
LINKING LOADER XVM
UTILITY MANUAL

DEC-XV-ULlUA-A-D

LINKING LOADER XVM
UTILITY MANUAL

DEC-XV-ULLUA-A-D

digital equipment corporation • maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright @ 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-ll

PREFACE

CHAPTER 1

1.1

1.2

1.3

CHAPTER 2

2.1

2.2

2.3

2.4

CHAPTER 3

3.1

3.2

3.3

3.3.1

3.3.2

3.3.3

3.3.4

3.4

3.5

APPENDIX A

APPENDIX

APPENDIX

APPENDIX

INDEX

Number

1-1

2-1

2-2

2-3

2-4

3-1

B

C

D

CONTENTS

INTRODUCTION

GENERAL DESCRIPTION

COMMON BLOCKS

SPECIAL SYMBOLS

LOADER CODE DESCRIPTIONS

INFORMATION UNITS

PROGRAM UNIT ORGANIZATION

LIBRARY FILE ORGANIZATION

IDENTIFICATION CODES

OPERATING PROCEDURES

.DAT SLOT ASSIGNMENTS

CALLING THE LOADER

COMMAND STRING

Option Switches

Program Names

ALT MODE (Terminates Command String)

Command String Errors

OPERATION

ERROR CONDITIONS

PROGRAMMING NOTES

TERMS AND DEFINITIONS

SYMBOL CONCATENATION - RADIX 508 FORMAT

LOADER SYMBOL TABLE

FIGURES

Linking Loader I/O Functions

Information Unit Block Structure

Program Unit Organization

Block Data Subprogram Organization

Library File Organization

Linking Loader Core Map

iii

Page

vii

1-1

1-1

1-2

1-3

2-1

2-1

2-2

2-3

2-3

3-1

3-1

3-1

3-2

3-3

3-4

3-4

3-4

3-5

3-6

A-I

B-1

C-l

D-l

Index-l

1-1

2-1

2-2

2-3

2-4

3-7

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in­

cluding the latest version available. Within this manual, other XVM

manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL

DDT XVM UTILITY MANUAL

EDIT/EDITVP/EDITVT XVM UTILITY MANUAL

8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL

MACll XVM ASSEMBLER LANGUAGE MANUAL

MACRO XVM ASSEMBLER LANGUAGE MANUAL

MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VP1SA XVM GRAPHICS SOFTWARE MANUAL

VT1S XVM GRAPHICS SOFTWARE MANUAL

XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READER'S GUIDE AND MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS V1A SYSTEM INSTALLATION GUIDE

XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

v

DEC-XV-OBUAA-A-D

DEC-XV-UCHNA-A-D

DEC-XV-UDDTA-A-D

DEC-XV-UETUA-A-D

DEC-XV-UTRNA-A-D

DEC-XV-LFLGA-A-D

DEC-XV-LF4MA-A-D

DEC-XV-LF4EA-A-D

DEC-XV-ULLUA-A-D

DEC-XV-LMLAA-A-D

DEC-XV-LMALA-A-D

DEC-XV-UMTUA-A-D

DEC-XV-UPUMA-A-D

DEC-XV-UPPUA-A-D

DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A-D

DEC-XV-GVTAA-A-D

DEC-XV-ODKBA-A-D

DEC-XV-ODGIA-A-D

DEC-KV-ODSAA-A-D

DEC-XV-ODMAA-A-D

DEC-XV-ODSIA-A-D

DEC-XV-IRSMA-A-D

DEC-XV-XUSMA-A-D

PREFACE

This manual describes the operation of the Linking Loader Utility Pro­

gram as it is used in the XVr-VDOS environment.

It was assumed in the preparation of this manual that the reader is

familiar with the operation of the XVM or PDP-IS equipment and the

contents of the XVM/DOS Users Manual describing the features of the

operating system.

Chapter 2, which describes the organization of relocatable binary

program units as produced by FORTRAN IV XVM (FORTRAN AND MACRO XVM

MACRO), is relevant not only to the Linking Loader but also to CHAIN,

.SYSLD, UPDATE, and (in RSX systems) to Task Builder.

Manuals which relate to this manual are the following:

FORTRAN IV XVM Language Manual

FORTRAN IV XVM Operating

XVM/DOS Users Hanual

XVM/DOS System Manual

XVM/DOS Keyboard Command

DDT XVM Utility Manual

UPDATE XVM Utility Manual

Environment

Guide

vii

Manual

1.1 GENERAL DESCRIPTION

CHAPTER 1

INTRODUCTION

The LOADER XVM (LOADER) is a program which operates under XVM/DOS.

The Linking Loader loads and links both relocatable and absolute1

binary program units as output from either the FORTRAN IV Compiler or

MACRO Assembler. These program units consist of machine language

instruction codes and special "loader codes" which tell the loader

how to load the program. These program units can reside on the input

device not only as separate files, but also as library files. The

structure of the input data and description of the loader codes are

provided in Chapter 2. Figure 1-1 illustrates the I/O functions of

the Loader.

System
Library

(. LIBR BIN)

Main and
Subprogram

Files

.DAT -4

Console teleprint­
er (command input
and response)

Figure 1-1

.DAT -5

Linking Loader I/O Functions

User
Library

(. LIBR5 BIN)

1A MACRO assembled program headed by a .LOC statement, e.g., .LOC
100, is an absolute binary program and the binary is output in link
loadable format. A prograre headed by an .ABS, .ABSP, .FULL, or
.FULIP statement is output as absolute block binary and cannot be
loaded by the Linking Loader.

1-1

Introduction

Initially, the Loader loads all the program units named in the com­

mand string (see Operating Procedures, Chapter 3). The Loader then

automatically loads and links all requested I/O handlers and library
1

subprograms which have been implicitly requested. The requested

library subprograms are loaded from the external (user) library (if

one exists) and then the system library (in that order). After both

libraries have been examined for requested subprograms, the Loader

prints the names of all subprograms which have not been found. I/O

handlers that are already in core for the Loader's use will be

retained if required for the user's program. The Loader also assigns

COMMON data storage areas.

There are two modes of operation which affect how individual program

units are loaded into core memory. When the system is running in

PAGE mode, program units cannot exceed 4080 words in size and the

loader relocates such programs so that they do not straddle a 4K

memory page boundary. When the system is in Bank mode, program units

cannot exceed 8176 words in size and the loader relocates them to

avoid 8K memory bank boundaries. In XVM/DOS there are on-line moni­

tor commands to select the desired mode of operation. If a program

is written in absolute rather than relocatable binary, the loader

does not check to see if a page or bank boundary is crossed.

Optionally, symbols and their absolute definitions are loaded into a

program dictionary (symbol table) for use by the DDT (Dynamic Debug­

ging Technique) Utility Program. The Loader also sets up, for use

by DDT, the start execution address of the main program (in the

System Communication Table) and the initial relocation value of all

the program units (in the symbol table) .

1.2 COMMON BLOCKS

The Linking Loader permits COMMON blocks and BLOCKDATA subprograms

to overlap memory pages and banks. When operating in either Bank

or Page Mode, the Loader allows COMMON block sizes up to 32,767 words

(32K-1). Only non-COMMON arrays and variables are initialized to

zero by the Loader.

lImplicit subroutine requests are made by global or symbolic link­
ages and.are established through the use of .GLOBL pseudo-op in
MACRO and the external function references and CALL statements in
FORTRAN. Implicit I/O handler requests are made by use of the .IODEV
pseudo-op in MACRO and the use of READ AND WRITE statements in
FORTRAN.

1-2

Introduction

If the system is running with XVM mode ON, the Loader allocates the

uninitialized COMMON blocks in core above the bootstrap. The top of

usable core above the bootstrap is determined by the system memory

size. If there isn't enough space above the bootstrap, the Loader

will use space below it. If XVM mode is OFF (which is necessarily the

case in PDP-15 systems without XM15 hardware), the Loader loads

everything below the bootstrap.

MACRO programs can be linked to COMMON areas defined by FORTRAN IV

in two ways. The recommended method is to use the .CBS and .CBD

pseudo-op in MACRO. However, for compatibility with earlier systems,

the following is a second way. If any unresolved globals remain after

the Loader has searched the user and system libraries and has defined

COMMON blocks, the Loader tries to match those global names to

COMMON block names. Wherever a match is made, the global becomes

defined as the COMMON block. For example:

FORTRAN IV PROGRAM

INTEGER A, B, C

COMMON/NAME/c

COMMON A, B

MACRO PROGRAM

.GLOBL NAME, .XX I.xx IS NAME GIVEN TO BLANK COMMON

IBY THE FORTRAN COMPILER

DZM* .XX ICLEAR A - NOTE INDIRECT REFERENCE

ISZ .XX IBUMP COUNTER

DZM* .XX ICLEAR B

DZM* NAME ICLEAR C

Note that if the values are REAL (2 words) or DOUBLE PRECISION (3

words) the MACRO program must account for the number of words when

accessing specific variables.

1.3 SPECIAL SYMBOLS

The following symbols, when used in this manual, are defined as

follows:

Symbol

,[]

{ }

1-3

Meaning

Carriage RETURN

Horizontal Tab

Space

Optional Command Element

One of the enclosed command
elements must be chosen.

CHAPTER 2

LOADER CODE DESCRIPTIONS

As mentioned in Chapter 1, the relocatable and absolute binary program

units output by the FORTRAN IV Compiler and the MACRO Assembler con­

tain both machine language instructions and loader codes. These codes

are assigned by FORTRAN and MACRO to identify the various elements of

the binary program. The Loader, in turn, interprets these codes to

properly relocate, link, assign COMMON areas, preserve constants, etc.

The paragraphs which follow provide descriptions of the physical organ­

ization of relocatable program units and library files and definitions

of the loader codes.

2.1 INFORMATION UNITS

The binary output from the FORTRAN compiler and the MACRO Assembler

consists of named files containing blocks of information units. Each

information unit consists of a loader code (6 bits) and a data word

(18 bits). The form of the object program at run time is determined

by the content and the ordering of the information units. Several

information units may be grouped to convey a single run-time instruc­

tion to the Loader.

Information units are grouped in blocks of four 18-bit machine words

as shown in Figure 2-1.

o
Word 1

Word 2

Word 3

Word 4

5 6 11 12

Code 1 I Code 2 1
Data Word 1

Data Word 2

Data Word 3

Figure 2-1
Information Unit Block Structure

17

Code 3

lOPS binary records of 48 information words and a 2-word header are

accepted by the Loader.

2-1

Loader Code Description

2.2 PROGRAM UNIT ORGANIZATION

A program unit consists of as many information units as are required

to contain the binary program. The two basic types of program units

are diagrammed in Figures 2-2 and 2-3.

PROGRAM SIZE (code 01) does not include COMMON blocks

INTERNAL GLOBAL DEFINITIONS (code 12)

PROGRAM NAME (codes 07, 10, 23, 33)

Codes

02 Program Load Address

03 Instructions

04 Constants

OS Transfer Vectors

06 Non-COMMON variables and arrays

07

10

11

}

14 }
15

16

24 }
25

26

31

32

34,01

}

symbols

External global symbol references

COMMON block declarations and references

strings

I/O Device Routine

Relocation Mode

COMMON block initialization

END (code 27)

Figure 2-2
Program Unit Organization

2-2

Loader Code Description

BLOCK DATA INDICATOR (code 13)

PROGRAM NAME (code 23)

COMMON STORAGE (codes 14, 15, and 16)

DATA INITIALIZATION CONSTANTS (codes 17, 20, 21, and 22)

END (code 27)

Figure 2-3
Block Data Subprogram Organization

2.3 LIBRARY FILE ORGANIZATION

Both system and user library files are structurally identical and are

created and maintained by the UPDATE Utility Program. A library file

consists of a number of program units (rather than just one) in which

all end-of-file codes, except the last, have been removed. Figure 2-4

shows the complete structure of a library file. A library file must

not contain BLOCKDATA subprograms.

2.4 J;DENTIFICATION CODES

The identification code contained in each information unit tells the

Loader how to interpret the associated data word. As mentioned earlier

there is an implied order in which codes appear within a binary file.

Code Loader Action

01 Program Unit or COMMON Block Size

The data word normally specifies the number of

machine words required by this program unit. This

number does not include the required number of

machine words for COMMON storage. The program

size is used by the Loader to determine whether or

not the program will fit within the unused locations

of any available page or bank. This is the first

information unit of the binary output. In absolute

loads, no checking is made to prevent overlay of

other program units; this is left to the user. The

program size is also used to determine where to begin

loading the executable code as loading proceeds

from the bottom of the bootstrap downward in core.

If this code immediately proceeds code 34, the data

word declares the minimum size of the most recently

named COMMON block.

2-3

Loader Code Descriptions

LIBRARY FIL E

(_------------------------~A~------------------------~\

PROGRAM

1
PROGRAM

1
PPOGRAM 1- - - - - -I PROGRAM 1 ENO-OF- FILE I

UNIT UNIT UNIT UNIT UNIT

I
t --PROGRAM SI Z E

DESCR IPTOR

INTERNAL
GLOBALS

LO AD ADDRE SS
DESCRIPTOR

DATA

VIRTUAL
GLOBALS

END CODE

i
en = 231 0 TERMINATES
A PROGRAM UNIT. THE
NEXT UNIT MUST BEGIN
A NEW lOPS BINARY
RECORD .

~
PROGRAM UNIT

I
A

\

ONE lOPS
BIHAR Y - - - - - BINARY

PROGRAM
RE CORD

lONE l OPS I
REC ORD

UNIT J
H,

} TWO-WORD
HEADER

HZ

C, / C2 /C 3

D, } """"" INFORMATION

DZ UNIT

D3

C4 /C 5 /C 6 - DESCRIPTOR

0 5

0 6

I

I

I

C34/C35/C36

0 3 4

035

0 36 -'

0-89- 17

WORD 0 I 1 005 } END -O F - FILE

WORD I l CHE CK - SU M
UNIT

ENO ·OF- FI LE UNIT ONLY PRESENT
AT END OF LlBR FIL E.

Figure 2-4

48 10
WORDS

Library File Organization

2-4

02

03

Loader Code Description

Loader Action

0 1 2 3 17

Data Word X I 0 I Size I
L(~ if absolute load

if relocatable load

Program or COMMON Block Load Address

The data word is an unrelocated memory address. This

address normally specifies either an absolute or a

relative storage address for program data words ana

is incremented by one for each data word stor~d (codes

03, 04, and 05). If the address is relative, it is

initially incremented by the current relocation factor.

If this code directly precedes a code 34 which causes

an entrance into data initialization mode, the data

word contains a COMMON block load address which is

relative to the start of the COMMON block. Bit 0

of the data word is used to indicate an absolute

address (bit 0 = 1) or a relative address (bit 0 0) .

0 1 2 3 17

Data Word X I 0 I Load Address I
L(~ = relative load address

= absolute load address

Relocatable Instruction

The data word is a memory referencing instruction. The

address portion of the instruction is incremented by

the current relocation factor (modulo 12 bits for

page mode and 13 bits for bank mode). The instruction

is stored in the location specified by the load

address which is incremented by one after the word

is stored.

o
Data Word Op Code

2-5

4 5 Bank Mode
5 6 Page Mode

Unrelocated
Memory Address

17

04

as

06

07

Loader Code Description

Loader Action

Absolute Instruction/Constant/Address

The data word is either a non-memory referencing

instruction, a non-relocatable memory referencing

instruction, an absolute address, or a constant.

The word is stored in the location specified by the

load address which is incremented by one after the

word is stored.

a 17

Data Word Non-Relocatable Word

Relocatable Vector

The data word contains a relocatable program address

(vector). The word is incremented by the current

relocation factor. The data word is stored in the

location specified by the load address which is

incremented by one after the word is stored.

a 17

Data Word Vector

Non-COMMON storage Allocation

The data word specifies the number of machine words

required for non-COMMON variable and array storage.

storage allocation begins at the address specified

by the load address. The load address is incremented

by this number. This block of memory is cleared.

a
Data Word a

4 5 Bank Mode

5 6 Page Mode

Storage Size

Symbol - First Three Characters

17

The data word contains the first three chnracters

of a symbol in radix 50 S format (see Appendix C) .

The data word is saved by the Loader for future

reference.

2-6

10

11

Loader Code Description

Loader A_ction

0 1 2 17

Data Word Symbol I
0 1 to 3 character symbol
1 4 to 6 character symbol

Symbol - Last Three Characters

The data \'ford contains the last three characters of a

symbol in radix 50 8 format. The data word is saved

by the Loader for future reference. ~his word is

used only if in the code 07 data word bit 0 = 1.

o 1 2 17

Data Word o I Symbol

External Symbol Definition

The data word contains the unrelocated address of the

transfer vector for the subprogram named by the last

symbol loaded (codes 07 and 10). If the external

subprogram has already been loaded, the address

(definition) of the symbol is stored into the specified

relocated vector address. If the subprogram has not

been loaded and this is the initial request, the

symbol and the relocated transfer vector address are

entered into the Loader symbol dictionary as a request

for subprogram loading. This action automatically

forces the Loader into a Library Search Mode after all

programs mentioned explicitly in the command string

have been loaded. The Loader remains in Library

Search Mode until all unresolved globals have been

resolved. If the subprogram has been previously

requested (symbol in the dictionary) but not loaded,

the Loader chains the refere~ce locations. This chain,

generated exclusively by the Loader, is followed

when the external definition is encountered. (Un-

chained transfer vector locations must initially con­

tain a reference address (code 04 or 05) to them­

selves.) For example, .GLOBL SUB where SUB is vir­

tual causes the output of the following:

2-7

12

Loader Code Description

Loader Action

o 2 3 17

Data Word 07 0 SUB (radix 50
8

)

11 0 TVADD

o 2 3 17
05 °1~ ___ O~I ____ T_V_AD_D ______ ~1

SUB is defined internally as TVADD. Subroutine calls

are made via JMS* SUB.

0 2 3 17

Data Word

I
0

I
Transfer Vector

I Address

Internal Global Symbol Definition

The data word contains the unrelocated or absolute

address (definition) of the last symbol loaded (codes

07 and 10). The last symbol loaded is a global sym­

bol internal to the program unit which follows. In

the Library Search Mode, if a request for subprogram

loading exists (code 11) in the Loader dictionary,

the relocatable or absolute definition is stored in

the specified transfer vectors and the program unit

is loaded. The definition also replaces the trans­

fer vector address in the Loader dictionary. If no

request for loading exists, the program unit is not

loaded and the Loader continues to examine information

units until the next internal global symbol defini­

tion is found (Library Search Mode). If the program

unit is to be loaded, all internal global symbols

following the one causing loading are automatically

entered into the Loader dictionary as defined global

symbols. If the symbol already exists in the diction­

ary and is defined (indicating that a program unit

2-8

13

14

Loader Code Description

Loader Action

with the same name is already loaded) the Loader noes

not try to load the program unit again.

o 2 3 17

Data Word o I Symbol Definition I
Block Data Declaration

This information unit instructs the Loader that the

COMMON blocks and nata constants following are part of

a block data subprogram.

o 2 3 17

Data Word o I Block Size

COMMON Block Definition

The data word specifies the number of storage words

required for the COMMON block named by the last sym­

bol loaded (codes 07 and 10). In general, the assign­

ment of memory space for the COMMON block is deferred

until all requested library subprograms have been

loaded. The exception to this rule occurs when the

block data declaration (code 13) has been encountered.

In this case, the COMMON block name is treated as an

internal global symbol, and the block is assigned to

memory. After the block is assigned to memory, the

starting address is entered into the Loaner diction­

ary, and the starting address is saved by the Loader

for future use (code 15). All symbols in the diction­

ary associated with the block are assigned addresses

with respect to this starting address. All symbols

which are yet to be loanen (via code 15 and 16) will

also be assigned as they are encountered. When the

block data flag is not set, the Loaner enters the

name and the size into the dictionary (if it is not

already there) and also enters the worn containing

the next available dictionary entry address. This

entry will contain the first symbol in this COMMON

block and will be used as the head of the chain of all

2-9

15

16

Loader Code Description

Loader Action

symbols in this COMMON block. The address of the

head of chain is saved by the Loader so that the new

set of symbols in the COMMON block may be added to

the chain. The larger of the two block sizes is

retained as the block size.

When the COMMON block has already been assigned mem­

ory locations, the respective lengths are compared.

Loading terminates, with an appropriate error message,

if the assigned block is smaller. When the assigned

block is larger or both are equal, loading continues.

o 2 3 17

Data Word o I Block Size

COMMON Symbol Definition

The data word specifies the relative location of the

last symbol loaded (codes 07 and 10) in the last COM­

MON block (code 14). If the associated COMMON block

has been defined (block data), the absolute address

of the symbol is calculated (block address plus

relative position) and placed in TV location (code 16).

When the COMMON block has not been assigned, the

relative address is entered into the Loader diction­

ary and chained to the symbols associated with the

COMMON block.

o 2 3 17

Data Word o I Relative Address I

COMMON Symbol Reference Definition

The data word contains the unrelocated address of the

transfer vector for references to the COMMON symbol

named by the last symbol loaded (codes 07 and 10).

The symbol definition (code 15) is stored in the re­

located address specified when the associated COM­

MON block has been assigned (code 14). When the

block has not been assigned, the relocated address

is entered into the Loader dictionary along with the

relative address (code 15) of the symbol.

2-10

17

20

21

22

Loader Code Description

Loader Action

5 Bank Mode
o 6 Page Mode 17

Data Word o Address of Vector

Data Initialization Constant - First Word

The data word contains the first machine word of a

data initialization constant. It is saved by the

Loader for future use (code 22).

o 17

Data Word Data Constant

Data Initialization Constant - Second Word

The data word contains the second machine word of a

data initialization constant. It is saved by the

Loader for future use (code 22).

o 17

Data Word Data Constant

Data Initialization Constant - Third Word

The data word contains the third machine word of a

data initialization constant. It is saved by the

Loader for future use (code 22).

o 17

Data Word Data Constant

Data Initialization Constant Definition

The data word contains the relative load address of

the last data initialization constant loaded (codes

17, 20, and 21) and a mode code identifying the con­

stant (real, integer, double, logical). The load

address is incremented by the current relocation

factor if the constant initializes a non-COMMON stor­

age element. When the constant initializes a COM­

MON storage element (indicated by the presence of the

2-11

23

24

Loader Code Description

Loader Action

block data flag (code 13) I the load address is incre­

mented by the address of the last COMMON block loaded

(code 14). The constant is stored according to mode

and the relocated load address.

0 3 17

Data Word Load Address

mode = integer (1 word)
mode = real (2 words)
mode = double (3 words)
mode = logical (1 word)

Program Name or Internal Symbol Definition

The data word contains the unrelocated or absolute

address (definition) of the last symhol loaded (codes

07 and 10). The symbol is strictly internal to the

program being loaded and is entered conditionally (if

DDT is also loaded) along with its relocated or abso­

lute address into the DDT symbol dictionary. The

program unit name is indicated by bit 0=1 of the

data word.

o 2 3

Data Word

17

Symbol Definition

Internal symbol

Program name - from
FORTRAN IV or MACRO
command string

All symbols fall into this category.

String Code - First Half

The data word contains the unrelocated address of a

data word whose address portion is to be replaced by

another value. The relocated address is saved by the

Loader for future use (code 25).

2-12

25

26

27

Loader Code Description

Data Word

Loader Action

o
5 Bank Mode
6 Page Mode

o I String Address

String Code - Second Half

17

The data word contains an unrelocated address. The

address portion of the data word specified by the first

half-string code (code 24) is replaced with this ad­

dress (relocated modulo 12 bits (page) or 13 bits

(bank)) .

5 Bank Mode
o 6 Page Mode 17

Data Word Replacement Address

Input/Output Device Routine Request

The data word specifies the .DAT slot number associated

with a device level I/O routine. The Loader defers

loading of any I/O handlers until all programs speci­

fied in the command string have been loaded. I/O

handlers not already residing in memory (see Operating

Procedures) are loaded from the disk <lOS> area.

Data Word

End of Program Unit

17

o = single 2's complement
.DAT when negative

1 (• IODEV ALL)
all positive .DA~

slots with non-zero
contents

This is the last information unit of a program module.

The data word contains the unrelocated or absolute

start execution address of the program. The relocated

or absolute start address is entered into the system

communication tables to be used when control is given

to the user. Only the first start address encountered

is entered into the communication tables. (It is

2-13

30

31

32

Loader Code Description

Loader Action

assumed that the first program unit specified in the

command string is the main program.) The first add­

ress of the main program is used if the .END pseudo­

op did not have a start address. Several program

units, typically a main program and several subprograms,

can be combined into a single named file in the same

manner as a library file. The Linking Loader will

load each program unit until an end-of-file is encoun­

tered. When loading from either the system or external

libraries, the end unit causes the Loader to examine

the next line buffer for the end-of-file (EOF) condi­

tion. Nhen the EOF for the external library is

obtained, the Loader automatically begins searching

the system library to resolve any remaining globals.

4 5 Bank Mode
0 5 6 Pa9:e Mode 17

Data Word I I Start Address I
(Reserved)

Enable Bank Relocation

This code is output by the MACRO Assembler in response

to the .EBREL pseudo-oPe The Loader will relocate

all 03 coded data words using 13 bit addressing. The

associated data word is unused.

Disable Bank Relocation

This code is output by the MACRO Assembler in response

to the .DBREL pseudo-oPe The Loader will relocate

all 03 coded data words using 12 bit addressing. The

associated data word is unused.

NOTE

Loader codes 31 and 32 do not affect the execu­
tion of the relocated code but merely the size
of the address field. Also, these codes are
recognized only when the Loader is operating in
Page Mode. Program units which use these codes
are not allowed to overlap memory page bounds
or be larger than 4K. These codes are intended
for use with VT15 Display programs and should
be used with caution. The instructions EBA

2-14

33

34

Loader Code Description

Loader Action

NOTE (Cont)

(enter bank addressing) and DBA (disable bank
addressing) should be with code relocated via
the .EBREL and .DBREL pseudo-ops.

Source File Extension

This code is output by the MACRO XVM Assembler. The

data word contains the extension (in Radix 50 format)

of the source file which produced this binary. The

extension is typically a number indicating the revi­

sion level of the program module. It can be examined

with the Linking Loader by selection of the P option

in the loader's command string (see paragraph 3.3.1) .

o 1 2 17

Data Word I Extension (Radix 50 8)

COMMON Block Initialization

This code is output by the MACRO XVM Assembler in

response to the .CBS and .CBE pseudo-ops. It directs

the loader to enter or leave COMMON block initializa­

tion mode, depending upon the preceding symbol (codes

07 and 10). If the symbol is not blank, the loader

will initialize the COMMON block identified by that

symbol. If the symbol is blank, the loader will

leave COMMON block initialization mode.

This code may be immediately preceded by code 01,

program size, when entering COMMON block initializa­

tion mode. This is used to declare a COMMON block

size.

Code 34 must always be followed by code 02, which

denotes the COMMON block load address when entering

COMMON block initialization mode, and the program

load address when leaving COMMON block initialization

mode. If entering COMMON block initialization mode,

the COMMON block is then initialized via codes 03,

04, and 05. It should be noted that when in COMMON

2-15

Loader Code Description

Loader Action

block initialization mode, all relocation will be done

with respect to the base of the COMMON block. In all

cases, the data word associated with this code (code 34)

is reserved for future use.

2-16

CHAPTER 3

OPERATING PROCEDURES

3.1 .DAT SLOT ASSIGNMENTS

Prior to calling the Loader, the user should perform all required

device and UIC assignments for both the Loader and the program to be

loaded. Space can be saved during loading if the same version of a

device handler is used both for the Loader and for the program to be

loaded.

All programs named in the command string must reside on the device

and UIC associated with .DAT slot -4. At least one program must be

loaded from this device. The system library (.LIBR BIN) must be

accessible via .DAT slot -1. If a user-created library is to be used,

it must be accessible via .DAT slot -5, and be named .LIBR5 BIN. If

no user library is required, .DAT slot -5 must be assigned to NON:

otherwise lOPS 13 (file not found) errors will occur.

3.2 CALLING THE LOADER

The Loader may be called using any of four commands, depending on the

user's requirements, as shown:

Command

LOAD)

GLOAD)

~~

Meaning

Load and Halt. Program execution is ini­
tiated by typing CTRL S.

Load and Go. Program execution begins
automaticlly.

Load user programs along with DDT. When
loading is complete, control is given to
DDT.

Load user programs with DDT but do not
build DDT symbol table. This provides
more free core but limits debugging to
octal numbers.

1Refer to the DDT XVM Utility Program Manual for operating instructions
on DDT.

3-1

Operating Procedures

Type the desired command immediately to the right of the Monitor's $

as follows:

or $LOAD)

$GLOAD)

or

$DDT)

or

$DDTNS)

When running, the Loader identifies itself with one of the following

messages, depending upon the addressing mode (Bank or Page) .

Page Mode

LOADER XVM Vnxnnn
>

3.3 COMMAND STRING

Bank Mode

BLOADER XVH Vnxnnn
>

The Command String must be typed immediately to the right of the

Loader's prompting symbol> in the format shown below:

>[options]+-name1 [,name2] .•. [,namen~

The option switches may be omitted as explained in Section 3.3.1. The

left arrow (or underscore) must be present and so must at least one

program name. The command must terminate with an @ character. Below

are a few examples of legitimate single line command strings (the >is

printed by the Loader) :

>P +- RUN1~

>CP+-MAIN,SUBR1,SUBR2~

>+-PROD,TABLE,CONVRT~

>UL:USERA,G,SL:SYSTEM+-MAJOR,MINO~

The Loader also accepts Carriage RETURN as a substitute for comma to

separate program names. It would be used whenever a continuation line

were needed. For example,

>P+-PROG1,PROG2 ,PROG3 ,PROG4 ,PROGs€V

is equivalent to

>P+-PROG1 ,PROG2 ,PROG3 ,PROG4 ,PROG~

3-2

Operating Procedures

3.3.1 Option Switches

Five option switches may be selected to obtain loader map output on the

teleprinter and to specify alternate User or System Library names. If

no options are selected, the default Library names apply, no map is

output, and loading time is decreased. The switches are as follows:

P - Type program names and addresses

G - Type GLOBL symbols and addresses

C - Type BLOCK DATA names, COMMON block names and first addresses.
(.XX is the name for BLANK COMMON) and indicate programs
which initialize common blocks.

UL: ULNAME - The User Library name is specified by ULNAME instead
of the default name .LIBRS.

SL: SLNAME - The System Library name is specified by SLNM1E
instead of the default name .LIBR.

The option switches may be typed in any order. The UL and SL options

must be followed by a comma (or back-arrow if last option typed). The

P, G, and C options can optionally be followed by commas.

In typing out the memory map, the Loader first types option switch

character (p, G, or C) followed by the name or symbol and source file

extension, followed by the address. To indicate a COMMON block initiali­

zation it types the option switch character ("C"), followed by the

COMMON block name, followed by the abbreviation "INIT". To indicate a

BLOCK DATA program, it types the option switch character ("p"), followed

by the block data name, followed by the abbreviation "B DATA". For

example:

P L...I NAME1L...1L...1023 L...I 037602

GL...I. DAL...IL...IL...IL...IL...I L...IL...IL...IO 2 76 3 2

3-3

(The program created
from source file
NAME1 023 is loaded
at 037602)
(The COMMON block
.XX (blank common)
is initialized by
the preceding pro­
gram)
(The global symbol
.DA is defined to be
027632 by the follow­
ing program)
(The base of COMMON
block .XX (blank
common) is 026000)

Operating Procedures

3.3.2 Program Names

Program names are standard six character (maximum) file names of the

programs to be loaded. The Loader assumes that all programs have a

BIN extension. The name of the main program (i.e., the program which

is to obtain control first after loading) must be typed first. Alter­

natively, all programs (except BLOCKDATA subprograms) to be named in

a command string could be combined into a library file under the name

of the main program.

The name of the main program is followed by the names of all required

subprograms which are not to be loaded from the system or user library.

Subprogram names should be typed in order of program size, largest

first and smallest last, to obtain optimum core utilization. The pro­

gram names must be separated either by commas or by Carriage RETURNs.

If program input is from a non-directoried device, program names are

ignored and need not be typed. Simply type n-l commas or Carriage

RETURNs to load n programs. If program input is from a directoried

device, a null file name within the command string is ignored. Thus

additional commas and/or Carriage RETURNs can be typed between file

names or after the final file name without affecting the semantics

of the command.

3.3.3 ALT MODE (Terminates Command String)

An ALT MODE is the only legal command string terminator for the Loader.

Once typed, program loading begins.

3.3.4 Command string Errors

Syntactical errors in command strings (e.g., omitting the back arrow

(+ » cause the Loader to restart. Typing errors which occur prior

to typing a Carriage RETURN or ALT MODE can be deleted through the

use of the RUBOUT (delete character) and CTRL U (delete line) tele­

printer editing features. The Loader can be restarted at any time

prior to typing the ALT MODE terminator by means of the CTRL P com­

mand. On a directoried device, after the ALT MODE terminator, a

check of the directory is made to verify the existence of each file.

If any file named is not present or no names have been specified,

the message "NAME ERROR" is output and the loader restarted to

allow the correct file names to be input. Any other command string

errors observed after an ALT MODE has been typed are unrecoverable

and the user must return to the Monitor (via CTRL C) and reload the

Loader.

3-4

Operating Procedures

3.4 OPERATION

Upon receipt of the command string, the Loader consecutively loads all

explicitly named programs and builds a symbol table consisting of ex­

ternal (global) symbols, internal symbols (if DDT is to be loaded),

COMMON block definitions, and COMMON block element definitions. Once

all named programs have been loaded, a search is begun to resolve un­

satisfied subroutine requests contained in the symbol table. The

Loader searches the lOS directory on the system disk for individual

I/O handler files. Then a search through the user library (if present)

followed by the system library is made to load subroutines previously

referenced. If after a pass through both libraries there remain

unresolved global symbol references, another pass is made. This is

continued until a complete pass is made without resolving any global

symbols. Any remaining unresolved references cause a .LOAD 3 error

and loading terminates. Unresolved symbols are typed at the end of a

loader map (when a map is requested) and have a load address of O.

The Loader's search normally terminates as soon as all global refer­

ences are resolved. Executable program code is loaded as high in

core memory below the bootstrap as possible. The normal progression

of loading one program module after another is downward in core

memory. However, because the Loader avoids placing executable code

over page and bank boundaries (if PAGE mode is ON) and just bank

boundaries (if PAGE mode is OFF), small modules may fit into holes

in higher memory which could not hold larger modules loaded first.

The first 208 locations in each page or in each bank are not loaded

as a safeguard to avoid turning indirect memory references through

words 1°8-178 of a program into auto increment register references.

COMMON blocks initialized with data 1are allocated core below the

bootstrap at the same time as is the executable code, but COMMON

blocks are permitted to straddle page and bank boundaries.

Once executable code has been loaded, the Loader assigns core to the

uninitialized COMMON blocks. If the system is running with XVM mode

ON, the Loader allocates these blocks in core above the bootstrap.

The top of useable core above the bootstrap is determined by the

system memory size. If there is insufficient space above the bootstrap,

the Loader will use space below it. If XVM mode is OFF (which is

necessarily the case of PDP-15 systems without XM15 hardware), the

Loader loads everything below the bootstrap.

When loading is complete, the Loader resets the lower free

core pointers (SC.FRL and SC.FRL+l) to indicate that the area

occupied by the Loader and its handlers, if they are not used

1COMMON blocks are initialized by BLOCK DATA subprograms in FORTRAN
and the .CBS/.CBC/.CBE pseudo-ops in MACRO.

3-5

Operating Procedures

by the loaded program, is now free core. If XVM mode is ON, the

Loader also sets SC.FRH and SC.FRH+I to point to the lowest and

highest locations of free core in memory above the bootstrap. If no

free memory exists, both locations are set to -1. The Loader then

passes control either to the user's main program or to DDT in one of

several ways as follows:

a. If the Loader was called using the LOAD command, the

Loader types t Sand waits for the user to type CTRL S

to start his program.

b. If GLOAD was used to call the Loader, the user's main

program is automatically started.

c. If either DDT or DDTNS was used to call the Loader,

control is given to DDT (refer to the DDT XVM

Utility Manual for further information) .

In all cases, whether transferring control to the user program or to

DDT, the Loader enables XVM mode in the hardware if the XVM indicator

(see SC.MOD) in the Monitor is ON. With hardware XVM mode enableo,

user program indirect memory references can be to 128K of memory

(17 bits) instead of the usual 32K (15 bits) .

3.5 ERROR CONDITIONS

The following error codes are output by both the Linking Loader and

the System Loader. When output by the Linking Loader, the errors are

identified as shown below. When output by the System Loader, the

errors are identified as ".SYSLD nil instead of ".LOAD nil.

Error

.LOAD 1

. LOAD 2

Explanation

Memory overflow - the Loader's symbol table
and the user's program have overlapped.
At this point the Loader memory map will
show the addresses of all programs loaded
successfully before the overflow. Increased
use of COMMON storage may allow the pro­
gram to be loaded since COMMON can overlay
the Loader and its symbol table, because
it is not initialized until run time .

Input data error - parity error, checksum
error, illegal data code, or buffer overflow
(input line bigger than Loader's buffer).

3-6

Used only i
XVM mode is
ON

Arrows
indicate
direction
in which
search is
made for
allocatable

,.

~

Operating Procedures

UPPER
FREE
CORE

UNINITIALIZED
COMMOr BLOCKS

BOOTSTRAP

DDT (if present)

LOADED ~ROGRAMS,
SUBPROGRAMS,
I/O HANDLERS,
LIBRARY
SUBROUTINES &
INITIALIZED
COMMON BLOCKS
(also UNITIAL-
IZED COMMON
BLOCKS IN
NON-XVM MODE) 1

SYMBOL TABLE

LINKING LOADER

-SC.FRH+l (up to 128K -1)

SC.FRH

2 4K or 32K

The programs and symbol
table are build toward
one another. When pre­
served for use by DDT,
the symbol table resides
~n low core below free
core.

SC.FRL+l

Lower free core shown
here is for the case
where the symbol table
is discarded after load­
ing and the Loader's han­
dlers are needed by the
user programs.

SC.FRL

LOADER'S HANDLERS SC.RMS

XVM/DOS
RESIDENT
MONITOR &
BUFFER POOL

I+-o

Figure 3-1
Linking Loader Core Map

1 Uninitialized COMMON blocks are loaded below the bootstrap in XVM
mode only, if there is no core available above the bootstrap.

3-7

Error

.LOAD 3

• LOAD 4

• LOAD 5

• LOAD 6

• LOAD 7

Operating Procedures

(Cont)

Explanation

Unresolved Globals - any programs or sub­
routines required but not found, whether
called explicitly or implicitly, are indi­
cated in the memory map with an address of
00000. If any of the entries in the mem­
ory map has a 00000 address, loading was
not successful: the cause of trouble should
be remedied and the procedure repeated •

Illegal .DAT slot request - the .DAT slot
requested was:

a. Out of range of legal .DAT slot numbers:

b. Zero:

c. Unassigned: that is, was not set up at
System Generation Time or was not set
up by an ASSIGN command •

Program segment greater than 4K - the pro­
gram segment being loaded in Page Mode can­
not be placed in core without crossing a
Page Bound •

COMMON Block Error -

a. COMMON block of zero length or larger
than 32K-l words. A loader map line
of the form:

C blknam length

where: blknam
length

COMMON block name
attempted length

will be output to the console Teletype l
immediately prior to the line contain­
ing the error code. The program whose
name was most recently typed out via
the "P" (program loader address) load­
er map option contains the offending
COMMON block reference.

b. COMMON block requested length is greater
than its length when first loaded.
This error may be the result of load­
ing the modules in the wrong order.
It is remedied by defining all instances
of the same COMMON block to be of identi­
cal length •

Global symbol with relocated value greater
than 32K-l. A loader map line of the form:

G Symnam value

where: Symnam
Value

= global symbol name
= attempted value

lTeletype is a registered trademark of the Teletype Corporation.

3-8

Operating Procedures

.LOAD 8

.LOAD 9 Device

where device
is a two
letter code

(Cont)

Explanation

will be output to the console terminal
immediately prior to the line contain­
ing the error code.

Data initialization is attempted outside
of the range of the program or COMMON
block. This can be the result of an input
error but is usually caused by an illegal
data initialization attempt via the MACRO
.CBC pseudo-op.

Duplicate handler request - More than one
handler for the same device has been re­
quested. The first two letters of the
duplicate file name are output along with
the error message. Loading continues
despite this message, but when the loader
programs are executed, interrupts initiated
by I/O requests may not properly distinguish
among the multiple handlers, causing an
error.

3-9

APPENDIX A

PROGRAMMING NOTES

1. Recommended practice for memory overflow (.LOAD 1) errors -- Apart

from the obvious techniques of segmenting large programs and link­

ing them via CALL or .GLOBL's, use of the CHAIN and EXECUTE pro­

grams will often allow loading of programs which overflow when

using the Linking Loader. Since CHAIN creates XCT files on stor­

age external to memory, space which would have been used by the

Linking Loader is made available to the user during the chaining

process.

2. Block data subprograms must be explicitly added after the main

user program; that is, the name of the block data subprogram

must be typed after that of the main program in the Loader command

string as a separate file.

3. Care must be taken to assign the same handler to both .DAT slots

-1 and -4 (user program input) to avoid possible incorrect link­

age to one handler interrupt service when the initial I/O call

was made to another handler.

The assignment of the same handler to both the Linking Loader and

user .DAT slots prevents the unnecessary loading of extra handlers

which only take up more core. For example, if the program being

loaded uses .DAT slots 1 and 2 for its I/O, a core-saving tech­

nique is to assign a common disk handler to .DAT slots 1, 2, -4,

-1 (and -5 if a user library .LIBR5 BIN exists).

4. .INIT's to negative .DAT slots --

An .INIT cannot be done to .DAT slots -4, -5, -1 and -7 since the

Linking Loader uses these slots and clears them after loading.

A-l

APPENDIX B

TERMS AND DEFINITIONS

Term

Loadable Program Unit

Transfer Vector

Internal Global Symbol

External Global Symbol

Unresolved Global Symbol

Relocation Factor

Radix 508 Format

li.e., linking together.

Definition

A main program. subprogram. or blo ck
data subprogram.

A core location containing the address
of a subprogram or an entity in COM­
MON. All references to subprograms
and entities in COMMON are indirect.

A symbol defined in the current pro gram
unit and accessible to all programs.

A symbol which is referenced in the c ur­
rent program unit and defined in another.

An external global symbol reference
which has not yet been resolved by
replacement with an internal global
symbol definition.

The amount added to relative addresses
to form absolute addresses; initially.
the first loadable core location. The
relocation factor for programs following
the first program unit is the next
available load address.

A method of symbol concatenation l util­
izing 508 characters as a "number set".
each with a unique value between and
including ° to 47 8 , The symbol (number)
is converted using standard base con­
version methods (see Appendix C).

B-1

APPENDIX C

SYMBOL CONCATENATION 1 - RADIX 508 FORMAT

Radix 508 is a technique used by the MACRO Assembler and the FORTRAN
IV Compiler to condense the binary representation of symbolic names

in symbol tables. Three characters, plus two symbol classification

bits, are contained in each 18-bit word. A symbol is defined as a

string of one to six characters; i.e.,

C C C C C C
1 2 3 4 5 6

where any of the possible six characters (C l through C6) can be de­

fined as:

Character

Space

A

~
Z

%

° ~
9

6-bit octal code

00

01

~

32

33
34

35

~
46

47

The characters which make up a symbol are linked together in the fol­

lowing manner:

Word 1 « C1 *508)+C2)508+C3

Word 2 «C4 *508)+C5)508+C6

For example, the symbol SYMNAM would be entered in the Loader's sym-

bol table as:

Word 1 «23 8 *5°8)+ 31 8)5°8+15 8 = 475265
2

Word 2 « 16 8 *5°8)+1)5°8+15 8 053665

1i . e ., linking together.

2The sign bit of WORD1 is set to 1 to indicate that this symbol con­
sists of more than 3 characters and that the WORD2 is necessary.

C-1

APPENDIX D
LOADER SYMBOL TABLE

COMMON BLOCK NAME

1

2

3

4

a 2 3

ID I Block Size

Name (2A)

Symtab address of last entry in
Block definition

"Name" may require 2 words

COMMON NAME

a 2 3

1 ID I Symtab Chain Address

2 11 TV Address

3 Relative Address in Block

17

~ D = 7 when not defined
D = 3 when defined

chain --a if no entries
a if not defined

17

-

____ ID 4 Address = a if
last entry in chain

+---- BO = 1 for easy entry
update

If associated COMMON block was defined when code 14 is encountered, no

entry is needed in the symbol table.

UNRESOLVED OR INTERNAL GLOBAL

a 2 3
1 I 10 I
2

Definition

Name (2A)

Definition

Definition

(Unresolved) = Absolute Address of last TV in chain

(Internal) = Absolute address of Symbol

"Name" may require 2 words.

INTERNAL NAMES

2

1 Orl-I-D--~2~1-=3-----D-e-f-i-n-i-t-i-o-n---------1~7I
. Name (2A) .

"Name" may require 2 words

D-1

Unresolved ID 1
Internal ID 5

ID=O
(If Pro­
gram Name
ID = 7)

Only entered
into the sym­
bol table
during DDT
loads

Absolute address, 2-6
Absolute instruction, 2-6
ALT MODE, 3-4
Array storage, 2-6
Assembler, MACRO, 2-1

Bank mode, 1-2
Binary output, 2-1
Block data declaration, 2-9
Block data subprogram organiza-

tion, 2-3
BLOCKDATA subprograms, 1-2, A-l
Bootstrap, 1-3, 3-5

Calling the loader, 3-1
Carriage RETURN, 3-2
CHAIN and EXECUTE programs, A-l
Character deletion, 3-4
Characters of a symbol, 2-6, 2-7
Command string, 3-2

errors, 3-4
terminator, 3-4

Comma used as separator, 3-2
COMMON blocks, 1-2

definition, 2-9
initialization, 2-15
size, 2-3

COMMON symbol definition, 2-10
Compiler, FORTRAN, 2-1
Constant, 2-6

.DAT slot assignments, 3-1, A-l
Data initialization constant

definition, 2-11
Data word, 2-1

INDEX

FORTRAN compiler, 2-1

Global symbol references, unre­
solved, 3-5

Handlers, A-l

Identification code, 2-3
Information units, 2-1
Input/output,

functions, 1-1
handlers, 1-2

Input/output device routine
request, 2-13

Instruction, relocatable, 2-5
Internal global symbol definition,

2-8
Internal symbol definition, 2-12

Library,
files, 2-3, 2-4
search, 2-7, 3-5
subprograms, 1-2

Library, system, 3-1
Line deletion, 3-4
Load address, 2-5
Loader codes, 1-1, 2-1
Loader map output, 3-3

Machine language instruction

DDT (Dynamic Debugging Technique)
codes, 1-1

Machine words, 2-3
MACRO assembler, 2-1
MACRO programs, 1-3
Memory map, 3-3
Memory overflow, A-l

Utility program, 1-2
Definitions, B-1
Delete character, 3-4
Delete line, 3-4
Device assignment, 3-1
Disable bank relocation, 2-14

Enable bank relocation, 2-14
End-of-file codes, 2-3
End of program unit, 2-13
Error codes, 3-6
Errors, command string, 3-4
Executable program code, 3-5
External library, 1-2
External symbol definition, 2-7

Memory reference instruction, 2-5

Names, program, 3-4

Option switches, 3-3
Output, binary, 2-1
Overflow of memory, A-l

Index-l

PAGE mode, 1-2
Program,

name, 2-12, 3-4
size, 1-2
start, 3-6
unit, 2-2, 2-3

Radix 50, 2-7, C-l
Relocatable instruction, 2-5
Relocatable vector, 2-6
Relocation factor, 2-5

Source file extension, 2-15
Start program, 3-6
Storage allocation, 2-6
String code,

first half, 2-12
second half, 2-13

Subprograms, 1-2
Symbol, 2-6, 2-7

concatenation, C-l
table, 1-2, 0-1

Symbols used in manual, 1-3
Syntactical errors, 3-4
System library, 1-2, 3-1

Terms, B-1
Transfer vector, 2-7
Typing errors, 3-4

Unresolved global symbol
references, 3-5

Variable storage, 2-6
Vector, relocatable, 2-6

Index-2

READER'S COMMENTS

Linking Loader
XVM Utility Manual
DEC-XV-ULLUA-A-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer int.erested in computer concepts and capabilities

Name Date __________________________ _

Organization __ __

Street __ __

City ____________________________ S ta te _____________ Zip Code ______________ _

or
Country

If you require a written reply, please check here. o

---Fold flere--

-- Do Not Tear - Fold Here and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PER\IIT '-0 33

MA Y'-ARD. \lASS

digital equipment corporation

~"'NTEO IN u.s.A.

