EK-DWBUA-TM-004

DWBUA
UNIBUS Adapter
Technical Manual

Prepared by Educational Services
of
Digital Equipment Corporation

Ist Edition, January 1986

© Digital Equipment Corporation 1986
All Rights Reserved

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

Printed in U.S.A.

This document was set on a DIGITAL DECset Integrated Publishing System.

The following are trademarks of Digital Equipment Corporation:

dlijglital| I Scholar

DEC MASSBUS ULTRIX
DECmate PDP UNIBUS
DECset P/OS VAX
DECsystem-10 Professional VAXBI
DECSYSTEM-20 Rainbow VMS
DECUS RSTS VT

Work Processor

PREFACE

PART 1

CHAPTER 1

e G— — G— G—
wivivii =
W) =

CHAPTER 2

24

24.1
24.2
243

PART I

CHAPTER 3

N N v W W v
R N il s A e
N—

LWWWLWWWWWWWWW W
Wb Wi —

CONTENTS

Page
INSTALLATION
INTRODUCTION
PRODUCT DESCRIPTION w....ooiiniimeiiiminninissmssss s 1-1
SPECIFICATIONS........ocoiiiummmsmsassssetiss sttt s 1-2
BUS LOAAING.....ooovueereerereecassrinmsussassess s sb s 1-2
POWET REQUITEIMIENLS ...ooovuiiuneisiesemsasisisssisssasssssssess s 1-2
CUPTENt REQUITEMENTS.......oveeeveressrisseessissersesasssssse s e 1-2
SUPPORTED UNIBUS DEVICES ... s 1-2
INSTALLATION AND TEST
OPTION COMPONENTS ..ot st ssbsan s s 2-1
INSTALLATION L..ouitieeieimectecansassiessssi s sss s s s s s s 2-3
TEST .oooeieeeriennnrnsenens eeeaseaseaeraeiast Aot RS 2-8
Self-Test Microdiagnostic Program ..o 2-8
Macrodiagnostic PrOBIAMc.ceveusiimnmimmmusisusimssssssssssnisssis s 2-8
TROUBLESHOOTINGcoucuiuiunrinmnsssessesssissssssisssssss s ssssans st eness 2-9
Tools and Test EQUIPMENTcuivrimiinmmeisimincininnnss s 2-9
PLOCEAUIC.eeeveceessesessessssseaeesiaesasbsa s s st s sa s SEAs S sas 2-9
HEIPTUL HINLS .ooorveeierrimnrecnssessissssssisss s 2-1
TECHNICAL DESCRIPTION
PROGRAMMING
SYSTEM ADDRESS SPACE ...t 3-1
Address SPace DISTIDULONcvcuuecrurianrimsrisssessssssnsimsss s 3-1
SYSIEM 1/0 SPACE ..ocvvrrnirrirmassssssisismsssssssssssisissss s e 32
DWBUA ADDRESS SPACEcoovimmureneusimnimimssississnsssssanssis s s 33
Register Bit CRATACIEFISHICS.currrumsnresmssssnmssssssimsses s 3-6
VAXBI Required REGISIETSooviueimmsiuniiimiinisseissinsimsinssmssss s 3-6
Error Interrupt Control REGISIETcovuimmmiriniiniiniicininnsss e 3-7
Interrupt Destination REISIETcouriivrmiiinsicnmiimisississni s 3-8
BIIC Specific Device REBISIETS..........vurimmreimeciiiimminsisssssssssns s 39
Starting Address REBISIENcouiurimimmsmissimsisnnisis s 3-10
Ending Address REGISIETc.cviimmmmmsemmesssmmnmiissinssinssssssssmssss s 3-11
BCI Control REGISIET ..c.ccuveviuirrrnemssserssissmsisassss st 3-12
User Interface Interrupt Control RegiSter ..o 3-13
General Purpose REGISIErS........coevueuniimminmscisiissinisi s 3-14

il

[% I

ARRRARLLL
W N —

WWwwwwuwwwuww

CHAPTER 4

W N —

W N =

N N N N N N N N N Rl
Wb ————

HW N -

CONTENTS (Cont)

Page

DWBUA Internal REGISLETS........cocevuirieieeiecreniinenree s nee e cte e estesre s veseessee s 3-15

Receive Console Data Register...........cccoceevviniiiininicnnnnen. RO 3-15

DWBUA Control and Status Register............cccovueveenrnvnnrrnnrinreseeerennns 3-16

Vector Offset REISIET.......coooiiiiiirenectinnereesniesieesene e essesnesseseens 3-18

Failed UNIBUS Address RegISterccceeievirireinenienrenreceeceecveennne 3-19

VAXBI Failed Address RegISter..........ccoucvuevirverinvenirenenreneenreeenaeseenns 3-20

Microdiagnostic RegISters.........cocuivviiriniieinininiiiriiciiieceenrccnneas e 3-21

Data Path Control and Status Registerscccceceeveivinecenrecennnenn. veee 3-22

Buffered Data Path Space..........ccccocieviiieineeninenenieccere e 3-23

UNIBUS Map RegIStErs.......c.ooiiiiiiiiiiicieiencntee e sae e svaeaeanns 3-23

INITIALIZATION ...ttt cstese et ae e e ssasaas e e sae st s s e e e e enenaens 3-25

DWBUA Hardware InitialiZationccccvviviiiiinieeiniiieioneeeeecseesessensesssnnenes 3-25

UNIBUS Initializationccccoceeireeneninrintnientiteceesneesesesaessessessesee e seessessens 3-25

PROGRAMMING CONSIDERATIONS ... nns 3-25

UNIBUS Map REISLErSccovuimiiiiiiiiiiiiiniecittcreereee e 3-25

Contiguous ALOCAtION.........cccueriieieviinirirnieennreseseesae s s raessesaesaeessenas 3-27

Mapping to VAXBI I/O Space........c.ccceerreirmmineiniiiinieeneeeeisesansenans 3-27

BYTE OFFSET Bit.......cciiiiiieiete ittt steesnestesnes e s svee s enees 3-27

UNIBUS PoWer DOWNL.......ccooiiieiieiniinrinieieseseestessensessessessasseseessssasnssessens 3-27

Use of Buffered Data Paths............ccccoiiiimiiniiiience e 3-27

VAXBI Access to the DWBUA Internal Registerscccocoevinviecinveinnenen. 3-28

Data Lengthcooomiiiiiiiicecectcie ettt r et s 3-28

IRCI/UWMCT COMMANGS......cceeirrienreireinreeineesseensresssesesessessessseesseerssesssessees 3-28

UNIBUS DATIP ...ttt cceteaesessessessessesbe st s s e st aseseaenesaesaens 3-28

Hung UNIBUS ...ttt sssetsneseeessesessesesnss 3-28

VAXBI BUS EFTOr ...c..iiiiiiiiinieeeecenecie e sssessessaessaeesressaessesssesssassnnesanens 3-28

UNIBUS DEVICESooveiiviiiiiieieneene ettt et ssessessesss e ssesaesssessessesasessenseens 3-28

Access to Nonexistent RegIStErs.........ccccoiviiiiieenciininiininie et seeessaeeenne 3-29
FUNCTIONAL DESCRIPTION

INTRODUCGTION ...ttt sse s esaessesaesnsssesesaesseresssssesaessssassnnes 4-1

BLOCK DIAGRAM ...ttt st sr e ssese e sn e ssesass s s e ssnesaesessasssenessesnen 4-1

TRANSACTIONS ...ttt sree e s e saeas e ssas s sb s sss b e st e s sa s b s ebans 4-4

VAXBI-10-DWBUA Transaclions...........cccoveeeeerveesuescensieesssesssesssesssesoseessessseenn 4-4

DWBUA Responses to VAXBI-to-DWBUA Transactions....................... 4-4

VAXBI-to-DWBUA Commands............cccoveiruriviinieenieninninnnnecninni. 4-5

Example: VAXBI WRITE to a UNIBUS Map Register...........c.cccceuee. 4-6

VAXBI-10-UNIBUS Transactionsc.cccoieiureeienneeneeneeeneoniieninnessseessessaens 4-7

DWBUA Responses to VAXBI-to-UNIBUS Transactions..............cc....... 4-7

VAXBI-to-UNIBUS Commands..........c.cceevueeviennieniurencinceniennicenrcnaeennees 4-10

Example: VAXBI READ of UNIBUS Data..........cccoeuviiiiniiincnnnne 4-12

UNIBUS-t0-VAXBI Transactionsccccoveeeiuenenienninniiirinessensessesseees 4-14

DWBUA Responses to UNIBUS-to-VAXBI Transactions..................... 4-14

UNIBUS-to-VAXBI Commands Through the Direct Data Path........... 4-16

Example: DATO(B) Using the Direct Data Path.............cccooveennnn. 4-18

UNIBUS-to-VAXBI Commands Through a Buffered Data Path.......... 4-20

iv

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

mmmmmmmmmmm
MR ==
W N - AWV S WK —

APPENDIX F

N —

mmmmmmmT
N =

bbb

CONTENTS (Cont)

Example: DATO Using a Buffered Data Path
Example: DATI Using a Buffered Data Pathcooveevcceiiicnnninininnnnns 4-24

REPRESENTATIVE TIMING DIAGRAMS ... 4-25

DWBUA-SUPPORTED UNIBUS DEVICES

GLOSSARY

SELF-TEST MICRODIAGNOSTIC TESTS

MACRODIAGNOSTIC TESTS

ERROR CONDITIONS

VAXBI-TO-UNIBUS TRANSACTIONS ...t E-1
Quadword and OCtaword TranSIErs......cocwwwuumuseemmmmssissnimsssssisssss s sssannsseees E-1
BIIC Error EVENT COeS...c.cceuimmmnmnismsasnsssismasismssssmsssesssssnsassssssssisssssssses E-1
MASK VAIUESvovececviaeneressesessuesssssssssssessnsssssessssssaensnsnssssassssstesssssanssssasssssnsess E-1
Nonexistent UNIBUS AdAress...........corememsueesisissnsmsmsisnsesssussinnismissssnsssnss E-2
Invalid VAXBI COMMANA........coeiiirmimmmminnssscusessussasnssnsmssnsssssssssassassssssasasssseees E-2
Improper Use of 2 DWBUA REGISIEToovivmsicnnnmasssismnessnisssssensnisessninseeees E-2

UNIBUS-TO-VAXBI TRANSACTIONScoimiinmmnmimenssnssiiiisssessseieces E-2
VAXBI Error in UNIBUS-Initiated Transfer.........ooiinnnnicnninncinnincnes E-2
Tliegal Map ENIEs.....covcueeuueceussniimsnnssmssssssssansssssinssssnssssssssssassssessessss s sesss E-3
Tliegal UNIBUS TranSaCtion........c.eccusseesesusssssmssssesssssssimssssssissssssssssessusssssanssss E-3

UNIBUS EXERCISER TERMINATOR

UNIBUS EXERCISER TERMINATOR DESCRIPTION ...cooooviemmsiimnniiinnenneee F-1

UNIBUS EXERCISER TERMINATOR REGISTERS ...cocovvivmirmniiinnnsinniscninnns F-1
Control Register FOIMAL.........cooviiiiniicimnisssisissnssssssssssinssnsn s F-1
Control Register Bit DESCIIPLONSccvcuriunimminmmnissncsssinsssisrssnssies s F-2

NPR DATA TRANSFERS ..ottt ssssscesessens F-3
UET WRITE ..ottt sesssse s st s st s s s ssses F-3
UET READ ..ottt sseesiesssas s sasssss st sss s s s s s sssss s s assassaes F-3

BR INTERRUPTS ...oootiierteiercmeassamansine s ssssesss s sassassass s s s s s snssnsceses F-3

APPENDIX G NODE SPACE AND WINDOW SPACE ADDRESSES

APPENDIX H REGISTER INITIAL STATES

APPENDIX 1

RN NN -
HWN —

APPENDIX J

e
NEREREVES
N o=

APPENDIX K

APPENDIX L

reeFcEeE e
rLiv—

rLbwbbib=

INDEX

CONTENTS (Cont)

Page
DATA PATH OPERATION
DIRECT DATA PATH.......critctniecnsennsncsnssissnisssisssssssesenssnsnsesesesesessessssnnes I-1
BUFFERED DATA PATH..........ccccccuuc.. resesarsusseanssnsisssisisinsaonasasensnsorersnssereion I-2
DEfINILIONScoceirreiirinininriseeiisistiseesisessnsssssssssasssssssssssnasnsssesssssessssessesseseensans I-3
BYTE OFFSET Bit Clear I-4
BYTE OFFSET Bit Set.........ccoivvintinntinnnnecnnreninsesessesssessssssessesessssesessessssssns I-4
EXAMPIESooveeririniiniiiniiiiitiseesd s tsasssssesssssssssssasasesssensssaensnenens I-6
PORT LOCK, RETRY, AND INTERRUPT MECHANISMS
PORT LOCK MECHANISM.........ooiiiiinininnenncnentnsessessssesesssssessaessssssesssesessanss J-1
RETRY MECHANISM ...ttt saenencsssasassssssessssssesssasessssessnsssssenns J-1
UNIBUS INTERRUPTSooiiinnnirincenssnnisissssssssssssssasssssssssssessassessssssssssnsssnnns J-2
Interrupt/IDENT SeQUENCE........covviemnriinsenennciissssnesssssssasassesnsassesesesssensssesens J-2
Passive Release........c.ccouiveirninnrinninsiinennnenas creussrsnsreasassaseaestenteasererans J-2
MSYN-SSYN TIME INTERVALS
DWBUA PARITY CHECKING
PARITY CHECKING..........ccoountiriiicisninsnssnsesssssesisassinisssssssssssnsssassssssssssssssssasssssssass L-1
INTERNAL RAMcoiirirnnnnnnnnnnsssseniaseissssssssissssssssssasisassssssssssessssssssssessassess L-1
PARITY ERRORS eesrsrireassaasssstatpRsssetttsnsestentsfarinssssensasnsstentanssssnessasnssbedened L-1
Parity Errors on UNIBUS Map Registerscceiiincriinrnncsnsnnienicensnenne L-1
Parity Errors on BDP BUffers.........ccccocnnnnicnninsenninsnsisssnsnsnsnsinnsssisisssnesssesesens L-2
Parity Errors on Vector REGISIErSccccunrmcnnnnreisnsessisorisnsssnsssssesssusssssuesesnsns L-2
Parity Errors on DWBUA Internal Registerscccvvvevncnnrnrenicncncsunninans L-2
PARITY LOGIC TESTING........ccotrnniniisisnsniscsnssiasssssssassossssssssssssssssssssasssssasassass L-3

vi

Figure No.

1-1
2-1
2-2
2-3
2-4
2-5

2-7
2-8
3-1
3-2
3-3
34
3-5

3
3-8
39
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
4-1
4-2
4-3
4-4
4-5

4-7
4-8

4-10
4-11

FIGURES

Title Page
Typical DWBUA CONFIGUIALIONcouveerrvinirerensesenssnsstsssessascasassesessisine s 1-1
DWBUA Components.......c..co... e eiri e s e asavsbgserssusinessarsomsrenaras 2-1
DWBUA CONfIGUFALION.cveuerrriartesssnsesrssesssmasesssssesssassssnssssessssnssssssssessssssssssssssssies 222
M7166 Paddlecard with UNIBUS Cables e TR LR — 2-3
UNIBUS BCKPIANEcovvoeemneneiinitneiresrissssssssisssssssanssssssss s ssssssssssess 2-4
VAXBI Transition Header Installation ..o, 2-5
UNIBUS Cable CONNECLONS..........coceerrerereremiesssssssssssssinisissssmsssssnsssssssssssses rerensanaes 2-6
TLO10 MOGUIE ...coveereereneiesieeirisiesnesenssesassesasessassasssasns s s s s s s et s s s e s e s st st 2-7
TroubleshOOtING FIOWcoovuiimiiniirninieiencs ettt -13
System Address Space DiStriDULON c......cvovvievicssiseniicctmnnsnsin s 3-1
T LR FLO I T R 3-2
DWBUA Node Space and Window SpPace..........cocoeuememiisninusssissinnsssiinsines 33
DWBUA AQAress SPACEccccueuimarrenmmsrsssmsssssassassssassssssssasassssssssisusssssisasssssasssnesss 3-4
Error Interrupt Control Register i A s b breabirkssarnsssssnensaesasvesi s 3-7
Interrupt Destination REISIETcuuvvumeicummsmmssistmmssssisssssssssssssssssissssssi s 3-8
Starting AdAress REBISIET.......cocoviuiemenemseiicusiiissininsmssmssssssensssssssnssatssnsssissssssnsssessess 3-10
Ending Address REGISIETcovueiuiiunssusisiusissssissssssssassonsssmssssnssasmssssssasssensseesaseesss 3-11
BCI CONrol REGISIETccovuiiiierierniarinesstsensssassstnssssssastsssessussssassesssssasasasasisssassssses 3-12
User Interface Interrupt Control REGISIETcovviiicicnrninucmsiniiminnnninniiciscinnsiiinnns 3-13
General Purpose ReEGISIET D........ccciieiinmuciiimeaninisssssesssensonssusnmsimssnsisasssssssesscusenss 3-14
Receive Console Data REGISIETc.cueuimrirsienscsnsssnsisusnsnsnsssasisasssaessssisssisasssasasnsaes 3-15
DWBUA Control and Status RegISIETccoeueritresnsusssmsnusssisinsisssssinsssssssinsisusesinins 3-16
Vector Offset Register........ccoceevvcenene Gl v sh oo v fristeblsoss s aensoreassasansasse 3-18
Failed UNIBUS Address REZISIETccouimnuriuerersssssssssssnsnsiassssnsnsnssssssscsssssssusasaness 3-19
VAXBI Failed Address Register e ikl i immicperssessnsnasinesanssuass 3-20
MicrodiagnoStic REBISIETuueureuseissmsisustisrensmssmsassssssssssenssnssssssausarsnasesssssesssesssesses: 3-21
Data Path Control and Status RegiSerc.couvueuienmnmnreniuninnieessnniiinncininiiinies 3-22
UNIBUS-t0-VAXBI Address Translation.........cccouereumsssnsesssnininsnsusssesasininansisiss 3-23
UNIBUS Map Register........cccoucuseeerucnnan fesoususnasasasssssonsent 3-23
UNIBUS Initialization State Diagram........ccosuesisusnsrensssnnnsssssnssnesnscninnsseissene: 3-26
DWBUA Block Diagram........... R S 4-1
VAXBI WRITE to a UNIBUS Map Register Flow Diagram...........cccccoeeivecurinninn. 4-6
VAXBI READ of UNIBUS Data Flow Diagram.......cccocouimmmenmninsccscncnsusinnnsinnees 4-12
DATO(B) Using the Direct Data Path Flow Diagram.....coeeucreiisiuinmussisssinscense 4-18
DATO Using a Buffered Data Path Flow Diagram............ e saabidbasbsnastasenessessrrnened 4-22
DATI Using a Buffered Data Path Flow Diagramc...ccvcrusnmnimnsiisssnisensens: 4-24
VAXBI-to-UNIBUS WRITE Timing Diagram........ccccoecievemimmninnsuscsscssinnnnnsiseess 4-26
VAXBI-to-UNIBUS READ Timing Diagram.........cccoeesevsssansmsosscususnninmnnsnsesesenses 4-27
DATO(B) Through a Buffered Data Path Timing Diagram........cccoccovvuieruscincnnnns 4-28
DATI Through BDP with Autopurge Timing Diagram.........ccoceunemiinissencnnscnees: 4-29
DATI Through BDP Timing Diagram.........ccccouiemmmeressussisssierssmnsninsssicnsssinseneens 4-30
UET Control Register FOIMALcoovuneuecasssusmnsmsninsnstsnsenstsmssminssssssssnssossssnsen e F-1
DATO with UNIBUS Address Bit <O1> Seb...ccccocviuniinimimmmmmnniensisisinnscseeses I-1
DATI with UNIBUS Address Bit <01> Set......coovvunimmmimniinnininsmninssncesceee: I-2
BDIBUF and UDIBUF FIaS.....cccocvuetrieimiuitiismnnnsesseisusisnsiinnsissssssssssusasensasassssnsssseses I-3
DATO(B) Through BDP, BYTE OFFSET Clear, Starting at Octaword
BOUNGATYouvriversessscnscesssissssessssssasees st asssbassas s eSS RsS s 1-6
DATOB Through BDP, BYTE OFFSET Clear, Starting at Byte 8........ccccoeceenne. I-7

vii

1-6
I-7

J-1
J-2

F-1
F-2
G-1
H-1
K-1

FIGURES (Cont)

Title Page
DATO(B) Through BDP, BYTE OFFSET Clear, LWAEN Set.............. I-7
DATO Through BDP, BYTE OFFSET Set.........ccccoeniniviiinnnniccssnnnnsnessessnsescssnens I-8
DATO Through BDP, BYTE OFFSET and LWAEN Setccccoueriveeereencncncne I-8
IDENT Flow Diagramcccecouevmrernnvcsesussesesnenenias J-3
Interrupt/IDENT Timing DIagramccccveviuirernevernnsesacisusesssascasssssescssassssssssasens J-5

TABLES

Title Page
DWBUA Power REQUITEMENLSccceriiimisiinsisseisnsmssesmssissssnsssssssssessssssssssssssesessns 1-2
DWBUA Current REQUIFEMENLS..........ccouervmricnnssacsnsassesessssssessssssssssessssssessnas 1-2
DWBUA Components - UNIBUS Installed in BA32-AC/AD Boxccceueuenc. 2-2
DWBUA Components - UNIBUS Installed in BA11 BOX......cccoeurveiinccnnncennrenaene 2-2
Macrodiagnostic Program Sections .. SR F- S 29
Tools and Test Equipment for Mamtenance Procedures.......ccceeveeecenenenecnnnneeencines 29
Symptoms and Possible CAUSES..........cccovueiremsirimriasisssnsssssssssssssssassssssssssescssasessasases 2-10
Multiple VAXBI Base Addresses............c.ccvuenimncrisnsisnseescsisesssssasnssisssensssnsasssnsases 2-11
UNIBUS POWET........ccceeirenrnanaecssssssnsassssisnssssnssesssssssssssssssssssassssasssssssessessssensssssnss 2-16
UNIBUS Quiescent Levels..........ccccvnmnniiiniinisneressssnssnssssesnssssssssnsasssoses 2-16
Register Bit Characteristics... . S3uinissdensansensensonsorsansadhebyd 3-6
Microdiagnostic Register Addresses 3-21
Data Path Control and Status Register Addresses 3-22
DWBUA Block Diagram DesCriptions............ccccvucrurssussnssssssassnsassassnssssesssssassessssans 4-2
DWBUA Responses to VAXBI-to-DWBUA Transactions.............cceeeuevenrurunes 4-4
VAXBI-to-DWBUA COmMMANAS.......c.coovviuiuninnesnsesssisasssasassssassoresssssssssssssssssssssssssans 4-5
Bus Masters and Slaves for VAXBI-to-UNIBUS TrANSACHONS ovorrororroeersrersremrer 4-7
DWBUA Responses to VAXBI-to-UNIBUS Transactionsc.ceeevenenen. .4-8
VAXBI-to-UNIBUS Commands... 4-10
Bus Masters and Slaves for UNlBUS-to-VAXBl Transactionscccoceecresuensncne 4-14
DWBUA Responses to UNIBUS-to-VAXBI Transactionsccovueureeeserenennien 4-14
UNIBUS-to-VAXBI Commands Through the Direct Data Path 4-16
UNIBUS-to-VAXBI Commands Through a Buffered Data Path...............ccceceuree 4-20
Self-Test Microdianostic Tests..........cccuuiuniciirininisnsssiesssssuesesisassssssssnsnessssssssesssanne C-1
Macrodiagnostic TESIScccvueueriiniiinininnniiiessssissensssessessssssssssssassssssssessans D-1
DWBUA Responses to BIIC EVENT Codes...........ccoiinimmunnsinnnnnenninenessinsnenenessons E-1
UNIBUS Exerciser Terminator Registers............cccvnivnnsinnsinninininisnesiioniiissnis F-1
Transfer Command Bits...........ccocceivintiineionenesesssnsssossssssssssssssssssssssssssessasssssssisssses F-2
Node Space and Window Space Addresses..........c.cocuvunenivennentiinininnsnesnenninnsssaenns G-1
Register Initial StALescccovveveiiiiniiiiiiniinie s sssssnsssssssssssess H-1
MSYN - SSYN Time Intervals ... K-2

viii

PREFACE

MANUAL STRUCTURE AND AUDIENCE
This manual is divided into two parts:

Part | - Installation

Part I includes an introduction to the DWBUA, product specifications, and instructions for installing and
testing a DWBUA option. It is intended for DIGITAL personnel or customers who install this adapter. A
knowledge of VAX hardware is assumed.

Part 1l - Technical Description
This part of the manual provides the technical information needed by the system programmer and the

mppoﬂengineer,aswellasbycmmerengimandpmmmmeuwhoincorporatethisadaptcrimo
their own product or system. A know'edge of VAX architecture, the VAX Bus Interconnect (VAXBI),
and the UNIBUS is assumed.

RELATED DOCUMENTATION

The DWBUA is one of a family of processors, memories, and adapters that use the 32-bit VAXBI bus. For
a technical summary of the VAXBI bus and a description of VAXBI options, see the VAXBI Options
Handbook - EB-27271-46.

NOTE: For ease of use and for reader comprehension, the DWBUA adapter (VAXBI to UNIBUS
Adapter) will be referred to as DWBUA throughout this document. The VAXBI bus will be referred to
as VAXBI, and UNIBUS bus will be referred to as UNIBUS.

B

. e i | | |
e e HERS L) :
o (s ;: ’ -
G *
“ o G0 E wd o e T | . 4
YSEE ok P S | | | ‘ .
I ‘ | | | '
- R :
A . ‘ oo |
! 5 AL b) .
g g i : | |
A i k . h R B

Part |

Installation

e

CHAPTER 1
INTRODUCTION

1.1 PRODUCT DESCRIPTION
The VAXBI to UNIBUS Adapter (DWBUA), enables transfers between the high-speed synchronous
VAXBI and the asynchronous UNIBUS. Through the DWBUA, the VAXBI has access to any UNIBUS
address space, and the WBUS has access to any VAXBI address space.
The DWBUA transfers data between the buses in two ways:

1. Through the Direct Data Path (DDP); the data is transferred immediately.

2. Through a Buffered Data Path (BDP); the DWBUA internally buffers as much as one octaword
(16 bytes) of data per transfer to maximize the VAXBI bandwidth.

All VAXBI-initiated transactions transfer data through the Direct Data Path. UNIBUS-initiated transac-
tions can transfer data through either the Direct Data Path or a Buffered Data Path.

Other features of the DWBUA are:
e UNIBUS arbitrator
e UNIBUS devices can interrupt on the VAXBI
e Data transfer rate up to 1.0M b/s

e Self-test to verify data paths and control logic, and to report failures to the VAXBI

PROCESSOR MEMORY
VAXBI N
-
]
DWBUA
| UNIBUS M9313
UET.
UNIBUS UNIBUS
DEVICE DEVICE
MKVEs-0711

Figure 1-1 Typical DWBUA Configuration

1-1

1.2 SPECIFICATIONS
1.2.1 Bus Loading

The DWBUA is 0.5 dc unit load on the UNIBUS.

The DWBUA is 3.5 ac unit load on the UNIBUS.

1.2.2 Power Requirements

Table 1-1 DWBUA Power Requirements

POWER (Watts)
VOLTAGE Minimum Typical Standard Maximum
5.00 31.35 36.50 40.50 56.20
-12.00 <0.012 0.036 0.54 0.6
1.2.3 Current Requirements
Table 1-2 DWBUA Current Requirements
. CURRENT (Amps)
VOLTAGE Minimum Typical Standard Maximum
5.00 6.6 1.3 8.1 10.7
-12.00 <0.001 0.003 0.045 0.048

1.3 SUPPORTED UNIBUS DEVICES

A subset of the available UNIBUS devices is supported in a configuration with a DWBUA. See Appendix

A for details.

CHAPTER 2
INSTALLATION AND TEST

2.1 OPTION COMPONENTS

[omo®
DWBUA MODULE [] UE

000s000s
00000000
UET MODULE 0poooooo
g00c0 o0

UNIBUS PADDLECARD . MH

| SLVEN
e W

Figure 2-1 DWBUA Components

Table 2-1 DWBUA Components - UNIBUS Installed in BA32-AC/AD Box

Component Qty Part Number Location —
DWBUA module 1 T1010 VAXBI cardcage

UET module 1 M9313 UNIBUS cardcage

UNIBUS paddiecard 1 M7166 UNIBUS cardcage

Transition header 1 12-22246-01 VAXBI cardcage

UNIBUS cables 1 17-00631-01

M7166 to transition header

Table 2-2 DWBUA Components - UNIBUS Installed in BA11 Box

Component Qty Part Number Location

DWBUA module 1 T1010 VAXBI cardcage

UET module 1 M9313 UNIBUS cardcage | ~
UNIBUS paddlecard 1 M7166 UNIBUS cardcage

Transition header 1 12-22246-01 VAXBI cardcage

UNIBUS cables 2 17-00632-04 M7166 to transition header

DEC STD 123

power bus cable 1 17-00931-03 Processor cabinet to UNIBUS cabinet

The DWBUA components are put together in the configuration shown in Figure 2-2.

T1010

12-22246 TRANSITION HEADER

17-00632 CABLES

M7166

M8313

MKVES-2674

Figure 2-2 DWBUA Configuration

gt CAUTION

An antistatic wrist strap connected te an active
MmthmeMMDWBUA

WARNING
Shut off system power before proceeding.

1. Attach the four UNIBUS cables to the M7166 paddlecard (Figure 2-3). The connectors are keyed.

MKV8S5-1808

Figure 2-3 M7166 Paddlecard with UNIBUS Cables

2. Insert the M7166 paddlecard into slot 1, segments A and B, of the UNIBUS backplane (Figure 2-4).

3. Insert the M9313 UET module into the last slot, segments A and B, of the UNIBUS backplane
(Figure 2-4). :

Figure 2-4 UNIBUS Backplane

2-4

4. Insert grant continuity cards in all unused UNIBUS slots.

NOTE
For field installations only, the T1010 module may
be installed in any empty VAXBI slot (except slot 1).
Installation in the next empty slot (after slot 1) is
suggested.

5. Install the transition header on the backplane of the slot that will hold the T1010 module (Figure 2-5).

NOTE ;
torque screwdriver (P/N 29-17381-00) provided in
the Field Service kit. ”

MKVES-0714

Figure 2-5 VAXBI Transition Header Installation

6. Refer to Figure 2-6 and connect the four UNIBUS cables to the transition header assembly.

J1 - segment E (left)
J2 - segment E (right)
J3 - segment D (left)
J4 - segment D (right)

The connectors are keyed.

®

®@ L
e O®
6 a9
06 5@
@

e Oe
) o0 O

MKV85-1800

Figure 2-6 UNIBUS Cable Connections

~
UL
9.
10.
~

Insert the T1010 module into the appropriate slot of the VAXBI cardcage.

If the UNIBUS bnckplane is in an expansion cabinet, the power bus cable (P/N 17-00931-03) may
be installed from the processor cabinet to the expansion cabinet.

Power up the system. The DWBUA self-test runs upon pommp Check that the yellow LED on the
T1010 modnle lights. See Figure 2-7.

If the yellow LED dou not light, see Section 2.4.
Run two full passes of EVCBB, the DWBUA macrodiagnostic program. See Section 2.3.2.

LED

Figure 2-7 T1010 Module

2.3 TEST
2.3.1 Self-Test Microdiagnostic Program

NOTE
A UNIBUS Exerciser Terminator (UET) module
(M9313) must be installed in the last slot, segments
A and B, of the UNIBUS backplane. The DWBUA
self-test runs only if the UET module is installed.

The DWBUA self-test microdiagnostic program runs at powerup or when the VAXBI Control and Status
Register RESTART bit (BICSR <10>) is set. Successful completion of the self-test is indicated by the
lighting of the yellow LED on the T1010 module. The location of the LED is shown in Figure 2-7.
The DWBUA self-test microdiagnostic consists of 18 separate tests, which are described in Appendix C.
2.3.2 Macrodiagnostic Program '

The macrodiagnostic program for the DWBUA is EVCBB. It is a level 3 diagnostic (it runs standalone
under the VAX diagnostic supervisor), and it isolates failures to the failing function.

Descriptions of the macrodiagnostic tests can be found in Appehdix D.

To run EVCBB, do the following.

NOTE
Operator input is underlined.

1. Run the diagnostic supervisor.
2. Attach the DWBUA:
DS> ATTACH DWBUA HUB DWn node br <RET>

DWn is the number of the DWBUA. “n” is a number between 0 and 3.
“node” is the VAXBI node ID, expressed as a decimal number (0 to 15).
NOTE
Refer to the appropriate system user guide to deter-
mine the node ID number.

“br” is the UNIBUS BR interrupt level, a number between 4 and 7. The recommended value
is 7.

3. Run the macrodiagnostic:

DS> RUN EVCBB[/SECTION:xxx]<RET>

Inclusion of the SECTION name (“xxx” in the above command) is optional. If no SECTION
name is included, the DEFAULT section is run. The SECTION names and the tests they
include are listed in Table 2-3.

2-8

Tests 31 and 32 can be run only if a UNIBUS Exerciser (UBE) is attached.

Table 2-3 Macrodiagnostic Program Sections

Section Tests

DEFAULT 1-30
ALL 1-32
UBE 31,32

2.4 TROUBLESHOOTING

This procedure provides the information needed to isolatc a DWBUA failure to one of its assemblies:
T1010 module, 1/0 cable, M7166 paddiecard, UNIBUS, or M9313 UET module. Corrective mainte-
nance of the DWBUA consists of faulty subassembly replacement.

This procedure does not attempt to isolate problems caused by devices attached to the UNIBUS. It does,
however, identify the UNIBUS node that is causing a DWBUA malfunction.

The assumption is made in this procedure that system troubleshooting procedures have indicated a
problem in the DWBUA. No system-specific troubleshooting procedures are included here.

2.4.1 Tools and Test Equipment

‘The tools and test equipment listed in Table 2-4 are needed to perform the maintenance procedures
~described in this section. '

DIGITAL
Gold Wipes Texwipe TX809 49-01603-01
Torque Screwdriver Utica 29-17381-00
Bus Grant Card G7273

2.4.2 Procedure

This section is a step-by-step procedure for isolating faults to the field replaceable unit (FRU). It uses only
the tools and test equipment listed in Table 2-4 and the DWBUA adapter’s self-test. By using this
procedure, faults in the DWBUA can be isolated when the system is not capable of running diagnostics.
(Such a situation can occur if the DWBUA is in the load path for the operating system and diagnostics.)

See Scction 2.3.1 and Appendix C for information on the DWBUA adapter's self-test.

2-9

NOTE
Follow the steps in the order listed.

1. START - Is the DWBUA malfunctioning?
The DWBUA may be suspect if:
a. The system cannot be booted from a UNIBUS device.
b. No UNIBUS devices can be used.

¢. The system console indicates that the node number corresponding to DWBUA adapter’s
node ID is malfunctioning.

d. Excessive errors occur when using any UNIBUS device.
e. The system crashes.
2. POWER DOWN THE SYSTEM - Wait 30 seconds for the stored power to drain off.

3. OPEN THE CABINET - Open the system cabinet so that the yellow lights on the modules can
be seen. ’

4. POWER UP THE SYSTEM - This starts the DWBUA self-test.

5. CHECK THE LIGHT ON THE T1010 MODULE - If the yellow light on the T1010 module
is lit, the DWBUA has passed self-test. The problem is most likely not in the T1010 module, the
UNIBUS cabling, or the terminator card (UET). If the light is OFF, go to Step 7.

6. RUN EVCBB - If the system is operational, run the system level diagnostic, EVCBB, to further
verify that the problem is not in the DWBUA. Refer to the macrodiagnostic printout and
documentation to isolate the failing FRU if this diagnostic should fail.

If one of the symptoms listed in Step 1 exists, but the DWBUA self-test passes, the problem is

probably somewhere other than in the DWBUA. Refer to Table 2-5 for suggested areas to .
troubleshoot.

Table 2-5 Symptoms and Possible Causes

Symptom Possible Cause

Cannot boot from a UNIBUS device Boot device

Unable to use devices on the UNIBUS Bad device or software

Excessive errors when using any devices on the UNIBUS Devices on the bus or system-wide problems
System crashes System software

2-10

. THE YELLOW LIGHT IS OFF - If the yellow light on the T1010 module is OFF, the self-test

has failed. Look for a fault in one of the items in Figure 2-1. If no fault exists in those items,
look for a UNIBUS device that is causing the UNIBUS to malfunction.

DETERMINE NODE NUMBER AND STARTING ADDRESS
a. Halt the system from the wml’c_,by;;yping <CTRL> P.

b. Type E <address> to examine the contents of the Device Type chmpr (bb+00) for each

node space in succession until one with a value of xxxx0102 is found. This is the DWBUA
device type. Make a note of the address. (See Figure 3-1 and Appendix G). o

If working on a system that has more than one VAXBI, bus 0 addresses are as described.
- See Table 2-6 for the base addresses for bus 1 through bus 3.

Table 2-6 Multiple VAXBI Base Addresses

VAXBI Base

Bus # Address

0 ‘ 2000 0000

1 2200 0000

2 2400 0000

3 2600 0000

NOTE
If nothing is returned from any of the examines, a

~ cedures for the system being used. THE PROBLEM
IS NOT IN THE DWBUA. v

Example 2-1: Determining Node Number and Starting Address

>>>E 20000000<CR> “ This is the base address of the first node
- in 1/O space, node 0.

P 20000000 00010001 Address and contents returned. Node 0

is not a DWBUA.

>>>E 20002000 This is the base address of node 1.

P 20002000 00010101 Node 1 is not a DWBUA.

>>>E 2000C000 This is the base address of node 6.

P 2000C000 00010102 Node 6 is a DWBUA.

2-11

10.

FIND GPRO ADDRESS - bb + FO = GPRO address. Add FO (hex) to the address found in the
previous step. ‘ 4

Example 2-2: Finding the Address of GPRO

Node 1 GPRO = 20002000 + FO = 200020F0
Node 2 GPRO = 20004000 + FO = 200040F0
Node 3 GPRO = 20006000 + FO = 200060F0
Node 4 GPRO = 20008000 + FO = 200080F0
Node 5 GPRO = 2000A000 + FO = 2000A0F0
‘Node 6 GPRO = 2000C000 + FO = 2000COFO

EXAMINE GPRO - Use the console to examine GPRO at the address calculated in the last
step. GPRO bits <31:16> contain the test number that failed in the self-test. Refer to Appendix
C for a description of the self-test microdiagnostic tests.

NOTE
Failure of the DWBUA self-test can prevent acces-
sing of the DWBUA internal registers. To access
these registers to explore the cause of the self-test
failure, set the BCICSR (bb+28) bit <08>
(UCSREN).

ISOLATE FRU - Use the flowchart in Figure 2-8 to isolate the FRU at fault.

NOTES .
1. The T1010 module is suspect throughout this
troubleshooting procedure since it is the engine
running the test.

2. Power-down the system to replace a compo-
nent. When the system is powered back up, the
self-test will run. Return to Step 1 of this pro-
cedure to verify the fix.

3. When replacing a componeth, follow the

removal and replacement procedures in the
installation manual for the system being used.

2-12

r—

T1010 1S BAD.
REPLACE MODULE.

END

SUSPECT FRU:
-T1010
-M9313

- UNIBUS DEVICE
(BETWEEN THE

M9313 BLOCKIN
THE BUS GRANT)

T1010 AND THE ‘{

FSUSPECT FRU:
- 71010

- UNIBUS DEVICE
(RESPONDING TO
WRONG ADDRESS)

SUSPECT FRU
-M9313

-T1010

- UNIBUS DEVICE
(RESPONDING TO
WRONG ADDRESS)

SUSPECT FRU:
- M9313
-T1010

-~ UNIBUS DEVICE
(RESPONDING
TO WRONG
ADDRESS)

SUSPECT FRU:
- UNIBUS
(LOOSE UNIBUS
CABLES, BAD
POWER, HUNG
BUS)

UNIBUS IS SUSPECT l 2 l

MKVE5-0000

Figure 2-8 Troubleshooting Flow (Sheet 1 of 3)

2-13

VAXBI IS SUSPECT

SUSPECT FRU:
-T1010 REPLACE T1010
- VAXBI FIRST. IF PROBLEM
(INTERMITTENT | sTiLL ExisTs.,
VAXBI COULD CONTINUE.
CAUSE THIS
ERROR)
YES SUSPECT FRU:
GPRO=C -T1010
? - VAXBI
(VAXBI MAY BE
CORRUPTED.
CHECK FOR BAD
VAXB! TERMINATOR
NO AND FOR MULTIPLE
OR MISSING NODE
ID PLUGS.)
REMOVE ALL MODULES
IN THE VAXBI
EXCEPT THE T1010
AND THE MODULE IN
SLOT 1.
ISOLATE BACKWARD
. TOWARD THE MINIMUM
| VAXBI CONFIGURATION
BY REMOVING THE
VAXBI FLEXIBLE BUS
EXTENDER CABLE AND
MOVING THE VAXBI
TERMINATOR CLOSER
TO THE SECTION THAT
HOLDS THE T1010.
END
THE PROBLEM IS
BEYOND THE SCOPE
OF THIS PROCEDURE.
SEE VAXBI AND
SYSTEM DOCUMENTATION
FOR FURTHER TROUBLE-
SHOOTING
MKVES-0710

Figure 2-8 Troubleshooting Flow (Sheet 2 of 3)

2-14

Q UNIBUS IS SUSPECT

ISOLATE UNIBUS
OPTIONS BY

REPLACING EACH

OPTION IN TURN

WITH A BUS GRANT

CARD (G7273) UNTIL

THE ERROR CONDITION

IS CLEARED OR THE
UNIBUS IS UNPOPULATED.

ISOLATE UNIBUS

BACKPLANE SEGMENT

BY MOVING THE UET

MENT BY SEGM:

{:sf:“: To SEGMENT) | ISOLATE UNIBUS

FIRST SEGMENT. OPTIONS IN THE
FAILED UNIBUS
SEGMENT BY
REPLACING EACH

OPTION IN TURN
WITH A BUS GRANT
CARD (G7273)

UNTIL THE ERROR IS
CLEARED OR UNIBUS
IS UNPOPULATED.

MKVES-0713

Figure 2-8 Troubleshooting Flow (Sheet 3 of 3)

2.4.3 Helpful Hints

The DWBUA self-test may not run to successful completion if the system includes VAXBI nodes that use
burst mode or that excessively stall the VAXBI bus. The: DWBUA self-test may fail if the configuration is
large and has extensive VAXBI bus activity.

Try these hints if the self-test has passed but the DWBUA still does not work correctly. Most of the items
listed relate to the UNIBUS.

1. PROBLEM: SSYN timeout errors on UNIBUS devices.
SUGGESTED ACTION: Verify VAXBI/DWBUA node ID and arbitration mode.
The DWBUA must be node 0 (except systems based on BA32-AC/AD boxes). and the
software must set the DWBUA to fixed-high priority. Verify this by reading the Device Type
Register (bb+00) for node O to ensure that the device is a DWBUA (see Appendix H). Also

read the VAXBI Control and Status Register (bb+04) for node 0; the contents of <5:0> should
be 8 (hex), fixed-high arbitration.

2-15

2. PROBLEM: Flaky, intermittent operation of UNIBUS devices, involving several or all options
on the UNIBUS.

SUGGESTED ACTION: Verify the UNIBUS power and quiescent lew;els (Tables 2-7 and 2-8).

Table 2-7 UNIBUS Power

UNIBUS DC

Voltage P.S. Ripple
Voltage Level p-p Maximum
(Volts) (Voits) (mV)
+5 +5.0 (£5%) 100
+12 +12.0 (x3%) 200

Table 2-8 UNIBUS Quiescent Levels

Level
Line (Volts)
BG +.45 (x.35)
NPG
ACLO +4.9 (+.35)
DC LO
BBSY +3.4 (2.2)
All others +3.4 (£.2)

SUGGESTED ACTION: Check if the configuration is correct.

Verify that the DWBUA is node 0 on the VAXBI (except systems based on
BA32-AC/AD boxes).

Verify that all NPR grant jumper wires (CA1 to CBI) have been removed from the
UNIBUS backplane on every slot that has an NPR option.

Check that every empty UNIBUS slot contains a grant continuity card.

Two different grant continuity cards can be used. The first, G727A, goes into the
UNIBUS backplane slot D and provides grant continuity for the four interrupts (BR4 -
BR7) but not for the NPR. When the G727A grant card is used in the empty slots, a
jumper (CA1 to CBI) is needed for NPR grants. The second grant card, G7273, provides
grant continuity for both BR and NPR grants, and is much easier to install.

Verify that the vector and address jumpers are correct for each option and that no two
options are selected for the same address or vector.

Use the PAULI program to verify the configuration.

2-16

SUGGESTED ACTION: Verify that the configuration is supported.

Check that no untested devices or unsupported devices are on the bus

SUGGESTED ACTION: Look for bus loading problems on large UNIBUS configurations.
Calculate the ac and dc loading of the configuration. Most modules represent | dc load and | ac
load. A UNIBUS (without a repeater) can support 20 dc loads and 20 ac loads. (Refer to the
PDP-11 Bus Handbook for details.)

PROBLEM: One option does not work or the entire UNIBUS fails when the option is installed.
SUGGESTED ACTION: Verify that the option is supported on this UNIBUS.

a. Check the RM document to ensure that the revisions are correct for the hardware and
software.

b. If the option works but does not work correctly on the full system, run the option on a
shortened UNIBUS.

c. Check that the jumper wire from CA1l to CBI has been removed from the UNIBUS slot
in which this option is being installed.

2-17

o,

Part li

Technical Description

. CHAPTER 3
PROGRAMMING

3.1 SYSTEM ADDRESS SPACE

3.1.1 Address Space Distribution
The 1024 megabyte system address space on the VAXBI is divided into memory space (from address 0000
0000 through 1FFF FFFF hexadecimal) and 1/O space (from address 2000 0000 through 3FFF FFFF

hexadecimal). Physical memory is assigned addresses starting at 0000 0000. Most 1/0 space is reserved
for special uses.

Figure 3-1 shows the system address space distribution.

0000 0000
VAXBI
Memory
Space
512 MB
1FFF FFFF
: 2000 0000
1/O Space
VAXBI 0
21FF FFFF
2200 0000
1/0 Space
VAXBI 1
23FF FFFF
1/0 Space 4400
VAXBI 2
25FF FFFF
1/0 Space 2600
VAXBI 3 .
27FF FFFF
2800 0000
Reserved
3FFF FFFF
MKVE5-0829

Figure 3-1 System Address Space
Distribution

3.1.2 System I/0 Space
The 512 megabyte system 1/0 space is divided into several dedicated sections, as shown in Figure 3-2.

The locations of the DWBUA adapter’s node space and window space depend on the DWBUA adapter’s
assigned node ID. If, for example, the DWBUA is assigned node 1, its node space and window space are
located as shown in Figure 3-3. Appendix G lists the starting and ending addresses of the node space and
window space for each node ID. .

2000 0000
NODE 0
8KB
2000 2000
NODE 1 .
8KB
NODE SPACE -
° . °
o
2001 E00O
NODE 15
8K8
2002 0000
RESERVED
128K8
2004 0000
NODE PRIVATE
SPACE 3.75MB
2040 0000
NODE 0
256KB
2044 0000
NODE 1
256KB
WINDOW SPACE -
[) []
: 207C 0000
NODE 15
256KB 2080
RESERVED 24MB 0000
2200 0000
RESERVED FOR MULTIPLE
VAXBI SYSTEMS 480MB
3FFF FFFF
MKVESO04

Figure 3-2 System I/O Space

7| owsua NoDE sPAcE (exe)

——rs 7 | 2000 2000 - 2000 3FFF)

CONTAINS:
\oDE NODE 1 VAXBI REQUIRED REGISTERS
Noot - % BIIC SPECIFIC DEVICE
) N REGISTERS
DWBUA INTERNAL REGISTERS
NODE 15
RESERVED
NODE PRIVATE
SPACE
+“| bwBUA WINDOW SPACE (256KB)
rd

NODE 0 (2044 0000 — 2047 FFFF)

NODE 1 CONTAINS:
WINDOW “ < UNIBUS DEVICE REGISTERS
SPACE . < | UNIBUS MEMORY SPACE

NODE 15

RESERVED
RESERVED FOR MULTIPLE
VAXBI SYSTEMS
MKV850693

Figure 3-3 DWBUA Node Space and Window Space

3.2 DWBUA ADDRESS SPACE
The DWBUA adapter’s node space is divided into three sets of registers: VAXBI required registers, BIIC

.

specific device registers, and DWBUA registers. Figure 3-4 is a map of the DWBUA address space.
NOTE
The address of each register is noted as “bb + xxx.”
Use the following procedure to calculate the base
address, “bb.”

1. Determine the DWBUA adapter’s node ID.
This is a hexadecimal number between 0 and F.

2. Solve for “bb” in the following equation:

bb = (2000 0000,¢) + ([2000,6] X [node ID)¢))

31 00

bb+00 DEVICE TYPE REGISTER

bb+04 VAXBI CONTROL AND STATUS REGISTER
bb+08 BUS ERROR REGISTER
bb+0C ERROR INTERRUPT CONTROL REGISTER
bb+10 INTERRUPT DESTINATION REGISTER
bb+14 IPINTR MASK REGISTER
bb+18 FORCE IPINTR/STOP DESTINATION REGISTER
bb+1C IPINTR SOURCE REGISTER
bb+20 STARTING ADDRESS REGISTER
bb+24 ENDING ADDRESS REGISTER
bb+28 BCI CONTROL REGISTER

bb+2C WRITE STATUS REGISTER

bb+30 FORCE IPINTR/STOP COMMAND REGISTER
bb+34 NOT USED

bb+40 | USER INTERFACE INTERRUPT CONTROL REGISTER
bb+44 NOT USED

bb+FO
bb+EC GENERAL PURPOSE REGISTERS
bb+100

NOT USED

bb +IFC
bb+200 RECEIVE CONSOLE DATA REGISTER
bb+ 204

: NOT USED
bb+71C

VAXBI
REQUIRED
REGISTERS
(LOCATED
IN BIIC
CHIP)

BIIC
SPECIFIC
DEVICE
REGISTERS
(LOCATED
IN BIIC
CHIP)

MKVES0002

Figure 3-4 DWBUA Address Space (Sheet 1 of 2)

bb+720
bb+724
bb+728

bb+72C
bb+730

bb+740
bb+744
bb+74C
bb+750
bb+764
bb+768
bb+76C
bb+770
bb+77C
bb+780
bb+78C
bb+790
bb+70C
bb+7E0
bb+7FC
bb+800
bb+FFC
bb+1000
bb+1FFC

DWBUA CONTROL AND STATUS REGISTER

VECTOR OFFSET REGISTER

FAILED UNIBUS ADDRESS REGISTER

VAXBI FAILED ADDRESS REGISTER

MICRODIAGNOSTIC REGISTERS

RESERVED FOR USE BY
DIGITAL EQUIPMENT CORPORATION

DATA PATH CONTROL AND STATUS REGISTERS

NOT USED

RESERVED FOR USE BY
DIGITAL EQUIPMENT CORPORATION

NOT USED

DWBUA
INTERNAL
REGISTERS
(LOCATED
IN DWBUA
LOGIC)

BUFFERED DATA PATH SPACE

NOT USED

UNIBUS MAP REGISTERS

NOT USED

Figure 3-4 DWBUA Address Space (Sheet 20of 2)

3.2.1 Register Bit Characteristics

The characteristics listed in Table 3-1 can apply to individual bits, to fields, or to entire registers. In the
register descriptions in the following sections, the bit characteristics are identified after the name of each
bit or field.

Bits indicated as “0” in the register diagrams are not implemented. These bits are READ-ONLY locations
that always return *0”.

Table 3-1 Register Bit Characteristics

Register Bit
Characteristic Description
DCLOC Cleared following successful completion of the DWBUA
self-test; initiated by the deassertion of BCI DC LO L
RO READ-ONLY
R/W READ/WRITE -
SC Special Case; operation defined in the detailed description
STOPC Cleared by a STOP command directed to the DWBUA
wiC Write | to Clear
wO WRITE-ONLY; always reads 0

3.2.2 VAXBI Required Registers

The VAXBI required registers are implemented in the BIIC on the DWBUA. The discussion that follows
focuses on the specific uses of these registers by the DWBUA. The state of each register following
successful completion of the DWBUA self-test is included in the discussion of that register. VAXBI
required registers that are not described here, or bits that are not included in the register descriptions, are
initialized to the state defined in Appendix H.

The DWBUA, as a VAXBI node, is required to implement a number of registers. These registers are:
Device Type Register

VAXBI Control and Status Register

Bus Error Register

Error Interrupt Control Register*

Interrupt Destination Register*

NOTE
Registers marked with * are examined here in detail.

3-6

3.2.2.1 Error Interrupt Control

Register — The Error Interrupt Control Register (bb+0C) controls the

operation of interrupts initiated by a BIIC detected bus error. The LEVEL and VECTOR fields of this
register must be initialized by the operating system. These ficlds are zero after successful completion of
the DWBUA self-test. Figure 3-5 is an illustration of the Error Interrupt Control Register.

3 25 24 23 22 212019 1615 1413 08 07 02 01 00
bb+oC | 0 [T lol I | tevee | o | VECTOR [o o]
INTAB
INTC
SENT
FORCE
MKVB50890
Figure 3-5 Error Interrupt Control Register
INTAB ~ Interrupt abort This bit is set if a VAXBI INTR command sent by
<24> (WIC, DCLOC, SC) the DWBUA is aborted.
INTC Interrupt complete This bit is set when the vector for an error inter-
<23> (WI1C, DCLOC, SC) rupt has been successfully transmitted, or if a
: VAXBI INTR command sent by the DWBUA has
aborted.)
SENT Sent (W1C, DCLOC, The DWBUA has sent the VAXBI INTR com-
<2l> STOPC, SC) mand, and it is waiting for IDENT from the
VAXBI.
FORCE Force When this bit is set, the DWBUA forces an inter-
<20> (R/W, DCLOC) rupt to occur regardless of the state of the Bus
Error Register (bb+08). The DWBUA sets the
FORCE bit when a DWBUA error has occurred
and the DWBUA error interrupt enable (BUAEIE)
bit is set.
The FORCE bit is cleared upon initialization. The
operating system must clear this bit after servicing
the error interrupt.
LEVEL Level (R/W, DCLOC) The LEVEL field determines the level(s) at which
<19:16> INTR commands are transmitted under the control
of this register. Bit <16> corresponds to interrupt
level 4, bit <17> to level 5, bit <18> to level 6,
and bit <19> to level 7. The operating system
must initialize the LEVEL field.
VECTOR (R/W, DCLOC) The VECTOR field contains the vector used dur-
<13:02> ing error interrupt sequences. It is transmitted

when the DWBUA wins a VAXBI IDENT ARB
cycle on an IDENT transaction that matches the
conditions in the Error Interrupt Control Register.
The operating system must initialize the VECTOR
field.

3.7

3.2.2.2 Interrupt Destination Register - The format of the Interrupt Destination Register (bb+10) is
shown in Figure 3-6. .

3 2423 16 15 08 07 00
ob+10]) | INTERRUPT DESTINATION]
MKVE5-0680

Figure 3-6 Interrupt Destination Register

INTERRUPT (R/W, DCLOC) This field determines which VAXBI nodes receive
DESTINATION INTR commands sent by the DWBUA. Each bit
<15:00> in the INTERRUPT DESTINATION field corre-

sponds to one VAXBI node. Bit O corresponds to
node 0, bit 1 to node 1, and so on. During an
IDENT command, the decoded master’s ID
(VAXBI node number) is compared to the corre-
sponding bit in the INTERRUPT DESTINATION
field. The DWBUA adapter’s BIIC responds to the
IDENT if that corresponding bit is-set and if the
level transmitted in the IDENT command matches
the level of an interrupt pending in the BIIC.

The DWBUA self-test sets the bit in the INTER-
RUPT DESTINATION field which corresponds to
the DWBUA adapter’s VAXBI node ID. The oper-
ating system must change this field to reflect the
node ID of the interrupt-handler node. If an inter-
rupt occurs before the INTERRUPT DESTINA-
TION field is set by the operating system, the
INTAB bit in one of two registers is set. The regis-
ter in which the INTAB bit is set depends on the
type of interrupt: interrupt — User Interface Inter-
rupt Control Register (bb+40); error interrupt -
Error Interrupt Control Register (bb+0C).

3-8

The BIIC specific device registers are implemented in the BIIC on the DWBUA. The discussion that
follows focuses on the specific uses of these registers by the DWBUA. The state of each register following
successful completion of the DWBUA self-test is included in the discussion of that register. BIIC specific
device registers that are not described here, or bits that are not included in the register descriptions, are
initialized to the state defined in Appendix H.

The BIIC specific device registers control DWBUA-specific functions of the BIIC. The BIIC specific
device registers are:

IPINTR Mask Register

Force IPINTR/STOP Destination Register
IPINTR Source Register

Starting Address Register*

Ending Address Register*

BCI Control Register*

Write Status Register

Force IPINTR/STOP Command Register
User Interface Interrupt Control Register*
General Purpose Registers®

NOTE
Registers marked with * are examined here in detail.

3-9

3.2.3.1 Starting Address Register — The Starting Address Register (bb+20) defines the lower limit» of
the DWBUA adapter’s window space. Figure 3-7 is the Starting Address Register format.

31 24 23 1815 08 07 00
bb+20 STARTING ADDRESS]
MKVES5-0783

Figure 3-7 Starting Address Register

STARTING ADDRESS This field determines bits <29:18> of the lowest
<31:00> UNIBUS address. The DWBUA self-test leaves in
' this register the lower limit of the DWBUA adapt-
er’'s window space, based on the node ID of the
DWBUA. The range is 2040 0000 to 207C 0000
(bits <17:0> must be zero).

3-10

3.2.32 Ending Address Register - The Ending Address Register (bb-+24) defines the first location after

the upper limit of the DWBUA adapter’s window space. Figure 3-8 is the Ending Address Register
format.

3 24 23 16 15 08 07 00
bo+24 | ENDING ADDRESS J
MKVE85-0784
Figure 3-8 Ending Address Register
ENDING ADDRESS This field defines bits <29:18> of the highest
<31:00> UNIBUS address. The DWBUA self-test leaves in

this register the (upper limit + 1) of the DWBUA
adapter’s window space, based on the node ID of
the DWBUA. The range is 2044 0000 to 2080
0000 (bits <17:0> must be zero).

3-11

3.2.3.3 BCI Control Register - The BCI Control Register (bb+28) format is shown in Figure 3-9.

31 24 23 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 00
bot28[0] 0 [T LI T TP T T T 1110l o |
BURSTEN |
INPINTR/STOP FORCE
MSEN
BDCSTEN
STOPEN
RESEN
INDENTEN
INVALEN
WINVALEN
UCSREN
BICSREN
INTREN
IPINTREN
PNXTEN
RTOEVEN
MKVEs0888
Figure 3-9 BCI Control Register
STOPEN STOP Enable When set, this bit enables the DWBUA to respond
<l13> (R/W, DCLOC) to a VAXBI STOP command directed to it. The
DWBUA adapter’s BIIC asserts BCI SEL L and
the appropriate BCI SC <2:0> code.
IDENTEN IDENT Enable When set, this bit enables the DWBUA to acquire
<ll> (R/W, DCLOC) interrupt vectors from UNIBUS devices when a
processor issues an IDENT. The DWBUA adapt-
er’s BIIC asserts BCI SEL L and the appropriate
BCI SC <2:0> code. This bit affects only the out-
put of SEL and the IDENT SC code.
UCSREN User CSR Space When this bit is set, the DWBUA can respond to a
<08> Enable. VAXBI READ or WRITE command with an
(R/W, DCLOC) " address in DWBUA CSR space. The DWBUA

adapter’s BIIC asserts BCI SEL L and the appro-
priate BCI SC <2:0> code.

NOTE

The DWBUA sets the above three bits upon success-
ful completion of its self-test. All other bits in this
register should be clear.

3-12

3.2.3.4 User Interface Interrupt Control Register - Figure 3-10 is the User lnterface Interrupt Control
Register (bb+40) format.

N 28 27 24 23 2019 16 15 14 13 08 07 02
oo+so| wtaB | wtc | sent | Force | o] VECTOR [o o]
EX VECTOR — |
MKVB50687

Figure 3-10 User Interface Interrupt Control Register

FORCE Force This field must be zero.

<19:16>
EX VECTOR External vector This bit is set by the DWBUA self-test, and it
<15> must remain set. It enables the DWBUA to use the

external vector for transfer of UNIBUS interrupt
vectors which have the concatenated vector offset
applied.

3-13

3.2.3.5 General Purpose Registers — The only General Purpose Register (GPR) nsed by the DWBUA is .
GPRO (bb+FO0). Figure 3-11 shows the format of GPRO.

3 2423 1615 o1 00
bb+FO | 0] IEN | 0 [uerur |
MKVEs-0888

Figure 3-11 General Purpose Register 0

IEN Internal Error This field is a copy of the IEN field of the
<23:16> Number BUACSR (bb+720). This field contains the self-
(RO) test error number if the DWBUA self-test fails anc

if the DWBUA functions sufficiently to write to
this register. (See Appendix C.) This field is clear
if the DWBUA self-test passes. -~

UBPUP UNIBUS Power Up This bit is set when the UNIBUS power is ON. It

<00> (RO) is cleared by the DWBUA when UNIBUS power
goes down. This bit is set upon successful comple-
tion of the DWBUA self-test. (The DWBUA fails
self-test if the UNIBUS is not powered up.)

General Purpose Registers 1-3 are not used by the DWBUA. They are cleared by the BIIC self-test.

3-14

3.24 DWBUA Internal Registers
With the exception of the Data Path Control and Status Registers and the upper 16 UNIBUS Map
Registers, all DWBUA internal registers are cleared by the DWBUA self-test.

3.2.4.1 Receive Console Data Register - The Receive Console Data Register (RXCD) is considered an
unimplemented register by the DWBUA. The DWBUA responds with NO ACK to any access to this
register. Any VAXBI node that might access this register should have a way to detect this timeout. Figure
3-12 shows the format of the Receive Console Data Register.

3 24 23 1615 0807 00
bb+200| RECEIVE CONSOLE DATA]
MKVES-1807

Figure 3-12 Receive Console Data Register

3-15

3.2.42 DWBUA Control and Status Register - The DWBUA Control and Status Register (BUACSR;
bb+720) contains error and other operating information about the DWBUA. Figure 3-13 shows the
format of the DWBUA Control and Status Register. :

When an error occurs during DWBUA operation, the VAXBI is interrupted if interrupts are enabled.
Error interrupts are sent to the VAXBI in two ways. ‘

e The BIIC sends an error interrupt to the VAXBI if an error occurs during a VAXBI transaction.

e The FORCE bit in the Error Interrupt Control Register (bb+0C) is set by the DWBUA if an

error occurs either on the DWBUA or during a UNIBUS operation, and if error interrupts are
enabled.

31 30 2928 27 26 252423 212019 181716 15 14 08 07 00
otr20 L o L L LT 11 o [1 ol 111 0] J
ERR - -

BIF
USSTO
VIE

IMR
BUABDP
BUAEIE
UPI
REGOMP
ONE
IEN

Figure 3-13 DWBUA Control and Status Register

ERR Error (RO, DCLOC) This bit is a logical “OR” of all error bits in the
<3l> BUACSR.

BIF VAXBI Failure This bit is set if a DWBUA- initiated VAXBI

<28> (W1C, DCLOC) transaction fails. A VAXBI failure has occurred if
the DWBUA receives any of the following in
response to one of its VAXBI commands:

- NO ACK
- Illegal confirmation code
Read data substitute status code

See Table E-1 for a list of BIIC EVENT codes
that cause the BIF bit to set.

3-16

<27>

UIE
<26>

IMR
<25>

BADBDP
<24>

BUAEIE
<20>

UPI
<17>

REGDMP

<16>

ONE

<15>

IEN
<07:00>

~ UNIBUS SSYN

Timeout
(W1C, DCLOC)

UNIBUS Interlock
Error
(W1C, DCLOC)

Invalid Map
Register
(W1C, DCLOC)

Bad Buffered Data
Path Selected
(WIC, DCLOC)

DWBUA Error
Interrupt Enable
(R/W, DCLOC)

-UNIBUS Power

Initialization
(WO)
Microdiagnostic
Register Dump
(WO)

(RO)

Internal Error
Number
(RO)

This bit is set when a VAXBI-to- UNIBUS com-
mand attempts access to a UNIBUS address and
does not receive SSYN within 19.2 us after asser-
tion of MSYN.

This bit is set if a UNIBUS DATIP command is
not immediately followed by a DATO(B) com-
mand. This happens when BBSY is dropped by a
device after the DATIP command.

This bit is set if a UNIBUS Map Register (bb+800
- bb+FFC) which has its VALID bit clear is
accessed during a UNIBUS-to-VAXBI transaction.

This bit is set if (nonexistent) Buffered Data Path 6
or 7 is selected.

If an error occurs, the DWBUA initiates an error
interrupt on the VAXBI if this bit is set.

Writing a one to this bit causes a power-up initial-
ization on the UNIBUS.

Writing a one to this bit causes the microcode con-
trol to dump its internal registers to the
Microdiagnostic Registers (bb+730 - bb+740). A
READ of the Microdiagnostic Registers area can
then be performed to read the values.

The ONE bit is a READ-ONLY bit that should
always read one. This bit is used for error handling
by the operating system,; if it reads zero, an error
has occurred.

This field contains the self-test error number if the
DWBUA self- test fails and if the DWBUA func-

tions sufficiently to write to this register. This field
is clear if the DWBUA self-test passes.

3-17

3.2.4.3 Vector Offset Register - The Vector Offset Register (VOR; bb+724) contains a 5-bit field —
which is concatenated with the incoming UNIBUS vector to form the new VAXBI vector.

The Vector Offset Register format is shown in Figure 3-14.

31 14 13 09 08 00
bb+724 | 0 |vecTor oFrseT] 0]
MKVE8.0684

Figure 3-14 Vector Offset Register

VECTOR (R/W) The five bits in this field are concatenated with the
OFFSET incoming UNIBUS vector (UNIBUS bits <08:02>,
<13:09> in the range of 000 to 774) to form the new 14-bit

VAXBI vector <13:00>. The VECTOR OFFSET .
field bits are READ/WRITE; they must be set by
the operating system.

NOTE
Bits <31:14> and <08:00> must be zero.

3-18

3.2.4.4 Failed UNIBUS | Register - When a VAXBI-to-UNIBUS transaction results in a SSYN
timeout, the failed UNIBUS Address Register (FUBAR; bb+728) holds the failed UNIBUS address sent
by the VAXBI master. UNIBUS address bits <17:02> are stored in FUBAR <15:00>.

The FUBAR is wﬁtten only on the first occurrence of an address failure. Subsequent failures do not
modify the contents of the FUBAR until the USSTO bit of the BUACSR is cleared.

Figure 3-15 shows the format of the Failed UNIBUS Address Register.

3 16 15 00
bb+728 | | FAILED UNIBUS ADDRESS B
© MKVE50883
Figure 3-15 Failed UNIBUS Address Register
FAILED (RO) This field contains bits <17:02> of the first failed
UNIBUS UNIBUS address. Subsequent failures are not
ADDRESS recorded until the USSTO bit of the BUACSR is

<15:00> cleared.

3-19

3245 VAXBI Failed Address Register - The VAXBI Failed Address Register (BIFAR; bb+72C)
holds the address of a failed DWBUA-initiated VAXBI transaction. The BIFAR is written on the first
occurrence of a VAXBI address failure only. The BIF bit of the BUACSR is set when the BIFAR is
written; subsequent failures do not modify the contents of the BIFAR until the BIF bit has been cleared.

Figure 3-16 shows the format of the VAXBI Failed Address Register.

3 24 23 16 15 08 07 00
bb+72C | VAXBI FAILED ADDRESS |
MKV85-0682

Figure 3-16 VAXBI Failed Address Register

VAXBI (RO) ' This register contains the VAXBI address of the
FAILED first DWBUA- initiated failure on the VAXBL.
ADDRESS Subsequent failures are not recorded until the oper-
<31:00> ating system clears the BIF bit in the BUACSR.

3-20

3.2.4.6 Microdiagnostic Registers - The five Microdiagnostic Registers (bb+730 - bb+740) reccive the
address and status information for the five Buffered Data Paths. This information is received from the
microcode control when a one is written to the REGDMP bit in the BUACSR.

The Microdiagnostic Registers are READ-ONLY:; a VAXBI WRITE transaction to any of these registers
results in a NO ACK response from the DWBUA.

The Microdiagnostic Registers are listed in Table 3-2.

Table 3-2 Microdiagnostic Register Addresses

Microdiagnostic
Register for BDP Address

1 bb+730
2 bb+734
3 bb+738
4 bb+73C
5 bb+740

The five Microdiagnostic Registers have an identical format which is shown in Figure 3-17.

31 16 15 1110 09 08 07 00
::I;ﬁ or UNIBUS ADDRESS | 0 TTT11)]
STRT__ 0
BDIBUF ———eeee]
UDIBUF
RESERVED
MK V850681
Figure 3-17 Microdiagnostic Register
UNIBUS (RO) This field holds UNIBUS address bits <17:04> of
ADDRESS the current octaword transfer through the specific
<31:18> Buffered Data Path.
STRT-0 (RO) When set, this bit indicates that the first transac-
<10> tion through the Buffered Data Path began at an
aligned octaword address.
BDIBUF (RO) This bit is set to indicate that the BDP buffer con-
<09> tains VAXBI data.
UDIBUF (RO) This bit is set to indicate that the BDP buffer con-
<08> tains UNIBUS data.

3-21

3.2.4.7 Data Path Control and Status Registers - The DWBUA has six Data Path Control and Status
Registers (DPCSR; bb+750 - bb+764). DPCSRO is for the Direct Data Path, and the remaining five
correspond to the five Buffered Data Paths. The addresses of the Data Path Control and Status Registers
are shown in Table 3-3.

Table 3-3 Data Path Control and Status Register Addresses

DPCSRx Address
DPCSRO bb+750
DPCSR1 bb+754
DPCSR2 bb+758
DPCSR3 bb+75C
DPCSR4 bb+760
DPCSRS bb+764

The six Data Path Control and Status Registers have an identical format, which is shown in Figure 3-18.

31 2423 2120 01 00
borres L 0 [opseL | o [Furce]
MK V850880

Figure 3-18 Data l_’ath Control and Status Register

DPSEL Data Path Select These three bits denote the data Path: 0 = Direct

<23:21> (RO) Data Path; 1 - S correspond to the five Buffered

Data Paths. This field is written by the DWBUA

self-test.

PURGE Purge When set by the operating system, the PURGE bit

<00> (WO) causes the specific BDP buffer to be purged. This

is a WRITE-ONLY bit.

Purging a BDP buffer has different effects, depending on the buffer's status. For DPCSRO (the Direct
Data Path Control and Status Register), the BDP buffer is not purged and no further action occurs. For
the other five Data Path Control and Status Registers, writing a one to the PURGE bit has the following

results:

UNIBUS data in buffcf: The data is written to the VAXBI and the flags are cleared,
indicating that the buffer is empty.

VAXBI data in buffer: The fligs are cleared to indicate that the buffer is empty.

Empty buffer: No action occurs.

3-22

32.48 Buffered Data Path Space - The octaword buffer associated with each Buffered Data Path is
addressable in DWBUA 1/0 space (bb+790 - bb+7D0). Although the BDP- buffers are not usually
accessed directly through software, they are READ-ONLY and are longword accessible for diagnostic
purposes.

3.2.49 UNIBUS Map Registers - The 512 UNIBUS Map Registers (bb+800 - bb+FFC) are

READ/WRITE accessible to the operating system. These registers are invalidated by writing zeros to
their VALID bits or by BCIDCLO.

A UNIBUS Map Register translates an 18-bit UNIBUS address to a 30-bit VAXBI address. This
translation is illustrated in Figure 3-19.

UNIBUS MAP REGISTER

UNIBUS ADDRESS
31 20 00 17 09 08 00
L] PEN | L] |
< i = 7
~ ~ -~ ~ _ - - /
\\\ ~ - — - /
Ll T [z
31 30 29 09 08 02 01 00
VAXBI PHYSICAL ADDRESS
*0= LONGWORD TRANSACTION
1= OCTAWORD TRANSACTION
' MKVES0879
Figure 3-19 UNIBUS-to-VAXBI Address Translation
The UNIBUS Map Register format is shown in Figure 3-20.
31 30 29 272625 24 23 2120 00
Wmmc N RESERVED 0 80P PFN
VALID
10ADR
RESERVED
LONG WORD ACCESS ENABLE
BYTE OFFSET
DATA PATH SELECT
PAGE FRAME NUMBER
MKVE50678

Figure 3-20 UNIBUS Map Register

3-23

VALID
<31>

I0ADR
<30>

LWAEN
<26>

BYTE
OFFSET
<25>

DATA PATH
SELECT
<23:21>

PAGE
FRAME
NUMBER
<20:00>

(R/W, DCLOC)

(R/W, DCLOC)

Longword Access
Enable
(R/W, DCLOC)

(R/W, DCLOC)

(R/W, DCLOC)

(R/W, DCLOC)

Clearing this bit prevents a UNIBUS transfer from
mapping to the VAXBI. A transaction that uses a
UNIBUS Map Register with a clear VALID bit
does not receive SSYN. When this happens, the
IMR bit in the BUACSR is set and an error inter-
rupt is sent to the VAXBI (if interrupts are
enabled).

This bit designates 1/0 address space. When a
UNIBUS device initiates a transfer to a UNIBUS
Map Register with contents FFFFFFFF (hex), the
DWBUA ignores the transfer. That is, the
DWBUA does not issue SSYN, does not set the
IMR bit in the BUACSR, and does not issue an
interrupt. (The transfer is ignored if the IOADR,
VALID, LWAEN, and BYTE OFFSET bits are
set and if DPSEL <2:0> is 6 or 7. If IOADR and
VALID are set, but some of the other bits are not
set, the DWBUA sets IMR causing an interrupt.)

When set, this bit specifies that the maximum
length of a buffered transaction is one longword.
The buffer is purged by an octaword WMCI opera-
tion when an aligned longword of data has been
collected. When LWAEN is clear, the buffered
transaction depth may be as long as one octaword
before the contents are sent to the VAXBI. This
bit is ignored when set in a UNIBUS Map Register
with the Direct Data Path selected.

When this bit is set, the UNIBUS address is treat-
ed as if it is incremented by one.

This 3-bit field determines which of the data paths
is used. A O in this field indicates the Direct Data
Path; 1 through S correspond to the five Buffered
Data Paths.

A 6 or a 7 in this field causes the DWBUA to
assert the BADBDP bit in the BUACSR. The
DWBUA then sends an error interrupt to the
VAXBI if interrupts are enabled.

This 21-bit address field is concatenated with
UNIBUS address bits <8:0> to form a 30-bit
physical address on the VAXBI.

3-24

3.3 INITIALIZATION

3.3.1 DWBUA Hardware Initialization

Upon successful completion of the self-test, all DWBUA internal registers and Buffered Data Path flags
are cleared, with the exception of the Data Path Control and Status Registers and the upper 16 UNIBUS
Map Registers.

3.3.2 UNIBUS Initialization
The UNIBUS can be initialized in several ways.

. The DWBUA monitors the UNIBUS AC LO signal. When this signal is asserted, the DWBUA
initializes the UNIBUS (but not the DWBUA), clears the UBPUP bit in GPRO, and, if
interrupts are enabled, issues an error interrupt. When UNIBUS AC LO is deasserted and
UNIBUS initialization is complete, another interrupt is sent if interrupts are enabled.

2. The DWBUA initializes the UNIBUS (but not the DWBUA) if a processor sets the UPI bit in
the BUACSR. Two interrupts are issued if interrupts are enabled. :

3. The DWBUA asserts UNIBUS AC LO whenever Bl AC LO L is asserted; therefore. a brown-
out or black-out that affects the VAXBI causes the UNIBUS to be initialized.

4. The DWBUA asserts UNIBUS AC LO when a processor sets the SST bit in the BICSR. This
mechanism for initializing the DWBUA also initializes the UNIBUS.

The state diagram for UNIBUS initialization, Figure 3-21, applies to all of the cases above.

During UNIBUS initialization, which takes at least 80 ms, the UBPUP bit in GPRO (bb+FO0) is cleared by -
the DWBUA indicating that UNIBUS power is down. The DWBUA sends an error interrupt to the
VAXBI if interrupts are enabled.

During UNIBUS initialization, the DWBUA internal registers are not accessible. The DWBUA sends an
ACK response to all WRITE commands from the VAXBI and ignores the data; all READ commands are
supplied with zero data. The BIIC registers may be accessed, and they respond normally to all VAXBI
transactions. Once power is restored on the UNIBUS, UBPUP is set in GPRO and the VAXBI is
interrupted if interrupts are enabled.

3.4 PROGRAMMING CONSIDERATIONS

3.4.1 UNIBUS Map Registers
The DWBUA register set includes 512 UNIBUS Map Registers. When its VALID bit is set, a UNIBUS
Map Register maps one 512-byte page of UNIBUS address space to a page of VAXBI space.

The user must ensure that VALID pages do not correspond to CSR addresses of devices on the UNIBUS.
To do this, leave the contents of the upper 16 UNIBUS Map Registers unchanged after DWBUA
initialization.

The upper 16 UNIBUS Map Registers are initialized to FFFFFFFF. (If memory is placed on the
UNIBUS for special applications, the UNIBUS Map Registers which correspond to that memory should
be initialized to FFFFFFFF. This is the responsibility of the application software.) The DWBUA ignores
any transaction involving a UNIBUS Map Register that contains FFFFFFFF.

The lower 496 UNIBUS Map Registers are initialized to zero (also known as invalidated - that is, their
VALID bits are cleared) by the DWBUA on receipt of BCIDCLO.

3-25

SEND AN
ERROR INTERRUPT
TO VAXBI

START

CLEAR UBPUP
BITIN
GPRO

INTERRUPTS
ENABLED

|kSSERT UNIBUS ACLO
DISABLE ARBITRATOR

WAIT 3.5 us

ASSERT UNIBUS
DLCO AND
INIT

WAIT S us
DEASSERT
UNIBUS DCLO

WAIT 70 MS

Figure 3-21

3-26

ENABLE
ARBITRATOR

SET GPRO UBPUP
BIT

RESET UNIBUS
INIT LINE

BUACSR
BUAEIE BIT

SEND AN

ERROR INTERRUPT

TO VAXBI

UNIBUS Initialization State Diagram

MKVEs-0877

When a UNIBUS device initiates a transfer that corresponds to one of the upper 16 UNIBUS Map
Registers, the DWBUA ignores the transfer and expects the UNIBUS device to-respond. If a UNIBUS-
initiated transfer accesses a UNIBUS Map Register with the VALID, PPIE, LWAEN, and BYTE
OFFSET bits asserted and DPSEL<2:0> equal to 6 or 7, the DWBUA ignores the corresponding
UNIBUS transfer. ‘

3.4.1.1 Contiguous Allocation - One or more UNIBUS Map Registers must be allocated for each
transfer. When more than one is allocated, the UNIBUS Map Registers must be contiguous in UNIBUS
space, since sequential transfers are contiguous in UNIBUS space. This means that the set of UNIBUS
Map Registers is contiguous in VAXBI node space. The contents of the UNIBUS Map Registers do not
normally point to a contiguous area of VAXBI memory space.

3.4.1.2 Mapping to VAXBI 1/0 Space - UNIBUS Map Registers can be used to map to VAXBI 1/0
space, although no reason for doing so is known and many restrictions exist.

A UNIBUS device cannot modify the UNIBUS Map Registers of the DWBUA to which it is conpected.
An attempt to modify a UNIBUS Map Register results in the UNIBUS device never receiving SSYN. In
addition, the DWBUA may hang.

3.4.1.3 BYTE OFFSET Bit - If the BYTE OFFSET bit in the UNIBUS Map Register is set and if the
transfer uses n UNIBUS Map Registers, then the BYTE OFFSET bit should be set for all n registers and
the n+1th register should be allocated and invalidated. If the n+1th register is VALID when a UNIBUS
device issues a DATO with a UNIBUS address corresponding to the last word of the nth page, then two

VAXBI WRITEs can occur: one includes the last byte of the nth page, and the other includes the first byte
of the n+1th page.

If the BYTE OFFSET bit is not set, it is not necessary to allocate the n+1th UNIBUS Map Register since
the DWBUA does not prefetch data from VAXBI memory space.

3.4.2 UNIBUS Power Down

When UNIBUS power goes down, the UNIBUS requires a minimum of 80 ms to complete its power-
down/power-up sequence. During this sequence, the DWBUA cannot respond normally to VAXBI trans-
actions. Any attempted access to window space or to node space (except the first 256 bytes, which are in
BIIC space) receives ACK. For WRITE commands, the DWBUA ignores the data; for READ commands,

the DWBUA returns zero data. Further, the IRCI command does not set the DWBUA adapter’s internal
interlock.

3.4.3 Use of Buffered Data Paths

VAXBI memory may be corrupted if a UNIBUS device issues nonsequential DATO(B) transactions
through a BDP. In particular, a DATO with UNIBUS address 8*n followed by a DATO with UNIBUS
address 8*n+14 causes the entire octaword in the BDP to be written to VAXBI memory space. A DATOB
with UNIBUS address 8*n followed by a DATOB with UNIBUS address 8*n+15 has the same effect.
This conforms to the standard restriction on UNIBUS devices which use BDPs (sequential transfers only)
and causes the programming restrictions described in the next two paragraphs.

UNIBUS Map Registers associated with BDPs must not be double-allocated. A set of UNIBUS Map
Registers may be allocated to only one transfer. Concurrently allocating a set of UNIBUS Map Registers
to two transfers may cause VAXBI memory space to be corrupted.

A BDP must be purged (by writing one to the PURGE bit in the corresponding DPCSR) before the

UNIBUS Map Registers allocated to a transfer may be allocated to another transfer, and before the
contents of the UNIBUS Map Registers may be changed.

3-27

After a UNIBUS power outage occurs and power is restored, all of the BDPs must be purged using the
PURGE bit in the DPCSRs. .

During a UNIBUS-initiated DATO using a Buffered Data Path transaction, the DWBUA issucs SSYN
before determining if the corresponding VAXBI transaction is required. (That is. the DWBUA issues
SSYN before determining if the buffer is full.) This means that if an crror occurs during the VAXBI
transfer. the DWBUA cannot report that error to the UNIBUS device. If the transaction is a DATI. the
DWBUA completes the corresponding VAXBI transfer before it issues SSYN to the UNIBUS device.

3.4.4 VAXBI Access to the DWBUA Internal Registers

All IRCI transactions to the DWBUA internal registers are treated as READ commands and do not sct
the interlock on the DWBUA. All UWMCI and WMCI transactions to DWBUA registers are treated as
WRITE transactions. and the mask bits are ignored by the DWBUA.

The DWBUA responds with NO ACK to all accesses to the unused register locations in the DWBUA
internal register space. A WRITE (or UWMCI or WMCI) transaction to the READ-ONLY registers of
the DWBUA also results in a NO ACK response.

3.4.5 Data Length
The DWBLUA responds only to VAXBI transactions with a data length of longword. Quadword, octaword.
and RESERVED data length transactions result in a NO ACK responsc.

3.4.6 IRCI/UWMCI Commands _

When an IRCI transaction is issued to a DWBUA adapter’s window spacc. the DWBUA first performs a
DATIP transaction on the UNIBUS using the address supplicd with the IRCl command. The DWBUA
then sets its interlock. Once interlocked. the DWBUA responds with RETRY to all transactions issued 10
DWBUA window space or node space (except BIIC spacc) until a UWMCI transaction is reccived. The
DWBUA ignores the address supplied with the UWMCI command. The DWBUA assumes that the
LUWMCTI is addressed to the same word as the IRCI command and performs the DATO(B) to that word
address (taking into account the mask bits supplied with the UWMCI data).

3.4.7 UNIBUS DATIP :
When a UNIBLUS device issucs a DATIP. the DWBUA responds with RETRY to any VAXBI transaction
issucd 1o DWBUA window space or node space (except BIIC spuce) until a DATO(B) is sent by the
UNIBUS master device.

34.8 Hung UNIBUS
If a UNIBUS device hangs the UNIBUS (for cxample. by not deasserting MSYN) the DWBUA will
RETRY any VAXBI transaction issued to DWBUA window space or node space (except BIIC space).

3.49 VAXBI Bus Error

If the DWBUA encounters an error on the VAXBI during a DWBU A-initiated transaction. it sets the BIF
bit in the BUACSR. The DWBUA also clears the mask bits and the internal BDP flags. thereby indicating
that the buffer is empty for the current BDP. If this error occurs during a W(M)CI transaction. no
indication exists of the data path for which the VAXBI transaction failed. The DWBLA may withhold
SSYN. resulting in SSYN timeout to the UNIBUS device that initiated the transfer.

3.4.10 UNIBLS Devices

The DWBUA allows those UNIBUS devices that perform data transfers (instcad of sending vectors)
during the INTR cycle to be attached to the UNIBUS. These devices. however. causc a passive relcasc
every time they assert the BR lines to perform a DMA transfer.

3-28

3.4.11 Access to Nonexistent Registers

The DWBUA responds with NO ACK to any VAXBI command with an address in unused DWBUA
register space. It also responds with NO ACK to WRITE (WCI, WMCI, UWMCI) commands to READ-
ONLY registers.

READ transactions to unimplemented BIIC registers read zero data. WRITE (WCI. WMCIL. UWMCI)
commands to these registers reccive an ACK response; but the data is dropped.

3-29

CHAPTER 4
FUNCTIONAL DESCRIPTION

4.1 INTRODUCTION -

The functional description of the DWBUA is presented in two parts. In the first part, the components on
the block diagram are described. The second part explains the way in which the DWBUA interfaces
between the two buses.

4.2 BLOCK DIAGRAM

Figurc 4-1 is the DWBUA block diagram. Table 4-1 contains lunctional descriptions of the blocks in
Figurc 4-1.

< BACKPLANE INTERCONNECT >

BCI BUS
BIIC
VAXBIDATA &ADR VAXBI ADDRESS MASTER PORT SLAVE PORT
TRANSCEIVERS LATCH CONTROL CONTROL
DATA @
PATH ®
£ GATE 3
e ARRAY
3 ADDRESS
o PROCESSOR
INTERNAL
RAM
UNIBUS DATA UNIBUS ADDRESS MICROCODE UNIBUS PORT
TRANSCEIVERS TRANSCEIVERS CONTROL CONTROL

G ‘ TS >

MKV85-07:5

Figure 4-1 DWBUA Block Diagram

4-1

Table -1 DWBUA Block Diagram Descriptions

Block

Description

BIIC

Transfers data between VAXBI and DWBUA
DWBUA adapter’s only connection to VAXBI

Master Port Control

Controls:

. UNIBUS transactions to VAXBI

. DWBUA transactions to VAXBI

L] DWBUA transfers to BIIC for self-test

Slave Port Control

Receives transactions from VAXBI; verifies that they are
intended for DWBUA or its UNIBUS

Controls:
L Transfers to DWBUA internal registers

L] Transfers to UNIBUS

VAXBI Data and Address Transceivers

Pass data between BCI bus and BDP bus (bidirectional)

Transfer addresses from BDP bus to BCI bus (unidirectional)

VAXBI Address Latch

Latches addresses from BCI bus

Puts addresses onto BAD bus

UNIBUS Data Transceivers

Pass data between UNIBUS and BDP bus (bidirectional)

UNIBUS Address Transceivers

Pass addresses between UNIBUS and BAD bus (bidirectional)

UNIBUS Port Control

Consists of:

. Interlock circuitry (locks out all other transactions while
a transaction is being processed)
. UNIBUS control transceivers

L UNIBUS arbitration circuitry

Data Path Gate Array

Controls IRAM addresses

Controls IRAM writes

Stores and controls Buffered Data Path mask bits
Performs BDP bus word rotates

Translates UNIBUS addresses

4-2

Table -1 DWBUA Block Diagram Descriptions (Cont)

Block

Description

Internal RAM (IRAM)

2K x 32 RAM

Contains:

. DWBUA Internal Registers

. UNIBUS Map Registers

L Temporary storage for self-test

. Buffered Data Path buffers (one octaword of storage for
each of the five Buffered Data Paths)

Address Processor

Provides address and byte count storage
Performs address matching for BDP transactions
Generates and stores constants

Stores and tests flags for BDP transactions

Performs byte rotation for byte offset

Microcode Control

Controls data path gate array

Controls address processor

Sends instructions to UNIBUS control
Sends instructions to master port control

Interlocks transactions between UNIBUS and VAXBI

BCI Bus

BI chip interface bus
Synchronous interface bus

Provides all communication between the BIIC and the
DWBUA

BAD Bus

Buffered address bus

Internal address bus for all but VAXBI addresses

BDP Bus

Internal data and VAXBI address bus

43

4.3 TRANSACTIONS

The DWBUA acts as a translator between the VAXBI and the UNIBUS. It interprets commands received
from one bus into a format that the other bus can understand, and it provides controls and responses that
enable the completion of these commands. These sequences of commands, controls, and responses are
called DWBUA transactions. In this section, some typical transactions handled by the DWBUA are
examined in detail.

DWBUA transactions are divided into three categories:

e VAXBI-to-DWBUA
e VAXBI-to-UNIBUS
e UNIBUS-to-VAXBI

4.3.1 VAXBI-to-DWBUA Transactions
4.3.1.1 DWBUA Responses to VAXBI-to-DWBUA Transactions - The VAXBI sends READ and
WRITE commands to the DWBUA. The purpose of these commands is to read data from or to write data

to the DWBUA adapter’s internal registers. The VAXBI node that initiates the transaction is the VAXBI
master, and the DWBUA is the VAXBI slave in all VAXBI-to-DWBUA transactions.

Table 4-2 DWBUA Responses to VAXBI-to-DWBUA Transactions

VAXBI-to-DWBUA Transaction DWBUA Response

READ of DWBUA internal register 1. STALL
2. Register data with read data status code
3. ACK

READ of unused DWBUA register space NO ACK

WRITE to DWBUA internal register 1. STALL

2. ACK (if no parity error on the VAXBI*)
3. Register updated

WRITE to unused DWBUA register NO ACK
space or READ-ONLY register

* If a parity error occurs, the register is not updated.

4-4

~ 4.3.1.2 VAXBI-to-DWBUA Commands -

Table -3 VAXBI-to-DWBUA Commands

VAXBI Command ~ DWBUA Response Possible Errors See Note

READ ' ACK/RETRY None 1

IRCI ACK/RETRY None 1,2

RCI ACK/RETRY None 1

WRITE : ACK/RETRY Parity Error 1.5

WCI ACK/RETRY Parity Error 1S

WMCI ACK/RETRY Parity Error 1.4,5

UWMCI ACK/RETRY Parity Error 1.3,5
NOTES FOR TABLE 4-3:

~ (1) Longword length only.

(2) IRCI commands are accepted, but they are treated as READ commands. The DWBUA does not
interlock.

(3) UWMCI commands are accepted, but they are treated as WRITE commands. The DWBUA does
not interlock. The mask bits are ignored.

(4) WMCI commands are accepted, but they are treated as WRITE commands. The mask bits are
ignored, and the full longword of data is assumed to be valid.

(5) If a parity error occurs on the VAXBI, the DWBUA ignores the transaction.

45

4.3.1.3 Example: VAXBI WRITE to a UNIBUS Map Register - The VAXBI-to-DWBUA transaction
used as an example in this section is a VAXBI WRITE to a UNIBUS Map Register. The purpose of this
transaction is for the operating system to set up a UNIBUS Map Register for a future UNIBUS-to-
VAXBI transaction. A UNIBUS Map Register corresponds to a block of addresses on the UNIBUS. In a
future direct memory access (DMA) transaction (not necessarily the one following this transaction), data
will be transferred between this block of UNIBUS addresses and a VAXBI address.

Figure 4-2 is a flow diagram of the VAXBI WRITE to a UNIBUS Map Register transaction. The
numbered paragraphs that follow refer to the corresponding numbers in Figure 4-2.

LATCH VAXBI DATA
AND ADDRESS SEND @
STALL TO VAX8I

PARITY

BAD
?

SEND ACK @
TO VAXBI

DATA TO BDP BUS
TRANSLATE ADDRESS @
= VAXBI TO IRAM

4

WRITE DATA TO
UNIBUS MAP
REGISTER

y
TRANSACTION
FINISHED

MKVEs.0676

Figure 4-2 VAXBI WRITE to a UNIBUS
Map Register Flow Diagram

4-6

(D) The VAXBI command, address, and data are received by the DWBUA. The slave port control

©@ 00 ©

©

determines that the transaction is for the DWBUA. The VAXBI address ‘is latched in the VAXBI
address latch, and the VAXBI data is latched in the VAXBI data and address transceivers. The
VAXBI address is the address of the UNIBUS Map Register that will be written. The VAXBI data
will be written into this UNIBUS Map Register.

The initial DWBUA response to the VAXBI is STALL.

The DWBUA checks for a parity error on the VAXBI. If either the data or the command/address
has a parity error, the transaction is immediately terminated.

The DWBUA responds to the VAXBI with ACK. The VAXBI interprets the transaction as complete.
The DWBUA checks for a parity error on the VAXBI. The DWBUA terminates thé transaction
immediately if the data received in the VAXBI cycle in which ACK was sent has a parity error. The
DWBUA issues an error interrupt to the VAXBI if errors are enabled.

The data in the VAXBI data and address transceivers is put onto the BDP bus.

The VAXBI address is translated into an internal RAM address, specifically to the address of the
UNIBUS Map Register to be written.

The data on the BDP bus is written to the UNIBUS Map Register in the internal RAM. The
transaction is complete.

4.3.2 VAXBI-to-UNIBUS Transactions

4.3.2.1 DWBUA Responses to VAXBI-to-UNIBUS Transactions - In a VAXBI-to-UNIBUS transac-
tion. the VAXBI master sends to the DWBUA a command that requires the DWBUA to read from or to
write to a UNIBUS device.

Table 4-4 Bus Masters and Slaves for VAXBI-to-UNIBUS

Transactions
Bus Master Slave
VAXBI Node initiating transaction DWBUA
UNIBUS DWBUA UNIBUS device

The DWBUA monitors the UNIBUS BBSY signal before it attempts to perform the DATO(B) transac-
tion on the UNIBUS. (If BBSY is deasserted, the DWBUA asserts BBSY and gains UNIBUS mastership.)
If the DWBUA does not gain UNIBUS mastership within 51 us, UNIBUS timeout occurs. '

4-7

Table 4-5 details the DWBUA responses to three types of VAXBI commands that requirc DWBUA
interaction with devices on the UNIBUS: READ, WRITE (WMCI, WCI), and IRCl/UWMCIL.

Table -5 DWBUA Responses to VAXBI-to-UNIBUS Transactions

VAXBI-to-UNIBUS
Transaction DWBUA Response
READ Initial response - STALL

Initiates UNIBUS DATI command
Continues STALL responses to VAXBI until:

. SSYN received from UNIBUS slave, or
. SSYN timeout occurs (1)

Sends to VAXBI:

. Data from UNIBUS
® Read data status code (2)
. ACK -

WRITE (WMCI, WCI) Initial response - STALL
i Checks for parity error on the VAXBI (3)
Sends ACK to VAXBI
Initiates UNIBUS DATO(B) command (4)
Waits for SSYN from UNIBUS device or for SSYN timeout (5)

IRCI/UWMCI

Initial response - STALL
Initiates UNIBUS DATIP command
Continues STALL responses to VAXBI until:

] SSYN received from UNIBUS slave, or
RCI ° SSYN timeout occurs (1)

Sends to VAXBI:

. Data from UNIBUS
° Read data status code (2)
. ACK '

Sets interlock (6)

Initial response - STALL

Checks for parity error on the VAXBI (8)
UWMCI (7) Sends ACK to VAXBI

Releases interlock

Initiates UNIBUS DATO(B) command (5,9)

NOTE
When the DWBUA is busy, it sends RETRY to the
VAXBI. It does this when:

- VAXBI attempts access of UNIBUS address space
while the DWBUA is processing a UNIBUS trans-

action, or

-~ Current transaction requires DWBUA mastership
of the VAXBI.

4-8

NOTES FOR TABLE 4-5:

4))

(2)

)
(4)
)]

(6)

(7

(8)

%)

The DWBUA does the following in response to a SSYN timeout during a.‘READ transaction:
a. Sends zero data with read data substitute status code to the VAXBI

b. Sends an ACK response to the VAXBI

c. Sets the USSTO bit in the BUACSR

d. Issues an error interrupt to the VAXBI (if interrupts are enabled)

If the UNIBUS PB (parity bad) lme is asserted, the DWBUA sends zero data with a read data
substitute status codc to the VAXBI.

If a parity error has occurred on the VAXBI, the DWBUA terminates the transaction.
The DWBUA issues a DATO or a DATOB depending on the mask bits.

The DWBUA does the following in response to a SSYN timeout during the UNIBUS portion of a
WRITE transaction:

a. Sets the USSTO bit in the BUACSR
b. Issues an error interrupt to the VAXBI if interrupts are enabled

After the DWBUA sets its interlock, it sends a RETRY response to all VAXBI commands except-
UWMCL

The DWBUA may receive a UWMCI command without having received a preceding IRCI com-
mand. When this happens. the DWBUA processes the UWMCI command as a WMCI command.

If the VAXBI command/address or data has a parity error, the corresponding UNIBUS DATO(B)
command is not issued and the DWBUA adapter’s interlock is not released, hanging the DWBUA.

The DWBUA assumes that the UWMCI is targeted for the same address as the IRCI. so it ignores
the incoming address.

4-9

4.3.2.2 VAXBI-to-UNIBUS Commands -

Table 4-6 VAXBI-to-UNIBUS Commands

VAXBI COMMAND UNIBUS DWBUA
Command Response Possible
Code Name Translation to VAXBI Errors See Note
0000 Reserved None NO ACK None 1
0001 READ DATI ACK/RETRY USSTO 2,12
0010 IRCI DATIP ACK/RETRY USSTO 3,12
0011 RCI DATI ACK/RETRY USSTO 4,12
0100 WRITE DATO ACK/RETRY USSTO S,
VAXBI PE 12,13
0101 WCI DATO ACK/RETRY USSTO 6,
VAXBI PE 12,13
0110 UWMCI DATO(B) ACK/RETRY USSTO 3,7,
VAXBI PE 12,13
o111 WMCI DATO(B) ACK/RETRY USSTO 7,
VAXBI PE 12,13
1000 INTR None NO ACK None 8
1001 IDENT BGn ACK/RETRY SACK 9,14
1010 Reserved None NO ACK None 1
1011 Reserved None NO ACK None 1
1100 STOP SEE NOTES ACK None 10
1101 INVAL None NO ACK None 11
1110 BDCST None NO ACK None 11
1111 IPINTR None NO ACK None 11

4-10

NOTES FOR TABLE 4-6:

(1) These codes are reserved by Digital Equipment Corporation for future expansion. The DWBUA
responds to the codes with NO ACK.

(2) All VAXBI READs of UNIBUS space are limited to longword length only. VAXBI address bit
A<01> determines which word is read from the UNIBUS.

(3) IRCI/UWMCI commands operate as UNIBUS DATIP/DATO(B) sequences. The DWBUA is
interlocked by the IRCI command; the UWMCI command releases the interlock. All other READ
and WRITE commands directed to the DWBUA receive RETRY responses while the DWBUA is
interlocked. Due to UNIBUS constraints, the address supplied for a UWMCI command must be the
same as for the IRCI command. Hence, the DWBUA uses the address of the IRCI command while
servicing the UWMCI command, ignoring the address supplied with the latter command.

(4) A VAXBI RCI command is treated as a READ command.

(5) VAXBI-to-UNIBUS WRITEs are limited to longword length only. VAXBI address bit A
determines which word is written.

(6) A VAXBI WCI command is treated as a WRITE command.

(7) Data length is longword only. VAXBI address bit A<01> determines which word of a longword is
written. If either of the two mask bits is not set in the selected word, the DWBUA will respond to the
command with ACK. This may corrupt the UNIBUS data or may cause a SSYN timeout. Mask
information for the word not selected by VAXBI bit A<01> is ignored by the DWBUA.

(8) Since interrupts are only permitted in the UNIBUS-to-VA XBI direction, the DWBUA responds to all
INTR commands with NO ACK.

(9) The DWBUA responds to IDENT commands with a previously failed interrupt vector (if present) at
an appropriate level. If there is no failed vector, the DWBUA will fetch an interrupt vector from the
UNIBUS device by issuing a BG at the corresponding level of the IDENT command.

(10) The STOP command resets all pending interrupts and DMA requests from the UNIBUS. The
DWBUA does not alter the contents of any register implemented in the user CSR space. The
DWBUA responds to all subsequent VAXBI commands, but does not attempt to gain mastership of
the VAXBI. This effect of the STOP command is reset only by BCl DCLO.

(11) INVAL, BDCST, and IPINTR are ignored by the DWBUA. The DWBUA responds to these codes
with NO ACK.

(12) USSTO - The corresponding UNIBUS transaction has resulted in a SSYN timeout. (The DWBUA
did not receive SSYN within 19.2 us after asserting MSYN.) The USSTO bit in the BUACSR s set.
and an error interrupt is sent to the VAXBI (if interrupts are enabled).

(13) VAXBI PE - Parity error on the VAXBI. The DWBUA ignores the transaction.

(14) SACK - SACK is not asserted by the interrupting UNIBUS device. The DWBUA sends zero data
for the vector.

4-11

4.3.2.3 Example: VAXBI READ of UNIBUS Data - The VAXBI-to-UNIBUS transaction used as an
example in this section is a VAXBI READ of UNIBUS data. In this transaction, the VAXBI master reads

data from a device on the UNIBUS.

Figure 4-3 is a flow diagram of the VAXBI READ of a UNIBUS data transaction. The numbered
paragraphs that follow refer to the corresponding numbers in Figure 4-3.

ISSUE DATI @

@

NO SSYN- NO SSYN
TIMEOUT RECEIVED
? ?
YES YES

LATCH DATA @
DEASSERT MSYN

0 DATA & RDS TO PARITY YES
VAXB! SET USSTO @ BAD
ERROR INTERRUPT ?
TO VAXBI
NO
SEND UNIBUS SEND ZERO
DATA, RS DATA, RDS @
TO VAXBI TO VAXBI

ol g J

)
VAXBI @

NO__TRANSACTION
COMPLETE
?

YES

< TRANSACTION)
FINISHED

Figure 4-3 VAXBI READ of UNIBUS Data Flow Diagram

4-12

©

® 00 0 60006

©

The VAXBI command and address are received by the DWBUA. The slave port control determines
that the transaction is for the DWBUA. The DWBUA response to the VAXBI is STALL.

The VAXBI address is latched in the VAXBI address latch.

The DWBUA monitors the BBSY signal on the UNIBUS. If it is asserted, the DWBUA waits until it
is deasserted. Since the DWBUA is the UNIBUS arbitrator, it has the highest priority on the
UNIBUS. When BBSY is deasserted by the present UNIBUS master, the DWBUA asserts BBSY
and gains bus mastership.

The DWBUA issues a DATI command. The address in the VAXBI address latch is sent over the
BAD bus to the UNIBUS address transceivers. Address and control bits are sent out on the UNIBUS.

The DWBUA asserts MSYN. The slave device puts the data onto the UNIBUS D lines.

The DWBUA monitors SSYN and waits for it to be asserted.

If SSYN is not asserted within 19.2 us from assertion of MSYN, a SSYN timeout occurs.

SSYN timeout causes the DWBUA to send zero data and RDS to the VAXBI, set the USSTO bit of
the BUACSR, and issue an error interrupt to the VAXBI if interrupts are enabled. The transaction is

terminated.

The UNIBUS slave sends the data and SSYN to the DWBUA. Data is received at the UNIBUS data
transceivers.

Parity for the data is checked.

If the data has a parity error, zero data and a read data substitute (RDS) status code are sent to the
VAXBI. The RDS status code warns the VAXBI that the data contains an uncorrectable error. The
transaction is terminated.

If parity is good, the UNIBUS data is sent over the BDP bus to the VAXBI data transceivers. From
there it is sent over the BCI bus to the BIIC and out to the VAXBI. A read data status code is sent 1o
the VAXBI, indicating that the data is error free.

When all of the data has been sent to the VAXBI, the DWBUA sends three ACKs to the VAXBI,
indicating that the transaction is complete..

4-13

4.3.3 UNIBUS-to-VAXBI Transactions
4.3.3.1 DWBUA Responses to UNIBUS-to-VAXBI Transactions - In a UNIBUS-to-VAXBI transac-

tion, the UNIBUS master sends a command to the DWBUA that requires the DWBUA to read from or to
write to a VAXBI node.

Table 4-7 Bus Masters and Slaves for UNIBUS-to-VAXBI Transactions

Bus Master Slave
UNIBUS Device initiating transaction DWBUA
VAXBI DWBUA VAXBI node

The DWBUA responds to three UNIBUS commands that requirce DWBUA interaction with other VAXBI
nodes: DATI, DATO(B), and DATIP/DATO(B). These responses are listed in Table 4-8. The DWBUA
responses to UNIBUS commands are independent of the data path used.

Table -8 DWBUA Responses to UNIBUS-to-VAXBI Transactions

UNIBUS-to-VAXBI
Transaction DWBUA Response
DATI (1) Data (2)
SSYN (3)
DATO(B) (4) SSYN (5)
Data to VAXBI (6)
DATIP/DATO(B) (7)
DATIP (8) { &‘;‘,3223)
SSYN (5)
DATO(B) (9) { Data to VAXBI (6)
NOTE

If the DWBUA is processing a VAXBI transaction when
the UNIBUS request is received, the DWBUA withholds
the bus grant until the VAXBI transaction has completed.

4-14

NOTES FOR TABLE 4-8:

(1)
(2)

(3)

(4)

()

(6)

)

(8)
9

A DATI command from a UNIBUS device reads data from the DWBUA.

If a VAXBI error occurs while the DWBUA is fetching the data from the VAXBI, SSYN may be
withheld. If it is withheld, 2 SSYN timeout results. The DWBUA sets the BIF bit of the BUACSR
and the BIIC issues an error interrupt on the VAXBI if interrupts are enabled.

The DWBUA issues SSYN in response to a DATI command only when the VAXBI slave responds to

the VAXBI portion of the transaction with ACK. Any other response from the VAXBI slave results
in the DWBUA withholding SSYN.

When the DWBUA processes a DATO(B) command, it accepts data from a UNIBUS device.
The DWBUA issues SSYN before it completes the corresponding VAXBI transaction.

If an error occurs while the DWBUA is writing the data to the VAXBI node, the DWBUA sets the
BIF bit of the BUACSR, and the BIIC issues an error interrupt on the VAXBI if errors are enabled.
SSYN may be withheld from the UNIBUS device; withholding SSYN results in an SSYN timeout.

The DATIP/DATO(B) command sequence may be performed only through the DWBUA adapter’s
Direct Data Path. An attempt to perform this command sequence through a Buffered Data Path
results in an SSYN timeout. The BYTE OFFSET bit in the UNIBUS Map Register corresponding to
the Direct Data Path is ignored and treated as if it is clear: if the bit is set, the command is treated as
if the bit is clear.

A SSYN timeout occurs if a DATIP through the Direct Data Path results in‘a failure on the VAXBI.

UNIBUS protocol requires that a DATIP be followed immediately by a DATO(B) command. BBSY
and the address lines must not be deasserted between the two commands. Any deviation from this
czuses the DWBUA to set the UIE bit of the BUACSR. If a DATO(B) is received, but a VAXBI
failure occurs during the UWMCI that is generated, then the BIF bit of the BUACSR is set. Each of
these errors causes an error interrupt on the VAXBI if interrupts are enabled.

4-15

4.3.3.2 UNIBUS-to-VAXBI Commands Through the Direct Data Path -

NOTE
A complete description of data path operation can
be found in Appendix L

Table 49 UNIBUS-to-VAXBI Commands Through the Direct Data Path

UNIBUS
UNIBUS Address Command Transfer Possible
Command <3:0> to VAXBI Length Errors See Note
BYTE OFFSET BIT =0
DATI ANY READ LONGWORD A, B 4
DATIP ANY IRCI LONGWORD A, B, C 1,4
DATO ANY WMCI or UWMCI LONGWORD A, B 24
DATOB ANY WMCI or UWMCI LONGWORD A, B 4
BYTE OFFSET BIT = 1
DATI ANY READ LONGWORD A, 34
DATIP ANY N/A N/A N/A 1
DATO ANY WMCI LONGWORD A, B 3,4
DATOB ANY WMCI LONGWORD . 4

4-16

NOTES FOR TABLE 4-9:

Q)]

(2)

3)

(4)

A DATIP command is valid only through the Direct Data Path. If a DATIP is attempted through a
Buffered Data Path or through the Direct Data Path with the BYTE OFFSET bit set, the UNIBUS
command is ignored and the DWBUA does not issuc SSYN. This causes an SSYN timeout. During
this time. all VAXBI transactions to the DWBUA receive a RETRY response until the UNIBUS
device negates BBSY.

If a DATIP command is not followed by a DATO(B), the DWBUA sets the UIE bit of the BUACSR
and forces an error interrupt (if interrupts are enabled).

A UNIBUS DATO(B) through the Direct Data Path translates to a longword WMCI transaction
with the mask bits set for each valid data byte.

The DWBUA performs two longword trasactions on the VAXBI for a word length transfer through
the Direct Data Path if both the BYTE OFFSET bit and UNIBUS address bit A<l> are set.

Possible Errors:

(A) BIF - The VAXBI transaction has returned an event code that the DWBUA recognizes as an
error code: BTO, RDSR. ICRMC. NCRMC, ICRMD, BPM, or MTCE. The BIF bit is set in
the BUACSR and an error interrupt is sent to the VAXBI if interrupts are enabled. The
DWBUA may withhold SSYN., resulting in an SSYN timeout to the UNIBUS device that
initiated the transfer.

(B) IMR - The VALID bit is not set in the UNIBUS Map Register for the incoming UNIBUS
address. The IMR bit is set in the BUACSR and an error interrupt is sent 10 the VAXBI if
interrupts are enabled.

(C) UIE - The UNIBUS master deasserted BBSY after the DATIP, before executing the accompa-

nying DATO(B). The UIE bit is set in the BUACSR and an error interrupt is sent to the
VAXBI if interrupts are enabled.

4-17

4.3.3.3 Example: DATO(B) Using the Direct Data Path - In this transaction the UNIBUS master
writes data to a VAXBI node. The data is not temporarily stored in a BDP buffer, as it is during a
Buffered Data Path transaction; instead, it goes directly to the VAXBI.

Figure 4-4 is a flow diagram of the DATO(B) using the Direct Data Path transaction. The numbered
paragraphs that follow refer to the corresponding numbers in Figure 4-4.

ISSUE WMC! LW @
TO VAXBI

y

LATCH UNIBUS @
DATA

ERROR
RECEIVED

ACK

NO
! RECEIVED

ISSUE SSYN @

1
SET BIF BIT @ @
IN BUACSR MSYN
DEASSERTED ,
? NO

YES

TRANSACTION
FINISHED

MKVE50874

Figure 4-4 DATO(B) Using the Direct Data Path
Flow Diagram

4-18

)

O]

©Oe ® O

©
@

The UNIBUS master sends the address, control bits, and data to the DWBUA, and it then issues
MSYN. The DWBUA decodes the control bits and determines that the command is a DATO(B).

The DWBUA requests the VAXBI and starts a WMCI LW (write mask with cache intent -
longword) transaction. This is the VAXBI transaction that corresponds to a UNIBUS DATO. The
mask bits are determined by the command (DATO or DATOB). The UNIBUS address is longword
aligned.

The UNIBUS data is latched in the UNIBUS data transceivers.

The data goes from the UNIBUS data transceivers to the BDP bus, through the VAXBI data
transceivers, and to the VAXBI.

The VAXBI slave sends ACK to the DWBUA, indicating that it has received the data. After ACK is
received, the BIIC sends the DWBUA a master transaction complete signal.

If ACK is not received, the DWBUA looks for an error.

If an error is réccivcd. the BIF bit in the BUACSR is set and the transaction is terminated. SSYN
may not be issued, resulting in an SSYN timeout.

The DWBUA issues SSYN, completing the UNIBUS transaction.

The DWBUA monitors MSYN. When it is deasserted, the VAXBI transaction is complete.

4-19

4.3.3.4 UNIBUS-to-VAXBI Commands Through a Buffered Data Path -

Table 4-10 UNIBUS-to-VAXBI Commands Through a Buffered Data Path

UNIBUS
UNIBUS Address Buffer Command Transfer Possible See
Command <3:0> Status to VAXBI Length Errors Note
BYTE OFFSET BIT =0
DATI ANY EMPTY READ OCTAWORD B,C,D 3,5
DATI ANY . IN/M NONE N/A 6
DATI ANY IN/D READ OCTAWORD B.C,D 5.6
DATI ANY ouT WMCI or READ OCTAWORD B,C.,D 5.6
DATIP ANY N/A N/A N/A . 2
DATO ANY IN or WMCI OCTAWORD B,C,D 4.5,
EMPTY 6,7
DATO ANY OUT/M WMCI OCTAWORD B,C,D 5,6,7
DATO ANY OUT/D WMCI ‘OCTAWORD B,C,D 5.6,8
DATOB ANY IN or WMCI OCTAWORD B,C,D 5,6,7
EMPTY '
DATOB ANY ouT/M WMCI .~ OCTAWORD B.C.D 5,6,7
DATOB ANY OUT/D WMCI OCTAWORD B,C,D 5,6,8
BYTE OFFSET BIT =1
DATI 0t C EMPTY READ OCTAWORD A, B, D 5
DATI : 0to C IN/M NONE N/A 6
DATI 0to C IN/D READ OCTAWORD A,.B, D 5.6
DATI 0w C OuUT - READ LONGWORD A, B 5,6
DATI E EMPTY READ OCTAWORD A,B, D S
DATI E IN/M READ OCTAWORD A.B, D 5.6
DATI E IN/D READ OCTAWORD A, B, D 5,6
DATI E OouT READ LONGWORD A.B 1,5.6
DATIP ANY N/A NONE N/A 2
DATO OtoC IN or NONE N/A 6
EMPTY
DATO 0OtoC OouT/M NONE N/A 6
DATO 0toC OuUT/D WMCI OCTAWORD B.C.D 5,6
DATO E IN or WMCI OCTAWORD B.C,D 5.6
EMPTY
DATO E OuUT/M WMCI OCTAWORD B.C.D 5.6
DATO E OUT/D WMCI OCTAWORD B,C,D 5,6
DATOB ANY IN or WMCI OCTAWORD B,C,D 5,6,7
EMPTY
DATOB ANY OUT/M WMCI OCTAWORD B.C.D 5,6,7
DATOB ANY OuUT/D WMCI OCTAWORD B.C,D 5,6,8

NOTES FOR TABLE 4-10:

(1) This special case is treated differently from other Buffered Data Path transfers to avoid delay in
issuing SSYN. In this case, the low byte of the requested DATI word is fetched by performing a
longword READ through the Direct Data Path. The high byte is fetched from either the cuirent BDP
buffer or the VAXBI with a longword READ through the DDP. The current BDP status remains
unchanged during this transaction.

4-20

P (2) A DATIP transaction is valid only through the DDP.

(3) A UNIBUS DATI command through a Buffered Data Path results in an octaword READ of VAXBI
space, if the requested data is not in the BDP buffer. If the UNIBUS data is stored in the BDP buffer,
however, the buffer must be purged by performing an octaword WMCI on the VAXBI before
reading the data from the VAXBI. The entire octaword is loaded into the buffer; subsequent accesses
within the octaword through the same Buffered Data Path cause the DWBUA to fetch the data from
the buffer, with no VAXBI transaction requested.

(4) Data for a DATO(B) command through a BDP is stored until the buffer is full. The DWBUA then
performs a VAXBI octaword WRITE (nonmasked) if the buffer contains an entire octaword of valid
data from the UNIBUS device. A VAXBI octaword WMCI is performed if the buffer contains less
than a complete octaword of valid data.

(5) Possible Errors:

(A) BIF - The VAXBI transaction has returned an event code that the DWBUA recognizes as an
& error code: BTO. RDSR. ICRMC, NCRMC. ICRMD, BPM. or MTCE. The BIF bit is set in
the BUACSR and an error interrupt is sent to the VAXBI if interrupts are enabled. The
DWBUA may withhold SSYN, resulting in an SSYN timeout to the UNIBUS device that
initiated the transfer.

(B) IMR - The VALID bit is not set in the UNIBUS Map Register for the incoming UNIBUS
address. The IMR bit is set in the BUACSR and an error interrupt is sent to the VAXBI if
interrupts are enabled.

H (C) UIE - The UNIBUS master deasserted BBSY after the DATIP, before executing the accompa-
nying DATO(B). The UIE bit is set in the BUACSR and an error interrupt is sent to the
VAXBI if interrupts are enabled.

(D) BADBDP - The UNIBUS Map Register that corresponds to the incoming UNIBUS address

has a 6 or 7 in the BDP SEL field. (It is attempting to select Buffered Data Path 6 or 7.) The
BADBDP bit is set in the BUACSR and an error interrupt is sent to the VAXBI if interrupts
are enabled.

™ (6) Buffer status

IN/M - The BDP buffer contains the UNIBUS DATI data received from the VAXBI. and the
addresses match.

IN/D - The BDP buffer contains the UNIBUS DATI data received from the VAXBI, and the
addresses do not match.

OUT - The BDP buffer contains the UNIBUS DATO data to be sent to the VAXBI.
EMPTY - The BDP buffer is empty
(7) The command to the VAXBI is sent after SSYN is issued.

(8) The command to the VAXBI may be sent after SSYN is issued.

4-21

4.3.3.5 Example: DATO Using a Buffered Data Path - In this transaction the UNIBUS master writes
data to a VAXBI node. Each DATO writes two bytes of data into a BDP buffer. The BDP buffer can hold
sixteen bytes, so eight of these transactions are required in order to fill completely the BDP buffer. The

buffer is written in one operation to the VAXBI node.

Figure 4-5 is a flow diagram of the DATO using a Buffered Data Path transaction. The numbered
paragraphs that follow refer to the corresponding numbers in Figure 4-5.

LATCH
UNIBUS DATA

l YZS

SET BIF BIT
!N 3UACSR

®

\
TRANSACTION
FINISHED

STORE UNIBUS
ADDRESS IN
ADDRESS PROCESSOR
A
SET UDIBUF
FLAG
WRITE
BUFFER @
T0 VAXBI
ISSUE SSYN @
SEND DATA IN
UNIBUS DATA
TRANSCEIVERS TO
ISSUE WMC!I OW
TO VAXBI

MKV85-0873

Figure 4-5 DATO Using a Buffered Data Path Flow Diagram

4-22

©

00 PO ® 06 OO0

@)
®)
®)

The UNIBUS master sends address, control bits, and data to the DWBUA,.and then issues MSYN.
The two bytes of UNIBUS data are latched in the UNIBUS data transceivers.
The UDIBUF bit in the Data Path Control and Status Register is checked.

If the UDIBUF bit is clear, the UNIBUS address goes over the BAD bus to the address processor
where it is stored.

The DWBUA sets the UDIBUF bit, indicating that UNIBUS data is stored in the BDP buffer.
If the UDIBUF bit is set, the DWBUA must determine if the present data is part of the same

octaword as the data already in the BDP buffer. To determine if the present data is part of the same

octaword, bits <17:4> of the address stored in the address processor are compared with the incoming
UNIBUS address.

If the compared addresses do not match, the selected BDP buffer is autopurged. That is, the data in
the BDP buffer is written to the VAXBI with an octaword WMCI command. In this way, the
DWBUA ensures that the existing data is not overwritten and lost.

The DWBUA issues SSYN, completing the UNIBUS portion of the transaction.

The two bytes of data are sent from the UNIBUS data transceivers over the BDP bus to the BDP
buffer in the internal RAM, to the appropriate location within the octaword.

The DWBUA checks the BDP buffer to determine if it is full.

If the BDP buffer is full, the DWBUA becomes the VAXBI master and sends the contents of the
BDP buffer to the VAXBI. The command used to do this depends on whether or not all of the data in
the BDP buffer is valid.

a. All data valid - octaword WRITE
b. Some data not valid - octaword WMCI

The mask bits sent with the WMCI data correspond to all of the valid data words written in the BDP
buffer. After the transaction is complete, the DWBUA resets the mask for the entire BDP buffer.

The DWBUA waits for the VAXBI slave node to issue ACK, ending the transaction.
If ACK is not received, the DWBUA looks for an error code.

If an error has occurred on the VAXBI, the DWBUA sets the BIF bit in the BUACSR and the
transaction is terminated.

The DWBUA waits until MSYN is deasserted by the UNIBUS master and then it ends the
transaction.

4-23

4.3.3.6 Example: DATI Using a Buffered Data Path - In this transaction the UNIBUS master reads
data from a VAXBI node. The VAXBI sends sixteen bytes of data to a BDP buffer. This buffer is read by
the UNIBUS device two bytes at 2 time, so eight DATI transactions are needed to read the entire buffer.

Figure 4-6 is a flow diagram of the DATI using a Buffered Data Path transaction. The numbered
paragraphs that follow refer to the corresponding numbers in Figure 4-6.

A\,

NO DATA IN YES
BUFFER

?
2 ®
UNIBUS
YES DATA IN ’ NO ADDRESSES

BUFFER MATCH?
?

TO VAX8I @ NO YES

STORE UNIBUS

ADDRESS IN @
ADDRESS PROCESSOR

TRANSLATE ADRS
UNIBUS = VAXBI
READ OCTAWORD
FROM VAXBI

: ©
NO ACK
RECEIVED
?

NO ERROR?

YES YES

l

[uroare racs__] (®)

[taTcH 1Ram ADRS | @

SET 8IF BIT SEND DATA T0
IN BUACSR @ UNIBUS @
TRANSCEIVERS

[esuessw__](d)

14

MSYN

DEASSERTED DN
?

YES
TRANSACTION
FINISHED

Figure 4-6 DATI Using a Buffered Data Path
Flow Diagram

MKVES0828

4-24

@ The DWBUA checks the BDIBUF bit in the Data Path Control and Status Register.
If the BDIBUF bit is clear, the BDP buffer does not contain VAXBI data. 'fhc UDIBUF bit is tested.

If the UDIBUF bit is set, the BDP buffer contains UNIBUS data. The buffer contents are
autopurged.

The UNIBUS address is stored in the address processor.

The UNIBUS address is translated into a VAXBI address. A VAXBI READ is initiated and an
octaword of data is returned by the VAXBI slave. The data goes into the BDP buffer.

The DWBUA waits for the VAXBI slave node to issue ACK.
If ACK is not received, the DWBUA looks for an error code.

If an error occurred on the VAXBI, the BIF bit in the BUACSR is set and the transaction is
te-minated.

If the BDIBUF bit in the DPCSR is set, bits <17:4> of the address stored in the address processor are
compared with the UNIBUS address latched in the UNIBUS address transceivers.

BDIBUF and UDIBUF bits are updated.

00 © PO OO OO

The UNIBUS address (from the address processor) is latched.
@ The requested data word goes from the BDP buffer and is latched in the UNIBUS data transceivers.
@ The DWBUA issues SSYN.

The DWBUA waits for MSYN to be deasserted by the UNIBUS master. When MSYN is deas-
serted, the transaction is finished.

4.4 REPRESENTATIVE TIMING DIAGRAMS
The timing diagrams in this section represent typical DWBUA transactions. The following assumptions
apply that:

1. No errors occur during the transaction.
2. The transaction follows a straight-line path through the flows.
3. No time scale is employed. The diagrams indicate relative timing only.

In the following diagrams, the device name that appears in parentheses under any waveform is the device
that asserts that signal.

4-25

weideiq Suwi] FLIYM SNEINNOVIEXVA L-p 314

CE80-S8ANN
Y3avis snainn)| W NASS
(VNEMO) ___an a
—] 18xvA woud ayom viva[v
| (vnamai<z:ci>uaav 1axva[Y v
| (vnemalglorva M 00°12
1 (vnama)| W NASH
| (vnama) | 7 Asa8
SNEINN

WOV TviS I IND

WA 19WM

GNVIAWO)
!]

|_ (431LSVYW 18XVA) JSYW L'Il—lll—.llrll_l.

v/ yaav va

| (431SVW 18XVA) viva

1XVA

4-26

wesBeiq Sutun] avay SNAINN-C-IEXVA 8¢ 2ndiy

ZHLOSBANN

-_— (3AV1S Sn8INN) —WW\- NASS
—_— (3AV1S SnAINN) viva MW\~ a
(VN8MQ) <0:Z 1> HAAY I8XVA v
(vnama) iLva 02°12
(vnama) WA~ NASW
b""q
(vnama) VW AS88
b SN8INN
—— NV nvis IND
\"."‘
AONVIWNOD
- viva av3d e —— _

waav [va

|II|— viva hadd v

I8XVA

4-27

wesdeiq Sunuiy yied eeq paiayng € ySnosyl (G)OLVA 6+ N3y

9TBO-SBANNW

(I8XVA 01 N3LLIMM N3HL ¥333N8) ¥343N8 NI N3LLIHVM GHOM V1va 1SV

31I4M HO IDWM SI GNVWWO0D,

(vnema) [W

"G34IND3Y LON 39HN4OLNV

(43LSYW SNBINN)

AAA
vV

(43LSVYW SNBINN)

AAN

A A4

(431SYW SNBINN) (8)01va

AAA

NASS

L A4

(431LSVW SNEAINN)

— AAN

1

(10 Bl o)

A\ A4

(43LSYWN SNEBINN)

NASW

j As88

(vnama)
+ONVIWINOD
—

AAA
A A 4

SNAINN

— (vnama) svw

(vhnama) viva 30 QHOMVLI0

_w X (vnama)
uaagy

va

IGXVA

4-28

wesdeuq Sutwn) s8indony yum 4ad ydnosyy [LVA Ol-p 21031y

| = Jdn8ian

0 = 3n8ige

ivnama) NASS
(vnama) 1]

(ETES 7] m:a_za__|l| v

(Y31SYW SnaINN) ..—<o_l||||| 02°12

(431SVYW SNBINN) _.|||||| NASW
(431svw m:n.z:.—l As88

_IJ__I_J

SNBINN

WV j b ANV 3IND

SNLViS Qv3y ll— avad w ASYW IDWM 1

viva _ — v/ ||l— Haogv b viva v/ yaav va

18XVA

4-29

8Z00-S8ANN

wesseiq Suiun] 4ag YSnoiyL [Lva 11-p M3y

o=4n8ian
0 =4n8ia8

(vnama) z>mm
1 (vnemal | o
- Em&mﬁz]
1 (yausvw snainn) uva[—— 0
.._w.—m(w.m:o_z::l NASW
B anulisw snaiNnIf— - Ased
SNEINN
iND
sawisavas L Loaw [|
viva v/ yaav wo

18XVA

4-30

APPENDIX A
DWBUA-SUPPORTED
UNIBUS DEVICES

A DWBUA UNIBUS configuration supports a subset of the available UNIBUS devices. The following
devices cannot be put on a DWBUA-controlled UNIBUS. '

e Any PDP-11 processor
e Any device that attempts to perform UNIBUS arbitration
e Any device that has an SSYN timeout period of less than 20 us
Any device that issues MYSN after using a BRn to arbitrate for the UNIBUS may not work satisfactorily.

Contact the local DIGITAL service office for a list of currently supported devices.

APPENDIX B
GLOSSARY

ACK - Acknowledge. As a VAXBI command response, ACK indicates that the VAXBI slave acknowl-
edges that it is capable of executing the command at this time. As a VAXBI data response, ACK indicates
that no error has been detected and that the cycle is not to be STALLed.

AUTOPURGE - The act of writing the contents of a partially filled DWBUA BDP buffer to the VAXBI.
A buffer is autopurged when it is partially filled with UNIBUS data and one of the following occurs: a
DATI is requested through the same BDP; or a DATO(B) is requested and its address is not within the
same octaword as the data currently stored in the buffer. Data is written from the buffer using a VAXBI
_ octaword WMCI command with the prestored mask bits set for each valid data byte.

BAD - DWBUA Buffered Address.

BASE ADDRESS - The starting address of a VAXBI node’s node space.

bb - Base address.

BBSY - Bus busy; a UNIBUS signal. This signal is sent by the bus master to all other bus devices to
indicate that the bus is in use.

BCI - VAXBI Chip Interface. This is a synchronous interface bus that provides for all communication
between the BIIC and the DWBUA.

BDCST - Broadcast; a VAXBI command. This command announces a significant event without incurring
the overhead of an interrupt. The use of this command is reserved to Digital Equipment Corporation.

BDP - DWBUA Buffered Data Path.
BIIC - Bus Interconnect Interface Chip. This chip is a general purpose interface to the VAXBI.
BUACSR - DWBUA Control and Status Register; a DWBUA internal register.

DATI - Data In; a UNIBUS command. This command requests a transfer of data from the UNIBUS
slave to the UNIBUS master. The transfer is always word length.

DATIP - Data In Pause; a UNIBUS command. DATIP is identical to DATI, except DATIP informs the
UNIBUS slave that the present transfer is the first part of a read/modify/write cycle. DATIP must be
followed by DATO(B) to the same word address.

DATO(B) - Data Out (Byte); a UNIBUS command. This command transfers a word (DATO) or byte
(DATOB) of data from the UNIBUS master to the UNIBUS slave.

DDP - DWBUA Direct Data Path.

B-1

DMA - Direct Memory Access.

DPCSR - Data Path Control and Status Register; a DWBUA internal rcgistcr._
DWBUA - VAXBI to UNIBUS Adapter.

FUBAR - Failed UNIBUS Address chistcf; a DWBUA internal register.

IDENT - Identify; a VAXBI command. This command is used by processors and other intelligent
interrupt fielding nodes to solicit vector information.

INTERLOCK - A mechanism in the DWBUA that locks out transactions while waiting for a specific
command. It is used when the DWBUA receives an IRCI from the VAXBI or a DATIP from the
UNIBUS. It locks out all other transactions (except STOP from the VAXBI) until it receives the UWMCI
or the DATO(B) that completes the current transaction.

INTR - Interrupt; a VAXBI command. This command signals interrupts to other nodes on the VAXBI.

INVAL - Invalidate: a VAXBI command. This command from a processor or another intelligent node
signals to other nodes that they may have in their caches data that is no longer valid.

IPINTR - Interprocessor interrupt; a VAXBI command. This command is used by a processor to
interrupt another processor or an intelligent adapter.

IRAM - DWBUA Internal RAM.

IRCI - Interlock READ with Cache Intent; a VAXBI command. The data READ from the slave is placed
in the master's cache. This is the first part of a read/modify/write cycle; IRCI must be followed by
UWMCL

LWAEN - Longword Access Enable; a UNIBUS Map Register bit.

MBZ - Must Be Zero.

MSYN - Master Sync; a UNIBUS signal issued by the bus master and received by the bus slave.
Assertion of MSYN requests the slave, defined by the UNIBUS address lines, to perform the function

required by the UNIBUS control lines. Negation of MSY N indicates to the slave that the master considers
the data transfer concluded.

NO ACK - No Acknowledge. As a VAXBI command response, NO ACK indicates that no slave has been
selected or that an error occurred during transmission of the command/address cycle. As a VAXBI data
response, NO ACK indicates that an error has been detected in the transaction.

NODE - See VAXBI Node.

NODE ID - A hexadecimal number between 0 and F (or a decimal number between 0 and 15) that
indicates which of the sixteen logical locations a particular VAXBI node occupies.

NODE SPACE - An 8K byte block of 1/0 addresses. Each node, based on its node ID, is allocated a
unique node space. The DWBUA adapter's node space holds the DWBUA registers.

OCTAWORD - Sixteen contiguous bytes starting on an arbitrary byte boundary.

PORT LOCK - This mechanism locks the VAXBI and UNIBUS ports while the DWBUA is servicing a
transaction. .

PURGE - The act of emptying a BDP buffer by setting the corresponding DPCSR PURGE bit.

RCI - READ with Cache Intent; 2 VAXBI command. The data read from the slave is placed in the
master’s cache.

READ - A VAXBI command. The master node reads data from the slave.

RETRY - A VAXBI command response. This response indicates that the slave cannot immediately
execute the command sent to it.

SACK - Selection Acknowledged; a UNIBUS signal. A device that has requested the bus, acknowledges
that it has been granted the bus, and that it accepts.

SSYN - Slave Sync; a UNIBUS signal issued by the bus slave and received by the bus master. Assertion
of SSYN informs the bus master that the slave has concluded its part of the current data transfer.
Negation of SSYN informs all bus devices that the slave has concluded the current data transfer.

STALL - As a VAXBI command response, STALL indicates that the slave needs additional time to
acknowledge the command, is not ready to return the first data word on a READ command or vector data
on an IDENT command, or is not ready to accept a data word on a WRITE command. As a VAXBI data
response, STALL is sent by the slave to delay the transmission of data.

STOP - A VAXBI command. This command selectively forces nodes to a state in which they do not issue
VAXBI transactions, yet they retain as much error information as possible.

UA - UNIBUS address.
UNIBUS - An asynchronous bus consisting of 56 lines.

UNIBUS ARBITRATOR - A logic circuit that compares priorities from devices requesting the use of the
data section of the UNIBUS. The arbitrator determines which device will next be granted control of the
UNIBUS. A UNIBUS must have one and only one arbitrator. For the configuration described in this
manual, the DWBUA is always the UNIBUS arbitrator.

UWMCI - Unlock WRITE Mask with Cache Intent; a VAXBI command. This command completes a
read/modify/write cycle that began with an IRCI command.

VAXBI - VAX Bus Interconnect. It joins a processor to a combination of devices that can include 1/0
controllers, 1/0 bus adapters, memories, and other processors. This is a double-clock, synchronously
operated interconnect with bus events occurring at fixed intervals. Bus arbitration and address and data
transmissions are time multipiexed over 32 data lines. Data transmission is at fixed lengths of 4,8,0r 16
bytes on naturally aligned addressing boundaries.

VAXBI NODE - An interface that occupies one of sixteen logical locations on a VAXBI. A VAXBI node
consists of one or more VAXBI modules.

VOR - Vector Offset Register; a DWBUA internal register.

WCI - WRITE with Cache Intent; a VAXBI command. The master node writes data to the slave and
alerts other nodes to issue a VAXBI INVAL, if necessary, for the address written.

B-3

WINDOW SPACE - A 256K byte block of 1/0 addresses. Each node, based on its node ID, is allocated a
unique window space. The DWBUA adapter’s window space holds the UNIBUS device registers and the
UNIBUS memory space. The Starting Address Register and Ending Address Register must be set to
enable this space.

WMCI - WRITE Mask with Cache Intent; a VAXBI command. This command is similar to WCI, except
the master selects the bytes of the addressed location that it wants to modify.

WRITE - A VAXBI command. The master node writes data to the slave.

APPENDIX C

SELF-TEST
MICRODIAGNOSTIC TESTS

The self-test microdiagnostic tests run in the order shown in Table C-1. Tests 1 through A check the
DWBUA logic, tests B through D check the VAXBI port logic, and tests E through 12 check the VAXBI

port logic and the UNIBUS and its port logic.

Table C-1 Self-Test Microdiagnostic Tests

Test

Number Test Name Description

1 29116 RAM Test Verifies addressability and data integrity of last 16 loca-
tions of address processor RAM space. (Locations are
used for storage of constants and DWBUA register
addresses.) Other locations are verified in a later test.

2 DWBUA BAD Bus and BAD - Verifies Buffered Address (BAD) Bus, BAD Register,

Register Test and BAD Output Mux of Data Path Gate Array.

3 BDP/MAP IRAM March Test Standard march test (1-0 data pattern) of Internal RAM
(IRAM). Verifies that each RAM location is uniquely
addressable; checks each location for data integrity. This
test cannot differentiate between data and address
failures.

4 BDP Bus Latch Test Verifies high words of both the rotating and nonrotating
BDP bus latches.

5 IRAM Mask Chip Select Test Verifies the chip select logic used when accessing the
IRAM in mask mode.

6 BDP Stored Address Test Checks that the DWBUA can properly execute Buffered
Data Path transactions by verifying correct storage of
buffered addresses.

7 IRAM Address Increment Test Verifies that the Data Path Gate Array can properly
increment an IRAM address.

8 Translation Buffer Test Verifies the integrity of the Translation Buffer.

9 2910 Condition Code Test Performs a branch test on all condition codes that are
not tested in other parts of this self-test.

A 29116 Instruction Test Verifies that address processor can execute all functional

microcode instructions that are not otherwise executed
during this self-test.

Table C-1 Self-Test Microdiagnostic Tests (Cont)

Test
Number Test Name Description

B Starting/Ending Address Performs VAXBI transactions. Writes to the BIIC Start-
Registers Test ing Address and Ending Address Registers with the
range of UNIBUS window space: reads the node ID
from the BIIC CSR, computes the corresponding values
for the two registers, and then writes to each of these
registers.

C BDP Write Mask Test Verifies the write mask flip-flops in the Data Path Gate
Array. These flip-flops store the mask for a VAXBI
octaword WRITE mask transaction. (This transaction is
executed whenever a Buffered Data Path is purged.)

D VAXBI WMCI/READ Test Verifies that the DWBUA can perform VAXBI READ
and WRITE transactions to the BIIC by performing
word-length transactions on the VAXBI. (These opera-
tions are used by UNIBUS-10-VAXBI Direct Data Path
transactions.) This test uses the BIIC General Purpose
Registers, and it verifies that both word and byte length
transactions are possible from the UNIBUS to the
VAXBI. ‘

E UNIBUS DATO/DATI Test Uses the UET module to verify that the DWBUA can
write to and read from the UNIBUS. Performs a
VAXBI WMCI instruction to set up the VAXBI
Address Transceiver with the UET module’s Address
Register address and to set a data pattern on the BDP
bus. The test then operates similarly to the DWBUA
functional microcode. Failure of this test indicates a
problem in the UNIBUS cabling, power, or UET
module.

F VAXBI-to-UNIBUS This test ensures that VAXBI IRCI/UWMCI com-
IRCI/UWMCI Test mands can be processed by the DWBUA. The DWBUA

verifies that the corresponding DATIP/DATO(B)
sequence functions properly on the UNIBUS. The test
initially writes a known data pattern (AAAA hex) to the
UET Data Register. A DATIP is then issued to read
this register. The DATIP is immediately followed by a
DATOB. The address is driven on the UNIBUS through
the duration of the DATIP/DATOB sequence. The data
for the DATOB (5555 hex) is loaded into the Data Path
Gate Array prior to initiation of the DATIP. After com-
pletion of the DATOB, the data from the DATIP is
read from the Data Path Gate Array and verified in the
address processor. A DATI is then issued to the UET
Address Register to verify that the DATOB completed

properly.

Table C-1 Self-Test Microdiagnostic Tests (Cont)

Test
Number Test Name Description

10 UNIBUS DATI/DATO Test Verifies that a UNIBUS DATI command can execute
through the the Direct Data Path. UNIBUS Map Regis-
ters are set up and the corresponding UNIBUS address
is written into the UET Address Register. A DATI is
issued, and the test then waits for the UNA port request
to come into the DWBUA. If it does, the incoming
address is enabled through the UNIBUS Map Register.
The test verifies that the correct UNIBUS Map Register
was referenced by a microcode jump with values from
that register.

11 DWBUA Error Test Attempts special-case transactions between the VAXBI
and UNIBUS and verifies proper execution of these
transactions. These special cases are: VAXBI READ of
an unused UNIBUS address; and a DWBUA RETRY
response to the VAXBI due to the servicing of a concur-
rent UNIBUS request.

12 VAXBI INTR/IDENT Test Verifies that a UNIBUS device can successfully inter-
rupt the VAXBI and pass along its vector information.
Writes the UET CSR to generate a UNIBUS request.
The UET module is written and a UNIBUS BR is
asserted. This causes the BIIC to initiate a VAXBI inter-
rupt to the DWBUA. The DWBUA receives a VAXBI
IDENT command at the level corresponding to the
INTR that was issued. The test generates the IDENT
command.

C-3

APPENDIX D
MACRODIAGNOSTIC TESTS

NOTE

The macrodiagnostic error messages indicate the

failing test number, the expected data, and the
received data.

Table D-1 Macrodiagnostic Tests

Test
Number

Subtest

Number Name

O 00 =N O W

WNE WK -

W N -

BUA Control and Device Type Registers Test

BUA Self-Test and Register Subtest
BUA Revision and Device Type Subtest

BUA Registers Test

VAXBI BER Read/Write Subtest

VAXBI EICR Read Subtest

VAXBI Interrupt Destination Register Read/Write Subtest
BUA VOR Read/Write Subtest

VAXB! GPR Read/Write Subtest

Map RAM March Test

UNIBUS Read/Write Test

Word Read Subtest

Word Read/Write Subtest

Word Read, Byte Write Subtest

UNIBUS INTLK READ/UNLOCK WRITE Test
UNIBUS to VAXBI Addressing Test

Data Path Select Test

Direct Data Path DATI Test

Direct Data Path DATOB Test

Buffered Address Register Test

D-1

Table D-1 Macrodiagnostic Tests (Cont)

Test
Number

Subtest
Number

Name

11
12
13
14
15
16
17
18
19
20

21

22
23

24
25
26

S WN -

—

W EWN -

Buffered Data Path DATI Test
Buffered Data Path DATO Test
Buffered Data Path DATOB Test
Buffered Data Path Autopurge Test
Byte Offset DATI Test

Byte Offset DDP DATO Test

Byte Offset BDP DATO Test

Byte Offset DDP DATOB Test
Byte Offset BDP DATOB Test
Page Boundary Transfer Test

UET DATI Subtest

UET DATO Subtest

UET DATI/DATO Subtest

UET DATO/DATI Subtest

BDP Byte to Octaword Transfer Test

Address Match Octaword DATOB Subtest
Address Match Octaword DATI Subtest

BDP Longword Access Enable Test
Bus Transceiver Test

VAXBI to UNIBUS Bus Transceiver Subtest
UNIBUS to VAXBI Bus Transceiver Subtest

Map Invalid Test

Map Entry Functional Test
CSR Status Bit Test

BIF and NEX Error Subtest
REGDUMB Subtest
USSTO Error Subtest

BADBDP Error Subtest
IMR Error Subtest

Table D-1 Macrodiagnostic Tests (Cont)

Test Subtest

Number Number Name

27 Interrupt Test
1 UET BR?7 Interrupt Subtest
2 UET BR6 Interrupt Subtest
3 UET BRS Interrupt Subtest
4 UET BR4 Interrupt Subtest

28

29

30
31
32

VAXBI Error Test

UNIBUS Parity Bit Subtest
UET Invalid BDP DATIP Subtest

Bus Init Test

UNIBUS Init Subtest
VAXBI STOP Command Subtest

FUBAR Register Test
UBE Multi Transfer Test
UBE Block Transfer Test

D-3

APPENDIX E
ERROR CONDITIONS

E.1 VAXBI-TO-UNIBUS TRANSACTIONS

E.1.1 Quadword and Octaword Transfers
The DWBUA accepts only valid longword transfers. The DWBUA responds to all quadword and octaword
transfers with NO ACK.

E.1.2 BIIC Error EVENT Codes

Table E-1 lists the DWBUA responses to BIIC error EVENT codes. In the responses listed, the DWBUA
sends error interrupts to the VAXBI only if interrupts are enabled.

Table E-1 DWBUA Responses to BIIC EVENT Codes

EVENT CODE

EV <4:0> L Mnemonic DWBUA Response

HL HLL IAL The current IDENT command is ignored. The
bus grant is withheld from the UNIBUS.

L HHHIL BPS The current slave WRITE-type transaction

L HHHMH STO is ignored, and the data is not updated.

L HHLH ICRSD If the transaction is a READ-type, it is

L HHLL BBE ignored. The BIIC sends an error interrupt.

HHHLL BTO The BUACSR BIF bit is asserted. The BIIC

L L HHH RDSR sends an error interrupt. SSYN may be

L LHHL ICRMC withheld from the UNIBUS device which

L L HL H NCRMC would result in an SSYN timeout.

L LLHH ICRMD

L LLHL RTO*

L LLLH BPM

L LLLL MTCE

* The DWBUA receives this error EVENT code only if the RTOEVEN bit in the DWBUA

adapter’s BCICSR is asserted.

E.1.3 Mask Values

The mask value in a WRITE mask command is legal only if at least one mask bit is set in the word pointed
to by address bit A1, and no mask bits are set in the other word of the longword. (The DWBUA responds
with ACK regardless of the mask values.) The following are the only legal mask values:

Al=0 00yy yy #[00]
Al=1 yy00

Any mask values that do not conform to this format are illegal. These illegal values either corrupt
UNIBUS data or cause an SSYN timeout to the DWBUA.

E.1.4 Nonexistent UNIBUS Address
A valid WRITE or READ command is sent to a nonexistent UNIBUS address. -

e The DWBUA response to the WRITE command is ACK. It then sets the USSTO bit in the
BUACSR, issues an error interrupt if interrupts are enabled, and writes the UNIBUS address to
the Failed UNIBUS Address Register (bb+728).

e The DWBUA sends zero data and an RDS status code in response to the READ command. It
also sets the USSTO bit in the BUACSR, issues an error interrupt if interrupts are enabled, and
writes the UNIBUS address to the Failed UNIBUS Address Register (bb+728).

E.1.5 Invalid VAXBI Command '
A VAXBI command that the DWBUA considers as invalid results in a NO ACK response from the
DWBUA. The VAXBI commands that the DWBUA considers invalid are:

RESERVED (BCI I<3:0> = HHHH)
INTR

RESERVED (BCI 1<3:0> = LHLH)
RESERVED (BCI 1<3:0> = LHLL)

INVALIDATE

BROADCAST

IPINTR

E.1.6 Improper Use of a DWBUA Register
An attempt to improperly use a DWBUA register results in a RETRY response from the DWBUA.
Improper use of a DWBUA register is:

e Attempted WRITE to a READ-ONLY bit in a DWBUA internal register.
e Attempted access of an unused address in the DWBUA register space.

E.2 UNIBUS-TO-VAXBI TRANSACTIONS
E.2.1 VAXBI Error In UNIBUS-Initiated Transfer
e Direct Data Path and DATI through a Buffered Data Path
The DWBUA does not issue SSYN to the UNIBUS device when a VAXBI error is encountered

during a DDP transaction or during a DATI through a BDP. The DWBUA asserts the BUACSR BIF
bit and writes the VAXBI address to the VAXBI Failed Address Register (bb+72C).

e DATO(B) through a Buffered Data Path

The DWBUA issues SSYN to the UNIBUS device before it checks for VAXBI errors during a
DATO(B) through a BDP. The DWBUA causes an SSYN timeout during the next transfer within the
present UNIBUS arbitration cycle. If the current transfer, however, is the last transfer within the
present UNIBUS arbitration cycle, the UNIBUS device cannot be notified of the VAXBI error. The
DWBUA asserts the BUACSR BIF bit and writes the VAXBI address to the VAXBI Failed Address
Register (bb+72C).

E-2

E.2.2 Illegal Map Entries

DMA access through an invalid map page

A UNIBUS device might attempt a DMA access through an invalid map page (that is, the UNIBUS
Map Register’s VALID bit is clear). If this happens, the DWBUA asserts the BUACSR IMR bit,
issues an error interrupt (if interrupts are enabled), and withholds SSYN, causing an SSYN timeout
for the UNIBUS device.

DMA access through an illegal BDP

If a UNIBUS device attempts a DMA access through BDP 6 or 7, the DWBUA asserts the
BUACSR BADBDP bit, issues an error interrupt (if interrupts are enabled), and withholds SSYN,
causing an SSYN timeout for the UNIBUS device.

DATIP through a BDP

If a UNIBUS device attempts a DATIP through any Buffered Data Path, the DWBUA withholds
SSYN, causing an SSYN timeout for the UNIBUS device.

E.2.3 lllegal UNIBUS Transaction
DATO(B) must follow a DATIP, but if BBSY is interrupted during the DATO(B), the DWBUA asserts
the BUACSR UIE bit and issues an error interrupt (if interrupts are enabled).

-
—
PN
o,
.

APPENDIX F
UNIBUS
EXERCISER TERMINATOR

F.1 UNIBUS EXERCISER TERMINATOR DESCRIPTION

The UNIBUS Exerciser Terminator (UET) (or M9313 module) is located in sections A and B of the last
UNIBUS slot. The UET enables diagnostic testing of the DWBUA adapter’s capabilities to handle
UNIBUS addressing, data transfers, and interrupts.

F.2 UNIBUS EXERCISER TERMINATOR REGISTERS

Table F-1 UNIBUS Exerciser Terminator Registers

Register

Address Register

(octal) Name/Bits Notes

772140 Address Register A<15:00> Word load only. Byte loading causes timeout.
772142 Data Register D<15:00> Both byte and word loading allowed.

772144 Control Register CR<15:00> Word load only. Byte loading causes timeout.

F.2.1 Control Register Format

1 14 - 12 11 10 09 08 O7 06 05 04 03 02 O1 00

1 1 1 1

UET INIT —
BR?7
BR6
BRS
BR4
PE
TO
PB
A7
A16
c1
co
NPR

MK V850821

Figure F-1 UET Control Register Format

F.2.2 Control Register Bit Descriptions

UET Init
CR<15>

Unused
CR<l14:12>

BR7-BR4
CR<11:08>

PE
CR<7>

TO
CR<6>

PB
CR<5>

All, Al6
CR<4:3>

Cl1, Co
CR<2:1>

NPR
CR<0>

Initialize UET to simulate reset or powerup. This WRITE-ONLY bit
always reads 1. It does not clear CR<4,3>.

Always read as 1.
Write 1 to initiate interrupt.
Parity Error detected during UET DATI. Clocked on each UET DATI

and cleared by UET Init.

Timeout (SSYN not returned). Clocked on each transfer; cleared by
UET Init.

Parity Bit. When set, the PB line will be asserted when the UET Data
Register is read. This bit is cleared by UET Init.

High-order UNIBUS addressing bits.
Transfer command bits (see Table F-2)

Write 1 to initiate transfer.

Table F-2 Transfer Command Bits
Ci Command

UET DATI
UET DATIP
UET DATO
UET DATOB

——0 0
— e O g

NOTE
CR<11:08> and CR<0> (BR7 - BR4 and NPR
respectively) remain set until the grant is returned at
which time they are cleared. These bits are also
cleared by writing a 0 to the bit or by writing a 1 to
UET Init (CR<15>). Multiple interrupts may occur
if more than one bit is set.

o~ F.3 NPRDATA TRANSFERS

F.3.1 UET WRITE
A UET WRITE consists of the following sequence of events:

Load Address Register A<15:00>

1.
2. Load Data Register D<15:00>
3 Load Control Register to initiate the transfer:

a. CR<4:3> = A<I17:16> of UNIBUS Address
b. CR<2:1> = 10 for DATO, 11 for DATOB
c¢. CR<0> = Generate NPR

F.3.2 UET READ
A UET READ consists of the following sequence of events:

Load Address Register A<15:00>

1.
D 2. Load Data Register D<15:00>
3 Load Control Register to initiate the transfer:

a. CR<4:3> = A<17:16> of UNIBUS Address
b. CR<2:1> = 00 for DATI, 01 for DATIP
c. CR<0> = Generate NPR

NOTE
The UET does not need a DATO(B) following a
f‘\ DATIP. After it has completed the DATIP, the
UET drops BBSY and releases the UNIBUS.

F.4 BR INTERRUPTS
The following sequence of events implements a BR interrupt:

. Load the Data Register D<15:00> with the vector address.
2 Load Control Register bits CR<11:08> with the BR (BR7 - BR4) level.

o

APPENDIX G
NODE SPACE AND WINDOW
SPACE ADDRESSES

Table G-1 Node Space and Window Space Addresses

NODE SPACE ADDRESSES WINDOW SPACE ADDRESSES

NODE

NUMBER Starting Ending Starting Ending

0 2000 0000 2000 1FFF 2040 0000 2043 FFFF
1 2000 2000 2000 3FFF 2044 0000 2047 FFFF
2 2000 4000 2000 SFFF 2048 0000 204B FFFF
3 2000 6000 2000 7FFF 204C 0000 204F FFFF
4 2000 8000 2000 9FFF 2050 0000 2053 FFFF
S 2000 A000 2000 BFFF 2054 0000 2057 FFFF
6 2000 C000 2000 DFFF 2058 0000 205B FFFF
7 2000 E000 2000 FFFF 205C 0000 205F FFFF
8 2001 0000 2001 1FFF 2060 0000 2063 FFFF
9 2001 2000 2001 3FFF 2064 0000 2067 FFFF
A 2001 4000 2001 SFFF 2068 0000 206B FFFF
B 2001 6000 2001 7FFF 206C 0000 206F FFFF
C 2001 8000 2001 9FFF 2070 0000 2073 FFFF
D 2001 A000 2001 BFFF 2074 0000 2077 FFFF
E 2001 C000 2001 DFFF 2078 0000 207B FFFF
F 2001 E000 2001 FFFF 207C 0000 207F FFFF

APPENDIX H
REGISTER
INITIAL STATES

The initial state of each register is its state after successful completion of the BIIC and DWBUA self-tests.

Table H-1 Register Initial States

Address Initial
(bb+) Register State Notes
00 Device Type xxxx0102 xxxx = DWBUA revision
04 VAXBI Control xx01280y xx = VAXBI interface revision
and Status y = DWBUA node ID (hex)
08 Bus Error 00000000
oC Error Interrupt 00000000
Control
10 Interrupt 0000xxxx xxxx = decoded DWBUA node ID
Destination (one bit set)
14 IPINTR Mask xxxx0000 xxxx = IPINTR mask
18 Force IPINTR/ 0000xxxX xxxx = force IPINTR/STOP
STOP Destination destination
1C IPINTR Source xxxx0000 xxxx = IPINTR source
20 Starting Address xxxx0000 xxxx = starting address of DWBUA adapter’s window
space (between 2040 and 207C, last digit 0, 4, 8, or C)
24 Ending Address xxxx0000 xxxx = starting address of window space after DWBUA
(between 2044 and 2080, last digit 0, 4, 8, or C)
28 BCI Control 00002900 STOPEN, IDENTEN, and UCSREN bits set
2C Write Status 10000000
30 Force IPINTR/ 00001800
STOP Command
40 User Interface 00008000
Interrupt Control
FO GPR O 00000001 UBPUP = 1, self-test passed

Table H-1 Register Initial States (Cont)

Address Initial
(bb+) Register State Notes
F4-FC GPR 13 00000000
720 DWBUA Control 00008000
and Status
724 Vector Offset 00000000
728 Failed UNIBUS 00000000
Address
72C VAXBI Failed 00000000
Address
730-740 Microdiagnostic 00000000
750 DPCSR 0 00000000 DPCSR is Data Path Control and Status Register
754 DPCSR | 00200000
758 DPCSR 2 v 00400000
75C DPCSR 3 00600000
760 DPCSR 4 00800000
746 DPCSR § 00A 00000
800-FBC UNIBUS Map 00000000 Initially invalid
FCO-FFC UNIBUS Map FFFFFFFF 1/0 space addresses

APPENDIX 1
DATA PATH
OPERATION

1.1 DIRECT DATA PATH

The DWBUA starts the VAXBI section of a UNIBUS-initiated transaction immediately after it receives
the UNIBUS command. The DWBUA issues SSYN to the UNIBUS transaction only if the VAXBI
transfer completes successfully. (If an error occurs during the VAXBI transfer, the BUACSR BIF bit is set
and an error interrupt is issued by the BIIC if interrupts are enabled. The DWBUA may not issue SSYN
to the UNIBUS device, causing an SSYN timeout.)

The following two special cases must be noted for UNIBUS-initiated transactions through the Direct Data
Path. In both cases, the BYTE OFFSET bit in the corresponding UNIBUS Map Register is set, causing
the UNIBUS address to be incremented by one before the corresponding VAXBI transaction is completed.
CASE 1 - DATO WITH UNIBUS ADDRESS BIT <01> SET

Two VAXBI longword WMCI transactions, with the data and mask bits shown in Figure I-1, are
performed.

UNIBUS

DATO VAXBI LONGWORD WRITE

A<L1>=1 VAXBI ADDR VAXBI DATA MASK BITS
AlB LW ADDR 8 1 000

LW + 1 ADDR A 0O 0 0 1

MKV85-0823

Figure I-1 DATO with UNIBUS Address Bit <01> Set

I-1

CASE 2 - DATI WITH UNIBUS ADDRESS BIT <01> SET

Two VAXBI longword READ transactions are performed. They obtain data for the UNIBUS transaction
as shown in Figure I-2.

VAXBI LONGWORD READ

VAXBI ADDR VAXBI DATA
UNIBUS LW ADDR D
DATI
A<L1>=1
c|D LW + 1 ADDR C
MKVES-0822

Figure I-2 DATI with UNIBUS Address Bit <01> Set

For improved UNIBUS bandwidth, the DWBUA completes the corresponding UNIBUS DATO or
DATOB transaction (by issuing SSYN) prior to performing the VAXBI WMCI transfer. The DWBUA
does not issue SSYN as early for Direct Data Path DATI and DATIP transactions as it does for Buffered
Data Path transactions, since the VAXBI transfer must first be completed in order to obtain the requested
data. '

1.2 BUFFERED DATA PATH
The DWBUA has five Buffered Data Paths (BDP). Each BDP consists of three sections: a 16-byte buffer,
a 16-bit address register, and a 16-bit status register.

1. Buffer - Each Buffered Data Path has a 16-byte buffer available for storage of as much as one
octaword of data. The buffered data is naturally aligned at an octaword address. (When the
LWAEN bit is set in the UNIBUS Map Register for the current UNIBUS-to-VAXBI transac-
tion, the buffer is virtually reduced to longword in length.) '

2. Address Register - The address register is a 16-bit register that contains UNIBUS address bits
<17:04> in its most significant 14 bits. These 14 bits correspond to the data currently stored in
the buffer. The least significant two bits of the address register are zero.

3. Status Register - Internal flags monitor the status of the data in the buffer. These flags are:

BDIBUF - VAXBI Data in Buffer
UDIBUF - UNIBUS Data in Buffer
STRT__0 - Start Zero

UDIBUF and BDIBUF are updated only during the first transaction through a Buffered Data
Path. They indicate that either UNIBUS Data (UDIBUF) or VAXBI Data (BDIBUF) is being
held in the buffer, as shown in Figure I-3.

UNIBUS-to-VAXBI buffered transactions do not necessarily cause the DWBUA to generate a
VAXBI transfer. Rather, the DWBUA stores as much as one octaword of data locally.

UDIBUF

0 BUFFER IS UNIBUS DATA
EMPTY IN BUFFER
BDIBUF
1 VAXBI DATA VAXBI DATA
IN BUFFER IN BUFFER
MKV85-0824

Figure I-3 BDIBUF and UDIBUF Flags

When UDIBUF is set, the DWBUA also updates the STRT_0 flag. The STRT_0 flag
indicates that the first transaction through this Buffered Data Path began at an aligned
octaword address (UA <3:0> = 0000). When the last byte in the buffer is written, the DWBUA
tests the STRT_O flag. If STRT_O0 is set, the DWBUA assumes that the buffer contains a full
octaword of valid data. The DWBUA then purges the data by performing an octaword WRITE
(nonmasked) transaction. If STRT_O0 is not set, the DWBUA performs an octaword WMCI
operation when writing the buffer to the VAXBL

Each Buffered Data Path has its own status register and address register. These registers can be
read by using the REGDMP feature, as explained in Section 3.2.4.1.

1.2.1 Definitions

Three common terms used in discussing Buffered Data Path behavior are Address Match, Autopurge, and
Write-to-VAXBI. These terms are defined as follows.

1.

Address Match - The BDP address register holds the UNIBUS address of the current octaword
of data stored in the buffer. When another UNIBUS-to-VAXBI transaction is received, bits
<17:04> of the incoming UNIBUS address are compared to the stored address. If the addresses
match, the DWBUA manipulates the data in the buffer. If the addresses do not match,
however, and the buffer contains UNIBUS data, then the DWBUA performs an autopurge.

Write-to-VAXBI - This term describes the process of writing UNIBUS data in a buffer to the
VAXBI when the buffer is full. When LWAEN is not set and the buffer is full, the DWBUA
checks the buffer’s STRT—O flag. If the flag is set, the DWBUA assumes that a full octaword
of data is being held in the buffer. The Write-to-VAXBI will be performed using a VAXBI
octaword WRITE. If the STRT0 flag is not set or if the LWAEN bit is set, then the
DWBUA assumes that the buffered transaction began with a nonaligned octaword address.

Only part of the buffer contains valid data and the Write-to-VAXBI is performed using a
VAXBI octaword WMCL

Autopurge - If the buffer is not full and UNIBUS data is in the buffer, two occurrences will
cause the data in the buffer to be written to the VAXBI. They are:

a. A DATI is requested though the Buffered Data Path.

b. A DATO(B) is requested, but the addresses of the transaction and the data in the buffer
do not match.

Data is written from the buffer using a VAXBI octaword WMCI command with the prestored
mask bits set for each valid data byte. This act of writing the partially filled buffer to the
VAXBI due to an address mismatch or mixed transaction types is known as autopurge.

1.2.2 BYTE OFFSET Bit Clear

The following three cases describe the behavior of the DWBUA depending on the contents of the BDP
buffer. For each case, assume that a UNIBUS-to-VAXBI transaction is requested, and the BYTE
OFFSET bit in the UNIBUS Map Register is not set.

CASE 1 - THE BUFFER IS EMPTY

The UNIBUS master is attempting a DATI through a valid UNIBUS Map Register. The DWBUA
performs an octaword READ of VAXBI data and fills the BDP buffer. The DWBUA then places the
requested data on the UNIBUS, issues SSYN, updates the BDP flags by setting BDIBUF and clearing
UDIBUF, and stores the address value for the Buffered Data Path.

The UNIBUS master is attempting a DATO(B) through a valid UNIBUS Map Register. The DWBUA
updates the BDP flags by setting UDIBUF and clearing BDIBUF, stores the incoming UNIBUS address,
issues SSYN, and stores the data in the appropriate bytes of the BDP buffer with the correct mask bits set.

CASE 2 - THE BUFFER CONTAINS UNIBUS DATA
1. The UNIBUS master requests a DATI.

The BDP buffer contains UNIBUS data; the current data in the buffer is autopurged. Once the
autopurge is complete, the DWBUA treats the DATI request as it did in CASE 1 (since the buffer is

empty).
2. The UNIBUS master requests a DATO(B).

The BDP buffer contains UNIBUS data. The DWBUA checks for an address match. If the addresses
do not match, the incoming UNIBUS address and data are temporarily stored within the DWBUA
and the data currently in the BDP buffer is autopurged. Once the autopurge is complete, the
DWBUA issues SSYN. The DWBUA then loads the BDP address register with the address of the
temporarily stored data. The DWBUA stores the data in the appropriate bytes of the BDP buffer,
with the correct mask bits set.

If the addresses do match, the DWBUA first issues SSYN, then stores the data in the BDP buffer. If
the DATO(B) writes the last byte in the buffer, the DWBUA performs a Write-to-VAXBI and marks
the buffer as empty. . ~

CASE 3 - THE BUFFER CONTAINS VAXBI DATA

The UNIBUS master requests a DATI; the buffer contains VAXBI data. The DWBUA checks for an
address match. If the addresses do not match, the buffer is treated as if it were empty. The buffer is
overwritten with the new octaword of VAXBI data (see CASE 1) If the addresses do match, the requested
data is taken from the buffer, placed on the UNIBUS, and SSYN is issued.

The UNIBUS master requests a DATO(B); the buffer contains VAXBI data. The DWBUA treats the
buffer as if it were empty (see CASE 1)

1.2.3 BYTE OFFSET Bit Set

When the UNIBUS Map Register BYTE OFFSET bit is set, the DWBUA services requests in much the
same way as when that bit is clear. The only exception is that the incoming UNIBUS address is
incremented prior to address matching and storage. The following special cases, however, can occur when
the BYTE OFFSET bit is set.

1-4

~ CASE 1 - UNIBUS ADDRESS A<3:0> = 1110 (BYTE OFFSET BIT IS SET)

The address is incremented so that A<3:0> = 1111. A word length transaction to this address crosses an
octaword boundary.

1.

The UNIBUS master requests a DATI.

If the BDP buffer contains VAXBI data, the DWBUA checks for an address match. If the
addresses match, the DWBUA temporarily stores the last byte of the octaword. If the addresses
do not match, the DWBUA requests a VAXBI octaword READ. When this READ transaction
is complete, the DWBUA temporarily stores the last byte of the octaword.

Once the low byte of data is stored within the DWBUA, the high byte of data is fetched by
incrementing the incoming UNIBUS address at an octaword level, remapping, and requesting a
VAXBI octaword READ for the next higher octaword address. Because the next octaword
address must be remapped, the next UNIBUS Map Register must have the same value in the
DATA PATH SELECT field as the current UNIBUS Map Register. If it does not, data
integrity for all Buffered Data Paths cannot be assured. When the READ transaction is
complete, the first byte of the second octaword is fetched and concatenated with the temporari-
ly stored low byte to form a word of UNIBUS data. This word is placed on the UNIBUS and
SSYN is issued.

If the BDP buffer contains UNIBUS data, the DWBUA treats the transaction in a special way.
The DWBUA does not autopurge the buffer as it does in a non-byte offset transaction. Instead,
the DWBUA READ: a longword of VAXBI data through the Direct Data Path. This longword
of data contains the low byte of the requested word. which is stored internally. Next. the
DWBUA maps the next longword of data, which falls in the next octaword boundary in VAXBI
memory. The corresponding map register must have the same value in the Data Path Select
field as the current map register in order to assure data integrity. The DWBUA then READs
the longword and fetches the high byte of data, which it concatenates to the previously stored
lower byte, forming a word of UNIBUS data. The DWBUA places this word on the UNIBUS
and issues SSYN. Thus, in this special case, the data stored in the buffer remains unchanged.
and the transaction is carried out through the Direct Data Path.

The UNIBUS master requests a DATO.

If the buffer is empty or if it contains VAXBI data, the low byte of the incoming data is written
into the last byte of the buffer, and a Write-to-VAXBI is performed. This generates an
octaword WMCI transaction with only one byte of valid data. If the buffer contains UNIBUS
data, the DWBUA checks for an address match. If the addresses match, the low byte of the
incoming UNIBUS data is written to the last byte of the octaword, and a Writc-to-VAXBI is
performed. If the addresses do not match, the buffer is autopurged. When the autopurge is
complete, the low byte of the incoming UNIBUS data is written to the last byte of the octaword
buffer. A Write-to-VAXBI is performed, wherc only the last byte of the octaword contains
valid data.

Once the low byte has been written to the VAXBI, the high byte is written into the buffer with
the appropriate mask. The flags are updated by setting UDIBUF and clearing BDIBUF, the
incoming address is incremented to the next octaword and stored, and SSYN is issued. The
BDP is left in the state it would be if a DATOB had been performed to an octaword-aligned
address with no byte offset.

CASE 2 - UNIBUS ADDRESS A<1:0> = 10 (BYTE OFFSET AND LWAEN BITS ARE SET)

This case is handled similarly to CASE 1, the non-LWAEN case. The only difference is that the multiple
transactions that are generated (as explained above) occur each time a longword boundary is crossed,
rather than at octaword boundaries.

1.2.4 Examples

Figures 1-4 through I-8 show the contents of a BDP buffer for various multiple DATO(B) transactions.
Each valid byte of data in the buffer has its corresponding mask bits set: all other mask bits for the BDP

buffer are clear.

UNIBUS (DMA)
(DATO OR DATOB)
X0}l B | A
X2} D} C
X04 | F | E
X06 | H| G
X0} J |1
X12| L | K
X4 | N| M
X16 | P
Figure 1-4

IS SENT TO THE VAXBI
D|jC|B]| A]| X0
H|G|F | E]| X4
LK |J I | X8
PlO|N|M]|XC

IF NO BYTE OFFSET, THE FOLLOWING

WRITE TO VAXBI

OCTAWORD WRITE

MKV85-0818

DATO(B) Through BDP, BYTE OFFSET Clear, Starting at
Octaword Boundary

UNIBUS (DMA) IF NO BYTE OFFSET, THE FOLLOWING

(DATOB) IS SENT TO THE VAXBI

X00 X0

X02 H X4 WRITE TO VAXBI
X04 | L | K J I | X8 OCTAWORD WMCI
X06 | H PO | N|]M]XC

X0} J |

Xx12|L | K

X14 | N | M

X16 | P

MKV85-0819

Figure -5 DATOB Through BDP, BYTE OFFSET Clear, Starting at Byte 8

UNIBUS (DMA) IF NO BYTE OFFSET, BUT LWAEN IS SET,
(DATO OR DATOB) THE FOLLOWING IS SENT TO THE VAXBI
X00 X0
X02 B | A X4 WRITE TO VAXBI
X04 X8 OCTAWORD WMCI
x06| 8 | A XC
x10|o|cC
x12 | F | E X0
x14 “| x4 WRITE TO VAXBI
X16 t|le|o|c|xs ocraworowmc
XC
MKVES-0820

Figure 1-6 DATO(B) Through BDP, BYTE OFFSET Clear, LWAEN Set

I-7

IF BYTE OFFSET IS SET, THE FOLLOWING

IS SENT TO THE VAXBI

cle|a
G| F|E
k|J]
O|N|M

UNIBUS (DMA)
(DATO)

xo0|B| A
x02|o|c
x04 | F|E
x06 | H|G
xio| |
x12 | L

x1a | N | M
xie| P

X0

X4

X8

XC

X0

BYTE P REMAINS IN BUFFER.

WRITE TO VAXBI

OCTAWORD WMCI

MKV85-0816

Figure I-7 DATO Through BDP, BYTE OFFSET Set

UNIBUS (DMA)

(DATO)

X00

X02

X04

X06

X10

X12|B}| A

X14| D | C

X16

IF BYTE OFFSET AND LWAEN ARE SET,
THE FOLLOWING IS SENT TO THE VAXBI

X0

X4

X8

XC

X0

X4

X8

XC

WRITE TO VAXBI

OCTAWORD WMCI

DATA REMAINS IN
BUFFER.

MKV8S5-0817

Figure I-8 DATO Through BDP, BYTE OFFSET and LWAEN Set

I-8

APPENDIX J
PORT LOCK, RETRY,
AND INTERRUPT MECHANISMS

J.1 PORT LOCK MECHANISM

The DWBUA has a port lock mechanism to ensure that it processes only one transaction at a time. This
mechanism locks the VAXBI and UNIBUS ports from accepting new transactions until the DWBUA is
able to service another request. While the DWBUA is locked, it sends RETRY to all valid incoming
VAXBI transactions except the STOP command. (The DWBUA immediately sends an ACK response to
the STOP command.) The DWBUA also disables its UNIBUS arbitrator from issuing grants to UNIBUS
devices while it is locked. ,

The DWBUA is locked during the following four occurences and sends a RETRY response to all VAXBI
transactions sent to it.

1. The DWBUA has accepted a VAXBI transaction; the lock is released when the DWBUA has
completed servicing the transaction. If. however, the VAXBI transaction is an IRCI, the
DWBUA sends a RETRY response to all transactions until a UWMCI command is sent to the
DWBUA.

2. A UNIBUS DMA request is granted. The lock is released when UNIBUS BBSY is ncgated by
the UNIBUS master. .

3. The DWBUA issues a VAXBI transaction (such as autopurge or the forcing of an error
interrupt on the VAXBI). The port lock is released when this transaction is completed.

4. The DWBUA is the VAXBI master; the slave VAXBI node responds to its transaction with a
RETRY. The DWBUA then sends a RETRY response to all subsequent incoming VAXBI
transactions, until its RETRYed master transaction has successfully completed.

J.2 RETRY MECHANISM
The RETRY mechanism reduces the number of RETRY responses sent by the DWBUA to VAXBI
master nodes. It works by disabling and enabling the UNIBUS arbitrator.

When the DWBUA sends a RETRY response to a valid VAXBI command that it would otherwise accept,
the DWBUA also disables its UNIBUS arbitrator. The UNIBUS arbitrator is enabled again when the
DWBUA, as a slave node on the VAXBI, sends an ACK response to any VAXBI command.

A VAXBI node that receives a RETRY response from the DWBUA should keep requesting the DWBUA

until it receives an ACK response. In this way, the VAXBI node ensures that its transaction will be the
next one serviced by the DWBUA.

J-1

J.3 UNIBUS INTERRUPTS
Interrupts are permitted only from the UNIBUS to the VAXBI.

J.3.1 Interrupt/IDENT Sequence
A BR of any level generates a VAXBI INTR transaction at the same level. The DWBUA does this by
asserting the corresponding BCI INT line. The BIIC then performs the VAXBI INTR transaction.

The DWBUA responds to any VAXBI IDENT that meets two conditions:
1. The DWBUA must have a pending interrupt at the same level, and

2. The VAXBI master’s decoded ID must match the ID in the Interrupt Destination Register
(bb+10).

Figure J-1 is a flow diagram of the IDENT transaction. In the explanation that follows the figure, the
numbered paragraphs refer to the numbers in the figure.

Figure J-2 is a timing diagram of the Interrupt/IDENT sequence. The following assumptions apply:

1. No errors occur during the transaction.
2. The transaction follows a straight-line path through the flows.
3. No time scale is employed. The diagram indicates relative timing only.

In this diagram, the device name that appears in parentheses under any waveform is the device that asserts
that signal.

J.3.2 Passive Release

When some UNIBUS devices become bus master under BR-BG transactions, they drop BBSY and SACK
and never issue an interrupt vector or assert INTR. This is known as a passive release. Passive release
causes the DWBUA to send a zero vector back to the VAXBI, but the DWBUA does not flag an error
interrupt.

J-2

NO EVSx

RECEIVED

YES

SEND BGn
TO UNIBUS @

\
SACK @ SACK @

NO AND TNTR NO AND INTR
RECEIVED RECEIVED
? ?
YES YES
J
USE “0” OR THE VECTOR USE STORED
AS VECTOR WITH VOR @ VECTOR
CONTENTS
1
SEND VECTOR
TO IDENT WITH @
READ STATUS
AKRNEx
RECEIVED
?
YES
STORE VECTOR @
AT LEVEL "n”
TRANSACTION
FINISHED
MKVE5-0830

Figure J-1 IDENT Flow Diagram

J-3

© O @ ® © 6 00

The DWBUA checks that it has been selected by verifying that it has received an “External Vector
Selected” EV code (EVSx). Receiving this EV code means that the DWBUA had an interrupt
pending at the IDENT level and that the DWBUA adapter’s Internal Destination Register (bb+10)
contains the same decoded ID as the IDENT. The DWBUA then checks for the “IDENT Arb Lost”
EV code to ensure that it has won the IDENT arbitration.

The DWBUA begins to service an incoming IDENT command only after it verifies that it has been
selected for the IDENT and that it has won the IDENT arbitration. If these conditions are not met,
the Interrupt/IDENT transaction is aborted.

The DWBUA determines if it had a previous failed IDENT command at the present IDENT level.

If it did not have a previous failed IDENT command at the present IDENT level, the DWBUA issues
a BG to the interrupting UNIBUS device at the level indicated by the IDENT command.

The DWBUA checks that SACK and INTR have both been received. This indicates that the
interrupting UNIBUS device has given its expected response, placed the interrupt vector on the
UNIBUS data lines, asserted INTR, and then deasserted SACK. The DWBUA issues SSYN and
completes the UNIBUS transaction.

If the interrupting UNIBUS device fails to respond to the BG, the UNIBUS terminator asserts, and
then deasserts, SACK. When SACK is deasserted without the prior assertion of INTR, the DWBUA
detects a SACK timeout.

The DWBUA continues servicing the IDENT transaction normally, but it uses 0" as the interrupt
vector. ‘

The DWBUA ORs the received vector with the contents of its Vector Offset Register (bb+724). This
becomes the interrupt vector. :

The DWBUA uses the internally stored vector as the interrupt vector.
The interrupt vector is placed on the BCI D lines along with a Read Data Status code.

When the DWBUA receives the “Ack Received for Non-Error Vector” EV code (AKRNEX), the
IDENT has completed properly, and the DWBUA returns to its idle state.

If the DWBUA receives an “Illegal CNF Received for Slave Data™ EV code (lCRSD). the VAXBI
master has not successfully received the IDENT vector.

The DWBUA stores the failed IDENT command vector. This vector will be provided for any
subsequent IDENT command at that particular level.

J-4

wesduiq Sulung INJ@l/dnasow) z-f 2andly

1E90°S8A NN
HOSSID0Ud HILSYWN 18XVA

.

YNBMQA - HILSYW 18XVA

— v _

Q3AY3S3IY

J AV —x — 1vis _

Q3NIJ3ONN Q3AY3ISIY Q3AH3IS3Y

SNLVLS ai AN3QI
avay — _ _ _ — _ — Y3ISYW

Q3AY3IS3IY

AL1H0MUd|

Q3INIJ3ONN
.Ill- ¥O123A — -

8YV HINI QING

S Y G SHURSU GHS. S

— 321A30) ﬁl

23039\

G

_wUch__

4ND

ALIMOIYd ASYWN wva
M3IAN
a vh v

18XVA

NASS

HiNI

Aseg

NVS

uo8

SNABINN

J-5

P

APPENDIX K
MSYN-SSYN
TIME INTERVALS

NOTE
The MSYN - SSYN time intervals listed in Table
K-1 may change with enhancements to the DWBUA
option. The times listed were valid at the time of
publication of this manual.

The following conventions are used in Table K-1.

e Al transactions listed in brackets ([]) are performed after SSYN is issucd to the UNIBUS
device.

e Out-data means that the BDP buffer contains the UNIBUS DATO data to be sent to the
VAXBI.

e In-data means that the BDP buffer contains the UNIBUS DATI data received from the
VAXBI.

Table K-1 MSYN - SSYN Time Intervals

Byte UNIBUS Max Time
Offset UNIBUS Address MSYN - SSYN See
Path Bit Command <3:0> Data Path Status VAXBI Transaction (us) Note
DDP 0 DATI ANY N/A LW READ 2.2
DDP 0 DATIP ANY N/A LW IRCI 2.2 1
DDP 0 DATO ANY N/A LW WMCI or LW UWMCI 2.2 2
DDP 0 DATOB ANY N/A LW WMCI or LW UWMCI 2.2
DDP | DATI ANY N/A LW READ, LW READIif A 1=1 5.5 3
DDP | DATIP ANY N/A N/A SSYN timeout
DDP | DATO ANY N/A LW WMCI, LW WMCI if A I=1 6.0 3
DDP 1 DATOB ANY N/A LW WMCI 4.0
BDP O DATI ANY Empty OW READ 4.1 4
BDP 0 DATI ANY In-data & match No Bl transaction 1.0
BDP O DATI ANY In-data, no match OW READ 4.1
BDP O DATI ANY Out-data . OW WMCI, OW READ 1.6
BDP 1 DATI 0toC Empty OW READ 4.6
BDP 1 DATI Ot C In-data & match No BI transaction 2.6
BDP 1 DATI OwC In-data, no match OW READ 4.7
BDP | DATI Ot C Out-data OW WMCI, OW READ 9.0
BDP | DATI E Empty OW READ, OW READ 9.2
BDP | DATI E In-data & match OW READ 6.1
BDP | DATI E In-data, no match OW READ, OW READ 9.2
BDP 1 DATI E Out-data LW READ, LW READ 7.2 S
BDP X DATIP ANY N/A N/A SSYN timeout
BDP 0 DATO ANY Empty or in-data [OW WMCI] 1.2 7
BDP 0 DATO ANY Out-data & match [OW WMCI] 0.9
BDP 0 DATO ANY Out-data, no match OW WMCI, [OW WMCI] 5.2
BDP | DATO 0toC Empty or in-data No Bl transaction 23
BDP 1 DATO 0Ot C Out-data & match No BI transaction 23
BDP | DATO 0to C Out-data, no match OW WMCI 6.2
BDP | DATO E Empty or in-data OW WMCI 6.3
BDP | DATO E Out-data & match OW WMCI 6.3
BDP | DATO E Out-data, no match OW WMCI, OW WMCI 10.1
BDP 0 DATOB ANY Empty or in-data [OW WMCI] 1.2
BDP 0 DATOB ANY Out-data & match [OW WMCI] 1.0
BDP O DATOB ANY Out-data, no match OW WMCI, [OW WMCI] 5.0
BDP | DATOB ANY Empty or in-data [OW WMCI] 23
BDP | DATOB ANY Out-data & match [OW WMCI] 24
BDP | DATOB ANY Out-data, no match OW WMCI, [OW WMCI] 6.1

NOTES FOR TABLE K-1:

(1

(4)

(6)

(7N

A DATIP command is valid only through the Direct Data Path. If a DATIP is attempted through a
Buffered Data Path, or through the Direct Data Path with the BYTE OFFSET bit set, the UNIBUS
command is ignored and the DWBUA does not issue SSYN (causing an SSYN timeout). During this
time. all VAXBI transactions to the DWBUA receive a RETRY response until the UNIBUS device
negates BBSY.

If 2 DATIP command is not followed by a DATO(B), the DWBUA sets the UIE bit of the BUACSR
and forces an error interrupt, if interrupts are enabled.

A UNIBUS DATO(B) through the Direct Data Path translates to a longword WMCI transaction
with the mask bits set for each valid data byte.

The DWBUA performs two longword transactions on the VAXBI for a word length transfer through
the Direct Data Path if both the BYTE OFFSET bit and UNIBUS address bit A<!> are set.

A UNIBUS DATI command through a Buffered Data Path results in an octaword READ of VAXBI
space. if the requested data is not in the BDP buffer. If the UNIBUS data is stored in the BDP buffer,
however. the buffer must be purged by performing an octaword WMCI on the VAXBI before
reading the data from the VAXBI. The entire octaword is loaded into the buffer; subsequent accesses
within the octaword through the same Buffered Data Path cause the DWBUA to fetch the data from
the buffer. with no VAXBI transaction requested. '

This special case is treated differently from other Buffered Data Path transfers to avoid delay in
issuing SSYN. In this case, the low byte of the requested DATI word is fetched by performing a
longword READ through the Direct Data Path. The high byte is fetched from either the currcnt BDP
buffer or the VAXBI with a longword READ through the DDP. The currcnt BDP status remains
unchanged during this transaction.

A DATIP transaction is valid only through the DDP.
Data for a DATO(B) command through a BDP is stored until the buffer is full. The DWBUA then
performs a VAXBI octaword WRITE (nonmasked) if the buffer contains an entire octaword of valid

data from the UNIBUS device. A VAXBI octaword WMCI is performed if the buffer contains less
than a complete octaword of valid data.

K-3

APPENDIX L
DWBUA PARITY CHECKING

L.1 PARITY CHECKING

The DWBUA uses its 32-bit internal RAM as an internal storage source. When this RAM is updated, the
newer version of the DWBUA stores odd parity for the updated data in a separate RAM. The DWBUA
checks for a parity error every time the internal RAM is read, thus verifying data integrity. This appendix
describes the DWBUA adapter’s parity checking and parity error reporting scheme.

L.2 INTERNAL RAM

The DWBUA adapter’s internal RAM contains the UNIBUS Map Registers, BDP buffers, vector
registers, and other DWBUA internal registers. The internal RAM is read during such operations as: a
VAXBI-requested READ of a DWBUA internal register; a UNIBUS-initiated transfer, which requires
rcading of a UNIBUS Map Register; a data transfer involving reading a BDP buffer; and any other
operation that requires the DWBUA to read the contents of its internal RAM. A parity error can occur
during any of these operations. The DWBUA handles a parity error slightly diffcrently in each case.

L.3 PARITY ERRORS
In the newer version of the DWBUA, which is capable of detecting parity errors, the DWBUA Control
and Status Register contains these two additional bits:

PARITY (W1C, DCLOC) This bit is set if the DWBUA found a parity error whilc
ERROR reading its internal RAM.

<29>

PARITY (R/W, DCLOC) While this bit is set, the DWBUA does not generate any
DISABLE parity when writing to its internal RAM. This causes a pari-
<2l> ty error when the same IRAM location is read later. This bit

is for use in Digital Equipment Corporation diagnostics only
and should not be used for any other purpose.

When the DWBUA detects a parity error while rcadiné its internal RAM, it asserts the PARITY ERROR
bit in the BUACSR and sends an error interrupt to the VAXBI bus if interrupts arc cnabled. The following
sections describe the other effects of a parity error detection during various operations.

L.3.1 Parity Errors on UNIBUS Map Registers

A DWBUA UNIBUS Map Register cnables mapping of an 18-bit UNIBUS address to the corresponding
32-bit VAXBI address. If a parity error occurs during a UNIBUS Map Register READ, it can causc the
DWBUA to transfer the data to a different location from the actual targeted address. Hence, the

DWBUA does not initiate the corresponding VAXBI transfer if it detects a parity error while reading a
UNIBUS Map Register.

L-1

When a UNIBUS device initiates a transfer, the DWBUA reads the corresponding UNIBUS Map
Register before servicing the UNIBUS data transfer. If a parity error occurs during this time, the
DWBUA withholds an SSYN, causing the UNIBUS device that initiated the transfer to detect an SSYN
timeout. The DWBUA then proceeds to report a parity error to the VAXBI. The data transfer associated
with the error is not completed.

The UNIBUS Map Register may also be read when the DWBUA WRITEs or READs data during a
DATO(B) or DATI transfer through a Buffered Data Path. If a parity error occurs while the UNIBUS
Map Register is being read, the DWBUA does not start the VAXBI transfer. The DWBUA withholds
SSYN to the UNIBUS, if SSYN has not been previously issued, causing an SSYN timeout to the
UNIBUS device. The DWBUA then reports a parity error to the VAXBI. The DWBUA also clears the
UDIBUF. BDIBUF, and STRTO flags for the current Buffered Data Path, indicating that the BDP
buffer is empty. .

L.3.2 Parity Errors on BDP Buffers
The DWBUA BDP buffers are in the internal RAM. These buffers are read under the followmg
conditions.

1. The BDP buffer contains the VAXBI data that is requested by the UNIBUS device-initiated
DATI transfer. If a parity error occurs while this data is being read from the BDP buffer, the
DWBUA does not send the data to the UNIBUS device. The DWBUA withholds SSYN,
causing an SSYN timeout. The DWBUA then reports a parity error to the VAXBI.

2. When a BDP buffer is full or has been autopurged. the DWBUA initiates an octaword WRITE
(WMCI) transfer on the VAXBI. The DWBUA reads its internal RAM for each longword of
data to be shipped. If a parity error occurs during the read of any one of the four longwords of
data, the DWBUA completes the VAXBI transfer with the data that has the parity error. The
DWBUA then reports the error to the VAXBI. The DWBUA clears its BDP flags, indicating
that the Buffered Data Path is clean. The DWBUA may withhold SSYN if it has not been
previously issued, causing an SSYN timeout. Hence. it may not be possible for the VAXBI
processor to detect which data in the VAXBI memory has a parity error.

L.3.3 Parity Errors on Vector Registers

The DWBUA may receive an ICRSD event code when it ships vector data from the UNIBUS during an
IDENT command. When this happens, the DWBUA stores the failed vector in its internal RAM.
Subsequently, the next time the DWBUA receives an IDENT command at the same level, the DWBUA
uses the stored data as the vector. If the DWBUA detects a parity error during the rcading of the failed
vector, it sends zero data, a READ DATA status code, and an ACK response to the VAXBI master which
initiated the IDENT command. This should be treated as a passive release by the IDENTing master. The
DWBUA then reports a parity error as specified in Section L.3.

L.3.4 Parity Errors on DWBUA Internal Registers

When the VAXBI master device READs (RCI, IRCI) from a DWBUA internal register, the DWBUA
reads the data from the internal RAM and sends the data to the VAXBI master device with a READ
DATA status code and an ACK response. If the DWBUA detects a parity error while reading the data
from the internal RAM, it sends zero data, a READ DATA SUBSTITUTE Read Status code, and an
ACK response. The DWBUA then reports a parity error as specified in Section L.3.

L-2

L.4 PARITY LOGIC TESTING

The DWBUA self-test tests most of the logic associated with parity generation and detection. It forces bad
parity for each location of the internal RAM and ensures that the DWBUA detects a parity error. The
DWBUA cannot, however, perform an octaword WRITE (WMCI) transfer on the VAXBI during its self-
test.rThis means that the logic that detects a parity error during one of the four data cycles cannot be
verified.

The PARITY DISABLE bit in the BUACSR is a special bit for diagnostic purposes. It disables the parity
generation logic. Assertion of PARITY DISABLE allows the DWBUA Level 3 diagnostic. EVCBB, 1o
force a parity crror and to verify that the DWBUA detects the error. EVCBB forces a parity error in each
of the functions listed under Section L.3 and verifies that the DWBUA responds appropriately. EVCBB
also forces a parity error during the octaword WRITE (WMCI) command on one of the longwords of data
and verifies that the DWBUA has detected the parity error and reported the error appropriately.

L-3

INDEX

A

Access of unused address, E-2
ACK, defined, B-1
Address match, defined, I-3
Address processor, 4-3
Address space
access of unused, E-2
DWBUA, 3-3 :
system, 3-1
Address translation, UNIBUS to VAXBI, 3-23
Autopurge, I-3
defined, B-1

BAD bus, 4-3
BAD, defined, B-1
BADBDP bit, 3-17, 4-21
Base address
calculation, 3-3
defined, B-1
bb
calculation of, 3-3
defined, B-1
BBSY
defined, B-1
timeout, 4-7
BCI bus, 4-3
BCI Control Register, 3-4, 3-12
initial state, H-1
BCI, defined, B-1
BDCST, 4-10, 4-11
defined, B-1
BDIBUF, 3-21, I-2, I-3
BDP bus, 4-3
BDP, defined, B-1
BI AC LO L signal, 3-25
BICSR SST bit, 3-25
BIF bit, 3-16, 4-23, 4-29
BIIC, 4-2
BIIC-specific device registers, 3-4, 3-9 to
3-14
defined, B-1
Black-out, VAXBI, 3-25
Block diagram, 4-1
BR interrupts, F-3
Brown-out, VAXBI, 3-25
BUACSR, defined, B-1

BUAEIE bit, 3-17
Buffered Data Path, 1-1, 3-21, 3-27, 3-28,
4-17, 4-20 t0 4-22, -2 to I-8
address register, I-2
BDP 6 and 7, E-3
buffer, 3-22
Buffered Data Path space, 3-5, 3-23
Bus Error Register, 3-4
initial state, H-1
Bus loads, 1-2, 2-24
BYTE OFFSET bit, 3-24, 3-27, I-4 to 1-6

C
Current requirements, 1-2
D

Data length, 3-28
Data Path Control and Status Registers, 3-5,
3-22
initial state, H-2
Data path gate array, 4-2
DATA PATH SELECT field, 3-22, 3-24
DATI, defined, B-1
DATIP
defined, B-1
through Buffered Data Path, E-3
DATO(B), defined, B-1
DCLOC, defined, 3-6
DDP, defined, B-1
Device Type Register, 3-4
initial state, H-1
Direct Data Path, 1-1, 3-22, I-1, I-2
DMA transfer, 3-38
DMA, defined, B-2
DPCSR, defined, B-2
DPSEL bit, 3-22
DWBUA
address space, 3-3 to 3-24
busy, 4-8, 4-14
components, 2-1, 2-2
defined, B-2
hung, 3-27
initialization, 3-25
internal registers, 3-5, 3-15 to 3-24, 3-28
access of unused, J-1
improper use of, E-2

INDEX-1

DWBUA (Cont)

product description, 1-1
responses to UNIBUS-to-VAXBI transactions,
4-14, 4-15
responses to VAXBI-to-DWBUA transactions,
4-4
responses to VAXBI-to-UNIBUS transactions,
4-7 to 4-9
specifications, 1-2
DWBUA Control and Status Register, 3-5, 3-16,
3-17
initial state, H-2
DWBUA module installation, 2-7

E

ENDING ADDRESS field, 3-11

Ending Address Register, 3-4, 3-11
initial state, H-1

ERR bit, 3-16

Error
during VAXBI transfer, I-1
in UNIBUS-to-VAXBI transactions, E-2, E-3
in VAXBI-to-UNIBUS transactions, E-1, E-2
interrupt, 3-16

Error Interrupt Control Register, 34, 37
initial state, H-1

EVCBB, 2-8, 2-9

EX VECTOR bit, 3-13

Example transactions
DATI using a Buffered Data Path, 4-24, 4-25
DATO using a Buffered Data Path, 4-22, 4-23
DATO(B) using the Direct Data Path, 4-18,

4-19
VAXBI READ of UNIBUS data, 4-12, 4-13
VAXBI WRITE to a UNIBUS Map Register,
4-6, 4-7

F

Failed UNIBUS Address Register, 3-5, 3-19
initial state, H-2

Flags
BDIBUF, I-3
STRT_O0, I-3
UDIBUF, I-3

Flaky UNIBUS device, 2-16

FORCE bit
Error Interrupt Control Register, 3-7
User Interface Interrupt Control Register,

3-13

Force INPINTR/STOP Command Register, 3-4 -
initial state, H-1

Force IPINTR/STOP Destination Register, 3-4
initial state, H-1

FUBAR, defined, B-2

G

General Purpose Registers, 3-4, 3-14
initial state, H-1, H-2
Grant continuity cards, 2-16

H

Hung DWBUA, 3-27
Hung UNIBUS, 3-28

IDENT
defined, B-2
Interrupt/IDENT sequence, J-2
IDENTEN bit, 3-12
IEN field, 3-14, 3-17
lllegal Buffered Data Path, E-3
Tllegal mask bits, E-1
IMR bit, 3-17
Initialization
of DWBUA, 3-25
of UNIBUS, 3-25
Installation, 2-3 to 2-7
INTAB bit, 3-7
INTC bit, 3-7
Interlock, defined, B-2
Intermittent operation of UNIBUS device, 2-16
Internal error number, 3-14,3-17
Internal RAM, 4-3
Interrupt
abort, 3-7
complete, 3-7
destination, 3-8
forced, 3-7
level, 3-7
sent, 3-7
vector, 3-7, 3-13
INTERRUPT DESTINATION field, 3-8
Interrupt Destination Register, 34, 3-8
initial state, H-1
Interrupt/IDENT sequence, J-2
INTR, defined, B-2
INVAL, defined, B-2
Invalid map page, E-3 —

INDEX-2

Invalid VAXBI commands, E-2
IOADR bit, 3-24
IPINTR, defined, B-2
IPINTR Mask Register, 3-4
initial state, H-1
IPINTR Source Register, 3-4
initial state, H-1
IRAM, 4-3
defined, B-2
IRCI
defined, B-2
DWBUA response, 4-8
IRCI/UWMCI, 3-28, 4-8

L

LEVEL field, 3-7

Longword access enable, 3-24
LWAEN bit, 3-24

LWAEN, defined, B-2

M

M7166 installation, 2-4
M9313 installation, 2-4
Macrodiagnostic, 2-8, 2-9
test descriptions, D-1 to D-3
Master port control, 4-2
MBZ, cefined, B-2
Microcode control, 4-3
Microdiagnostic Register dump, 3-17
Microdiagnostic Registers, 3-5, 3-21
initial state, H-2
MSYN, defined, B-2
MSYN-SSYN time intervals, K-1 to K-3

N

NO ACK, defined, B-2
Node
see VAXBI node
Node ID, 3-3
defined, B-2
Node space, 3-2, 3-3 to 3-5
defined, B-2
Node space addresses, G-1
Nonexistent registers, 3-29
NPR transfers, F-3

0 B

Octaword transfers, E-1
Octaword, defined, B-2
ONE bit, 3-17

P

Paddle card installation, 2-4
PAGE FRAME NUMBER field, 3-24
Parity checking, L-1
Parity errors
on BDP buffers, L-2
on DWBUA internal registers, L-2
on UNIBUS Map Register, L-1
on vector registers, L-2
Parity logic testing, L-2
Passive release, 3-38, J-2
Port lock, J-1
defined, B-3
Power requirements, 1-2
Purge, 3-22
defined, B-3
PURGE bit, 3-22

Q

Quadword transfers, E-1

R/W, defined, 3-6
RCIl, defined. B-3
READ
defined, B-3
DWBUA response, 4-8
during UNIBUS initialization, 3-25
of DWBUA internal register, 4-4
of UNIBUS data, 4-12, 4-13
of unused DWBUA register space, 4-4
REGDMP bit, 3-17
Register bit characteristics, 3-6
Registers
see also individual register names
BCI Control Register, 3-12
Data Path Control and Status Registers, 3-22
DWBUA Control and Status Register, 3-16,
3-17

INDEX-3

Registers (Cont)

Ending Address Control Register, 3-11
Error Interrupt Control Register, 3-7
Failed UNIBUS Address Register, 3-19
General Purpose Registers, 3-14
Interrupt Destination Register, 3-8
Microdiagnostic Registers, 3-21
Receive Console Data Register, 3-15
Starting Address Register, 3-10
UET Control Register, F-1, F-2
UNIBUS Map Registers, 3-23, 3-24
User Interface Interrupt Control Register,
3-13

VAXBI Failed Address Register, 3-20
Vector Offset Register, 3-18

RESERVED data length, 3-28

RETRY, J-1, J-2
defined, B-3

RO, defined, 3-6

SACK, defined, B-3
SC, defined, 3-6
Self-test
failure, 2-12
test descriptions, C-1 to C-3
SENT bit. 3-7
Slave port control, 4-2
Specifications, 1-2
SSYN
defined, B-3
timeout, 4-8
SSYN timeout error, 2-15
STALL, defined, B-3
STARTING ADDRESS field, 3-10
Starting Address Register, 3-4, 3-10
initial state, H-1
STOP, defined, B-3
STOPC, defined, 3-6
STOPEN bit, 3-12
STRT_—O, 3-21, I-2, -3
System address space, 3-1 to 3-3
System 1/0O space, 3-2, 3-3

T

T1010 installation, 2-7

Timing diagrams
DATI, 4-30 -
DATI with autopurge, 4-29
DA‘;Tg)s(B) through a Buffered Data Path,
Interrupt/IDENT, J-5
VAXBI-to-UNIBUS READ, 4-27
VAXBI-to-UNIBUS WRITE, 4-26
Transactions
UNIBUS-initiated, 1-1
VAXBI-initiated, 1-1
Transition header installation, 2-5
Troubleshooting procedures, 2-9 to 2-17

U

UA, defined, B-3
UBPUP bit, 3-14
UNIBUS initialization, 3-25
UCSREN bit, 3-12
UDIBUF bit, 3-21, 1-2, I-3
UET, F-1 to F-3
UET Control Register, F-1, F-2
UET installation, 2-4
UIE bit, 3-17
UNIBUS
address
highest, 3-11
lowest, 3-10
nonexistent, E-2
translation to VAXBI address, 3-23
arbitrator
defined, B-3
defined, B-3
devices, 3-28
hung, 3-28
initialization, 3-25
interlock error, 3-17
interrupts, J-2 to J-5
power down, 3-27
power up, 3-14
UNIBUS AC LO signal, 3-25
UNIBUS ADDRESS field, 3-21
UNIBUS address transceivers, 4-2
UNIBUS data transceivers, 4-2
UNIBUS devices, 1-2, A-l
UNIBUS exerciser terminator, F-1 to F-3
UNIBUS failure, 2-17

INDEX-4

UNIBUS Map Registers, 3-5, 3-23 to 3-27,
4-6, 4-7
allocating, 3-27
initial state, H-2
invalid, 3-17
mapping to VAXBI I/O space, 3-27
UNIBUS port control, 4-2
UNIBUS power outage, 3-28
UNIBUS quiescent levels, 2-16
UNIBUS-to-VAXBI transactions, 4-14 to 4-25
DWBUA responses, 4-14
Unimplemented registers, 3-29
UPI bit, 3-17, 3-25
User Interface Interrupt Control Register,
3-4, 3-13
initial state, H-1
USSTO bit, 3-17
UWMCI
defined, B-3
without preceding IRCI, 4-9

\Y

VALID bit, 3-24, E-3
VAXBI
defined, B-3
error, 3-28
failure, 3-16, 4-15
required registers, 3-4, 3-6 to 3-8
VAXBI address latch, 4-2
VAXBI Control and Status Register, 3-4
initial state, H-1
VAXBI data and address transceivers, 4-2
VAXBI Failed Address Register, 3-5, 3-20
initial state, H-3
VAXBI node, defined, B-3
VAXBI-to-DWBUA commands, 4-5
VAXBI-to-DWBUA transactions, 4-4 to 4-7
VAXBI-to-UNIBUS commands, 4-10, 4-11
VAXBI-to-UNIBUS transactions, 4-7 to 4-13
VECTOR field, 3-7
Vector Offset Register, 3-5, 3-18
initial state, H-2
VOR, defined, B-3

W IC, defined, 3-6

WCI, defined, B-3
Window space, 3-2, 3-3, 3-10, 3-11
defined, B-4
Window space addresses, G-1
WMCI, defined, B-4
WO, defined, 3-6
WRITE
defined, B-4
illegal mask, E-1
to a UNIBUS Map Register, 4-6, 4-7
to DWBUA internal register, 4-4
to DWBUA read-only register, 4-4
to READ-ONLY bit, E-2
to READ-ONLY register, J-1
to unused DWBUA register space, 4-4
Write Status Register, 3-4
initial state, H-1
Write-to-VAXBI, defined, 1-3

INDEX-5

DWBUA UNIBUS ADAPTER TECH. MANUAL

EK-DWBUA-TM-001
READER'S COMMENTS
1. How did you use this manual? (Circle your response.)
(a) Installation (c) Maintenance (e) Training
(b) Operation/use (d) Programming (f) Other (Please Specify.)
2. Did the manual meet your needs? Yes] No [_] Why?
3. Please rate the manual on the following categories. (Circle your responses.)
Excellent Good Fair Poor Unacceptable
Accuracy 5 4 3 2 1
Clarity 5 4 3 2 1
Completeness 5 4 3 2 1
Table of Contents, index 5 4 3 2 1
Nlustrations, examples 5 4 3 2 1
Overallease of use -] 4 3 2 1
4. What things did you like most about this manual?
_5.:-wuwmmmmmmmm
- Page Description/Location of Error =
7. mamm“&«b'mﬁﬁr(mmm)
() Administrative Support (o) System Manager (1) Educational/Trainer
(b) Manager/Supervisor (f) Computer Operator - () Sales/Marketing
(c) ScientistEngineer (g) Software Support (k) Other (Pleasé specify)
(C)WW B (h) Hardware Support
OPTIONAL INFORMATION
Company City/State
Department Country Postal (ZIP) code ()
Job Title Telephone Number

THANK YOU FOR YOUR COMMENTS AND SUGGESTIONS

Please do not use this form to order manuals. Contact your representative at Digital Equipment Corporation or (in
the USA) call our DECdirect ™ department at this toll-free number: 800-344-4825.

©1988 by Digital Equipment Corporation. VWO

FOLD HERE AND TAPE. DO NOT STAPLE

NO POSTAGE
™ NECESSARY
t IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Educational Services/Quality Assurance
12 Crosby Drive BUO/EO8

Bedford, MA 01730-1493

FOLD HERE AND TAPE. DO NOT STAPLE

