC-specific dcvucc mgmsters, 3-4, 39 to

3-14 ,

defined, B-1 ,

Black-out, VAXBI, 3w25

Block diagram, 4-1

BR interrupts, F-3

Brown-out, VAXBI, 3~25

BUACSR, defined, B-1

BUAEIE bit, 3-17

Buffered Data Path, 1-1, 3-21, 3-27, 3-28,

4-17, 4-20 to 4-22, -2 to I-8

address register, 1-2

BDP 6 and 7, E-3

buffer, 3-22

Buffered Data Path space, 3-5, 3-23

Bus Error Register, 3-4

initial state, H-1

Bus loads, 1-2, 2-24

BYTE OFFSET bit, 3-24, 3-27, I-4 to 1-6

C

Current requirements, -2

D

Data length, 3-28

Data Path Control and Status Registers, 3-3,

3-22

initial state, H-2

Data path gate array, 4-2

DATA PATH SELECT field, 3-22, 3-24

" DATI, defined, B-1

DATIP

defined, B-1

through Buffered Data Path E-3

DATO(B), defined, B-1

DCLOC, defined, 3-6

DDP, defined, B-1

Device Type Register, 3-4

initial state, H-1

Direct Data Path, 1-1, 3-22, I-1, I-2

DMA transfer, 3-38

DMA, defined, B-2

DPCSR, defined, B-2

DPSEL bit, 3-22

DWBUA

address space, 3-3 to 3-24

busy, 4-8, 4-14

components, 2-1, 2-2

defined, B-2

hung, 3-27

initialization, 3-25

internal registers, 3-5, 3-15 to 3-24, 3-28

access of unused, J-1

improper use of, E-2

INDEX-1

DWBUA (Cont)

product description, 1-1

responses to UNIBUS-to-VAXBI transactions,
4-14, 4-15 :

responses to VAXBI-to-DWBUA transactions,
4-4 |

responses to VAXBI-to-UNIBUS transactions,
4-7 to 4-9

specifications, 1-2

DWBUA Control and Status Register, 3-3, 3-16,

3-17
d

initial state, H-2

DWBUA module installation, 2-7

E

ENDING ADDRESS field, 3-11

Ending Address Register, 3-4, 3-11

initial state, H-1

ERR bit, 3-16

Error

during VAXBI transfer, I-1

in UNIBUS-to-VAXBI transactions, E-2, E-3

in VAXBI-to-UNIBUS transactions, E-1, E-2

interrupt, 3-16

Error Interrupt Control Register, 3-4, 3-7

initial state, H-1

EVCBB, 2-8, 2-9

EX VECTOR bit, 3-13

Example transactions

DATI using a Buffered Data Path, 4-24, 4-25

DATO using a Buffered Data Path, 4-22, 4-23

DATO(B) using the Direct Data Path, 4-18,
4-19

VAXBI READ of UNIBUS data, 4-12, 4-13

VAXBI WRITE to a UNIBUS Map Register,

4-6, 4-7 '

F

Failed UNIBUS Address Register, 3-5, 3-19

initial state, H-2

Flags

BDIBUF, I-3

STRTO, I-3

UDIBUF, I-3

Flaky UNIBUS device, 2-16

FORCE bit

Error Interrupt Control Register, 3-7

User Interface Interrupt Control Register,

3-13

Force INPINTR/STOP Command Register, 3-4

initial state, H-1

Force IPINTR/STOP Destination Register, 3-4

initial state, H-1

FUBAR, defined, B-2

G

General Purpose Registers, 3-4, 3-14

initial state, H-1, H-2

Grant continuity cards, 2-16

H

Hung DWBUA, 3-27

Hung UNIBUS, 3-28

IDENT

defined, B-2

Interrupt/IDENT sequence, J-2

IDENTEN bit, 3-12

IEN field, 3-14, 3-17

lllegal Buffered Data Path, E-3

lllegal mask bits, E-1

IMR bit, 3-17

Initialization

of DWBUA, 3-25

of UNIBUS, 3-25

Installation, 2-3 to 2-7

INTAB bit, 3-7

INTC bit, 3-7

Interlock, defined, B-2

Intermittent operation of UNIBUS device, 2-16

Internal error number, 3-14, 3-17 |

Internal RAM, 4-3

Interrupt

abort, 3-7

complete, 3-7

destination, 3-8

forced, 3-7

level, 3-7

sent, 3-7

vector, 3-7, 3-13

INTERRUPT DESTINATION field, 3-8

Interrupt Destination Register, 3-4. 3-8

initial state, H-1

Interrupt/IDENT sequence, J-2

INTR, defined, B-2

INVAL., defined, B-2

Invalid map page, E-3

INDEX-2

Invalid VAXBI commands, E-2

IOADR bit, 3-24

IPINTR, defined, B-2

IPINTR Mask Register, 3-4

initial state, H-1 ,

IPINTR Source Register, 3-4

initial state, H-1

IRAM, 4-3

defined, B-2

IRCI

defined, B-2

DWBUA response, 4-8

IRCI/JUWMCI, 3-28, 4-8

L

LEVEL field, 3-7

Longword access enable, 3-24

LWAEN bit, 3-24 |

LWAEN, defined, B-2

M

M7166 installation, 2-4

M9313 installation, 2-4

Macrodiagnostic, 2-8, 2-9

test descriptions, D-1 to D-3

Master port control, 4-2

MBZ, defined, B-2

Microcode control, 4-3

Microdiagnostic Register dump, 3-17

Microdiagnostic Registers, 3-5, 3-21

initial state, H-2

MSYN, defined, B-2

MSYN-SSYN time intervals, K-1 to K-3

N

NO ACK, defined, B-2

Node

see VAXBI node

Node ID, 3-3

defined, B-2

Node space, 3-2, 3-3 to 3-5

defined, B-2

Node space addresses, G-1

Nonexistent registers, 3-29

NPR transfers, F-3 ~

0“

Octaword transfers, E-1

Octaword, defined, B-2

ONE bit, 3-17

P

Paddle card installation, 2-4

PAGE FRAME NUMBER field, 3-24

Parity checking, L-1

Parity errors

on BDP buffers, L-2

on DWBUA internal registers, L-2

on UNIBUS Map Register, L-1

on vector registers, L-2

Parity logic testing, L-2

Passive release, 3-38, J-2

Port lock, J-1

defined, B-3

Power requirements, 1-2

Purge, 3-22

defined, B-3

PURGE bit, 3-22

Q

Quadword transfers, E-1

R

R/W, defined, 3-6

RCIl, defined. B-3

READ

defined, B-3

DWBUA response, 4-8

during UNIBUS initialization, 3-25

of DWBUA internal register, 4-4

of UNIBUS data, 4-12, 4-13

of unused DWBUA register space, 4-4

REGDMP bit, 3-17

Register bit characteristics, 3-6

Registers

see also individual register names

BCI Control Register, 3-12

Data Path Control and Status Registers, 3-22

DWBUA Control and Status Register, 3-16,
3-17

INDEX-3

Registers (Cont)

Ending Address Control Register, 3-11

Error Interrupt Control Register, 3-7

Failed UNIBUS Address Register, 3-19

General Purpose Registers, 3-14

Interrupt Destination Register, 3-8

Microdiagnostic Registers, 3-21

Receive Console Data Register, 3-15

Starting Address Register, 3-10

UET Control Register, F-1, F-2

UNIBUS Map Registers, 3-23, 3-24

User Interface Interrupt Control Register,

3-13

VAXBI Failed Address Register, 3-20

Vector Offset Register, 3-18

RESERVED data length, 3-28

RETRY, J-1, J-2

defined, B-3

RO, defined, 3-6

SACK, defined, B-3

SC, defined, 3-6

Self-test

failure, 2-12

test descriptions, C-1 to C-3

SENT bit. 3-7

Slave port control, 4-2

Specifications, 1-2

SSYN

defined, B-3

timeout, 4-8

SSYN timeout error, 2-15

STALL, defined, B-3

STARTING ADDRESS field, 3-10

Starting Address Register, 3-4, 3-10
initial state, H-1

STOP, defined, B-3

STOPC, defined, 3-6

STOPEN bit, 3-12

STRT—O, 3-21,1-2,1-3

System address space, 3-1 to 3-3

System 1/0 space, 3-2, 3-3

T

T1010 installation, 2-7

Timing diagrams

DATI, 4-30 ’

DATI with autopurge, 4-29

DA4T§)8(B) through a Buffered Data Path,

Interrupt/IDENT, J-5

VAXBI-to-UNIBUS READ, 4-27

VAXBI-to-UNIBUS WRITE, 4-26

Transactions |

UNIBUS-initiated, 1-1

VAXBI-initiated, 1-1

Transition header installation, 2-5

Troubleshooting procedures, 2-9 to 2-17

U

UA, defined, B-3

UBPUP bit, 3-14

UNIBUS initialization, 3-25

UCSREN bit, 3-12

UDIBUF bit, 3-21, I-2, I-3

UET, F-1 to F-3

UET Control Register, F-1, F-2

UET installation, 2-4

UIE bit, 3-17

UNIBUS

address

highest, 3-11

lowest, 3-10

nonexistent, E-2

translation to VAXBI address, 3-23

arbitrator |

defined, B-3

defined, B-3

devices, 3-28

hung, 3-28

initialization, 3-25

interlock error, 3-17

interrupts, J-2 to J-5

power down, 3-27

power up, 3-14

UNIBUS AC LO signal, 3-25

UNIBUS ADDRESS field, 3-21

UNIBUS address transceivers, 4-2

UNIBUS data transceivers, 4-2

UNIBUS devices, 1-2, A-1l

UNIBUS exerciser terminator, F-1 to F-3

UNIBUS failure, 2-17

INDEX-4

UNIBUS Map Registers, 3-5, 3-23 to 3-27,
4-6, 4-7

allocating, 3-27

initial state, H-2

invalid, 3-17 |

mapping to VAXBI 1/O space, 3-27

UNIBUS port control, 4-2

UNIBUS power outage, 3-28

UNIBUS quiescent levels, 2-16

UNIBUS-to-VAXBI transactions, 4-14 to 4-25

DWBUA responses, 4-14

Unimplemented registers, 3-29

UPI bit, 3-17, 3-25

User Interface Interrupt Control Register,

3-4, 3-13

initial state, H-1

USSTO bit, 3-17

UWMCI

defined, B-3

without preceding IRCI, 4-9

Vv

VALID bit, 3-24, E-3

VAXBI

defined, B-3

error, 3-28

failure, 3-16, 4-15

required registers, 3-4, 3-6 to 3-8

VAXBI address latch, 4-2

VAXBI Control and Status Register, 3-4

initial state, H-1

VAXBI data and address transceivers, 4-2

VAXBI Failed Address Register, 3-5, 3-20

initial state, H-3

VAXBI node, defined, B-3

VAXBI-to-DWBUA commands, 4-5

VAXBI-to-DWBUA transactions, 4-4 to 4-7

VAXBI-to-UNIBUS commands, 4-10, 4-11

VAXBI-to-UNIBUS transactions, 4-7 to 4-13

VECTOR field, 3-7 ,

Vector Offset Register, 3-5, 3-18

initial state, H-2

VOR, defined, B-3

WIC, defined, 3-6

WCI, defined, B-3

Window space, 3-2, 3-3, 3-10, 3-11

defined, B-4

Window space addresses, G-1

WMCI, defined, B-4

WO, defined, 3-6

WRITE

defined, B-4

illegal mask, E-1

to a UNIBUS Map Register, 4-6, 4-7

to DWBUA internal register, 4-4

to DWBUA read-only register, 4-4

to READ-ONLY bit, E-2

to READ-ONLY register, J-1

to unused DWBUA register space, 4-4

Write Status Register, 3-4

initial state, H-1

Write-to-VAXBI, defined, I-3

INDEX-5

L

s

READER'S COMMENTS

(a) Installation | (c) Maintenance

(b) Operation/use (d) Programming

2. Did the manual meet your needs? Yes[| No [] Why?

(e) Training

(f) Other (Please Specify.)

3 ; |

» N

Postal (ZIP) code (

Job Title Telephone Number

THANK YOU FOR YOUR COMMENTS AND SUGGESTIONS

Memdonmthfisfm:oouhrmwum. Contact your representative at Digital Equipment Corporation or (in

©1988 by Digital Equipment Corporation. VWO

FOLD HERE AND TAPE DO NOT STAPLE

NO POSTAGQGE

NECESSARY

- IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 "MAYNARD, MA

POSTAQGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION

Educational Services/Quality Assurance

12 Crosby Drive BUO/EO8

Bedford, MA 01730-1493

mmmmwwmmmmwwmmmmmmmmmmwmmmmmmwmmmmwmmmwmmmmmmmmw
* .

FOLD HERE AND TAPE. DO NOT STAPLE

