FOCAL XVM

LANGUAGE MANUAL

DEC-XV-LFLGA-A-D

XKVIM

JySienns

dlilgliltiall

FOCAL XVM
LANGUAGE MANUAL

DEC-XV-LFLGA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, January 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such

license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (::) 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM TYPESET-11

CONTENTS

Chapter
PREFACE

1 INTRODUCTION TO FOCAL

1.1 Hardware Requirements
1.2 Loading Procedure
1.3 Restart Procedure
1.4 Saving FOCAL Programs
1.5 Data Input/Output

2 FOCAL LANGUAGE

Elementary Commands

Output Format

Floating-Point Format
Arithmetic Operations and Symbols
Additional Symbol Information
Subscripted Variables

The Erase Command

Handling Text Output

Indirect Commands

Error Detection

Corrections

Abbreviations

Alphanumeric Numbers

¢ o o o o o

HFEERERPR, OO W

NNNODNNNDNNODNONNDNNDDN
wN O

OCAL COMMANDS
TYPE
ASK
WRITE
SET
ERASE
GO
GOTO
DO
IF
0 RETURN
1 QUIT
3.12 COMMENT
3.13 FOR
3.14 MODIFY
3:15 Using the Trace Feature
3.16 Internal Functions

o o o
HFHEOOJOWUMd W

e o ® o o

WWWWwwwwwwwwim

4 EXAMPLES OF FOCAL PROGRAMS

Table Generation Using Functions

Formula Evaluation for Circles and Spheres
One-Line Function Plotting

Demonstration Dice Game

Simultaneous Equations and Matrices
Interest Payment Program

Intercept and Plot of Two Functions
Schroedinger Equation Solver

P . .
Ok wNhoH

O N N NG
.

5 LIBRARY COMMANDS

5.1 Library Output Commands
5.141 Library File Initialization

iii

NDNNNDNDNDNDNDNDNNDIODNDN
|
HEOONNIJouEds SN

=

WWWWWwWwwwwwwwwuwwww
1
RHRPREROOMOOOUTUITOIE R WND

wN o

[~
|
[y

P N T N N
1
FHROOWN

wn
1
-

(5,0,
|
e

Chapter

L3
WNHNDDNNDN
L]
W N

.
N =

LR EC IS, R RS N, RN NS RS NS
. L]
[0 B N R R R R e Tl =l

CONTENTS (Cont'd)

Library File Output Operations
Direct Command Output
Single Line Output

Group Output

Program Output

Library File Termination
Library Input Commands
Library .DAT Slot Usage
Common Variables and Arrays
COMMON Format

ERASE COMMON Command
Chaining of FOCAL Programs

6 USER DEFINED FOCAL FUNCTIONS

6.1
6.2

Example
File FNEW

7 DATA COMMANDS

APPENDIX A

DATA Commands

DATA File Initialization and Output
DATA File Termination

DATA Input

DATA .DAT Slot Usage

DATA Command Use

FOCAL Command Summary

APPENDIX B

Error Diagnostics

APPENDIX C

Estimating the Length of User Programs

APPENDIX D

Calculating Trigonometric Functions

APPENDIX E

.DAT Slot and Handler Assignments System in XVM/DOS

INDEX

iv

ae)
(]
Q
o

I
O e BLAEWNNNNDNDEE

(SO C I, O, IR0, IO O, IV S,) 6
|

[e)]
|
[a

Index-1

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in-
cluding the latest version available. Within this manual, other XVM
manuals are referenced by title only. Refer to this list for the
DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL
DDT XVM UTILITY MANUAL
EDIT/EDITVP/EDITVT XVM UTILITY MANUAL
8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL
MACl1l XVM ASSEMBLER LANGUAGE MANUAL
MACRO XVM ASSEMBLER LANGUAGE MANUAL
MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VP15A XVM GRAPHICS SOFTWARE MANUAL
VT15 XVM GRAPHICS SOFTWARE MANUAL
XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READERS GUIDE AND
MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS V1A SYSTEM INSTALLATION GUIDE
XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

DEC-XV-OBUAA-A-D
DEC-XV-UCHNA-A-D
DEC-XV-UDDTA-A-D
DEC-XV-UETUA-A-D
DEC-XV-UTRNA-A-D
DEC-XV-LFLGA-A-D
DEC-XV-LF4MA-A-D
DEC-XV-LF4EA-A-D
DEC-XV-ULLUA-A-D
DEC-XV-LMLAA-A-D
DEC-XV-LMALA-A~D
DEC-XV-UMTUA-A-D
DEC-XV-UPUMA-A-D
DEC-XV-UPPUA-A-D
DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A~-D
DEC-XV-GVTAA-A-D
DEC-XV-ODKBA-A-D
DEC-XV-ODGIA-A-D

DEC-XV-ODSAA-A-D
DEC-XV-ODMAA-A-D
DEC-XV~-ODSIA-A-D
DEC-XV-IRSMA-A-D
DEC-XV-XUSMA-A-D

PREFACE

FOCAL (Formula CALculator) XVM (FOCAL) is an interactive utility pro-
gram designed to solve numerical problems of any complexity. FOCAL
is a component of the XVM/DOS software system.

This manual is designed to allow the reader to master and apply the
FOCAL language within hours.

Chapters 1 through 3 of this manual describe the structure and use of
the FOCAL language (particularly in the formulation and solution of
numeric problems).

Chapter 4 contains demonstration programs which illustrate the many
features and applications of FOCAL. The reader, by running these pro-
grams using different variables, can more fully realize the power and
flexibility of FOCAL.

Chapters 5 and 6 describe advanced user-library storage and retrieval
functions and user-defined FOCAL functions. The FOCAL library func-

tions permit the storage of lengthy programs by the use of "chaining."
User defined functions enable frequently used operations to be called

(requested and performed) by a single command.

Chapter 7 describes FOCAL data functions which permit the user to
store and then retrieve data on auxiliary Input/Output devices other
than the console terminal.

vii

CHAPTER 1
INTRODUCTION TO FOCAL

FOCAL is an on-line, interpretive service program designed to assist
scientists, engineers, and students in solving complex numerical pro-
blems. The language consists of concise, imperative statements;

mathematical expressions are typed in standard notation.

FOCAL puts the full calculating power and speed of the computer at the
user's fingertips. With FOCAL, the user can easily generate mathe-
matical models, plot curves, solve sets of simultaneous equations in
n-dimensional arrays, and much more. Examples of various problems

that FOCAL is capable of solving are described in Chapter 4.
1.1 HARDWARE REQUIREMENTS

FOCAL can be run on any XVM or PDP-15 computer which runs XVM/DOS soft-

ware.
1.2 LOADING PROCEDURE

FOCAL may be loaded with the Linking Loader after XVM/DOS has been
loaded.

After the bootstrap is loaded XVM/DOS types

XVM/DOS Vnxnnn
$

at the left margin of the console terminal.

The Linking Loader requires assignment of .DAT (Device Assignment)
Table) slots -1 and -4. FOCAL requires assignment of .DAT slots +3,
+7 (input) and +5, +10 (output). (.DAT slot assignments for FOCAL are
summarized in Appendix E.) An example of the required ASSIGN command
is:

$A DPO -1,-4, <SCR> 3,5,7,10/

On the device assigned to .DAT -1, the Linking Loader, expects to find
the System Library.1 On the device assigned to .DAT slot -4,the
Linking Loader expects to find the relocatable binary program, FOCAL
BIN and its external function file, FNEW BIN.

1The user should be careful to use the non-floating point FORTRAN

library. If FOCAL is to be used on a system with floating point
hardware, the user should rename the non-floating point library to
-LIBR5 BIN and assign .DAT -5 to the UIC containing .LIBR5 BIN.

Introduction To Focal

FOCAL uses .DAT slot +3 for the library input function and .DAT slot
+5 for the library output function (see Chapter 5 for FOCAL library
commands). FOCAL uses .DAT slot +7 for DATA input function and .DAT
slot +10 for DATA output function. (Refer to Chapter 7 for detailed
information about the DATA commands.)

An example for loading FOCAL follows.

After the .DAT slots are assigned as above, XVM/DOS types another §.
Now type

SGLOAD
and depress the RETURN key. The Loader types
LOADER XVM Vnxnnn or BLOADER XVM Vnxnnn

Now type a P, a back arrow (P+), FOCAL, a comma and FNEW after the
Loader's >,

>P «FOCAL, FNEW
and depress the ALT MODE key.
Teleprinter output format is as follows:

XUM/D08 V1AQGOO
A RK <GCR> ~4y-153+55y7910

$GL.OAD

BLOADER XUM V14000
FPLFOCAL » FNEW

P FOCAL 028 071742
FFNEW 004 071527
F +BH 005 071473
FOOSQART 007 071402

A (RN 001 071367
Foneos 002 071344
B DATAN 001 071333

FoOLEXE 001

P0G 004 071272
F .0n 006 071124
Foo0R Q04 071004
oW DE 003 070703
S 1 001 070544
Fooone Q0L 070475
FooDA 012 070420
P CATL D00 070353
FOROURLE 004 070150
FoORELEAGE 10F 0467051
S 3 ¢ 004 067027

BFOCAL XUM Y1A000
1.3 RESTART PROCEDURE
Restart is accomplished by the use of CTRL P (echoes t+P). However

this may not work if it is typed while output is underway to the tele-

printer.
1-2

Introduction To Focal

1.4 SAVING FOCAL PROGRAMS (Refer to Chapter 5 for full description)

To save the current FOCAL program, type the following sequence of
commands; where necessary, wait for FOCAL to type an * on the next
line.

X

KLIBRARY OUT NAME
XLIBRARY WRITE "ERASE All
¥LITBRRARY WRITE ALL

XL IRRARY WRITE *“xX
XLIRRARY CLOSE

X

This sequence does not destroy the current program. Execute an ERASE
ALL before starting the program to clear all variables and prevent
placing previous programs in the library along with the current pro-
gram during current library storage (refer to Sections 3.5 and 5.4.2).
When a program is to be saved, Loader assignment must be to the proper

output device. The assignment described in Section 1.2 will output the
program on DECtape.

To load a saved FOCAL program, type:
*LIBRARY IN NAME
1.5 DATA INPUT/OUTPUT (Refer to Chapter 7 for full description)

To use auxiliary I/O devices for data storage and retrieval, type the

following sequence of commands:

*DATA OUT NAME
*DATA CLOSE
*DATA IN NAME

This sequence will initialize and enter the named file for the data on
a mass storage device, close the named file on that device, and then

initialize a device under the given filename for data retrieval.

CHAPTER 2
FOCAL LANGUAGE

After FOCAL has been loaded, the program types out

FOCAL XVM Vnxnnn
*

to indicate that it is ready to accept commands from the user. Each
time the user terminates a typed line by depressing the RETURN key, or
after FOCAL has performed a command, an * (asterisk) is typed to tell
the user that FOCAL is ready for another command.

2.1 ELEMENTARY COMMANDS

One of the most useful commands in the FOCAL language is TYPE1 which

instructs FOCAL to "type out the result of the following expression."”
Then, the user types an expression after TYPE (following the asterisk
which FOCAL typed) such as

*TYPE 123.456+9.8765

and presses the RETURN key:; FOCAL types the answver.
133.3325%*
SET is another useful command, which instructs FOCAL to '"store this

symbol and its numerical value; then when this symbol is used in an

expression, insert the numerical value." Thus, the user may type

*SET A=3.141592; SET B=23.572; SET C=485.5

and then use these symbols to identify the values defined in the SET
command.

*TYPE A+B+C
512.2136%*

Symbols may consist of one, two, or three alphanumeric characters.
The first character must be a letter, but must not be the letter F
which refers to function names (Refer to Section 3.16).

1Any number appearing in a TYPE command must have its magnitude repre-

sented in 35 bits of mantissa, otherwise, FOCAL will type the 227
error message and ignore your request. This error message will occur
with an 11 or 12 digit or longer number, depending on the magnitude
of the number. The same is applicable for the ASK command.

2-1

Focal Lanquage

FOCAL always checks user input for syntax errors (e.g., invalid com-
mands, illegal formats, etc.). When an error is detected, FOCAL types
an error message in the form of a question mark and code number to
indicate the type of error. In the following example,

*
X
KHELF

10

XTYFE 2++4

T2l
HELP is not a valid command and two plus signs (double operators) is
an illegal operation. The complete list of error messages and meanings

is given in Appendix B.
2.2 OUTPUT FORMAT

The FOCAL program is originally set to produce results showing up to
eight digits, four to the left of the decimal point (the integer part)
and four to the right of the decimal point (the fractional part).
Leading zeros are suppressed, and spaces are shown instead. Trailing
zeroes are included in the output to the limits of the format, as
shown in the examples below.

X

XSET A=77.,77% SET B=111111,11115 SET C=39

XTYFE AyRsC

77.7700 111111.11 392.0000%

X

The output format may be changed if the user types

*
*TYPE %x.yz

where the percent sign (%) is the format operator symbol,x is the
total number of digits to be output and yz is the number of digits to
the right of the decimal point. The values x and yz are positive
integers, and the value of x cannot exceed 63 digits. The value yz is
always written as a 2 digit number, (e.g., 03). For example, if the
desired output format is 2 places to the left of the decimal point and
five to the right, the user types

3

FTYPE X7.0%5y 12.222222+2.37184

and FOCAL types

*
g3

H14,52406X

23

Focal lLanguage

Notice that the format operator (%x.yz) must be followed by a comma,
and that until the user changes the output format all results will be
typed in the last specified format, i.e. %7.05.

The results are calculated to nine digits. In some circumstances since
rounding may place some uncertainty on the 9th place, the user may

need to account for the rounding. If the user types

¥
*
FTYFE Z9.04y 123456.789

FOCAL types

1233456 . 789X
X
%

Of the 9 available digits, priority is given to those to the left of
the decimal point.

In the following examples, the number 2848.5363 is typed out in several
formats.

T A=2848,5363
E %Z7.03y A
2848 . 536%

KTYFE %8.04y A
2848.5363%
XTYFE Z9.05y A
2848.,53630%

X

If the user does not indicate the number of places in the fractional

part of the number, only the integer part is printed.

If the specified output format is too small to contain the integer
portion of the number, FOCAL converts the number to floating point
form, O.LE+mn, where E+mn indicates the mnth power of 10 of the num-

ber L printed as a number between 0.0 and 1.0 (refer to Section 2.3).

X

XTYFE %3+ A
0.285E+04%

X

If the specified format is larger than the number, FOCAL inserts

leading spaces up to, but not including, the asterisk column.

X

XTYFE ZX1ils A
2849%

X

Leading blanks and zeros in integers are always ignored by FOCAL,
except for numbers between 0.0 and 1.0, where a zero precedes the
decimal point..

Focal Language

X

X

XTYPE %8.04y 001és 0,016y +» 0D0700
16,0000 0.0160 0.0000 700.0000%

2.3 FLOATING-POINT FORMAT

The user may request output in exponential form which is called float-
ing-point or E format. This notation is frequently used in scientific
computations and is the format in which FOCAL performs its internal
computations. The user requests floating-point format by including a

% followed by a comma in a TYPE command. FOCAL will print out 0, a
decimal point, a 9-digit number, the letter E, and the number of places
to move the decimal point for standard notation. Until the user spec-
ifies another output format, all results are typed out in floating-

point format.
For example,

X
XTYFE Zs»1111
0.111100000E+04

is interpreted as .1111 times 104 or 1111. Exponents can be used to
+999. The largest number that FOCAL can handle is +0.999999983

times 10998, and the smallest is -0.999999983 times 10999.

If the absolute value of the exponent is 1000 or greater a colon (:)
will replace the higher order digits of the exponent. (An exponent
of 1021 comes out as :21). For example, see the description of FEXP

in Section 3.16.

The user should furthermore note that for systems having EAE only
eight places of accuracy can be guaranteed for numbers larger than
1.0E43. (In fact, for numbers near 1.0E+998 or 1.0E-999 you only get

7-place accuracy.)

To demonstrate the ability of FOCAL to compute large numbers, find the
value of 449 factorial by typing the following commands:

E g
Tuad » 4495 SET A=ax]
v A
LPIOURE+SPE8%

The FOR statement, which will be explained later, is used to set I

equal to each integer from 1 to 449.
2.4 ARITHMETIC OPERATIONS AND SYMBOLS

FOCAL performs the usual arithmetic operations (addition, subtraction,
multiplication, division, and exponentiation). These operations are

written by using the following symbols:

2-4

s]

Focal Language

SYMBOL MATH NOTATION FOCAL
+ Exponentiation 33 343 (Power must be a
positive integer)
* Multiplication 3-3 3*3
/ Division 3:3 3/3
+ Addition equal 3+3 343
- Subtraction} priority 3-3 3-3

These operations may be combined into expressions. When FOCAL evalu-
ates an expression comprising several arithmetic operations, the pri-

ority follows the above list.

Note that addition and subtraction have equal priority. Expressions

with these two operators are evaluated from left to right.

A+B*C+D is A+(B*C)+D not (A+B)* (C+D) nor (A+B) *C+D
A*B4+C*D is (A*B)+(C*D) not A*(B+C)*D nor (A*B+C)*D

% X
X/2*Y is ==— not - Y
2Y 5

2 4243 is 43 not 28

To perform exponentiation to a negative power, X—A, use FEXP (A*FLOG<X>) .

Expressions (except IF) to be evaluated by FOCAL may be enclosed in
any properly paired parentheses, square brackets, or angle brackets.

The IF statements, however, must be enclosed in parentheses.
.
For expressions without IF statements:
*SET Al = (A+B) *<M+N>* [X+Y]

The left bracket ([) and the right bracket (]) enclosures which do not
appear on certain teletypewriter keys are typed using the SHIFT and K
keys and the SHIFT and M keys, respectively.

For expressions that are nested, FOCAL computes the value of the inner-
most expression first and then works outward.

*TYPE %, (2+<3-[1%4]+5 >-2)

0.400000000F+01%*

Note that this number is expressed in floating-point format, as spec-
ified by the unmodified % symbol.

2.5 ADDITIONAL SYMBOL INFORMATION

The value of a symbolic name or identifier is not changed until the
expression to the right of the equal sign is evaluated by FOCAL.

Therefore, before it is evaluated, the value of a symbolic name or

2-5

Focal Language

identifier can be changed by retyping the identifier and assigning

it a new value.

*SET Al=342; SET Al=Al+l
*TYPE %2, Al
10%*

Symbolic names or identifiers must not begin with the letter F.
(Refer to Section 3.16)

The user can request FOCAL to type out all user defined identifiers,
in the order of definition, by typing a dollar sign ($) after a TYPE

command. (Refer to Section 3.1)
*TYPE %7.2,$
The user's symbol table is typed out in the following manner:

ARBCOO)Y= 0,385 1931E4+998
REECOOY= 1111111
CRRIOO)= Z9.00000
KE@COOY= 0,000000
TRE(O0Y= 4T0.0000
ALIECO0)= 1000000
MER(O0Y= Q.000000
NBEECOM) = 0. 000000
XRACOOY= 0, 000000
YRR(OO0)= 0.000000

NOTE

"A" and "I" defined in a previous example (on page
2-3) were not erased before going on to the present
example.

If an identifier consists of less than three letters, an @ is inserted
as the second/third character in the symbol table printout, as shown
in the example above. An identifier may be longer than three char-
acters, but only the first three are recognized by FOCAL and stored

in the symbol table.

2.6 SUBSCRIPTED VARIABLES

FOCAL always allows identifiers, or variable symbols, to be further
identified by single subscripts in the range * 131071 (217-1), which
are enclosed in parentheses immediately following the identifier.

For example, the following identifiers are subscripted:
A(I) B(3)
A subscript may also be an expression:

*SET Al (I+3*J)=2.33
*SET X2 (5+3*7)=8.20

Focal Language

The ability of FOCAL to compute subscripts is especially useful in
generating arrays for complex programming problems. A convenient way

to generate linear subscripts is shown in Section 4.5.
2.7 THE ERASE COMMAND

To delete all of the symbolic names which are defined in the symbol
table, except those in the COMMON area (refer to Section 5.4), type
ERASE. As FOCAL does not clear the user's symbol table area in core
memory when it is first loaded, it is good programming practice to type
an ERASE command before defining any symbols.

2.8 HANDLING TEXT OUTPUT

Text strings are enclosed in quotation marks ("...") and may include
most teletypewriter printing characters and spaces. The carriage
return, line feed, and leader-trailer characters are not allowed in
text strings. To instruct FOCAL to type an automatic carriage return
line feed at the end of a text string, the user inserts an exclamation
mark (!).

*TYPE"ALPHA" ! "BETA" ! "GAMMA" !
ALPHA
BETA

GAMMA
*

If only a carriage return without a line feed is desired at the end of

a text typeout, the user inserts a number sign (#).

*TYPE !II X Y Z"#" + =||#|| /u!
X+Y = 2
*

The number sign operator is useful in formatting output and in plotting

another variable along the same coordinate (Refer to Section 4.7).
2.9 INDIRECT COMMANDS

Up to this point, only direct commands, executed immediately by FOCAL,
have been discussed. In contrast, commands may be delayed to alter
sequences, assign all variables or generate a lengthy program. These
delayed execution statements are called indirect commands which are
prefixed by a line number and are stored by FOCAL for later execution,
usually as part of a sequence of commands. Line numbers must be in the
range 1.01 to 99.99. The number to the left of the point is called

the group number; the number to the right is called the step number.
(The numbers 1.00, 2.00, etc., are illegal line numbers; they are used

to indicate an entire group of lines.) For example,

2-7

Focal Language

R

To execute indirect commands the user types one of the direct com-
mands GO, GOTO, and DO.

The GO command causes FOCAL to go the lowest numbered line to begin
executing the program. If the user types a direct GO command after
the indirect commands above, FOCAL will start executing at line 1.1.

0
1ix

The GOTO command causes FOCAL to start the program by executing the
command at a specified line number.
¥ENTO 1.2

(A 4

FOCAL started executing the program at line, 1.2 SET B=8, in the above
example, and then continued to line 1.3.

The DO command is used to transfer control to a specified step, or

group of steps, and then return automatically to the command following
the DO command.

* FINISHED *
X3.1 SET A=3; SET B=4

*¥3.2 TYFE Zl: AR
XG0

STARTING X FINISHED 7x
X

When the DC command at line 1.3 was reached, the command TYPE %1, A+B

was periformed and then the program returned to line 2.1 and continued
from there.

The DO command can also cause FOCAL to jump to a group of commands and

then return automatically to the normal sequence.

”

Focal Language

X

XERASE Al.L.
1.1 TYFE *A"
X1.2 TYFE *R"
1.3 TYFE *C*
1.4 DO 5.0
1.5 TYFE " END "% GOTO 6.1
x5.1 TYFE *0°!
X5.2 TYFPE “E*
X6.1 TYFE *.°
XG0 ,
ABRCDE END .X

b ¢
When the DO command at line 1.4 was reached, FOCAL executed the group 5
lines and then returned to line 1.5. An indirect command, with the
proper sequential line number, can be inserted in a program at any time
before the direct execute command. For example,

X

XERASE Al-L.

4.8 SET A=17F SET R=2

6.3 TYFE %8.3y R/C+A

4.9 SET C=3.4581

XG0

1.5783523%

where line 4.9 will be executed before line 6.3 and after line 4.8.

FOCAL arranges and executes indirect commands in numerical sequence
by line number.

2.10 ERROR DETECTION

FOCAL checks all input commands for a variety of errors. If an error
is detected, FOCAL types a question mark, followed by an error code
and the appropriate line number if the error is in an indirect com-

mand. A complete list of these error codes is shown in Appendix B.

The WRITE command without an argument causes FOCAL to print out the

entire indirect program so that the user may check it for errors.

The trace feature of FOCAL is valuable in program debugging. Any
part of an indirect statement or program can be enclosed in question
marks, and when that part of the program is executed, the portion
enclosed in question marks will be printed out. If only one question
mark is inserted the program is printed out from that point until
completion. The trace feature is also used to follow program control
and to create special formats (Refer to Section 3.15).

2.11 CORRECTIONS

If the user types the wrong character, or several wrong characters,
the RUBOUT key, which echoes a backslash (\) for each RUBOUT typed,

is used to delete one character to the left each time the RUBOUT key
is depressed.

Focal Language

X

*ERASE ALL

X1.10 RYFENNNN\TYFE X-Y
1.2 SET X=12\3
XWRITE

C FOCAL XUM V1IAO00

01+10 TYFE X-Y

01,20 SET X=13
Typing CTRL U (echoes an @) deletes everything which appears to its
left on the same line.

¥1.3 TYFE AsEC0

XWRITE

C FOCAL XVUM V1A000

01.10 TYFE X-Y

01.20 SET X=13
A line can be overwritten. Repeat the same line number and type the
new command. For example, the second instance of line 14.99 replaces
the first:

14.99 GET COIN+3I»=1E

* I XK K K ¥

*
*
X14,99 TYFE C9/785-2

XWRITE 14.99

14.99 TYFE C9/8%-2
When WRITE is typed after corrections are made, FOCAL will print the
indirect program as altered. With this feature, commands can be
checked and a "clean" program printout can be obtained. Remember that
all indirect input is printed when WRITE is typed. Therefore, it is
useful to type ERASE ALL at the start of a new sequence. (Refer to
Chapter 5 for storing programs.) The ERASE command with an argument
will delete a line or group of lines. For example, to delete line
2.21, the user types

X

¥ERAGE 2.21
X

Focal Language

To delete all of the lines in group 2, the user types

X

XERASE 2.0

¥
Used alone, without an argument, the ERASE command causes FOCAL to
erase the user's entire symbol table. FOCAL does not zero memory
when loaded; consequently, it is good practice to type ERASE before
defining symbols. The command ERASE ALL erases all user input, except
COMMON variables.

The MODIFY command is another valuable feature. It may be used to
change any number of characters in a particular line, as explained
in Section 3.14.

2.12 ABBREVIATIONS

All FOCAL commands (except COMMON and DATA) may be abbreviated to the
first letter of the command. Thus,
XTYFE 109!

0 1E402
X

is equivalent to

X

T 109!
0. 1E4+02

X

2.13 ALPHANUMERIC NUMBERS (Using Letters as Numbers)

Numbers must start with a numeral but may contain letters. FOCAL
interprets as a number any character string beginning with a numeral
(0 through 9). An alphanumeric number is a string of alphanumeric
characters (excluding symbols) which starts with a numeral. For
example,

X
*OAREC DIRKBT 2836A1

o2
Each letter in an alphanumeric number is taken as a number (A through

Z correspond to 1 through 26, respectively) except for E (which denotes
exponentiation).

Focal Language

NOTE

E denotes exponentiation; consequently, the number 5
cannot be represented in alphanumeric form.

A=] J=10 s=19
B=2 K=11 T=20
c=3 L=12 U=21
D=4 M=13 V=22
E= (exponentiation) N=14 w=23
F=6 0=15 X=24
G=17 P=16 Y=25
H=8 Q=17 Z=26
I=9 R=18

An easy way to give FOCAL numerical valued letters is to start the
number with 0, as in the following example.
X
¥TYFE 7 OAR
0120000000 4+02%
X
After 0, A=1 and B=2; thus, O0AB=12. Alphanumeric characters may be

used in arithmetic operations.

KTYFE %y OAEHOC
0. 150000000 +02X
X

The letter E denotes exponentiation to base 10 when used in a number.
Alphanumerics after the letter E are taken as the exponent of the

preceding alphanumerics.
Only one E is allowed in any one alphanumeric number.

X
*

ATYRE 28y 0OAED
1LOOOGX
XTYFE 728.08EC
1R000%

b 3
X
¥

Alphabetic characters may be used when assigning numerical values to
identifiers or variables in response to an ASK statement (Refer to
Section 3.9 for a use of this feature and lines 3.20 and 3.30 of

"Intercept and Plot of Two Functions" in Section 4.7 for an application).

CHAPTER 3
FOCAL COMMANDS

3.1 TYPE

The TYPE command is used to compute and type out a text string, the

result of an expression, or the value of an identifier. For example,

%

X

X4.,14 TYFE 3.2%6~(36.2%865) /2,348
X4,15 TYPE 376+(7.23/4,2753)%73.4
X

X

Several expressions can be computed by a single TYPE command; commas
are used to separate each expression.

1.1 TYFPE %X6.03s A1X2y 2712y 2.28%83.636
xng 1.1
0,000 4096.00 190.690%
X
X
X

The output format (%) can be included in the TYPE statement as shown
in the example above and as explained in Section 2.2.

The user may request a typeout of all identifiers which he has defined
by typing TYPE $ and pressing the RETURN key. This causes FOCAL to
type out the identifiers with their values, in the order in which they
were defined. The $ can follow other statements in a TYPE command,

but must always be the last operation on the line.

S

X

XERASE ALL

XSET L=33F SET B=227 SET Q=385
XSET A3=94.37 SET A7T=2.485
XTYFE %Z5.03+%

LeR(00)= 33.000
RRR(Q0)= 22.000
QRR(00)= 385,00
A3R(00)= 94.300
A7T(00)= 2.485
X

Focal Commands

A text string enclosed in quotation marks can be included in a TYPE

command, and a carriage return can replace the closing quotation mark:

X

X

XTYFE "X SQUARED
X SQRUAREIX

X

A text string or any FOCAL command or group of commands cannot exceed
the capacity of a teletype line (72 characters for KSR33 Teletypel).
A command cannot be continued on the following line. To print out
extended text, each line must start with a TYPE command.

FOCAL does not automatically perform a carriage return after executing
a TYPE command. To insert carriage return-line feed characters type
an exclamation mark (!). To insert a carriage return without a line
feed, type a number sign (#). To insert spaces, enclose them in quo-

tation marks. These operations are useful for format output.
3.2 ASK

The ASK command is normally used in indirect commands to allow the
user to input data at specific points during the execution of the pro-
gram. The ASK command is written in the form:

X

11499 AGBK XeYsZy

X
When step 11.99 is encountered by FOCAL, it types a colon (:). Then,
the user types a value in any format for the first identifier, followed
by a carriage return or ALT MODE. The ALT MODE key continues the text
on the same line. FOCAL then types another colon, and the user types
a value for the second identifier. This continues until all the iden-

tifiers or variables in the ASK statement have been given values.

11,992 ASK X»rY»Z

[0 11.99

1414:8x%

X

X

X
In the above example, the user typed 4,4 and 8 as the values, respec-
tively, for X,Y,Z.

FOCAL recognizes each value when its terminator (i.e., carriage return
or ALT MODE) is typed. Therefore a value can only be changed before
its terminator is typed. This is done by using RUBOUT or CTRL U.

1Teletype is a registered trademark of the Teletype Corporation.

O

Focal Commands

A text string can be included in an ASK statement if the string is en-
closed in quotation marks.

X
X
XERASE AlLL
1.1 ASK "HOW MANY AFPFLES N0 YOU HAVE?" AFFLES
Do 1.1
HOW MANY AFFLES DO YOU HAVE?I25
XTYFE AFF
25.000%
X

The identifier APP (FOCAL recognized only the first three characters
of the identifier APPLES.) now has the value 25. When APP is used, it
will equal 25. Its value may be reassigned if it is asked for again.

X

X

XERASE AlL

XABK AFF

+30

XTYFE AFF
30.000%

b 4

Alphabetic characters can be used if numerical values are assigned to
identifiers or variables:

1.1 ASK A TYFE ZAsA
Do 1.1

tARCD

1234%

E K

When the user typed ABCD and RETURN, FOCAL typed the numerical value
of ABCD (Refer to "Alphanumeric Numbers", Section 2.13).

Alphabetic responses are especially useful for keyboard responses to
FOCAL statements. A YES or NO answer can be typed by the user during

program execution in response to a program question, as explained in
Section 3.9.

3.3 WRITE

A WRITE command without an argument causes FOCAL to write out all
indirect statements which the user has typed. Indirect statements
are those preceded by a line number.

A group of line numbers, or a specific line, can be typed out with the
WRITE command using arguments, as shown below.

*¥7.927 WRITE 2.0
X7.98 WRITE 2.1
X7.99 WRITE

E

Focal Commands

3.4 SET

The SET command is used to define identifiers. When FOCAL executes

a SET command, the identifier and its value, are stored in the user's
symbol table. When the identifier is encountered in the program, the
value is substituted for the identifier.

*
XERASE ALL
4.1 SET A=394.83F SET E=4.373
4.2 TYFE ZsA+R
XG0
0.399203000E+03%

X
X
X

An identifier can be set equal to previously defined identifiers,

which, can be used in arithmetic expressions.

¥
¥3.7 SET G=(A+EIK276
X

3.5 ERASE

An ERASE command without an argument is used to delete all identifiers
and their values except those in COMMON (Refer to Section 5.4 for the
ERASE COMMON command.) from the symbol table.

If the ERASE command is followed by a group number or a specific line
number, a group of lines or a specific line is deleted from the pro-

gram.

X
¥ERASE 2.0
XERASE 7.11
X

The ERASE ALL command erases all the user's input. In the following

example, an ERASE command is used to delete line 1.50.

X

X

XERASE ALL
1.2 SET R=2
1.3 SET C=34
X1.4 TYFE EB+C
1.5 TYFE C-R
XERASE 1.5
XWRITE

C FOCAL. V3A000
01.20 SET R=2

01.30 SET C=34
01.40 TYFE R+C

L5

Focal Commands

The ERASE ALL command is generally used only in immediate mode because

it returns to command mode upon completion.
3.6 GO

The GO command is used to execute the program which starts with the
lowest numbered line. The remainder of the program is executed in line

number sequence. Line numbers must be in the range 1.01 to 99.99.
3.7 GOTO

The GOTO command causes FOCAL to transfer control to a specific line
in an indirect program. It must be followed by a specific line number.
After executing the command at the specified line, FOCAL continues to

the next higher line number, executing the program sequentially.

X

X

X

¥XERASE ALL
XL.1 TYFE "A"
1.2 TYFE *R®
1.3 TYFE "C*
1.4 TYFE *"D*
X60TO 1.2
RCIx

k3

X

3.8 DO

The DO command transfers control momentarily to a single line, a group
of lines, or an entire indirect program. If transfer is made to a
single line, the statements on that line are executed, and control is
transferred back to the statement following the DO command. Thus, the
DO command makes a subroutine of the lines to which control is trans-

ferred, as shown in the following example:

X

X

KERASE ALL
1.1 TYFE "F*"
X1.2 DO 2.3% TYFE *C*
1.3 TYFE "A"
X1.4 TYFE "L*
1.5 QUIT
X2.3 TYFE "0O°
XGO

FOCALx

X

X

X

If a DO command transfers control to a group of lines, FOCAL executes
the group sequentially and returns control to the statement following

the DO command.

Focal Commands

If DO is written without an argument, FOCAL executes the entire in-

direct program in the same manner as a GO command.

DO commands cause specified portions of the indirect program to be
executed as closed subroutines. These subroutines can also be ter-

minated by a RETURN command.

A GOTO or an IF statement within a DO subroutine modifies the program

execution sequence.
Q)

3.9 1IF
To transfer control after a comparison, FOCAL contains a conditional
IF statement in the form IF (m)x,y,z; m is an expression or variable,
and x,y,2z,are three line numbers. The expression is evaluated, and
the program transfers control to the first number, x, if the expression
is less than zero; to the second line number, y, if the expression
equals zero; or to the third line number, z, if the value of the ex-
pression is greater than zero.

%

*

X2.1 TYFE *"LLESS THAN ZERO"§ QUIT

2.2 TYPE "EQUAL TO ZERD®"S QUIT

X2.3 TYFE *GREATER THAN ZERO"F QUIT

KIF (25-25) 2.192.2:,2.3

EQUAL TO ZERDX

X

¥
In the above example, the parenthetical expression equals zero; con-
sequently, line 2.2 is executed. Note that an IF statement must be

enclosed in parentheses.

The IF statement can be shortened by terminating it with a semicolon
or carriage return after the first or second line number. If a semi-
colon follows the first line number, the expression is tested, and
control is transferred to that line if the expression is less than

zero. If the expression is not less than zero, the program continues

with the next statement. 2
%
220 IFOOL.85TYFE "C
X)

In the above example, when line 2.20 is executed, if X is less than

zero, control is transferred to line 1.8. If not, C is typed out.

Focal Commands

X

X

¥3.19 IF(R)1.8y1.9
3,20 TYFE R

X

X

In the above example, if B is less than zero, control goes to line 1.8,
if B is equal to zero, control goes to line 1.9. If B is greater than

zero, control goes to the next statement (in this case, line 3.20), and
the value of B is typed.

In programs that require a keyboard response (as in Section 4.7 line
3.2), it is useful to determine if the answer by the user to an ASK
question is YES or NO. Alphabetic responses used with an IF statement
permit one of two possible commands to be executed, depending on the
user's answer. For example:

IF (answer-0OYes)1.1,2.1,1.1

where answer is YES or NO, as typed by the user. The next command
depends on whether answer is YES (in which case, answer-0YES equals O,
and line 2.1 is executed) or NO (producing a nonzero result and moving
program execution to line 1.1).

For example,

¥1.1 TYFE DO YOU WANT A LINE?"s!
¥1.2 ASK "TYFE YES OR NO"sANSy!
*¥1.3 IF (ANS-OYES) 2.1+2.2+2.1
*x2.1 QUIT

X242 TYPE "=sssimmsimssamimasomisesie "y
*2.3 GOTO 1.1

XxGO

0 YOU WANT A LINE?

TYPE YES OR NOIYES

N0 YOU WANT A LINE?
TYPE YES OR NO:NO
If a GOTO or an IF command is executed within a DO subroutine, two

actions are possible:

a. If a GOTO or IF command causes transfer to a line inside the
DO group, the remaining commands in that group are executed as in
any subroutine before returning to the command following the DO
command.

Focal Commands

b. If transfer is to a line outside the DO group, that line is
executed and control is returned to the command following the DO

command unless that line contains another GOTO or IF.

b 4

X

XERASE ALL

¥1.1 TYPE "A°7_SET X=-1 DO 3.15 TYPE °"D"5 DO 2
*1.2 DO 2.0

x%2.1 TYPE "G*

X2.2 IF (X) 2.592.692.7

%*2.5 TYPE °H®

x2.6 TYPE *I°*

x2.7 TYPE "J°"

x2.8 TYPE °"K*

X2.9 TYPE Z 2.01+X3 TYPE * "3 SET X=X+1
*x3.1 TYPE "B"3 GOTO S.17 TYPE °*F*"

*5.1 TYPE *"C*®

x5.2 TYPE "W*

L {cin}

ABCDGHIJK-1.,0 GIJK 0.0 GJK 1.0 BCWX

3 I % W W

3.10 RETURN

The RETURN command is used to exit from a DO subroutine. When a
RETURN command is encountered during execution of a DO subroutine,
the program exits from its subroutine status and returns to the com-

mand following the DO command that initiated the subroutine status.
3.11 QUIT

A QUIT command causes the program to halt and return control to the

user. FOCAL types an asterisk and the user can type another command.
3.12 COMMENT

Beginning a command string with the letter C (except for COMMON) will
cause the remainder of that line to be ignored to allow insertion of
comments into the program. Such lines are skipped over when the pro-
gram is executed, but are typed out by a WRITE command. A program
that is well documented with comments is more meaningful and easier
to understand than one without comments.

3.13 FOR

This command is used for convenience in setting up program loops and
iterations. The general format is

*FOR A=B, C,D; (COMMANDS)

Focal Commands

The identifier A is initialized to the value B. Then, the commands
following the semicolon up to the line terminator are executed. When
the commands have been executed, the value of A is incremented by C
and compared to the value of D. If A is less than or equal to D, the
commands after the semicolon are executed again. This process is re-
peated until A is greater than D; then, FOCAL goes to the next sequen-
tial line.

The identifier A must be a single variable. B,C, and D can be either
expressions, variables, or numbers. If a comma and the value C are
omitted, it is assumed that the increment is one. If C,D is omitted,

it is handled like a SET statement and no iteration is performed.

The computations involved in the FOR statement are done in floating-
point arithmetic, and it may be necessary, in some circumstances to
account for this type of arithmetic computation.

Example 1 below is a simple example of how FOCAL executes a FOR com-

mand. Example 2 shows the FOR command combined with a DO command.
Example 1:

X

XERASE ALL

x3.11 SET A=383.383

*x3.12 FOR B=20,10,703 TYFE %7.03» "R IS5 * E+As!

IS 403.383
15 413.383
IS 423.383
IS 433,383
443,383
18 453.383

LXK _B--B--R--R--N.-N-.)
-
(3]

Example 2

¥1.1 FOR X=1y2+9% DD 2.0
1.2 GOTO 3.1

x2.1 TYFE 1 * %Sy "X* X
X2.2 SET A=X+100.00

2.3 TYFE ! * XS "A" A
X3.1 QUIT

*GO

1
101
3
103
S
105
7
107
o
109%

DD XDXDXDX

Focal Commands

If two FOR statements are put on one line, the second FOR statement
is performed in full for each incrementation in the first FOR state-

ment. Any number of FOR statements may appear on one line.
3.14 MODIFY

Frequently, only a few characters in a particular line require changes.

To facilitate this job, and to eliminate the need to replace the en-

tire line, FOCAL has a MODIFY command. For example, to modify the o
characters in line 5.41, the user types MODIFY 5.41 and then depresses

the RETURN key. The program then waits for the user to type the char- v
acter he wishes to modify. After the user has typed the search char-

acter, the program types out the contents of that line until the search

character is typed.
At this point, the user has seven options:

a. Type in new characters in addition to the ones that have

already been typed out.

b. Type ALT MODE to continue the search to the next occurrence,

if any, of the same search character.

¢c. To change the search character, type CTRL BELL and the new

search character as at the beginning of the MODIFY command.

d. Use the RUBOUT key to delete one character to the left each
time RUBOUT is depressed.

e. Type a CTRL U to delete the line over to the left margin,
but not the line number.

f. Type carriage return to terminate the line at that point,
removing the text to the right.

g. Type a LINE FEED to save the remainder of the line.

3-10

Focal Commands

The MODIFY command is generally used only in immediate mode because it

returns to command mode upon completion.

During command input, CTRL U deletes the line numbers as well as the
text if the CTRL U is the right-most character on the line. However,
when using the MODIFY command the line number is not deleted by the
use of CTRL U. Note the error in line 7.01.

x

X

¥7.01 JACK AND HILL WRNT UF THE GTLL

AMODIFY 7.01

H JACK AND HNJRILL WRNEGNT UF THE G\H
TLL

XWRITE 7.01

37.01 JACK AND JTILL WENT UF THE HILL
XERASE ALL

X

X

To modify line 7.01, the user typed an H to indicate the character to
be changed. FOCAL stopped typing when it encountered the search
character H. The user typed the RUBOUT key to delete the H, and then
typed the correct letter, J. The user then typed the CTRL BELL key
followed by the R, the next character to be changed. The RUBOUT
deleted the R and the user typed E. Again a search was made (this
time for the G), and the G was changed to H. The user typed a line
feed to save the remainder of the line.

When the MODIFY command (or another command which alters the stored
indirect program) is used, the values in the user's symbol table
(except those defined as COMMON) are reset to zero. Therefore, if
the user defines his symbols in direct statements and then uses a
MODIFY command, the values of his symbols are erased and must be re-
defined.

However, if the user defines his symbols by indirect statements prior
to using a MODIFY command, the values are not erased because these
symbols are not entered in the symbol table until the statements
defining them are executed.

In the following example, notice that the values of Y and Z were set
using direct statements. The use of the MODIFY command resets their
values to zero and lists them after the defined symbols:

Foca ommands

XERASE ALl

¥SET Z=9

XGET Y=8

¥1.1 SET X=3

*¥1.2 SET W=4

1.3 TYFE WH+X+Y+Z$ TYFE !5 TYFE $
XMODIFY 1.1

8 SET X=5

X
XGO

9
XQRCo0 = 0
WRR(O0)= 4
YRR(O0)= O
ZRRCOOY= O
X
X

3.15 USING THE TRACE FEATURE

As noted in Section 2.10, the trace feature is useful in checking an
operating program. Those parts of the program which are enclosed in
question marks are printed out as they are executed.

In the following example, parts of three lines are printed.

X

X

¥ERASE AlLL

¥1.1 SET A=2

1.2 SET R=5

¥1.3 SET C=3

1.4 TYPE %2y TA+R-CT»y!
X1.5 TYFE 7R+A/C7»!
X1.6 TYFE TR-C?

X1.6 TYFE TR-C/A7?

XG0

A+R-C 4
B+A/C 6
B-C/A 4%
X

Also, GO? will trace the program starting with the lowest numbered

line, provided no other guestion marks are present in the program.

Focal Commands

3.16 INTERNAL FUNCTIONS

The internal functions provide extended arithmetic capabilities. User
defined external functions are described in Chapter 6. A standard
function call consists of four letters, beginning with the letter F,
and followed by a parenthetical expression.

The following are the internal functions:

a. The square root function (FSQT) computes the square root of
the expression within parentheses.

X

X

XTYFE %Z»FSQT(43,489)
0.659461902E4+01%

¥TYFE FSQT(2.333)
0.152741612E+01%

¥TYFE FSQT(3718)
0.609754049E4+02%

X

X

b, The absolute value function (FABS) outputs the absolute or

positive value of the number in parentheses.

X
X

XTYFE %Z» FARS(-394)
0.324000000E+03%

¥TYFE FARS(-.93)
0.230000000E+00%

XTYFE FAES(73)
0.730000000E4+02%
X

X

c. The sign part function (FSGN) outputs the sign part (+ or -)
of a number and the integer part becomes a 1. Zero is con-
sidered a positive number.

X

XTYFE Zs FSGN(-283.3)

=0.100000000E+01%

XTYFE FSGN(O.00)
0.100000000E+01%

XTYFE FSGN(-0.,38)

=0+100000000E+01%

X

3 3

3-13

Focal Commands

d. The integer part function (FITR) outputs the integer part of
a number up to +131071(217-1).

X

X

KTYFE ZyFITR(-34.8)
=0, 340000000 +02%
XTYFPE FITRC(Q,73X)

0+ 00000000QE+00X

XTYFE FITR(3?24.92)
0.374000000E+03%
X
X
X

e. The random number generator function (FRAN) computes a non-
statistical pseudo-random number between -1 and +1 (most
numbers fall in the range 0 to +1.). Another random number
generator function (FRNO) is provided in the external function
file FNEW and is described in Section 6.2.

X
X
XTYFE % FRANC)
Qe 719262147E~02%
XTYFE FRANC)
0. H49454402E~01%

* ¥ ¥

f. The exponential function (FEXP) computes e (e=2.718281) to
the power within parentheses.

X

b 4

X

XTYFE %y FEXF(27)
0.532048241E+12%

XTYFE FEXP(2.348)
Q1046461 P6E+02%

XTYFE FEXF(0.374)
O 1AG3EI71ISEH01L%

X
X
X

In floating-point format (%) you only get correct results for
FEXP(X) if 23002>X>-2302. If X is not between these limits the expon-
ent of the result will not be between * 999, and a colon will replace

its high order digits as described in Section 2.3.
Example:

*T FEXF (230030.75382071E4+999%

XT FEXF (2301)0.20492876E4+200

Focal Commands

The 2?27 error message does not appear as it applies only to mantissas
with more than 35 binary bits (11 or 12 decimal digits) while the above
limitation relates to exponents, not mantissas.

g. The sine function (FSIN) calculates the sine of an angle
expressed in radians.

X

X

X

ATYFE Z» FSINC(3.10)
0.415806618E-01%

XTYPE FHEINCO.278)
0+274432986E4+00%

¥TYFE FSINCLL.272)
0. 9006 LEO7E+OOX

X

X

FOCAL requires that angles be expressed in radians; thus, to find a
function of an angle in degrees, the conversion factor /180, must be
used. To find the sine of 10 degrees:

*

¥GET FI=3,141
0. 17X448073%

59F TYPE FSINCLOXFI/Z180)
2400 %

h. The cosine function (FCOS) calculates the cosine of an angle
expressed in radians.

X

XKTYFE %y FCOS(2%XFI)
0. 100000000E+01X

XKTYFE FCOS(,.34628)
0.9349046789E+00x%

XTYFE FCOS(L,37)
0.199449721E+00%

¥

i. The arctangent function (FATN) calculates the angle in radians
the tangent of which is the argument within parentheses.

¥TYFE Xy FATNC1.0Q00)
353981 464E+00%

L FATNCQ.728)
D 62927179BE+00%

j. The logarithm function (FLOG) computes the natural logarithm
(loge) of the number within parentheses.

KTYFE Xy FLOG(Z238.,48447)
0.547430503E+01%

XTYFE FLOG(O.28768)
~0.124618465E+01%

XTYFE FLOG(L.23)
0.207014169E+00%

CHAPTER 4
EXAMPLES OF FOCAL PROGRAMS

4.1 TABLE GENERATION USING FUNCTIONS

The ability to evaluate simple arithmetic expressions and to generate
values with the aid of internal functions is one of the first benefits
to be derived from learning the FOCAL language. In the example that
follows, a table of sine, natural logarithm, and exponential values

is generated for a series of arguments. As the user becomes more
familiar with these functions, he can easily combine them with stand-
ard arithmetic operations and evaluate any given formula for a single

value or for a range of values.

In this example, line *1.01 outputs the desired column headings.

Line *1.10 is the loop to generate values for I, beginning with the
value 1.00000000 and continuing in increments of .00000010 through the
value 1.00000100; the DO 2.05 command at the end of this second line
causes the various functions to be executed for the I arguments. The
output format %9.08 in line 2.05 specifies that all output results up
to the next % symbol are to appear in fixed-point format with one digit
position to the left of the decimal point and eight digit positions

to the right; the second % symbol reverts the output mode back to
floating point for the remaining values FLOG and FEXP.Line 01.20

(optional) returns control to the user.
The following techniques are apparent in line *2.05 of this example:

a. FOCAL commands can be abbreviated to the first letter of the
command followed by a space, as shown by the use of T instead
of TYPE. This technique can be used to shorten command
strings.

b. Arguments can be enclosed in various ways. This feature is
useful in matching correctly when a number of enclosures

appear in a command.

c. Spaces can be inserted in an output format by enclosing the
appropriate number of spaces within quotation marks. This
procedure is recommended to improve the readability of the

output results.

d. The use of very small loop increments (in this example
.0000001) eliminates the need to interpolate between table
values of trigonometric functions. FOCAL is usually accur-
ate to eight significant digits but rounding in certain cases
may place some uncertainty on the 8th place. Thus, the user,

in some circumstances, may need to account for the rounding.

Examples Of Focal Programs

¥l.o0t T " I S ITNE L.OG A
K110 FOR T=1le 000000110000

K120 QuIT

200 T %908 T "oFSINCT

(G0

SINE
O B4LA709° G
Q.84147
G.84147106
0. 84147

OGO 0
SCQOOGORO
Lo GGOG
L Q0000100
E

4.2 TFORMULA EVALUATION FOR CIRCLES AND SPHERES

In this example, FOCAL is used to calculate, label, and output geo-

metric values for an indefinite number of radii typed in by the user.
Given a radius, R, FOCAL can calculate such values as:

a. circle diameter: 2R

b. circle area: nR2

c. circle circumference: 27R

d. sphere volume: 4nR3/3

e. sphere surface area: 4TrR2

Although inches are used in this example, conversions to other systems
(metric, for example) could be easily incorporated into the program,
without the need for hand-calculated conversions.

The program is very straightforward. ASK is used to allow the user to
type in the radius value to be used in the calculations. SET is used
to supply the value of m. TYPE is used for all calculations and out-
put. If a value (e.g., Tin this example) is to be entered once and
then used in repeated calculations, it should be entered by a SET
command which is outside the calculation loop: otherwise, the variable
must be set at the beginning of each pass through the loop. If the
value of the variable changes during each iteration, however, then it
must be calculated either by a SET or TYPE command within the loop.

The use of the GOTO command (line *1.50) results in an infinite loop
of lines *1.10 through *1.50. This technique is used when the number
of desired repetitions is not known. The looping process can be ter-

4-2

Q

Examples Of Focal Programs

minated at any time by typing CTRL P. If, however, the number of
desired repetitions is known (e.g., 10), the following method can
be used.

"T=3, 14159
1.1 ABK ...

1.6 TYPE 11111

XFOR I = 1108 DO 1

The ability to choose between these methods provides great flexibility
in actually running FOCAL programs.

¥ G OFQCAL XUM V14000
¥1.,01 SET PI=3.14159
¥L10 ABK " A& RADIUS OF "sRe "INCHES®
¥1.20 TYPE %8.04y 1+ "GENERATES & CIRCLE QF: "»!
i i ' GIAMETER" » 2%Rs" INCHES" 4!
> AREA"y FPI¥R™2Zy " SQUARE INCHES" !
" CIRCUMFERENCE" y 2¥%FIXRy"™ INCHES" »!
Py "ANDL A SFHERE OF$"s!
" VOLUME" s (4/3)¥FIXR™3y" CURIC INCHES®»!
PrEbty GoTo 1.1

X1.47
X1 .80 T
KGO0

A RADIUS OF 1246, 39INCHES

GENERATES A CIRCLE OF:
DEAMETER G2.7800 INCHES
AREA 2187.9041 SQUARE INCHES
CIRCUMFERENCE 165 .8131 INCHES

ANTY & BPHERE 0OF3
VOLUME 74985.053 CURIC INCHES

A RAGOTUS OF 10.73INCHES
GENERATES & CIRCLE OF:
T AMETER 144600 INCHES
FaFe B

CTRCUMFERENCE 4. 5867 INCHES

AND & SPHERE OF @
WOLLIME L6295 CURIC THOHES

4.3 ONE-LINE FUNCTION PLOTTING

This example demonstrates the use of FOCAL to present, in graphic
form, some given function over a range of values. In this example,
the function used is

y=30+15[sin(x)]e %-1X

Examples of Focal Programs

with x ranging from 0 to 15 in increments of .5. This damped sine
wave has many physical applications, especially in electronics and

mechanics (for example, in designing automobile shock absorbers).

In the actual coding of the example, the variables I and J were used
in place of x and y, respectively; any two variables could have been
used. The single line 1.10 contains a set of nested loops for I and
J. The J loop types spaces horizontally for the y coordinate of the
function; the I loop prints the * symbol and the carriage return and
line feeds for the x coordinate. The function itself is used as the

upper limit of the J loop, again showing the power of FOCAL commands.

The technique illustrated by this example can be used to plot any
desired function. Although the * symbol was used here, any legal
FOCAL character is acceptable.

1oL F T=0v Sy 105 T "%"y 15 F J=0e30+1GXKFEINCIDXFEXF (-~ 1%T)s T * *
X000 1,1
*
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
%
%
X
X
X
X
X
X
X
X

Examples Of Focal Prodgrams

4.4 DEMONSTRATION DICE GAME

Occasionally, the computer user will apply the computer to tasks solely
for his own enjoyment. Because such pastimes are usually keyboard
oriented, FOCAL lends itself nicely to these ends. The following exam-
ple uses the random number generator, FRAN (), to produce dice com-

binations, as well as IF logic to check bets and winning combinations.

Note again the use of initials to abbreviate commands throughout the
example (remember that each such abbreviation must be followed by a

space) .

The random number generator must be modified for use with statistical
or simulation programs to achieve true randomness. However, it is

sufficiently random for most applications in its present form.

NOTE

DEC does not assume any responsibility for the
use of this routine or any similar routines.

C FOCAL XUM V1IAOG0O

01,10 & RB=03T PUNTCE GAME" !y "HOUSE LIMIT I8 $1000"
01,13 T "o MINy RET IS 41,00"!1!

01,20 ABK "YOUR RET IS"A3T (1000-A) Z.10
0L.22 7T (A-1)3.4021.26v1 .26

01.26 TIF (A-FITR(AII3Z.H50+1.30+3.50

01,30 ASK MDD 25SET D=CiNO 28T " *§8ET D=D40
0132 1T (I-731.42y3.2051.42

01,40 1T (D-231.50y3%,30+1.50

01.42 1 12144053,2041.40

01,30 1T (D-3) 1.60y3.30s1.60

0Le40 ABK M500 238 E=CiDO 23T " "36 E=E+C
0172 1 (E~7) 1.74+3,30+1.74

01.74 1 Leb0yZ 205 1.60
D210 BET TTROLOXFARS(FRANCI DY IS TF (C~6)2.2002.2002.10

02,20 1 SAOET Xl ™ "5 RETURN
03.10 T LIMITS ARE $1000"1ts G 1.20

0320 8

0330 8§ B=R-NA;

03.40 T "MIN. RE
T

\\\\\

~A;T “h40e 1PYOU WIN. YOUR WINNINGS ARE TeFy LISG 1.2
U N 4 PPGORRY YOU LOSE. YOUR WINNINGS ARE "»Re 116G 1.2
IS 111G 1.2

FLEASE" ELEGOTO 1.2

Examples of Focal Programs

%GO

DICE GAME
HOUSE LIMIT IS $1000. MINs RET IS $1.00

YOUR RET IS:.50
MIN. RET I8 %1

YOUR RET 186215
9008 3
8 8

YDU NiN. YOUR WINNINGS ARE 15

YOUR RET 18515
5008 ¢

YRR
YOU WIN. YOUR WINNINGS ARE 20

YOUR RET 18:3

[t ~y
J .

YOU WIN. YOUR WINNIMNGS ARE 23
YOUR RBET I82T7LL QUIT WHILE I/M AHEAD. THANKS!
4.5 SIMULTANEOUS EQUATIONS AND MATRICES

Many disciplines use subscripted variables for vectors in one, two, or
more dimensions to store and manipulate data. A common use is the 2-
dimensional array or matrix for handling sets of simultaneous equations.
For example,

Given 1X, + 2X2 + 3X3 = 4
4X, + 3X, + 2Xy =1
1X; + 4X%, + 3X3 = 2
Find: The values of Xl’ X2, and X3 to satisfy all three equations

simultaneously.

The solution can be reduced to simple mathematics between the various
elements of the rows and columns until correct values of X are found.

Each individual quantity in an array is referred to in terms of its
position within the array. This identifier is a subscript. The

notation A(I) refers to element I of array A.

FOCAL uses only a single subscript. Thus, the handling of two or more
dimensions requires the generation of a linear subscript which repre-
sents the correct position if it were stored in normal order, i.e.,
leftmost subscript moving fastest.

Examples of Focal Programs

In one dimension: For example:

ARRAY (0)
(1)
(2)
(3)
(4)

Element D could be represented as

ARRAY (3); any element in this array

can be represented by a subscript in

the range 0 through 4. The first ele-

H|o|la|o|»

ment in an array always has a subscript
of 0.

In two dimensions:
ARRAY (row,column) or A(I,J)

This must be reduced to the form A(G). Because subscripts are lin-
ear, G is a function of I and J; that is, A(I,J)=A(G). Consider the
diagram

2
10
11
12
13
14

> W N = O
BlwiN|=]O] O
Wi || =

This array has five rows and three columns; thus, two values can be
defined:

IMAX
JMAX

To generate the number (G) in any box, using the corresponding values
of I and J, the formula

G=I+IMAX*J or A(G)=A(I+IMAX*J)

can be used. Each element in a 2-dimensional array represents an
area. The example for solving simultaneous equations, above, uses
this algorithm for subscripts, merely by replacing I, IMAX, and J

with J, L, and K, respectively, to form the equation
A (J+L*K)
In three dimensions

ARRAY (row,column,plane)=A(I,J,K)=A(G)

Examples of Focal Programs

Three dimensions can be illustrated as a rectangular solid.

ANANAN

\\\\

SO

2 2 7 12
3 3 8 13 /

AN

J=0 1 2

This rectangular solid has dimensions of five rows, three columns,
and four planes; thus, IMAX=5,JMAX=3, and KMAX=4. Each plane is

numbered exactly as in the 2-dimensional example, except 15 times
K (with K = the number of planes back from the first) is added to

each subscript in the first plane.
Example:
Upper lefthand square, back one plane from the first = 15
I=0,J=0,K=1;I+(IMAX*J)+ (IMAX*IMAX*K)=15=G
or

A(0,0,1)=A(15)

In four dimensions:

ARRAY (row,column,plane, cube)=A(I,J,K,L)=A(G)
Assign the values for IMAX, JMAX, KMAX; a method similar to the one
above yields

G=I+ (IMAX*J)+ (IMAX*JMAX*K)+ (IMAX*IJMAX*KMAX*L)

This process can theoretically be extended indefinitely to n-dimensions.

Examples of Focal Programs

C FOCAL XUM V14000

01.02 TYFE !'"ROUTINE TO SOLVE MATRIX EQ. AX=R FOR X"!
01,04 ASK "ENTER DIMENSION OF Ay THEN

01,05 TYFE !"ENTER COEFF‘’S AC(JyK)+o o ACIINY ANDL RO
01,10 ASK Ly !3SET N=l-15 SET I=~1

01.11 FOR K=0yNj3 SET R(K)=K+1

01.12 FOR J=0syNs TYFE 13 FOR K=0sL3 ASK ACJHLXK)
01.14 SET M=1E-6

01.16 FOR J=0syNi} FOR K=0sN7 DO 4

01.17 SET RLF1=0.

01,18 FOR K=0sL.5 SET ALF+LAKI=ALF+.XK1/M

01.20 FOR J=0sNs DO 5

01.22 SET I=I+1

01.23 IF (I-N) 1.14y 1.26 » 1.14

01.26 FOR J=0yN3 FOR K=0yNj IO 7

01.28 FOR K=0sNFTYPE 1Z2y"X("Ke") "3Z8.05»X(K)
01.29 TYFE !5 GOTO 1.02

04,05 IF (R<Jx) Oy 4.3y 4.1

04,10 TIF (FARS(ACJH.XK)) -~ FARSIMI) 4.3%

04.20 SET M=ACJ+HLXK)

04.22 SET FP=J§ SET Q=K

04,30 RETURN

05.10 IF (J=F) G5.2:5.4y5.2

0520 SET Di=A(J+HLXQ)

05:30 FOR K=0yl.3 SET ACJHLKKNF=ACJHLKRKE—A<CPHL AR XD
03.40 RETURN

07.10 IF (1E-6~-FARSLACJHLXKII)Y 7.25 RETURN

07.20 SET X(K)=ACHLXL)

XG0

ROUTINE TO SOLVE MATRIX EQ. AX=R FOR X
ENTER DIMENSTON OF A THEN

ENTER COEFF’S ACJeR) o ACIyNY AND ROD
+ 3

X 0 0.25000
X¢ 1) 1473000
XC 2y = 0.75000

ROUTINE TO SOLVE MATRIX EQ. AX=R FOR X
ENTER DIMENSION OF Ay THEN

ENTER COEFF’'S ACJsK) oo ACTeNY AND RO
:3

X 0 3.00000
X¢ 1) - 4,00000
xX¢e 2 1.50000

Examples of Focal Programs

4.6 INTEREST PAYMENT PROGRAM

This is an example of a business-oriented FOCAL program. It is desig-
ned to completely describe the payments to be made on a loan, with

interest, on an installment plan basis.

Under program control, the computer requests as input the amount of a
loan, the percentage of interest on that loan, and the length of time
over which the loan is to be paid. The computer than calculates and
types the amount of monthly payments to be paid, the total amount of
interest to be paid, and a table showing interest paid, amount applied
to principal, and balance due after each payment.

SRAM WILL COMPUTE MONTHLY PAYMENTS ANl THE"
UTIOM QF E
T TG IMTI
MG

T AND PRINCIFAL . PLEASE ANSWER THE®
"WHAT
"WHAT

01 .42
Q%01 ¢
05,02 T
Q0% 04
G500
0508 1
QL 07 TYFE
Q5,08
G&6:01

Gy TYRE D
TYFE "

(] (3

O, 02 [" "
06,03 "TOTH ’

Oé .04 TOTINT
086 .05
Qb 064
Q701

07,03
07.04
07,05
Q7,07
185,99

THIS FROGRAM WILL S COCONTRIBUTION OF
EACH FAYMENT TO INTERES FLEASE ANSWER THE FOLLOWING?

WHAT T8 THE AMOUNT OF THE FRINCIFPALTIZ000
WHAT I8 THE RATE OF INTEREST?I6.4
WHAT T8 THE TERM OF THE LOAN IN MONTHS?IL2

FRINCIFAL 2000.00 FAYMENTS L7256

4-10

Examples of Focal Programs

FAYMENT INTEREST FRINCIFAL RALLANCE
1,00 10.67 161 .84 1838.17
2400 5. 80 162470 1675.47
F.00 8.94 163,57 1511.90
4,00 B.06 1é&4.44 1347 .47
5.00 7419 165,32 1182.1%
600 be31 16620 1015.96
7400 .42 147,08 848,87
8.00 4,53 167,97 680,90
.00 3,63 168,87 Hl2.03
1000 De7H L&® .77 I42.26
1100 1.83 170.68 171.59
1200 092 171,99 0.00

TOTAL INTEREST 70.01

4.7 INTERCEPT AND PLOT OF TWO FUNCTIONS

Values are first computed and printed for two monotonic functions.
Then these curves are plotted within specified limits. Non-monotonic
functions must be plotted using the method of residuals.

C FOCAL XVUM V1A000Q

01.01 T %8.04

01,02 ASK "LOWER LIMIT"sLLy!"UFFER LIMIT" ULy !"INCREMENT" »INy!
01,10 SET Y1=03% SET Y2=05

01.20 FOR X=LLyINsUL$ SET Yl=-X-37 SET Y2=3+4%X-X"2% DO 2.0
0210 IF (Y2-Y1) 2.352.2+2.3

02.20 TYFE °"THE FOINT OF INTERSECTION I8 "»!

0230 TYFE "X1="yXy" "' Y1="yY1y!ly"X2="yXs" "p"Y2="yY2y!!
03,10 TYFE "IO YOU WANT A FLOT?®

0320 AGK "(TYFE Y FOR YES. TYFE N FOR NO) "sANs!!

03.30 IF (AN-OY)Pelrd.ls?.l

04.10 FOR X=LLyINsUL$ DO 5.0
0501 TF (X)) 540 +5.0295, 1
OEJ.O():?. .rYF:.Fi * YQQ00000000‘000’0000000“00000QOO‘OOOQOOOY.,*

.10 FOR Y=0s30§ TYFE * "
QG20 TYFE "."v#%

05+30 FOR Y=0u304 (X35 TYFE " °

Te40 TYPE "X"se¥

05,50 FOR Y=0y30+ (F+A4KX-XT235 TYFE " °
DG.60 TYFE "X"y!
0910 QUIT

XG0

Examples of Focal Programs

LOWER LIMIT:~10

UFFER

INCREMENT$ 1

X1
XD

10,0000
10.0000

X1

X2

9. 0000
?.0000

8.0000
8.0000

7.0000
7.0000

5.0000
640000

5.0000
5.0000

4.,0000
4.0000

X 1w J3.0000
- 3.0000

2.0000
2.0000

THE
K=
h SRR

FOINT OF
1.0000
10000

X1
X2

Q0000
0.0000

& [
X5

1.0000
1.0000

>
X2

2.0000
2:0000

X3
¥ s

30000
F.0000

X1 4.0000
X2 4.0000

X G 0000
KD S5 0000

X L
XD

&.0000
&, 0000

X 15
o

70000
70000

LIMIT:10O

INTE

Yie
¥ e

Y
Y e

Y
Y 2ume

Y1a

¥ R

Y
Y R

7.0000
137.0000

6. 0000
114.0000

Fe 0000
P3.0000

4.0000
74,0000

X, 0000
UL 0000

20000
42,0000

1.0000
29,0000

0.0000
18.0000

10000
Y0060

CTTON T8
20000
2.0000

L0000
J,0000

4.0000
A 0000

00006
7. 0000

4. 0000
A QOO0

FL0000
X.0006

8,0000
240600

20000
P.0000

10.0000
180000

Examples of Focal Programs

X1 8.0000 Yi=- 11.0000
K= 8.0000 Y2=- 29,0000
X1 P.0000 Yl=- 12,0000
X2= P+0000 Y2=- 42,0000
X1 10,0000 13,0000
. X2= 10,0000 57,0000
X1= 11,0000 Yi=- 13,0000
X2= 11,0000 Qe B7,0000

DO YOU WANT A FLOT?(TYFE Y FOR YES. TYFE N FOR NO) Y

X . X
X . %
X . X
b . X
X .
X T
X + X
X X
X X
X .
YoeosoosoosoosonososXooooeoKovoosossororoonaneY
X . X
% . X
X . X
X . X
X b S
X .
X X .
X X .
X X .
X X .
X X .

4.8 SCHROEDINGER EQUATION SOLVER

This program is designed to aid the user in searching for possible
energy-states of an electron in a potential well. This is one of the
most compex equations yet written in FOCAL. It calculates and plots
the energy levels of an electron within specified boundary conditions.

COFOCAL =%M WIRGE5

a1 ol T ' "SCHRCGEDINGER EQUATION SOLYER —". !

@doE2 T O ~DELSEUARED FSI + AS « P21 = E & PSI". 1!
Bio@E A "TILTED SOUARE MWELL FREOBLEM WITH WIDTH". @a. !
Bl 83 A "WELL TILT SLOFE A", Al ', "TRIAL ENERGY E".EdL. !
Bl 82 [/ "HRUMEBER OF STEFS".NT. !

#1011 5 WFRF=E: 2 SL=1

[B I wERESNTS S FPolysslsbix: S Ro=g

g1 75 =

5 5

§1 HF

@1 2z T b, 8. Fe

g1 25 GOTO

4-13

Examples of Focal Programs

7]
R

=
1 — — T

EE @, P PSITLHFCRE). Y
FI=FITRCFM#SCY; 5 FE=FITRCOPLFX I+FM) 505

onon
X

gl
X

o D
[x(}

Lhon

| and L I SR EX VO

o
Doy

S
)

et

e
hox)

FEa=Foa+1: F
CUONTINLE

CFR=CF{NTP<1>0 730 T " CONY INDUR. OF
" HEW EF"NY

SN0

5 B S o T 30 ¢ O T st M B x|

% I ol o R I B oUW R 8

«

Ly R R T Ey B I S « N Ay N S B |

(N} Ik

Bil=ELl#(1+DE: T Bl: S WF(NT2: G 4 2@
COood4: GOTO 12 81

T LW NETGEN E'ELs S HF=ELSCRL#x0)

T " ENSMAX FOT"HF. !

T TR T O TR T T O T B O I
o
X

L)
[COCN OB Bt Bt et R Bt Nt I e it 0}

o
Iﬁ| }-n =

2. GUIT

AL NTS Do AS

FM=g: = FF=8: F FiX
FE=FM+FF: 2 SC=45
'y F Pe=1.4. Fas

- .-
b
=

Az
._{
Ly d
I-

DR o0 B o T o B e B e B o I R R A S
I B T S S et B AL IR |

._
st
)

FF=F
RETLIRN

[N
]
LT O B Ll PO R T G e tel PO L

15,

X
R

+I510
SCHEQEDINGER ECUATION S0OLYER -
“DELSHUARED FZI + A o+ PSI = E o+ P2
TILTED Z@UARE WELL FROEBLEM MITH MIDTH: 1
MELL TILT =SLOFE A48
TRIAL ENERGY E.S&

NUMEER OF STEFZ: 15

FE1 ZEROZ 1 CONY IHD 8 SE1I264EZE+01 NEM £7 v

4-14

FoN+2=C 0Bl +FLalinsl N+d 10D T2+ 2 4P N+ L d-FON D

cl

Examples of Focal Programs

@ FSI G, #
1 FSI a1 *
2 PSI) #
z PSI e, *
4 FPS 18,
5 PSI @, #
& PG ad, *
? FS @ #
& PS e 4
9 Pz g #
18 PS e, #
11 FS GE.
12 FS e
z PS Gt
14 FS G,
15 PS aE
EIGEN E 0. SOOQBRRORE+HZ ENJMAX POT 0. 12SHAR@EAE+H1

CHAPTER 5

LIBRARY COMMANDS

FOCAL LIBRARY commands allow the user to save and then call programs

by name. These commands cause files consistent with the XVM/DOS file
format to be produced and accepted. These files, which use IOPS ASCII
data mode, can be manipulated by other XVM/DOS programs such as PIP

and EDITOR. In addition to the library commands, a COMMON command and
an ERASE COMMON command are available. These commands allow the effec-
tive segmentation (chaining) of FOCAL programs, with the COMMON area

defining those variables which are to be used by all segments.
5.1 LIBRARY OUTPUT COMMANDS

Three operations are required to produce a file with the FOCAL library

commands :

a. File initialization
b. File output

c. File termination
5.1.1 Library File Initialization
The command

iLTBRmRY OUT NAME

X
initializes a file on the output device associated with .DAT slot 5.
If the device is directoried (i.e., has named files), then the file
name NAME is used. NAME can be up to six alphanumeric characters
and is terminated by a carriage return. The extension FCL is supplied
by the system.

5.1.2 Library File Output Operations

Commands of the form

*

*LIBRARY WRITE nnn
*

cause information to be entered into the library file. The character

string nnn can take four forms which are explained below.
5.1.2.1 Direct Command Output

If the character string nnn, in the example above, begins with quo-
tation marks ("), the command indicates that the character string
following the quotation marks is to be inserted into the file. This

character string may be any FOCAL command.

Library Commands

For example, the command here is an *, a FOCAL symbol typed by the
user to signal termination of input from the device associated with
.DAT slot 3.

X

XL IBRRARY WRITE "X§ GO
X

causes the command

%
X
XX 60

to be inserted into the library file as a direct command. This will
start the program when the file is later called for execution by a

library input command.
5.1.2.2 Single Line Output

If the character string nnn is a legal line number which is present in
the program in core, this command causes a single line to be inserted
into the file. For example, the command

b 4

XLIRRARY WRITE 10.02
X

causes line 10.02 to be inserted into the currently opened output file.
5.1.2.3 Group Output

If the character string nnn is a legal group number, this command
causes the entire group of lines to be inserted into the file. For

example, the command
+
-+
«TERAREY WRITE 2 @8
causes all group 2 lines to be inserted into the current output file.

5.1.2.4 Program Output

If the character string nnn is ALL or A, then the entire indirect pro-

gram is inserted into the current output file.
5.1.3 Library File Termination

After using the appropriate library output commands, it is necessary

to issue the command

B
£

L IBERARY CLOZE

to complete file output and enter the file name into the directory

Library Commands

of the mass storage unit of the system. The LIBRARY CLOSE command
allows an input or output file to be closed. An error message '"?235"
will be printed if a file has not be opened. If the LIBRARY CLOSE
command is not issued, the user remains in library mode and all other
commands are illegal. However, to leave library mode without actually
finishing the output file, the command

“*

*

*L IERARY KILL
is used. After using this command, the user is in command mode, and
the file which had been started by the library output commands is
lost.

5.2 LIBRARY INPUT COMMANDS

To load a library file which has been output from FOCAL or which has
been prepared off-line, the command

+

E 3

#L IBRARY IN NRME
is used where NAME follows the conventions used for library output.
The library input from the device associated with .DAT slot 3 is ter-
minated by an end of file or end of tape condition on the input file.
It is also terminated by the presence of a direct command of asterisk
(*), supplied during a LIBRARY WRITE command within the library file.
If none of these three conditions occurs, FOCAL assumes that subsequent
input (e.g., for ASK command) will come from the device associated
with .DAT slot 3. This direct command can be a multiple command
which can provide automatic program starting. For example, a direct
command to terminate input and to start a program at line number 8.21
would be

*

#

#i 0 GOTO =0 24
This command can be inserted at the end of the library output by the
command

*

*
L IBRARY WRITE "#: GOTO 2 21

¥
[
-

Library Commands

5.3 LIBRARY .DAT SLOT USAGE

The FOCAL LIBRARY commands assume input on .DAT slot 3 and output on
.DAT slot 5, and the FOCAL DATA commands assume input on .DAT slot 7
and output on .DAT slot 10. The recommended assignment to the Linking
Loader is the System Library located on system disk unit 0.

The following table shows a typical set of device assignments where
the system software is on disk pack unit 0, input is from DECtape
unit 1 and output is to DECtape unit 2.

.DAT Slot Contents Sample Assignment
.DAT -1 System Library DPO

.DAT -4 FOCAL binary program DPO

plus FNEW binary

.DAT 3 FOCAL library input DT1

.DAT 5 FOCAL library output DT2

.DAT 7 FOCAL data input DT1

.DAT 10 FOCAL data output DT2

FOCAL data commands are described in Chapter 7, and .DAT slot assign-

ments are again summarized in Appendix E.
5.4 COMMON VARIABLES AND ARRAYS

The COMMON command allows the user to define permanent FOCAL variables
and arrays which are saved with their current values when the user
modifies the stored indirect program. Thus, the caution at the MOD-
IFY command (refer to Section 3.14) does not apply to COMMON variables.
The COMMON command is legal only if no other variables have been de-
fined in the symbol table. Thus, it is good programming practice to
precede a COMMON definition by an ERASE command to clear the symbol
table. If any non-COMMON variables have been defined when the COMMON

command is executed, it will be treated as a COMMENT and ignored.

5.4.1 COMMON Format

Three types of variables can be defined in a COMMON command as the
following example shows.

B

“+

HCOMMON A BCS. (0. 101, 30
The first variable, A, defines a single non-subscripted variable. The
second variable, B(5), defines a single array element to be COMMON.
All other elements of the array B are non-COMMON. The third variable

(C.1.1.3) defines a series of array elements as COMMON by using a

3

a

Library Commands

notation similar to the FOR statement. Thus, the command

X
XCOMMON (Cylels3)
X

is equivalent to the command

E S

E'S

HCTOMMON Cody D02 T0E 004y DS
but much shorter. Note that, because COMMON and COMMENT both have the
initial letter C, the COMMON command must not be abbreviated.

5.4.2 ERASE COMMON Command

The ERASE COMMON command must be used to clear the COMMON area if a
user wishes to define a completely new COMMON area. It will clear
both the COMMON area and all variables in the symbol table, but not
the program itself. If, however, the user simply wants to add to the
current COMMON area, it is only necessary to erase any non-COMMON
variables by using ERASE. The ERASE ALL command has no effect on the

COMMON area variables and does not change their values.
5.5 CHAINING OF FOCAL PROGRAMS

For FOCAL programs that exceed the capacity of user's core memory, it
is possible to segment the program. By combining the library input
and COMMON commands, one segment can call another by name. ALL COM-
MON variables are retained in core memory for access to them from

all segments of the program. New COMMON variables can be added to
the permanent table from any segment. The command LIBRARY IN NAME
brings in the next segment to core memory and provides access to the
COMMON table for the operations in this segment of the program.

NOTE

Ensure that a segment does not exceed its alloted

memory location or the overflow will begin to

erase the compiler core.
The following example shows three FOCAL segments and the operations
required to provide the segments with linkage capability. The first
segment, named CHl, defines a COMMON area and initializes the varia-
bles. If CHl1 is called again, it checks for the values in the second
part of the COMMON area which were defined in CH2 and QUITS. The
second-segment, CH2 defines more COMMON variables, checks the original
COMMON values created in CH1l, and initializes the additional COMMON
variables. The third segment checks all the COMMON values and calls
the first segment again.

Library Commands

*URITE L

C FOCAL ®¥M Y1REB9S

81. 95 TYFE "CHL READY". !

81. 18 COMMON A B G, CREC, 1, 5) .y
@1 208 IF CAY 29 4.1 %, 28 1 L;sé;?g
91. 33 SET A=1 °

91, 48 SET B=2; SET 0=3

P1. 58 FOR X=1,5; SET REC(H)=x#id

91.55 TYFE "CH1 DONE - CALLING GHZ®, !

91 68 LIERARY IN CHZ

2018 IF (@-18) 20 2.20. I, 20, 2

28. 20 TYFE "COMMON ERROR ON EZND CALL OF CHLY, !

29. 23 TYFE "ALL DONE", '; GUIT)

*LIBRARY QUT CHL h
*«L IBRARY MWRITE “ERASE ALL

+#L IBRARY WRITE FLL Library
+LIBRARY WRITE "#; G0 Output
*LIBRARY CLOSE of CH1
®

*WRITE ALL N

C FOCAL =WM Y1RA8EE
a1, TYFE "CHZ RERDY". !

Q1. COMMON 2. CHEC. S.4. 160

al. FOR ®=&,168; 5 FABCCX)I=X+18
a1, FOR w=1.16; DO 25 @ Listing
ai. IF CA+B+C-6) 1. 6.1, 7.1, & of CH2
a1. TYFE "CHZ COMMON ERROR — SUM = ", A+E+0. !
Al TYPE "CHZ DONE - CALLING CHIZ". !

@l LIERARY IN CHX

14

=

IF (RECCX)-18+x2 25 2.

S

",

]
()

Ll P B 00 = T O B ef PO
DR I U oy o o B B I

S x2Sz
2s. TYFE "ERROR AT X = ".%." AEC FARRAY = ", AEC(X)Y. !
25. I8 RETLRN J

=L IBRARY OUT CHE

*LIBRARY WRITE "ERASE FALL .

*L IERARY WRITE FALL Library
*L IBRARY WRITE "#: GO Output
*LIBRARY CLOSE of CH2

*
*#*WRITE RLL

COFOCAL XWM W1ASEE

@21 18 TYFE "CHX RERDY". !
81 28 FOR s=1,18: [25 @
a1, SET =1 Listing
¥ L o) LEN i ¥ R K - ': ot 1w ‘: o ot T vt L] . i

ad. TYFE "“CHZE DONE CHLLING CHI AGARIN". ! of CH3

A

DA I I RO 3

4
@1, S8 LIEBRARY IN CH1L

25 18 IF (RBC{RI—18+x) 25 2,25 X, 25 2

2528 TYPE "ERROR AT x = ".xX." ABC AREAY = ", ABC(x) . ! J
25 28 RETUEN

*L IERARY
*L IBRARY
*L IERARY
*L IERARY
*L IERAFRY

&

EFOCAL =Y
*ERASE CO
*L IERARY

CH1 RERDY
CH1 CONE
CHZ RERDY
CHZ [IINE
CHE READY
CHE DONE
CH1 RERDY
HLL [ONE
*TYFE #

CiE s

1

Library Commands

OUT CHE

WREITE "ERRARSE 1. @6
WRITE 1. @@

WREITE "= GO
CLOSE

I W o 1 [

MMON

IN CH1
- CAHLLING CHz
- CHLLING CHZ

- CALLING CH1 AGAIN

AR

=

[x]

)

N

Library
Output
of CH3

Library
Input and
Execution of
Chained Pro-
grams CHI1,
CH2 and CH3

pump of
COMMON
Symbols

CHAPTER 6
USER DEFINED FOCAL FUNCTIONS

The ability to write FOCAL functions in MACRO assembly language and
subsequently interface these functions with the FOCAL interpreter is
an important feature which allows real-time use of FOCAL. These func-
tions are processed in the same way as the normal internal functions
supplied with the interpreter (i.e., FSIN,FITR,etc.). Some external
functions are provided in the FNEW file (Refer to Section 6.2). User-
defined functions can be incorporated into the source file of FNEW

and then reassembled by MACRO. The process is described in the XVM/
DOS System Installation Guide. The interface of external functions is

accomplished by:

a. Use of a function table which contains the three letter
function name in .SIXBT (6-bit ASCII) and a jump to the

function processor.

b. Use of .GLOBL definitions which allow the function pro-
cessors to use character processing and expression eval-

uation routines which are in the interpreter.

The following detailed example shows the operations necessary to
write an external FOCAL function in MACRO assembler language and to
merge it into the external function file, FNEW, described in Sec-
tion 6.2.

6.1 EXAMPLE

A scope routine has been generated to display characters at a given
point on a scope. This routine is called from FOCAL as a function by
XYC (X,Y,SHOW). Here, X and Y are expressions to be used as display
coordinates for the start of SHOW.

First, the function name and transfer instruction must be added to
the .NEWF function table within FNEW. Refer to page 6-6.

.SIXBT /xyc/
JMP SETXYC

When control arrives at SETXYC, the X has already been evaluated.

SETXYC JMS* .AX /make 18 bits
DXL /set X coordinate

User Defined Focal Functions

Now, check for the second argument and give an error if no second

argument is given.

JMS* XSPNOR /skip spaces
SAD (254 /is it a comma?
JMP +3 /yes

.DEC

LAW 1 /2?01 error

.OCT

JMP * FUNERR /function error

Move past the separating comma.
JMS* UTRA

Evaluate the second argument.

LAC EVAL /address of evaluation
routine

DAC +2

JMS* XPUSHJ

XX

The second argument must be made into an 18-bit quantity and the y

coordinate set:

JMS* .AX
DYL

Test for a comma; if present, bypass it to get to the character string.

JMS* XSPNOR /skip spaces
SAD (254 /is it comma?
JMP +3 /yes

.DEC

LAW 1 /201 error
.OCT

JMP* FUNERR /error return
JMS* UTRA /skip comma

Now, pick up the single ASCII characters and display them. (This
example assumes the character display routine is called DYCHAR.):

DCLOOP LAC* CHAR /get character
JMS DYCHAR /display it
JMS* UTRA /get next char
SAD (251 /is it end?
JMP* EFUN3 /yes-return
JMP DCLOOP /no-go display next
character

[

User Defined Focal Functions

6.2 FILE FNEW

The following functions are supplied

another function):

in FNEW (where N cannot be

FUNCTION MEANING

FDXS (N) Set the x coordinate of the 34H display

FDIS (M) Set the y coordinate of the 34H display
and itensify the point

FDXY (N, M) Set the x and y coordinates and intensify.

FADC (N) Set the multiplexer of the A/D converter
and perform one conversion

FDAC (N) Set the D/A converter to the specified
value.

FRLB (N, M) If N=-1, clear the relay buffer (M should

not be specified)

If N=0 to 17,

set the appropriate bit of

relay buffer according to the value
of M(0 or 1).

FRND (N) Start a sequence of random numbers in the
range of -1.0 less than or equal N
less than or equal +1.0 based on the
value of N. The value N may be any
valid arithmetic expression. FRND
always generates the same number for
the same value of N. If N is either
0 or v {(a space), a random number

will be

generated based upon the

previously generated number. The
first time FRND is called, if with a
0 or v argument, it produces a value
of 1.0000.

The following points should be noted:

1, Other names for the 34H display are the RM503 Scope or the

VP15B Scope.
2. The proper way to use these

SET J = FDXY (N,M)

functions is as follows:

(What J will be set to is immaterial, and other letters

may be used in place of
FDXY (N,M)

J.) You cannot use:

3. The 34H display is a refresh-type scope. This fact, combined
with the time it takes to interpret and execute the graphics

functions, limits them to a maximum of 75-100 points on the

screen, before the first point put out begins to diappear.

Hence, they are suitable for putting out graphs consisting

of a set of points. They are not suitable for putting out

"continuous line" drawings,

in which many points spaced close

together look like a continuous line.

User Defined Focal Functions

The functions are supplied to provide the user with additional exam-
ples in the method of coding external functions.

The listing that follows is representative of the source code in the

file FNEW is supplied by DEC but may not exactly match what is avail-
able.

ser Defin F F tio

7
ZRUSH FLOATING ACCUMULATOR (FUSHF.AA)
/ L.AC « A

s LAt o F2

7 JME K L

/ XX

/RO FLOATING ACCUMULATOR (FOFF 660
/ L.AC « AR

7 nac ot

/ JME K P03

/ KX

SEUSH FLOATING VARTARLE (FUSHF VAR)
/ SMEK L
s s 5A Vak JWHERE VAR I8 THE FIRST OF
7 STHREE(Z) REGISTER RLOCK

ARPOP FLOATING VARTARE (FOFF VAR?
/ JMEX FI3
7 L8R Vak AHBAME A8 FOR FUSHF VAR
7
'L?lH CURRENT CHARACTER
/ LACK CHAR

AFETOH NEXT CHARACTER (GETO)
/ JHMESX LITRA ACHARACTER IN ROTH CHAR AND AC

ALES AND ZERDOS (SFNORD
CNOR ANEXT CHARACTER IN BROTH CHAR AND AC

ATGNORE LEADING &F
f WSS K

IN[‘(&T: f FUNCTION ERROR (ERROR HN)
s PRI
LAl MM AMMNETWO DIGIT (DECIMAL)Y ERROR COUE
LO0T
MK R AERRFOR WILL HAVE DOUBLE QUESTION MARK

CRETURND

AValUE OF FUNCTION IN FLOATING AC

[NT IRTERFRETEF

(s f"fi&1)
i - INSTRUCTIONS
E L E FLOATING FOINT
SUNTIL FXLT l) th [FNN
th P TO FLOATING FOINT OFERATIONS
7118 NEXT s

£
OLNT UFFRﬁTIUHS CUSE & FOR INGIRECT)

y SRATSE FafFe AL TO VAR/CONSTANT

AADT F e VARTABLEAZCONSTANT TO F.F. AT
ABUBTRACT FROM F./F. A0

£ TIFLY THE F.F. AC

OTNTO THE Fefe AC

THE Fof« Al

e AG

THE F.F. AC

/LALT FhUM FLOATING FOINT MODE

Unk
ik

 FLOATING ACCUMULATOR
o B

SNEGATE T

7

CFIX THE

NG ACCUMULATOR INTO THE HARDWARE ACCUMULATOR

User Defined Focal Fun n

/
/FLOAT THE HARDWARE ACCUMULATOR INTO THE FLOATING ACCUMULATOR

JMEX AW

i

EXTERNAL FUNCTION TARLE FORMAT
WORDN 03 TWO’S COMPLEMENT COUNT OF NUMBER OF ENTRIES
WORDS 1 TO 2N3 N TWO WORD ENTRIES
EACH ENTRY: WORDO! +SIXEBT THREE LETTER FUNCTION NAME
WORTI1: JMF TO FUNCTION ADDRESS

NORNRNNRANNS

SEJECT

/

STARLE OF NAMES OF EXTERNAL FUNCTIONS

/

« NEWF e NEWFE~ e ~1/2\777777+1 /TWO’S COMF COUNT OF NAMES
SHBIXRT /DXS/
JMF SETX /BET X COORDINATE
+SIXRT /DIS/
JMF SETYI /BET Y COORDINATE AND INTENSIFY
SHIXBT /DXY/
JMF SETXYI ZBET X AND Y AND INTENSIFY
LSIXRT /7aDc/
SME SETADC /7SET MULTIFLEXER AND CONVERT
SHBIXRT /DACY
JMF SETRAC ZL.OATT Ii/4 CONVERTER

ARLEB/S

SETRLE /SET RELAY RUFFER

SRND/

RANT ZRANDOM NUMEBER ROUTINE

NEWFE=,
/10T DEFINITIONS

ZLOATE Y CODRININATE

AL0A0 X COORDINATE AND INTENSIFY
Z8KIF ON A/ FLAG

AGELECT ANDU CONVERT

AL ASTE BUFFER

SSET MULTIFLEXER

ZLOAD T/a CHANNEL ONE

SCLEAR RELAY BUFFER

ABET RELAY RUFFER

+AX AHET X COORDINATE
XCOORD /8AVE
EFUN3 /RETURN
e 13X SBET Y COORDINATE
A.0AD REG WITH Y
ACOORD
ZLOAD WITH X AND INTENSIFY
EFUNS SRETURN
«AX ABET X COORLINATE
KCOORD /SOVE
GETARG
< SETYI ANQW SAME AS FDIS
SETARC JMSX «AX JGET MULTIFLEXER CHANNEL
ATIGM /ZNOTES WILL USE L.OW ORDER
/5IX BITS A8 CHANNEL NUMEER
ZTURN OFF INTERRUFT SYSTEM

SGELECT ANID CONVERT
JWATT FOR FLAG

6-6

£AF7CODE
AAAEAT AUGL

SETHAD

SETRL.R

7

GETARG

XCOORI
RELAYE
TEMF

/

S
ATHRE
[RE

|

Ny
LAt
CMA
ANT
nAac

SMEK
JMGK
LAl
nAac
JMEGK
XX
JHFok

0
0
0

FEML

User Defined Focal Fu ns

|

JREAT (/71 BUFFER

OVEL WHITH PROFAGATED STGN BIT aLHUM. 12 RBRIT ASL

3 M5 s
LYEY v s e

AW
{400000 At

AT RESULT

0N SVULFT BYSTEM

EFUNG
«AX

VaLuE 4%

ot
RELAYR

BIT FOSITION

= CLEAFR WHOLE RELAY RUFF
TURN

AFORM ONE'S COMF

TEMF AGeNE GBS COUNT

EFUNS /

(e AMUST BE RELAY O TR 47

ARG TT LEGAL POSITION

t+3 /YES
2 /N

FUMERF

ACLEAR ULD RELAY Ualui

FBAVE NEW BUFFER

AR BET RELAY
ZIF NON ZERO SET

L /NG~ FFQL ERROR

FUNERR / TERNAL FUNCTION ERROR
UTRA S HR

IR COMMA
E A

KFPUSH ZCALL EXFRESSTION EVALUATOR

GETARG SRETURN

ARG

ORIINATE STORAGE
AY BUFFER STORAGE
AF QR STORAGE

User Defined Focal Functions

/ROUTINE TO GENERATE A& RANDOM NUMERER //7NEC, 1970
/NUMBER SEQUENCE CAN BRE INITIALIZED

/BY HAVING A NON-ZERO FUNCTION ARGUMENT

/

/USES A SIMULATED 1BRIT SHIFT REGESTER

/WHICH IS SHIFTED 1 RIT RIGHT WITH FEEUERACK

/FROM THE 7°TH&18‘'TH STAGES TO THE 1787 STAGE
/THROUGH AN EXCLUSIVE OR GATE

/
RAND JMEX «AX /GET ARGUMENT IN Al
SZA /18 IT O
JMF STGEN /N0 GENERATE RANDOM NUMERER
L.AC RANFT /YES IS LAST RANFT O
SNA
L.AW s | ZYES INITIALIZE RANFT
STGEN nAC RANFT ZSTART TO GENERATE
RCR ZNEW RANDIOM NUMRER
DAC RANFT ZBY SHIFTING ONE BIT RIGHT
GLK ZGET BITL17 AND STORE (STAGELE)
nAacC RITSAV
LAC RANFT
RTR ZGET RITS (STAGE 73
RYR /SETUF TO FEELRBACK TO RITO
RTR ACSTAGE 1) THROUGH XOR GATE
RTR
RTR
AND (1
X0OR RITSAV
SZA
TAD (377777 JFEETRACK & ONE
TAD RANFT AMARKEUF NEW RANDOM NUMEER
nAC RANFT STORE FOR FUTURE USE
NACX +AR ‘BET SIGN AND HIGH ORDER MaNTI
DZMx +AA /SET EXFONENT=Q
nZMx +AC ZSET LOW ORDER MANTISSA=Q
JMFX EFUN3 JEXIT TO FUNCTION RETURN
RITSAV O
RANFT 0
/
+END

CHAPTER 7
DATA COMMANDS

FOCAL data commands allow the user to store and then retrieve sub-
stantial amounts of data through the use of auxiliary Input/Output
devices other than the Teletype. The steps for processing the data
need not be incorporated in the FOCAL program itself. The commands
cause files consistent with the XVM/DOS format to be produced and
accepted:; and as with the library commands, the files can be manipu-
lated by other XVM/DOS programs such as PIP and EDITOR, as may be
noted from the examples at the end of this chapter.

Data commands are used with other FOCAL commands and follow the
same conventions with only minor exceptions. The DATA command,
because of the conflict with the DO command, cannot be abbreviated.
Also, under some conditions, library commands are illegal as with
DATA OUT or DATA CLOSE (see 7.1.1 and 7.1.2).

7.1 DATA COMMANDS

Three operations are required to produce a file with the FOCAL data

commands :

a. file initialization
b. file output

c. file termination
7.1.1 DATA File Initialization and Output
The command
*DATA OUT NAME

initializes and enters a filename on the device associated with .DAT
slot 10. The name can be up to six alphanumeric characters and is
terminated by a carriage return. The extension FCL is supplied by

the system.

Every TYPE or WRITE command issued after DATA OUT NAME will output
data to the device assigned to .DAT slot 10. For example with the
following .DAT slots assigned:

$A DPO -1,-4/DT1 3,5,7,10

data is output to .DAT 10 on DECtape unit 1, until a DATA file ter-

mination command is given.

If a LIBRARY command is issued while in the DATA OUT mode, error
message "?31" will be output to the teletype. What has already been
output to the DATA file can then only be saved if a DATA CLOSE com-

mand is issued.

Data Commands

7.1.2 DATA File Termination

After the appropriate DATA output commands are used, it is necessary
to issue the command

*DATA CLOSE

to complete file output and enter the filename and data into the device
associated with .DAT slot 10. DATA CLOSE commands allow input or out-
put files to be closed. If a file has not been opened, FOCAL will
output the "?235" error message on the teletype. The DATA CLOSE com-
mand also returns the user to the teletype mode.

If the command is not issued, the user remains in the data mode. How-
ever, to leave the data mode without finishing the output file the
user may type

*DATA KILL

which aborts the output file and returns the user to the teletype mode.
The file started by the DATA output command is lost when DATA KILL is
issued.

7.1.3 DATA Input
The command
*DATA IN NAME

function is related to its use in indirect programs. When DATA IN
NAME is used in an indirect program (e.g., 1.10 DATA IN filename), it
initializes the device associated with .DAT slot 7 for data input

from an ASK command. Recall that the ASK command is normally used in
indirect commands and that its use is to input data at specific points
during the execution of an indirect program. Thus, when a line num-
ber and a DATA IN command such as

*1.10 DATA IN filename

is inserted in a program, .DAT slot 7 is initialized for data input
when an ASK command such as

*2.10 ASK X,Y,7Z
is encountered during program execution.
7.2 DATA .DAT SLOT USAGE

Data commands, as previously stated, assume input on .DAT slot 7 and
output on .DAT slot 10. The recommended assignment to the Linking

Loader is the system library located on unit 0. Recommended FOCAL

Data Commands

program and user input/output assignments for DECtape and Disk are:

2DAT Slot Contents = Sample Assignment
.DAT -1 System Library DPO
.DAT -4 FOCAL binary program DPO
plus FNEW binary
.DAT 3 FOCAL library input DTO
.DAT 5 FOCAL library output DTO
.DAT 7 FOCAL DATA input DTO
.DAT 10 FOCAL DATA output DTO

7.3 DATA COMMAND USE

Some of the data commands so far described are used in the following
examples. Also demonstrated are the commands for loading FOCAL with
the Linking Loader and for use of PIP for a Directory listing and out-
put of data on the teletype.

XVM/DOS Vnxnnn
$A pPl1 -4,3,5,7,10 /Prior..DAT slot assignment
SGLOAD
LOADER XVM Vnxnnn
FOCAL
FOCAL XVM Vnxnnn
*1.10 DATA IN INDISK /Type indirect program

*1.20 ASK A,B,C,D,E /File INDISK contains the input
Data.

*¥1.30T A+B+C+D+E,! /See PIP listing of INDISK below.
*GO
15,0000
*LO SHOW /Save indirect program.
*LWA
*LC
*LI Show /Recall indirect program
*Wa

C FOCAL XVM Vnxnnn

01.10 DATA IN INDISK /List program on the teletype.
01.20 ASK,A,B,C,D,E

01.30 T A+B+C+D+E, !

*GO
15,0000

*TA
1.0000%*
*TB, !
2,0000

Data Commands

*DATA OUT OUTDT /Output data onto DECtape using
*TA /the TYPE command

*TB

*TC

*TD

*TE, §

*DATA CLOSE /Close the output file.

* C

XVM/DOS Vnxnnn

SPIP

XVM Vnxnnn /Examination of files created
and input

PIP XVM Vnxnnn
LTT DT1

DIRECTORY LISTING
1042 FREE BLKS
4 USER FILES

10 SYSTEM BLKS
INDISK FCL 1 1
FOCAL BIN 2 23
SHOW FCL 3 1
OUTDT FCL 4 1

T TT DT1 INDISK FCL(A)

1.0
2.0
3.0
4.0
5.0

C FOCAL XVM Vnxnnn
01.10 DATA IN INDISK
01.20 ASK A,B,C,D,E
01.30 T A+B+C+D+E.!
T TT DT1 OUTDT FCL(A)
1.0000 2.0000 3.0000 4.0000 5.0000
C

XVM/DOS Vnxnnn

$

Command

ASK

COMMENT

COMMON

CONTINUE

DATA

DO

ERASE

Abbre-
viation

A

none

none

1Has no effect

APPENDIX A

FOCAL COMMAND SUMMARY

Example of Form

ASK X,Y,Z

COMMENT

COMMON A, B,
(Cc,1,2,20)

DATA OUT NAME

DATA CLOSE
NAME

DATA KILL

DATA IN NAME

DO 4.1

DO 4.0

ERASE

ERASE 2.0
ERASE 2.1
ERASE ALL

ERASE COMMON

Explanation

FOCAL types a colon for

each variable, user then
types a value to define each
variable.

If a line begins with the
letter C, but not COMMON,
the remainder of the line is
ignored during program ex-
ecution.

Assigns COMMON variables to
be stored in indirect pro-
gram.

Dummy lines.

Initializes the device
assigned to .DAT 10 and, if
file-oriented, enters the
filename in the file direct-
ory.

Closes the output file and
returns the user to the
teletype mode.

Aborts the output file and
returns the user to the
teletype mode.

Initializes the device
assigned to .DAT 7 and
reads in the file named.
Execute line 4.1, return to
command following DO com-
mand.

Execute all group 4 lines,
return to command following
DO command, or when a RE-
TURN is encountered.

Execute entire indirect
program

Erases user's entire symbol
table

Erases all lines in group 21
Erases line 2.11
Deletes all user input

Deletes all COMMON variables

Command

FOR

GO

GO?

GOTO

IF

LIBRARY

Abbre-

viation

F

Appendix A (Cont'd)

Example of Form

FOR I=X,Y,X,
(commands)

GO

GO?

GOTO 3.4

IF (X)In,ILn,Ln

IF (X)Ln,Ln;
(commands)

IF (X)Ln:
(commands)

LIBRARY OUT
NAME

LIBRARY WRITE
NNN

LIBRARY WRITE
2.01

LIBRARY WRITE
2.00

LIBRARY WRITE
ALL

Explanation

Where the command following
is executed at each new
value.

X=initial value of I.

Y value added to I until
I is greater than 7.

Y =1, if not defined.

Starts indirect program at
lowest numbered line number.

Starts at lowest numbered
line number and traces en-
tire indirect program until
another question mark (?) or
an error is encountered, or
until completion of program.

Starts indirect program
(transfers control to line
3.4); must have argument.

Where X is a defined iden-
tifier, a value or an ex-
pression, followed by three
numbers/commands.

If X is less than zero, con-
trol is transferred to the
first line number.

If X is equal to zero, con-
trol is transferred to the
second line number or com-
mand.

If X is greater than zero,
control is transferred to
the third line number or
command.

Initializes a file on the
output device.

Inserts NNN in library out-
put file.

Inserts line 2.01 in output
file.

Inserts group 2 lines in
library output file.

Inserts entire indirect pro-
gram in library output file.

Y

Command

MODIFY

QUIT

RETURN

SET

TYPE

WRITE

FOCAL Operations

Operation

Abbre-

viation

To set output format

Example of Form

LIBRARY CLOSE

LIBRARY KILL

LIBRARY IN NAME

MODIFY 1.15

QUIT

RETURN

SET A=5/B*C

TYPE A+B - C

TYPE A-B,C/E

TYPE "TEXT
STRING"

WRITE
WRITE ALL

WRITE 1.0

WRITE 1.1

Command
TYPE% xX.Y2Z

TYPEY% 6.3,
123.456

TYPE %

Appendix A (Cont'd)

Explanation

Causes file name to be en-
tered in directory.

Returns user to command mode
& file is deleted.

Loads library file NAME.

Enables editing of any char-
acter on line 1.15 (see
below) .

Returns control to the user.

Terminates DO subroutines,
returning to the original
sequence.

Defines identifiers in the
symbol table. Each occur-
rence of A is replaced by
the value of the expression.

Evaluates expression and
types out result in current
output format.

Computes and types each ex-
pression separated by commas.

Types text, can be followed
by exclamation point (!) to
generate carriage return-
line feed or by # to gener-
ate carriage return only.

FOCAL types out the entire
indirect program.

FOCAL types out all group
1 lines.

FOCAL types out line 1.1

Explanation
Where x is the total number
of digits, and yz is the
number of digits to the
right of the decimal point.

FOCAL types: 123.456

Resets output format to
floating point.

Appendix A (Cont'd)

Operation Command Explanation
To type symbol table TYPE § Other statements may not

follow on this line.

To produce carriage !
return-line feed

Carriage return only #

Modify Operations

After a MODIFY command, the user types a search character, and FOCAL

types out the contents of that line until the search character is

typed.
ations.

The user can then perform any of the following optional oper-

Type in new characters. FOCAL adds these to the line at the
point of insertion.

Type an ALT MODE. FOCAL proceeds to the next occurrence of
the search character.

Type a CTRL BELL. After this, the user can change the search
character.

Type RUBOUT. This deletes characters to the left; one char-
acter for each time the user strikes the RUBOUT key.

Type CTRL U. Deletes the line over to the left margin, but
not the line number.

Type RETURN. Terminates the line, deleting characters over
to the right margin.

Type LINE FEED. Saves the remainder of the line from the
point at which LINE FEED is typed over to the right margin.

Summary of Internal Functions

Function FOCAL Repre- Operation
sentation
Square Root FSQT (x) Focal computes <X where x is a

positive number or expression
greater than zero.

Absolute Value FABS (x) FOCAL ignores the sign of x.

Sign Part

FSGN (x) FOCAL evaluates the sign part
only with 1 as integer.

Integer Part FITR (x) FOCAL operates on the integer

part of x, ignoring any frac-
tional part.

Random Number FRAN () FOCAL generates a random number.
Generator
Exponential FEXP (x) FOCAL generates e to the power

Function (e¥)

A-4

x. (2.718281828%).

Function

Sine

Cosin

Arc Tangent

Logarithm

Appendix A (Cont'd)

FOCAL Repre-

sentation

FSIN (x)

FCOS (x)

FATN (x)

FLOG (x)

Operation

FOCAL generates the sine of angle
X expressed in radians.

FOCAL generates the cosine of
angle x expressed in radians.

FOCAL generates the arc tangent
of angle x expressed in radians.

FOCAL generates 1oge(x).

APPENDIX B
ERROR DIAGNOSTICS

CODE MEANING

200 Function not implemented

201 Illegal character at beginning of line
202 Group number illegal as line number
203 Group number too large

204 Illegal type/ask format

205 Too many periods

206 Line number too large

207 Line number missing

208 Tllegal group number

209 Push-down list overflow

2?10 Illegal command

2?11 Illegal IF format

2?12 Left of equals in error on FOR or SET
2?13 Excess right parenthesis

214 Illegal FOR format

2?15 Illegal variable name

216 Text/variable buffer overflow

217 Illegal expression format

218 Operator missing before parenthesis
2?19 Missing left parenthesis

2?20 Illegal function name

221 Double operator

222 Parenthesis error

223 ERASE or WRITE argument error

224 Negative line number

2?25 Zero argument for log

226 Input overflow

227 Number too large

228 Negative power illegal

2?29 Division by zero illegal

230 Square root of a negative number
2?31 Illegal command during library or data output
232 Illegal library command

233 Illegal file name

234 File not found

2?35 No file open

236 .OTS error from arithmetic package
237 COMMON statement format error

?2?2nn User defined function error

APPENDIX C
ESTIMATING THE LENGTH OF USER PROGRAMS

FOCAL requires five words for each identifier stored in the symbol
table, and one word for each three characters of stored program.
This may be calculated by

55+ (g *1.01) = length of user's program

1

where s Number of identifiers defined

c Number of characters in indirect program

If the total program area or symbol table area becomes too large,

FOCAL types the error message
2?16

The following routine allows the user to find out how many core

locations remain for his use.

e (Wait for FOCAL to type
t wﬂ'll ToWE LEFTY the error message‘)

At the end of this routine, use ERASE to clear all the variables A(I)
from the symbol table.

NOTE

The upper limit on I varies with the
amount of core memory in the user's
system.

APPENDIX D

CALCULATING TRIGONOMETRIC FUNCTIONS
FOCAL Argument Function
Function Representation Range Range
Sine FSIN(A) 0<|A[<10 + 4 0<|F|<1
Cosine FCOS (A) 0<|A|<10+4 0<|F|<1
Tangent FSIN(A) /FPCOS () 0<[A|<1044 0<|F|<1046
[A]#(2N+1)n/2
Secant 1/FCOS (A) 0<|A|<10+4 1<|F|<10t6
[A|#(2N+1) /2
Cosecent 1/FSIN(A) 0<|A|<10+4 1<|F|<10t6
|A|#2Nn
Cotangent FCOS (A) /FSIN(A) 0<|A|<10t4 0<|F|<10+t440
[A]#2NT
Arc sine FATN (A/FSQT (1-A12) 0<1al<1 0<|F|<m/2
Arc cosine FATN (FSQT{(1-A42) /A) 0<|A|<1 0<|F|sm/2
Arc tangent FATN (A) 0<A<10+6 0<F<n/2
Arc secant FATN (FSQT (A42-1)) 1<A<10+6 O<F<n/2
Arc cosecant FATN (1/FSQT (A42-1)) 1<A<104300 0<F<n/2
Arc cotangent FATN (1/2) 0<A<104615 O<F<7/2
Hyperbolic sine| (FEXP(A)-FEXP (-A))/2 0<|al<700 0<|F[<5*104300
Hyperbolic (FEXP (A)+FEXP (-A)) /2 0<|A|<700 1<F<5*10+4300
cosline
Hyperbolic (FEXP (A) -FEXP (-A)) / 0<|A|<700 0<|F|<l
tangent (FEXP (A)+FEXP (-A))
Hyperbolic 2/ (FEXP (A)+FEXP (-27)) 0g|al<700 0<F<1
secant
Hyperbolic 2/ (FEXP (A) -FEXP (-A)) 0<|A[<700 0<|F|<1047
cosecant
Hyperbolic (FEXP (A) +FEXP (-4)) / 0<|Aa]|<700 1<|F|<1047
cotangent (FEXP (A) -FEXP (-A))
Arc hyperbolic |FLOG(A+FSQT(A4+2+1)) -1045<A<104600| -12<F<1300
sine
Arc hyperbolic |FLOG (A+FSQT (A42-1)) 1<A<10+300 0<F<700
cosine
Arc hyberbolic | (FLOG(1+A)-FLOG(1-2))/2 0<]al<1 0<|F|<8.31777
tangent
Arc hyperbolic |FLOG((1/A)+FSQT((1/A%2)-1))| o<|a|<1 0<F<700
secant
Arc hyperbolic |FLOG((1/A)+FSQT((1/A42)+1))| 0<|A|<10%300 |0<|F|<1400
cosecant
Arc hyperbolic | (FLOG (X+1)-FLOG({X-1))/2 1<A<104616 0<F<8
cotangent

The .DAT slots to be assigned with FOCAL are

-DAT

|
=

APPENDIX E

.DAT SLOT AND HANDLER ASSIGNMENTS

SYSTEM IN XVM/DOS

Function

System Library

FOCAL binary program

plus FNEW binary
Library input
Library output
Data input

Data output

*Here the system disk is assumed to be disk pack.
disk, substitute RK for DP in the assignments.

head disk,

substitute DK for DP.

DPO
DPO

DPO
-DPO
DPO
DPO

<SYS>
<SYS>

<UIC>
<UIC>
<UIC>
<UIC>

Typical Device Assignments*

If it is cartridge
Similarly,

for fixed-

Abbreviated commands, 2-~11, 4-1
Absolute value function (FABS),

3-13
Addition, 2-5
Alphanumeric characters, 2-12
Alphanumeric numbers, 2-11

Angle brackets, 2-5

Arctangent function (FATN),
3-15

Arithmetic operations and
symbols, 2-4

Arrays, COMMON, 5-4

ASK command, 3-2, 3-3, 7-2

* (asterisk) usage, 2-1, 3

as plotting character,

@ (at sign) used in symbo
table, 2-6

Auxiliary I/O devices, 1-3

-8
4-4
1

Brackets, 2-5

Chaining, 5-5
Character deletion, 2-9
Characters, alphanumeric,
Circles and spheres,
evaluation for,
: (colon) usage, 3-2
Commands,
abbreviations for,
data input, 7-2
data output, 7-1
library input, 5-3
library output, 5-1
Commands,
ASK, 3-2, 3-3, 7-2
COMMON, 5-1, 5-4
DATA CLOSE, 7-1,
DATA IN, 7-2
DATA KILL, 7-2
DO, 2-8, 3-5
ERASE, 2-7,
ERASE COMMON,
FOR, 3-8
GO, 2-8, 3-5
GoTo, 2-8, 3-5, 3-7

2-12
formula
4--2

4-1

2-11,

7=2

2-10,
5-1,

2-11,
5-5

3-4

INDEX

Commands (cont.),
IF, 3-7
LIBRARY CLOSE,
LIBRARY WRITE,
MODIFY, 2-11,
RETURN, 3-8
SET, 2-1, 3-4
summary, A-1l
TYPE, 2-1, 3-1, 7-1
WRITE, 2-9, 2-10, 3-

COMMENT lines, 3-8

COMMON command, 5-1,
format, 5-4
variables, 5-5

Corrections in typing,

3-11

Cosine function (FCOS),

CTRL P, 1-2

CTRL U, 2-10,

5~3
5-3
3-10

3,

5-4

2=~9,
3-15

3=11

DATA
Data
DATA
Data
Data
DATA

CLOSE command, 7
commands, 7-1, 7
IN command, 7-
input/cutput,
I/0 .DAT slots
KILL command,
.DAT slots, 1-1, E~

data, 7-2

library, 5-4
Deleting characters,
Deleting lines, 2-10
Device assignment table, 1-1
Dice game, 4-5

-1, 7-8
-

2
1-3
, 18
Feid

1

2=9

Direct command output, library, 5-1

2-5
2-8,

Division,

DO command, 3-5

EAE number accuracy, 2-4
E format, 2-4
Equations, 4-6
ERASE command, 2-7, 2-10,

ERASE COMMON command,
Error detection, 2-9
Error diagnostics, B-1
Errors,
syntax,

5=1;

2-2

Index~1

Errors (cont.),
typing, 2-9
Examples of FOCAL programs, 4-1
Exponential function (FEXP),
3-14
Exponentiation, 2-4, 2-5, 2-12
Expressions, 2-5

File initialization,
data, 7-1
library, 5-1
File termination,
data, 7-2
library, 5-2
Floating-point
arithmetic, 3-9
format, 2-3, 2-4, 3-14
hardware, 1-1
FNEW functions, 6-3
FOR command, 3-8
Formula evaluation for circles
and spheres, 4-2
FORTRAN library, 1-1
FOCAL language, 2-1
Functions,
FNEW, 6-3
internal, 3-13
names of, 2-1
trigonometric, D-1
user-defined, 6-1

GO command, 2-8, 3-5
GOTO command, 2-8, 3-5, 3-7
Group output, library, 5-2

Hardware, 1-1

IF command, 3-7
IF statement, 3-6
Indirect commands, 2-7
Initialization of library file,
5-1
Input commands,
data, 7-2
library, 5-3
Integer part function (FITR),
3-14
Intercept and plot of two
functions, 4-11
Interest payment program, 4-10
Internal functions, 3-13

Leading zeros, 2-2

Length of program, C-1
LIBRARY CLOSE command, 5-3
Library .DAT slot usage, 1-2, 5-4
Library files,
initialization, 5-1
output, 5-1
termination, 5-2
Library, FORTRAN, 1-1
LIBRARY WRITE command, 5-3
Line deletion, 2-10
Line numbers, 2-7
Linking loader, 1l-1
Loading, 1-1, 1-3
Logarithm function (FLOG), 3-16
Looping process, 4-2

Matrices, 4-6
MODIFY command, 2-11, 3-10
Multiplication, 2-5

Names of

symbols, 2-1

functions, 2-1
Nested expressions, 2-5
Non-subscripted variable, 5-4
Number representation in TYPE

command, 2-1

Numbers, alphanumeric, 2-11
Number sign (#) usage, 2-7

One-line plotting, 4-4
Operators, arithmetic, 2-5
Output,

data files, 7-1

library files, 5-1
Output format, 2-2

Parentheses, 2-5, 3-6
Percent sign (%) usage, 2-2, 3-1
Plotting, 4-4
Program chaining, 5-5
Program length, C-1
Program output,
data, 7-1
library, 5-2

Question marks in program, 2-9
Quotation marks, 4-1

in command string, 3-2

in text output, 2-7

Index-2

Random number generator function

(FRAN) , 3-14
Restart, 1-2
RETURN command, 3-8
Rounding, 2-3, 4-1
RUBOUT, 2-9

Saving programs, 1-3

Schroedinger equation solver,
4-13

Scope routine example, 6-1

Semicolon in IF statement, 3-6

SET command, 2-1, 3-4

Sign part function (FSGN), 3-13

Sine function (FSIN), 3-15

Single line output, library,
5-2

Spheres, formula evaluation for
circles and, 4-2

Square brackets, 2-5

Square root function (FSQT),
3-13

Statement, IF, 3-6

Subroutines, 3-6

Subscripted variables, 2-6, 4-6

Subtraction, 2-5

Symbol names, 2-1

Symbols, arithmetic, 2-5

Symbol table, 2-6

Symbol table values, 3-11

Syntax errors, 2-2

Table generation using functions,
4-1

Termination of

data files, 7-2

library files, 5-2
Text output, 2-7
Trace feature, 2-9, 3-12
Trailing zeros, 2-2
Trigonometric functions, D-1
TYPE command, 2-1, 3-1, 7-1

User-defined functions, 6-1

Variables,
nonsubscripted, 5-4
subscripted, 2-6, 4-6

WRITE command, 2-9, 2-10, 3-3,
7-1

Zeros in output format, 2-2

Index~3

Please cut along this line.

FOCAL XVM Language Manual
DEC-XV-LFLGA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltiall

Software Communications
P, O. Box F

Maynard, Massachusetts 01754

dlilgliltiall

digital equipment corporation

