
· MACRO XVM ASSEMBLER
LANGUAGE MANUAL

DEC-XV-LMALA-A-D

MACRO XVM ASSEMBLER
LANGUAGE MANUAL

DEC-XV-LMALA-A-D

digital equipment corporation · maynard. massachusetts

First Printing, December, 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

copyright~1975 by Digital Equipment Corporation, Maynard, Mass.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-IO
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

MASSBUS
OMNIBUS
OSi8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-II

1/76-15

PREFACE

CHAPTER 1

1.1
1.2
1.3

CHAPTER 2

2.1
2.1.1
2.1. 2
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.3.1
2.3.2
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
2.6.1
2.6.2
2.6.3
2.6.4

CHAPTER 3

3.1
3.1.1
3.1. 2
3.1. 3
3.2
3.2.1

3.2.2

CONTENTS

INTRODUCTION

MACRO XVM LANGUAGE
HARDWARE REQUIREMENTS
ASSEMBLER PROCESSING

ASSEMBLY LANGUAGE ELEMENTS

PROGRAM STATEMENTS
Basic Statement Format
Direct Assignment Statement

SYMBOLS
Evaluation of Symbols and Globals
Special Symbols
Memory Referencing Instruction Format
Variables
Setting Storage Locations to Zero
Redefining the Value of a Symbol
Forward Reference
Undefined Symbols

NUMBERS
Integer Values
Expressions

ADDRESS ASSIGNMENTS
Referencing the Location Counter
Indirect Addressing
Indexed Addressing
Literals

STATEMENT FIELDS
Label Field
Operation Field
Address Field
Comments Field

STATEMENT EVALUATION
Numbers
Word Evaluation
Word Evaluation of the Special Cases
Assembler Priority List

PSEUDO OPERATIONS

Page

ix

1-1
1-2
1-2

2-1
2-1
2-3
2-3
2-4
2-6
2-6
2-7
2-7
2-8
2-9
2-10
2-10
2-11
2-12
2-13
2-14
2-14
2-15
2-16
2-17
2-17
2-20
2-21
2-23
2-24
2-24
2-25
2-28
2-29

LISTING CONTROL PSEUDO-OPERATIONS 3-3
Program Segment Identification (.TITLE) 3-3
Listing Control (.EJECT) 3-3
Listing Output Control (.NOLST and .LST) 3-4

OBJECT PROGRAM OUTPUT PSEUDO-OPERATIONS 3-4
Absolute Format (.ABSP and .ABS) (Not 3-4
available on XVM/RSX)
Full Binary Format (.FULL and .FULIP) (Not 3-6
available in XVM/ RSX)

iii

3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4

3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

3.16
3.17
3.18

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
4.6
4.7

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.5
5.6

Contents (Cant)

Relocation Mode (.EBREL and .DBREL)
TEXT HANDLING PSEUDO OPERATIONS

lOPS ASCII Packed Format (. ASCII)
Trimmed Six-Bit Format (.SIXBT)
.ASCII and .SIXBT Statement Syntax
Text Delimiter
Non-Printing Characters

MACRO DEFINITION PSEUDO-OPERATIONS (.DEFIN,
.ETC, and .ENDM)
COMMON BLOCK PSEUDO-OPERATIONS

Common Block Definition (.CBD)
Common Block Definition--Relative (.CBDR)
Common Block Initialization Start (.CBS)
Common Block Initialization Constant (.CBC)
Common Block Initialization End (.CBE)

CONDITIONAL ASSEMBLY (.IFxxx and .ENDC)
LOCAL SYMBOLS (.LOCAL AND .NDLOC)
LITERAL ORIGIN (.LTORG)
SETTING THE LOCATION COUNTER (.LOC)
RADIX CONTROL (.OCT and .DEC)
RESERVING BLOCKS OF STORAGE (.BLOCK)
END OF PROGRAM (.END)
END OF PROGRAM SEGMENT (.EOT)
GLOBAL SYMBOL DECLARATION (.GLOBL)
REQUESTING AN I/O DEVICE HANDLER .IODEV
(Not supported in XVM/RSX)
DESIGNATING A SYMBOLIC ADDRESS (.DSA)
REPEAT OBJECT CODE (.REPT)
REQUEST PROGRAM SIZE (.SIZE)

MACROS

DEFINING A MACRO
MACRO BODY
MACRO CALLS

Argument Delimiters
Created Symbols
Concatenation

NESTING OF MACROS
REDEFINITION OF MACROS
MACRO CALLS WITHIN MACRO DEFINITIONS
RECURSIVE CALLS

OPERATING PROCEDURES

INTRODUCTION
CALLING PROCEDURE

XVM/DOS
RSX/XVM

GENERAL COMMAND CHARACTERS
COMMAND STRING

Program File Name
Options
Multiple Filename Commands
Examples of Commands for Segmented Programs

ASSEMBLY LISTINGS
SYMBOL TABLE OUTPUT

iv

Page

3-7
3-8
3-9
3-9
3-9
3-9
3-10
3-11

3-11
3-11
3-12
3-13
3-14
3-14
3-15
3-17
3-20
3-21
3-21
3-22
3-23
3-24
3-24
3-26

3-26
3-26
3-28

4-2
4-3
4-4
4-6
4-7
4-8
4-17
4-18
4-19
4-20

5-1
5-1
5-1
5-1
5-2
5-3
5-3
5-4
5-7
5-10
5-13
5-14

5.7
5.7.1
5.7.2
5.8
5.9

5.9.1
5.9.2
5.9.3
5.10

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

INDEX

Contents (Cont)

RUNNING INSTRUCTIONS
Paper Tape Input Only
Cross-Reference Output

PROGRAM RELOCATION
SYSTEM ERROR CONDITIONS AND RECOVERY
PROCEDURES

XVM!OOS and BOSS XVM
XVM/RSX
Restart Control Entries (DOS only)

ERROR DETECTION BY THE ASSEMBLER

CHARACTER SET

PERMANENT SYMBOL TABLE

MACRO CHARACTER INTERPRETATION

SUMMARY OF MACRO XVM PSEUOO-OPS

Page

5-17
5-17
5-18
5-19
5-20

5-20
5-21
5-21
5-21

A-1

B-1

C-1

D-1

SOURCE LISTING OF THE ABSOLUTE BINARY LOADER E-1

Index-l

v

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in­

cluding the latest version available. Within this manual, other XVM

manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL

DDT XVM UTILITY MANUAL

EDIT/EDITVP/EDITVT XVM UTILITY MANUAL

8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL

MACII XVM ASSEMBLER LANGUAGE MANUAL

MACRO XVM ASSEMBLER LANGUAGE MANUAL

MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VPl5A XVM GRAPHICS SOFTWARE MANUAL

VTl5 XVM GRAPHICS SOFTWARE MANUAL

XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READER'S GUIDE AND
MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS VIA SYSTEM INSTALLATION GUIDE

XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

vii

DEC-XV-OBUAA-A-D

DEC-XV-UCHNA-A-D

DEC-XV-UDDTA-A-D

DEC-XV-UETUA-A-D

DEC-XV-UTRNA-A-D

DEC-XV-LFLGA-A-D

DEC-XV-LF4MA-A-D

DEC-XV-LF4EA-A-D

DEC-XV-ULLUA-A-D

DEC-XV-LMLAA-A-D

DEC-XV-LMALA-A-D

DEC-XV-UMTUA-A-D

DEC-XV-UPUMA-A-D

DEC-XV-UPPUA-A-D

DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A-D

DEC-XV-GVTAA-A-D

DEC-XV-ODKBA-A-D

DEC-XV-ODGIA-A-D

DEC-XV-ODSAA-A-D

DEC-XV-ODMAA-A-D

DEC-XV-ODSIA-A-D

DEC-XV-IRSMA-A-D

DEC-XV-XUSMA-A-D

PREFACE

The DIGITAL XVM (XVM) MACRO Assembler program, MACRO XVM, provides the

user with the symbolic programming capabilities of an assembler plus

the added compiler capabilities of a many-for-one macro instruction

generator. This manual describes the syntax, application and operations

performed by the MACRO X"VrJ! assembler.

In the preparation of this manual it was assumed that the reader was

familiar with the basic XVM symbolic instruction set.

The MACRO XVM program may be operated in:

a. Disk Operating System (XVM/DOS)

b. Batch Operating Software System, BOSS, a component of XVM/DOS

c. XVM/RSX Software System

It is assumed in this manual that the reader is familiar with the manual

describing the software system under which MACRO is to be used.

The manuals involved are:

a. XVM/DOS Users Manual

b. BOSS XVM Users Manual

c. XVM/RSX System Manual

Differences in the use of MACRO in the available monitor systems are

described, where applicable, in this manual.

ix

1.1 MACRO XVM LANGUAGE

CHAPTER 1

INTRODUCTION

MACRO is a basic XVM symbolic assembler language which makes machine

language programming on the XVM easier, faster and more efficient. It

permits the programmer to use mnemonic symbols to represent instruction

operation codes, locations, and numeric quantities. By using symbols

to identify instructions and data in his program, the programmer can

easily refer to any point in his program, without knowing actual machine

locations.

~he standard output of the Assembler is a relocatable binary object

program that can be loaded for debugging or execution by the Linking

Loader. MACRO prepares the object program for relocation, and the

Linking Loader, CHAIN or Task Builder, CHAIN (nos), or Task Builder

(RSX) provides relocation and sets up linkages to external subroutines.

Optionally, the binary program may be output either with absolute

addresses (non-relocatable) or in the full binary mode (see Chapter 3

for a description of the binary output modes) .

The programmer directs the Assembler processing by using a powerful set

of pseudo-operation (pseudo-op) instructions. These pseudo-ops are

used to set the radix for numerical interpretation by the Assembler,

to reserve blocks of storage locations, to repeat object code, to

handle strings of text characters in 7-bit ASCII code or a special

6-bit code, to assemble certain coding elements if specific con~itions

are met, and to perform other functions which are explained in detail

in Chapter 3.

The most advanced feature of the Assembler is its powerful macro instruc­

tion generator. This facility permits easy handling of recurring in­

struction sequences, changing only the arguments. Programmers can use

macro instructions to create new language elements, adapting the Assem­

bler to their specific programming applications. Macro instructions

may be recursively called up to three levels, nested to any level,

limited only by available memory, and redefined within the program.

The technique of defining and calling macro instructions is discussed

in Chapter 4.

1-1

Introduction

An output listing, showing both the programmer's source code and the

object program produced by the Assembler, is printed if desired. This

listing may include all the symbols used by the programmer with their

assigned values. If assembly errors are detected, erroneous lines are

marked with specific alphabetic error codes, which may be interpreted

by referring to the error list in Chapter 5 of this manual.

Operating procedures for the MACRO XVM assembler are described in
* detail in Chapter 5.

1.2 HARDWARE REQUIREMENTS

The MACRO XVM assembler program may be run in any configuration which

meets the minimum hardware requirements for the following XVM software

systems:

a. Disk Operating System (XVtJl/DOS)

b. Batch Operating Software System (BOSS XVM)

c. Resource Sharing Executive (XVM/RSX)

1.3 ASSEMBLER PROCESSING

The Assembler processes source programs in either a two-pass or three­

pass operation. In the two-pass assembly operation the source program

is read twice, with the object program and printed listed (both op­

tional) being produced during the second pass. During PASS I, the

locations to be assigned the program symbols are resolved and a

symbol table is constructed by the Assembler. PASS 2 uses the infor­

mation computed during PASS 1 to produce the final object program.

In an optional three-pass assembly operation, PASS 2 calls in PASS 3,

which performs a cross referencing operation during which a listing

is produced that contains: (a) all user symbols, (b) where each

symbol is defined, and (c) the number of each program line in which

a symbol is referenced. On completion of its operation, PASS 3 calls

the PASS 1 and PASS 2 portions of the assembler program back into

core for further assembly operations.

* These procedures are also described in the XVM/DOS Keyboard Command
Guide and in the On-Line Task Development section of the XVM/RSX
SySt'em Manual.

1-2

Introduction

The standard object code produced by the Assembler is in a relocatable

format which is acceptable to the Linking Loader, CPAI~, PATCH and

TKB Utility programs. Relocatable programs that are assembled sepa­

rately and use global symbols* where applicable, can be combined by

the Linking Loader, CPAIN, and TKB into an executable object program.

MACRO XVM reserves one additional word in a program for every external

symbol**. This additional word is used as a pointer (called a transfer

vector) to the actual data word in another program. The Linking Loader

CHAIN or task builder sets up these transfer vectors when the programs

are loaded with the actual address of the global symbol.

Some of the advantages of having programs in relocatable format are as

follows:

*
**

a. Reassembly of one program, which at object time was linked with

other programs, does not necessitate a reassembly of the en­

tire system.

b. Library routines (in relocatable object code) can be requested

from the system device or user library device.

c. Only global symbol definitions must be unique in a group of

programs that operate together.

Symbols which are referenced in one program and defined in another.

Symbols which are referenced in the program currently being assembled
but which are defined in another program.

1-3

CHAPTER 2

ASSEMBLY LANGUAGE ELEMENTS

2.1 PROGRAM STATEMENTS

One or more statements may be written on a line of up to 75 characters

where the last character is a carriage-return. Since the carriage

return is a non-printing character, it is graphically represented as./

in this manual, e.g.,

STATEMENT ..J

Several statements may be written on a single line, separated by semi­

colons

STATEMENT; STATEMENT; STATEMENT./

Only the last statement may have a comments field, since semicolons

are allowed in and do not delimit comments. Also, macro calls (a type

of statement described in a later chapter) should not appear in a multi­

statement line since they cause subsequent statements to be ignored.

Normally, a single statement must fit on one line. The exception to

this rule is a macro call whose arguments may be continued on a subse­

quent line. This is described in the chapter on macros.

2.1.1 Basic Statement Format

A basic statement may contain up to four fields that are separated by

a space, spaces, or a tab character. These four fields are the label

(or tag) field, the operation field, the address field, and the com­

ments field. Because the space and tab characters are not printed, the

space is represented by~, and the tab by ~ in this manual. Tabs are

set 8 spaces apart on DEC-supplied teleprinter machines, and are used

to line up the fields in columns in the source program listing.

This is the basic statement format:

LABEL ~ OPERATION --I ADDRESS ~ /COMMENTS ..J

2-1

Assembly Language Elements

where each field is delimited by a tab or space, and each statement is

terminated by a semicolon or carriage-return. The comments field is

preceded by a tab (or space) and a slash (/).

Note that a combination of a space and a tab will be interpreted by the

Assembler as two field delimiters.

Example:

TAG

TAG

-I OP ~ -I ADR -./}both are

~ -I OP -I ADR..-/ incorrect

These errors will be flagged by the assembler, but will not show on

the listing because the space is hidden by the tab.

A MACRO statement may have an entry in each of the four fields, or

three, or two, or only one field. The following forms are acceptable

(where the character(s) indicates one or more of the preceding char-

acter) :

TAG .J

TAG -l OP~
TAG -l OP -I ADDR~
TAG -l OP -l ADDR~ (s) /comments.~

TAG -l OP ~ (s) / comments ~

TAG -I -I ADDR ~

TAG -l -l ADDR ~ (s) /comments .J

TAG -I (s) /comments ~

-I OP~
-l OP -l ADDR~
-l OP -l ADDR -I (s) /comments ~

-I OP -l (s) / comments ~

-I -I ADDR .-/

-I -l ADDR -I (s) /comments ~

/comments ~
-I (s) /comments ~

A label (or tag) is a symbolic address created by the programmer to

identify the statement. When a label is processed by the Assembler,

it is said to be defined. A label can be defined only once. The oper­

ation code field may contain a machine mnemonic instruction code, a

pseudo-op code, a macro name, a number, or a symbol. The address field

2-2

Assembly Language Elements

may contain a symbol, number, or expression which is evaluated by the

assembler to form the address portion of a machine instruction. In

some pseudo-operations, and in macro instructions, this field is used

for other purposes, as will be explained in this manual. Comments are

usually short explanatory notes which the programmer adds to a state­

ment as an aid in analysis and debugging. Comments do not affect the

object program or assembly processing. They are merely printed in the

program listing. Comments must be preceded by a slash (/). The slash

(/) may be the first character in a line or may be preceded by:

a. Space (L...I).

b. Tab (-l)
c. Semicolon (;)

2.1.2 Direct Assignment Statement

The Direct Assignment Statement causes no object code to be generated

by the assembler, but rather equates a value to a symbol at assembly

time. The format of this statement is:

symbol=expression / comments

The symbol is the symbolic name specified to receive the value of the

expression. The expression is any legal combination of symbols and/or

constants connected by operators as described in Section 2.3.2. ~

ments are optional, as described in Section 2.1.1 • .

The direct assignment statement is useful for assigning a symbolic

name to a constant and controlling conditional assembly. These features

are explained in detail later on. Unlike labels defined in basic state­

ments, which must be defined only once, the symhol defined in a direct

assignment may be redefined at will.

2.2 SYMBOLS

The programmer creates symbols for use in statements to represent

addresses, operation codes and numeric values. A symbol contains one

to six characters from the following set:

The letters A through Z

The digits 0 through 9

Two special characters, period (.) and the percent sign (%).

2-3

Assembly Language Elements

The fir s t character of a symbol must be a letter, a period, or percent

sign. A period may not be used alone as a symbol. The letter 'X' alone

may not be a symbol. ('X' and period alone have a special meaning to

the Assembler, as explained later.)

The following symbols are legal:

MARKI

A%

P9.3

.. 1234

%50.99

I NPUT

.A

• %

The following symbols are illegal:

TAG: 1

5ABe

X

is not a legal symbol character.

First character may not be a digit.

Letter 'X' alone is illegal.

, alone is illegal as a symbol.

Only the first six characters of a symbol are meaningful to the Assem­

bler, but the programmer may use more for his own information. If he

writes,

SYMBOL 1

SYMBOL2

SYMBOL3

as the symbolic labels on three different statements in his program,

the Assembler will recognize only SYMBOL and will print "M" error flags

on the lines containing SYMBOL 1 , SYMBOL2 and SYMB OL 3 . ~o the Assembler

they are duplicates of SYMBOL. Note that " M" errors are not p roduced

if the duplicate symbols appear in direct assignment statements.

2.2.1 Evaluation of Symbols and Globals

When the Assembler encounters a symbol during processing of a source

language statement, it evaluates the symbol by referring to two tables:

the user's symbol table and the permanent symbol table. The user's

symbol table contains all symbols defined by the user. 'T'he user defines

symbols by using them as labels, as variables, as macro names and

global s , and by direct assignment statements. A label is defined when

first used , and canno t be redefined. (When a label is defined by the

user, it is given the current value of the location counter, as will

be explained later in this chapter.)

2-4

Assembly Language Elements

All permanently defined system symbols (excluding the index register

symbol, X), including system macros (except for XVM/RSX) and all Assem­

bler pseudo-instructions use a period (.) as their first character.

The Assembler also has, in its permanent symbol table, definitions of

the symbols for all of the XVM memory reference instructions, operate

instructions, the basic EAE instructions, and some input/output trans-

fer instructions.

tions.)

(See Appendix B for a complete list of these instruc-

XVM instruction mnemonic symbols may be used in the operation field of

a statement without prior definition by the user.

Example:

LAC is a symbol whose appearance in the

operation field of a statement causes the

Assembler to treat it as an op-code rather

than a symbolic aCl.dress. It has a value

of 200000 8 which is taken from the opera­

tion code definition in the permanent

symbol table.

The user can use instruction mnemonics or the pseudo-instruction mne­

monics code as symbol labels. For example,

DZM -l DZML...IY"/

where the label DZM is entered in the symbol table and is given the

current value of the location counter, and the op-code DZM is given the

value 140000 from the permanent symbol table. The user must be careful,

however, in using these dual purpose (field dependent) symbols. Sym­

bols in the operation field are interpreted as either instruction codes

or pseudo-ops, not as symbolic labels, if they are in the permanent

symbol table. Macro names cannot also be defined as labels or symbols

by the user. In the following example, several symbols with values

have been entered in the user's symbol table and the permanent symbol

table. The sample coding shows how the Assembler uses these tables to

form object program storage wor0s.

2-5

Assembly Language Elements

User Symbol Table Permanent Symbol Table

Symbol Value Symbol Value

TAGl 100 LAC 200000

TAG 2 200 DAC 040000

DAC 300 JMP 600000

X 010000

The following statements generate the following code:

Statement Code

TAG1 -1 DAC -1 TAG2 040200

TAG 2 -I LAC -l DAC 200300

DAC -l JMP -l TAG1 600100
-l DAC -I TAG 1, X 050100

-l TAG1 000100

2.2.1.1 Special Symbols - The symbol X is used to denote index register

usage. It is defined in the permanent symbol table as having the value

of 10000. The symbol X cannot be redefined and can only be used in the

address field.

2.2.1.2 Memory Referencing Instruction Format - When operating in page

mode the XVM uses 12 bits for addressing, 1 bit to indicate index reg­

ister usage, 1 bit to indicate indirect addressing, and 4 bits for the

op-code.

10 11 I 2 I 31 4 I 5 6 7 8 9 110 111 112 1 13 I 14 15 H) 1171
~ t [dex

.J
~

Op Code Address

Register Bit

Addressing Indirect

PAGE MODE MEMORY REFERENCE INSTRUCTIOr-,l

When operating in bank mode on the XVM, 13 bits are used for address­

ing, there is no index register bit, 1 bit is for indirect addressing,

and 4 bits are for the op-code.

2-6

Assembly Language Elements

I 0 11 I 2 I 3 I 4 5 6 7 8 9 10 11 1121 13 14 15 16 17
~ L\ ~ ______________ J

Op Code Address

Indirect Addressing

BANK MODE MEMORY REFERENCE INSTRUCTION

2.2.2 Variables

A variable is a symbol that is defined in the user's symbol table by

using it in an address field or operation field with the number sign

(#). Symbols with the # may appear more than once in a program (see

items 1, 3, 4, and 5 of example given below). A variable reserves a

single storage word which may be referenced by using the symbol at

other points in the program with or without the #. If the variable

duplicates a user-defined label, it is multiply defined and is flagged

as an error during assembly.

Variables are assigned memory locations at the end of the program.

The initial contents of variable locations are unspecified. The # can

appear any place within the symbol character string as in the example.

Example:

.i.

. 1. ,/1::: Ii:)

2.2.3 Setting Storage Locations to Zero

Storage words can be set to zero as follows:

A -I .O~ -I O~ -I 0)

In this way, three words are set to zero starting at A.

2-7

Assembly Language Elements

2.2.4 Redefining the Value of a Symbol

The programmer may define a symbol directly in the user's symbol table

by means of a direct assignment statement written in the form:

SYMBOL=n -..J
or

SYM1=SYM2 -~

Where n is any number or expression. There should be no spaces between

the symbol and the equal sign, or between the equal sign and the

assigned value, or symhol. The Assembler enters the symbol in the

symbol table, along with the assigned value. Symbols entered in this way

way may be redefined. These are legal direct assignment statements:

XX=28;A=1;B=2 ~

A symbol can also be assigned a symbolic value; e.g., A=4, B=A, or

SET=IS ZL...ISWITCH :../

In the previous example, the symbol B is given the value 4, and when

the symbol SET is detected during assembly the object code for the

instruction ISZL...ISWITCH will be generated. This type of direct assign­

ment cannot be used in a relocatable program. Direct assignment state­

ments do not generate storage words in the object program.

In general, it is good programming practice to define symbols before

using them in statements that geLerate storage words. ~he assembler

will interpret the following sequence correctly.

, J;.' >",

::.1

.... . ,.:

2-8

Assembly Language Elements

2.2.5 Forward Reference

A symbol may be defined after use. For example,

This is called a forward reference, and is resolved properly in PASS 2.

When first encountered in PASS 1, the LAC Y statement is incomplete

because Y is not yet defined. Later in PASS 1, Y is given the value 1.

In PASS 2, the Assembler finds that Y=l in the symbol table, and forms

the complete storage word.

Since basic assembly operations are performed in two passes, only one­

step forward references are allowed. The following example is illegal

because the symbol Y is not defined during PASS 2.

,"- ," , "
'.) t.) ;,) l).... r': .. '. j I,) I • ...' I.,,; '.) (.:;

," c. ". ,",:. ,',
' .. I!.) .)i.,iI, !i ... '

Forward references to internal .GLOBL symbols (see Paragraph 3.9) are

illegal because the internal globals are output at the beginning of

PASS 2 for library searching. Globals must be defined during PASS 1,

otherwise they will be flagged. The following example is illegal:

2-9

Assembly Language Elements

2.2.6 Undefined Symbols

If any symbols, except global symbols, remain undefined at the end of

PASS 1 of assembly, they are automatically defined as the addresses of

successive registers following the block reserved for variables at the

end of the program. All statements that referenced the undefined symbol

are flagged as undefined. One memory location is reserved for each un­

defined symbol with the initial contents of the reserved location being

unspecified.

, ,·'< t: j
O()() ./, ,_. . . . <><:: _ . .' (1 .:!

2.3 NUMBERS

The initial radix (base) used in all number interpretation by the

Assembler is octal (base 8). To allow the user to express decimal

values and then restore to octal values, two radix-setting pseudo-ops

(.OCT and .DEC) are provided. These pseudo-ops, described in Chapter

3, must be coded in the operation field of a statement. If any other

information is written in the same statement, the Assembler treats the

other information as a comment and flags it as a questionable line.

All numbers are decoded in the current radix until a new radix control

pseudo-op is encountered. The programmer may change the radix at any

point in the program.

Examples:

:::;

:i. (>
.:.1

00006 R 000 033 A- --::.

; : 1 I I ! ' j l!! ;,",

2-10

Assembly Language Elements

2.3.1 Integer Values

An integer is a string of digits, with or without a leading sign.

Negative numbers are represented in two's complement form. The range

of integers is as follows:

Unsigned

Signed

o -+ 262143 10
o -+ 131071

10
o -+ -131072

10

(777777
8

)

(377777
8

)

(400000
8

)

or

or

or

An octal integer* is a string of digits (0-7), signed or unsigned. If

a non-octal digit (8 or 9) is encountered the string of digits will be

assembled as if the decimal radix were in effect and it will be flagged

as a possible error.

Example:

)'

~3 I :? C :::: () () () () ./}

00000 R 00/ 3 03 A
, ucr

...
.... 1

A decimal integer** is a string of digits (0-9), signed or unsigned.

Examples:
:. L·;::: t::.

;'., j

*

. ::~

Preceded at some point by an .OCT pseudo-op and is also the initial
assumption if no radix control pseudo-op is encountered.

** Preceded at some point by a .DEC pseudo-op.

2-11

Assembly Language Elements

2.3.2 Expressions

Expressions are strings of symbols and numbers separated by arithmetic

or Boolean operators. Expressions represent unsigned numeric values
18 ranging from a to 2 -1. All arithmetic is performed in unsigned inte-

ger arithmetic (two's complement), modulo 218. Division by zero is

regarded as division by one and results in the original d i v idend.

Fractional remainders are ignored; this condition is not regarded as

an error. The value of an expression is calculated by substituting

the numeric values for each symbol of the expression and performing

the specified operations.

The following are the allowable operators to be used with expressions:

Character

Name Symbol Function

Plus + Addition (two's complement)

Minus - Subtraction (convert to two's
complement and add)

Asterisk * Multiplication (unsigned)

Slash / Division (unsigned)

Ampersand & Logical AND

Exclamation ! Inclusive OR
point

Back slash "- Exclusive OR Boolean

Comma , Exclusive OR

Operations are performed from left to right (i.e., in the order in which

they are encountered). For example, the assembly language statement

A+B*C+D/E-F*G is equivalent to the following algebraic expression

(((((A+B)*C)+D)/E)-F)*G.

Examples:

Assume the following symbol values:

Symbol Value (Octal) Comments

A 000002

B 000010

C 000003

D 000005

X 010000 Index Register Value

2-12

Assembly Language Elements

The following expressions to be evaluated:

Expression Evaluation (Octal)

A+B-C,X 010007

A/B+A*C 000006

B/A-2*A-1+X 010003

A & B 000000

C+A&D 000005

B*D/A 000024

B*C/A*D 000074

A,X+D,X 010007

Comments

Index Register Usage

(The remainder of A/B
is lost)

Index Register Usage

Index Register Usage
Error

In the last example the expression is evaluated as follows:

Sequence of arithmetic

a. A,X = 000002 XORed with 010000 = 010002

b. A, X+D 010002 + 000005 = 010007

c. A,X+D,X = 010007 XORed with 010000 000007

Note that arithmetic produces 000007 yet the value given in the example

is 010007. Regardless of how the index register is used in the address

field, the index register bit will always be turned on by the Assembler.

In the sequence of address arithmetic above, the line would be flagged

with an X because of the illegal use of the index register symbol (x).

Using the symbol X to denote index register usage causes the following

restrictions:

a. X cannot appear in the TAG field X -I LAC -I A

b. X cannot be used in a .DSA statement -I .DSA -I A,X

c. X can be used only once in an expres- -I LAC -I A,X+D,X
sion (see 2.4.3)

2.4 ADDRESS ASSIGNMENTS

As source program statements are processed, the Assembler assigns con­

secutive memory locations to the storage words of the object program.

This is done by reference to the location counter, which is initially

set to zero and is incremented by one each time a storage word is formed

2-13

Assembly Language Elements

in the object program. Some statements, such as machine instructions,

cause only one storage word to be generated, incrementing the location

counter by one. Other statements, such as those used to enter data or

text, or to reserve blocks of storage words, cause the location counter

to be incremented by the number of storage words generated.

2.4.1 Referencing the Location Counter

The programmer may directly reference the location counter by using the

symbol period (.) in the address field. He can write,

-l JMP -1

which will cause the program to jump to the storage word whose address

was previously assigned by the location counter. The location counter

may be set to another value by using the .LOC pseudo-op, described in

Chapter 3.

2.4.2 Indirect Addressing

To specify an indirect address, which may be used in memory reference

instructions, the programmer writes an asterisk immediately following

the operation field symbol. This sets the defer bit (bit 4) of the

storage word.

If an asterisk suffixes either a non-memory reference instruction, or

appears with a symbol in the address field, an error will result.

Two examples of legal indirect addressing follow.

-l TAD* -l A

-1 LAC* ..j B

The following examples are illegal.

-l CLA*

-l LAW* 17777

Indirect addressing may not be specified

in non-memory reference instructions.

2-14

Assembly Language Elements

2.4.3 Indexed Addressing

To specify indexed addressing an X is used with an operator directly

after the address. No spaces or tabs may appear before the operator.

The Assembler will perform whatever operation is specified with the

index register symbol, and then continue to evaluate the expression.

At completion of the expression evaluation, if the index bit (bit 5)

is not on and the location counter is pointing to page a of any bank,

the line is flagged with a B for bank error because the address (aside

from indexing modifications) must have been greater than 77778 (i.e.,

it pointed to another page) . The standard code used to indicate index­

ing is:

-I LAC -I A, X

The indexed addressing operation is illustrated in the following

example.

,.::.

" .~

"', T ', I" ::: .!.f)()() 3

o()() ()() F:~ ::'-! · ... i l.) ;,) I,..' /.~

o () () () J F: () :.:.:j 0 0 (. ~:.:.; : .~

:!. () 0 () :I. i ' :: ::::::f. () 0 () () (::.~

:L 00 () ,:.:.:: (": :? J () 0 0 0 ('i

t.-

Expression evaluation where A

D = 010001, X = 010000

; / \.
, • .. ,"11 . ,"

,.\;" "

.' L. ' . .i ~.;

:, .. 1- :

000000, B

ISA ME AS 'LAC 0,1

-. '\ ... \ :."
',",'

000001, C 010000,

NOTE: (9 = exclusive OR

Location Address Field

a X

1 A,X+1,7-1

2 B+X

Discussion

The value of X is added to O.
Absence of an operator always
implies addition.

000000 @ 010000
010000 B 000001
010001 (9 000007
010006 - 000001

000001 @ 010000

2-15

010000
010001
010006
010005

010001

Assembly Language Elements

Location Address Field

10000 X,D

10001 C,X

2.4.4 Literals

Discussion

010000 e 010001 = 000001

The index bit has been
turned off during expres­
sion evaluation. Because
the location counter (10000)
is pointing to Page 1, this
line is not flagged, and the
index register bit is turned
on.

010000 e 010000 = (JOOOOO

Same as example at Location
10000.

Symbolic data references in the operation and address fields may be

replaced with direct representation of the data enclosed in parentheses.

This inserted data is called a literal. The Assembler sets up the

address link, so one less statement is needed in the source program.

The following examples show how literals may be used, and their equiv­

alent statements. The information contained within the parentheses,

whether a number, symbol, expression, or machine instruction, is

assembled and assigned consecutive memory locations after the locations

used by the program, unless a .LTORG pseudo-instruction appears in the

program. (See section 3.2.5.) The address of the generated word will

appear in the statement that referenced the literal.

Duplicate literals, completely defined when scanned in the source pro­

gram during PASS 1, are stored only once so that many uses of the same

literal in a given program result in the allocation of only one mem­

ory location for that literal. Nested literals, that is, literals

within literals, are illegal and will be flagged as a literal (L) error.

The following is an example of a nested literal.

Usage of Literal Equivalent Statements

-lADD~ONE
One ..,1

-; LAC~TAGAD

TAGAD-l TAG
-l LAC ~(TAG)

-l LAC ~(DAC -f TAG) -l LAC ~ INST
INST -l DAC -l TAG

.., LAC ~(JMP -4 . +2) HERE -4 LAC ~ INST
INST -l JMP ~ HERE+2

2-16

Assembly Language Elements

The following sample program illustrates how the Assembler handles

literals.

(:)
.. "
;

10

00000 R 2000 10 R
0 0 001 R 040100 A
00002 R 2 0001 J R
00003 R 200012 R
00004 R 200013 R
00 005 R 200013 R

() ()()O() () ,",

00006 R 200014 R
00007 R 2 0 0 01 5 R

()()()O(>o ('I

000 10 R 00 010 0 A t L
000 1 1 R 600 007 R *L
00012 R 0 00000 R ~L

000 14 R 6 0 00 0 0 A *1...
00015 R 04 000 7 R *l.

51ZE=00017 NO ERROR LINES

2.5 STATEMENT FIELDS

T()C:!.
I!...i

L. (:-1 C
Dr,., c·

Li':>IC
I... ,-",C
l. .. tlC

L.t·le
!... (:)C
,[ND

(.1.00)
'! 00

': ...ii'li'" "i.')[;1:-
0:: ,..ii 'iF Tr,u: ... ')

,; ...ii,·j? 0::-
.:: o ;~~',c D:':')C)

The following paragraphs provide a detailed explanation of statement

fields, including how symbols and numbers may be used in each field.

2.5.1 Label Field

If the user wishes to assign a symbolic label to a statement in order

to facilitate references to the storage word generated by the Assembler,

he may do so by beginning the source statement with any desired symbol.

The symbol must not duplicate a system or user defined macro symbol and

must be terminated by a space or tab, or a statement terminating semi­

colon or carriage-return.

Examples :

TAG-/ fl; TAG2 -/ fl ; TAG3 -/ fl; TAG4-/ fl

A new logical line starts after each semicolon. This line is equivalent

to

TAG1 -I 0-./

TAG2 -/ 0..J
TAG3 -I O..J
TAG4 -/ 0..J

2-17

Assembly Language Elements

If there were a tab or a space after the semicolon the symbol would be

evaluated as an operation instead of a label. The sequence:

TAG 1-1 0; -I TAG2;TAG3 -I 0; -I TAG4

is evaluated as follows:

TAGl -I 0-/

-I TAG2 -/

TAG 3 -I 0.)

-I TAG4../

When writing numbers separated by semicolons, the first number must be

preceded by a tab (-I) or a space (1-1). The sequence

TABLEI-Il;2;3;4;5

produces symbol (S) errors because the first symbol of a tag cannot be

numeric. The correct way to write the table sequence is as follows:

Symbols used as labels are defined in the symbol table with a numerical

value equal to the present value of the location counter. A label is

defined only once. If it was previously defined by the user, the cur­

rent definition of the symbol will be flagged in error as a multiple

definition. All references to a multiply defined symbol will be con­

verted to the first value encountered by the Assembler.

"L i...' i ~:.: _r:,
", ;',.-; OOOC R)00(04 R !

:,"5

/!. L, ";' \ .-

>,.-

c:":')

Anything more than a single symbol to the left of the label-field

delimiter is an error; it will be flagged and ignored. The following

statements are illegal.

2-18

TAG+1 -I LAS ..J
LOC*2 -I RAR~

Assembly Language Elements

The line will be flagged with an S for symbol error. The label will

be ignored but the rest of the line will continue to be processed.

The only time that an error tag is not ignored is when the error occu rs

after the sixth character.

The statement:

TAGERROR*hINOP

will be assembled as:

TAG ERR -I NOP

and the line will be printed and flagged with an S .

Redefinition of certain symbols can be accomplished by using direct

assignments; that is, the value of a symbol can be modified. If an

Assembler permanent symbol or user symbol (which was defined by a direct

assignment) is redefined, the value of the symbol can be changed with­

out causing an error me s sage. If a user symbol, which was first de­

fined as a label, is redefined by either a direct assignment or by

using it again in the label field, it will cause an error. Variables

also cannot be redefined by a direct assignment.

Examples :

000 00 R 200003 A
/ i
"',' 00 GO R 04 0 0 03 A

~' ',
I"" ... ~

", ' •• 1

OOJ U~ R 20000 4 A
00 00 3 R 0 4000 ~ A

J ()
l. :I.

000 04 R 0 40 003 R

b I :~':':E: :OO(J()(,

L(:!C
D(:,C

y ", {"
).. 11'; ,.

\.I ,":\L:
F:' ~:::F
,[;j:;

2-19

l~ ')

r:

IER ROR. A LABEL tAN
.,/ i\~ D T ;::-; E ::;~ E: DE:: ~: : I (,! 1 . D
./:H U T (:'1 " i::: (.~ ;"" .. ! r:; :::: ('.: F ..

I DEFIN ED TO TAE VA LUE 'B'
,."" ':::. ('j (.~ 1: :::: :U ;:: r: :~ : j-) ;::: ;::. E:: :: :~ ('j ('; .

Assembly Language Elements

2.5.2 Operation Field

Whether or not a symbol label is associated with the statement, the

operation field must be delimite0 on its left by a space(s) or tab.

If it is not delimited on its left, it will be interpreted as the label

field. The operation field may contain any symbol, number, or expression

~Thich will be evaluated as an 18-bit quantity using unsigned arithmetic

modulo 218. In the operation field, machine instruction op codes and

pseudo-op mnemonic symbols take precedence over identically named user

defined symbols. The operation field must be terminated by one of the

following characters:

-I or L.-I(s)

..) or ;

Examples:

. '~

. ::.' .; :::(, ::) (:

(field delimiters)

(statement delimiters)

.. ;.; .

The asterisk (*) character appended to a memory reference instruction

symbol, in the operation field, causes the defer bit (bit 4) of the

instruction word to be set; that is, the reference will be an indirect

reference. If the asterisk (*) is appended on either a non-memory

reference instruction or any symbol in the ao.dress field, it will cause

an error condition which will be flagged as a symbol error (5-flag).

The asterisk will be ignored and the assembly process will continue.

Examples:

,',
() I ;! 1

where A = 1 and B 2

,',

,C

... i.l! .. ··

j"

.. 1\

However, the asterisk (*) may be used anywhere as a multiplication

operator.

2-20

Examples:

.1.

/

Assembly Language Elements

o () <) c (.1 h: ':. ' t) <) 0 0 <)
00 0 01 G 000 0 00 R

QRU vvuu~ n 200005 R
OU 00003 R 000004 R

.. / I L t .. J:: :t::. __ v

j: .!,.;<
. i' t, ,~ ,

2.5.3 Address Field

The address field, if used in a ~tatement, must be separated from the

operation field by a tab, or space(s). The address field may contain

any symbol, number, or expression which will be evaluated as an 18-bit

quantity using unsigned arithmetis, modulo 2 18 If op code or pseudo-op

code symbols are used in the address field, they must be user defined,

otherwise they will be undefined by the Assembler and will cause an

error message. The address field must be terminated by one of the

following characters:

-I or (s)

...J or ;

Examples:

LA\,] -1

LAW-1

(field delimiters)

(statement delimiters)

ICorrectly assembled as 777777

INO separation from the operation field; assembled

as 757777 since -1 is treated as part of the oper­

ation field.

TAG2 -I DAC -I. +3

-I -I TAG2 /5+3 (s)

The address field may also be terminated by a semicolon or a carriage ­

return.

Examples:

-I JMP -I BEGIN -)

-I TAD -I A; -I DAC -IE -I LAC

In the last example, a tab or space(s) is required after the semicolon

in order to have the Assembler interpret DAC as being the operation

field rather than the label field.

2-21

Assembly Language Elements

In the second line of the preceding example, the address field B is

delimited by a tab. The LAC after the B ~ is ignored and is treated

as a comment; but the line is flagged as questionable because only a

comment field may occur on a line after the address field. If the LAC

had been preceded by a slash (I), the line would have been correct.

When the address field is a relocatable expression, an error condition

may occur. If the program is being assembled to run in page mode, it

could not execute properly if its size exceeded 4K (4096) words because

it would have to load access a memory page or bank boundary. In prac­

tice, the binary loaders restrict the size to 4K-16 (4080) to avoid

loading a program into the first 16 locations in a memory page or bank.

This avoids a possible ambiguity where indirect memory references would

be mistaken for autoincrement register references. Consequently, any

relocatable address field whose value exceeds 4095 (7777 8) is meaningless

in page mode and will be flagged by the Assembler as an error.

There is a similar size restriction for programs being assembled to

operate in bank mode. The Assembler flags in error any relocatable

address field whose value exceeds 8191 (17777
8
). The binary loaders

restrict the size of bank mode program to 8K-16 (8176) words.

When the address field is an absolute expression, an error condition

will exist if the extended memory and page address bits (3, 4, and 5)

do not match the corresponding bits of the address of the page currently

being assembled into.

NOTE

In absolute mode, the page bits do not have to
be equal if the .ABS or .FULL pseudo-ops are used
instead of the .ABSP or .FULLP pseudo-ops.

2-22

Assembly Language Elements

The Linking Loader will not relocate any absolute addresses; thus,

absolute addresses within a relocatable program are relative to that

page in memory in which the program is loaded.

Example:

Assume that the following source line is part of a relocatable program

that was loaded into bank 1 (2000°8 -+ 377778) .

Source Statement Effective Address

-I LAC 300 20300

An exception to the above rule is the auto-index registers, which occupy

locations 108 - 178 in page ° of memory bank O. The hardware will

always ensure that indirect references to 108 - 178 in any page or bank

will access 108 - 178 of bank 0.

2.5.4 Co~ments Field

Co~ments may appear anywhere in a statement. They must begin with a

slash (/) that is immediately preceded by one of the following:

a (s) space(s)

b. -I tab

c. ~ carriage return/line feed (end of previous line)

d. semicolon

Comments are terminated only by a carriage-return or when 74
10

char­

acters have been encountered in a line.

Examples:

...... (s)/THIS IS A COMMENT (rest of line is blank)

TAG 1 -I LAC

/THIS IS A COMMENT

-I RTR /COMMENT ~
-I RTR; -I RTR; /THIS IS A COMMENT

Observe that; -I A/COMMENT ~ is not a comment, but rather an operation

field expression. A line that is completely blank (containing 0 to 75

blanks/spaces) is treated as a comment by the Assembler.

2-23

Assembly Language Elements

A statement is terminated as follows:

.J or; or rest of line is completely blank.

Examples:

-I LAC~
-I DAC (the rest of the line is blank)

-I TAG+3

-I RTR; -I RTR; -I RTR ~

In the last example, the statement-terminating character, which is a

semicolon (;) enables one source line to represent more than one word

of object code. A tab or space is required after the semicolon in order

to have the second and third RTRs interpreted as being in the operation

field and not in the label field.

2.6 STATEMENT EVALUATION

When the Assembler evaluates a statement, it checks for symhols or

numbers in each of the three evaluated fields: label, operation, and

address. (Comment fields are not evaluated.)

2.6.1 Numbers

Numbers are not field dependent. When the Assembler encounters a num­

ber (or expression) in the operation or address fields (numhers are

illegal in the label field), it uses those values to form the storage

word. The following statements are equivalent:

All three statements cause the Assembler to generate a storage word

containing 200010. A statement may consist of a number or expression

which generates a single 18-bit storage word; for example:

-I 23;1-145;1-1357;1-162

2-24

Assembly Language Elements

This group of four statements generates four words interpreted under

the current radix.

2.6.2 Word Evaluation

When the Assembler encounters a symbol in a statement field, it deter­

mines the value of the symbol by reference to the user's symbol table

and the permanent symbol table, according to the priority list shown in

paragraph 2.6.4.

The operation field is scanned for the following special cases:

Mnemonic

LAW

AAe
AXR

AXS

EAE instructions

Operation Field Value

760000

7230 00

73700 0

7250 0 0

64xxx x

If the operation field is not one of the s pecial ca s es, the object word

value is computed as follows:

If assembling for page mode:

(Operation Field +(Address Field & 7777))=Word Value

If assembling for bank mode:

(Operation Field +(Address Field & 17777))=Word Value

If the index register is used anywhere in the address field, the ind e x

register bit is set to one in the wore value. If it is not used, and

you are assembling for page mode then the index register bit is set to

zero in the word value regardless of the address field value.

a. If index register usage is specified, the result of XORing

bit 5 of the location counter and bit 5 of the adcre s s field

value must be non-zero. (Otherwise the address without index

modification was in a different page than the location counte r,

and the line is flagged with a B for bank error) .

2-25

Assembly Language Elernents

Example:

:I.
() () O()

U 1'1../.1.

1 O()O

1 00:1.

~:::;:1 ~.? [: : ; :J. <) () () .

::? :i. () (~~ () :I.

.:.::~ :i. () () 0 :1. '," , .1::,

1 ... tl C
i·i '.:1 F"
, I. .. ue

L.(:·!C:
.;.[i'··lD

The result of statement evaluation has produced the following results:

A,X

B,X

10001

00001

A

B

00001

10001

Note that when index register usage is specified, the index register

bit mayor may not be on. For B,X above, the index register bit was

turned off during statement evaluation. The Assembler turns this bit

on after the word is evaluated, not at statement evaluation time.

At location 10001, the result of XORing bit 5 of A,X and bit 5 of the

location counter is O. This signals the Assembler that the address

reference (A) is in a different page.

*

b. If index register usage is not specified and the program is

not assembled for bank mode*, the result of XORing bit 5 of

the location counter and the address field value must be 0,

otherwise the line is flagged with a B for bank error.

See pseudo-ops .ABS, .ABSP, .FULL, .FULLP, .EBREL, .DBREL.

2-26

Example:

:I.
''') B .~' ..

:-5
.1\
I::'

'" S1 Z E" :I. O:."iO!'

Assembly Language Elements

O OO()()

',/ .. :':~. () 0 0 ()
0 00 000

:I. EHF::G::~: i ... I ;,.iE:'

, () E':~:; F'
L ()C
,LDC

c. The bank bits (3,4) of the address field value in a relocatable

program must never be on. The bank bits are always lost when

the address field value and the operation are combined to form

the object word value.

Example:

:I. j " ,':. 0 () 0 ()() p ~.:.:: ' , 00 () 0 \",
n c

:l.)' ,- ')' ' ''} F;: ...- c+!. ././';:' ,.,
,,',.

J) ' ')'
.. ~' F;: /' i} () <) 0 ;.) !,:'~!

:::.:: () () 0 " F:.: / ·4 0 G ~) 0 (',

;'; O()OOO() (':1 ,!:':i< ,..I
::::: I lE '" ;:'; 000:1. :i LF:F::fJF< !... I NE::;

d. The bank bits of an absolute program must equal the bank b its

of the location counter. If not, the B flag alerts t he pro­

graromer that he is referenc i ng another bank.

Example:

:I.
..• ,
.,',.

4

l. '.J
~::) I Z I::: ::: :::.~ 0 0 () 3

::? I:) O()O
;,:?,OO O()
200() J.

()O ()()O()

2 - 27

~. (! f~~; F:
> I.J,e:

L (,C;

!... ;-:':iC

i.. (o)e

, iii \)

!.
;) ' .',)()J

·(~nO() "

Assembly Language Elements

e. The bank bits of lines 3 and 5 do not match those of the loca­

tion counter, therefore, the lines are flagged.

2.6.3 Word Evaluation of the Special Cases

a. LAW - The operation field value and the address field value

are combined as follows:

Operation Value + (Address Field Value & 17777) Word Value

A validity check is then performed on the address field value

as follows:

Address Field Value & 760000 Validity Bits

If the validity bits are not equal to 760000 or 0, the line

is flagged with an E to signal erroneous results.

b. AAC, AXR, AXS - The operation field value and the address

field value are combined as follows:

Operation Value + (Address Field Value & 000777)

Value

The validity check:

Address Field Value & 777000 Validity Bits

Word

If the validity bits are not equal to 777000 or 0, the line

is flagged with an E to signal erroneous results. The address

field value for this type of instruction cannot be relocated.

The line is flagged with an R if the address field value is

relocatable.

c. EAE class instructions - The operation field value and the

address field value are combined as follows:

Operation Value + Address Field Value Word Value

The validity check:

word value and 640000 = Validity Bits

2-28

Assembly Language Elements

A validity check is then performeo. on the word value. If the

validity bits differ from 640000, the line is flagged with an

E error to signal erroneous results.

I

i::.

1::.

1 1

00000 ~ 77/ 777 A
00001 R 77 7777 A
00002 R 777 /77 A
00003 R 760000 A

() () 0 0 ')' F;.: "? :=,:.; () (I 0 () f:1

00010 K 153 323 A
00011 R 000023 A

I.. (·,ki

L .. t!t,j

.1. / ./..'

T

If numbers are found in the operation and address fields, they are

combined in the same manner as defined symbols. For example,

-I 2 -Is -I /GENERATES 000007

The value of a symbol depends on whether it is in the label field, the

operation field, or the address field. The Assembler attempts to

evaluate each symbol by running down a priority list, depending on the

field, as shown below.

2.6.4 Assembler Priority List

Operation Field

1. Pseudo-op

2. User or System macro
in macro table

3. Direct assignment in
user symbol table

4. Permanent symbol
table

5. User symbol table

6. Undefined

Address Field

1. The indexing symbol, X

2. User symbol table (includ­
ing direct assignments)

3. Undefined

2-29

Assembly Language Elements

This means that if a symbol is used in the address field. it must be

defined in the user's symbol table before the word is formed during

PASS 2; otherwise. it is undefined. (See section 2.2.4)

In the operation field. pseudo-ops names take precedence. Direct

assignments allow the user to redefine machine op codes. as shown in

the example below.

Example:

DPOSIT DAC

System macros may be redefined by user macros. but may not be redefined

as user symbols by direct assignment or by use as statement labels.

The user may use machine instruction codes and pseudo-op codes in the

label field and refer to them later in the address field.

2-30

Cf-1APTER 3

PSEUDO OPERATIONS

The Assembler has definitions in its permanent symbol table of the

symbols for all the XVM memory reference instructions, operate instruc­

tions, the basic EAE instructions, and many commonly used lOT instruc­

tions which may be used in the operation field without prior defini­

tion by the user. Also contained in the permanent symbol table are a

class of symbols called pseudo-operations (pseudo-ops) which, instead

of generating instructions, generate data or airect the Assembler on

how to proceed with the assembly.

By convention, the first character of every pseudo-op symbol is a

period (.). This convention is used in an attempt to prevent the

programmer from inadvertently using, in the operation field, a pseudo­

instruction symbol as one of his own.

The following is a summary of MACRO XVM Pseudo-ops.

Pseudo-op

.ABS

.ABSP

.ASCII

.BLOCK

.CBC

.CBD

.CBDR

.CBE

.CBS

.DBREL

Section

3.2.1}
3.2.1

3.8.1

3.5

3.5.4

3.18

3.19

3.5.5

3.5.3

3.2.3

Function

Object program is output in absolute, blocked,
checksummed format for loading by the Absolute
Pinary Loader. (Neither is supported with
XVM/RSX.)

Input text strings in 7-bit ASC II code, with
the first character serving as delimiter. Octal
codes for non-printing control characters are
enclosed in angle brackets.

Reserves a block of storage words equal to the
expression. If a label is used, it references
the first word in the block.

Initializes a word of a common block to a con-
stant.

Common Block Definition.

Common Block Definition Relative.

End common block initialization section.

Start common block initialization section.

Disable bank mode reloation.

3-1

Pseudo-op Section

.DEC 3.4

.DEFIN 3.16

.DSA 3.11

. EBREL 3.2.3

.EJECT 3.14

.END 3.6

. Ef'JDC 3.13

. EI'''DM 3.16

.EOT 3.7

.ETC 3.16

.FULL) .FULLP
3.2.2

.GLOBL 3.9

.IFxxx 3.13

. IODEV 3.10

.LOC 3.3

. LOCAL 3.2.4

.LST 3.17

.LTORG 3.2.5

.NDLOC 3.2.4

Pseudo Operations

Function

Set prevailing radix to decimal.

Macro definition.

Generates a transfer vector for the specified
symbol.

Enable bank mode reloration .

Skip to head of form on listing device.

Must terminate every source program. The
address field contains the address of the first
instruction to be executed.

Terminates conditional cooing resulting from
.IF statements.

Terminates the body of a macro definition.

Must terminate physical program segments, ex­
cept the last, which is terminaten by .FND.

Used in macro definitions to continue the list
of dummy arguments on succeeding lines.

Produces absolute, unblocked, unchecksummed
binary object programs. Used only for paper
tape output. (Neither supported with YVM/RSX.)

Used to declare all internal and external
symbols which reference other programs.

If a condition is satisfied, the source coding
following the .IF statement and terminating with
an .ENDC statement is assembled.

Specifies .DAT slots and associated I/O handlers
required by this program. (Not supported with
XVM/RSX.)

Sets the location counter to the value of the
expression.

Allows deletion of certain symbols from the user
symbol table.

Continues requested assembly listing output of
source lines. Lines between .NOLST an0 .LST
are not listed.

Allows the user to specifically state where
literals are to be stored.

Terminates deletion of certain symbols from the
user symbol table containen between .LOCAL and
.NDLOC.

3-2

,,-

Pseudo-op Section Function

.NOLST

.OCT

.REPT

.SIXBT

.SIZE

.TITLF.

3.17

3.4

3.12

3.8.2

3.15

3.1

Terminates requested assembly listing output of
source lines of code contained between .NOLST
and .LST.

Sets the prevailing radix to octal. Assumed at
start of every program.

Repeats the object code of the next object code
generating instruction.

Input text strings in 6-bit trimmed ASCII with
first character as delimiter.

Outputs the address of last location plus the one
occupied by the object program.

Causes the assembler to accept characters to be
printed at the top of each page of assembly
listing and in the Table of Contents.

3.1 LISTING CONTROL PSEUDO-OPERATIONS

3.1.1 Program Segment Identification (.TITLE)

The program name (or any text) may be written in a .TITLF. statement

as shown in the following examples. The Assembler will accept up to

5010 characters typed until a carriage return. A form feed is output

to the listing when .TITLE is encountered in the source program. The

text will appear at the top of each form (page) until the next .TITLE

pseudo-op. The .TITLE pseudo-op has no effect on the listing file

name.

-l . TITLE....,NAME OF PROGRAM

-l . TITLE....,NAME OF SUBSECTION IN PROGRAM

If subsections in a program are headed by .TITLE statements, these

can be used to produce a table of contents at the head of the assembly

listing by use of the T option.

3.].2 Listing Control (.EJECT)

Label Field Operation Field Address Field

Not used . EJECT !,-Tot used

When .EJECT is encountered anywhere in the source program, it causes

the listing device that is being used to skip to top-of-form.

3-3

Pseudo Operations

3.1.3 Listing Output Control (.NOLST and .LST)

Label Field Operation Field Address Field

Not used (. NOLST) Not used
.LST

If, while performing an assembly listing operation (L, or N assembly

parameters), the Assembler encounters a .NOLST, the listing operation

will be terminated until a .LST is found. These pseudo-ops are useful

when the user wishes to assemble all of a program, but only needs a

listing of certain modules of the program (e.g., those which may not

yet work properly). All symbols occurring between . t-TOLST and . LST

will appear in the cross reference and symbol table listings when re­

quested (A, V, X, or S assembly parameters) .

3.2 OBJECT PROGRAM OUTPUT PSEUDO-OPERATIONS

The normal object code produced by the Assembler is relocatable binary

which is loaded at run time by the Linking Loader or loaded to build an

executable task by CHAIN or TKB. In addition to relocatable output, the

user may specify other types of output code to be generated by the

Assembler.

3.2.1 Absolute Format (.ABSP and .ABS) (Not available on XVM/RSX)

.ABSP and .ABS, although accepted by the Assembler, will not work

properly in XVM/RSX systems because none of the I/O handlers accept

dump mode data.

Label Field Operation Field Address Field

Not used .ABSP NLD orL....lor not specified

Not used .ARS NLD orL....lor not specified

Both pseudo-ops cause absolute, checksummed binary code to be output

(no values are relocatable). If no value is specified in the address

field and if the output device is the paper tape punch, the Assembler

will precede the output with the Absolute Binary Loader (ABL) , which

will load the punched output at object time. The ABL is loaded, via

hardware readin, into location 17720 of any memory bank. (The ABL

loads only the paper tape which follows it.) If the address field of

the pseudo-op contains NLD, indicating "no loader", or if the binary

output device is not the paper tape punch, the ABL will not precede

the output.

3-4

'-

Pseudo Operations

17720
.ABS
LOADFR

USER PROGRAM

. Ej\1D START

NOTE

PAPFR TAPE

.APS(P) output can be written on directoried
devices. The Assembler assumes .ABS(P) NLD for
all .ABS(P) output to file-oriented devices and
appends an extension of ABS to the filename.
This file can be punched with PIP, using Dump
Mode. (There will be no absolute loa~er at the
beginning of the tape.)

a. The .ABS, .ABSP, .FULL, and .FULLP pseudo-ops, specifying the

type of output, must appear before any statements generating

object code, otherwise the line will be flagged and ignored.

Once one of these four pseudo-ops is specified, the user is not

allowed to change output modes.

b. The NLD option provided in the address field of .ABS and .ABSP

is meaningful only if the output device is paper tape.

A description of the absolute output format follows.

Binary Data Block (variable length, up to 348 words)

WORD 1 starting address to load the bloc}: body which follows.

"YORD 2 Number of words in the block body (two's complement) .

WORD 3 Checksum of block body (two's complement of words
1 and 2, 4 through n) •

"lORD 4 Binary data to 10ac1.

WORD 3+n Binary data to load.

Starting Block - (two binary words)

WORD 1 Location to start execution of program. It is distin­
guished from the binary data block by having bit 0 set
to 1 (negative).

WORD 2 Dummy word.

If the user requests the absolute loader and the value of the expres­

sion of the .END statement is equal to 0, the ABL halts after it has

loaded in the object program. To start the program the user must set

3-5

Pseudo Operations

the starting address in the console address switches and press STAR~.

mhis allows manual intervention by the user, typically to ready I/O

devices prior to starting his program. If the value of the .END expres­

sion is non-zero, it is treated as the program start address to which

the ABL will automatically transfer control after loading the object

program.

The .ABSP pseudo-op causes all memory referencing instructions whose

addresses are in a different page to be flagged as bank errors. A DBA

instruct jon is executed by the absolute loader before control is given

to the user program. Word values which have bit 5 on will signal the

processor to use the index register to compute effective addresses.

The .AP.S pseudo-op does not flag memory referencing instructions whose

addresses are in a different page. An EEA instruction is executed,

and control is given to the user in hank addressing mode. Complete

bank addressing of 8K is allowed. The processor will interpret bit 5

of all memory referencing instructions as the high order address bit.

A listing of the Absolute Binary Loader is given in Appendix F.

3.2.2 Full Binary Format (.FULL and .FULLP) (Not available in XVM/RSX)

.FULL and .FCLLP, although accepted by the Assembler, will not work

properly in XVrJ:/RSX systems becau.se nope of the I/O handlers accept

dump mode data.

Label Field Operation Field Ao.oress Field (Only useful
if output is

Not used . FULL Not used paper tape)

Not used .FULLP Fot used
--

'T'he . FULL and . FlJLLP pseuc'1o-ops cause full binary mode output to be

produced. ""he program is assembled as uncrecksummed absolute coee and

each physical record of output contains nothing other than I8-bit

binary storage words generated by the Assembler. This mode is used to

produce paper tapes which can be loaded via hardware readin mode.

If no address is specified in the .END statement or if the aedress

value is zero, at the end of tape the Assemhler will punch a BLT in-

struction with channel 7 punched in the third frame. If the . F1\1D

address value is non-zero, the Assembler will punch a JMP to that ao­

dress, also with channel 7 of the third frame puncred.

3-6

/'

Pseudo Operations

In addition, with .FULLP assembly direct memory references in page 1

to addresses in page 1 will have bit 5 set to 0 unless indexing is

specified.

The only difference between the .FULL and .FULLP pseudo-ops is that

memory references across page boundaries are flagged in .FULLP mode;

in .FULL mode they are not.

The following specific restrictions apply to programs assembled in

.FULL or .FULLP mode output.

.LOC Should be used only at the beginning of the program

.BLOCK May be used once and only if no literals, variables or
undefined symbols appear in the program, and must imne ­
diately precede .END.

Variables and undefined symbols may be used if no literal s or
.BLOCKS appear in the program.

Literals may be used only if the program has no variables,
.BLOCKs, or undefined symbols.

The reason for these restrictions, not alleviated by the use of .LTORG,

is the fact that .FULL(P) mode output contains no addressing informa­

tion for storing binary words other than in sequence. The .LOC and

.BLOCK pseudo-ops do not generate binary output, hence there is no way

to indicate skipped locations in the output. This is also true of

variables and undefined symbols.

3.2.3 Relocation Mode (.EBREL and .DRREL)

Label Field Operation Field Adc1.ress Field

Not used .EBREL Not used

Not used .DBREL l\ot used

The following two pseudo-ops (.ERREL and .DBR~L) enable relocation

mode switching. They car- be used anywhere and as often a s tl-·e pro­

gra~mer wishes in a relocatable program. In the absence of one of

these mode declaration pseudo-ops, the page mode assembler assumes it

is assembling 12-bit (page mode) relocatable addresses for memory

reference instructions and the bank mode Assembler assumes 13-bit

addresses (bank mode) .

3-7

Pseudo Operations

A typical user program may omit the use of these pseudo-ops and simply

prepare his object code by using the desired (bank or page mode) ver­

sion of the Assembler.

For XVM page mode programs which contain display code to be interpreted

by the VT15 graphics processor, it is necessary to brac~et the display

code with .EBREL, .DBREL. Unlike the Central Processor, the VT15

processor runs only in bank mode; hence its instruction addresses must

be relocated as 13-bit values.

Mnemonic Description

.EBREL

.DBREL

Enable Bank mode RELocation

Regardless of the type of Assembler being used (bank or
page mode version), .ERREL causes all subsequent memory
reference instruction addresses to be treated as 13-bit
values, i.e., bank mode. Although in this mode, the
page mode assembler will still output the "PROG>4K"
warning message if the program size exceeds 4096. The
12- or 13-bit relocation is performed by the loaders .
. EBREL signals the loaders to switch to 13-bit reloca­
tion by causing a dummy data word (v,hich is not loaded)
to be inserted in the binary output and having a loader
code of 31

8
,

Disable Bank mode RELocation

.DBREL is the counterpart to .EBREL. It signals the
loaders, with a dUIT'J11Y data word (which is not loaded)
and loader code of 328 to switch to 12-bit (page mode)
relocation.

NOTE

The previous mode is not saved when an .EBREL or
.DBREL is encountered; for this reason, a .DBREL
pseudo-op goes directly to page mode relocation
rather than entering the previous mode.

3.3 TEXT HANDLING PSEUDO OPERATIONS

The two text handling pseudo-ops enable the user to represent the

7-bit ASCII or 6-bit trimmed ASCII character sets. ~he Assembler

converts the desired character set to its appropriate numerical equiv­

alent (see Appendix A) .

Label Field Operation Field Address Field

(ASCII)
Delimiter - character

SYHBOL string - delimiter -
. SIXBT <expression>

3-8

Pseudo Operations

Only the 64 printing characters (including space) may be used in the

text pseudo-instructions. See nonprinting characters, Section 3.8.5.

The numerical values generated by the text pseudo-ops are left-justified

in the storage word(s) they occupy with the unused portion (bits) of a

word filled with zeros.

3.3.1 lOPS ASCII Packed Format (.ASCII)

.ASCII denotes 7-bit ASCII characters. (It is the character s et used

by the operating system monitor or executive.) The characters are

packed five per two words of memory with the rightmost bit of every

second word set to zero. An even number of words will always be out­

put:

First Word Second Word

0 6 7 13 14 17 0 2 3 9 10 16 17

1st Char. I 2nd Char. I 3rd Char. 14th Char. I 5th Char. I 0

3.3.2 Trimmed Six-Bit Format (.SIXBT)

.SIXBT denotes 6-bit trimmed ASCII characters, which are formed by

truncating the leftmost bit of the corresponding 7-bit character.

Characters are packed three per storage word.

0 5 6 11 12 17

1st Char. 2nd Char. 3rd Char.

3.3.3 .ASCII and .SIXBT statement Syntax

The statement format is the same for both of the text pseudo-ops.

The format is as follows.

<expression>

3.3.4 Text Delimiter

Spaces or tabs prior to the first text delimiter or angle bracket «)

will be ignored; afterwards, if they are not enclosed by delimiters

or angle brackets, they will terminate the pseudo-instruction.

3-9

Pseudo Operations

Any printing character may be used as the text delimiter, except those

listed below.

a. < as it is used to indicate the start of an expression.

b.) as it terminates the pseudo-instruction.

(The apostrophe (') is the recommended text delimiting character.)

The text delimiter must be present on both the left-hand and the right­

hand sides of the text string: otherwise, the user may get more char­

acters than desired.

3.3.5 Non-Printing Characters

The octal codes for non-printing characters may be entered in .ASCII

statements by enclosing them in angle bracket delimiters. In the

following s tatement, five characters are stored in t".TO storage words.

-\.ASCIIL....I'AB' <01.5> 'CD.)

Octal numbers enclosed in angle brackets will be truncated to 7 bits

(.ASCII) or 6 bits (.SIXET).

Example:

Source Line Recognized ",ext COJTlJ11.ents

Tl\G -\.ASCIIL....I' ABC' ABC
-\. SIXBTL....I' ABC' ABC
-\. SIXBTL....I' ABC' It' lit ABC'I The # is usen as a

oelimiter in order
that (') may be
interpreted as
t e xt.

-\.ASCIIL....I'ABCD'EFGE Al3CDFG
-\. ASCI I L....I' ~.B ' < 11> AF -\ <11> used to repre-
-\. ASCIIL....I'AB<ll>, AB<ll> sent tab. There is

no delimiter after
B, therefore,
« 11» is treated
as text.

\

-\.ASCIIL....I<15 x O12>'ABC' AABC
-\. ASCII L....I <1 5 x l2>ABC L....I(s) A)+RCL....I(S) A is interpreted as

the text delimiter.

The following example shows the binary word format wh.ich the Assembler

generates for a given line of text.

3-10

Pseudo Operations

Example:

-.j.Ascrr-.j'ABC'<015 x 12>'DEF'

Generated Coding

\'Jord Number Octal Binary

Word 1 406050 1000001 11000010 11000

Nord 2 306424 011 1 0001101 10001010 1 0

Word 3 422130 1000100 I 1000101 1 1000

Word 4 600 000 110 1 0000000 100000°1 (1

3.4 r-1ACRO DEFINITI ON PSEUDO-OPERATIONS (. DEFII\', . F'T'C, and . Ermr-!)

The .DFFIN pseudo-op is used to define macros (described in Chapter 4).

The address field in the .DEFIN statement contains the macro name,

followed by a list of dummy arguments. If t.he list of dummy arguments

will not fit on the same line as the .DFFIP pseudo-op, it may be con­

tinued by means of the .E'T'C pseudo-op in the operation field and addi­

tional arguments in the address field of the next line. 'T'he coding

that is to constitute the body of the macro follows the .DEFIN state­

ment. The body of the macro definition is terminated by an .FND~

pseudo-op in the operation field.

the use of macros.)

3.5 COHf'JION BLOCK PSEUDO- OPERATIONS

(See Chapter 4 for more details on

This class of pseudo-operations allows the programmer to define,

reference anG initialize FORTRAN-style COMMON blocks. Spec i o.l Loae'er

Codes are placed in the object output o f the Assembler to allow the

Linking Loader, CHAIN, or TKB to allocate memory for the specif ied

COMMON blocks and link their addresses to transfer vectors in all pro­

grams which reference them. Additionally, the programmer may speci fy

the initial contents of the COMMON blocks (a facility similar to the

FORTRAN BLOCK DATA function) .

3.5.1 Common Block Definition (.CRD)

Th.e pseudo-op . CBD enables the programmer to declare a COMMOl" area of

an indicated name and size and to specify the word to be set to its

base address. The general format of this pseudo-op is:

3-11

Pseudo Operations

Label Field Operation Field Address Fielc1

User Symbol .CRD Name, Size

The .CRD pseudo-op takes a COMMON name and size as arguments, reserves

one word of core for the base address, and outputs loader codes and

parameters to direct the Linking Loader, CRAIN or TKB programs to set

a transfer vector to the base address (first element) of the named

COMMON array. For example, the statement:

BASE..,. CB~BCD, 6

provides location RASE with the address of the first word of the

COMMON area named ABCD whose size is 6. FORTRAN blank COM~10N is

given a special name by the system software, .XX. To reference blank

COMMON in a .CRD s tatement, .XX should be given as the COMMON name.

3.5.2 Common Rlock Definition -- Relative (.CBDR)

The pseudo-operation .CBDR (common block definition relative) takes

an offset as its only argument. The general format of this pseudo-op

is:

Label Field Operation Field Address Field

User Symbol .CRDP. Displacement

This pseudo-op directs the Linking Loader, CHAIN or TKB to enter the

starting address of the last COMMON block specified in a .CRD plus

the offset given in the .CBDR into the word corresponding to the loca­

tion of the .CBDR.

For example, the statements

RASE ..., .CBD..., ABCD,5

BASE3 -/ . CBDR-/ 3

will cause the task builder to enter the starting address of the

COM~ON block ABCD into the location corresponding to the tag BASE;

in addition, the location corresponding to BASE3 will contain the

starting address of ARCD plus 3.

3-12

Pseudo Operations

Note that .CBDR is relative to the last COMMON definition only. Any

other assembler instructions or pseudo-operations may intervene

between the .CBD and .CBDR.

3.5.3 Common Block Initialization Start (.CBS)

The pseudo-operation .CBS is used to prepare the Assembler to accept

COMMON block initialization statements. The general format of this

pseudo-op is:

Label Field Operation Field Address Field

Not used .CBS name [, size]

The ~ parameter specifies the name of the COMMON block which is to

be initialized, see description in .CBD (Section 3.5.1) for details

regarding blank CO~~ON. The size parameter is optional, and if speci­

fied represents the minimum size of the COMMON block.

This pseudo-op, unlike .CBD or .CBDR does not generate a transfer

vector, hence, a label on this operation is meaningless. After a .CBS

instruction and up to the next .CBE instruction (i.e., between .CPS

and .CBE operations), the following rules apply to the type of state­

ments which may be specified.

1. .CBC statements are allowed.

2. .DEC, .EJECT, .IFxxx, .ENDC, .LST, .~OLST, .OCT, .REPT,
.TITLE, .DEFIN, .ENDM, .ETC are allowed.

3. Macro instructions which generate only statements belonging
to 1. or 2. above are allowed.

4. Direct assignment statements are allowed.

5. Machine instructions and transfer vectors are not allowed.

6. Pseudo-operations other than those listed in 1 and 2 above
are not allowed.

7. Macro instructions which generate statements belonging to
5 or 6 above are not allowed.

Example:

-I. CBS -I ABCD, 6

3-13

Pseudo Operations

indicates that a COMMO~ block named ABCD with a min imum length of

6 words is to be initialized by statements which follow.

3.5.4 Common Block Initialization Constant (.CRC)

The . CBC statement is used to initialize a single word of the CQr.11'10N

block declared in the preceding .CBS statement. The format of the

.CBC statement is:

Label Field Operation Field Address Field

j\'ot used .CRC Displacement, Constant

The displacement parameter specifies the offset from the start of the

COMMON block of the word to be initialized. The constant parameter

is an absolute expression, the value of which will be used as the ini­

tial contents of the specified word in the CO~~ON block. If the .CRC

statement is used outside the .CBS - .CRF instructions, it is flagged

and ignored by the Assembler. If a .CSC statement is preceded by a

.REPT statement which has a non-zero increment, the data will be in­

cremented, and the displacement will be incremented by one. Therefore,

the data generated will be placed in succeeding locations in common.

Example:

.CRC 2,4

will set the third word (base add r ess+2) of t.he COM,NON block specified

by the preceding .CBS to the initial value of 4.

3.5.5 Common Block Initialization End (.CRE)

The .CRE pseudo-op is used to terminate the COMMON block init.ialization

section initiated by the .CBS operation. The general format is:

Label Field Operation Field Address Field

Not used .CBE Not used

A COt-'lMON block initialization section (consisting of one . CPS followed

by one or more .CBC's followed by a .CBE) may appear anywhere in a

program wi thout affecting the flow of the object program. Also , the

same COMMON block may be initiali zed any number of times by any number

of programs.

3-14

Pseudo Operations

3.6 CONDITIONAL ASSEMBLY (.IFxxx and .ENDC)

It is often useful to assemble some parts of the source program on an

optional basis. This is done in t1ACRO by means of conditional assem­

bly statements, of the form:

....j. I Fxxx....j expression

The pseudo-op may be any of the eight conditional pseudo-ops shown

below, and the address field may contain any number, symbol, or expres­

sion. If there is a symbol, or an expression containing symbolic ele­

ments, such a symbol must have been previously defined in the source

program or the parameter file (except for .IFDEF and .IFUND). If not,

the value of the symbol or expression is assumed to be 0, thereby

satisfying three of the numeric conditionals.

If the condition is satisfied, that part of the source program starting

with the statement immediately following the conditional statement and

up to but not including an .ENDC (end conditional) pseudo-op is assem­

bled. If the condition is not satisfied, this coding is not assembled.

The eight conditional pseudo-ops (sometimes called IF statements) and

their meanings are shown below.

Pseudo-op

....j. IFPNZL-Ix

....j. IFNFGL-Ix

....j. IFZERL-Ix

....j.IFPOZL-Ix

-I. IFNOZL-Ix

-I. IFNZRL-IX

....j.IFDEFL-IX

-I. IFUNDL-Ix

Assemble IF x is:

Positive and non-zero

Pegative

Zero

Positive or zero

Negative or zero

Not zero

A defined symbol

An undefined symbol

In the following sequence, the pseudo-op .IFZER is satisfied, and the

source program coding between .IFZFR and .ENDC is assembleo.

3-15

Pseudo Operations

:I.

'.?

D
?

1 0
~) J i.E:::: OO()04

O()OO O F:
GOOO :I F:

00002 F,
000 ():.':) F~

000060 (~

0000(:',0 {~I

::.:.:~OOOO2 r ',

" 04000:.:) F~

00 0 000 A
)'"

000000 ()

()OOOO O (~

NO F i:~ F:U F< L. I (lE~3

,.DEC
~:~ l.J :t·:~ 'I'" U T :::: 4 n
TO T t ,i... I. .. , ' ilL:

,IFZER SUB T01-TO TALL
I...(')C H

:U,"lC B
,. [(lDe
o
o

Conditional statements may be nested. For each IF statement there

must be a terminating .ENDC statement. I f the outermost IF statement

is not satisfied, the entire group is not assembled. If the first IF

is satisfied, the following coding is assembled. If another IF is

encountered, however, its condition is tested, and the following coding

is assembled only if the second IF statement is satisfied. Logically,

nested IF stateme nts are like AND circuits. If the first, s econd, and

third conditions are satisfied, then the coding that follows the third

nested IF s tatement is assembled.

Example:

'''1
/

')

to
1 1

00000 R 200002 R

00001 R 100002 R

0 0002 R 740000 ~

00003 R 7400 40 A

Y::::(j

r I: (,.)

T (:'!:»:I.

.IFN:?!':: .. (
Df'\Cr illJ :!.
,.[i·,WC

, IF))[F" Z
D (') C 'r f:':') Ci:?
,[NDC
,ENOC

Hi. .. T

ICOND •• INIllnTOR

fCOND. 3 !0ITIATOR

fCOND. 31ERMINAT OR
ICOND. 1 TERMINATOR

Conditional s tateme nts can be for a variety of purpose s. One of the

most useful i s in terminating recursive MACRO calls (described in

Chapter 4). In general, a counter is changed each time through the

loop, or recursive call, until the condition is not satisfied. This

process concludes assembly of the loop or recursive call.

3-1 6

Pseudo Operations

3.7 LOCAL SYMBOLS (.LOCAL AND .NDLOC)

Label Field Operation Field Address Field!

Not used . LOCAL Not used

Not used .NDLOC Not used

The size of a program that can be assembled with the Assembler is

determined by the number of user symbols in that program and therefore

by the amount of core available at assembly time in which to store

those symbols. Each user symbol requires three words of core in the

assembler's symbol table. This ad.ditional core is not required at

run-time (unless using a debugging program like DDT) because user

symbols are not loaded into core along with the object code.

The .LOCAL and .NDLOC pseudo-ops enable deletion of certain symbols

from the user symbol table. In so doing, larger programs can be assem­

bled without increasing core size. The area between these t\-TO pseudo­

ops is defined as having a number of symbols, most of which are used

only in this area and which can be deleted, once this area has been

passed by the Assembler.

The Assembler creates a separate symbol table (local users symbol

table) when the .LOCAL pseudo-op is encountered. Only labels and

direct assignments may be stored in this table. Labels which have

the # sign as part of the symbol are stored in the resio.ent users

symbol table (RUST). This feature is useful where a subroutine name

is part of a local area but must go into the RUST because of subroutine

calls from without the local area (see Section D of the following

example). Symbols which are forward references (used before defined)

are stored as part of the resident users symbol table. When the

.NDLOC pseudo-op is encountered the local table disappears and the

resident UST is left unchanged.

An example of a program which uses the .LOCAL and .NDLOC pseudo-ops

follows. The symbols that are stored in the tables are represented

in the comment field in the order that they are stored during PASS 1.

3-17

:I.

./

lO

:I.:'.'.;
.L.:":.
:I. '.?

:I.'';
20
2 :~
")"')

') .. ~.
,:

3' i

::~; ',7

·4 :l.

" ' ... '

1...1

. ,
',..I

u

O()lOO
OOJOO
001.01.

00103
001 ()4

00:1.0) '

,) () I. !. i.

001 :1 :.':\
C'O .I.:l.4
o (:, J J ~.~'.;

()O :!. J ,S
()OJ 1) :

001 2(>
OO:L ;,:,:::!.
() 0 'I. :: ... ~ :::.::

()():I. :.':~;3

() () :!. :'.~ .(~.

O()J ,':5 1
,:,:,;

L ') O:l:l. J
600 .1. 3/

040:L·40

60():1, ::.? ')'

()OOOO()

()ooc'()O

000000

(:iO ():i. .1./
('OOL"!:I.

() ·401:l. ..:".}

6::.' 0.i.:I :!.

OO()() O()

O()OOO ()

':,:,:: 00:1.:.:::::1
i.) ·4 () J 3 ~.:.::

O<)()O :l.

,. (1D~::;

(l. . l:)C
Ctli'"

,J",!'"
L. t·~·ll..j

.......

><><x

~::; '(i··ll.
~:: :: \" 1·· .. 1 ::.:.:

C
D

3-18

o

o

o

.Ji"-i j'"

I<h:r:
DP,:::;

, i\IO i .. UC

Lt,C

o

1 ... ::\(:"

:(1(: (". .

..Jh:::·";--

!.

(E'·'.'\'

c
····:i.O

:< .!.
TT'-(I(·~

\ :1.
j-.:.: !.:.

~::; \' r"i :L
::: :; \ j"'i:}

/ (~! r:.: 1::: i"~'l L~ '{ ~:::. 'r u r;.: i::: n J i '.:

.. / F:.: ~,J ~' ::; ' r !::- F~ !.:J j''-"i t. I (-i ~ /~ (.

ITEMP. STO RAGE OF
./ ::::, U .t.:{ F~ ,. r r --r" I r ... !

/ ~JRWARD Rl~ERFNCE

ITEMP. STORAG E OF

Pseudo Operations

For purposes of illustration, lines 1-11, 12-26, 27-29, and 30-36 are

broken into sections A, B, C, and D respectively. The following

tables show the resident and local users symbol tables (UST) at the

end of each section (PASS 1 only).

RESIDENT

SECTION A

A
AA
C
D
KK
TTYIN

SECTION B

A
A.A
C
D
KK
TTYIN

SECTION C

A
AA
C
D
KK
TTYIN
Xl

SECTION D

A
AA
C
D
KK
TTYIN
Xl
TSUBR

UST LOCAL UST

(NO SYMBOLS)

X
Xl
Y
Z

(NO SYMBOLS)

SYM1
SYM2

In Section A,the symbol TTYIN is usen. TTYIN is in a local area yet

it is put into the resident user symbol table because it is a forward

reference. The same is true of symbol Xl from Section C. Once the

.NDLOC pseudo-op is encountered, the local UST no longer exists. For

that reason, the Xl reference from line 28 is a forward reference.

At the end of PASS 1, Xl would be represented as an unrlefined symbol.

"Then Section B is processed during PASS 2, the symbol Xl would not be

stored in the local UST because it already has been put into the

resident table.

3-19

Pseudo Operations

LIMITATIONS

The .LOCAL pseudo-op causes the local UST to be built just above the

macro definitions. Consequently, the .DEFIN pseudo-op is illegal in

a local area.

3.8 LITERAL ORIGIN (.LTORG)

Label Field Operation Field A_ddress Field

Not used .LTORG Not used

As previously stated, a literal is an item of data with its value as

stated or listed. The pseudo-op .LTORG allows the user to specifically

state where he wants his literal table(s) to be stored; thus enabling

the user to store literal tables in different pages or banks. As

many as eight literal tables are allowed. Notice in the following

example that literals are not saved from one .LTORG to the next .

. ,

.to 1 ,. 1... '

', -'C"· . .:'/!. :.: :-;..:
, .
I',,'

.. ;~.

;.:,

I, ;

";" ,. ,1

The literals 1 and 2 are stored twice even though they appear in the

s ame bank.

If more than eight .LTORG statements appear in a program, the excess

ones will be ignored and flagged with an 1 error. Subsequent literals

will be assigned core locations following the end of the program in

the normal manner.

3-20

Pseudo Operations

3.9 SETTING THE LOCATION COUNTER (.LOC)

Label Field Operation Field Address Field

Not used .LOC defined expression

The .LOC pseudo-op sets or resets the location counter to the value of

the expression contained in the address field. The symbolic elements

of the expression must have been defined previously; otherwise, phase

errors will occur in PASS 2. The .LOC pseudo-op may be used anywhere

and as many times as required.

Examples:

:i.

')'

10
.:' :1.
12
13
:1.4
.I. :'5

........ '" " .. '
',) ••) '.) I •••. ' 1 •.•• 1 .!. ~" .:

00007 R 200001 R
('),') ,'"'; .: t" \ i:;.: '.~) " '~. C' <> J :;. i";.:

VVU L / R 740 000 A

! . .!

.,. i .. UC
L..(:"!C
Df::IL
, Lll::

I ... ()C
U(,C

.\ \,:\(.. :

I::. r·-' .:.. ~

·;· (.)(lJ

1 nU.:·.:

, " ,

A program headed by an absolute statement , e.g., .LOC 100 is an ab­

solute binary program and the binary is output in link-loacable format.

3.10 RADIX CONTROL (.OCT and .DEC)

The initial radix (base) used in all number interpretation by the

Assembler is octal (base 8). In order to allow the user to express

decimal values, and then restore to octal values, two radix setting

pseudo-ops are provided.

3-21

Pseudo Operations

Pseudo-op Code Meaning

.OCT Interpret all succeeding numerical values in
base 8 (octal)

.DEC Interpret all succeeding r..umerical values in
base 10 (decimal)

These pseudo-instructions must be coded in the operation field of a

statement. All numbers are decoded in the current radix until a new

radix control pseudo-instruction is encountered unless the pseudo-op

occurs within a macro expansion (see Section 4.2).

may change the radix at any point in a program.

The programmer

')

.!.()

oo oo ~ ~ 20014 4 A
VUU L~ ~ 00003 i A

0000 6 R 0 0003 3 A

;--. ~' '; : ...

: .O i:::\:
i ... :") I,,,

::: : .. ';

:J~ ... :

,Oi f!L e::: (: ,,'
:s ,',:)

.;. Ci\.!D
;: :ZL ::: l...; I,} ',} 1.) ./

t
"' j

3
4 ()()()(,I J j:~ ... / / '?'?",::. I':~:

I::"
,..I 0<> (.' () :. h: G () :".,) ~'::) ·4 ',>" (:!

I,:'" (,! 000(J R 007 303 0
')' OOOCJOO (I .. r.: i)1::

~:) J :Z:E ::: OO() O..:':~ :J. EI'~: i :;:DF< L. I i'lE~:;

If a number is encountered which contains a decimal digit while in

octal mode. the number is evaluated as if the Assembler were in decimal

mode. and the line is flagged with an N.

3.11 RESERVING BLOCKS OF STORAGE (.BLOCK)

.BLOCK reserves a block of memory equal to the value of the expression

contained in the address field. If the address field contains a

numerical value. it will be evaluated according to the radix in effect.

The symbolic elements of the expression must have been defined pre­

viously. i.e .. no forward referencing is allowed; otherwise. phase

3-22

--.

Pseudo Operations

errors might occur in PASS 2. The expression is evaluated modulo

215 (77777 8), The user may reference the first location in the block

of reserved memory by defining a symbol in the lahel field. The

initial contents of the reserved locations are unspecifi ed .

Label Field Operation Field Address Field

User Symbol . BLOCK defined expression

Examples:

BUFF -I . BLOCK~I:J
-I . BLOCK~A+B+61J

3.12 END OF PROGRAM (.END)

One pseudo-op must be included in every source program. This is the

.END statement, which must be the last statement in the main program.

This statement marks the physical end of the source program, and also

may contain the location of the first instruction in the object pro­

gram to be executed at run-time.

The .END statement is written in the general form

START may be a symbol, number, or expression whose value is the address

of the first program instruction to be executed. In relocatable pro­

grams to be loaded by the Linking Loader, CRl>.IN or TKB, only the main

program requires a starting address; all other subprogram starting

addresses, if specified, will be ignored.

A starting address may appear in absolute or self-loading programs;

if not, the program will halt after being loaded and the user must

manually start his program.

These are legal .END statements

-I. END~REGIN+..v
-I. El'm~20SJ

If no .END statement is included, the Assembler will treat it as if

a .EOT was included.

3-23

Pseuoo Operations

3.13 END OF PROGRAM SEGMENT (.EOT)

If a program is physically segmented (on paper tape, disk, DEC tape or

magtape), each segment except the last may terminate with an .EOT (end­

of-tape) statement or with nothing at all (neither .FOT nor .FPD).

Termination with nothing is equivalent to termination with .EOT. The

last segment must terminate with an .END statement. The .EOT state­

ment is written without label and address fields, as follows,

-l.EO~

The following are typical reasons for segmenting programs:

1. A source program is prepared on three different paper tapes

because one tape alone would be too large to fit in the

reader.

2. A source program is split in two and stored on two DECtapes

because it is larger than the capacity of a single tape.

3. To simplify program preparation, a disk file containing

commonly used macro definitions is kept physically separate

from user main programs. Thus, one does not have to include

the macro definitions in each main program.

4. Programs can be conditionally assembled for different machine

configurations or different software options. This is done by

defining conditional assembly parameters at assembly time.

The process can be simplified if one prepares paper tapes or

mass storage files defining all parameters for a given set of

options. The main program and parameter file are physically

segmented one from the other but can be assembled together.

3.14 GLOBAL SYMBOL DECLARATION (.GLOBL)

Label Field Operation Field Address Field

Not used .GLOBL symbolLsymbol .. J

The standard output of the Asssmbler is a relocatable object program.

The Linking Loader, CHAIN or TKB joins relocatable programs by supply­

ing definitions for global symbols which are referenced in one program

and defined in another. The pseudo-op .GLOBL, followed by a list of

symbols, is used to define to the Assembler those global symbols which

are either

3-24

Pseudo Operations

a . internal globals - defined in the current program and refer­

enced by other programs

b. external symbols - referenced in the current program and de­

fined in another program

The loader (Linking Loader, CHAI N or TKB) uses this information to

include in the load and then link the relocatable programs to each

other.

All references to external symbols must be indirect references s ince

XVM software systems use transfer vectors for referencing external

symbols. Each external symbol causes an additional word (the transfer

vector word) t .O be reserved in the user program. The loading pro-

gram will store the actual address of the external symbol in the trans­

fer vector word. Thus, an indirect reference (through the transfer

vector) will cause the external symbol location to be addressed.

Example:

-I.GLOBL -I A,B,C

A-ILAC -I D / A is an internal global

D-IJMS* -I B /These two instructions reference

-I JMS* -I C /External symhol s indirectly

.END -I D

The .GLOBL statement may appear anywhere within t h e program.

The example above is assembled as follows:

I
' ") ,'.

.... , :!: z. :::. ;:: () 0 0 0 '.?

00 000 R 7 400 ~O A
0 0001 R 2 000 04 R
00002 R 120005 ~

000 03 R 120006 E
00004 R 740000 H

00 005 R 00 00 05 E *E
000 06 R 0000 06 c iF

H

., ' ",t',.- \ .. '

.. <',:
J., ;':: jC .\ ,:

....• , ... , ; .. {:

:1-.. : ('

The real values for locations 3 and 4 will be supplied by the loading

program: these two words will contain the addresses in memory of

e x ternal symbols Band C.

3-25

Pseudo Operations

3.15 REQUESTING AN I/O DEVICE HANDLER .IODEV (Not supported in XVM/
RSX)

The .IODEV pseudo-op appears anywhere in the program and is used to

cause the Assembler to output code for the Linking Loader or CHAIN

which specifies the slots in the Monitor's device assignment tahle

(DAT) whose associated device handlers are required by the program.

This is used in XVM/DOS where device handlers are brought into core

at the time a program is loaded to run.

Label Field Operation Field Address Field

Not used . IODEV cats lot [, datslot .. .]

The arguments may be numeric or symbolic. If the argument is symbolic,

the symbol must be defined by a direct assignment statement.

3.16 DESIGNATING A SYMBOLIC ADDRESS (.DSA)

.DSA (designate symbol address) is used in the operation field when

it. is desired to create a word composed of just. a transfer vector

(17-bit address). It is useful when a user tag symbol is also a

permanent instruction or pseudo-op symbol.

Label Field

User Symbol

Examples:

,TMP -I LAC -I TAG

-I . DAS -I Jr1P)

-I -IJ1'1P

Operation Fielo Address Field

.DSA expression

Equivalent methods of designating the user
symbol JMP (rather than the instruction JMP)
to be in the address field.

3.17 REPEAT OBJECT CODE (.REPT)

Label Field Operation Field Address Field

Not used .RFPT count [, increment]

The .REPT pseudo-op causes the object code of the next sequential

object code generating instruction to be repeated "count" times.

Optionally, the object code may be incremented for each time it is

repeated by specifying an increment. The count and increment may be

3-26

Pseudo Operations

represented by a numeric or symbolic value. If a symbol is used, it

must be defined by an absolute direct assignment statement which must

occur before the symbol is used. The repeated instruction may contain

a label, which will be associated with the first statement generated.

Note that arithmetic expressions in the increment field are illegal.

Examples:

00001 R 000000 ~ *0
00 :: ,::(.;:::.:: (\' O<>,)()O() (:'.< >;<r ;.
00003 0000 0 0 A ~R.

0 00 04 R 0 00 00 0 ~ ¥~
. '-'_ 1'

,',

, , '.:: i::',,\,

/ J ,. .,

o .- ~' : , ::? r:: (,() (! .; > h' : : ~::p

I:) (>:L 3 r;.: (:.' I.,}i. ,I "i :,:,.; r;~ :.:< h'
o 014 R 600 14 ~ AP

8 ;,) t.'; !") () () ('I .:. :::: i"'·~ f:

NOTE

If the statement to be repeated generates more than
one location of code, the .RFPT will repeat only the
last location. For example,

-/. REPTL...I3
-/. ASCII L...I I A I

will generate the following:

404000 5/7 A
000000
000000
000000

last word is
repeated

3-27

Pseudo Operations

3.18 REQUEST PROGRAM SIZE (.SIZE)

Label Field Operation Field Address Field

user symbol .SIZE not used

When the assembler encounters .SIZE, it outputs one word which contains

the address of the last location plus one occupied by the object pro­

gram. This is normally the length of the object program (in octal) .

Bowever, if a given program is 1218 words long and has a .LOC 4¢¢

statement at the head of the program, the value of the .SIZE word will

be 521
8

.

3-28

CHAPTER 4

MACROS

When a program is being written, it often happens that certain coding

sequences are repeated several times with only the arguments changed.

It would be convenient if the entire repeated sequence could be gen­

erated by a single statement. To accomplish this, it is first nec­

essary to define the coding sequence with dummy arguments as a macro

instruction, and then use a single statement referring to the macro

name along with a list of real arguments which will replace the dummy

arguments and generate the desired sequence.

Consider the following coding sequence.

-I LAC-.lA

-I TAD-I B

-I DAC-/C

-I LAC...jD

-/ TAD-/E

-/DAC-/F

The sequence

-I LAC-I x

-/ TAD-I y

-/DAC--/ Z

is the model upon which the repeated sequence is based. The characters

x, y, and Z are called dummy arguments and are identified as such by

being listed immediately after the macro name when the macro instruc­

tion is defined.

4-1

Macros

4.1 DEFINING A MACRO

Macros must be defined before they are used. The process of defining

a macro is as follows.

(Macro Name) (DuwroyArguments)

(Definition Line) \ II' ~" -\.DEFIN-\MACNME,ARGl,ARG2,ARG3-\ /comment

-I LAC -\ ARG1

(Body) -\TAD -IARG2

-\DAC -\ARG3

(Terminating Line) -I. ENDM

The pseudo-op .DEFIN in the operation field defines the symbol follow­

ing it as the name of the macro. Next, follow the dummy arguments,

as required, separated by commas and terminated by any of the following

symbols.

a. space (~)

b. tab (-\)

c. carriage return ())

The macro name and the dummy arguments must be legal assembler symbols.

Any previous definition of a dummy argument is ignored while in a

macro definition. Comments after the dummy argument list in a defini­

tion are legal.

If the list of dummy arguments cannot fit on a single line (that is,

if the .DEFIN statement requires more than 72
10

characters) it may be

continued on the succeeding line or lines by the usage of the .ETC

pseudo-op, as shown below.

-I DEFIN-\ MACNME, ARG1, ARG2, ARG3 /comment

-I.ETC -\AP.G4,ARG5 /argument continuation

-I. DEFIN -\ MACNME

-\. ETC -\ ARG1

-\. ETC -IARG2

-\. ETC -\ ARG3

-\. ETC -I ARG4

-I. ETC -\ARG5

4-2

Macros

4.2 MACRO BODY

The body of the macro definition follows the .DEFIN statement. Appear­

ances of dummy arguments are marked and the character string of the

body is stored, five characters per two words in the macro definition

table, until the macro terminating pseudo-op . ENDM is encountered.

Comments within the macro definition are not stored.

Dummy arguments may appear in the definition lines only as symbols or

elements of an expression. They may appear in the label field, opera­

tion field, or address field. Dummy arguments may appear within a

literal or they may be defined as variables. They will not be recog­

ni z ed if they appear within a comment.

The following restrictions apply to the usage of the .DEFIN, .ETC and

.ENDM pseudo-ops:

a. If they appear in other than t h e operation field within the

body of a macro definition, they will cause erroneous results.

b. If .ENDM or .ETC appears outside the range of a macro defini­

tion, it will be flagged as undefined.

If index register usage is desirable, it should be specified in the

body of the definition, not in the argument string .

. DEFIN

LAC A

DAC B,X

LAC C

.ENDM

XUSE,A,B,C

If .ASCII or .SIXBT is used in the body of a macro, a slash (I) or

number sign (#) must not appear as part of the tex t string or as a d e ­

limi ter (use < 57 > to represent a slash and < 43 > to represer.t a number

sign). Be careful when using a du~my argument name as part of the

text string. For example,

.DEFIN

.SIXBT

.SIXBT

• ENDM

TEXT A

,A,

.A •

4-3

Macros

followed by the macro call,

TEXT XYZ

will generate the following code

.SIXBT

• SIXBT

,XYZ,

.A •

In the first .SIXBT statement, A is recognized as a dummy argument re­

sulting in the substitution of XYZ. In the second statement, A is not

recognized as a dummy argument because the string delimiter, period,

is itself a legal symbol constituent.

Definition Comments

-I • DEFIN -I MAC,A,B,C,D,E,F

-I LAC -I A#

-I SPA

-IJMP -I B

-IISZ -I TtvlP I E E is not recognized as an argument

-I LAC -I (C

-IDAC -I D + 1

-IF

-I.ASCII -IE

B=.

-I. ENDM

4.3 t.1ACRO CALLS

A macro call consists of the macro name, which must be in the operation

field, followed by a list of real arguments separated by commas and

terminated by one of the characters listed below.

a. space (~)

b. tab (-I)
c. carriage ())

return

If the real arguments cannot fit on one line of coding, they may be

continued on succeeding lines by terminating the current line with a

4-4

Macros

dollar sign ($). When they are continued on succeeding lines they must

start in the label field.

Example:

~MAC-/REALI, REAL 2 , REAL 3 ,$

REAL 4 , REAL 5

If there are n dummy arguments in the macro definition, all real argu­

ments in the macro call beyond the nth dummy argument will be ignored.

A macro call may have a label associated with it; this label will be

assigned to the current value of the location counter.

Example:

1

::s

:10

:~.

!..:?

"1.4
0' I::
.l!

() 0 () I,}
r"',
n.

() 0 () (.. I''; .. ,
0 0 () (~':, F' :.~: /"\ ,': .. L.:

0 0 I..) ., F' ;:} ,-:'f () .I. :L h' >~" c} .1.

0 ('I 0 r;.: () "{. () 0 , ;:;.: >:.:. c:;

00003 R 200007 R tG
COO () ·4 h~ .. ;~ .,<} (:; (! .I. 0 r;~ :.;.:: :: 'i

I.)',.\i ... "{" r'o

:.:':; 0 0 i,) "/ ,::.: () (I (.I t) .:.::: (t

() 0 (> J 0 r;,: I! I I ~, (, 1.1 · [::'1

()()O< (,C) (:l

b T ,. ,

."

F;: T

i (lD

(;(:"iC:

i.,ij::·D(::'I'r'!::' ('j'J C·;

! .. (:jC {:';

(:,

The prevailing radix will be saved prior to expansion and restored

after expansion takes place. Default assumption will be octal for the

macro call. It is not necessary for the macro definition to have any

dummy arguments associated with it.

Example:

10
l.l
:1.2

~:) I ZE::::OOOO(:'j

00000 R 20000~ R

00001 R 723023 A *G
00002 74.1.100 A tG
00003 K 740(0) A *G
00004 R 04000~ R

00005 ~ 000567 A
O()O()OO (:-,

4-5

I::~ ;--'i : ...

, r:::i\~DjVj

, .
I ... 1"] ~ •. ,

:"'-:·IUCt:~:.:: '::)
i"li"

cr-";: ...
J)(:,c

Macros

4.3.1 Argument Delimiters

It was stated that the list of arguments is terminated by any of the

following symbols.

a. space

b. tab

c. carriage return ()

These characters may be used within real arguments only by enclosing

them in angle brackets «». Angle brackets are not recognized if

they appear within a comment.

Example:

./

G
' •• J

.i . . ,'::

(I () () C' <> h. .::.-: (.: <) <> () '.:.i'
0<) <)0:1. i :.: ~'::~ ..:':; () () J ()

<> (~.: r:'" i'.> ~:5 r;~ ..:'} <> (:. 3 () (>i ::f:: (:.:;

0 000 6 n 040 0 1 1 R *G

00010 R 000065 A
0001 1 R 000 000 A

." -... , : ::: ~ ; :

i ... (, c:.

/2:

'I ',

.\:'

"j' .,(

.; ,.

:.: ~.: .. y .. {

,,/ ,.,.­
.. ; ; .

All characters within a matching pair of angle brackets are considered

to be one argument, and the entire argument, with the delimiters «»
removed, will be substituted for the dummy argument in the original

definition.

The Assembler recognizes the end of an argument only on seeing a ter­

minating character not enclosed within angle brackets.

If brackets appear within brackets, only the outermost pair is deleted.

If angle brackets are required within a real argument, they must be

enclosed by argument delimiter angle brackets.

Example:

.DEF IN ERRMSG,IE< T

ERRMSG ('ERRO R IN LI NE'~ 15)

4-6

/

I' .. !

~-1acros

00000 R 600007 R *G
00001 R 426 45 2 A * G
00002 R 247644 A * G
0 00 03 R 2 02 23 1 A *G

00005 R 4 46350 A 1G
0 00 06 R 5 06 400 A *8

4.3. 2 Created Symbols

1'1':; 1 i·1 r
" C 17:: h: U h: ::: r. .. ~ : .. I I\! [: I <: :!. ~:.:.; .,:'

Often, it is desirable to attach a label to a line of code within a

macro definition. As this label is defined each time the macro is

called, a different symbol must be supplied at each call to avoid

multiply defined symbols.

This symbol can be explicitly supplied by the user or the user can

implicitly request the As sembler to replace the dummy argument with a

created symbol which will be unique for each call of the macro. For

example,

-/.DEFIN-jMAC,A, ?B

The question mark (?) prefixed to the dummy argument B indicates that

it will be supplied from a created symbol if not explicitly supplied

by the user when the macro is called for.

The created symbols are of the form •. 0 000+ •. 999 9 . Like other symbols,

they are entered into the symbol table as they are defined.

Unsupplied real arguments corresponding to dummy arguments not preceded

by a question mark are substituted in as empty strings; and supplied

real arguments corresponding to dummy arguments preceded by a question

mark suppress the generation of a corresponding created symbol.

Exampl e :
.,
.i. ,.,
",','.

6

1 0

D::::,;.

4-7

. .. 1:':1'"
L(:,C
D{:",C:

·,. ENXh··:
(1 (:., C

D

OO() ()O F: 20000'.1' r;:
O()O O1 I'" ". 1'402 0 0 (1

00 00::;:: r;: ~1)OO() O(, r' ",

00003 r;: ::.:~ 0 0 () () 0 (.1

00004 1';.: 0 4 0 0 1 0 F:
00 00 ~."j I'~' 0 4 0006 I'~

O()()OO6 F ~

1 1
:1.2 OO(j06 F, 000000 ,.

I' :

1. 3 ()O ')O ') O ..
H

:31/["'O()O l :I. NO [1';: r;: 01'\: I...INF~:)

:>i<:G

*G
):{G
)j(C'i

*G
*n
*U ,. " () 0 (> :.~ ::::

/
l"i YT ,~,G

I.J~C

~:)Z{:l

,.JI"i'::'
L(:)C

D()C
(l AC

0
;. nm

~ "O()(>::.:::jj·

HYT(.lCi

If one of the elements in a real argument string is not supplied, that

element must be replaced by a comma, as in the call above. A real argu­

ment string may be terminated in several ways as shown below:

Example:

M(',C (.:) ,.,n ,
rvi(l C (,?I)" v)

r1(.l C ,0, y B
i"ii",C (" B)

1'1 ,:; C (, vB ,,)

4.3.3 Concatenation

If a dummy argument in a definition line of the macro body i s delimited

by the concatenation operation ' @' a nd immediately preceded or followed

by other characters or another dummy argument, the characters that cor­

respond to the value of the dummy argument (real argument) are combined

(juxtaposed) in the generated statement with the other c haracters or

the real argument that corresponds to the other dummy argument. This

process is called concatenation.

The following example illustrate s this operation.
:I. . DEFIN CA LL, TYPL. ADDR

)'

[0

11
:1.2
:1. :5

bIZE""00006

00000 R 600003 R *G

COJOl R 100004 R *G
000 0 2 I'\: 000005 R *G

OO OC 3 R 740040 A
0 0 004 R 0000 00 A
0000~ R 000000 A

()O() OOO (;

4-8

/ '

C(;L..L.
. .JI'iF'

C i:·'i.../...
{. D~:;(: I

".1 j· ... i ~: ~
., :0 ::::,(,

r;:DUT .: ;<}<.

~;i JE:::::T!. 0)

• [,·m

F>;, j :;~::::: U " i 1
F:DUT :1.

:I.

3
4
,::'
,.1

(.;

....
1

:to
1. :i.
1 ~::
13

, .. . : " ~

J./
JH

Macros

The dummy argument TYPE is used to vary the mnemonic operation code of

the generated statement. The character P, which is the corresponding

value of TYPE in the first call to the macro, will be concatenated with

the characters JM to form the mnemonic JMP. This action occurs because

a dummy argument (i.e., TYPE) is delimited by the concatenation opera­

tor (i.e., is preceded by @ and is immediately preceded or followed

by other characters or another dummy argument).

Of course, in the case where other characters are to be concatenated

with the value of a dummy argument, and the first of the other chara­

cters is a delimiter, it is not necessary to further delimit the dummy

with the concatenation operator. The following example illustrates

this rule.

::~,: i:j

00000 R 74 iO OO H +0

C <) ,.) ,~) ,.~'. J ::~ ~':~:I. <~, () .,-.:: ,~> ~.;.: >;.;. ~ J

OO OO~ ~ 050) R *G

,,0.' _.
·T - , .,'

. DEFIN MOV[,FRDM,lO,LV l

.:.!':/ E.T.: :,·:\'C .<')1 .. '.'1. ..
:::' ;<1::'

~:;l). ::,'1.. \)1. . • DL.U CI< :I.
~:~ t.,.: C , t'! ; ... t) L. :;:: :!:

/

¥ E i\]1)C

D('lC
i. .. (·\C
Dtl':::

,':; ..
\ .. "

i ... (~ C
D,:,,:;
: ... ;' :.i ...

~:,; I) • ~;.) I. .. ,, 'I...

b\) .~ 0
~..:~;)·i·<) ~' /
h i . .J~::, T <) i ><

:.~.:- G ~ ::; :.j." '~ .. '

,:·' f:.
;.' ~ , ..

000]2 ~ ;41000 A ~G

) :)(::1 /~. ; -.: (> ·~O C ,,' I,)}:. U

CO'.) :i. : ',1 F< ~ ... :. :;. I,..' " i.: .. : :;. i"< ,y. t:.;

VVJ~0 ~ 05 00 J5 R tG
(j i)O .l.)' 1':: ;:::0 00 :1. :.:) :(*U

1':1;-:" ;1. ::.

i. .. i:, , ...
L,·: ::
: .. { .';

: ... t:c ,
D f:'; 1'::
1.. .(1 (:;

4-9

i ".' I ,\\

.;\ " ,.,
1", i A •

• . 1.

' .. :-:, ; -;
, ,1,.-:, . 1.

:U .i. ,,;<
~:~ ~J " ~:.

Macros

In this example concatenation is used to test the existence of a named

temporary location, and, if necessary, output code to define it. Then

the concatenation operator - Assembler delimiter rule is presented by

concatenating two dummy arguments and other characters beginning with

a delimiter. In detail, one such concatenation string is a delimiter

(Le.,-.j),· a dummy argument (Le., FROM), the concatenation operator

(i.e . , @), a second dummy argument (i.e. , LVL) , finally followed by

other characters beginning with a delimiter (i.e., ,X).

The general case of real argument for dummy argument substitution per­

formed by MACRO is the application of the "other characters beginning

with a delimiter" rule presented above. In other words, argument sub­

stitution may be thought of as concatenation when the dummy argument

is bounded by delimiters, rather than a concatenation operator.

Note that one ambiguous case can arise in use of the concatenation opera­

tor when the other character string to be concatenated with an argument

value is the same as a dummy argument name. The following example

illustrates this problem.

t,..I rC~:>(;·;' L. i. .J; ···.i

.. ;' ~\'i :;: -.. !::. \.-' .:.- '..}

-~ ; .. ' , ..

C: (, .

c· .. ·

.. ;' . . '

This macro was written with the intention of satisfying the following

flow diagram.

4-10

OUTPUT WAITFR
CODE, 16l1/J WITH
LABEL "WTCPlun"

1

OUTPUT THE ADDRESS
OF LABEL "EVlun"

YES

6

Macros

OUTPUT THE VALUE
OF EV HE SPECIFIED

7

OUTPUT A
"CAL WTCPlun"

9

8

For instance, if the following call to the WAIT macro were coded (wit h

WTCPl~ unde f inen):
" . j . ' .

" ","

:';""":: " .~ ,,' 1,/ " ... ::

" :::: t· .~ .• : L,·

? ,;, ' F >Z

, ', !,ii l'

4-11

Macros

Note that according to box 6 of the preceding flow chart, under these

conditions it was desired to output:

-! EV1.0

for line 7 of the above expansion rather than what was actually gener­

ated. This discrepancy occurs because the characters EVon the appro­

priate line of the body of the definition are not recognized as "other

characters". EV is also a dummy argument which is bounded by an Ass­

embler delimiter (i.e.,-!on the left) and the concatenation operator

(i.e., @ on the right). This will cause the concatenation of the value

of dummy argument EV (i.e., null) and the value of the dummy argument

LUN (i.e., 1.0), thus producing the output shown on line 7 of the ex­

pansion. The only solution to this problem is to choose the names of

dummy arguments to be different from any character strings to be used

for concatenating.

Following is a comprehensive example of the use of the concatenation

operation in defining user macros: the definition of two macros,

ERRMSG and MESSAGE. The purpose of ERRMSG is to cause a subroutine to

be called (named ER.PRO) which will print an error message.

It has as arguments the error number (from .0 to 77
8

) and an optional

return address. The label of the error message to be output is created

by concatenating 'ERM.' with the error number. (ERM • .0, ERM.l, etc.) If

no return address is specified, control is transferred to a label named

ER.NOR by default. The second macro, HESSAGE, is used to create an

lOPS ASCII line buffer with the error message to be printed, presumably

via the ERRMSG macro. It also has two arguments: the error number,

and the message text. The output of the macro is a properly set up

header word pair labeled 'ERM.xx' where 'xx' is the specified error

number, and a .ASCII statement which contains the text specified, pre­

ceded by 'ERR#xx--', where 'xx' once again is the error number. The

reader should examine the example noting the use of the conditional

assembly parameters to accomplish macro-time error detection.

4-12

Macros

.TITLE cnNCATE~ATIQN EXAMPLE FOR ~ACRO MANUAL
I
I~Ar~(' '~Rj:(tIS(;' Of.Flt'ITION. fRRQR MESSAGE OUPUT MAC~O.
I
I ~ALLING SEQUE~CE:

/
I EF.~~SG EP~~O[,~F.TURNl

I
I ',:HERE:
I ~RRNO • A~ OCTAL NU~8ER FRO~ ~ TO 77 REPRESENTING
I THE ER~~R COnE.
I ~ETURN • (GPTID~AL) THE LOCATION TO WHICH CD~TROL
ISH Q U L n I ~ E R fT I) R N E I') F D L L n \II I N G 0 U T P lJ T 0 F
I THE ERROR MESSAGE. IF NOT SPECIFIED,
I CONTROL wILL ~E GlVEN TO LOCATION 'E~.NOR'.
I
I nliTPUT:
I
I ~~TPUT nF ERR~SG CO \ SI5TS OF A JMS TO THE ENROR P~OCESSO~
I 'E~.PRO', FOLLO~E0 PY A .DSA ERM.XX WHERE XX ~ ERRNO.
I FR~.XX IS ASSUMED Tn HE A STANDARD lOPS ASCII LINE RUFFER
I ;HICH CONTAINS THt ['ESIRED MESSAGE. IT MAY BE [)EfINEn USING
I ,.HE '~iESSAGE' MAC~O (SEt BELOW).
I
I FRROR DET~CTlnN:
I
I H ; r:: ERROR NU~~ €\E~ ('fRRNO') IS CHECKED TO ~E RETIOIEE""
I J AND 77. nTHERwlSE AN ASSEMbLER ERROR LINt IS
I r~TPUT ~ATHER TrlAN THE CALL TO 'ER.PRO'. THF ILLEGAL
I ASSEM8E~ LINE WILL CAUSt AN 'N' EQR~R (AMONG OTHE~S, TO BE
I ~ E~ERATEn 9Y THE A5SE~~fR, THUS INDICATING A 'NUMBER'
I ;:- RROR.
I

• DEFt~.
.IFNEG
.IFpnZ

z lRT ~'C :RnJ+Q\
.!FZER

Z Z ~ T t-.! r • FR. :.0 R
.E ~ DC
Ito'S
.DSA
Jf'li='
.E NQC
.E NOe
• I F~JEG
9
.HiDC
.IFPOZ
9
• D,jf)C
• E :'~nM

ERR~iSG, ERNN(1, RTN
ERRNO-l~~ /VALIDATE ERROR CODE NUMBER
E~R~O ITO dE ~ cz ERRNO c_ 77

ISETUP RETURN ADDR. IF SPECIFIED
ZZRTNC

IIF NO RETUQN, SET TO 5TO. ADDR.

EQ.PRO
EF'M.~ER~NO

ZZRTNC

ICALL THE ~RROR PROCESSOR
IPOINT TO RIGHT MESSAGE
IEITHER RETURN TO 510. EXIT, OR ~HERE I SAID

ERRNO IPUT OUT ERPQR IF NECESSARY
ERROR COOF IS < ~ OR > 77

ErRNO-l~"
EPRnR COD~ IS c 0 UR > 77

IMACRO 'MESSAGE' DEFINITION. RUlLO AN ERROR MESSAGE LINE BUFFER.
I
I CALLING SfOUE ~ CE:
I
I MESSAGE Enp~O,<TEXT>
I
I \oIHERE:
I ER~NO = THE ENROQ NUMBER, FROM ~ TO 77 (OCTAL)
I <TEXT> = THE MESSAGE TEXT (ENCLOSED It-.! ANGLE
I 8~ACKF.TS, AS SHO~N) TO BE ASSUCIATED wITH THIS
I 'ERPNO'.

4-13

Macros

I r, UTPUT:
I

I , STA~DA~~ lOPS ASCII LI~E BUFFER IS CRfATED wITH T~E NA~E
I 'E~M.XX' WHERE X~ a '~RRNO' (SEE ABOVt). THE ACTUAL ~ESSAGE
I WILL ~AVE THE FOR~AT 'E~R#XX-- Tf~T I, WHE~E X~ AND TEXT ARE AS
I A80VE. OF CO r.J ~SF., T~f LtNE BUFFER ~EAOER PAIR WILL BE. PROVIDED.
I
I EP~OR DETECTl nN :
I

I 'E RRNO' WILL RE CrlECKEn TO BE BET WEfN ~ ANU 77.
I IF THE CHECK SHU~S AN FRROR, AN ASSEMBLER E.~ROR
I LINE ~ILL BE GE ~ E~ATEO RATHER THE THE MESSAGE CODE, THE ERROR
I I P i E WILL CAL.ISE AT LEAST AN 'N' FLAG, INDICATING A 'NU~BER'
I FR~OR.

I
.l'.)fFI~J

.IfNF.G

.TFPOZ

MESSAGE,E~R~o,T~Xr,?A
ERRNO-l 'H~

F.RM,~F~~NO
EPR~O

A-ERM.'ERRNn/2*1~~~+2

AI:,

* C;
*C;
*G
... (; . (;
*G
or.
*G
*G
*G
*r,
*G
*G
*G
*r,
*G
*r;

.r,
*G
*r.
*G
*r.
*r.
* t;
*G
*u
*G
*r;

13
.ASCII

• E ~i GC
.E"lnc
• I n; F. G ERR 01 0
g **E~RO~ COOF IS < 0 OR > 77**
.ENrc
.IFPOZ ERRNO-1 ~ 0
9 **EPROR COOF IS < ~ OR > 77**
• EtlDC
.E~DM
.EJECT

ERR /ISG
.IF NEG
.IFPQZ

ZZRT lliC =+0
• "(FZEI<

zZRHJr=ER.N"R
.ENJ)C
JMS
.DSA
JO~p

• EtlD C
.E 'J f)C
.IF NEG
9
• E i~ r. r:
.IFPOl
9
• r: t·C C
£RRMSG
.IFNEG
.IFPOZ

ZZRT"' CaRECCV+(f
.IFZEp

Z Z R T N C • E R • "i (HI
• E ~:D C
J '"'S
. DSA
J/-:P

.E~t:'C

.ENDC

ER.PR ()
[RH.AI
HR TN C

4

/OUTP UT FRRQR MESSAGE ~4, TAKE STANOA~O E~IT

E PRQR COUE IS < ~ OR > 77

4-1 ~H"
ERR OR COUF IS < ~ OR > 77

45,RECOv IGlvE ERROR #45, ANU ~ETURN TO LOC 'RECOV' WHEN DONE
45-1 e (~

45

ER.PR Q
EP M.45
ZZ RT NC

4-14

* (. ., III ~"Fi ••
• E.~JDC
.fNDC
.IF·~ EG 4

Macros

9 **E~RUR COD~ IS c ~ UR > 77**
.E \i DC
• -r F ~ 0 Z 4 - 1 (~ Ql
9 **ERR OR (OO~ IS c ~ OR > 77**
• E : ~ O c:

*r,
*G

~E5S~r;E 45, <A ~1BrGuUI ' ~ USE. OF A COMPILER I(EY~ORO>
.IF'NF.G 45-1"'Vl
.IF~OZ 45

*G Fr./'I.d~
*e;

•• ~~09-ER~.45/2*100~.2

" *G .ASCll 'F~R#45--AM'"TGuOIJS US~ nF A COMPILE~ KEVWORf)'<15>
*e;
*e;
H;
*r,
*(;

*e;
*e;
*e;
*e;
* t;
*G
* (;
*r,

.lro ~~EG

9
.E N:'lC
.IF~OZ

9
• F. 'J 0 c:
_PR ~~ sG

.IF e< EG
*G .IFPf)Z
*G zZRT~r.~~COv.~

*G .IFZER
*e; Zl~T'ICo:E:::. 'l OR
*e; • E ~,i ~ C

JMS
.i)SA
J~j:)

.:: tJoc
• E',nr;
.1F'NEG

• E ' J ('\ r:
.IFP OZ
9

*G .(NCC
EkKMSG

*e; .IFNEG
*e; .IFPOZ
.. G Z Z R T ,,! r 0: • '"

*e; .IFZER
* G Z Z R T "J r:: = E ~ • ' J 0 R

4~

**ERRO~ rODf IS < ~ OR > 77*.

45-1~(lI

ERROR COO~ IS < ~ OR > 77

-34,RECOV
-34_1Jl~

-34

ZZ~TN(

ER.PRO
E R~l . -:34
ZZRTNC

-34

ISHOW THAT to NEGATIVE ERROR NO. IT ILLEGAL

* .. ERROR CODF IS < 0 OR > 77**

-34-1,;1(1
.. *ERRQR CaDE IS < ~ OR > 77.*

456 ISH OW ThAT AN ERROR NO. > 77(8) IS ILLEGAL
456-UIil
456

ZZ RT'I C

4-15

.G
*G
.G
*G
*G
*C,
*C;
*G
.c;
.G
• r;
*G

*r.
*G
*r; FRI'I.4

·G
.c;

*G
.r.
·G
*r,
*G
.(;

*G
.G
*G
*G
*G
"G
.. r:.

*G
.r;
*r;

*r;
*G
.G
*r, •• ~"'~9" •

*G
*G
*r; EkM._l
.r;
.G
*(; •• ~Ot'211.

Macros

• E ~J 0 C
JMS E~.PRq

.OSA E. R ~·l. 456
J ~,~ ZZRTNC
.F..hJDC
• Et.OC
.IFNEG 456
g .·ERRi1R CUDf IS < ~1 OR > 77 ••
.E NDC
.IFP[)Z 455-11HI
0 **ERROf.? CODf IS < ~ OR > 77 ••
.ENDC
.EJECT

HESS_GE 4,<ILLEGAL nR U N RECOG N IZA6L~ SYNTAX IN ST~NT>

.IFNEG 4-1~0

.!FPOZ 4
•• 0~~b_ERM.4/2.10 ~ ~.2

o
.ASCII 'fRR#4--ILLf'GAL OR UNRECOGNIZABLE SYNTAX IN STMNT'<15>

• ENDC
• E ~WC
• JFtJEG
9
• E i";[lC

.IFPOZ
g
• E ~J D C
MESSAGE

45
•• ERR8R CODE IS < ~ OR > 77 ••

45"H"~
**ERROR CO OF IS < ~ OR > 77 ••

-l,<THIS S~rlJLn GIVE A MACRO-DETECTED E~ROR>
.IF "I EG .. 1-10~
.IFPOZ -1
•• 0n12-ER~.-1/2*1 ~ ~P.2
o
.ASCII 'FRP~-l--THIS SHOULO GIVE A MACRO-DETECTED ERRORI<15>

*G .E NOC

tG

*(;

.(NOC

.IFNEG
9
.E~iDC

.IFPOZ
9
• E t. CC
.EJE:CT

-1
•• ERROR (OOF IS < ~ OR > 77*.

-t"10~

.*ERROR CU Of IS < 0 OR > 77**

4-16

Macros

4.4 NESTING OF MACROS

Macros may be nested; that is, macros may be defined within other mac­

ros. For ease of discussion, levels may be assigned to these nested

macros. The outermost macros (those defined directly) will be called

first-level macros. Macros defined within first-level macros will be

called second-level macros; macros defined within second-level macros

will be called third-level macros, etc. Each nested macro requires an

.ENDM pseudo-op to denote its termination.

Example:

Level 1

-I. DEFIN-I LEVELl, A, B

-ILAC-j A

-ITAD-j B Level 2

-I. DEFIN -j LEVEL2, C, D

-jISZ-j C

-IDAC-j D Level 3

-j.DEFIN-lLEVEL3, E, F

-jAND-j E

-jXOR-j F

-I.ENDH LEVEL 3 . ENDM

-jDAC-j Z

-I. ENDM LEVEL 2 .ENDM

-IDAC -jy

-I. ENDM LEVEL 1 .ENDM

At the beginning of proc e ssing, first-level macros are defined and may

be called in the normal manner. Second and higher level macros are

not yet defined. When a first-level macro is called, all its second­

level macros are defined. Thereafter, the level of definition is irre­

levant and macros may be called in the normal manner. If the second­

level macros contain third-level macros, the third-level macros are

not defined until the second-level macros containing them have been

called.

Using the example above, the following would occur:

! , : j:-::':
: ... :: .. "." -.

,/'::! i, ;;;,::'
')((:1 ,;:,(,

. ,"\ . ,~

) i,'),..: '.

;::. \/ :':: . ;.: .. : ~.' C:: ~.' Ii

4-17

.-',. ,1,.

"

,)

Macros

.. ~\ i.:.' ,C:,.: .. '
0002 R 04 0016 R ,~

1 () 0 ",r ,,)

," 0 0 4 1.)

C () I::' '''!

i

. ,

F;; ·.;l ~:.~ 0 0 .i,
F\ 0 /1, 0 0 :i.

I' '\ e /~, 0 () 1

; :;~ (; "

,,' " ,.- ,.,
\".. ,.::. Of ' ,

"

.... , r;·, >;<

:::~ r;; "t,'
.') \

.... '<.

,ii"

>~<

.,<
.'

;'\ .i:\ ,"

" ! ,; ,;'.

/i',

~3

~ .. '

C::
G
t·}

C"
c, .

. .)

,

l:.'

.:. D 1.:: F ... I', 1... ;:: .,: : ...•. , :~. :: i::. ~L F
\-: ;'.". : i:::
... \!...t, ·,.:

~. !::. i ·.i :.::1 :' /;

::::i (I !:, ', .,/

.. \' "' .
t]"!" .i.,

If LEVEL3 is called before LEVEL2 it would be an error and the line

would be flagged as undefined.

When a macro of level n contains another macro of the level n + 1, call­

ing the level n macro results in the generation of the body of the macro

into the user's program in the normal manner until the .DEFIN statement

of the level n + 1 macro is encountered; the level n + 1 macro is then

defined and does not appear in the user's program. When the definition

of the level n + 1 is completed (.ENDM encountered), the Assembler con­

tinues to generate the level n body into the user's program until, or

unless, the entire level n macro has been generated.

4.5 REDEFINITION OF MACROS

If a macro name, which has been previously defined, appears within

another definition, the macro is redefined and the original definition

is eliminated. For example,

,i, '

~: :, (:; . ,'- .

. .. -'. : ..•.. ~ ': .

. .• , . ', " 0 ,' -, i ...

When the macro INDXSV is called for the first time, the subroutine call­

ing sequence is generated and followed immediately by the subroutine

itself. After the subroutine is generated, a .DEFIN that contains the

name INDEXSV is encountered. This new macro is defined and takes the

place of the original macro INDEXSV. All subsequent calls to INDXSV

4-18

Macros

cause only the calling sequence to be generated. The original defini­

tion of INDXSV will not be removed until after the expansion is complete .

O()()OO r;:
O()OO I. I;:
OOO(:\:~:.:,' F;:
() 0 0 (I :'::; F:
00004 p
OOO()~:.!j :::~

OOOO {,: r(
OO()O)' F:;

.I. ()O 002 !? >KG ~:; (:) 'H::

~ :; (:) ~'I J >< "r'
000000 A *G SAVE 0

o·~·~·OO:L 0

()·400J.:!.
\~'i 2 () 0 Co ::'.~

OO(i(i:l. 0

\'.:

;: ;~
(,

F~
i: ~~

:'<

>:<C:.
>1<(:;
::.:< C~

>1< C-:;

>!<G

*G
;Hi
*(3
~{.\ Cj

, i.)

'.' L F f: .:. r"~ i: j··l Li X ~:~ ~)
,.i;"i:::, :'::;(,:),:,:
;. Ei'~D r'-!

4.6 MACRO CALLS WITHIN MACRO DEFINITIONS

The body of a macro definition may contain calls for other macros which

have not yet been defined. However, the embedded calls must be de­

fined before a call is issued to the macro which contains the embedded

call. Embedded calls are allowed only to three levels.

Example:

The call

,1:1;' ,,:: 11i
1." (",:::
'1"(.":(1

i'j(,Cl
1...(, [:
'I" (:',:U

" ~ . 0'

!'()UI.
'f('!C-;:::,::

" / ./ /)

causes generation of

/ 'Ei·';J:::L .L' t :;:.:{1 C(.\ i ..

4-19

Macros

4.7 RECURSIVE CALLS

Although it is legal, avoid making a macro definition, containing an

embedded call to itself because the expans~on will cause ~ore than

three levels to occur.

Example:

.DEFIN MAC,A.B .C
1..,(\(: r:)

T f:~:O B
DA C C
f-1(,C ('I,' D~· C ,. F<[f::: UF':::; It)/,' (I i ... !. .. ,
, E:NDi'l

When a call for MAC is encountered, the Assembler searches memory

for the definition and expands it. Since there is another call for

MAC contained within the definition, the Assembler goes back once again

to obtain the def i nition; this process would never cease if more than

three levels were allowed. A conditional assembly statement could be

used, however, to limit the number of levels as in the following

example.

Example:

t,,,, (i
F,: ;"· 3

, DEFTN
i...i~C

Dt ,C

;-··-i {iC ~,c ~) 11
L
r::

"IFNIF< D····,:)

. [Nne
, ENDI"l

Names and arguments of nested macros and arguments of embedded calls

may be substituted and used with perfect generality.

4-20

F~:::: .,

(oIlEFIN
Lr,C
{"[iD
D(:lC
.DCFIhi

{)ND
D(:lC
,Ej··WM
,.[NDM

Macros

h tiCI ,! t~YByC,n

!:~r

B
C
1:1 y 1'::
()

I::.

.DEF IN MAC2,M,N~O,P.Qp?R

I!:;Z M
..Ji"l P 1'::
i'ii)C:I. ['i '! U, F'" G

MAC2 CDUNT,TAG1,TAG2,lAG3.MAC3
. ~. - ... /
.l.:;

"" .. " /". i '~ •
r l t·I\I .

!...(,[:
(,[II:!

• DEF:!. i'!
(:)r\'f'
:0(,)[

CD UN r
~. y 0 () () ::~i
TAG1.fAG2vTAG3.MAC3
"T(ICi l
'r(~I D2

Ii< () ,. I':: j··i j) i"j
*G • + ()()O~::.i::::,

4-21

5.1 INTRODUCTION

CHAPTER 5

OPERATING PROCEDURES

Detailed descriptions of the assembler calling procedure, command

string format, general operating procedures, and printouts are given

in this chapter.

5.2 CALLING PROCEDURE

5.2.1 XVM/DOS

In the XVM/DOS systems, the MACRO Assembler is called by typing HACRO)

after the Monitor's $ request. Hhen the Assembler has been loaded, it

identifies itself by typing:

~~CRO XVM Vnxnnn or BMACRO XVM Vnxnnn
> >

on the teleprinter. The > character indicates that the Assembler is

waiting for the user to type in a command string.

There are two differences between MACRO XVM (the Page Mode Assembler)

and BMACRO XVM (the Bank Mode Assembler). MACRO XVM starts each as­

sembly assuming page mode relocation (.DBREL implied) and BMACRO XVM

assumes bank mode relocation (.EBREL implied). When program sizes

exceed 4096, MACRO outputs the warning message "PROG 4K" in the assembly

listing but Br1ACRO does not. This message will appear even if the pro­

gram is assembled under influence of .EBREL. This warning message has

no other effect; the program will be assembled and output will be pro­

duced anyway.

5.2.2 RSX/XVM

In the RSX systems, MACRO is invoked by typing in the Assembler's name

and also the command string on the same line following the prompting

5-1

Operating Procedures

message "TDV " For example:

TDV>MAC BLXR FILE)
MACRO XVM Vnxnnn

The Assembler identifies itself, as just shown, only if the R option is

designated in the command. The RSX version of the Assembler is equival­

ent to BMACRO in that it assumes .EBREL to begin with and does not

print "PROG>4K".

5.3 GENERAL COMMAND CHARACTERS

The following characters are frequently used in the entry and control

of ~~CRO programs.

Character Printout

RUBOUT (Echoes")
CTRL U (Echoes @)
CTRL P (Echoestp) a.

delete single character
delete current line
If the input source is physically segmented
so that all but the last segment end with .EOT
or nothing, the Assembler will print out the
message

EOT

when the end of a segment is reached. In XVM/
RSX, the Assembler does not type any such mes­
sage.

b. If the source is segmented in such a way that
operator intervention is required to load
another segment, MACRO will print

tP

(MAC-tP in XVM/RSX? and wait for the user to key
in CTRL P (CTRL PI in XVM/ RSX). Except in
XVM/ RSX, the user response will be printed also
and the line will appear as

t PtP

In XVM/RSX if no other tape is to be ;loaded,
terminate assembly by typing CTRL Q~ .

c. At the start of PASS 2 or PASS 3 if input is
on paper tape or if the source is segmented on
DECtape or Magtape with segments being read via
the same .DAT slot, the Assembler will request a
CTRL P response as above.

5-2

Operating Procedures

d. If the Assembler is not waiting for more input,
or is not waiting to start the next pass,
typing CTRL P causes the Assembler to restart
at PASS 1. This is true for all systems except
XVM/RSX.

CTRL D (Echoest D) If the user specifies the Teleprinter as the
input parameter device, he can delimit the param­
eter code by typing CTRL D (tD) (followed by .)
with the XVM/RSX Monitor). MACRO responds with
EOT. ~ACRO immediately begins assembling the
program from the device assigned to .DAT-ll
(LUN 15 with XVM/RSX) •

5.4 COMMAND STRING

The command string format consists of a string of options, followed by

a left arrow, followed by the program name(s), followed by a terminator.

options~filnml,filnm2, •..

The following sections describe the rules for forming proper command

strings and show typical assembly examples. The character terminating

the command line has significance. Terminating the line with a carriage

return will cause the Assembler to re-initialize itself to PASS 1 at

completion of the assemblY7 the Assembler is thus ready to accept an­

other command string. Terminating the command with an ALT MODE will

cause a return to the monitor at the end of assembly. In the XVM/RSX

systems these line terminators have a different meaning. Termination

with carriage return causes TDV to be called7 termination with ALT MODE

does not. In either case, the Assembler exits after executing the com­

mand line. If a command string error occurs, the entire command must

be retyped.

5.4.1 Program File Name

To the right of the back arrow in the command string, one or more pro­

gram file names may be required, depending upon the options used and

the type of I/O devices. Where several names are needed, they are

separated by commas.

Program names are required for files which are to be input from or out­

put to directoried devices. The two proper forms for a file name are

filnam~ext

or

filnam

5-3

Operating Procedures

where

filnam = 1 to 6 character name

ext = 1 to 3 character extension

These may be formed from any of the legal printing characters shown in

Appendix A and may appear in any order.

If the file name extension is omitted, the Assembler assumes SRC in

default. Following are examples of single name command strings.

Examples:

User Command String Assembler Interpretation

Name Extension

+ L...-'ABCDEFL...-'U~.0) ABCDEF 1.0.0
+ABL...-'.011 AB .011
+ A,) A SRC
+ABCDEFG) ABCDEF G
+ABCDEFGL...-'H:) ABCDEF H
+ABCL...-'L...-'VIA ABC SRC

The last three examples illustrate how the Assembler interprets im-

properly formed file names. If the file name is longer than six char­

acters but is not followed by a space, the seventh, eighth and nineth

characters are used as the extension. If it is followed by a space,

characters beyond the sixth and before the space are ignored. If two

spaces follow the file name, the extension is assumed to be SRC. In

general, if too many characters are given the excess characters are

ignored.

The extension name of the main program is output (unless the 0 option

is present) as a special code in the relocatable binary file. This

enables programmers to easily identify different versions of the same

program by merely assigning unique extension names. If the P- option

is utilized, the Linking Loader and UPDATE print out the source file

names, including extension.

Regardless of the source file extension, such as TEST .0.01, the binary

file extension will be either BIN, meaning relocatable binary, or ABS,

meaning absolute binary.

5.4.2 Options

Assembler options direct the course of the assembly. They describe

5-4

Operating Procedures

the types of input and output desired. Option characters are listed to

the left of the back arrow. They may be listed in any order and are

typically not separated one from the other (although commas and spaces,

which are ignored, may be used as separators). Option characters which

appear more than once and invalid characters are ignored.

Examples:

Meaning Command

B+FILE)

BLS+NAME)

Assemble FILE SRC and produce a
binary object file.
Assemble NAME SRC and produce a
binary object file and an assembly
listing followed by a symbol table
listing.
Assemble PROG ~lX producing no out­
put except a list of assembly er­
rors, if any, on the listing device
assigned to .DAT -12 (LUN 16 in
XVM/RSX) •

The following table shows the action and the default of the options.

Option Action

A Print symbols at end of PASS 2
in alphanumeric sequence on
listing device.

B Generate a binary file to DAT -13
with extension BIN or ABS, as re­
quired. (LUN 17 in RSX).

C Program areas that fall between
unsatisfied conditionals are
not printed. It is not nec­
essary to type the L option if
this option is used.

E This option enables the user
to have any errors occurring
during assembly printed on the
console pri~ter in addition
to the device assigned to .DAT
-12 (LUN 16 in RSX). The L or
N switch should be used with
the E option. This option is
particularly useful to users
who assign non-printing de­
vices to .DAT -12.

F Read macro definition file from
.DAT -14 (LUN 18 in RSX) during
PASS 1. Terminate input with
.EOT or CTRL D if Teletype l
(CTRL D ~ if RSX).

G Print only the source line of
a macro expansion. It is not
necessary to type the L option.

Default Action

Symbols are not printed
in alphanumeric sequence.

A binary file is not gen­
erated.

All source lines are
printed.

Assembly errors are not
printed on the console
printer.

No macro definition file
is processed.

Generate printouts for
macro expansions and ex­
pandable pseudo-ops (e.g.,
.REPT) •

lTeletype is a registered trademark of the Teletype Corporation.

5-5

Operating Procedures

Option Action

H The H-option is used in con­
junction with the A, V, or S
options. User symbols are
normally printed horizontally
at the end of PASS 2, four
symbols to a line. If the H­
option is used the symbols
will be printed one to a line.

I Ignore .EJECT's. The .EJECT
pseudo-op is treated as a
comment.

L Generate a listing file on the
requested output device, DAT
-12. (LUN 16 in RSX). If the
output device is directoried,
then the listing file extension
will be LST.

N

o

P

R

S

T

V

Number each source line (dec­
imal). If this option is used,
it is not necessary to type the
L option.
Causes the assembler to omit
the source extension and the
linking loader code 33 from the
binary file. This option must
be used when assembling pro­
grams in the DOS or RSX systems
to be run in ADSS or B/F.
Before assembly begins, read
program parameters from DAT -10
(LUN 20 in RSX). Terminate
input with .EOT or CTRL D (if
Teletype). The parameter file
is read only once; for this
reason, only direct assignments
may be used.
Identify the Assembler version
number, print END PASS 1 and
END PASS 2, and print the er­
ror count on the teleprinter
(RSX only).
Same as selecting both A and V.

The T option causes a "Table
of Contents table to be gener­
ated during PASS 1. The table
will contain the page number
and text of all assembled
.TITLE statements in the pro­
gram.
Print symbols at end of PASS 2
in value sequence on listing
device.

5-6

Default Action

Print symbols four to a
line.

Skip to head of form when
.EJECT is encountered.

A listing file is not gen­
erated (see options N,C).

Source lines are not num­
bered.

Loader code 33 is included
in the binary output.

No parameters, begin assem­
bly immediately after com­
mand string termination.

These items are not printed
in order to speed up batch
processing.

Symbols are not printed.
(If neither option V, S
nor A is requested, sym­
bols are not printed.)
A table of contents is not
generated at the head of
the assembly listing.

Symbols are not printed
in value sequence.

Option

x

Z

Operating Procedures

Action

At completion of PASS 2, PASS 3
is loaded to perform the cross­
referencing operation. At com­
pletion of PASS 3 the Assembler
will call in PASS I and 2, to
continue assembling programs.
If the command string was termin­
ated by an ALT MODE, control will
return to the Monitor at the end
of assembly. Without the N op­
tion the user would obtain a
cross reference which would be
effectively useless since the
source lines of the listing are
not numbered. The N option is
automatically entered if you
enter Land X.
The Z option is related to the
macro definition file option F.
Z has no effect if F is not also
specified. F and Z are used in
combination when the main program
is segmented into two parts.
The first part containing in­
structions other than simply
macro definitions, must be read
both during PASS 1 and PASS 2.
This is the function of the Z
option.

Default Action

A cross-reference is not
provided and PASS 3 is
not called in.

The F option, if specified,
causes the Hacro definition
file to be read only during
PASS 1.

5.4.3 Multiple Filename Commands

In the general case a command may require up to three file names, de­

pending upon the options specified, to produce a single binary output

file. As will be illustrated later on, the Assembler in XVr1/RSX sys­

tems allows multiple assemblies to be specified in a single command,

which may require more than three file names. For the other software

systems, the limit is three. Names may be needed to specify parameter

files, macro definition files and program files. The use of these

names and the manner in which they are interpreted by the Assembler

are described in the following paragraphs.

NOTE

In the following descriptions any file which is
processed by both PASS 1 and PASS 2 of the As­
sembler is also processed during PASS 3 if the
cross-reference option (xl is specified.

5-7

Operating Procedures

NAME 1: PARAMETER FILE

If the P option is used and the device assigned to .DAT slot -10 (LUN

20 in XVM/RSX) has a directory, the first name is interpreted as being

the parameter file name. The name of the file must be explicitly stated

if it is on a directoried device. If the device assigned to the para­

meter file is non-directoried, the first name typed would follow the

rules for name 2. The parameter file is passed over only once during

PASS 1.

If the P option is not used, only two names are accepted by the com­

mand string processor. The first name then would follow the rules

for name 2.

NAME 2: MACRO DEFINITION FILE

If the F option is used, the second name (or the first if the P option

is not used) is interpreted as being the macro definition file or part

one of a two part program (assuming the device assigned to .DAT -14

(LUN 18 in RSX) has a directory). If the device is non-directoried,

the second file name (or first if the P-option is not used or doesn't

require one) would follow the rules for name 3. The macro definition

is normally passed over only once, during PASS 1. However, unlike the

main program file, macro definitions on .DAT slot -14 are recorded in

core during PASS 1. Hence, PASS 2 is unnecessary. If the Z option is

used with the F option this file will be passed over twice, allowing

source files in two parts on two different devices. The Z-switch has

no effect if F is not specified.

If the F option is not used, the first name (second if P option is used)

is interpreted as the file name of the program to be assembled.

The macro definition file may also be used as an additional paramet er

file. A second parameter file is useful where a program is conditionally

assembled to produce different versions according to many as s embly par­

ameters.

NOTE

The RS X MACRO does not contain definitions of sys­
tem directives and I/O calls. MACRO definitions
or RSX are in a file called RMC.v SRC, where v
changes with each release.

5-8

Operating Procedures

NAME 3: PROGRAM FILE NAME (Name of the Program to be Assembled)

This file is processed from .OAT slot -11 (LUN 15 in RSX) and always

by both PASS 1 and PASS 2. If the P and F options are not used and

multiple names are typed, only ' the first name will be processed. If

a binary output file is requested, it will be directed to .OAT slot

-13 (LUN 17 in RSX). If either of the two devices has a directory,

a file name must be specified. The binary file will assume the name

of the program file and an extension of either BIN or ABS.

MULTIPLE NAME INTERPRETATION

Before processing, the Assembler uses the .FSTAT function (SEEK in RSX)

to determine whether or not the named files are on the input devices.

If not, the message "NAME ERROR" is typed. In all but the RSX and

BOSS XVM systems the Assembler then expects the command string to be

retyped. In RSX, the Assembler exits and calls TOV so that the com­

mand string can be given to TOV. In BOSS XVM the Assembler exits to

the monitor. Assuming that enough names have been typed to satisfy

the command string options, t1ACRO interprets the file names as follows:

a. Current name = NAME 1.

b. Was the P option used? If not, go to step f.

c. Is the device assigned to .DAT slot -10 (LUN 20 in RSX)
directoried? If not, go to step f.

d. Use the current name (NAME 1) to .SEEK the parameter file
via .DAT slot -10 (LUN 20 in RSX).

e. Current name = NANE 2.

f. Was the F option used? If not, go to step j.

g. Is the device assigned to .OAT slot -14 (LUN 18 in RSX)
directoried? If not, go to step j.

h. Use the current name (NAME 1 or NAr1E 2) to .SEEK the r'lACRO
definition file via .DAT slot -14 (LUN 18 in RSX).

i. Current name = NAME 3 (or NAME 2 in P option not used).

j. Use the current name (NAME 1 or NAME 2 or NAME 3) to .SEEK the
program file via .DAT slot -11 (LUN 15 in RSX).

RULES FOR MULTIPLE NAMES IN THE COMMAND STRING

1. Initial blanks positioned after the back arrow are ignored.

2 . Files are processed sequentially. The first name after the
left arrow is the first file read, the second file is next
and so on.

5-9

Operating Procedures

3. Once a string of legal name characters is started, a space
has the following effect on a name.

a. The first space delimits the proper name and indicates to
the command string processor that the extension name is
next. The proper name is defined as the first six char­
acters of a file name, excluding the extension.

b. Two consecutive blanks delimit the name. An extension of
'SRC' is implied if no extension was typed.

4. A comma or line terminator delimits the name.
above.)

(Same as 3b

5. Any name given after the third name is ignored, except in XVM/
RSX. The XVM/RSX assembler allows multiple assemblies to be
specified in a single command. Where the options require one,
two or three file names, the command may contain multiples of
one, two or three. Each such group of one, two or three names
represents a single assembly.

RESTRICTIONS CAUSED BY MULTIPLE FILE INPUT (not relevant to XVM/RSX)

The .FSTAT system macro is used by the MACRO Assembler to determine

whether or not the input device has a directory and whether or not the

argument names are on the assigned devices. For this reason, only

those I/O handlers which honor or which ignore the .FSTAT function may

be used with MACRO. The "A" handlers for directoried devices (e.g.,

DTA, DKA) honor .FSTAT. The paper tape punch and reader handlers ig­

nore • FSTAT, but the effect is as if they accept it. Device handlers

which treat .FSTAT as illegal may not be used.

5.4.4 Examples of Commands for Segmented Programs

Below are typical assembly situations which illustrate the usage of

some of the assembly options and show the resulting teleprinter output.

The output for XVH/RSX differs slightly from what is shown. That is

explained in section 5.3.

1. Segmented Program on Paper Tape

A source main program is segmented onto three paper tapes to
make loading in the reader easier. Tapes one and two termin­
ate with an .EOT statement and tape three terminates with
.END. All three segments are read from the primary input,
.DAT -11 (LUN 15 in RSX). The command to MACRO to produce
a binary program is:

> B +- At-1YNAM)

Note that tape 1 must be ready in the reader before the com­
mand string is entered. Were it not, the reader would return
an end of tape condition anyway and erroneous results would

5-10

2.

Operating Procedures

be obtained. The resulting teleprinter output is shown below.
The comments to the right are not part of the output; these
are included here as explanatory remarks. User responses are
underlined.

>B +ANYNAM)
EOT lEnd of tape l.

tP....iR IReady tape 2. Type CTRL P.
EOT lEnd of tape 2.

tP-±..L IReady tape 3. Type CTRL P.
END OF PASS 1

tP....!...E IReady tape l. Type CTRL P.
EOT lEnd of tape l.

tP....!..l:. IReady tape 2. Type CTRL P.
EOT lEnd of tape 2.

tP...!....f. IReady tape 3. Type CTRL P.
SIZE==.012.03 NO ERROR LINES

Segmented Program on DEC tape

A source main program cannot fit onto a single DECtape. It is
split in two on two different DECtapes and given the same file
name: MAIN SRC. The tape one file ends with .EOT; the tape
two file ends with .END. The file names must be identical if
both segments are to be read via the primary input, .DAT -11
(LUN 15 in RSX). Example 3 illustrates an alternate method.
However, example 2 must be used if one also is to include a
MACRO definition file, as in example 4. The following com­
mand to MACRO produces a binary program and the subsequent
teleprinter output:

>B + HAIN
EOT

tP t P

END OF PASS 1
tP !...E

EOT
t P....!..R

SIZE=.0.07.03 NO ERROR

lEnd of file 1.
IDECtape on same
ICTRL P.
lEnd of file 2.
IDECtape on same
ICTRL P.
lEnd of file l.
IDECtape on same
/CTRL P.
LINES

~lount second
unit. Type

Mount first
unit. Type

Mount second
unit. Type

3. Segmented Program on Disk

This example is a variation of number 2. A two part main
program resides on disk. It doesn't matter whether the two
files are on the same or separate disk units. Part one ter­
minates with .EOT; part 2, with .END. PARTI SRC will be
read via the secondary input, .DAT -14 (LUN 18 in RSX); and
PART 2 SRC will be read via the primary input, .DAT -11
(LUN 15 in RSX). The resultant binary file, produced by
the following command to MACRO, will assume the name of the
second (primary) file: PART2 BIN or PART2 ABS, as the case
may be:

>BFZ ~ PART 1 , PART2)
EOT
END OF PASS 1
EOT
SI2E==.02.0.03 NO ERROR

5-11

lEnd of PARTI SRC.
lEnd of PART2 SRC.
lEnd of PARTI SRC.
LINES

Operating Procedures

Several pOints can be made about the differences between
examples 2 and 3. First, note that CRTL P type in is not
required unless input is from a device like paper tape.
Next, note ~hat example 2 is impractical on disk because it
requires physically interchanging disks. Example 3 is not
restricted to usage with disk, but can be used with other
media as well.

4. Use of a Macro Definition File

MACDEF SRe, which terminates with .EOT, contains only macro
definitions. It is read from the secondary input, .DAT -14
(LUN 18 in RSX). The user has a main program, USEMAC 002,
which terminates with .END and which calls some of these
macros but does not itself define them. This is just an ex­
ample. It is perfectly legal for the main program to redefine
macros which also appear in the macro definition file.
USEMAC 11112 is read from the primary input, .DAT -11 (LUN 15
in RSX). Below is the appropriate command string to produce
a binary program. Note that the F option without the Z op­
tion (see example 3) instructs the Assembler to read the
first file (the Macro definition file) only d u ring PASS 1.

>BF +- MACDEF, USEMAC 11112)
EOT
END OF PASS 1
SIZE=1111114 NO ERROR LINES

lEnd of MACDEF SRC.
lEnd of USEMAC 11112.

Note that EOT is not printed during PASS 2 because MACDEF
SRC is read only during PASS 1. The preceding example as­
sumes that the files are on directoried devices.

5. Parameter File on Paper Tape

A main program, MAIN SRC, which terminates with .END is con­
ditionalized to produce different binary code based on the
values or existence of certain assembly parameters. It is
read via the primary input, .DAT -11 (LUN 15 in RSX), which,
for this example, is assigned to DECtape. A paper tape con­
taining parameter definitions (direct assignments) terminates
with .EOT and is read via the auxiliary input, .DAT -1~
(LUN 211 in RSX). The following command to MACRO produces a
binary program:

>BP+- l''lAIN)
EOT
END OF PASS 1
SIZE=~~6~2 NO ERROR LINES

l End of parameter tape.
lEnd of MAIN SRC.

Note, although input is partly from paper tape , a CTRL P res­
ponse is unnecessary because the parameter tape is read only
during PASS 1.

6 . Multiple File Assemblies in xVM/RSX

Using the Assembler in XVM/RSX, several assemblies, using
the same set of options for each, may b e specified i n a sin­
gle command. Unless the R option is used, no printout o n t h e

5-12

Operating Procedures

teleprinter will occur to signal the various stages of assem­
bly. Below are listed two typical commands in RSX.

>tJ'.AC BL+ P1,P2&...1.0.03,P3,P4)

This requests four assemblies. A separate binary and listing
are produced for P1 SRe, P2 .0.03, P3 SRC and P4 SRC.

\
> MAC PE + PAR1, FILl, PAR2, FIL2..o1

This requests two assemblies. A separate binary is produced
for FILl SRC and FIL2 SRC. The parameter file PAR1 SRC is
applied to the assembly of FILl SRC and PAR2 SRC to that of
FIL2 SRC.

5.5 ASSEMBLY LISTINGS

If the user requests a listing via the command string, the Assembler

will produce an output listing on the requested output device. The

top of the first page of the listing will contain the name of the pro­

gram as given in the command string. The body of the listing will be

formatted as follows:

Line Error Loca-
No. Flags tion

XXXX XXX XXXXX

where:

Line Number

Flags =
Location

Address Hode =
A = absolute
R = relocatable

Line Type =

Object Code

Address Type =

Address
Mode

R

Object Address Line State-
Code Type Type Source ment

XXXXXX R *G X X
A *L
E *R

*E

Each source line and comment line is
numbered (decimal); generated lines
are not included. Lines are not num­
bered unless the X or N option is
specified.

Errors encountered by the assembler

Relative or absolute location assign­
ed to the object code.

Indicates the type of user address.

*G = Generated
*R = Repeated

*L = Literal
*E :: External

The contents of the location (in
octal)

Indicates the classification of the
object code.

5-13

A absolute
R relocatable
E external

Operating Procedures

The object codes assigned for literals and external symbols are listed

following the program.

5.6 SYMBOL TABLE OUTPUT

At the end of PASS 2, the symbol table may be output to the listing

.DAT -12 (LUN 16 in RSX) device. If the A option is used, the table

will be printed in alphanumeric sequence; if the V option is used,

the symbol table will be printed in numeric value sequence; if the S

option is used, the symbol table will be output in both alphanumeric

and numeric sequence. The format is as follows:

Symbol

SYMBL1
SYMBL2
DIRECT

Value

XXXXX
XXXXX

XXXXXX

Type

E
R
A

The Xs represent the octal value assigned to the symbol. This is the

location where the symbol is defined, except for external symbols.

For these, the value is the location of the transfer vector, whose

contents are set at program load time with the actual value of the

symbol. Note that for SYMBL1 and SYMBL2 there are five Xs but that

there are six Xs for the symbol DIRECT. Symbols havi ng six octal num­

bers to represent their values are the result of direct assignments.

The symbol table shows the type of symbol:

A absolute
R = relocatable
E = external

Locations assigned to variables immediately follow the last object

code producing statement in the assembled program. Locations assigned

for literals not under .LTORG influence and transfer vectors are listed

immediately following the variables; if no variables are used in

the program, literals and transfer vectors immediately follow the pro­

gram output.

5-14

PAGE

U
,:

U

operating procedures

SA~"L~ SRC SAMPLE PROGFIAM

GlOIGlCIIGI ~ ""''''01010 A
0101"'''' II 111''''116 R
"'Ill "'01 , ~ '''''''123 R
IlItJI''''I:'' It , 2C1' 122 E
tJlOItJllI" It 22t1111/! R
"''''tJl0I5 It 7412"'0 A
tJllIltJIlI''' It 1'101",,17 R
OI01\11G1' It ""11'01",3 A
"'0I1l11\11 II '2~,'7 A
tJI\IItIII1 It Cl'15"'1" R

""'tJlh ~ "".O A
"tJI"'PI ~ ".tJlll~ R
"'1Il"1' It '3!'!",,,,0 A
GlIIIGI,!! II '2t111'11 0i A
"'tJlGlI" It Gl51l1"'~~ R
UtIII'1t <14"'115 R
tJllU2tJ1 II ""'!llPll~ R
"'01"'" It "0"'tJl24 R
tJI"'GI'~ II 2",,,,,2~ II
0I0ItJl2:" II (11''''123 R
"'''''''2' It ,."'tJl0I0 A

""'''2!'! ~ I'II'I,,,,OI~ A .G "'",Ill,,, It ~tJI"",01 A .G
fJlDlGl2' ~ "I'ItJ1011'10 A .G
fJI"'flI3'" It t110",,,,CI'0 A .G
tJlOItJl3' It ,"'''' 12/5 R
flI""'~' ~ """'0,4 R

.TITLE SAMPLE PROGRAM
I
I SAMPLE SUB~OUTINE, ~OT CLAIMED TO WORK OR TO ~AVE A~Y PRACTICAL
I VALUE, USED TO ILLIJSTRATE THE OL'TPUT ON Atv ASSEM~LV LISTING.
I THESE LINES ARE COMMENTS.
I
I THIS LISTI~G WAS OBTAINED USING BMACRO-15 IN 005-15 wIT~ THE
I FOLLOWING COM~ANO ~PTIQNS To ~ACRO: LSX
I
OUT-5 I.OAT SLOT 5 •

• IODEv OUT
.GLOBL PRINT, SAVE, RESTOR

I

WIOTH a 72

.IFUND WIDTH
• DEC

• OCT
.ENDC

eUFSIZ.wIDTH+'/~·2+2
I
PRIIIIT

LOOP

NOBUF

CHAIIIGE

I

I/J
DAC
LAC
JMS.
LAC.
SNA
JMP
OAC
HC
OAC*
LAW
CAC
CL.X
LAC*
DAC
ISZ
JMP
JMP
LAC
OAC
NOP

ACSAV.
(SAVeUF)
SAVE
ACSAV

NoeUFF
IOIRIT£+3
-I
C 10)
-BUFSIZ
COUNT

1'"
BUF,l(
COUNT
LOOP
CHANGE
CERRMSG)
WRIT+3

.INIT OUT,I,1Il
CAL+t*I",1Il0 OUT&777
1
0+0
QI
LAC (JMP AROUNO)
OAC CHANGE

.EJECT

5-15

ICONDITIONAL ASSEMRLY •

IOECIMAL NUMBEr:1 •

IDI~ECT ASSIGNMENT.

IsueROUTINE ENTRY POINT.
IVARURLE.
ILITI::RAL.
IEXTERNAL CALL.
IBUfFER ADDRESS.

IUNDEFt~ED SYMBOL (~ISSPELLED).
IUNDEFINEO SYMBOL BECAUSE OF
12 FORWARD REFER~NCES.

IAUTOI~OEl(REGISTEr:1.

IINDEX REGISTER REFERENCE.

IUNDEFINEO (MISSPELLED).

ISYSTEM MACRO CALL.

IPAGE £JECT.

UMPLfI' SRC:

"'111"'3~ C/
"I~1II33 0 ",,,,,pille •
111111"'3. D "'1'1",,,,\1 •
1lI1II1II3~ C/ 7.111",.0 •
"'111"138 0 "'111",,,,1'10 A

"'11111137 It "'rIII'I",,,,e •
"'(IIIlI.1II D '" 1!1I" III t 2 • "'(11"'.\ II '''''''123 R
"'111014' C/ t:!"'121 E
"'(11111.:\ D '1'1"'116 R
"'III"' •• It I'! 2'" 1'1 1'10 R

"''''111.'5 It "'1'1:\1111'12 A

"'Ill"'.'" D "'1'1"''''1'10 A
"''''111.' C/ 42 111 452 A
"'1'I1lI!!1II II '.'15 •• A
"'!!JI'I!!' II "'15.1'11'10 A
"'''''''!!' iii "'111"'1'11'11O A
"'III"'!!' It

O.I"'I'II!!' It A
1lI(I!tII!!'5 D •
1lI"'11 ~ It "'01'11(111'110 A

"'1111'1"'1'10 A

"''''' 2 t
D "'UU1 E

"''''12' D "'1'1"'1'2 E
"'0.112:\ 1/ "''''''''''52 R
IIIO.I'U D "'1'1"''''10 A
"""12'5 If 1'II1!I"'0.e R
"'lIIt2i1! D il!Ml'I33 R

sI,E-0"'130

Operating Procedures

SAMPL.E PROGRAM

*G
*G
*G
*G
*G

*G
*G

*E
*E
*L.
*L
*L.
*L

WRITe-AROUND
AROUNO .WRITE OUT,2,~~,,,,

CAL+2*11'1r110 OUTA777
11

I

I

~)(

.Dec
-0

.WAIT OUT
CAL OUT&777
12
LAC
JMS*
LAC
JJotP*

CSAVf'\UF)
RESTOR
ACSAV
PRINT

IFOR~ARD REFERENCE.
ISYSTEM MACRn CALL.

ISYSTEM MACRO CALL.

IE~TERNAL CALL.

I THE NE~T LINE CONTAINS THREE ATATEMENTS.
I
ERRMSG 00~01/l2' III, .ASCII IERROR/<15>

SAVBUF
BUF
COUNT
I

.LOC

.BLOCK

.BLOCK
o

• -1
3
BUFSIZ

ICHA~GE LOCATION COUNTER •
IMQ, XR ANO LR.

I
I
I
I

FOLLOWING THE .END STATEMENT ARE THREE LOCATIONS (NOT SHOwN)
FOR ONE VARIABLE (ACSAV) ANO TWO UNDEFINED SYMBOLS (NOBUFF
AND WRITE, T~E LATTER BECAUSE OF A DOUBLE FORWARD REFERENCE).
FOLLOWING T~AT (SHOWN) ARE TWO EXTERNAL TRANSFER VECTORS

I AND FOUR LITFRALS.
I

.END

3 ERROR L.IN!!

5-16

Operating Procedures

SA ,",01 . t ~Io.' ~ ~t."'~\.1:. PI(OG~."I

ACSAV '''1'111 ~ ~ 1 r~ () ' . I~ . n /- rAflJJ 1'1' ~ I)F III~~~~ Q tiU~SIZ MQlQ!4Q! C IotA NG I:. "'0 111 2<1 ~ c: (11., T ,, ' ,A 1 \ ~ 1'\ E~iOI"1~r; "'~ 'H~ ~ L.OUP ~001~ NOBUF VII'l1ll2') Q ~ .., "", F ~ r, "! 117 ~ ''\IT 0~",rA...,~ • !olR1NT ~Q!0Q10
RESTOf(0!~1:.!\ I=: ~ ~ v%F t ,~~, 52 10\ SAvE M122 e: wIDT~ 01001111;
W~IT 11 ~ 12 " ~ ', C'r or E :'h' ;\ ;t ,~~ ~

P~H~T 1I~ ')lI.1t!1 q ('1 ,' T ~/~ ''' JI~ to 1.00~ t'liI'f.11~ ~ ~, ObUF 011!~2:r?
C H. ~I G f. "'f'I~24 Q ft ." 0, ' ,\,1" '" ~ r.' 33 " 10110 Ire:: (I:(H'l~J3 'I 'iUFSIZ t'I~0I~40
Ef.I~"'SG ?I II'~ 4 !II ~ .~ '.' V,~ I) ~ v''' '~ 5 C? i(~UF ~~~es!5 Q ..,ILlTH 0~0110
COU~T 2Iltl 11 II! ~ A~5 ,~V ,':H 10 10(N('~uFr ~~I17 " wRIT e~121Z1 RfS,C\R 1'.01121 ,: ~ ,I \' ~ . ~ 'A 12:2 t:

SA" PIE. C ,H: C; S iO/ E FE 10(E ~, C t

ACSAV ~ '.H 1~ '2 2~ o;~
AROU~I D "~~J' ~:!> 17 <I!i_
RUF "' ''' 1115~ :-~ ''1-
eUFSIZ CII'II~"'4'" 1Q. ., 1 III
C~.~Gt: ~e'Ql24 '8 ill_ 44
COUP,,'[1JI~11~ :t(' ~t ~2.

ERRMSG ~""245 :,~ ~e-
LODfJ ~0I0I1~ "14. :U
"'OBUF 0I~"'2? ~Q ..
NOBUFF (1.rA 117 ')7
OUT (l!('I~~0~ , ~ ~ * 11 42 48 ~\1
P~H'T ",,,,(HIli 12 ;>t* '54
~~SlOFI 9'~121 12 '52
SAVH'F P.'~"5' ,:!o "\1 ~ '" '' SAVE. (I (l\ 122 ,2 ?4
\VIOt .. 1')1 01 01 1 1 ,. , " , ". 1 9
wRlT "''II! :i' .~ 1Jr>
\ORIH ~'IIf)I"3' .,,, ~ 7 ..

5.7 RUNNING INSTRUCTIONS

Once the Assembler has identified itself, it is ready to perform an

assembly. Proceed as follows:

a. Place the source program to be assembled on the appropriate
input device.

b. Type the command string.

5.7.1 Paper Tape Input Only

A

~
~

A

R
A
A

~

The following steps are required when the source program is encountered

in the paper tape reader:

a. At the end of a source tape segment which is not terminated
with a .END statement of at the beginning of PASS 2 or PASS 3,
the Assembler types

tP

b. Place the proper source tape in the reader.

5-17

Operating Procedures

c. In XVM/DOS type CTRL P to continue. For RSX, type CTRL p).

5.7.2 Cross-Reference Output

At the end of PASS 2, PASS 3 will be performed by the Assembler for the

cross-referencing operation if the X option is requested. At completion,

the assembler will be restarted (except in RSX systems) to permit addi­

tional assemblies if the command string is terminated by a CARRIAGE

RETURN () entry.

When a cross reference output is requested, the symbols are listed in

alphabetic sequence. The first address after the symbol is the location

where the symbol is defined or its 6-digit value if it is a direct

assignment. All subsequent locations represent the line number (deci-

mal) where the symbol was referenced. The line number with the

asterisk is that in which the symbol is defined. Leading zeroes are

suppressed for the cross-reference symbol table. Nine line numbers

are printed on one line and subsequent line numbers are continued on

the next line.

Example:

PAGE 1

A 1

B 5000
SYMBOL 100

PRGA

XXXXX
XXXXX
XXXXX*
XXXXX*

CROSS REFERENCE

xxxxxt XXXXX
xxxxx

Cross referencing can be a useful tool even without the aid of a line

printer. It is possible to put the source assembly listing with line

numbers onto a directoried device, such as DECtape, and the cross

reference table (by a separate assembly) on a teleprinter. Then,

desired lines in the "LST" file can be accessed by using the EDITOR.

LIMITATIONS

A. Before cross reference output can begin, PASS3 of the Assem­
bler must first have read the entire source file(s) and
stored the reference line numbers in core memory. Should
available core be too limited, the Assembler will output the
following message to the listing:

CORE EXHAUSTED AT LINE DDDD

where D is a decimal digit. Then the Assembler outputs all
the references found up to that point.

5-18

operating Procedures

B. For programs with more than 9999 lines of source code,
line numbers begin again at 0000 on line 10000. In the
cross-reference listing, 10000 is represented as :000,
11000 as i000, and so on. These special characters are
simply those which follow the numerals in the ASCII char­
acter set (Appendix A). Below is a list of characters
and their meanings.

<

>
?

10
11
12
13
14
15

c. To conserve core space, PASS3 of the Assembler does not
maintain a permanent symbol table. Consequently, if user
defined symbols are identical to permanent symbols, ref­
erences to the permanent symbols will be included in the
cross reference. For example:

LAC A
TAD LAC

LAC 5

Three references to LAC will be listed.

D. Conditionals (.IFxxx through .ENDC) are treated during
PASS 3 as if they are always satisfied. Consequently,
although a conditional might not be satisfied during
PASSl and PASS2, references within to defined u s er sym­
bols will appear in the cross-ref e rence output.

Note that undefined symbols which are referenced in .IFDEF
and .IFUND statements remain undefinedi hence, these do
not appear in the cross reference.

5.8 PROGRAM RELOCATION

The normal output from the MACRO XVM Assembler is a relocatable object

program, which may be loaded into any part of memory regardless of

which locations are assigned at assembly time. To accomplish this,

the address portion of some instructions must have a relocation con­

stant added to it. This relocation constant is added at load time by

the Linking Loader, CHAIN or TKBi it is equal to the difference be­

tween the memory location that an instruction is actually loaded into

and the location that was assigned to it at assembly time. The As­

sembler determines which storage words are relocatable (marking them

with an R in the listing), which are absolute (making these non-relocat­

able words with an A) and which are external (marking these with an E).

5-19

Operating Procedures

The rules that the Asse~bl e r follows to determine whether a storage

',';:l'::; is a >so l 1.ite or .cc Ioca t a bl.e ale ciS fol J ov,',c, :

a. If the add r ess is a number (not a symhol), the address is
absolute.

b. If the a dd ress is a symbol which is defined by a direct as s ign­
ment (i. e ., =) and the righthand side of the assignment is a
number. all references to the symbol will be absolute.

c. If a user symbol is defined within a block of coding that is
absolut e , the value o f that symbol i s absolute.

d. Variables , '. lndefined sy:r,'~ ·')ls,. e xt.ernal transfer vectors, and
Ij,terals get the same rr,;lOC C;.t:"on as was in effect when .END
was encountered in PASS 1.

e. If the location counter (.LOC pseudo-op) references a symbo l
which is not defined in terms of a relocatable address, the
symbol is absolute.

f. All others are relocatable.

The following table depicts the manner in which the Assembler handles

expr essions which contain both absolute and relocatable elements.

(A=absolute, R=relocatable)

A+A=A
A-A=A
A+R=R

A-R=R
R+A=R
R-A=R

R+R=R and f lagged as possible error
R-R=A

If multiplication or division is performed on a relocatable symbol. it

will be flagged as a possible relocation error.

If a relocatable program exceeds 4K, and the assembler is a page mode

version, the following warning message will be typed at the end of

PASS 2:

PROG > 4K

5 .9 SYSTEM ERROR CONDIT I ONS AND RECOVERY PROCEDURES

5. 0 .1 XVM/DOS and BOSS XVM

See the XVi'VDOS User r s fllanual, Appendix D or the XVflj/ DOS Keyboard

Command Guide, Appendix C for descriptions of lOPS error messages.

5-20

Operating Procedures

5.9.2 XVM/RSX

Printout Recovery Proced ure

MAC-I/O ERROR LUN xx yyyyyy is produced on LUN 3: xx represents
the Logical Unit Number (decimal)
and yyyyyy the octal Event Variable
value indicating the cause of the
error. See the XVM/RSX System Man­
ual for the meaning of the error
Event Variables. Control is auto­
matically returned to TDV.

5.9.3 Restart Control Entries (DOS only)

CTRL P

CTRL C

Restart Assembler, if running

Return to Monitor

5.10 ERROR DETECTION BY THE ASSEMBLER

MACRO XVM examines each source statement for possible errors. The

statement which contains the error will be flagged by one or several

letters in the left-hand margin of the line, or, if the lines are num­

bered, between the line number and the location. The following tabl e

shows the error flags and their meanings.

Flag

A

B

C

D

E

F

I

Meaning

Error in direct symbol table assignment - assignment
ignored

1. Memory bank error (program segment too large)
2. Page error - the location of an instruction and

the address it references are on different mem­
ory pages (error in page mode only)

A .ENDC appears before an unsatisfied .IFxxx.

Statement contains a reference to a multiply-defin e d
symbol - the first value is used.

1. Symbol not found in user's symbol table during
PASS 2

2. Operator combined with its operand may produce
erroneous results

Forward reference - symbol value is not resol ved by
PASS 2

Line ignored:

1. Relocatable pseudo-op in . ABS program
2. Redundant pseudo-op
3. .ABS pseudo-op in relocatable program
4. .ABS pseudo-op appears after a line has been

assembled

5-21

L

N

P

Q

R

U

w

x

Operating Procedures

5. A second .LOCAL pseudo-op appears before a
matching . NDLOC pseudo-op

6. An .NDLOC appears without an associated .LOCAL
pseudo-op

7. Too many .LTORG p s eudo-ops (more than 8)
8. .IODEV pseudo-op in .ABS or .FULL program
9. Illegal statement within .CBS and . CBE

Literal error:

1. Phase error - literal encountered in PASS 2 does
not equal any literal found in PASS 1

2. Nested literal (a literal within a literal)

Multiple symbol definition - first value defined is
used

Error in number usage (digit 8 or 9 used under .OCT
influence)

Phase error:

1. PASS 1 symbol value not equal to PASS 2 symbol
value (PASS 2 value ignored)

2. A tag defined in a local area (.LOCAL pseudo-op
is also defined in a non-local area

Questionable line:

1. Line contains two or mor e sequential operators
(e.g., LAC A+*B)

2. Bad line delimiter - address field not terminated
with a semicolon, carriage return or a comment

3. Bad argument in .REPT pseudo-op
4. Unrecognizable symbol with .ABS(P) pseudo-op

Possible relocation error

Symbol error - illegal character used in tag field

Undefined symbol

Line overflow during macro e xpansion

Illegal use of macro name or inde x reg iste r

1. Unmatched .IFxxx and .ENDC
2. Unmatched .DEFIN and .ENDM
3 . Unmatched .CBS and .CBE

In addition to flagged lines, there are certain condition s which will

cause assembly to he terminated premature ly.

Message

SYNTAX ERR

?

NM1E ERROR

TARLE OVERFLOH

CALL OVERFLOH

CORE EXHAUSTED
AT LI NE nnn

Heaning

Bad command string, control returns to TDV
(RSX only)

Bad command string, retype (not RSX)

File named in command string not found. In
DOS, the Assembler will restart and accept
another command string. RSX ~~CRO will re­
turn to TDV. BOSS will return to the Monitor.

Too many symbols and/or macros

Too many embedded macro calls

PASS 3 error - too many symbol references

5-22

Printing 7-bit
Character ASCII

@ 100
A 101
B 102
C 103
D 104
E 105
F 106
G 107
H 110
I 111
J 112
K 113
L 114
r1 115
N 116
0 117
P 120
Q 121
R 122
S 123
T 124
U 125
V 126
W 127
X 130
y 131
Z 132
[* 133

"'- 134
]* 135
t* 136
+-* 137

Null 000
Horizontal Tab 011
Line Feed 012
Vertical Tab 013

APPENDIX A

CHARACTER SET

6-bit
Trimmed Printing

ASCII Character

00 Form Feed
01 Carriage Return
02 ALT MODE (ESC)
03 Rubout
04 (Space)
05 !
06 "
07 #
10 S
11 %
12 &
13 ,
14 (
15)
16 *
17 +
20 ,
21 -
22 .
23 /
24 0
25 1
26 2
27 3
30 4
31 5
32 6
33 7
34 8
35 9
36 : *
37 ;

<
=
>
?

6-bit
7-bit Trimmed
"_SCII ASCII

014
015
175
177
040 40
041 41
042 42
043 43
044 44
045 45
046 46
047 47
050 50
051 51
052 52
053 53
054 54
055 55
0')6 56
057 57
060 60
061 61
062 62
063 63
064 64
065 65
066 66
067 67
070 70
071 71
072 72
073 73
074 74
075 75
076 76
077 77

*Illegal as source, except in a comment or text. Any characters not
in this table are illegal to HACRO XVr1 and are flagged and ignored.

A-I

APPEj\'D1X B

PEmilANENT SYMBOL TABLE

Operate GLK 7 500 10 DBK 7033 04

OPR 740000 LAW 760000 DBR 703344

NOP 740000 EAE rOF 7000 02

CMA 74 0001 EAE 6400(0 1 01'7 70 0 042

CML 740002 LRS 0 4 O~=, (!O CAP 70330 2

OAS 7 40004 L8,'5 F,f,r,500 R PS 70 7 74 2

RAL 74 00 1 0 LLS 6 40600 Memory Refe r e nce

RAR 740020 LLS3 660600 CA L 000000

lAC 74 0 030 ALS 64070 0 Dl·\.C 04n ooo

HLT 7 4 0040 ALSS 660700 ... T ~~ S 1 00000

XX 740040 NORM 640444 DZIA 14000 0

SMA 74 0 1 00 NORMS 6604 44 LAC 20 00 00

SZA 740200 MUL 6 5 3122 XOR 240000

SNL 7 40400 MULS 65712 2 JI"DD 30 0 000

SML 7 40400 DIV 640323 TAD 3400n o

SKP 74 1 000 DI VS 644323 XCT <100000

SPA 74 1100 IDIV (r:'''''') ") 1
') .. ,' • .1 . J ." ,_ L SI: 4 400 0 n

SNA 741 20 0 ~~'rj l \J~:; IS ~) '7 ') :2 ~~, AND ~; C or t) (

SZL 741400 FRDIV 650323 SAD <; 40 0 00

3 PL 741 400 FRD IVS f,543 73 lTiJ P f, 000 00

RTL 742010 CLAC 64 HI{ ' C, ,l>,'.l: Oli'at lC i'::' i o r j ty

RTR 7 42020 LACQ 641002 Interrup-L

SvTHA 74 2030 LACS 6 41001 RPL 7 0S S1 2

CLL 7 44000 CLQ 650000 SPI 705501

STL 744 002 ARS 64400 0 I SA 705504

CCL 744 002 GSM 664000 Index I nst r u c tion s
Which Take an Immen i ate

RCL 7440 1 0 OSC 64000 1 Nine - bit OD~rand

RCR 744 02 0 OMQ 6400 02 M C 7 230 00

CLA 750000 CMQ 640004 AXR 73700.0,

TCA 7 4003 1 LMQ 652000 AXS 725000

CLC 75 000 1 lOT tvlod e Swi tchincL

LAS 75000 4 lOT 700000 EBA 7 07764

LAT 7 .5000 4 IORS 700 3 14 DBA 70 7 76 2

B- 1

Permanent Symbol Table

Index and Limit Register
Instructions T'lhich do

not use Operands

CLLR 736000

PAL 722000

PAX 721000

PLA 730000

PLX 731000

PYA 724000

PXL 726000

CLX 735000

Index Register Value

x 10000

B-2

APPENDIX C

V~CRO CHARACTER INTERPRETATION

Character Function

Name Syrt1bol

Space

Horizontal tab

Semicolon

Carriage return

Plus

Minus

Asterisk

Slash

Ampersand

Exclamation point

Back slash

)
+

*

/

&

Opening parenthesis

Closing parenthesis

Equals

\
(

)

Opening angle
bracket

Closing angle
bracket

Comrr.a

Question mark

Quotation mark

Apostrophe

Number Sign

Dollar sign

Line feed

Form feed

Vertical tab

COlnmercial At

<

>

?

$

non_printing}
non-printing

non-printing

@

Field delimiter. Designated by L...I

in this manual.

Field delimiter. Designated by ~
in this manual.

Statement terminator

Statement terminator

Addition operator (two's comple­
ment)

Subtraction operator (addition of
two's complement)

Multiplication operator or indirect
indicator

Division operator or comment
initiator

Logical AND operator

Inclusive OR operator

Exclusive OR operator

Initiate literal

~erminate literal

Direct Assignment

Argument delimiter

Argument delimiter

An argument delimiter in macro
definitions or an exclusive OR
operator

Created symbol designator in macros

Text string indicator

Text string indicator

Variable indicator

Real argument continuation

not applicable

Concatenation operator in macro
definitions

C-l

Macro Character Interpretation

Character Function

Name Symbol

Null Blank Character Ignored by the Assembler

Delete Blank Character Ignored by the Assembler

Illegal Characters

Only those characters listed in the preceding table are legal in ~~,CRO

XVM source programs, all other characters will be ignored and flagged

as errors. The following characters, although illegal as source, may

be used within comment lines and in text preceded by .ASCII or .SIXDT

pseudo-ops.

Character NaMe

Left bracket

Right bracket

Up arrow

Left arrow

Colon

C-2

Symbol

[
]
t

Pseudo-op
(Section)

· ABS (3.2.1)
· ABSP (3.2.1)

APPENDIX D

SUMMARY OF ~~CRO XVM PSEUDO-OPS

Format

-j. ABS -j NLD)
-j. ABSP-j NLD)

Function

Object program is output
in absolute, blocked,
checksummed forna.t for
loading by the Absolute
Binary Loader. Not
supported in RSX .

. ASCII (3.3.1) label * -j.ASCII-j /text/ <octal»

.BLOCK (3.11)

· CBC (3 • 5 • 4)

· CBD (3. 5 . 1)

· CBE (3. 5 . 5)

· CBDR (3 . 5 . 2)

*

la bel * -j . BLOCK-j exp)

Input text strings in
7-bit ASCII code, with
the first character
serving as delimiter.
Octal codes for nonprint­
ing control characters
are enclosed in angle
brackets.

Reserves a block of
storage words equal to
the expression. If a
label is used, it refer­
ences the first word in
the block.

-j.CBC-j displacement, value)

label *-j .CBD-jNAME, /size)

Initialize a word of a
common block to a con­
stant.

Sets up a COMMON area
having the name and size
specified. The first
element in the COMMON
area is also given (base
address) .

End of common block ini­
tialization section. ,

label*-j.CBDR-jdisplacement) Enters the starting
address of the last
common block specified
in a .CED plus the argu­
ment into the location
of tre .CBDR.

All pseudo-ops shown with a label generate binary output code.

D-l

Pseudo-op
(Section)

· CBS (3 . 5 • 3)

· DBREL (3 . 2 • 3)

.DEC (3.10)

.DEFIN (3 . 4)

Summary of MACRO XVM Pseudo-ops

Format

-j.CBS-jname [, size])

-I.DBREL)

-I.DEC)

Function

Start common block ini­
tialization section.

Disable bank mode relo­
cation.

Sets prevailing radix to
decimal.

~.DEFIN-:lmacroname, args)

Defines macros .

. DSA (3.16) label* -I.DSA~exp~ Generates a transfer
vector for the specified
symbol .

. EBREL (3.2.3) -I.FBREL) Enable bank mode relo­
cation.

· EJECT (3. 1. 2)

· END (3.12)

· EtmC (3.6)

· ENDM (3.4)

· EOT (3.13)

· ETC (3.4)

· FULL (3 • 2 • 2)
· FULLP (3 • 2 • 2)

.GLORL (3.14)

*

-I. EJECT)

\ -I. END-I start)

-I. END C)

-I. ENDM)

-I. EOT)

-I. ETC-I args, args)

-I. FULL)
-I. FULLP)

Skip to head of form on
listing device.

~~ust terminate every
source program. START
is the address of the
first instruction to be
executed.

Terminates conditional
coding in .IF statements.

Terminates the body of a
macro definition.

Must terminate physical
program segments, except
the last, which is
terminated by .E~D.

Used in macro definition
to ~ontinue the list of
dummy arguments on
succeeding lines.

Produces absolute, un­
blocked, unchecks ummed
binary object programs.
Used only for paper tape
output. Not supported
in RSX.

--j.GLOBL-j sym, sym, sym) Used to declare all
internal and external
symbols which reference
other programs.

All pseudo-ops shown with a label generate binary output code.

D-2

Pseudo-op
(Section)

.IFxxx (3.6)

.IODEV (3.15)

. LOC (3.9)

.LOCAL (3.7)

.LST (3.1. 3)

.LTORG (3.8)

.NDLOC (3.7)

. NOLST (3.1.3)

. OCT (3.10)

.REPT (3.17)

Summary of ~~CRO XVM Pseudo-ops

Format

-.,. IFxxx -j exp)

-j. IODEV -j. DAT numbers)

-j. LOC -j exp)

-j.LOCAL)

-j.LST)

-j.LTORG)

-j.NDLOC)

-I. REPT-j count, n)

D-3

Function

If a condition is satis­
fied, the source coding
following the .IF state­
ment and terminating with
an .FNDC statement is
assembled.

Specifies .DAT slots and
associated I/O handlers
required by this pro­
gram. Not supported in
RSX.

Sets the location counter
to the value of the ex­
pression.

Allows deletion of cer­
tain symbols from the
user symbol table.

continue requested assem­
bly listing output of
source lines. Lines
between . NOLST a.nd . LS'T
are not listed.

Allows the user to
specifically state where
literals are to be stored.

'Terminates deletion of
certain symbols from the
user symbol table con­
tained between .LOCAL
and .NDLOC .

Terminates requested
assembly listing output
of source lines of code
contained between .NOLST
and .LST .

sets the prevailing radix
to octal. Assumed at
start of every program.

Repeats the object code
of the next object code
generating instruction
Count times. Optionally,
the generated word may be
incremented by n each
time it is repeated.

Pseudo-op
Section)

.SIXBT (3.3.2)

.SIZE (3.18)

.TITLE (3.1.1)

Summary of MACRO XVM Pseudo-ops

Format

\
label-l.SIXBT-I/text/<octal>,J

label-/. SIZE)

Function

Input text strings in
6-bit trimmed ASCII, with
first character as de­
limiter. Numbers enclosed
in angle brackets are
truncated to one 6-bit
octal character.

MACRO outputs the address
of last location plus one
occupied by the object
program.

-I. TITLE-/ any text string)

D-4

Causes the Assembler to
accept up to 5010 typed
characters. During
source program assembly
operations, a .TITLE
causes a form f e ed code
to b e output to place the
text starting with .~ITLE
at the top of a page.

700004
700112
700144
700101
017720
7033 02
700004
70001 2
705504
740000
707702
017726
157775
117753
057776
741100
617747
117753
057777
117753
017736
117753
077776
457776
457777
617736
357775
740200
740040
617726
017747
'lI57777
457777
617763
740040
017753

APPENDIX E

SOURCE LISTING OF THE ABSOLUTE BINARY LOADER

I***A BSO LUTE B INARY LOADER ***
I .FULL
CLOF=700v) 0 4
RR8=700112
RSB=70Vl144
RSF=7vJ0101
LDSTRT=17720
BJNLDR CAF ICLEAR FLAGS

CLOF ICLOCK OFF
I OF+10 II NTERRUPT OFF
ISA ITUR N OFF API

LODMOD NOP I (EBA), (DBA), (NOP)
70 7702 IPDP-9 CO~PATIBILITY <EE M)

LDNX8K=17726
DZM
JMS
DAC
SPA
JMP
JMS
DAC
JMS

LDNX l'ID= 17736
JMS
DAC*
ISZ
ISZ
JMP
TAD
SZA
HLT
JMP

LDXFR=17747
DAC
ISZ
JMP
HLT

LDREAD=17753

LDCKSM
LDREAD
LDSTAD

LD XFR
LDREAD
LDl~DCT

LDREAD

LDkEAO
LDSTAD
LDSTAD
LDWDCT
LDNXWD
LDCKSrv,

LDI\lXBK

LDl.JDCT
LD \.J DCT
LDltJA IT

E-l

ICHECKSUMMING LOCATION

IGET STARTING ADDRESS
IBLOCK HEADING Ok
ISTART BLOCK

IWORD COUNT <2'S COMPLE MEN T)

ILOAD DATA INTO APPROPRIATE
I MEMOR Y LOCATIONS
IFINISHED LOADING
11'10

/LDCKSM SHOULD CONTAIN 0
ICHECKSUM ERROR HALT
IPRESS CONTINUE TO IGNORE

IEXECUTE START ADDRESS
INO ADDR ESS ON .END STATE~ENT
IMANUALLY START USER PROGRAM

000000
700144
357775
057775
700101
617757
700112
637753

017763
117753
637776
006235
003500
000000
000261
000277
000320
000000
017775
017776
017777

Source Listing of the Absolute Binary Loader

o
RSB
TAD LDCKSM
DAC LDCKSM
RSF
JMP LDREAD +4
RRB
JMP* LDREAD

ITHE LAST FRAME OF EVERY .ASS(P} PROG IS GARBAGE.
LDWA IT=17763

JMS LDREAD IPASS OVER LAST FRAME (PDP-9
JMP* LDSTAD ICOMPATIBILITY).

ENDLDR =.
HRMWD 003500; 0 IHEADER

261; 277

320; 0

LDCKSM=17775
LDSTAD=17776
LD',IDCT = 1 7777
I .END BINLDR
1*** END OF LOADER ***

IHRM START

E-2

AAC, AXR, AXS evaluation, 2-28
Absolute

address, 5-20
format, 3-4, 3-5
mode, 2-22
symbol, 5-20

Absolute Binary Loader (ABL) ,
3"'4

.ABSP pseudo-op, 3-4, 3-5, 3-6

.ABS pseudo-op, 3-4, 3-5, 3-6
Addition operator, 2-12
Address assignments, 2-13
Address field, 2~1, 2-2, 2-21
Addressing,

indexed, 2-15
indirect, 2-14

Angle bracket «» delimiters,
3-9, 3-10, 4-6

Argument delimiters, see
Delimiters

Arguments,
dummy, 3-11, 4-1, 4-2, 4-3
real, 4-4

Arithmetic operators, 2-12
ASCII character sets, 3-8, A-l
.ASCII pseudo-op, 3-9, 4-3
Assembler restart, 5-3
Assembly listings, 5-13
Assembly, optional, 3-15
Asterisk (*) (multiplication

operator), 2-20
Asterisk (*) usage, 2-14, 2-20
At symbol (@) usage, 4-8
Auto-index registers, 2-23

Bank bits, 2-27
Bank mode, 2-22
Bank Mode Assembler, 5-1
Base address, 3-12
Basic statement, 2-1
.BLOCK pseudo-op, 3-22
Boolean operators, 2-12

Calling procedure, 5-1
Carriage-return, 2-1
.CBC pseudo-op, 3-14
.CBD pseudo-op, 3-11
.CBE pseudo-op, 3-14
.CBDR pseudo-op, 3-12
.CBS pseudo-op, 3-13
Characters,

ASCII, A-l
command, 5-2

INDEX

Characters, (cont.)
MACRO, C-l
nonprinting, 3-10

Command characters, 5-2
Command string format, 5-3
Command string terminators, 5-3
Comma (,) usage in argument

string, 4-8
Comments, 2-1, 2-3, 2-23, 4-2
Common block

definition, 3-11, 3-12
initialization, 3-13, 3-14
pseudo-operations, 3-11

Concatenation, 4-8
Conditional assembly pseudo-

operators, 3-15
Conditionals, 5-19
Configuration, 1-2
Created symbols, 4-7
Cross-reference output, 5-18
CTRL C, 5-21
CTRL D, 5-3
CTRL P, 5-2, 5-21
CTRL U, 5-2

.DBREL pseudo-op, 3-7
Decimal values, 2-10
.DEC pseudo-op, 3-21
.DEFIN pseudo-op, 3-11, 4-2
Delete current line, 5-2
Delete single character, 5-2
Delimiters,

argument, 4-6
field, 2-2, 2-20, 2-21
statement, 2-2, 2-20, 2-21
text, 3-9

Devices, directoried, 3-5, 5-10
Direct assignment statement, 2-3
Division by zero, 2-12
Division operator, 2-12
Dollar sign ($) used as

terminator, 4-5
.DSA pseudo-op, 3-26
Dummy arguments, 3-11, 4-1, 4-2,

4-3

EAE clasB instructions
evaluation, 2-28

.EBREL pseudo-op, 3-7

.EuECT pseudo-op, 3-3
Embedded macro calls, 4-19
.ENDM pseudo-op, 3-11, 4-3
End of program pseudo-operation,

3-23

Index-l

INDEX (Cont.)

End of program segment pseudo-
operation, 3-24

.END pseudo-op, 3-23

.EOT pseudo-op, 3-24
Equal sign (=) usage, 2-8
Error conditions, 5-20
Error detection, 5-21
.ETC pseudo-op, 3-11, 4-2
Exclusive OR operator, 2-12
Executable object program, 1-3
Expressions, 2-12
External symbols, 3-25
External transfer vectors, 5-20

Field delimiters, 2-2, 2-20,
2-21

Field-dependent symbols, 2-5
Fields in statements, 2-1

address, 2-21
comments, 2-23
label, 2-17
operation, 2-20

Filename commands, multiple,
5-7

Filenames, 5-3, 5-9
Forward reference, 2-9, 3-17
Fractional remainders, 2-12
.FSTAT system macro, 5-10
Full binary format, 3-6
.FULLP pseudo-op, 3-5, 3-6
.FULL pseudo-op, 3-5, 3-6

Globals, evaluation of, 2-4
Global symbol declaration

pseudo-operation, 3-24
Global symbol definitions,

1-3
.GLOBL pseudo-op, 3-24

Handlers, 5-10
Hardware, 1-2

.IFxxx pseudo-ops, 3-15
Inclusive OR operator, 2-12
Indexed addressing, 2-15
Index register, 2-25, 2-26, 4-3
Indirect addressing, 2-14
Instruction mnemonic symbols,

2-5
Integer values, 2-11
Internal globals, 3-25

Internal .GLOBL symbols, 2-9
.IODEV pseudo-op, 3-26
lOPS ASCII packed format, 3-9

Label field, 2-1, 2-17
Labels, 2-2, 2-4
LAW evaluation, 2-28
Library routines, 1-3
Line numbers, 5-19
Linking Loader, 1-1, 2-23
Listing control pseudo-operations,

3-3
Listing output control, 3-4
Literal origin pseudo-operation,

3-20
Literals, 2-16, 5-20
.LOCAL pseudo-op, 3-17
Local symbols pseudo-operators,

3-17
Location counter, 2-13, 2-14,

5-20
Location counter ~seudo-

operation, 3-21
.LOC pseudo-op, 3-21
Logical AND operator, 2-12
.LST pseudo-op, 3-4
.LTORG pseudo-op, 3-20

Macro
body, 4-3
call, 4-19
definition, 4-2
definition file, 5-8, 5-12
definition pseudo-operations,

3-11
instructions, 4-1
nesting, 4-17
redefinition, 4-18

MACRO characters, C-l
Memory, 3-17, 3-22, 5-19
Memory references across page

boundaries, 3-7
Memory referencing instruction

format, 2-6
Mnemonics, 2-5
Multiple file assemblies in

XVM/RSX, 5-12
Multiple filename commands, 5-7
Multiplication operator, 2-12

Name of program, 3-3
.NDLOC pseudo-op, 3-17
Nested conditional statements,

3-16

Index-2

INDEX (Cont.)

Nested literals, 2-16
Nesting of macros, 4-17
NLD option, 3-5
.NOLST pseudo-op, 3-4
Non-printing characters, 3-10
NUll'.bers, 2-10

evaluation of, 2-24
Number sign (n usage, 2-7, 4-3

Object code, 1-3
Object program output pseudo-

operations, 3-4
Octal values, 2-10
.OCT pseudo-op, 3-21
Operating procedures, 5-1
Operation field, 2-1, 2~2,

2-20
Operators,

arithmetic, 2-12
Boolean, 2-12

Options, 5-4
Output, 1-1, 5-19

code, 3-4
listing, 5-13

Page mode, 2-22
Page Mode Assembler, 5-1
Paper tape

input, 3- 6
output, 3-5
source program, 5-17

Parameter file, 5-8
Parentheses usage, 2-16
Passes, 1-2, 2-9, 5-18
Period (.) usage, 2-5, 3-1
Permanent symbol table, 2-4, 3-1

5-19, B-1
Pointer, 1-3
processing, 1-2
Program

end, 3-23
filename, 5-3, 5-9
relocation, 5-19
segment end, 3-24
segment identification, 3-3
size, 3-17

Programs, relocatable, 1-3
pseudo-operations,

common block, 3-11
conditional assembly, 3-15
designate a syrrbolic

address, 3-26
end of program, 3-23
end of program segment,

3-24

Pseudo-operations (Cont.),
global symbol declaration, 3-24
listing control, 3-3
literal origin, 3-20
location counter, 3-21
macro definition, 3-11
object program output, 3-4
radix control, 3-21
repeat object code, 3-26
request I/O device handler, 3-26
request program size, 3-28
reserve blocks of storage, 3-22
summary, 3-1, D-l
text handling, 3-8

Question mark (7) usage, 4-7

Radix, 2-10
Radix control pseudo-operation,

3-21
Real arguments, 4-4
Eeassembly, 1-3
Recursive macro calls, 3-16, 4-20
Redefinition of macros, 4-18
Redefinition of symbols, 2-8,

2-19
Referencing the location counter,

2-14
Relocatable programs, 1-1, 1-3,

5-19
Relocation mode, 3-7
Repeat object code pseudo­

operation, 3-26
.REPT pseudo-op, 3-26
Requesting an I/O device handler

pseudo-operations, 3-26
Request program size pseudo­

operations, 3-28
Reserving blocks of storage

pseudo-operations, 3-22
Restart assembler, 5-21
RSX system MACRO call, 5-1
RUBOUT, 5-2
Running instructions, 5-17

Segmented source, 5-2
Segmenting programs, 3-24
Semicolon (;) used as separator,

2-1
.SIXBT pseudo-op, 3-9, 4-3
Size of program, 3-17
.SIZE pseudo-op, 3-28
Slash (/) usage, 2-2, 2-3, 4-3

Index-3

INDEX (Cont.)

Software, 1-2
Source listing of the

absolute binary loader, E-l
Source, segmented, 5-2
Space character (~), 2-1
Spaces in filename, 5-10
Special symbols, 2-6
Statement

delimiters, 2-20, 2-21
evaluation, 2-24
fields, 2-17
format, 2-1
line length, 2-1
terminator, 2-24

Statement, direct assignment,
2-3

Storage words, 2-13
Subtraction operator, 2-12
Symbol

definition, 2-4
evaluation, 2-4, 2-29
redefinition, 2-8, 2-19

Symbolic address pseudo­
operation, 3-26

Symbolic label, 2-17, 2-18
Symbols, 2-3

created, 4-7
special, 2-6
undefined, 2-10

Symbol table output, 5-14
Symbol tables, 2-4

Tab character (-I), 2-1
Tag, 2-2

field, 2-1
symbol, 3-26

Terminators, command string,
5-3

Text delimiter, 3-9

Undefined symbols, 2-10, 5-20
User's Symbol, 3-26

table, 2-4

Validity bits, 2-28
Variables, 2-7, 5-20
VT15 processor, 3-8

Word evaluation, 2-25, 2-28

X option, 5-18
X used as symbol, 2-6, 2-13

Zero, division by, 2 ~ 12
zeroing a storage location, 2-7

Text handling pseudo-operations,
3-8

.TITLE pseudo-op, 3-3
Transfer vector, 1-3, 3-12
Trimmed six-bit format, 3-9
Two's complement, 2-12

Index-4

MACRO XVM Assembler Language Manual
DEC-XV-LMALA-A-D

READER'S COMMENTS

NOTE: This form is for document corrments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[J Assembly language programmer

[J Higher-level language programmer

[J Occasional programmer (experienced)

[J User with little programming experience

[] Student programmer

[J Non-programmer interested in computer concepts and capabilities

Name Date ________________________ ___

Organization __ __

Street __ __

City ____________________________ State _____________ Zip Code ______________ _

or
Country

If you require a written reply, please check here. []

--- Fold Here --- - -

--------------------------- --------------------- Do l\'ot Tear - "-old Here and Staple ---

BUS INESS REPLY MAIL
~O POSTAGf STAM P NfCESSARY IF MA IL ED IN tH E UN IT ED STAT ES

Postage will be pai d by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST C l.ASS

PER:vm)\0 33

MAYNARD. \I /\SS.

digital equipment corporation

PRINTED IN U.S.A.

