FORTRANIV XVM
LANGUAGE MANUAL

DEC-XV-LF4MA-A-D

OYSTENS
dlilgliltlall




F ORTRAN IV XVM
i LANGUAGE MANUAL

DEC XV-LF4MA A-D

digital equipment cquorqti‘oﬁ'-' maynard. massachusetts




First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1975, by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem—-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET~-10

DECCOMM TYPESET-11




CONTENTS

Page
PREFACE xi
CHAPTER 1 INTRODUCTION TO XVM FORTRAN 1-1
1.1 LANGUAGE OVERVIEW 1-1
1.2 ELEMENTS OF A FORTRAN PROGRAM 1-1
1.2.1 Statements 1-1
1.2.2 Comments 1-2
1.2.3 The FORTRAN Character Set 1-3
1.3 FORMATTING A FORTRAN LINE 1-4
1.3.1 Using FORTRAN Coding Forms and Punched
Cards 1-4
1.3.2 Using a Text Editor and an On-Line Terminal 1-5
1.3.3 Statement Number Field 1-6
1.3.3.1 Comment Indicator 1-6
1.3.4 Continuation Field 1-6
1.3.5 Statement Field 1-7
1.3.6 Sequence Number Field 1-7
1.4 PROGRAM UNIT STRUCTURE 1-7
CHAPTER 2 FORTRAN STATEMENT COMPONENTS 2-1
2.1 SYMBOLIC NAMES 2=2
2.2 DATA TYPES 2-3
2.3 CONSTANTS 2-4
2.3.1 Integer Constants 2-4
2.3.1.1 Decimal Integer Constants 2-4
2.3.2 Octal Integer Constants 2-5
2.3.3 Double Integer Constants 2-6
2.3.3.1 Decimal Double Integer Constants 2-6
2.3.3.2 Octal Double Integer Constant 2-7
2.3.4 Real Constants 2-8
2.3.5 Double Precision Constants 2-9
2.3.6 Logical Constants 2-10
2.3.7 Hollerith Constants 2-10
2.3.7.1 Alphanumeric Literals 2-11
2.4 VARIABLES 2-12
2.4.1 Data Type by Definition 2-12
2.4.2 Data Type by Implication 2-13
2.4.3 Assigning Hollerith Data to Variables 2-13
2.5 ARRAYS 2-14
2.5.1 Array Declarators 2-15
2.5.2 Array Storage 2-16
2.5.3 Data Type of an Array 2-17
2.5.4 Subscripts 2-17
2.6 EXPRESSIONS 2-18
2.6.1 Arithmetic Expressions 2-18
2.6.1.1 Use of Parentheses 2-21
2.6.1.2 Data Type of an Arithmetic Expression 2-22
2.6.2 Relational Expressions 2-24
2.6.3 Logical Expressions 2-25

iii




CONTENTS (Cont.)

Page
CHAPTER 3 ASSIGNMENT STATEMENTS 3-1
3.1 ARITHMETIC ASSIGNMENT STATEMENT 3-1
3.1.1 Partword Notation 3-4
3.2 LOGICAL ASSIGNMENT STATEMENT 3-5
3.3 ASSIGN STATEMENT 3-6
CHAPTER 4 CONTROL STATEMENTS 4-1
4,1 GO TO STATEMENTS 4-1
4.1.1 Unconditional GO TO Statement 4-2
4.1.2 Computed GO TO Statement 4-2
4.1.3 Assigned GO TO Statement 4-3
4.2 IF STATEMENTS 4-4
4.2.1 Arithmetic IF Statement 4-4
4.2.2 Logical IF Statement 4-6
4.3 DO STATEMENT 4-7
4.3.1 Nested DO Loops 4-10
4.3.2 Control Transfers in DO Loops 4-11
4.3.3 Extended Range 4-11
4.4 CONTINUE STATEMENT 4-12
4.5 CALL STATEMENT 4-13
4.6 RETURN STATEMENT 4-14
4.7 PAUSE STATEMENT 4-15
4.8 STOP STATEMENT 4-16
4.9 END STATEMENT 4-16
CHAPTER 5 SPECIFICATION STATEMENTS 5-1
5.1 IMPLICIT STATEMENT 5-1
5.2 TYPE DECLARATION STATEMENTS 5-2
5.3 DIMENSION STATEMENT 5-3
5.3.1 Adjustable Dimensions 5-4
5.4 COMMON STATEMENT 5-6
5.4.1 Blank Common and Named Common 5-6
5.4.2 COMMON Statements with Array Declarators 5-8
5.4.3 COMMON Statements and Data Initialization 5-8
5.5 EQUIVALENCE STATEMENT 5-8
5.5.1 Making Arrays Equivalent 5-9
5.5.2 EQUIVALENCE and COMMON Interaction 5-11
5.6 EXTERNAL STATEMENT 5-11
5.7 DATA STATEMENT 5-13
5.7.1 Data Initialization of COMMON Elements 5-14
CHAPTER 6 INPUT/OUTPUT STATEMENTS 6-1
6.1 OVERVIEW 6-1
6.1.1 Input/Output Devices 6-3
6.1.2 Format Specifiers 6-3
6.1.3 Input/Output Records 6-3
6.2 INPUT/OUTPUT LISTS 6-4
6.2.1 Simple Lists 6-4
6.2.2 Implied DO Lists 6-5
6.3 UNFORMATTED SEQUENTIAIL INPUT/OUTPUT 6-7
6.3.1 Unformatted Sequential READ Statement 6-8
6.3.2 Unformatted Sequential WRITE Statement 6-9

iv




kY

—

e

CHAPTER

« o e e s o o o
B . B
N

N =

A AT
° . . ) . L . . . ° ° . ° e o
SN OOy U U 0T U
. B . v e o e o o .
w N

o
WO O \WLWOooo0o oo 0000 00000 00 00 0000 000w
. o . . PR « o o
HFOWWOWOOONI~NTOOOUTUTUT S & B W =
. . s e

[exNe)Ne W) We e e We W We) o)W o) Ne) Wer o) We)We i e ) Wer We)Ie) e W o) W o) Wer o)
. P o . .

w N+

o)}
.

(Ne}
S

6.10

~

o o ® ° . s eiie o
s o o o « e o o

HEWOIOUTE WN

NN NN NN NN
RN NNDNDNONND -
= o

°

mmpPprtQUuEAOH

CONTENTS (Cont.)

FORMATTED SEQUENTIAL INPUT/OUTPUT
Formatted Sequential READ Statement
Formatted Sequential WRITE Statement
UNFORMATTED DIRECT ‘ACCESS INPUT/OUTPUT

Unformatted Direct Access READ Statement

Unformatted Direct Access WRITE Statement
CALL DEFINE Statement

FORMATTED DIRECT ACCESS INPUT/OUTPUT
Formatted Direct Access READ Statement
Formatted Direct Access WRITE Statement
TRANSFER OF CONTROL ON END-OF-FILE OR
ERROR CONDITIONS

AUXILIARY INPUT/OUTPUT STATEMENTS
REWIND Statement

BACKSPACE Statement

ENDFILE Statement

CALL SEEK Statement

CALL SEEK Statement in XVM/DOS

CALL SEEK Statement in XVM/RSX

CALL ENTER Statement

CALL ENTER Statement in XVM/DOS

CALL ENTER Statement in XVM/RSX

CALL CLOSE Statement R

CALL CLOSE Statement in XVM/DOS

CALL CLOSE Statement in XVM/RSX

CALL FSTAT ‘Statement i

CALL FSTAT Statement in XVM/DOS

CALL RENAME- Statement :

CALL RENAM Statement in XVM/DOS

CALL RENAME Statement in XVM/RSX

CALL DELETE Statement

CALIL DLETE Statement in XVM/DOS

CALL DELETE Statement  in XVM/RSX
Additional I/O Subroutines

LEGITIMATE -INPUT/OUTPUT STATEMENT SEQUENCES

Direct Access File I/0 Sequences

Sequential Access Named-File Input Sequences

Sequential Access Named~File Output
Sequences

Sequential Access Unnamed File I/0
Sequences

ENCODE AND DECODE STATEMENTS

FORMAT STATEMENTS

OVERVIEW

FIELD DESCRIPTORS
Field width Constraints
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor

NN NN N N NN NN
|

Page

6-9

6-9

6-11
6-13
6-13
6-14
6-15
6-22
6-22
6-24

6-25
6-27
6-27
6-28
6-28
6-29
6-30
6-30
6-31
6-32
6-33
6-34
6-34.
6-34
6-36
6-36
6-36
6-37
6-37
6-38
6-38
6-39
6-39

6-40

~1
i
=

111

]
HEONOS WWH
o .

o

1
B e
S wW N

7-15




CONTENTS (Cont.)

Page
7.2.11.1 Alphanumeric Literals 7-16
7.2.12 X Field Descriptor 7-17
7.2.13 T Field Descriptor 7-18
7.2.14 Scale Factor 7-19
7.2.15 Grouping and Group Repeat Specifications 7-21
7.3 CARRIAGE CONTROL 7-22
7.4 FORMAT SPECIFICATION SEPARATORS 7-25
7.5 EXTERNAL FIELD SEPARATORS 7-26
7.6 OBJECT TIME FORMAT 7-26
7.7 IMPLIED FORMATS 7-27
7.8 FORMAT CONTROL INTERACTION WITH INPUT/
OUTPUT LISTS 7-29
7.9 SUMMARY OF RULES FOR FORMAT STATEMENTS 7-31
7.9.1 General 7-31
7.9.2 Input 7-32
7.9.3 Output 7-32
CHAPTER 8 SUBPROGRAMS 8-1
8.1 USER-WRITTEN SUBPROGRAMS 8-1
8.1.1 Arithmetic Statement Function (ASF) 8-2
8.1.2 FUNCTION Subprogram 8-4
8.1.3 SUBROUTINE Subprogram 8-9
8.1.4 ENTRY Statement 8-12
8.1.4.1 ENTRY in Function Subprogram 8-13
8.1.4.2 ENTRY and Array Declarator Interaction 8-14
8.1.5 BLOCK DATA Subprogram 8-16
8.2 FORTRAN LIBRARY FUNCTIONS 8-17
APPENDIX A CHARACTER CODES A-1
A.l FORTRAN CHARACTER SET A-1
A.2 ASCII CHARACTER CODE A-2
APPENDIX B FORTRAN LANGUAGE SUMMARY B-1
B.1 EXPRESSION OPERATORS B-1
B.2 STATEMENTS B-2
APPENDIX C FORTRAN PROGRAMMING EXAMPLES c-1
APPENDIX D ERROR MESSAGES D-1
D.1 FORTRAN ERROR MESSAGES D-1
D.2 COMPILER ERROR MESSAGES D-1
D.3 OTS ERROR MESSAGES D-9
APPENDIX E EXTENSIONS AND RESTRICTIONS TO ANSI 1966
STANDARD E-1
E.Ll EXTENSIONS TO STANDARD FORTRAN E-1
E.2 RESTRICTIONS TO STANDARD FORTRAN E-3
INDEX Index-1

vi




xc'} - ",

Figure

Table

OOV OV UT i > N b
]
e SRR R

[I

I

A WN N
|
W NP

~
1
et

w3
!
=N

CONTENTS (Cont.)

FIGURES

FORTRAN Coding Form

Required Order of Statements and Lines
Array Storage

Nesting of DO Loops

Control Transfers and Extended Range
Equivalence of Array Storage

Named File Input/Output Sequences
Unnamed File Input/Output Sequences

A Single Function Subprogram to Provide
the Hyperbolic Functions SINH, COSH,
and TANH

TABLES

Data Type Storage Requirements

Hollerith Data Storage

Conversion Rules for Assignment Statements
Nesting of DO Loops

Standard Devices I/0 Limits

Formatted ASCII Record Sizes

Unformatted Binary Record Size for Single
Block Records

Effect of Data Magnitude on G Format
Conversions

Carriage Control Characters

FORTRAN Library Functions

vii

Page

1-4

1-8

2-16
4-10
4-12
5-10
6-42
6-43

Page

2-4
2-14
3-3
4-10
6-4
6-19

7-11
7-22
B-12



o,

s




LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in-
cluding the latest version available. Within this manual, other XVM

manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL
DDT XVM UTILITY MANUAL
EDIT/EDITVP/EDITVT XVM UTILITY MANUAL
8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL
FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL
LINKING LOADER XVM UTILITY MANUAL
MAC11 XVM ASSEMBLER LANGUAGE MANUAL
MACRO XVM ASSEMBLER LANGUAGE MANUAL
MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VP15A XVM GRAPHICS SOFTWARE MANUAL
VT15 XVM GRAPHICS SOFTWARE MANUAL
XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READER'S GUIDE AND MASTER INDEX
XVM/DOS SYSTEM MANUAL A

XVM/DOS USERS MANUAL

XVM/DOS V1A SYSTEM INSTALLATION GUIDE
XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

ix

DEC-XV-OBUAA~A-D
DEC-XV-UCHNA-A-D
DEC-XV-UDDTA-A-D
DEC-XV-UETUA-A-D
DEC-XV-UTRNA-A-D
DEC-XV-LFLGA-A-D
DEC-XV~-LF4MA~A~D
DEC-XV-LF4EA-A-D
DEC-XV-ULLUA-A-D
DEC-XV-LMLAA-A-D
DEC-XV—-LMALA~A-D
DEC-XV-UMTUA-A-D
DEC-XV-UPUMA~A~-D
DEC-XV-UPPUA~A-D
DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A-D
DEC-XV-GVTAA~-A-D
DEC~XV-ODKBA-A-D
DEC-XV~-ODGIA-A-D
DEC-XV-ODSAA-A-D
DEC-XV-ODMAA-A-D
DEC-XV-ODSIA-A-D
DEC-XV-IRSMA-A-D
DEC-XV-XUSMA-A-D







i

# 5,

PREFACE

FORTRAN (FORmula TRANslation) is a problem oriented language designed
to permit scientists and engineers to express mathematical operations
in a form with which they are familiar. It is also widely used in a
variety of applications including process control, information re-

trieval, and commercial data processing.

This document describes the form of the basic elements of the FORTRAN

program, the FORTRAN statements. The document is a reference manual,

and although it may well be used by an inexperienced FORTRAN programmer,

it is not designed to function as a tutorial manual.

This document serves as the FORTRAN lLanguage Reference Manual for the

XVM/DOS and XVM/RSX Operating Systems. There is very little difference

in the language of programs written for XVM/DOS and XVM/RSX. The dif-

ferences that do exist are in the input/output statements:

1. XVM/DOS permits a Magtape-like file to be created on disk
and REWIND and BACKSPACE statements to this file; XVM/RSX
does not.

2. The CALL DEFINE statement, which creates and opens direct
access files on disk, functions differently in the two
systems.

3. The statements used to open, close, rename, and delete
named files are formed differently under XVM/DOS and
XVM/RSX.

4, XVM/DOS FORTRAN supplies implied or default file names for
sequential access files; XVM/RSX FORTRAN does not.

A companion manual to this document is the FORTRAN IV XVM Operating
Environment Manual. Also, referenced within this manual is the
XVM/RSX System Manual.

xi




"




(”‘""v’-’k‘\*’\ .

(G

DOCUMENTATION CONVENTIONS

Throughout this manual the

following notations are used to denote

special non-printing characters:

»{ Tab character (TAB key or CTRL/I key combination)

A (delta) Space character (SPACE bar)

The following conventions

statement syntax.

1. VUpper case words
other than those
as shown.

2. Lower case words
The accompanying
substituted, e.q.

3. Square brackets (

4. An ellipsis ( ...

SYNTAX NOTATION

are used in the description of FORTRAN

and letters, as well as punctuation marks
described in this section, are written

indicate that a value is to be substituted.
text specifies the nature of the item to be
, integer variable or statement label.

[] ) enclose optional items.

) indicates that the preceding item or

bracketed group may be repeated any number of times.

For example, if the description were

CALL sub [ (al[,al

then all of the following

CALL TIMER
CALL INSPCT (I,dJ,
CALL REGRES (A)

cea) ]

would be correct:

3.0)

xiii




™




A

P

CHAPTER 1

INTRODUCTION TO XVM FORTRAN
1.1 LANGUAGE OVERVIEW

The FORTRAN (FORmula TRANslation) language is exceptionally useful in
scientific and mathematical applications. It provides the user with a
means of solving equations and formulas rapidly and easily, and of
performing large numbers of mathematical calculations. XVM FORTRAN
conforms to the specifications for American National Standard FORTRAN
X3.9-1966 with a number of additions and some exceptions. (See

Appendix E, Extensions and Restrictions to ANSI 1966 Standard.)
1.2 ELEMENTS OF A FORTRAN PROGRAM

A FORTRAN program consists of FORTRAN statements and optional comments.
The statements are arranged into logical units called program units
(either a main program or a subprogram). Subprograms  are external

to the main program and cannot be embedded within it. One or more
program units (one main program and possibly one or more subprograms)
comprise the executable program. The FORTRAN Compiler translates
source programs (written in the form described in this manual) into
object programs (relocatable binary programs) which can then be

loaded and executed by a computer.

1.2.1 Statements

Statements are grouped into two general classes: executable and non-
executable. Executable statements describe the action of the program;
nonexecutable statements provide the FORTRAN Compiler with instructions
required in the translating process, such as, the size of an array,
whether the program is a subroutine or not, and describe data arrange-

ment and characteristics.




Introduction to XVM FORTRAN

There are six categories of FORTRAN statements and a chapter in this
manual is devoted to each:

Statement Type Chapter General Function

Assignment Statements 3 Assign values to sym-
bols.

Control Statements 4 Govern the sequence in "
which executable state- e
ments are performed.

Specification Statements 5 Define characteristics
of variables and arrays
necessary for initiali- >
zation. -

Input/Output Statements 6 Govern the transfer of ——
information between the 4
computer and peripheral .
(I/0) devices. ™

FORMAT Statements 7 Describe the format in
which data fields are
transmitted or received.

Subprogram Statements 8 Define classes of sub-
programs and entry
points to them.

,»‘""v\‘
Statements are divided into physical sections called lines. A line is
a string of up to 72 characters. If a statement is too long to be
contained on one line, it may be continued on one or more additional
lines, called continuation lines. A continuation line is identified
by the presence of a continuation character in the sixth column of
that line. (For further information concerning continuation characters,
see Section 1.3.4, Continuation Field.) —~—
Certain statements may be identified by statement labels so that other
statements can refer to them, either for the information they contain
or to transfer control to them. A statement label has the form of an —~
integer number placed in the first five columns of a statement's
initial line. Blank lines are illegal.
1.2.2 Comments
Comments do not affect the meaning of the program in any way, but are R
a documentation aid to the programmer. They should be used freely to
describe the actions of the program, to identify program sections and
processes, and to provide greater ease in reading the source program o




Introduction to XVM FORTRAN

listing. The letter C in the first column of a source line identifies

that line as a comment.
1.2.3 The FORTRAN Character Set

The FORTRAN character set consists of:

1. The letters A through 2
2. _ The numerals 0 through 9
3. The following special characters:
Character Name
A Space or blank
-} Tab
= Equals
+ Plus
- Minus
* Asterisk
/ Slash
( Left Parenthesis
) Right Parenthesis
’ Comma
. ; Decimal Point ;
! Apostrophe (Single Quote)
" Double Quote
$ Dollar Sign
[ Left (Open) Bracket
] ‘ ' Right (Close) Bracket
: Colon
: Semicolon
# Sharp Sign (Pound Sign)
@ At Sign

Other printable characters may appear in a FORTRAN statement only as

part of a Hollerith constant, alphanumeric literal, or in a comment,




Introduction to XVM FORTRAN

1.3 FORMATTING A FORTRAN LINE
The formatting of a FORTRAN line is nearly the same for programs
written on FORTRAN coding forms and punched into cards or paper tape
for presentation to the compiler and those entered from a terminal
using a text editor. Only the method of formatting differs.
1.3.1 Using FORTRAN Coding Forms and Punched Cards
A FORTRAN line is divided into fields for statement labels, con-
tinuation indicators, statement text and sequence numbers. Each ”%
column represents a single character. The usage of each type of
field is described in subsequent sections. —
FO RTRAN CODER DATE PAGE
CODING FORM PROBLEM
FORTRAN STATEMENT IDENTHFICATION
78 9 1001 121314151617 18192021222324 2526272829303132333435363738394041424344454647484950.515253545556575850606156263646566676869707172{7374757677787980
c THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11, TQ 50 . . . .. . |
LA 10, Sl 900y S L B o B
J=1
4 J=J42 ; , it S
A=l
A= L/A,
L=1/4
B=A-L
LF (B) 5 10,5 .
5 1F (J . LT.SQRT (FLOAT (1))) GO 10 4
WRITE (4,105 )]
10 CONTINUE,_.
1,05 FORMAT, (I 4, ' 1S PRIME!')
STOF
END —
} , . . s R NI I —~
12234 56 7‘!'9‘!0“ 12 IJ|4.ls‘lb‘l7lI;l":olﬂ‘n"u‘)ll)i16’27‘1!‘79‘)0‘]!‘)73]‘):JJ.30‘]7‘2!‘39‘40‘”“21J‘l‘:s‘da‘l;ll:?‘sﬂ'i|x51‘5;54’5;54‘57‘5.‘59'&0‘0!‘32‘6;&:Aj’éﬂl&;bl.&v.?o‘ﬂln 737aTI7B YT 707980
PG-3 DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETYTS -t
Figure 1-1
FORTRAN Coding Form
.




Introduction to XVM FORTRAN

1.3.2 Using a Text Editor and an On-Line Terminal

When creating a source program via a terminal, using a text editor,
the user may type the lines on a "character-per-column" basis, as just
described, or the user may use the TAB character to facilitate format-
ting the lines.

If a TAB character appears at the beginning of a line, possibly preceded
by a statement label, and the following character is a non-zero digit,
the Compiler treats the digit as a continuation indicator. If the
following character is not a digit, the Compiler treats it as the first
character of the statement text. If the line is a continuation line,
the statement text begins with the character following the continuation
character. If the continuation character is a "0", the line is an

initial line.

While many text editors and terminals advance the terminal print
carriage to a predefined print position when the TAB chéracter is
typed, this action is not related to the interpretation of the TAB
character described above. Therefore, the TAB positions the next
character at logical column 6 or 7, if the character is or is not a

continuation character.

Formatting of the following lines can be accomplished in either of
the following ways:

—41AHOLD,MOVE,DECODE or AAAAA1IAHOLD, MOVE , DECODE
CvﬂINITIALIZEAARRAYS or CAAAAAINITIALIZEAARRAYS
l&4W=3 or 10AAAAW=3

-4SEL(1)=1.11200022D0 : or AAAAAASEL(1)=1.11200022D0

where:

*{ represents a TAB character (CTRL/I), and

A represents a space character (SPACE bar).

The space character may be used in a FORTRAN statement to improve
legibility of the line; the FORTRAN Compiler ignores all spaces in a
statement field except those within a Hollerith constant or a Hollerith
field in a format specification (for example, GOATO and GOTO are

equivalent). The TAB character in a statement field is legal only if




Introduction to XVM FORTRAN

it appears prior to logical column 7; in the source listing produced
by the Compiler, the TAB causes the following character to be printed
in column 9.

1.3.3 Statement Number Field

A statement number, or statement label, consists of one to five deci-
mal digits placed in the first five columns of a statement's initial
line. Spaces and leading zeros are ignored. An all-zero statement label
is prohibited. Statement labels need not appear in any numerical

order within the program, and thus have no effect on the sequence of

execution.

Any statement to which reference is made by another statement must
have a label. No two statements within a program unit can have the

same label.

1.3.3.1 Comment Indicator - The letter C may be placed in column 1
of this field to indicate that the line is a comment. The Compiler
prints the contents of that line in the source program listing and

then ignores the line.
1.3.4 Continuation Field

When spaces are used at the beginning of a line, column 6 of a FORTRAN
line is reserved for a continuation indicator, i.e., any character
except zero or space in this column is recognized as a continuation
indicator. A common practice, though not required, is to place a zero
in column 6 of a statement's initial line (to indicate that continuation
lines follow) and then to number the continuation lines sequentially,

placing the numbers in column 6 as continuation indicators.

When a TAB character appears at the beginning of a line, a digit from

1 - 9 must follow the TAB to indicate a continuation line. A statement
may be divided into distinct lines at any point. The characters be-
ginning in column 7 of a continuation line are considered to follow the
last character of the previous line as if there were no break at that
point. There are three exceptions. First, the DO statement must
appear entirely on one line. Second, the assignment statement and the
Arithmetic IF statement may be broken into continuation lines only at
specific points. The continuation rules for these two statements are

described in Sections 3.1 and 4.2.1.

o

i




Introduction to XVM FORTRAN

Comment lines cannot be continued. All comment lines must begin with

the letter C in column 1.
1.3.5 Statement Field

The text of a FORTRAN statement is placed in columns 7 through 72.
Because the Compiler ignores spaces (except in Hollerith constants and
Hollerith fields of format specifications, the user may space the text

in any way desired for maximum legibility.
1.3.6 Sequence Number Field

A sequence number or other identifying information may appear in
columns 73-80 of any line in a FORTRAN program. The characters in
this field are ignored by the compiler.

CAUTION

Text may be ignored with no warning
" message if a line accidentally ex-
tends beyond character position 72.

1.4 PROGRAM UNIT STRUCTURE

Figure 1-2 provides a graphic representation of the rules for state-
ment ordering. In this figure vertical lines separate statement types
which may be interspersed, such as DATA and executable statements:
horizontal lines indicate statement types that may not be interspersed,
such as DATA and IMPLICIT statements. In general, specification state-

ments and subprogram declarators must precede executable statements.




Introduction to XVM FORTRAN

FUNCTION, SUBROUTINE or
BLOCK DATA Statement

IMPLICIT Statements

INTEGER, REAL, LOGICAL, DOUBLE
PRECISION and DOUBLE INTEGER
Statements in any order

Comment'
Lines

DIMENSION Statements

COMMON Statements

EQUIVALENCE and EXTERNAL
Statements in any order

DATA Statements

Statement Function Definitions

All Other Statements

END Statement

' Comment lines must not intervene between a
statement's initial line and its continuation
line(s), or between successive continuation
lines.

Figure 1-2
Required Order of Statements and Lines




Introduction to XVM FORTRAN

The maximum size of a program unit whiéth contains executable code is
constrained by physical addressing limitations of the XVM hardware

to be 8176 storage words or less. This includes all arrays which do
not appear in COMMON blocks. COMMON blocks, and arrays which appear

within them, may be as large as 32,767 words.







w

#T

CHAPTER 2

FORTRAN STATEMENT COMPONENTS

The basic componehts of FORTRAN expressions are:

g W N

Constants
Variables
Arrays
Expressions

Function References

A brief definition of each of these basic components follows.

1.

A constant is a data value that is self-defining and that
cannot change. g : :

A variable is a symbolic name that represents a stored
value. ‘ '

An array is a group of data, stored contiguously,; that

can be referred to individually or collectively. Individual

values are called array elements. A symbolic name is used

to refer to the array. Subscripts are used with array names

to refer to individual array elements.

A reference to the name of a function followed by a list
of arguments causes the computation indicated by the
function definition to be performed. The resulting value
is used in place of the function reference. Function .
references are treated in detail in Chapter 8.

An expression may be a single constant, variable, array
element reference, or function reference, or it may be a
combination of those components connected by operators,
that specify computations to be performed on the values
represented by those components to obtain a single result.




FORTRAN Statement Components

2.1 SYMBOLIC NAMES

Symbolic names are used to identify many entities within a FORTRAN

program unit.

A symbolic name is a string of 1 to 6 letters and digits, the first
of which must be a letter. Examples of valid and invalid symbolic

names are:

valid Invalid

NUMBER 50 (Begins with a digit)

K9 B.4 (Contains a special character)

X X234567 (Contains more than 6 characters)

The following types of entities are identified by symbolic names:

Unique in

Entity Typed Executable Program
Variables yes no
Arrays yes no
Arithmetic Statement Functions yes no
Processor-Defined Functions yes yes
Function subprograms yes yes
Subroutine subprograms no yes
Common blocks no yes
Block data subprograms no yes
Function entries yes yes
Subroutine entries no yes
External procedures yes yes

Within one program unit, the same symbolic name cannot be used to
identify more than one entity. Within an executable program, comprised
of more than one program unit, the same symbolic name can be used to

identify only one of the entities indicated.

Each entity indicated as "Typed" in the above table has a data type.
The means of specifying the data type of a name is discussed in
Sections 5.1 and 5.2.

Within a subprogram, symbolic names are also used as dummy arguments.
A dummy argument can represent a variable, array, array element,

expression, or external procedure name.




F

FORTRAN Statement Components

2.2 DATA TYPES

Each basic component may represent data of one of several different
types. The data type of a component may be inherent in its con-
struction, implied by convention, implicitly declared, or explicitly
declared. The data types available in FORTRAN, and their definitions,

are as follows:

1. Integer A whole number

2. Real - A decimal number; it may be a whole
number with a decimal point, a decimal
fraction, or a combination of the two

3. Double Precision -~ Similar to real, but with greater
accuracy in its representation

4. Double Integer - Similar to integer but with a capacity
for representing a greater number of
significant digits

5. Logical - The logical value "true" or "false"

6. Hollerith - A string of 1 to 5 printing characters.
The blank character is valid and sig-
nificant in a Hollerith datum

An important attribute of each type of data is the amount of computer
memory required to represent a value of that type.

The different data types require different amounts of storage in

the XVM, the basic unit of which is an 18-bit word. Integer and
Logical data use a single word each. Double Integers, Hollerith
and Real data occupy two words each. Double Precision data requires
three words of storage. (See Table 2-1).




FORTRAN Statement Components

Table 2-1
Data Type Storage Requirements

DATA TYPE 18-Bit Words
INTEGER 1
DOUBLE

INTEGER

REAL 2
DOUBLE 3
PRECISION

LOGICAL

HOLLERITH 2

Additional descriptions of these data types and their representations
are presented in the sections that follow.

2.3 CONSTANTS

A constant represents a fixed value. A constant can represent a
numeric value, a logical value, or a character string. There are
six types of constants, each representing a different internal data
format: INTEGER, DOUBLE INTEGER, REAL, DOUBLE PRECISION, LOGICAL
and Hollerith.

2.3.1 Integer Constants

An integer constant is a whole number with no decimal point. It may

be either a decimal or an octal number.

2.3.1.1 Decimal Integer Constants - The general form for a decimal integer

constant is:
[+Inn
where

nn is a string of one to six decimal digits. Leading zeros, if
any, are ignored.




LT

FORTRAN Stétement Components

A negative decimal integer constant must be preceded by a minus symbol;
a positive constant may optionally be preceded by a plus symbol (an

unsigned constant is presumed to be positive).

Except for a leading algebraic sign, a decimal integer constant cannot

contain ahy character other than the numerals 0 through 9.

The value of a decimal integer constant cannot be greater than 131071
or less than -131072.

Examples
Valid Decimal : Invalid Decimal
Integer Constants Integer Constants‘
0 99999999999 (Too large)
-127 3.14 (Decimal point and
+32123 32,767 comma not allowed)
00555

2.3.2 Octal Integer Constants
An octal integer constant is an alternate way of representing'an
integer constant. When used in an arithmetic context, octal con-
stants are treated as decimal constants.
The general form for an octal integer constant is:

#nn
where

nn is a string of one to six octal digits.
Except for the leading pound sign, which must be present, an octal
integer constant cannot contain any character other than the numerals

0 through 7.

An octél constant’cannot be smaller than zero, nor greater than 777777.




FORTRAN Statement Components

Examples
Valid Octal Invalid
Integer Constants Octal Integer Constants
#7213 32767 (Pound sign missing)
#1 #184 (Illegal character)
#17776 $3777777 (Number too large)
#1 (Illegal character)

2.3.3 Double Integer Constants

A double integer constant is a whole number with no decimal point.
It may be either a decimal or an octal number. It is similar to an
integer constant but has the capacity for representing a greater

number of significant digits.

2.3.3.1 Decimal Double Integer Constants - The general form for a

decimal double integer constant is:
[+] nn

where nn is a string of six to eleven decimal digits. Fewer digits
than this would make it a decimal integer constant (that is, a single

integer). Leading zeros, if any, are ignored.

A negative decimal double integer constant must be preceded by a
minus symbol; a positive constant may optionally be preceded by a

plus symbol (an unsigned constant is presumed to be positive).

Except for a leading algebraic sign, a decimal double integer con-
stant cannot contain any character other than the numerals 0 through
9.

Positive decimal double integer constants, n, must lie in the range
34,359,738,367 > n > 131,072; negative decimal double integer con-
it is a decimal integer constant rather than a decimal double integer

constant) .




FORTRAN Statement Components

Examples
vValid Decimal Invalid Decimal
Double Integer Constants Double Integer Constants
141520 400,000.00 (Decimal point and
comma not allowed)
~34359738367 35000000000 (Too large)

2.3.3.2 Octal Double Integer Constant - The general form for an octal

double integer constant is:
#Dnn
where
nn is a string of one to twelve octal digits.
Except for the leading pound sign and letter D, which must be present,
an octal double integer constant cannot contain any character other

than the numerals 0 through 7.

An octal double integer constant cannot be smaller than zero nor
greater than 777777777777.

Note that an octal integer value not preceded by a D may be assigned
to a double integer variable, (i.e., DI = #130000). However, the

magnitude of the integer must not exceed the limit for single integers

(7777778). If the magnitude is exceeded, its most significant digits
will be truncated before it is assigned to the double integer variable.
Examples
Valid Octal Invalid Octal
Double Integer Constants Double Integer Constants
#D0 DO (# sign missing)
#D400000 #D776,377 (comma is illegal)
#D777777777777 #D1000000000000 (number too

large)




FORTRAN Statement Components

2.3.4 Real Constants

A basic real constant is a string of decimal digits with a decimal
point.

A basic real constant appears in one of the forms:

[+].nn OR [+Inn.nn OR [+]nn.
where nn is a string of numeric characters. The decimal point may
appear anywhere in the string but following the sign symbol if one
appears. The number of digits is not limited, but only the leftmost
eight digits are significant. Thus, 12.345678 and 12.345679 are
equivalent to 12.34567. Leading zeros (zeros to the left of the first
non-zero digit) are ignored when counting the leftmost eight digits.
Thus, in the constant 0.00001234567, all of the non-zero digits are

significant.
A basic real constant must contain a decimal point.

A real constant may appear as a basic real constant, or as a basic
real or decimal integer constant followed by a decimal exponent of the

form:
E[+]nn

where nn is a 1- or 2-digit decimal integer constant. It represents
a power of ten by which the preceding real or integer constant is to
be multiplied (for example, 1lE6 represents the value 1.0 x 106).

A minus symbol must appear between the letter E and a negative

exponent; a plus symbol is optional for a positive exponent.

Except for algebraic signs, a decimal point, and the letter E (if
used), a real constant cannot contain any character other than the
numerals 0 through 9.

If the letter E appears in a real constant, a 1l- or 2-digit integer
constant must follow; the exponent field cannot be omitted, but may
be zero.

#9



e

FORTRAN Statement Components

A real constant cannot be greater in magnitude than 5.7896043 x lO76

-78
nor smaller in magnitude than 8.6361684 x 10 .

Examples
Valid Invalid
Real Constants Real Constants
3.14159 1,234,567 (Commas not allowed)
621712. 325E-79 (Too small)
-.00127 -47.E81 (Too large)
+5.0E3 100 (Decimal point missing)
2E-3 $25.00 (Special character
0.0 not allowed)

2.3.5. Double Precision Constants-

A double precision constant is a basic real constant, or an integer

constant, followed by a decimal exponent of the form:
D[+]nn

where nn is a 1~ or 2-digit decimal integer constant. -~ The number of
digits that precede the exponent is not limited, but only the left-—

most 11 digits are significant.

A double precision constant is interpreted as a real number having a

degree of precision somewhat higher than 10 significant eights.

A negative double precision constant must be preceded by a minus
symbol; a poSitive constant may optionally bé precéded by a plus
symbol. Similarly, a minus symbol must appear‘between the letter D
and a negative exponent; a plus symbol is optional for a positive
exponent.

The exponent field following the letter D cannot be omitted, but may
be zero. ‘

The magnitude of a double precision constant cannot be smaller than

3.4359738367 x 107 '°, nor greater than 3.4359738367 x 10°°,

Examples

1234567890D+5

+2.718281828D00

-72.5D-15 -~ -
1Do

4




FORTRAN Statement Components

2.3.6 Logical Constants

A logical constant specifies a logical value, "true" or "false".

Therefore, there are only two possible logical constants. They appear as:

. TRUE.

and
.FALSE.

The delimiting periods are part of each constant and must be present .

Internally, .TRUE. is given the integer value -1 (7777778) and
.FALSE. is given the value 0. Logical quantities may be operated

on by either logical or arithmetic operators yielding, respectively,
logical and arithmetic results.

2.3.7 Hollerith Constants
A Hollerith constant is a string of one to five printable ASCII charac-
ters preceded by a character count and the letter H.

Hollerith constants have the following general form:

anlczc3 e cn

where n is an unsigned integer constant from one to five stating the
number of characters in the string (including spaces), and each c; is
a printable ASCII character.

Hollerith constants are stored as IOPS, ASCII 7-bit data five characters
per two 18-bit words with the rightmost bit of the second word always

zero.

A Hollerith constant, of the form nH chars, is stored as a real con-
stant. A typical use of such constants is to test for user responses

keyed in at the terminal.
IF (A.EQ.3HYES) GOTO 100

A must be a real variable in order to match it with the real Hollerith
constant. Apart from this usage, Hollerith constants may be used only
in CALL and DATA statements.

Examples:

valid Invalid
Hollerith Constants Hollerith Constants
SHTODAY 3HABCD (Wrong number of characters)
1HA HYES (Character count Missing)
5HS$2.99 10HMESSAGEAl12 (count>5)

2-10




FORTRAN Statement Components

2.3.7.1 Alphanumeric Literals - An alphanumeric literal is an

alternate form of Hollerith constant.
The recommended form for an alphanumeric literal is:

U '
clczc3. . .Cn

where each c; is a printable ASCII character. Both delimiting apos-

trophes must be present.

The rules for alphanumeric literals are similar to those for Hollerith
constants, except that no character count is specified. The maximum

number of characters in an alphanumeric literal is 5.

To represent the apostrophe character within an alphanumeric literal,
write it as two consecutive apostrophes.

An alphanumeric literal, of the form 'chars', is stored internally as
an unsigned double integer constant. A typical use of such constants
is to test for user responses keyed in at a terminal.

IF (J.EQ.'NO') GOTO 200

J must be a double integer variable in order to match it with the
double integer alphanumeric literal.

For historical reasons, the characters double quote and dollar sign
can be used rather than single quote to enclose an alphanumeric literal,

but single quote is the preferred character for compatibility with other
DEC FORTRANS.

'ABC' and "ABC" and $ABCS$ are equivalent.

Examples
'A'
'A''BCD' (Stored as A'BCD)
'AAB? (Stored as AAB. Blank not ignored)




FORTRAN Statement Components

2.4 VARIABLES

A variable is a symbolic name that is associated with a storage loca-
tion. The size of the storage location, in terms of words of XVM
memory, is a function of the data type of the variable. The value of

the variable is the value currently stored in that location; that

value can be changed by assigning a new value to that symbolic name.

(The form of a symbolic name is given in Section 2.1).

Variables are classified by data type, just as are constants. The
data type of a variable indicates the type of data it represents, its
precision, and its storage requirements. When data of any type is
assigned to a variable, it is converted, if necessary, to the data
type of the variable. The data type of a variable may be established

either by declaration or by implication.

Two or more variables are associated when each is associated with the

same storage location; or, partially associated, when part (but not

all) of the storage associated with one variable is the same as part
or all of the storage associated with another variable. Association ,
and partial association occur through the use of COMMON statements,

EQUIVALENCE statements, and through the use of actual arguments and

dummy arguments in subprogram references.

A variable is said to be defined if the storage location with which

it is associated contains a datum of the same type as the name. A
variable may be defined prior to program execution by means of a DATA
statement or during execution by means of assignment or input

statements.

If variables of differing types are associated (or partially associated)
with the same storage location, then defining the value of one variable
(for example, by assignment) causes the value of the other variable

to become not defined.
2.4.1 Data Type by Definition
Data type declaration statements specify that given variables are to

represent specified data types. For example, consider the following

statements: o




e

FORTRAN Statement Components

LOGICAL VARL
DOUBLE PRECISION VAR2

These statements indicate that the variable VARl is to be associated
with a l-word storage location that is to contain logical data, and
that the variable VAR2 is to be associated with a 3-word double
precision storage location. The explicit data typing statements,
INTEGER, DOUBLE INTEGER, REAL, DOUBLE PRECISION and LOGICAL, are

described in Section 5.2.

The IMPLICIT statement has a broader scope: it states that any

variable having a name that begins with a specified letter, or any
letter within a specified range,; is to represent a specified data
type, in the absence of an explicit type declaration. The IMPLICIT

statement is explained in Section 5.1.

The data type of a variable may be explicitly specified only once.
An explicit type specification takes precedence over the type implied
by an IMPLICIT statement.

2.4.2 Data Type by Implication

In the absence of any IMPLICIT statements, all variables having names
beginning with I, . J, K, L, M, or N are presumed to represent integer
data. Variables having names beginning with any other letter are.

presumed to be real variables. For example:

Real Variables : Integer Variables

ALPHA ) KOUNT
BETA ITEM

TOTAL ' NTOTAL

2.4.3 Assigning Hollerith Data to Variables

The amount of Hollerith data that can be assigned to a variable depends

on the data type of that variable. The maximum number of characters
that can be stored for each data type is illustrated in Table 2=2.




FORTRAN Statement Components

Table 2-2
Hollerith Data Storage

VARIABLE TYPE NUMBER OF CHARACTERS TO BE STORED

INTEGER 1 or 2 b
REAL 1l to 5

DOUBLE INTEGER 1 to 5 =

Hollerith data is stored in the IOPS ASCII form (5 7-bit characters

in two words). If the number of characters stored is less than the ™
maximum number for a particular type of variable, the FORTRAN system

appends spaces to the end of the string to fill the variable to its T
capacity. In the case of INTEGER variables, the word contains 1 or

2 full characters, plus the high 4 bits of the representation for space.

An attempt to assign more than the maximum number of characters causes

the excess characters to be lost.

2.5 ARRAYS

An array is a group of contiguous storage locations associated with
a single symbolic name, the array name. The individual storage
locations, called array elements, are designated by subscripts
appended to the array name. The number of subscripts required to

locate an array element is the number of dimensions in the array.

An array may have from one to three dimensions. A simple column of

figures is an example of a l-dimensional array, requiring one subscript. Ty
To refer to a specific value in the column, say the ninth entry, we

would simply request the ninth entry. If a page contained several

columns of figures, that page might represent a 2-dimensional array, .
requiring two subscripts. To refer to a specific value in this k
array, we must locate it by both its entry (or row) number and its
column number. If this table of figures covered several pages, we
would have an example of a 3-dimensional array. To locate a value in
this array, we would have to use its row number, its column number,

and its page (or level) number.

R




FORTRAN Statement Components

The following FORTRAN statements establish arrays:

~ 1. Data type declaration statement (Section 5.2),
2. DIMENSION statement (Section 5.3), and

3. COMMON statement (Section 5.4).

These statements, containing array declarators (array declarators are
discussed in the following sub-section), define the name of the array,
~ the number of dimensions in the array, and the number of elements in
each dimension. The number of subscripts used thereafter to refer to
i a given array element must correspond to the number of dimensions
- defined by the array declarator for that array. (Subscripts are
, discussed in Section 2.4.4.)

2.5.1 Array Declarators

An array declarator specifies the symbolic name that identifies an
array within a program unit and indicates the properties of that
array.

An array declarator has the following form:
a (d[,d]l ...)

a is the symbolic name of the array -~ the array name.
(The form of a symbolic name is given in Section 2.1.)

d is the dimension declarator.

The number of dimension declarators indicates the number of dimensions
— in the array. The minimum number of dimensions is. 1l and the maximum
number is 3. i

The value of a dimension declarator specifies the number of elements
in that dimension. For example, a dimension declarator value of 50
indicates that the dimension contains 50 elements. The dimension

« declarators may be constant or variable.




FORTRAN Statement Components

2.5.2 Array Storage

As discussed earlier in this section, it is convenient to think of the

£

dimensions of an array as rows, columns, and levels or planes. However,
the FORTRAN system always stores arrays in memory as a linear sequence
of values. A l-dimensional array is stored with its first element in
the first storage location and its last element in the last storage

location of the sequence. A multi-dimensional array is stored such
This is called the

"order of subscript progression". For example, consider the following

that the leftmost subscripts vary most rapidly.

array declarators and the arrays that they create: ™
l1-Dimensional Array ARC(6)
| 1] arc (1) [2]arc (2) | 3]arc (3) [4]arc (4) [5]are (5) [6]arc (6) |
Memory Positions
2-Dimensional Array TAB(3,4) i
1|TAB(1,1) (4 |TAB(1,2)|7{TAB(1,3) |10|TAB(1,4)
2| TAB(2,1)|5|TAB(2,2) |8 | TAB(2,3) |11 |TAB(2,4)
3|TAB(3,1) |6|TAB(3,2) |9|TAB(3,3) |12|TAB(3,4)
’ ? Memory Positions
3-Dimensional Array CAM(3,3,3) Y
19jcamM(1,1,3)|22|cAM(1,2,3) |25|cAaM(1,3,3
20{CAM(2,1,3)|23{CAM(2,2,3) (26|CAM(2,3,3)
i0|caM(1,1,2)|13{cAamM(1,2,2)({l6]CAM(1,3,2) ||27|CAM(3,3,3
ll|cAM(2,1,2)|14|CAM(2,2,2)|17|CAM(2,3,2)
licamM(l,1,1)l4jcamMm(1,2,1)!7{caM(1,3,1) 18|CAM(3,3,2)
CAM(2,1,1)|5|CAM(2,2,1)|8|CcAM(2,3,1)
CAM(3,1,1)|6|{CAM(3,2,1)|9|CAM(3,3,1)
3 i

Memory Positions

Figure 2-1
Array Storage




FORTRAN Statement Components‘

2.5.3 Data Type of an Array

The Compiler establishes the data type of an array the same way it
establishes data types for variables. 1In the absence of any data
type specification, the data type of an array and its elements is
implied by the initial letter of the array name. The data type may
also be explicitly defined by data type declaration statements.

All of the values in an array are of the same data type. Any value
assigned to any element of an array is converted to the data type of
the array. If an array is named in a DOUBLE PRECISION statement,; for
example, the Compiler allocates a 3-word storage location for each
element of the array. When a data value of any type is assigned to

any element of that array, it is converted to double precision.
2.5.4 Subscripts

A subscript qualifies an array name. A subscript is a list of
subscript expressions enclosed in parentheses and separated by commas
that determines which element in the array is being or is to be
referenced. The subscript is appended to the array name it qualifies.

The terms "array element" and "subScriptedvvariable" are synonymous.
A subscript has the following form:

(sl,s]...)

s is a subscript expression

In any subscripted array reference, there must be one subscript
expression for each dimension defined for that array (one subscript
expression for each dimension declarator). For example, the following
entry could be used to refer to the element located in the first row,
third celumn, second level of the array CAM in Figure 2-1 (whieh is

the element occupying memory position 16).
caM (1,3,2)
Each subscript expression may be any valid integer-type arithmetic

expression, provided that any array elements which appear in the
expression have only single subscripts themselves.



FORTRAN Statement Components

«f‘“’\g\‘
In the following types of statements an array name may appear without
a subscript:
Type declaration statements v
COMMON
DATA statement
EQUIVALENCE statement
FUNCTION statement
SUBROUTINE statement ™y
CALL statement
Input/Output statements ;
When one of these statements refers to an array name without subscripts,
that statement specifies that either the entire array, or the first
element of the array, depending upon the context, is to be used (or
defined). The use of unsubscripted array names, in all other types of
statements is prohibited.
In the EQUIVALENCE statement, a single subscript may follow the name
of a multidimensional array. This usage is described in Section 5.5.
2.6 EXPRESSIONS
An expression represents a single value. It may be a single basic
component, such as a constant or variable, or it may be a combination .
of basic components with one or more operators. Operators specify ¥
computations to be performed, using the values of the basic components,
to obtain a single value.
TN
Expressions may be classified as arithmetic, relational, or logical. ‘
Arithmetic expressions yield numeric values; relational and logical
expressions produce logical values. =
2.6.1 Arithmetic Expressions
Arithmetic expressions are formed with arithmetic elements and '
arithmetic operators. The evaluation of such an expression yields
a single numeric value. T,




FORTRAN Statement Components

s %

An arithmetic element may be any of the following:

1. A numeric constant
2. A numeric variable
3. A numeric array element
e 4., An arithmetic expression enclosed in parentheses
5. An arithmetic function reference (functions and function

references are described in Chapter 8.)

The term "numeric" in these cases can also be interpreted to include
logical data, since data of this type is treated as Integer data when
used in an arithmetic context.

Arithmetic operators specify a computation to be performed using the
values of arithmetic elements; they produce a numeric value as a
result. The operators and their meanings are:

Operator Function

* % Exponentiation
Multiplication

Division

+ N %

Addition and Unary Plus

Subtraction and Unary Minus

The above are called binary operators, because each is used in con-
< ' junction with two elements. The - symbol may also be used as a
"unary operator". When written immediately preceding an arithmetic

element, a + or - denotes a positive or negative value.

Any arithmetic operator can be used in conjunction with any valid

arithmetic element except for certain restrictions noted below.

A value should be assigned to a variable before its name is used in an
arithmetic expression.

The following restrictions exist in regard to exponentiation ("No"

indicates that a given combination is illegal):




FORTRAN Statement Components

EXPONENT

BASE Double
Integer Integer Real Double

Integer Yes Yes No No

Double Yes Yes No No
Integer

Real Yes Yes Yes Yes
Double Yes Yes Yes Yes

An element having a value of zero cannot be exponentiated by another

zero-value element.

In any valid exponentiation, the result is of the same data type as
the base element, except in the case of a real base and a double
precision exponent (the result is double precision) and except in the
case of an integer base and a double integer exponent (the result is

double integer).

Arithmetic expressions are evaluated in an order determined by a
precedence associated with each operator. The precedence of the

operators is as follows:

Operator Precedence

alad First
Unary Minus Second

* and / Third
+ and - Fourth

Whenever two or more operators of equal precedence (such as + and -)
appear, they may be evaluated in any order chosen by the compiler so
long as the actual order of evaluation is algebraically equivalent
to a left to right order of evaluation. Exponentiation, however, is
evaluated right to left. For example A**B**C is evaluated as

A*% (B**C) .

&




y ;M\Q

=

P

FORTRAN Statement Components

Examples
-I+J3/2*10+SQRT (A) **3
is evaluated as follows:

(1) the square root of A is computed and then raised to a
power of 3,

(2) the value of I is negated,

(3) J is divided by 2 and then multiplied by 10,

(4) Finally, the partial results are added, first (-1) to
(J/2*%10), then to (SQRT(A)**3).

Ancther simple example, but one which illustrates the precedence
operations at work and the need for caution is the raising of a nega-
tive number to some integer power.

—-1*%%2 yields =1
This is not -1 raised to the power of 2; rather it is 1 raised to the
power of 2 and then negated. To obtain the desired result, paren-
theses must be used: ‘

(=1) **2 evaluates to 1

2.6.1.1 Use of Parentheses - Parentheses may be used to override the

normal evaluation order. ' An expression enclosed in parentheses is

treated as a single arithmetic element. That is, it is evaluated first

to obtain its value, then that value is used in the evaluation of the
remainder of the larger expression of which it is a part. An example
of the effect of the use of parentheses is shown below (the numbers
below the operators indicate the order in which the operations are
performed) .

4 +3 *2~-6/2=7

—
—_
—
—

(4+43) * 2 -6 / 2 = 11
bttt

1 2 4 3




FORTRAN Statement Components

(4+3%2-6) /2=2
tor t
2 1 3 4
((4+3) * 2 - 6) / 2 = 4
bttt
12 3 4

Evaluation of expressions within parentheses takes place according to

the normal order of precedence.

Nonessential parentheses, such as in the expression

4 + (3*%2) - (6/2)

have no effect on the evaluation of the expression.

The use of parentheses to specify the evaluation order is often
important in high accuracy numerical programs where evaluation orders
that are algebraically equivalent might not be computationally equiva-

lent when carried out on a computer.

2.6.1.2 Data Type of an Arithmetic Expression - If every element in
an arithmetic expression is of the same data type, the value produced
by the expression is also of that type. If elements of different

data types are mixed together in an expression, the evaluation of that
expression and the data type of the resulting value are dependent on

a rank associated with each data type. The rank assigned to each

data type is as follows:

Data Type Rank
Integer 1 (Low)
Double Integer 2

Real 3
Double Precision 4 (High)

The data type of the value produced by an operation on two arithmetic
elements of differing type is the same as that of the highest-ranked
element in the operation. The data type of an expression is the same
as the data type of the result of the last operation in that expression.
The way in which the data type of an expression is determined is as

follows:




e

FORTRAN Statement Components

Integer operations - Integer operations are performed

only on integer elements. (When used in an arithmetic
context, octal constants and logical entities are
treated as integers.) In integer arithmetic, any fraction

that may result from division is truncated, not rounded.
For example, the value of the expression

1/3 + 1/3 + 1/3

is zero, not one.

Double Integer operations - Double integer operations
are performed only on double integer elements or a
combination of integer and double integer elements. Any
integer elements present are converted to double integer.
Then, double integer arithmetic is performed in the same
manner as for integer-integer operations.

Real operations - Real operations are performed only on real
elements or a combination of real, double integer and
integer elements. Any integer and double integer elements
present are converted to real type by giving each a
fractional part equal to zero. The expression is then
evaluated using real arithmetic. Note, however, that in the
statement Y = (I/J)*X, an integer division operation is per~
formed on I and J and a real multiplication is performed

on the result and on X.

Double Precision operations - Any real, double integer

or integer element in a double precision operation is con-
verted to double precision type by making the existing
element the most significant portion of a double precision
datum; the least significant portion is zero. The
expression is then evaluated in double precision arithmetic.

NOTE

The conversion of a real element to
double precision does not increase

its accuracy. For example, the real:
number 0.3333333 when converted becomes
0.33333330000 not 0.33333333333. Also
note that real and double precision
elements are only approximate repre-
sentations of actual numbers. Values
resulting from a real or double pre-
cision expression are only as accurate
as the degree of precision for that
data type.




FORTRAN Statement Components

2.6.2 Relational Expressions

A relational expression consists of two arithmetic expressions
separated by a relational operator. The value of the expression is
either "true" or "false", depending on whether or not the stated
relationship exists.

A relational operator tests for a relationship between two arithmetic

expressions. These operators are as follows:
Operator Relationship
LT, Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

The enclosing periods are part of each operator and must be present.

In arelational expression, the arithmetic expressions are evaluated
first to obtailn their values. Those values are then compared to
determine if the relationship stated by the operator exists. For

example, the expression:

APPLE+PEACH .GT. PEAR+ORANGE

states the relationship, "The sum of the real variables APPLE and
PEACH is greater than the sum of the real variables PEAR and ORANGE."
If that relationship does in fact exist, the value of the expression

is true; if not, the expression is false.

All relational operators have the same precedence. Thus, if two or
more relational expressions appear within a logical expression
(relational expressions are a subtype of logical expressions), the
relational operators are evaluated from left to right. Arithmetic

operators have a higher precedence than relational operators.




FORTRAN Statement Components

Parentheses may be used to alter the evaluation of the arithmetic
expressions in a relational expression exactly as in any other arith-
metic expression; but since arithmetic operators are evaluated before
relational operators, it is unnecessary to enclose the entire arith-

metic expression in parentheses.

When two expressions of different data types are compared by a rela-
tional expression, the value of the expression having the lower-ranked
data type is converted to the higher-ranked data type before the com-

parison is made.
2.6.3 Logical Expressions

A logical expression may be a single logical element, or may be a
combination of logical elements and logical operators. A logical

expression yields a single logical value, true or false.
A logical element may be any of the following:

1. An Integer or Logical constant

2. An Integer or Logical variable

3. An Integer or Logical array element

4. A relational expression

5. A logical expression enclosed in parentheses

6. An Integer or Logical function reference (functions and

function references are described in Chapter 8.)

The logical operators are shown below:

Operator Example Meaning
.AND. A .AND. B Logical conjunction (logical AND).

The expression is true if, and only
if, both A and B are true.

.OR. A .OR. B Logical disjunction (inclusive
OR). The expression is true if,
and only if, either A or B, or
both, is true.

.XOR. A .XOR. B Exclusive OR. The expression is
true if A is true and B is false,
or vice versa, but is false if
both elements have the same value.




FORTRAN Statement Components

Operator Example Meaning
.NOT. .NOT. A Logical negation. The expression
is true if, and only if, A is
false.

When a logical operator is used to operate on logical elements, the

resulting value is of type logical. When a logical operator is used

with integer elements, the logical operation is carried out bit-by-bit

on the corresponding bits of the internal (binary) representation of
the integer elements. The resulting value has type integer. When

integer and logical values are combined with a logical operator, the
operation is carried out as for two integer elements. The resulting

type 1is integer.

A summary of all operators that may appear in a logical expression,

and the order in which they are evaluated follows.

Operator Evaluated
il First
Unary Minus Second
* and / Third
+ and — Fourth
.LT., .LE., Fifth
.EQ., .NE.,
.GT., .GE.
.NOT. Sixth
.AND. Seventh
.OR. Eighth
.XOR. Ninth

The delimiting periods of logical and relational operators must be

present.

Operators of equal rank are evaluated from left to right. An example
of the sequence in which a logical expression is evaluated is as

follows:

A*B+C*ABC .EQ. X*Y+DM*zZ .AND. .NOT. K*B .GT. TT

—

il




FORTRAN Statement Components

is evaluated as:
(((A*B)+(C*ABC)).EQ.((X*Y)+(DM*ZZ))).AND.(.NOT.((K*B).GT.TT))

Parentheses may be used to alter the normal seguence of evaluation,

just as in arithmetic expressions.

Two logical operators cannot appear contiguously (no intervening

operand) , except where the second operator is .NOT..




M%\




i

CHAPTER 3
ASSIGNMENT STATEMENTS

Assignment statements establish or alter the value of a variable or
array element, by evaluating an expression and assigning the result-
ing value to the variable or array element. Variables may be reas-
signed any number of times within a program. Whenever references are
made to these variables, their most recently assigned values are

used.
Three types of assignment statements exist:

1. Arithmetic assignment statement

2. Logical assignment statement

3. ASSIGN statement
3.1 ARITHMETIC ASSIGNMENT STATEMENT
The arithmetic assignment statement assigns the value of. the expres-—
sion to the right of the rightmost equal sign to the preceding ele-
ments going right to left. The previous values of the variables, if

any, are lost.

The arithmetic assignment statement has the following form:

v :V =. - .=v :e

1 72 n
vy is a numeric variable name or array element name.
e is an expression.

If an arithmetic assignment statement requires a continuation line,

the equal sign (=) must appear on the first line. The equal sign




Assignment Statements

does not mean "is equal to", as in mathematics. It means "is re-

placed by". Thus, the statement:

KOUNT = KOUNT + 1 2

means, "Replace the current value of the integer variable KOUNT with

the sum of that current value and the integer constant 1".

The effect of substituting values going right to left can be seen in

this next example.

TABLE(I) = I =5

First the value of 5 is assigned to the variable I and then 5 is

assigned to TABLE(5).

Although a symbolic name to the left of an equal sign may be initial-
ly undefined, values must have been previously assigned to all sym-

bolic references in the expression.

If the data type of a variable or array element on the left of an
equal sign is the same as that of the expression on the right, the
statement assigns the value directly. If the data types are differ-
ent, the value of the expression is converted to the data type of
the entity on the left of the equal sign before it is assigned. A
summary of data conversions on assignment is shown in Table 3-1.
There are, however, situations in which the value obtained will be
meaningless. For example, if the integer variable I is assigned the
value of the double integer variable J, when J=100, the assignment
will be as expected. When J=10000000, however, an unpredictable

value assignment will result.




i)

Assignment Statements

Conversion Rules for Assignment Statements

Table 3-1

EXPRESSION (E)

VARIABLE INTEGER, LOGICAL, REAL DOUBLE DOUBLE
OR ARRAY HOLLERITH PRECISION INTEGER
ELEMENT OR CONSTANT
(V)
INTEGER Assign E to V Truncate Truncate E Assign E to
E to to Integer \Y
Integer and assign
and assign | to V
to V
REAL Append fraction Assign E Assign MS Append a
(.0) to E and to V portion of E fraction of
assign to V to V; LS .0 to E and
portion of E assign to V
is rounded
DOUBLE Append fraction Assign E Assign E to Append a
PRECISION (.0) to E and to MS \Y fraction of
assign to MS portion .0 to E and
portion of V; of V; LS assign to V
LS portion of portion
V is zero of V is
zZero )
A
DOUBLE Assign E to Truncate Truncate E Assign E
INTEGER LS portion E to to Double to V
of V. Pro- Double Integer and
pagate sign Integer assign to
of E through and assign |V EEE
MS portion of to V
v ) ’ ‘
LOGICAL Assign E to V Truncate E | Truncate E Assign E
to Integer | to Integer to V
and assign | and assign
to V to V
MS = Most Significant (high-order)
LS = Least Significant (low-order)




Assignment Statements

Examples

Valid Statements

BETA = -1./(2.*X)+A*A/(4.*(X*X))
PTI = 3.14159

SUM = SUM+1.

TABLE (I)=LIST(I+1)=0.

Invalid Statements

3.14 = A-B (Entity on the left must be a
variable or array element.)

=J = I*%4 (Entity on the left must not be
signed.)

ALPHA = ((X+6)*B*B/(X-Y) (Invalid expression: left and

right parentheses do not balance.)
3.1.1 Partword Notation

In addition to the basic arithmetic assignment statement, the pro-

grammer may use a part-word notation of the form:
[m : nl]

where m and n are integer constants indicating a range from 0 to 35
(0<m<n<35). This construction may optionally follow any variable,
array element, or parenthesized expression in the expression portion
of an arithmetic statement (to the right of =) and/or the variables
or array elements being assigned. In the former case, the expres-
sion will be of type integer if (n-m)<16 and type double integer if
(n-m)>17; its value is bits m through n of the actual value (right

adjusted). For example, the statement:
I=4#2300[6:11]

assigns I the value 238, and
I=4#2300[6:8]1

assigns I the value 2. If I were a double integer, the statement
I=#2300[0:29]

would assign I the value 23. Note that #2300 is represented inter-

nally as 002300.

v

.




P

Assignment Statements

If this notation is used to the left of an equal sign, it indicates
that only bits m through n of the variable are to be replaced by the
value of the expression. For example, if the integer variable IVAR

had previously been assigned the octal value 77, the statement:
IVAR[9:11]=#1

would make the new value of IVAR the octal integer 177. Only bit

positions 9 through 11 are modified. Also, the statements:

IVAR=100
IVAR{9:11]=IVAR+1

leave the value of IVAR unchanged (i.e., 100). The programmer must
be careful not to specify a double integer range (n>17).for an integer

variable. For example:
I=#D77000000[19:35]
yields the single integer value 0.

Note that only the first two words of a double-precision floating
variable (the exponent and first-order mantissa) may be manipulated

via this notation.
3.2 LOGICAL ASSIGNMENT STATEMENT

The logical assignment statement is similar to the arithmetic assign-
ment statement, but operates with logical data. The logical assign-
ment statement evaluates the expression on the right side of the
rightmost equal sign and assigns the resulting logical value to the
variable or array element on the left. When an integer element or
subexpression appears in a logical assignment statement, if its value

is non-zero, it is %Zreated as .TRUE. and, if zero, as .FALSE..

The form of the logical assignment statement is shown below:

V] =V, = ... =vo=e
vy is a variable or array element of type Logical.
e is a logical expression.




Assignment Statements

)

The variables or array elements on the left of the rightmost equal
sign must have been previously defined as being of logical type by a
LOGICAL data type declaration statement or an IMPLICIT statement.

Their values may be initially undefined.

Values, either numeric or logical, must have been previously assigned

to all symbolic references that appear in the expression. .

Examples

PAGEND LFALSE.

PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A .GT. B .AND. A .GT. C .AND. A .GT. D
3.3 ASSIGN STATEMENT

The ASSIGN statement is used to associate a statement label with an
integer variable. The variable may then be used as a transfer des-
tination in a subsequent assigned GO TO statement (see Section 4.1.3)

or an arithmetic IF statement (see Section 4.2.1).
The form of the ASSIGN statement is shown below:

ASSIGN s TO v

s is a statement label of an executable statement in the
same program unit as the ASSIGN statement.

v is an integer variable.

The ASSIGN statement assigns the statement number to the variable in

a manner similar to that of an arithmetic assignment statement, with .
one exception: the variable becomes defined for use as a statement '
label reference and becomes undefined as an integer variable. The

variable must not be used as an integer before being redefined as an

integer.

The ASSIGN statement must be executed before the assigned GO TO or ;
arithmetic IF statement(s) in which the assigned variable is to be
used. The ASSIGN statement, the assigned GO TO statement(s) and the

arithmetic IF statement(s) must occur in the same program unit.




A,

Assignment Statements

Consider the following example. In this example, the statement
ASSIGN 100 TO NUMBER

associates the variable NUMBER with statement 100. The constant 100
does not get assigned to NUMBER but rather the memory location asso-
ciated with statement label 100. The statement

NUMBER = NUMBER-+1

then becomes invalid, since it attempts to alter a statement label.
This kind of error is not detectable by the FORTRAN system and can

result in program failure. The statement:
NUMBER = 10

dissociates NUMBER from statement 100 and returns it to its status
as an ordinary variable. It can no longer be used in an assigned

GO TO statement, however.
Examples

ASSIGN 10 TO NSTART
ASSIGN 99999 to KSTOP

ASSIGN 250 TO ERROR (ERROR must have been defined as an
integer variable.)




=
™




CHAPTER 4
CONTROL STATEMENTS

[ Statements are normally executed in the order in whicn they are
written. However, it is frequently desirable to interrupt the nor-
P mal program flow by transferring control ("branching" or "jumping")
to another section of the program or to a subprogram. Transfer of
control from a given point in the program may occur every time that
point is reached in the program flow, or may be based on a decision

made at that point.

Transfer of control, whether within a program unit or to another
i, program unit, is performed by control statements. These statements

also govern repetitive processing ("looping") and program halts and

waits. The various types of control statements are shown below:

GOTO
IF
DO
CONTINUE
CALL
; RETURN
s PAUSE
STOP
END

4.1 GO TO STATEMENTS

GO TO statements transfer control within a program unit, either to
= the same statement every. time or to one of a set of statements, based

on the value of an expression.
The three types of GO TO statements are: -

1. Unconditional GO TO stdtement
2 2. Computed GO TO statement

3. Assigned GO TO statement

4-1




Control Statements

4.1.1 ©Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same

statement every time it is executed.

The form of the unconditional GO TO statement is shown below:

GO TO s
S is the label of an executable statement in the same program

unit.

The unconditional GO TO statement transfers control to the statement
identified by the specified label. The statement label must identify
an executable statement in the same program unit as the GO TO state-

ment. Program execution continues from tnat point.

Examples

GO TO 7734

GO TO 99999

GO TO 27.5 (Invalid; the statement label is improperly
formed.)

4.1.2 Computed GO TO Statement

The computed GO TO statement permits a choice of transfer destina-

tions, based on the value of an integer variable within the statement.

The form of the computed GO TO statement is as follows:

GO TO (slist) , v

slist is a list of one or more executable statement labels
separated by commas. The list of labels is called
the transfer list. A maximum of 64 statement labels
map appear in a computed GO TO list.

v is an integer variable the value of which falls within
the range 1 to n (where n is the number of statement
labels in the transfer list).

The comma between the transfer list and the expression, the commas

within the 1list, and the parentheses, are required.

i

v




FE

Control Statements

The GO TO statement transfers control to the vth statement label in
the transfer list. That is, if the list contains (30,20,30,40), and
the value of v is 2, the GO TO statement passes control to statement

20, and so on.

If the value of the wvariable is less than 1, or greater than the:
number of labels in the transfer list, a warning error message is
printed (.0TS 07) and control passes to the first executable statement

following the computed GO TO.
Examples

GO TO (12,24,36) ,INCHES

GO TO (320,330,340,350,360) ,J

In the second example, if the value of the variable is 1, the GO TO
statement transfers control to statement 320; if the value is 2, con-

trol passes to statement 330, and so on.
4.1.3 Assigned GO TO Statement

The assigned‘GO TO statement transfers control to a statement label

that is represented by a variable. Because the relationship between
the variable and a specific statement label must be established by an
ASSIGN statement, the transfer destination may be changed, depending

upon which ASSIGN statement was most recently executed.
The assigned GO TO statement appears in the following form:

GO TO v, (slist)]
v is an integer variable.

slist (when present) is a list of one or more executable
statement labels separated by commas.

The assigned GO TO statement transfers control to the statement
whose label was most recently associated with the wvariable v by an

ASSIGN statement.

The variable v must be of Integer type and must have been assigned a
statement label by an ASSIGN statement (not an arithmetic assignment

statement) prior to the execution of the GO TO statement.




Control Statements

The assigned GO TO statement and its associated ASSIGN statement(s) '
must exist in the same program unit. Statements to which control is
transferred must also exist in the same program unit and must be
executable. .
Examples
GO TO INDEX
GO TO INDEX, (300,450,1000,25)
Note from the second example that statement labels in the transfer ™
list need not be in ascending numeric order.
4.2 TIF STATEMENTS
An IF statement causes a conditional control transfer or statement
execution. There are two types of IF statements:
1. Arithmetic IF statement
2. Logical IF statement -
In either type, the decision to transfer control or to execute the
statement is based on the evaluation of an expression within the IF
statement.
4.2.1 Arithmetic IF Statement
The arithmetic IF statement is used for conditional control transfers. '%
It can transfer control to one of three statements, based on the
value of an arithmetic expression.
.’—\1
P
The form of the arithmetic IF statement follows:
IF (e) V1, V2, V3
e is an arithmetic or logical expression.
v is a statement label or an ASSIGNed integer variable
identifying an executable statement in the same program y
unit.
All three labels must be present. They need not refer to three dif- s
ferent statements, however; they all may be the same. If desired,




B e

Control Statements

one or two labels may refer to the statement that immediately follows
the IF statement. A transfer to that statement gives the effect of

no transfer at all.

Each label may be either a statement label or an integer variable
representing a label. The most recently aSsigned value of the vari-
able must have been via an ASSIGN statement (not an assignmeht state-

ment) .

An arithmetic IF statement must appear entirely on one line. If this
cannot be done, break the statement into two statements, one equating
a variable to the arithmetic expression to be tested and the other an

arithmetic IF statement which tests the value of that Variable.

The arithmetic IF statement first evaluates the expression in paren-
theses and then transfers control to one of the three statement

labels in the transfer list, as follows:

If the Value is: Control Passes to:
Less than O Label V1
Equal to 0 Label V2
Greater than 0 Label V3

Examples
IF (THETA-CHI) 50,50,100

This statement transfers control to statement 50 if the real variable
THETA is less than or equal to the real variable CHI (giving a nega-
tive or zero value). Control passes to statement 100 only if THETA

is greater than CHI.
IF (NUMBER/2*2-NUMBER) 20,40,20

In this example, the IF statement transfers control to statement 40
if the value of the integer variable NUMBER is even and to statement
20 if it is odd (the fraction resulting from division by two is
truncated, giving a lesser value when the'quotient is re-multiplied).
In this case, the third statement label is not used, since the ex-
pression can have only negative or zero values. The third label must
be present, however.




Control Statements

Mh\‘
IF(A.GT.B.AND.A.GT.C) 3,4,5
In this example, the expression yields a logical result .TRUE. or
.FALSE. . Since .TRUE. is internally represented as -1, if the ex- -
pression is true, control will transfer to statement 3. Since .FALSE.
is represented internally as 0, if the expression is false, control
will pass to statement 4. Because only the values -1 or 0 can be o
generated, control will never transfer to statement 5.
IF(I.XOR.J) 1,2,3
=~
Logical expressions do not always yield -1 or 0 results. When a
logical operator is used to operate on integer elements, the logical ™
operation is carried out bit-by-bit on the corresponding bits of the e
internal (binary) representation of the integer elements. The re- ‘
sulting value is integer rather than logical. If I and J are integers,
control will go to statement 2 if I=J, to statement 3 if I#J but both
have the same sign, or to statement 1 if their signs differ.
IF (COUNT(3)) 100,J,100 ﬂwm
If the value of the array element COUNT (3) is not zero, control goes
to statement 100. If it is zero, control goes to the statement whose
number was most recently assigned to J via an ASSIGN command.
4.2.2 Logical IF Statement
. ﬁw”’\
A logical IF statement causes a conditional statement execution. The b
decision to execute the statement is based on the value of a logical
expression within the statement.
Ty
The form of the logical IF statement is:
IF (e) st &
e is a logical expression.
st is a complete FORTRAN statement. The statement cannot be
a DO statement or another logical IF statement. (Any 5
other executable statement is permitted.)
The logical IF statement first evaluates the expression. If the st

value of the expression is true, the IF statement causes the contained




Control Statements

statement to be executed. If the value of the expression is false
(zero), control passes immediately to the next executable statement

following the logical IF.
Examples

IF (J .GT. 4 .OR. J .LT. 1) GO TO 250
IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K)*(-1D0)
IF (ENDRUN) CALL EXIT

IF (X.EQ.3) IF (J) 3,55
In the last example, if X is not equal to 3.0, the arithmetic IF
is executed and control either passes to statement 3 or statement 5
(otherwise control passes to the next executable statement below).
4.3 DO STATEMENT
DO statements are used to simplify the coding of iterative procedures.
The DO statement causes the statements in its range to be repeatedly
executed a specified number of times.

The DO statement appears in the following form:

DO s i=Vl1,v2[,[-]1V3]

s is the statement label of an executable statement.
The statement must appear later in the same program
unit.

i is an integer variable.

v1i,v2,V3 are integer constants or integer variables.

The variable i is called the control variable of the DO and V1,V2,V3
are called the initial, terminal, and increment parameters respective-
ly. If the increment parameter is omitted, a default increment value

of 1 is used.

In the DO statement, an explicit minus sign may appear only preceding

V3, the increment parameter. If intéger constants are used for V1,

the initial parameter, and V2, the terminal parameter, they must be
positive or zero. Only V3 may appear as a negative integer constant.

If integer variables are used for V1 or V2, they may take on negative,




Control Statements

zero, or positive values. If an integer variable is used for V3,
however, it can only have a positive and non-zero value. Negative
increments are achieved by placing an explicit minus sign in front of
the variable name. The absolute value of the difference between the
values of the initial and the terminal parameters must be less than
131072. There is no code generated to test this condition at run

time.

The statements that follow the DO statement, up to and including

"

statement "s", are called the range of the DO loop. Statement "s"

is called the terminal statement of the loop.

When the DO statement is encountered, the value of the initial para-
meter is assigned to the control variable. The executable statements
in the range of the DO loop are then executed repeatedly for values
of i starting with V1, incremented or decremented by V2 until 1 has
surpassed the limit V2. This occurs when i is greater than V2 (for

a positive increment) and when i is less than V2 (for a negative
increment). The number of executions of the DO range (the iteration

count) is given by

V2 - Vi
[N

where [X] represents the largest integer whose magnitude does not

exceed the magnitude of X and whose sign is the same as that of X.
If the iteration count is zero, then the loop is executed once.

For each iteration of the DO loop, following execution of the terminal

statement, the DO iteration control is executed:

1. The value of the increment parameter is algebraically
added to the control variable.

2. If the iteration count is not exhausted, control returns
to the first executable statement following the DO statement
for another iteration of the range.

Exhaustion of the iteration count causes the normal termination of a
DO loop and control to be passed to the next executable statement
outside the range of the loop. The execution of a DO may also be

terminated by a control statement within the range that transfers




T

Control Statements

%,

control outside the loop range. The control variable of the DO re-
tains its current value if the loop is terminated in this way, but

becomes undefined if the DO terminates normally.

If other DO loops share this same terminal statement, control is then
passed to the next most enclosing DO loop in the nesting structure.

In the case of the outermost DO loop in a nested structure, control is
passed to the next executable statement following the terminal state-
ment. If no other DO loops share the same terminal statement, control
passes to the first executable statement following the terminal state-

ment of the loop.

If the increment parameter is positive, the value of the terminal
parameter must not be less than that of the initial parameter. Con-
versely, if the increment parameter is negative, the value of the-
terminal parameter must not be greater than that of the initial para-

meter. The value of the increment parameter must not be zero.

The terminal statement of a DO loop is identified by the label that
appears in the DO statement. It must not be a GO TO statement of
any type, an arithmetic IF statement, a RETURN statement, a STOP
statement, a PAUSE statement or another DO statement. A logical IF
statement is acceptable as the terminal statement, provided it does

not contain any,of the above statements.

The value of the control variable must not be altered within the

range of the DO statement, nor should the values of the terminal and
increment parameters. The control variable is available for reference
as a variable within the range, however. (The control variable is
frequently used as an array subscript to provide sequential manipula-

tion of array elements.)

The range of a DO loop may contain other DO statements, as long as
those "nested" DO loops conform to certain requirements (see Section
4.3.1).

Control may be transferred out of a DO loop, but cannot be transferred
into a loop from elsewhere in the program. Exceptions to this rule

are described in Section 4.3.3.




Control Statements

~'”"“’x\“
Examples
DO 100 K=1,50,2 (25 iterations, K=49 during final
iteration) .
DO 25 IVAR=1,5 (5 iterations, IVAR=5 during final
iteration)
DO NUMBER=5,40,4 (invalid; statement label missing) )
DO 40 M=2.10 (invalid; decimal point instead of comma)
The last example illustrates a common clerical error in that it is a
-~
valid arithmetic assignment statement in the FORTRAN language: i
DO40M = 2.10 T
4.3.1 Nested DO Loops
A DO loop may contain one or more complete DO loops. The range of an
inner nested DO must lie completely within the range of the next outer
loop. Nested loops may share tne same terminal statement. Nesting
may occur to a depth of 9. s,
Correctly Nested Incorrectly Nested
DO Loops DO Loops
B DO 45 K=1,10 B DO 15 K=1,10
DO 35 L=2,50,2 - DO 25 L=1,20
. . T
35 CONTINUE 15 CONTINUE
r— * . .
D? 45 M=1,20 DO 30 M=1,15 o~
45 CONTINUE L .
L 25 CONTINUE )
30 CONTINUE
Figure 4-1
Nesting of DO Loops
.




Control Statements

Each time the outermost DO is executed for one value of its control
variable, the DO within it is executed for all values of its control

variable. In the left example of Figure 4-1, when the first DO is

executed with K=1, the second DO is executed with L=2, L=4,...,L=50
(a total of 25 times) and then the third DO is executed with M=1,
M=2,...,M=20 (a total of 20 times). Then the first DO is repeated,

this time with K=2. Again, the second DO executes 25 times followed
by the third DO, 20 times. When the first DO is completed, it will
have executed 10 times; the second DO, 250 times; and the third DO,
200 times.

4.3.2 Control Transfers in DO Loops

As stated previously, control cannot be transferred into the range of

a DO loop from outside that loop. However, within a DO loop, control

may be passed from an inner loop to an outer loop. A transfer from

an outer loop to an inner loop is prohibited. Exceptions to this rule

are described in Section 4.3.3.

If two or more nested DO loops share the same terminal statement, con-
trol can be transferred to that statement only from within the range
of the innermost loop. Any other transfer to that statement consti-
tutes a transfer from an outer loop to an inner loop because the

shared statement is part of the range of the innermost loop.

4.3.3 Extended Range

A DO loop is said to have an extended range if it contains a control
statement that transfers control out of the loop and if, after the
execution of one or more statements, another control statement returns
control back into the loop. In this way the range of the loop is
extended to include all of the executable statements between the
destination statement of the first transfer and the statement that

returns control to the loop.




Control Statements

Valid Invalid
Control Transfers Control Transfers
r DO 35 K=1,10 GO TO 20
DO 15 1=2,20 B DO 50 K=1,10
GO TO 20 20 A=B+C
15 CONTINUE DO 35 L=2,20
20 A=B+C 30 D=E/F
— DO 35 M=1,15 L 35 CONTINUE
GO TO 50 GO TO 40
30 X=A*D DO 45 M=1,15
L “ 35 CONTINUE 40 X=A*D
. 45 CONTINUE
50 D=E/F .
Extended . 50 CONTINUE
Range . .
GO TO 30 - GO TO 30_

Figure 4-2
Control Transfers and Extended Range

The following rules govern the use of a DO statement extended range:

1. The transfer out statement for an extended range operation
must be contained by the most deeply nested DO statement
that contains the location to which the return transfer is
to be made.

2. A transfer into the range of a DO statement is permitted
only if the transfer is made from the extended range of that
DO statement.

3. The extended range of a DO statement cannot change the
control variable or parameters of the DO statement.

4. The use of and return from a subprogram from within an
extended range is permitted.

4.4 CONTINUE STATEMENT

The CONTINUE statement simply passes control to the next executable
statement. It is used primarily as the terminal statement of a DO
loop when that loop would otherwise end with a GO TO, arithmetic IF,

or other prohibited control statement. If every DO loop ends with a

‘y




L i,

Control Statements

CONTINUE statement, the range of the loop is clearly visible in the
program listing. (When used as the terminal statement of a DO loop
or as the destination of a control transfer, it must be identified
by a statement label.)
The form of the CONTINUE statement follows:

CONTINUE
4.5 CALL STATEMENT
The CALL statement is used to transfer control from one program unit
to another. It may also be used to transmit data between those pro-

gram units.

The form of the CALL statement follows:

CALL s[(al,al...)]

s is the name of a SUBROUTINE subprogram, a user-written
Assembly Language routine, or a DEC-supplied system
subroutine.

a is an actual argument by which data is transmitted between

the calling program unit and the subroutine. Arguments to
a subroutine are described fully in Section 8.1.3.

The CALL statement associates the data values in the argument list (if
the list is present) with a matching set of dummy arguments in the
subroutine, thereby making the data available to the subroutine, and

transferring control to the subroutine to begin its execution.

The arguments in a CALL statement should agree in number, order, and
data type with the dummy arguments in the subroutine definition. The
CALL statement's arguments (called actual arguments) may be arithme-
tic expressions, Hollerith constants, array names, statement labels
(preceded by @, as illustrated in Section 4.6), integer variables to
which statement labels have been ASSIGNed, or external procedure
names (i1f those names have been specified in an EXTERNAL statement,
as described in Section 7.6). An unsubscripted array name in the
argument list refers to the entire array. There is no practical limit

on the number of arguments which may appear in a CALL statement.




Control Statements

Where user-written subroutines permit it, a CALL statement may con-
tain more, or fewer, arguments than are specified in the subroutine
definition, as long as an indication of some type (such as an argument
that states how many other arguments are present) is given to the sub- -
routine so that it will make no attempt to refer to a missing argument.
When subroutine execution has been completed (a RETURN statement has
been encountered), control returns to the statement following the CALL.
Examples
™y
CALL CURVE (BASE,3.14159,X,Y,LIMIT,RESULT)
CALL PNTOUT N
4.6 RETURN STATEMENT -
The RETURN statement is used to return control from a subprogram unit
to the calling program unit.
The RETURN statement has the following form: .
RETURN [V]
v is an integer variable
When a RETURN statement appears in a FUNCTION subprogram, it transfers
control to the statement that contains the function reference (see
Section 8.1.2) by which control was originally passed to the subpro- .
™,
gram. When a simple RETURN statement appears in a SUBROUTINE subpro- E
gram, it returns control to the first executable statement following
the CALIL statement that transferred control to the subprogram.
) TN
A RETURN statement must not appear in a main program unit.
Example
SUBROUTINE CONVRT (N,ALPH,DATA,PRNT,K)
IF (N .LT. 10) GO TO 100
DATA(K+2) = N—-(N/10)*N
N = N/10 :
DATA(K+1l) = N
PRNT (K+2) = ALPH (DATA(K+2)+1)
PRNT (K+1) = ALPH (DATA(K+1)+1) N
RETURN '
100 PRNT(K+2) = ALPH(N+1)
RETURN
END




g,

Control Statements

A RETURN statement can be used to return from a subroutine to a speci-
fied statement not immediately following the CALL. The CALL statement
may pass statement labels as arguments by preceding them with an @, as

in the following example:

CALL COMPAR(A,B,Q@10,@20)

The use of multiple RETURN statements is illustrated in the subroutine
below which compares two real variables and returns to different loca-
tions if they are equal, one is less than the other, or one is greater
than the other.

SUBROUTINE COMPAR(X,Y,LT,IGT)
IF(X.EQ.Y) RETURN

IF(X.LT.Y) RETURN LT

RETURN IGT

END

If the preceding CALL COMPAR is executed, control returns to the next
executable statement following the CALL if A=B. Control returns to

statement 10 if A<B. Control returns to statement 20 if A>B.

4.7 PAUSE STATEMENT

The PAUSE statement temporarily suspends program execution to permit

some action on the part of the user.

The PAUSE statement appears in the following form:

PAUSE [disp]

disp is an octal integer constant

The PAUSE statement prints the display (if one has been specified) at
the user's terminal, suspends program execution, and waits for user
response. When the user enters the appropriate control command, pro-
gram execution resumes with the first executable statement following
the PAUSE. Several PAUSE statements may appear in one program, and
the numeric printout may be used to identify which PAUSE statement was
reached. In XVM/RSX systems, the name of the task which executed the
statement is included in the printout. To continue execution after
the task has PAUSEd, in RSX use the operator command RESUME and in

DOS type CTRL P.




Control Statements

Examples

PAUSE

PAUSE 77
4.8 STOP STATEMENT
The STOP statement 1s used to terminate program execution. Several
such statements may appear in a program, and the numeric printout may
be used to identify which termination point was reached.

The STOP statement appears in the following form:

STOP [disp]
disp is an octal integer constant.
The STOP statement prints the display (if one has been specified) at
the user's terminal, terminates program execution, and returns con-
trol to the operating system. In XVM/RSX systems, the STOP message
is printed only i1f the display argument is non-zero.

Examples

STOP

STOP 20

4.9 END STATEMENT

The END statement marks the physical end of a program unit. The END

statement must be the last source line of every program unit.
The END statement has the following form:
END
In a main program, if control reaches the END statement, a CALL EXIT

statement is implicitly executed; in a subprogram, a RETURN statement

is implicitly executed.




iy

CHAPTER 5
SPECIFICATION STATEMENTS

This chapter discusses the FORTRAN specification statements. Specifi-
cation statements are nonexecutable. They provide the information
necessary for the proper allocation and initialization of variables
and arrays, and define other charadteristics df the symbolic names
used in the program, but have no function during the execution of the
program. All specification statements must precede the executable

portion of the program (see Figure 1-2).
5.1 IMPLICIT STATEMENT

The IMPLICIT statement permits the programmer to override the implied
data type of symbolic names, in which all names that begin with the
letters I, J, K, L, M, or N are presumed to represent integer data and
all names beginning with any other letter are presumed to be of real

type, in the absence of an explicit type declaration.
The IMPLICIT statement appears in the following form:

IMPLICIT typ(al,al...)[,typ(al,al...)]...
typ is one of the following data type names:

INTEGER

DOUBLE INTEGER

REAL

DOUBLE PRECISION

LOGICAL

and each a is an alphabetic specification in either of the following

general forms:
a

or
al-a2

a is an alphabetic character.

5-1




Specification Statements

The latter form specifies a range of letters, from al through a2,

which must occur in alphabetical order.

The IMPLICIT statement assigns the data storage and precision charac-
teristics specified by "typ" to all symbolic names that begin with
any specified letter, or any letter within a specified range. For

example, the statements:

IMPLICIT INTEGER (I,J,X,L,M,N) or IMPLICIT INTEGER (I-N)
IMPLICIT REAL (A-H, 0-1Z)

represent the default in the absence of any data type specifications.

IMPLICIT statements must not be labeled.

Examples

IMPLICIT
IMPLICIT INTEGER (A,B, E-G), DOUBLE PRECISION D

In the above examples, since no statement has been made about the
implicit mode of variables beginning with the letters C or H through
Z, the default mode remains in effect for them. Only one IMPLICIT

statement may appear in any one program or subprogran.

5.2 TYPE DECLARATION STATEMENTS

Type declaration statements explicitly define the data type of speci-

fied symbolic names.

Type declaration statements appear in the form shown below:

typ v[,v]...
typ 1s one of the following data type names:

LOGICAL

INTEGER

DOUBLE INTEGER
REAL

DOUBLE PRECISION

v is the symbolic name of a variable, array, or FUNCTION
subprogram, or an array declarator.

o




£

Specification Statements

A type declaration statement causes the specified symbolic names to

have the specified data type.

A type declaration statement may also be used to define arrays, pro-
vided those arrays have not been previously defined, by including

array declarators (see Section 2.4) in the list.

A type declaration overrides the data type implied by a symbolic
name's initial letter, whether by default or by specification in an
IMPLICIT statement.

Type declaration statements should precede all executable statements
and all specification statements except the IMPLICIT statement. It

must precede the first use of any symbolic name it defines.

The data type of a symbolic name may be explicitly declared only once.

Type declaration statements must not be labeled.

Examples

INTEGER COUNT, MATRIX(4,4), SUM
REAL MAN,IABS

LOGICAL SWITCH

DOUBLE PRECISION B,X,DA BS, DATAN
B=DATAN (DABS (X))

The last two lines illustrate the need to declare arguments of func-
tions to be of a particular mode as well as the functions themselves;
the arguments do not take on the mode of the function by default, or

vice versa.

5.3 DIMENSION STATEMENT

The DIMENSION statement defines the number of dimensions in an array

and the number of elements in each dimension.

The form of the DIMENSION statement is:

DIMENSION a(d) [,a(d)]...
a is the symbolic name of an array

d is a dimension declarator.

5-3




Specification Statements

Fach a(d) is an array declarator as described in Section 2.4.

The DIMENSION statement allocates a number of storage locations, one
for each element in each dimension, to each array named in the state-
ment. Each storage location is one, two, or three words in length,
as determined by the data type of the array. The total number of
locations assigned to an array is equal to the product of all dimen-

sion declarators in the array declarator for that array. For example:

DIMENSION ARRAY (4,4), MATRIX(5,5,5)

defines ARRAY as having 16 real elements of two words each, and MATRIX

as having 125 integer elements of one word each.

For further information concerning arrays and the storage of array

elements, see Section 2.4.

The dimensions of an array may be defined by a type declaration
statement. If an array has been so defined, it must not be redimen-
sioned by a DIMENSION statement, and it must not be redefined by any

other dimensioning statement.

Once the number of dimensions in an array has been defined, the same
number of subscripts (or none) must appear in every reference to that

array.

DIMENSION statements must not be labeled.

Examples

DIMENSION BUD(12,24,10)

DIMENSION X(5,5,5),Y(4,85),2(100)

5.3.1 Adjustable Dimensions

The DIMENSION statement allows a subprogram to process more than one
set of array data with a single definition through the use of integer
variables as dimension declarators rather than unsigned integer con-

stants. This facility is called Adjustable Dimensions.

i




Specification Statements

To use adjustable dimensions, the user must first define one or more
arrays explicitly in the main program unit. Then, when control is
transferred to the subprogram containing the adjustable DIMENSION
statement, the actual'array name and the actual number of elements

per dimension (for that execution of the subprogram) are passed to the
subprogram as argﬁments in the function reference or CALL statement.
The subprogram replaces the array name and adjustable dimensionskin;
its DIMENSION statement(s) with those actual values to create the

proper array definition for that execution. For example:

Main Program Subprogram
DIMENSION A(10), B(20) SUBROUTINE SUB (X,N,R)

. DIMENSION X (N)
. ) DO 90 K=1,N
CALL SUB (A,10,RESULT) .

.

CALL SUB (B,20,ANSWER) .
. RETURN
END

Each CALL statement in the main program supplies the subprogram with
a different array name and number of elements, which are then associ-
ated with array name X and adjustable dimension N in the subprogram's
DIMENSION statement. Thus, the subprogram processes a different set
of data with each execution (note also that the value of N is used to

determine the number of iterations of the DO loop) .

Adjustable dimensions may only be used in subprograms; DIMENSION
statements in the main program unit must use fixed dimension declara-

tors.

Every call to a subprogram that contains an adjustable DIMENSION
statement must pass an array name and actual dimension declarators as
arguments to that subprogram. A dimension declarator péssed as an
argument is allowed to differ from the corresponding fixed dimension
declarator for the array in queétion. However, the size of the ad-
justable array (the product of all dimensions) must not exceed the

size of the array as declared when it was given fixed dimensions.

The value of a dummy argument which is used in an array declarator may
be redefined during the execution of the subprogram. This does not
affect the dimensions that are established upon entry to the subpro-

gram.




Specification Statements

5.4 COMMON STATEMENT

A COMMON statement defines one or more contiguous areas (blocks) of
storage. Blocks are not necessarily contiguous with one another.
Each block is identified by a symbolic name; in addition, one common
block is also called the blank common block. A COMMON statement also
defines the order of variables and arrays that are part of each com-

mon block.

Data in COMMON can be referenced from different program units by the

same block name.
5.4.1 Blank Common and Named Common %

There can be only one blank common block in an entire executable pro-
gram. COMMON statements can be used to establish any number of named

common blocks.
A COMMON statement has the following form:

COMMON [/[cb]l/] nlist [/[cb]/nlistl...

cb is a symbolic name (of the same form as a variable name),
called a common block name, or is blank. If the first cb
is blank, the first pair of slashes may be omitted.

nlist is a list of variable names, array names, and array
declarators separated by commas.

A common block name may not be the same as a variable or array name; T
nor the same as the name of a function or a subroutine, or a function

or subroutine entry, in the executable program.

Common blocks with the same name that are declared in different pro-
gram units all share the same storage area when those program units

are combined into an executable program.

Because assignment of components to common is on a one-for-one storage
basis, components assigned by a COMMON statement in one program unit
should agree in data type with those placed in common by another pro-
gram unit. For example, if one program unit contains the statement:

COMMON CENTS ™




a

Specification Statements

and another program unit contains the statement:
COMMON MONEY

unpredictable results may occur since the l-word integer variable
MONEY is made to correspond to the high-order word of the real vari-

able CENTS.

The maximum size permitted for a COMMON block is 32,767 storage words,
and this is also the maximum size for an array appearing in common.

In XVM/DOS, the total available core memory space available for COM-
MON blocks is 128K words minus the size of the monitor, I/0 routines
and user program. This typically leaves about llOK of core, assuming

that there is 128K of memory on the XVM and that XVM mode is enabled.
Example

Main Program Subprogram

COMMON HEAT, X/BLK1/KILO,Q SUBROUTINE FIGURE
. COMMON /BLK1l/LIMA,R/ /ALFA,BET

CALL FIGURE

. RETURN
. END

The COMMON statement in the main program places HEAT and X in blank
common and places KILO and Q in a labeled common block, BLKl. The
COMMON statement in the subroutine causes ALFA and BET to correspond
to HEAT and X in blank common. and makes LIMA and R correspond to KILO
and Q in BLKL.

All items to be stored in a given block need not be listed at once.

For example,

COMMON A,B/INTEGR/I,J,K//C,D.
This first assigns variables A and B to blank COMMON. Then I, J and
K are assigned to the block named INTEGR. Finally, variables C and D
are assigned to blank COMMON following A and B.

In general, programs which share COMMON blocks should declare them to

be the same size as that used by all. Although there are situations




Specification Statements

where the XVM/DOS Linking Loader will permit COMMON sizes to vary,

the exception rules are difficult to remember and are not recommended.

5.4.2 COMMON Statements with Array Declarators

Array declarators in the COMMON statement define the dimensions of an
array in the same manner as a DIMENSION statement. Array names must
not be otherwise subscripted (individual array elements cannot be as-
signed to common). A symbolic name that is intended to represent an
array must be so defined at its first appearance in the program. It
must not be redefined thereafter. Therefore, if an array has been
defined in a DIMENSION or type declaration statement, it must not be
redimensioned by a COMMON statement. Similarly, if an array is de-
fined in a COMMON statement, it must not be subsequently redefined by

any other dimensioning statement.

Example

COMMON X (10,10),Y,Z(2)

5.4.3 COMMON Statements and Data Initialization

Elements of COMMON blocks may be initialized within BLOCK DATA sub-
programs. This can be done either using DATA statements or COMMON

statements, as covered in Section 5.7.

5.5 EQUIVALENCE STATEMENT

The EQUIVALENCE statement declares two or more entities to be associ-
ated (either totally or partially) with the same storage location.
The EQUIVALENCE statement works with components that exist in the

same program unit.

The general form of the EQUIVALENCE statement is:

EQUIVALENCE (nlist) [,(nlist)]...

nlist is a list of variables and array elements, separated by
commas. At least two components must be present in each
list. The array elements must have decimal integer con-
stant subscripts.




s,

Specification Statements

The EQUIVALENCE statement causes all of the variables or array ele~
ments in one parenthesized list to be allocated beginning in the same
storage location. Note that an Integer variable made equivalent to a
Real variable shares storage with the high-order word of that vari-
able. Mixing of data types in this way is permissible. Multiple com-
ponents of one data type can share the storage of a single component‘

of a higher-ranked data type. For example:

DOUBLE PRECISION DVAR
INTEGER IARR(3)
EQUIVALENCE (DVAR,IARR(1))

The EQUIVALENCE statement causes the three elements of the integer
array IARR to occupy the same storage as the double precision variable
DVAR. ’

The EQUIVALENCE statement can also be used to equate variable names.

For example, the statement
EQUIVALENCE (FLTLEN, FLENTH, FLIGHT)

causes FLTLEN, FLENTH and FLIGHT to occupy  the same storage provided
they are also of the same data type. If not, then at least they all

share the first word of data storage of the group.

An EQUIVALENCE statement in a subprogram must not contain dummy argu-

ments.
Examples

EQUIVALENCE (A,B), (B,C) (has the same effect as
~ EQUIVALENCE (A,B,C))

EQUIVALENCE (A(1l),X), (A(2),Y), (A(3),2)
5.5.1 Making Arrays Equivalent

When an element of an array is made equivalent to an element of an-
other array, the EQUIVALENCE statement also sets equivalences between
the corresponding elements that are adjacent to those named in the
statement. Thus, if the first elements of two equal-sized arrays are
made equivalent, both entire arrays are made to share the same storage

space. If the third element of a 5-element array is made equivalent




Specification Statements

to the first element of another array, the last three elements of the

first array overlap the first three elements of the second array.

The EQUIVALENCE statement must not attempt to assign the same storage
location to two or more elements of the same array, nor to assign
memory locations in any way that is inconsistent with the normal lin-
ear storage of array elements (for example, making the first element
of an array equivalent with the first element of another array, then
attempting to set an equivalence between the second element of the

first array and the sixth element of the other).

In the EQUIVALENCE statement only, it is possible to identify an array
element with a single subscript, the linear element number, even

though the array has been defined as a multi-dimensional array.

For example, the statements:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)
EQUIVALENCE (TABLE(4), TRIPLE(7))

result in the entire array TABLE sharing a portion of the storage

space allocated to array TRIPLE as illustrated in Figure 5-1.

Array TRIPLE Array TABLE

Array Element Array Element
Element Number Element Number

TRIPLE(1,1,1)
TRIPLE(2,1,1)
TRIPLE(1,2,1)

TRIPLE(2,2,1) TABLE (1,1) 1
TRIPLE(1,1,2) TABLE (2,1) 2
TRIPLE(2,1,2) TABLE (1,2) 3
TRIPLE(1,2,2) TABLE (2, 2) 4

OO U W N

TRIPLE(2,2,2)

Figure 5-1
Eguivalence of Array Storage

Figure 5-1 also illustrates that the statements

EQUIVALENCE (TABLE(1l) ,TRIPLE(4))
and

EQUIVALENCE (TRIPLE(1l,2,2), TABLE(4))




sy

sy

Specification Statements

result in the same alignment of the two arrays. Note that the speci-
fication of an unsubscripted array name is equivalent to specifying

the first element of the array.
5.5.2 EQUIVALENCE and COMMON Interaction

When components are made equivalent to entities stored in common, the
common block may be extended beyond its original boundaries. An
EQUIVALENCE statement can only extend common beyond the last element
of the previously established common block. It must not attempt to
increase the size of common in such a way as to place the extended

portion before the first element of existing common. For example:

Valid Extension of Common

DIMENSION A(4) ,B(6) A(l) A(2) A(3) A(4)
COMMON A
EQUIVALENCE (A(2),B(1l)) B(L)| B(2) | B(3) | B(4)]| B(5) | B(6)
— : VAN J
Existing Extended
Common Portion

Illegal Extension of Common

DIMENSION A(4) ,B(6) A(l)| A(2) | A(3) | A(4)

COMMON A

EQUIVALENCE (A(2),B(3)) B(1l) | B(2)| B(3) | B(4) | B(5)| B(6)
R/-J¥ /k'\/—J
Extended Existing Common Extended
Portion , Portion

If two components are assigned to the same or different common blocks,

they must not be made equivalent to each other.

All variables and array elements equivalenced to COMMON variables and

COMMON array elements are treated as COMMON variables.
5.6 EXTERNAL STATEMENT
The EXTERNAL statement permits the use of external procedure names

(functions, subroutines, and FORTRAN Library functions) as actual

arguments to other subprograms.




Specification Statements

The EXTERNAL statement appears in the following form:

EXTERNAL v[,v]...

v is the symbolic name of a subprogram or the name of a
dummy argument which is associated with a subprogram
name.

The EXTERNAL statement declares each name in its list to be the name

of an external procedure. Such a name may then appear as an actual

argument to a subprogram. The subprogram may then use the associated

dummy argument name in a function reference or a CALL statement. A ™
subprogram uses dummy symbols in statements which obtain values when
called; these values must all be defined in the calling program. If SN
these values are program variables, they are already defined within
the calling program. The EXTERNAL statement ensures that subprogram
names are also defined. An arithmetic statement function, although
classified as a subprogram, is not an external procedure and thus

need not be referenced in an EXTERNAL statement.

Note, however, that a complete function reference used as an argument
(such as CALL SUBR(A,SQRT(B),C), for example) represents a data value,
not a subprogram name; if such is the case, the function name need

not be defined in an EXTERNAL statement.
Example

Main Program Subprograms

EXTERNAL SIN,COS,TAN SUBROUTINE TRIG (X,F,Y)
. Y = F(X)
. RETURN

CALI, TRIG (ANGLE,SIN,SINE) END

CALL TRIG (ANGLE,COS,COSINE)

. FUNCTION TAN (X)

CALL TRIG (ANGLE,TAN,TANGNT) TAN = SIN(X) / COS(X)
. RETURN
. END

The CALL statements pass the name of a function to the subroutine

TRIG, which is subsequently invoked by the function reference F(X) in




s

e

Specification Statements

the second statement of TRIG. Thus, the second statement becomes in
effect:

SIN(X) ,
COS (X), or
TAN ( X)

g

KR
[t

depending upon which CALL statement invoked TRIG (the functions SIN
and COS are examples of trigonometri¢ functions supplied in the

FORTRAN Library).
5.7 DATA STATEMENT

The DATA initialization statement permits the assignment of initial

values to variables and array elements prior to program execution.
The DATA statement appears in the form:

DATA nlist/clist/[,nlist/clist/]...

nlist is a list of one or more variable names, arfay names,‘or
array element names separated by commas. Subscript
expressions must be integer constants. None of the
elements are permitted to be dummy variables or arrays.

clist is a list of constants.
Constants in a clist may be written in either of the forms:

value
or
n * value
n is a nonzero unsigned integer constant that specifies the

number of times the same value is to be assigned to succes-
sive entities in the associated nlist.

Value may be any type of constant. Double precision con-
stants must be explicitly written in D format, such as
1.0D+01.

The DATA statement causes the constant values in each clist to be
assigned to the entities in the preceding nlist. Values are assigned
in a one-to-one manner in the order in which they appear, from left

to right.




Specification Statements

When an unsubscripted array name appears in a DATA statement, values
are assigned to every element of that array. The associated constant
list must therefore contain enough values to £ill the array. Array

elements are filled in the order of subscript progression.

When Hollerith data is assigned to a variable or array element, the
number of characters that can be assigned depends on the data type of
that component; a Hollerith constant that initializes an integer
variable may not contain more than two characters. If the number of
characters in a Hollerith constant is less than the capacity of the
variable or array element, the constant is extended to the right with
spaces. If the number of characters in the constant is greater than
the maximum number that can be stored, the rightmost excess characters

are not used.

The number of constants in a constant list must correspond exactly to
the number of entities specified in the preceding name list. The
data types of the data elements and their corresponding symbolic names
should also agree except in the case of Hollerith and integer con-
stants. An integer constant may be assigned to a double integer vari-

able or array element.

Example

INTEGER A(10) ,BELL
DATA A,BELL,STARS/10%0,7, '****!'/

The DATA statement assigns zero to all ten elements of array A, the
value 7 to the variable BELL, and four asterisks followed by a space
to the real variable STARS.

5.7.1 Data Initialization of COMMON Elements

Elements within COMMON blocks may be initialized with data only with-
in BLOCK DATA subprograms, which are described in Section 8.1.5. This
can be done using DATA statements as described above or with a modi-
fied form of the COMMON statement which performs data initialization

at the same time that it declares elements to be in COMMON.

Y




P

Specification Statements

Form:

COMMON [/ [cb] /] nlist [/[ebl/nlist]...;nlist/clist/[,nlist/clist/]...

cb is a symbolic name (of the same form as a variable name),
called a common block name, or is blank. If the first
cb is blank, the first pair of slashes may be omitted.

nlist is a list of variable names, array names, and array
elements separated by commas.

clist is a list of constants.

The rules governing these elements are described for COMMON statements
in Section 5.4 and for DATA statements in Section 5.7. The effect
here is as if a COMMON and a DATA statement were concatenated on the
same line, replacing the word "DATA" with a semicolon. Following the

semicolon, only data initialization may appear.

vExample

COMMON/B/X,¥(5) ,I;X,I,Y(3)/2.0,3,5.0/




e

e,
o,




'Jﬂ A ke

CHAPTER 6

INPUT/OUTPUT STATEMENTS
6.1 OVERVIEW

Input of data from external devices by a FORTRAN program is performed
by READ statements. Output is performed by WRITE, TYPE, and PRINT
statements. Some forms of these statéments are used in conjunction
with formatting information to translate and edit the data into a

readable form.

Each READ or WRITE statement contains a reference to the logical unit
to or from which data transfer is to take place. A logical unit can

be connected to a device or file.
READ and WRITE statements fall into the following categories:

1. TUnformatted Sequential I/0

Unformatted sequential READ and WRITE statements transmit
binary data in the sequence in which the :data is physically
stored on the device without translation.

2. Formatted Sequential I/0

Formatted sequential READ and WRITE statements contain
references to FORMAT statements, to format specifications
in arrays, or use implied format specifications, that
cause data to be translated to ASCII code on output, and
to internal format on input.

3. Unformatted Direct Access I1/0

Unformatted direct access READ and WRITE statements perform
input and output of binary data to and from direct access
files. The files must have been defined by a CALL DEFINE
statement. Direct access statements permit:data to be
transmitted to/from a device in random order, unrelated to
the sequence in which the data is recorded on the device.
Data may be changed in a single record without creating a
new file.



Input/Output Statements

4. TFormatted Direct Access I/0

Formatted direct access READ and WRITE statements contain
references to FORMAT statements, or to format specifica-
tions in arrays, or use implied format specifications, and
perform input and output of formatted data in direct access
files.

Any type of READ statement can transfer control to another statement

whenever an error condition or end-of-file condition is detected.

In addition to the above statements, the auxiliary I/0 statements,
REWIND and BACKSPACE, do not perform data transfer, but do file posi-
tioning functions. The ENDFILE statement writes a special form of
record that will cause an end-of-file condition (an END= transfer)
when read by an input statement. Finally, there are the ENCODE and
DECODE statements, which perform data transfer and translation within

memory .

The XVM operating systems have the ability to locate files by name
on directoried devices. To extend this capability to the FORTRAN

programmer, the following statements are provided.

1. CALL SEEK searches for a file of the specified name on the
directoried device associated with the logical unit and then
establishes a connection between the logical unit and that
file. Once a file has been opened by CALL SEEK, formatted
or unformatted sequential READs may be performed.

2. CALL ENTER initializes a file of the specified name on the
directoried device associated with the logical unit. Once
a CALL ENTER has been performed, formatted or unformatted
data can be written sequentially into the file by WRITE
statements.

3. CALL CLOSE terminates input from or output to a named file.

4. CALL RENAME allows the programmer to change the name of a
named file on a directoried device.

5. CALL DELETE permits the programmer to delete a named file
from a directoried device.

6. CALL FSTAT gives the programmer the ability to determine
whether or not the named file is already present on the
file is already present on the device associated with the
logical unit number, without actually opening the file.
This statement is relevant only to XVM/DOS systems, not
XVM/RSX.




Input/Output Statements

6.1.1 Input/Output Devices

FORTRAN uses the I/O0 services of the operating system and thus supports
all peripheral devices that are supported by the operating system. I/O
statements refer to the I/0 devices by means of logical unit numbers.
A logical unit number is an integer constant or variable with a posi-
tive value. Refer to the FORTRAN IV XVM Operating Environment Manual

for additional information.
6.1.2 Format Specifiers

Format specifiers may be used in formatted I/0C statements. A format
specifier is either the statement label of a FORMAT statement or the
name of an array containing Hollerith data interpretable as a format.
Section 6 discusses FORMAT statements in detail.

6.1.3 Input/Output Records

Input/Output statements transmit all data in terms of records. The
amount of information that can be contained in one record, and the way

in which records are separated, depend on the medium involved.

For unformatted I/0, the amount of data to be transmitted is specified
by the I/O statement. Unformatted data records may be arbitrarily
large, restricted only by device size limitations. Internally, FORTRAN
converts unformatted data records into a series of physical records
which are linked together to form a single logical record. The size

of the physical record depends upon the particular device. This is
determined internally by FORTRAN and should not59oncern the FORTRAN
programmer. Table 6-1 shows which standard peripheral devices can be
used with unformatted 1/0. \ 

The amount of information to be transmitted by a formattéq I/0 state-—
ment is determined jointly by the I/0 statement and specifications in
the associated format specification. Formatted records are rEStrictéd
in the amount of data they may contain. For the standard peripheral
devices this is shown in Table 6-1. Unlike unformatted records, for-
matted records are not broken up into logically associated physical
blocks.

The beginning of execution of an input or output statement initiates
the transmission of a new data record. If an input statement requires
only part of a record, the excess portion of the record is lost. In
the case of formatted sequential input or output, one or more records

can be transmitted with a single statement.

6-3




Input/Output Statements

Table 6-1
Standard Devices I/0 Limits

Formatted ASCII
) Maximum Record Unformatted Binary
Device Size (Characters) Permitted?
Card Reader 80 No
DECtape 629 Yes
Disk 629 Yes
Line Printer 80 or 132 No
Magtape 629 Yes
Paper Tape 120 Yes
Teletypewriter 72 No

6.2 INPUT/OUTPUT LISTS

An I/0 list specifies the data items to be manipulated by the state-
ment containing the list. The I/O list of an input or output state-
ment contains the names of variables, arrays, and array elements
whose values are to be transmitted to or from a unit. An I/0 list
may be a single component or a series of such components, and it may
contain an "implied DO" list, which specifies iterative transmission

of values.
6.2.1 Simple Lists

A simple I/O list consists of a single variable, array name, or array
element, or a series of such components separated by commas. The I/0
statement assigns input values to, or outputs data from, the list

elements in the order in which they appear, from left to right.

When an unsubscripted array name appears in an I/O list, a READ state-
ment inputs enough data to fill every element of the array; a WRITE,
TYPE, or PRINT statement outputs all of the values contained in the
array. Data transmission begins with the initial element of the

array and proceeds in the order of subscript progression, with the
left-most subscript varying most rapidly. For example, if the unsub-

scripted name of a 2-dimensional array defined as:

ARRAY (3,3)

kR

%




Input/Output Statements

appears in a READ statement, that statement assigns values from the
input record(s) to ARRAY(l,1), ARRAY(2,1), ARRAY(3,1), ARRAY(1,2),
and so on, through ARRAY(3,3). i i )

In a READ or ACCEPT statement, variables in the I/0 list may be used
as array subscripts elsewhere in the list. If, for example, the

statement:

READ (1,1250) J,K,ARRAY (J,K)
1250 FORMAT (I1,1X,Il,1X,F6.2)

was executed and the input record contained the values:
1,3,721.73

the value 721.73 would be assigned to ARRAY(1,3). The first input
value is assigned to J and the second to X, thereby establishing the
actual subscripts for ARRAY (J,K). Variables that are to be used as
subscripts in this way must appear to the left of their use in the

array reference.
6.2.2 Implied DO Lists

Implied DO lists are used to transmit only part of an array or to
transmit elements in some sequence other than the order of subscript
progression. This type of list element functions as though it were a
part of an I/0 statement that resides in a DO loop, and that uses the
control variable or the imaginary DO statement to specify which data
value or values are to be transmitted during each iteration of the

loop.

An implied DO list appears as one or more data references followed by
one or more control variable and parameter definitions, in the same
form as that used in the DO statement. The data reference(s) and the

first definition are enclosed in parentheses and separated by commas.

Each subsequent definition is separated from the preceding parenthe-
sized set by a comma and enclosed in parentheses that also include
all of the preceding entries. Implied DO parameters can be nested

to a level of 9. For example:




Input/Output Statements

WRITE (3,200) (A,B,C, I=1,3)
WRITE (6,15) ((P(I),Q(I,J), J=1,10), I=1,5)

READ (1,75) (({(ARRAY(M,N,I), I=2,8), N=2,8), M=2,8)

The first control variable definition is equivalent to the innermost
DO of a set of nested loops, and therefore varies most rapidly. For

example, the statement:

WRITE (5,150) ((FORM(X,L), L=1,10), K=1,10,2)
150 FORMAT (F10.2)

is similar to:

DO 50 K=1,10,2

DO 50 L=1,10

WRITE (5,150) FORM(K,L)
150 FORMAT (F10.2)
50 CONTINUE

Since the inner DO loop is executed ten times for each iteration of
the outer loop, the second subscript, L, advances from one through
ten for each increment of the first subscript. This is different
from the normal order of subscript progression. Note also that since
K is incremented by two, only the odd-number columns of the array

will be output.

When multiple data references appear before the first control variable
definition, data is transmitted to or from those references in the
order in which they appear, before the incrementation of the first
control variable. For example:

READ (31999) (P(I),(Q(T,T), J=1,10), I=1,5)

assigns input values to the elements of arrays P and Q in the order:

P(1), 0(1,1), (1,2), ... , Q(1,10),
P(2) ) 0(2,1), 0(2,2) s or . Q(2,10),
P(5), Q(5,1), 0(5,2), ... , Q(5,10)

When variables are output under control of an implied DO list, the

values of those variables are repeatedly transmitted a number of times

f“"”"»%'




L

3,');' < Sy

A

o

Input/Output Statements

equal to the number of iterations of the implied DO loop. For

exampie:
WRITE (6,800) (A,B,C, I=1,3)

causes the values of the three variables to be output three times, in
the order A, B, C, A, B, C, A, B, C.

When dealing with multidimensional arrays, it is possible to use a
combination of fixed subscripts and subscripts that vary according to

an implied DO. For example, the following statements:

READ (3,5555) ((BOX(I,J), J=1,10), I=1,1)

READ (3,5555) (BOX(1,J), J=1,10)

both have the same effect of assigning input values to BOX(1l,1)
through BOX(1,10), then terminating without affecting any other ele-

ment in the first dimension of the array.

It is also possible to output the value of the implied DO's control

variable directly, as in the statement:
WRITE (6,1111) (I, I=1,20)
which simply prints the integers 1 through 20.
An implied DO list may be one element of a simple list.

The rules for the initial, terminal, and increment parameters, and
for the control variable of an implied-DO list are the same as those

for the DO statement (see Section 4.3).
6.3 UNFORMATTED SEQUENTIAL INPUT/OUTPUT

Unformatted input and output is the bit-for-bit transfer of binary
data without conversion or editing. Unformatted I/0 is denerally
used when data output by a program is to be subsequently input by
the same program (or a similar program). Unformatted I/0O saves ex-
ecution time by eliminating the data conversion process, preserves
greater accuracy in the external data, and usually conserves file

storage space.




Input/Output Statements

6.3.1 Unformatted Sequential READ Statement

The unformatted sequential READ statement initiates the input of a new
record from the specified logical unit and assigns the data obtained
to the components in the I/0 list in the order in which they appear,
from left to right. The amount of data each component receives is

determined by its data type.

An unformatted sequential READ statement reads exactly one binary
record. If the I/0 list does not use all of the values in the record,
the remainder of the record is discarded. If the contents of the
record are exhausted before the I/0 list is satisfied, an error condi-

tion results.

The unformatted sequential READ statement appears in the following

form:

READ (u[,END=sl][,ERR—sz])[list]

u is a logical unit number (a positive integer constant or
variable).

list is an I/0 list.

s is an executable statement label. The END and ERR options
are explained in Section 6.7.

S is an executable statement label.

If an unformatted sequential READ statement contains no I1/0 list, it
skips over one full record, positioning the file to read the following

record on the next execution of a READ statement.

The unformatted sequential READ statement must only be used to input

records that were created by unformatted sequential WRITE statements.

Examples
READ (1) FIELDl, FIELD2 (Read one record from logical unit
1; assign input values to variables
FIELDL and FIELDZ2.)
READ (8) (Advance through the file on

logical unit 8 one record.)

N




Input/Output Statements

6.3.2 Unformatted Sequential WRITE Statement
The unformatted sequential WRITE statement has the following form:

WRITE (ul,ERR=s]) list

u is a logical unit number (a positive integer constant or
variable).

s is an executable statement label. The ERR option is
explained in Section 6.7.

list is an I/O list.
PRINT and TYPE may be used as synonyms of WRITE.

The unformatted sequential WRITE statement outputs the values of the
elements in the I/0 list to the specified device in binary form, as
one binary record. . Therefore, the unit number must refer to a device

capable of accepting binary data.

Examples
WRITE (1) (LIST(X) ,K=1,5) (Outputs contents of elements 1 .
through 5 of array LIST to logical
unit 1.) : ‘

6.4 FORMATTED SEQUENTIAL INPUT/OUTPUT

Formatted input and output statements work in conjunction with FORMAT
statements, format specifications stored in arrays, or implied format
specifications to translate and edit data on output for case of inter-
pretation, and, on input, to convert data from external format to

internal storage format.
6.4.1 Formatted Sequential READ Statement

The formatted sequential READ statement transfers data from the
specified device and stores the input values in the elements of the
I/0 list in the order in which they appear, from left to right. At
the same time, the format specifications referred to or implied by
the READ statement translate the data from external to internal

format.




Input/Output Statements

.
The formatted sequential READ statement appears in the following
form:
READ (u,[f][,END=sl][,ERR=52])[list] i
u is a logical unit number (a positive integer constant or
variable) .
£ is a format specifier. =
Sq is an executable statement label. The END and ERR
options are described in Section 6.7.
s, is an executable statement label. ™
list is an I/O list.
l )
If the format specifier is omitted, data is read in free form (as ;(
described in Section 7.7) and converted to the modes of the variables
in the I/0 list. 1In such a case there is said to be an implied for-
mat. If both the format specifier and the I/0 list are omitted, each
READ statement will skip one input record.
If the FORMAT statement associated with a formatted input statement T
contains a Hollerith constant or literal string, input data will be k
read and stored directly into the format specification. For example,
the statements
READ (5,100)
100 FORMAT (5H DATA)
cause five ASCII characters to be read from the terminal and stored N
in the Hollerith format descriptor. If the characters were HELLO,
statement 100 would become:
—
100 FORMAT (5HHELLO)
If the number of elements in the I/O list is less than the number of .
fields in the input record, the excess portion of the record is dis- )
carded. If the number of list elements exceeds the number of input
fields, an error condition results unless the format specifications
statement that one or more additional records are to be read (see -
Sections 6.4 and 6.8).
T

o




p—

Input/Output Statements

If no I/0 list is present in a formatted sequential READ statement,
the associated FORMAT statement or format array must contain at least
one Hollerith field descriptor or alphanumeric literal to accept the
input data. If it does not, no data transfer takes place; all data
from the input record is lost and can only be retrieved by reposition-

ing the file.

Examples
READ (1,300) ARRAY (Reads record from
300 FORMAT (20F8.2) logical unit 1,
assigns fields to
ARRAY.)
READ (5,50)

50 FORMAT (25H PAGE HEADING GOES HERE ) (Reads 25 characters
from logical unit 5
and places them in
FORMAT statement.)

DIMENSION FRMT(16) (Reads format

READ (1,100) FRMT specification from
100 FORMAT (16A5) logical unit 1 into

READ (2,FRMT) A,;B,C array FRMT and then

uses the array for-
mat to read data
from logical unit 2
into variables A,
B, and C.)

READ(10,)A,J,Q (Reads ASCII data
from logical unit
10, converts it to.
the mode of the
variables A,J, and
Q, and stores the
results in the
variables.)

6.4.2 Formatted Sequential WRITE Statement

The formatted sequential WRITE statement transmits the contents of the
elements in the I/0 list to the specified unit, translating and edit-
ing each value according to the format specifications referred to or

implied by the WRITE statement.




Input/Output Statements

The formatted sequential WRITE statement appears as:

WRITE (u, [£][,ERR=s]) [list]

u is a logical unit number (a positive integer constant
or variable).

£ is a format specifier.

s is an executable statement label. The ERR option is
described in Section 6.7.

list is an I/0 list.
PRINT and TYPE may be used as synonyms of WRITE.

If no I/0 list is present, data transfer is entirely under the control
of the format. The data to be output is taken from the format. In the
case of implied format control, the result is a null record, that is,

a line feed-Carriage RETURN sequence.

The data transmitted by a formatted sequential WRITE statement nor-
mally constitutes one formatted record. The FORMAT statement or for-
mat array may, however, specify that additional records are to be
written during the execution of that same WRITE statement. In the
absence of a format specifier, data in the I/0 list is written in a
fixed, implied format which is a function of data mode (see Section
7.7).

Numeric data output under format control is rounded during the con-
version to external format. (If such data is subsequently input for
additional calculations, loss of precision may result. In this case,
unformatted output is preferable to formatted output. Note also that
unformatted data usually occupies less space on external devices than
does formatted data.)

The records transmitted by a formatted WRITE statement must not ex-
ceed the length that can be accepted by the device. For example, a
line printer typically cannot print a record that is longer than 132

characters.

.




e

Input/Qutput Statements

Examples
WRITE (6, 650) (Outputs contents of FORMAT
650 FORMAT (' HELLO, THERE') statement to logical unit 6.)
WRITE (1,95) AYE,BEE,CEE (Writes one record of three
95 FORMAT (F8.5,F8.5,F8.5) fields to logical unit 1.)
WRITE (1,950) AYE,BEE,CEE (Writes three separate records
950 FORMAT (F8.5) of one field each to logical
unit 1.)
WRITE(6,) A,B,C (Writes out the variable names

and values in the form:

'name' = value.)

In the last example, format control arrives at the rightmost paren-
thesis of the FORMAT statement before all elements of the I/0 list
have been output. Each time this occurs, the current record is
terminated and a new record is initiated. ' Thus, three separate

records are written.
6.5 UNFORMATTED DIRECT ACCESS INPUT/OUTPUT

Unformatted direct access READ and WRITE statements are used to per-
form direct access I/O on any disk device. The CALL DEFINE statement
is used to establish the number of records, and the size of each

record, in a file to which direct access I/0 is to be performed.
6.5.1 Unformatted Direct Access READ Statement

The unformatted direct access READ statement positions the input file
to a record number and transfers the fields in that record to the
elements in the data list in binary form without translation.

The unformatted direct access READ statement is written as follows:

READ (u'r[,ERR=s]) [list] -=w—————preferred form

or

READ (u#r[,ERR=s]) [list]

u is a logical unit number (a positive integer constant or
variable) .
r is an integer constant or variable that specifies the

record number.




Input/Output Statements

s is an executable statement label. The ERR option is
described in Section 6.7.

list is an I/0 list.

NOTE

In this form of READ statement an
apostrophe is used to separate the
logical unit number from the record
number. For historical reasons the
numnber sign character may be used in
place of an apostrophe, but this is
not standard notation.

If there are more fields in the input record than elements in the I/O
list, the excess portion of the record is discarded. If there is no
I/0 list specified, the entire record is skipped over. If there is
insufficient data in the record to satisfy the requirements of the

I/0 list, an error condition results.

The unit number in the unformatted direct access READ statement must

refer to a file that has been opened for direct access.

The record number in an unformatted direct access READ statement must
not be less than 1 nor greater than the number of records defined for

the file, or an error condition results.

Examples

READ (1'1L0) LIST(1l) ,LIST(8) (Reads record 10 of a file on
logical unit 1, and assigns two
Integer values to specified
elements of array LIST.)

READ(4'58) (RHO(N) ,N=1,5) (Reads record 58 of a file on
logical unit 4, and assigns five
Real values to array RHO.)

READ(2'T) A,B,C (Reads the I'th record of a file

on logical unit 2, and assigns
real values to A,B, and C.)

6.5.2 Unformatted Direct Access WRITE Statement

The unformatted direct access WRITE statement transmits the contents
of the I/O list to a particular record number in a file on a direc-
tory-structured device. The data is recorded in binary form with

no translation.

o




Input/Output Statements

The unformatted direct access WRITE statement appears as follows:

WRITE (u'r|[,ERR=s]) list <«+—————— preferred form

or
WRITE (uf#fr[,ERR=s] list

u is a logical unit number (a positive integer constant or
variable) .

r is an integer expression that specifies the record number.

S is an executable statement label. The ERR option is

described in Section 6.7.

list is an I/0O 1list.

If the amount of data to be transmitted exceeds the record size, an
error condition results. If the WRITE statement does not completely
£fill the record with data, the contents of the unused portion of the
record are zero-filled. ;

%
For historical reasons, the pound sign character may be used in place

of the apostrophe, but this is not standard notation.

PRINT and TYPE may be used as synonyms of WRITE.

Examples
WRITE (2'35) (NUM(K) ,K=1,10) (Outputs ten Integer values to
record 35 of a file on logical
unit 2.)

WRITE (3'J) ARRAY (Outputs the entire contents of
, ARRAY to a file on logical unit
3 into the record indicated by
the value of J.)

6.5.3 CALL DEFINE Statement

The CALL‘DEFINE statement establishes the size and structure of a file
upon which direct access I/0 is to be performed. Although the method
of creating and accessing data in direct access files is nearly iden-
tical in XVM/DOS and XVM/RSX systems, the physical structure of such
files differs in the two systems. Therefore, a CALL DEFINE statement
in XVM/DOS can create and alter only direct access files created
within XVM/DOS, not those of RSX, and vice versa.




Input/Output Statements

In XVM/DOS systems, the form of the statement is:

CALL DEFINE (u,rs,nr,a,v,f,adj,d)

The format in XVM/RSX is the same, but there is an added optional

argument:

rs

nr

adj

ev

CALL DEFINE (u,rs,nr,a,v,f,adj,dl[,ev])

is a positive integer constant or integer variable
that specifies the logical unit number.

is a positive integer constant or integer variable that
specifies the length, in words or characters (for unfor-
matted and formatted I/0 respectively), of each record
(the record size).

is an integer constant or integer variable in the
range 1 to 131071 that specifies the number of
records in the file.

is the name of an array containing a six-character file
name and a three-character extension, all in ASCII form.
Alternatively, by specifying the integer constant or
variable value of 0 instead of an array name, the system
assigns a default temporary file name.

is an integer variable, called the associated variable of
the file, that, at the conclustion of each direct access
I/0 operation, contains the record number of the next
sequential record in the file.

is an integer variable or constant called the formatted/
unformatted indicator. It is either 0 for unformatted
(binary) or non-0 for formatted (ASCII). All records of
each file must be of the same type, formatted or unformatted.
Internally, IOPS I/0 mode 0 will be used for unformatted
files and IOPS I/0 mode 2 will be used for formatted files.

is an integer constant or variable called the file SIZE
adjustment parameter. In XVM/RSX forms of the CALL DEFINE
statement, this argument is ignored (RSX does not permit
file SIZE adjustment) but it must appear with some value.
This parameter indicates, for a direct access file which

was previously created by another CALL DEFINE, whether or
not the size of the file is to be adjusted. If adj=0, no
adjustment is performed. If adj#0, the file size is changed
to that of the nr parameter in the current CALL DEFINE
statement. :

is an integer constant or variable which specifies whether
or not to delete the temporary file when execution of this
program has completed. A temporary file is declared by
setting the a parameter in the CALL DEFINE statement to
zero. Deletion is indicated if d#0; if d=0, no deletion is
performed.

is an optional parameter which appears only in XVM/RSX

forms of CALL DEFINE. It is an integer event variable whose
value on completion of the statement can be tested to see

if any error occurred.

6-16

\_,N%




g

Input/Output Statements

The CALL DEFINE statement specifies that a file containing nr fixed-
length records of rs words (for unformatted I/0) or rs characters
(for formatted I/0) each exists, or is to be created, on logical unit
u. The records in the file are sequentially numbered from 1 through

nr.,

If the file already exists, the record size, rs, and the formatted/
unformatted indicator; f, of the file and the CALL DEFINE statemént
must match. In XVM/DOS only, if adj is zero, the number of records

in the file must equal or exceed those of the CALL statement. If this
is not the case, an error condition results and the statement is not
executed. In XVM/DOS systems, this results in termination of program
execution and an error message is printed on the console terminal.

In XVM/RSX, program execution will continue. The user program can
determine that there was an error by the fact that the value returned
in the event variable, ev, is negative.‘ The magnitude of the value

indicates the specific cause of the error.

If no file name is specified in the CALL (a=0) a temporary file name
of .TMOuu OTS is assumed; uu represents the logical unit u of the

CALL statement as two decimal digits. If the explicitly named file in
array a(a=0) or the temporary file .TMOuu OTS is not present on
logical unit u, the file is created with the characteristics given

in the CALL DEFINE. On completion of execution of the user program,
the temporary file .TMOuu OTS may be either retained or deleted as a
function of the 4 argument in CALL DEFINE.

In XVM/RSX, the initial contents of a direct access file are undefined.
In XVM/DOS, however, the first time a direct access file is created,

it is filled with records of zeroes (for unformatted files) or records
of ASCII spaces (for formatted files), leaving the associated variable,

v, set for record one.

The CALL DEFINE statement establishes the integer variable, v, as the
associated variable of the file. At the end of each direct access I/0
operation, the FORTRAN I/0 system places in v the record number of the
record immediately following the one‘just read or written. Since the
associated variable always points to the next sequential record in the

file (unless it is redefined by an assignment statement), direct




Input/Output Statements

access I/0 statements can be used to perform sequential processing of

the file, by using statements such as:

READ (1'INDEX) ZETA,ETA,THETA

INDEX is the associated variable of the file in question.

If the file is to be processed by more than one program unit, or in
an overlay environment, the associated variable should be placed in a
resident named COMMON block.

In XVM/DOS systems only, when the size of an existing direct access
file on unit u is to be adjusted, (adj#0), the system creates a sec-
ond, temporary file on logical unit u named ..TEMP OTS into which
data from the original file is copied a record at a time. If the
file is lengthened, the records in excess of the original file length
are filled with spaces (for formatted records). Also, the associated
variable v is set to one plus the original number of records. If

the file size is being reduced, data from the end of the original
file are lost and the associated variable is set to one. Once the
adjusted file is created, the original file is deleted. Then the

adjusted file is renamed to the name of the original file.

For unformatted direct access I/0, the record size may be as small as
1 and as large as 131071 binary words. For formatted direct access
1/0, the record size may range from 1 to 629 ASCII characters. If

the first character in the FORMAT statement is meant to be a vertical
forms control character (the file may later be transferred to a
printer) that character is counted as part of the record when defining

the record size.

The programmer must be aware that the choice of record size has a

bearing on disk space efficiency. Some guidelines will be given here.

Formatted records must fit entirely within a 256-word physical disk
block, which the record size limit of 629 characters guarantees.
Formatted records are always written as one record; so if the record
size is slightly larger than half the capacity of the disk block, the
remainder of the space in the block cannot be used and approximately

half the disk space allocated for the file is unused.

Table 6-2 illustrates the effect on space efficiency of using differ-

ent record sizes.




"

o

Input/Output Statements

Table 6-2
Formatted ASCII Record Sizes

User Record Number of Records Number of User Percentage
Size Per Physical Characters of
(Characters) Disk Block Per Block Maximum
629 1 629 100
330 1 330 52
309 2 618 98
204 3 612 97
149 4 596 95
119 5 595 95
99 6 594 94
84 7 588 93
69 8 552 88
64 9 576 92
54 10 540 86
49 11 ‘ 539 86
44 12 528 84
39 14 546 87
34 15 510 81
29 18 522 83
24 21 504 80
19 25 475 76
14 31 434 69
9 42 378 60
8 42 336 53
7 42 294 47
6 42 252 40
5 42 210 33
4 63 252 40
3 63 189 30
2 63 126 20
1 63 63 10

One large record of 629 characters uses 100% of available disk storage
whereas a record size of only one character uses only 10%. Do not
attempt to interpolate data from values in this table. This is
because the total number of characters per block which can be stored
is a non-linear, saw-tooth function of user record siie. Notice the
linear improvement in efficiency going from a record size of one to

a size of four. Going from four to five, there is a drop followed

by another linear climb to a record size of nine. Each record size
from nine up to 629 in the table is the peak of a sawtooth and

represents a local maximum in space efficiency.

The maximum size for unformatted records is 131071 binary words. For
INTEGER and LOGICAL data, which require one storage word per datum,
the maximum number of data elements which can be transmitted in a
single unformatted binary record is 131071. For REAL and for DOUBLE




Input/Output Statements

INTEGER data, where two words per datum are needed, the maximum is
65535. For DOUBLE PRECISION data, which need three words per datum,
the maximum is 43690. Remember however, that the record size, rs,
specified in the CALL DEFINE statement is not a count of data ele-
ments; it is a count of the number of storage words used by those

elements.

The operating system requires the size of a physical record to be a
multiple of two. Since the FORTRAN system imposes an overhead of
three words for unformatted record identification, the user must
specify an odd record size. If an even record size is used, the

number will be treated as if a number one larger were specified.

For record sizes smaller than or equal to 251 words, which means a
record can fit entirely within one physical block, multiple records
can be packed in a single block but a record is not broken up to
reside part in one block and the remainder in another. For record
sizes larger than 251 words, the converse is true. A large record
is broken up into smaller components, completely filling all blocks
except, possibly, the last. However, the next record will begin at
the start of the next physical block so that record packing is not

performed.

Table 6-3 illustrates space efficiency for binary records which fit

in a single disk block in the same way as Table 6-2 does for formatted
records. A record size of 251 makes maximum use of disk space where-
as a size of one is only one fourth as good. Do not attempt to inter-
polate values from Table 6-3. The number of data words per disk

block is a non-linear, sawtooth function of the user record size in
the same way as illustrated in Table 6-2 for formatted records. For
example, when going from a record size of 123 to 124, the efficiency
drops from 98 percent to 49 percent because only one unformatted
binary record of size 124 (remember the three-word overhead) can fit

in a 256-word disk block.

For records which span more than a single physical block, the space
utilization can be either good or bad. Record sizes which are a
multiple of 251 make maximum use of file storage. Record sizes which
are a multiple of 251 plus one require an extra storage block of 256

words for the one extra word.

o




A

S

Input/Output Statements

Table 6-3
Unformatted Binary Record Size for Single Block Records

Number of Number of Percentage
'User Record Records per Data Words of
Size ' Physical Disk Per " Maximum
(Binary Words) Block Disk Block | Per Block
251 1 251 100
249 1 249 99
247 1 247 98
245 1 245 98
123 2 246 98
81 3 243 97
59 4 236 94
47 5 235 94
39 6 234 93
33 7 231 92
27 8 216 86
25 9 225 90
21 10 210 84
19 11 209 83
17 12 204 81
15 14 210 : 84
13 15 198 79
11 18 195 77
59 21 189 75
7 25 175 70
5 31 155 62
3 42 126 50
1 63 63 25

The CALL DEFINE statement must be executed before the first direct
access I/0 statement that refers to the specified file. Once I/0 to
the file is completed, the file should be closed by one of the fol-

lowing statements (where a is the logical unit number).

ENDFILE u
or

CALL CLOSE (u)
Examples

CALL DEFINE (15,99,100,0,NUM,1,0,1)

This specifies that logical unit 15 is to refer to a formatted ASCII
file of 100 fixed-length records, each record of which is 99 charac-
ters long. The records are numbered sequentially from 1 through 100.




Input/Output Statements

Initially, the value of the associated integer variable NUM is set to
1. After each direct access I/0 operation on this file, NUM will
contain the number of the record immediately following the one just
processed. Since the array name argument is zero, a temporary file
named .TM01l5 OTS is created. After completion of program execution,

the temporary file will be deleted.

DIMENSION ANAME (2)
DATA ANAME/'RANDO', 'MFIL'/

CALL DEFINE(12,302,500,ANAME,NUM,0,1,0)

This specifies that logical unit 12 is to refer to an unformatted
binary file whose size is to be adjusted so that it is 500 records
long. [In XVM/RSX systems, because the file size adjustment
parameter is ignored, if the file already exists it must contain 500
records.] The adjusted file is written to logical unit 12 and re-
places the original file. Each fixed-length record contains 302
binary words. The records are numbered sequentially from 1 through
500. 1Initially, the value of the associated integer variable NUM is
set to 1. After each direct access I/0 operation on this file, NUM
will contain the number of the record immediately following the one
just processed. The name of the file is RANDOM FIL and is stored in
ASCII form in the real array called ANAME.

6.6 FORMATTED DIRECT ACCESS INPUT/OUTPUT

Formatted input and output statements work in conjunction with FORMAT
statements, format specifications stored in arrays, or implied format
specifications to translate and edit data on output for ease of inter-
pretation, and, on input, to control data from external format to

internal storage format.
6.6.1 Formatted Direct Access READ Statement

The formatted direct access READ statement causes the specified re-
cord to be read from the direct access file currently connected to the
unit. The information in the record is scanned and converted as
specified by the referenced or implied format specification. The

resulting values are assigned to the elements specified by the list.

i



N

T,

i

Input/Output Statements

The statement has the following form:

READ (u'r, [f] [,ERR=s]) [list] <=—preferred form
or

READ (u#r, [f]1[,ERR=s]) [list]

u is a logical unit number (a positive integer constant or
variable) .

r is an integer expression that specifies the record number.

£ is a format specifier.

S is an executable statement label. The ERR option is

described in Section 6.7.

list is an I/O list.

NOTE

In this form of READ statement an
apostrophe is used to separate the
logical unit number from the record
number. For historical reasons,

the pound sign character may be used
in place of an apostrophe, but this
is not standard notation.

If the format specifier is omitted, data is read in free form (as
described in Section 7.7) and converted to the modes of the variables
in the I/O list. 1In such a case there is said to be an implied for-

mat.

If the FORMAT statement associated with a formatted input statement
contains a Hollerith constant or literal string, input data will be
read and stored directly into the format specification. For example,

the statements

READ (5'3, 100)
100 FORMAT (5H DATA)

cause five ASCII characters to be read from record 3 and stored in
the Hollerith format descriptor. If the characters were HELLO,

statement 100 would become:

100 FORMAT (5HHELLO)




Input/Output Statements

If the number of elements in the I/0 list is less than the number of
fields in the input record, the excess portion of the record is dis-
carded. If the number of list elements exceeds the number of input
fields, an error condition results unless the format specifications
state that one or more additional records are to be read (see Sec-

tions 7.4 and 7.8).

If no I/0 list is present in a formatted direct access READ statement,
the associated FORMAT statement or format array must contain at least
one Hollerith field descriptor or alphanumeric literal to accept the

input data. If it does not, no data transfer takes place.

If the list and format specification require more characters than a
record contains, all of the list elements become undefined and an

error condition exists.

6.6.2 Formatted Direct Access WRITE Statement

The formatted direct access WRITE statement writes the specified re-
cord in the direct access file that is currently connected to the
unit. The list specifies a sequence of values which are converted to
characters and positioned as specified by the referenced or implied
format specification.

The statement has the following form:

WRITE (u'r,[f][,ERR=s]) [list] -=—— preferred form

or
WRITE (u#r, [f][,ERR=s]) [list]
u is a logical unit number (a positive integer constant
or variable).
r is an integer expression that specifies the record number.
£ is a format specifier.
s is an executable statement label. The ERR option is

described in Section 6.7.

list is an I/0 list.

For historical reasons, the pound sign character may be used in place

of an apostrophe, but this is not standard notation.




.

Input/Output Statements

PRINT and TYPE may be used as synonyms of WRITE.

If no I/0 is present, data transfer is entirely under the control of
the format. The data to be output is taken from the format. In the
case of implied format control, the result is a null record, that is,

a line feed-carriage return sequence.

The data transmitted by a formatted sequential WRITE statement nor-
mally constitutes one formatted record. The FORMAT statement or for-
mat array may, however, specify that additional records are to be
written during the execution of that same WRITE statement. In the
absence of a format specifier, data in the I/0 list are written in

a fixed, implied format which is a function of data type (see Section

7.7).

Numeric data output under format control is roundedvduring the con-
version to external format. (If such data is subsequently input
for additional calculations, loss of precision may résult. In this
case, unformatted output is preferable to formatted output. Note
also that unformatted data usually occupies less space on external

devices than does formatted data.)

If the values specified by the list and format do not fill the record,

blank characters are appended to £ill the record.

If the list and format identifiers specify more characters than can

fit into a record, an error condition exists.
6.7 TRANSFER OF CONTROL ON END-OF-FILE OR ERROR CONDITIONS

Any type of READ or WRITE statement may contain a specification that
control is to be transferred to another statement if the I/0 statement
encounters an error condition or (for READ only) the end of the file.

These specifications appear as follows:
END=sl

and

ERR=S2

are the statement labels of executable statements to which

S17%2
control is to be transferred.




Input/Output Statements

A READ statement may contain either or both of the above specifica-
tions, in either order. A WRITE statement may only specify the ERR
option. Any such specification must follow the unit number, record

number, and/or format specification.

If an end-of-file condition is encountered during an I/0 operation,
the READ statement transfers control to the statement named in the
END=s specification. If no such specification is present, an error

condition results.

If a READ or WRITE statement encounters an error condition during an
I/0 operation, it transfers control to the statement whose label
appears in the ERR=s specification. If no ERR=s specification is

present, the I/0 error causes the program execution to terminate.

The statement label that appears in the END=s or ERR=s specification
must refer to an executable statement that exists within the same

program unit as the I/0 statement.

Examples of I/0 statements containing END=s and ERR=s specifications
follow:

READ (8,END=550) (MATRIX(K) ,K=1,100) (Passes control to state-
ment 550 when end-of-file
is encountered on logical
unit 8.)

WRITE (5,50,ERR=390) (Passes control to state-
ment 390 on error.)

READ (1'INDEX,ERR=150) ARRAY (Passes control to state-
ment 150 on error.)

NOTE

An end-of-file condition can not occur during
direct access READ statements. An END=s
specification may be included in direct access
READ statements; however, transfer of control
to the label will never occur. In particular,
attempting to READ or WRITE a record using a
record number greater than the maximum speci-
fied for the unit is an error condition. If
these errors occur and the options to detect
them do not appear in the READ/WRITE statements,
program execution will be terminated and an
error message will be printed.

N




.

,f”’““‘\;l

Input/Output Statements

In XVM/DOS, once a branch is made to a statement label specified by
the ERR= option, the type of error can be determined by invoking an
integer function, IOERR (N). The value of the function, i.e.,

IVAL=IOERR (M)

will be one of the following:

Value Error Indicated

-1 Parity error

-2 Checksum error

-3 Record-too-large error

-5 End-of-file detected

-6 End-of-medium detected

+N Where N represents the code number of a

recoverable OTS type error (see Appendix
D for a list of OTS error codes)

6.8 AUXILIARY INPUT/OUTPUT STATEMENTS
The statements in this category are used to perform file management
functions. REWIND, BACKSPACE and ENDFILE are normally associated
with unnamed files; the other statements, with named files.
6.8.1 REWIND Statement
The form of the REWIND statement follows:
REWIND u
u is a logical unit number (a positive integer constant
or variable).
For non-directoried magtape or DECtape', where files are unnamed and

multiple files can exist on one unit, the REWIND command repositions

the tape to its initial (load) point preceding the first file in the

!The non-directoried mode of operation on DECtape is a capability of
XVM/DOS systems not available in XVM/RSX.




Input/Output Statements

sequence. This type of tape operation (in XVM/DOS but not XVM/RSX
systems) is simulated on disk (or on directoried DECtape and magtape)
whenever a sequential READ or WRITE statement is not preceded by a
CALL DEFINE, CALL SEEK or CALL ENTER. A file named .TMOuu OTS is
opened on the disk (where uu is the ASCII representation of logical
unit u as a decimal number) when READ or WRITE is executed in tnis
manner; REWIND to the disk simply closes the file. If the file was
opened with a WRITE statement, prior to closing the file, REWIND

writes an end-of-file record.
Example T

REWIND 3 (Repositions logical unit 3 to beginning of o~
currently open DOS disk file.) ¥

6.8.2 BACKSPACE Statement

The BACKSPACE statement repositions a currently open file backward one
record and repositions to the beginning of that record. On the
execution of the next I/0 statement, that record is available for

processing.

The BACKSPACE statement is written as follows:

BACKSPACE u

u is a logical unit number (a positive integer constant or
variable) .

If the magnetic tape is at load point, (or in XVM/DOS systems only)
if DECtape is at block zero or if at the beginning of the disk file,
the BACKSPACE statement is ignored. For disk, BACKSPACE is allowed

only for input files. TN

Example

kS

BACKSPACE 4 (Repositions open file on logical unit 4 to
beginning of the previous record.)

T

6.8.3 ENDFILE Statement

On non-directoried magtape or DECtape, the ENDFILE statement writes P

an end-of-file record on a currently open sequential file.




Input/Output Statements

The ENDFILE statement is written as follows:

ENDFILE u

u is a logical unit number (a positive integer constant or
variable) .

The tape is positioned beyond the end-of-file record so that addition-
al files can be written. On directoried magtape! or DECtape, the
ENDFILE statement writes an end-of-file record on a currently open
sequential file and closes the file, causing its name and‘attributes
to be recorded in the tape's file directory. On disk, ENDFILE writes
an end-of-file record for a currently open sequential file which was
opened either by CALL ENTER or (in XVM/DOS only) by WRITE. In all
cases where’a file is open on disk, ENDFILE closes the file. Unlike
operation on magtape where multiple files can be written separated '
by end-of-file records, only one file per logical disk unit can be

written in this fashion.
Example
ENDFILE 2

The above statement writes an end-of-file record (if necessary as ex-

plained above) to the currently open file on logical unit two.
6.8.4 CALL SEEK Statement

The CALL SEEK statement is used to locate a named, sequential access
or DOS direct access file on a directoried device and to open the file

for subsequent sequential READs.

Direct access files in RSX are formatted differently from sequential
access files and cannot be opened by a CALL SEEK statement. The file
is not typed as formatted or unformatted in the CALL SEEK statement;
instead, this is specified in each READ statement and must correspond

with the mode in which the file was written.

'The non-directoried mode of operation on DECtape and the directoried
mode on magtape are capabilities of XVM/DOS systems not available in
XVM/RSX.




Input/Output Statements

6.8.4.1 CALL SEEK Statement in XVM/DOS - The DOS form of the CALL
SEEK statement is written as follows:

CALL SEEK (u,a)

where:
u is a logical unit number (a positive integer constant
or variable)
a is the name of a real or double integer array containing

the file name.

If a file is already open on unit u when CALL SEEK is executed, or if
the file specified in array a does not exist on that unit, program
execution will terminate and a system error message will appear on

the console terminal.

The filename and extension are formed from 7-bit ASCII characters and
are stored left justified in the array. The filename occupies the
first six characters in the array, the extension occupies the next

three, and the remaining character is a blank.

DOS
Example

DIMENSION FILEN(2) .
DATA FILEN/SHTEMP ,4H BIN/
CALL SEEK (1 ,FILEN)

This will open a file called TEMP BIN for sequential READs on logical

unit 1.

6.8.4.2 CALL SEEK Statement in XVM/RSX - The RSX form of the CALL

SEEK statement is written as follows: .
CALL SEEK (u,nH name, nH extl[,ev])

u is a logical unit number (a positive integer constant
or variable).

n is a number of characters (an unsigned decimal integer
constant) in "name" and in "ext".

name is a string of from one to five ASCII characters represent-
ing the file name.




—

Input/Output Statements

ext 1is a string of from one to three ASCII characters
representing the file name extension.

ev is an optional integer event variable.

If the named file existing on unit u is a sequential file, and is

not being used in a conflicting way (for instance, it is illegal to
read such a file if it is at the same time being written), the file
is opened to permit data input by subsequent sequential READ state-
ments. If not, an error condition exists, no file is opened, and a
negative value is returned in the event variable, ev, to indicate the
type of error. If the CALL SEEK is performed sucessfully, a positive
value is returned in the event variable. Control'will return to the
user program before completion of the I/O request; this condition is

indicated by a value of zero in the event variable.

RSX
Example

CALL SEEK (15,4HTEMP,3HBIN,IEV)
10 CALL WAITFR (IEV)
IF(IEV) 999, 10, 20

20

In this example, a file named TEMP BIN is sought in the directory of
the device on logical unit 15. Control returns to statement 10 before
this operation is finished; if IEV is zero, indicating that the SEEK
operation has not completed, control remains at statement 10. The
WAITFR subroutine relinquishes control to the lower priority tasks in
the XVM/RSX system until IEV becomes non-zero. If an error has
occurred, control goes to statement 999. Otherwise, normal proces-

sing continues at statement 20.
6.8.5 CALL ENTER Statement

The CALL ENTER statement is used to create or replace a named sequen-
tial access or DOS direct access file on a directoried device and to

open the file for subsequent sequential WRITES.

Direct access files written in RSX are formatted differently from
sequential access files and cannot be opened by a CALL ENTER state-
ment. The file is not typed as formatted or unformatted in the CALL




Input/Output Statements

ENTER statement; instead, this is specified in each WRITE statement.

A file may contain formatted or unformatted data, but not both.

6.8.5.1 CALL ENTER Statement in XVM/DOS - The DOS form of the CALL

ENTER statement is written as follows:

CALL ENTER (u,a)

u is a logical unit number (a positive integer constant
or wvariable).

a is the name of a real or double integer array containing
the file name

If a file is already open on unit u when CALL ENTER is executed, or
the file exists on logical unit u as an RSX-type of direct access
file (which cannot be opened by a CALL ENTER statement), program ex-
ecution will terminate and a system error message will appear on the
console terminal. The filename and extension are formed as explained
in Section 6.8.4.1 on CALL SEEK in XVM/DOS.

If the file named in the CALL ENTER statement already exists in the
directory of the device connected to logical unit u and is a sequen-
tial access or DOS direct access file, it will be deleted as soon as
the new file is closed. Direct access files written in DOS are
structured identically with sequential access files with the con-
straint that the record size remain constant throughout the file.
Normally direct access files are created or adjusted by using the
CALL DEFINE statement and CALL ENTER is used for sequential access

files not meant to be treated as direct access too.

DOS
Example

DIMENSION FILEN(2)
DATA FILEN/S5HRANDO, 4HMNUM/
CALL ENTER(3,FILEN)

This will open a file named RANDOM NUM on logical unit 3 for subse-
quent sequential WRITESs.




P

S
e

Input/Output Statements

6.8.5.2 CALL ENTER Statement in‘XVM/RSX - The RSX form of the CALL

ENTER statement is written as follows:

CALL ENTER (u,nH name,nH ext[,ev])

u is a logical unit number (a positive integer constant
or variable).

n is the number of characters (an unsigned decimal integer
constant) in "name" and in "ext".

name is a string of from one to five ASCII characters
representing the file name.

ext 1s a string of from one to three ASCII  characters
representing the file name extension.

ev is an optional integer event variable

While a file is being initialized for output with a CALL ENTER state-
ment in RSX, control will return to the calling program before com-
pletion of the request. This is indicated by the fact that the event
variable, assuming one is specified in the call, has a zero value.

A positive and non-zero value indicates successful completion; a

negative value indicates an error.

If a file is already open on logical unit u or if the named file
exists as an RSX random access file, the command will not be executed.
A negative number will be stored in the event variable, ev, to indi-

cate the source of the error.

When the named file already exists on logical unit u (and is not an
RSX direct access file), it will be deleted as soon as the new file
is closed. Direct access files created in DOS are structured iden-
tically with sequential access files, but are constrained to a con-
stant record size within a given file. Direct access files are nor-
mally created using the CALL DEFINE statement; and sequential access
files, with CALL ENTER. '

RSX
Example

CALL ENTER (15,5HRANDM,3HNUM, IEV)
50 CALL WAITFR(IEV)
IF (IEV) 999,50,51

51




Input/Output Statements

Here, a file named RANDM NUM is opened on logical unit 15. Statement
51 relinquishes control to lower priority tasks until the event
variable becomes non-zero. An error causes a branch to statement

999; whereas, normal completion continues at statement 51.

6.8.6 CALL CLOSE Statement

The CALL CLOSE statement indicates the completion of a set of related
I/0 operations on the currently open file. It is used primarily to
directoried devices to close files opened via CALL SEEK or CALL ENTER
(or CALL RENAME in RSX systems) . CALL CLOSE, when used without
specifying a filename as explained below for RSX, is functionally

equivalent to the ENDFILE statement described in Section 6.8.3.

6.8.6.1 CALL CLOSE Statement in XVM/DOS -~ The DOS form of the CALL
CLOSE statement is:

CALL CLOSE (u)

u is a logical unit number (a positive integer constant
or variable)

DOS
Example

CALL CLOSE (5)

This statement closes the file on logical unit 5, writing an end-of-

file record as necessary.

6.8.6.2 CALL CLOSE Statement in XVM/RSX - In RSX the CALL CLOSE

statement is written:

CALL CLOSE (ul,nHname,nHext[,ev]])

u is a logical unit number (a positive integer constant or
variable
n is the number of characters (an unsigned decimal integer

constant) in "name" and in "ext".

name 1is a string of from one to five ASCII characters represent-
ing the file name

ext is a string of from one to three ASCII characters
representing the file name extension.

ev is an optional integer event variable.

6-34

T




¥

Input/Output Statements

The filename and extension are optional. If they are specified and

a file was opened by a CALL RENAME statement, the file will appear in
the device's directory under the new name (if unique) and the old
file name will be erased. If the new name is not unique, the re~
naming process will not take place and the event variable will be set

with a negative value to indicate this type of error.

If the file name and extension are specified but the original file

was not opened by a CALL RENAME command, they are ignored.

When a file name and extension are not specified, the opened file is

closed with the original name.

If a CALL CLOSE is executed but no file is open, an appropriate

negative value is set in the event variable.

Successful closing of an open file will be indicated by a positive and

non-zero value in the event variable.

RSX
Examples

CALL CLOSE (15)
This statement will close the file which was open on logical unit 15.

CALL RENAME (15,4HTEST,3H000,IEV)
30 CALL WAITFR (IEV)

IF (IEV) 999,30,31
31 CALL CLOSE (15,4HTEST,3H001,IEV)
32 CALL WAITFR (IEV)

IF (IEV) 999,32,33

This sequence of statements causes the version number of file TEST,
stored in the file name extension, to be incremented by 1. State-
ments 30 and 32 relinquish control to lower priority tasks in RSX
until the event variable becomes non-zero. Then execution goes
either to an error processor (statement 999) or to the next statement

in sequence.




Input/Output Statements

6.8.7 CALL FSTAT Statement

The CALL FSTAT statement, which is available in XVM/DOS but not XVM/
RSX, is used to detect the presence or absence of a named file on a

given logical unit.

6.8.7.1 CALL FSTAT Statement in XVM/DOS - The CALI: FSTAT statement

is written as:

CALL FSTAT (u, a, V)

u is a logical unit number (a positive integer constant
or variable).

a is the name of a real or double integer array containing
the file name.

v is an integer variable whose value is set, on completion
of the statement, to indicate presence of the file (v=1)
or lack thereof (v=0).

CALL FSTAT, if issued while a file is already open on logical unit
u, will cause program execution to terminate and a system error mes-
sage to appear on the console terminal. CALL FSTAT is used to deter-

mine whether or not a file exists without actually opening the file.

The file name and extension are formed as explained in Section 6.8.4.1
on CALL SEEK in XVM/DOS.

DOS
Example

DIMENSION F(2)

DATA F/5HINPUT,4H 001/
CALL FSTAT (2,F,I)
IF(I.EQ.0) GO TO 999
CALL SEEK (2,F)

In this example, first a check is made to see if file INPUT 001 exists.
If not, a branch is taken to an error processor. If it does exist,
the file is opened for reading by the CALL SEEK statement.

6.8.8 CALL RENAME Statement

The CALL RENAM (XVM/DOS form), CALL RENAME (XVM/RSX form) statement

is used to change the name of a file on a directoried device associ-

ated with the given logical unit number.

6-36




Input/Output Statements

6.8.8.1 CALL RENAM Statement in XVM/DOS - In XVM/DOS, the format of
the CALL RENAM statement is: k

CALL RENAM (u,al,a2,v)

u is a logical unit number (a positive integer constant or
variable). i

al,a2 are the names of real or double integer arrays which contain,
respectively, the current file name and the new file name.

v is an integer variable whose value is set, on completion
of the statement, to indicate presernce of the current file
(v=1) or lack thereof (v=0).

CALL RENAM, if issued while a file is already open on logical unit u,
will cause program execution to terminate and a system error message
to appear on the console terminal. On completion of the statement,

success is indicated if the variable v is returned a value of 1. If

not, v is set to zero.

The file names and extensions are formed as described in Section
6.8.4.1 on CALL SEEK in XVM/DOS.

DOS
Example

DIMENSION FILOLD(2), FILNEW(2)
DATA FILOLD/SHOLDNA,4HMSRC/
DATA FILNEW/SHNEWNA, 4HMSRC/
CALL RENAM (1,FILOLD, FILNEW, I)

This example illustrates how a file on logical unit 1 named OLDNAM SRC
is changed to NEWNAM SRC.

6.8.8.2 CALL RENAME Statement in XVM/RSX - In XVM/RSX, the format of
the CALL RENAME statement is:

CALL RENAME (u,nHname,nHext|[,ev])

u is a logical unit number (a positive integer constant or
variable).
n is the number of characters (an unsigned decimal integer

constant) in "name" and in "ext".

name is a string of from one to five ASCII characters represent-
ing the file name.




Input/Output Statements

ext 1is a string of from one to three ASCII characters repre-
senting the file name extension.

ev is an optional integer event variable.

In RSX, the CALL RENAME statement opens a file for the sole purpose
of changing its name. The file is closed and the new name is speci-
fied in the CALL CLOSE statement.

CALL RENAME, if issued while a file is already open on logical unit u,
or if issued for a file which doesn't exist on that unit, will cause
a negative value to be returned in the event variable indicating these
errors. If the file is successfully opened, the event variable value
is set to a positive and non-zero value. See Section 6.8.6.2 for an

example of its use.

6.8.9 CALL DELETE Statement

The CALL DLETE (XVM/DOS form), CALL DELETE (XVM/RSX form) statement
is used to remove the named file from the directory of the device con-
nected to logical unit u and to return the storage space once used by

that file to the pool of available free space.

6.8.9.1 CALL DLETE Statement in XVM/DOS - In XVM/DOS the format for
CALL DLETE is:

CALL DLETE (u,a,Vv)

CALL DLETE must not be executed while there is a file open on logical
unit u; otherwise, program execution will terminate and a system error
message will appear on the console terminal. On completion of state-
ment execution, if the file was found and deleted, the variable v is

returned a value of 1. If not, v is set to zero.

The file name and extension are formed as described in Section 6.8.4.1

on CALL SEEK in XVM/DOS.

DOS
Example

DIMENSION A(2)
DATA A/S5HTL1AAA,4HABIN/
CALL DLETE (10,A,J)




Input/Output Statements

Here the CALL DLETE statement deletes a file named Tl BIN on logical
unit 10.

6.8.9.2 CALL DELETE Statement in XVM/RSX - In XVM/RSX, the CALL
DELETE statement is written:

CALL DELETE (u,nHname,nHext/[,ev])

u is a logical unit number (a positive integer constant or
variable) .
n is the number of characters (an unsigned decimal integer

constant) in "name" and in "ext".

name is a string of from one to five ASCII characters
representing the file name.

ext 1s a string of from one to three ASCII characters
representing the file name extension.

ev is an optional integer event variable

If CALL DELETE is executed while there is a file open on logical unit
u, or if the named file does not exist on that unit, the command is
ignored and a negative value is stored in the event variable to indi-
cate the source of the error. Otherwise, the file is deleted, and
the event variable is set to a positive, non-zero variable to indi-

cate successful execution.

RSX
Example

CALL DELETE (19,2HT1,3HBIN)
In this example, file Tl BIN on logical unit 19 is deleted.
6.8.10 Additional I/0O Subroutines
A few additional subroutines which can be used by XVM/DOS programs are
described in the FORTRAN IV XVM Operating Environment Manual. For
XVM/RSX, there are numerous FORTRAN-callable subroutines which are

peculiar to each peripheral device. These are explained in the
XVM/RSX System Manual.




Input/Output Statements

6.9 LEGITIMATE INPUT/OUTPUT STATEMENT SEQUENCES

To this point, this chapter has described the individual input/output
statements which exist under FORTRAN. The order in which these
statements appear is important because only certain sequences are

permitted.
6.9.1 Direct Access File I/0 Seguences

To perform direct access I/0 to a file on logical unit u, the file
must be opened using the CALL DEFINE statement. CALL DEFINE cannot be
executed if unit u is active with a previously opened file of any sort,
direct access or not. Once the file is open, only READ and WRITE
statements, in any sequence, are permitted. I/0 may be formatted or
unformatted, but not both in the same file. Once I/0 is completed,

the file must be closed using either the ENDFILE or the CALL CLOSE
statement to declare logical unit u free for access to other files.
Once the direct access file is closed, it is legitimate to issue CALL
FSTAT, CALL RENAME and CALL DELETE statements, in any order, to that

logical unit.
6.9.2 Sequential Access Named-File Input Sequences

Before data can be read from a named sequential access file, the file
must be opened with the CALL SEEK statement. CALL SEEK cannot be
executed on a logical unit which is active with a previously opened
file, whether seguential access or not. Once the file is open, only
READ statements are permitted. Data may be either formatted or un-
formatted but not both in the same file. The END=s option in the
READ statement can be used to detect end-of-file or end-of-medium
when encountered. After all READ statements have been issued, the
file must be closed using either the ENDFILE or the CALL CLOSE state-
ment. This will declare the logical unit free for access to other
files. Again, when the logical unit is free, it is permitted to
execute CALL FSTAT, CALL RENAME and CALL DELETE statements, in any

order, to the logical unit.
6.9.3 Sequential Access Named-File Output Sequences

If a logical unit is free (no file open) a CALL ENTER statement may
be executed to open a named-file for sequential output. If a file of

the given name already exists, it will be replaced with the new file

6-40




Input/Output Statements

once it is closed. Following CALL ENTER, only a sequence of WRITE
statements is allowed. ' Data may be either'formatted or unformatted
but not both in the same file. After all WRITEs have been executed,
the file must be closed and the logical unit freed by use of the
ENDFILE or CALL CLOSE statement. As before, once the logical unit is
free, CALL FSTAT, CALL RENAME and CALL DELETE are allowed in any

order, to that unit.
6.9.4 Sequential Access Unnamed File I/0 Sequences

If I/0 to disk, magtape or DECtape is to be performed without explicit
reference to a named file, there are two modes of operation: one in
which the device has a directory and I/0 is performed on a file whose
name is assigned automatically by the system or one in which the
device has no directory and data is recorded in sequence from a physi-
cal starting point. In the XVM/RSX system, sequential‘I/O to disk

and DECtape must be performed with reference to a named file and I/0
to magtape cannot. The only situation discussed in this section
which is relevant to XVM/RSX is unnamed file I/0 to non-directoried

magtape.

In the first case, which applies only in XVM/DOS systems, execution
of a sequential READ or WRITE statement to the directoried versions
of the device handlers without a prior CALL SEEK, CALL ENTER or (in
the case of DECtape) a REWIND statement, causes the system to opén a
file of the name .TMOuu OTS, where uu is the logical unit number
represented in decimal ASCII form. When the file is first being
written, it is typical either to use multiple WRITE statements followed
by an ENDFILE to close the file or sequences of WRITE, BACKSPACE, READ
to verify the written data as the file is being created. The file

may also be closed by execution of a REWIND command, which executes

an implied ENDFILE. Once the newly created file is closed, its name
is recorded in the device's file directory. If a file of the same
name already appeared in the directory, the old version is deleted
once the new one appears. If after the file is closed it is reopened
by issuing a READ statement, processing restarts at the beginning of
the file. Until the file is closed with an ENDFILE, or REWIND state-
ment, only READ and BACKSPACE statements are legitimate. After the
file is closed, it is permitted to execute CALL FSTAT, CALL RENAME or
CALL DELETE. Since the file .TMOuu OTS is not automatically deleted
on completion of the user program, use of CALL DELETE will be neces-




Input/Output Statements

sary to delete the temporary file to free up storage on the device for

the next user.

In the second case, which does not apply to disk (nor to DECtape in
XVM/RSX) , the device has no directory. For DECtape it is necessary
to start this mode of I/0 with a REWIND command, but to magtape this
is optional. Thereafter, any combination of WRITE, BACKSPACE, READ,
ENDFILE and REWIND commands is legal. Several files can be written
in sequence by executing multiple WRITE statements, an ENDFILE state-

ment, more WRITE statements, and so on.

In all cases, data may be either formatted or unformatted but not both

in the same file.

TO A DIRECTORIED DEVICE

File is Direct Access Sequential Access
| / v
CLOSED CALL DEFINE CALL SEEK CALL ENTER
¥
T / y 7
OPEN READ fe= WRITE READ WRITE

r ENDFILE OR CALL CLOSE

CLOSED

Y ¥ /

CALL FSTAT* (=& CALL RENAME (=& CALL DELETE

¥
CALL CLOSE*¥*

*CALL FSTAT is used only in XVM/DOS.
**CALL CLOSE after CALL RENAME is used only in XVM/RSX.

Figure 6-1
Named File Input/Output Sequences




i,

File is

Input/Output Statements

SEQUENTIAL ACCESS ONLY
TO A DIRECTORIED DEVICE*

Output

Input

JEEEE'

WRITE**

¥

BACKSPACE

vy

READ* *

¥

BACKSPACE

READ

¥ \

ENDFILE OR REWIND

¥

/

i

CALL

FSTAT

CALL RENAME

CALL DELETE

SEQUENTIAL ACCESS ONLY
TO A NONDIRECTORIED DEVICE

REWIND***

A

WRITE

READ

Y

A

<t——== BACKSPACE

1

1

i

ENDFILE

3
v

REWIND

7

*Applies only to XVM/DOS, not XVM/RSX.
**Assumes a file named .TM@uu OTS.
***Required on DECtape only in XVM/DOS.

Figure 6-2

3

Unnamed File Input/Output Sequences

s




Input/Output Statements

6.10 ENCODE AND DECODE STATEMENTS

These two statements perform data transfers according to format speci-
fications, whether referenced explicitly or implied, translating data
from internal format to alphanumeric (ASCII) format, or vice versa.
Unlike conventional formatted I/0 statements, however, these data

transfers take place entirely within memory.
The ENCODE and DECODE statements are written as follows:

ENCODE (c,a, [f] [,ERR=s]) [list]
DECODE(c,a, [f]1 [,ERR=s]) [1list]

C is an integer constant or variable representing the number
of ASCII characters that are to be converted or that are
to result from the conversion. (This is analogous to the
length of an external record.)

a is the name of a real, double integer or double precision
array. In the ENCODE statement, this array receives the
encoded ASCII characters. In the DECODE statement, it
contains the ASCII characters that are to be translated to
internal format.

£ is the statement label of a FORMAT statement or the name
of an array that contains format specifications. Only one
record can be transmitted, that is, the occurrence of a
"/" (slash) format specification separator or of format
reversion will cause an error condition.

S is an executable statement label. The ERR option is
described in Section 7.2.

list is an I/0 list. In the ENCODE statement, the I/O list
contains the data that is to be converted to ASCII format.
In the DECODE statement, the list receives the data that
has been translated from ASCII to internal format.

The ENCODE statement is analogous to a WRITE statement in the sense
that the I/0 list contains the data that is to be transmitted. The
ENCODE statement converts that data from the form specified by the
FORMAT statement, format array or implied format to ASCII format and
stores those ASCII characters in array a. The data is taken from the
elements in the I/0 list from left to right, converted, and stored in
the array in the order of subscript progression. If more variables
are listed than can be stored in the array, the excess variables are
ignored. If not enough variables are specified to fill the array,

the remainder of the array is filled with blanks (spaces).




Gy

Input/Qutput Statements

The DECODE statement can be likened to a READ statement, because the
internal-format data resulting from the execution of the statement is
assigned to the elements in the I/0 list. The DECODE statement takes
the ASCII characters from array a, processing the array in the order
of subscript progression, converts that data to the form specified by
the FORMAT statement, format array, or implied format,; and assigns
the data to the elements of the I/O list from left to right.

Conversion is performed according to a FORMAT statement or format
array or, in their absence, according to the standard implied format
rules specified in Section 7.7. In the case where the data-directed
I/0 form is used, the data-directed output form 'VAR' = value is

stored as follows

I =25
J =1
ENCODE (c,ARRAY, ,ERR=100)1I,J
where
c=3+number of characters in name + 1 if logical

7 if integer

12 if double integer
16 if real

20 if double precision

NOTE

Forms control characters are not analyzed
on ENCODE and are stored explicitly if
they appear in the format specification.

The number of ASCII characters that can be handled by the ENCODE or
DECODE statement is dependent on the data type of the array b in that
statement. An INTEGER*2 array, for example, can contain up to two
characters per element, so the maximum number of characters is twice

the number of elements in that array.

The interaction between format control and the I/0O list is the same

as for a formatted I/0O statement.

Example

DIMENSION A(3),K(3)
DATA A /'1234','5678',9012'/
DECODE (12,100,A) K

100 FORMAT (3I4)




Input/Output Statements

Execution of the DECODE statement causes the 12 ASCII characters in
array A to be converted to Integer format (specified by statement 100)

and stored in array K, as follows:

K(l) = 1234
K(2) = 5678
K(3) = 9012




CHAPTER 7

FORMAT STATEMENTS

7.1 OVERVIEW

FORMAT statements are nonexecutable statements used in conjunction with
formatted I/0 statements and with ENCODE and DECODE statements. The
FORMAT statement describes the format in which data fields are trans-
mitted, and the data conversion and editing to be performed to achieve
that format. In lieu of an explicit reference to a FORMAT statement,

a format stored in an array (see Section 7.6) or a system-supplied im-

plied format (see Section 7.7) may be used.
The FORMAT statement is written:

FORMAT (d kd k ...d k d
1 1 2 29 nnn+1

d. represents a group of record separators (one or more
slash (/) characters), which must be present if argu-
ment ry is present. There are two exceptions: d;
and dn+1 are entirely optional. The effect of record
separators is described in Section 7.4.

k., represents a record format list which describes the
format of all data fields in record 1i.

The general form for a record format list is:

F,F ,...,F
1121 In

F. represents either a simple field descriptor, £, or a

group of field descriptors enclosed in parentheses

and preceded by a repeat count: r(f ,f ,...,fn).
12




Format Statements

A field descriptor in a format specification appears in one of three

forms:

[r]C or [rlCw or [rlCw.d

Where C is a format code which must always be given; w (when present)
specifies the field width; and d (when present) specifies the number

of characters in the field that appear to the right of the decimal
point. The term r represents an optional repeat count, which specifies
that the field descriptor is to be applied to r successive fields. If
the repeat count is omitted, it is presumed to be 1. For a discussion

of individual and group field repetition, see Section 7.2.15.

The entire list of field descriptors, field and record separators and

the enclosing parentheses is called the format specification.

The terms r, w, and d must all be unsigned integer constants less than

or equal to 255,

The most commonly used field separator is a comma. A slash (/) may also
be used; it has the additional function of being a record terminator.
The functions of the field separators are described in detail in Sec-

tion 7.4.

The field descriptors used in format specifications are as follows:

1. 1Integer or Double Integer Iw, Ow
(both Decimal and Octal):

2. Logical: Lw
3. Real or Double Precision: Fw.d, Ew.d, Dw.d, Gw.d
4, Literal and editing: Aw, Rw, nH, '...', nX, Tn

{(In the alphanumeric and editing field descriptors, n specifies a num-

ber of characters or character positions.)

Any of the F, E, D, or G field descriptors may be preceded by a scale

factor of the form:

[¥1 np

e
kY




Format Statements

where n is an optionally signed integer constant that specifies. the
number of positions the decimal point is to be scaled to the left or

right. The scale factor is described in Section 7.2.14.

During data transmission, the object program scans the format specifi-
cation from left to right. Data conversion is performed by correlat-
ing the data values in the I/C list with the corresponding field de-
scriptors. In the case of H field descriptors and alphanumeric liter-
als, data transmission takes place entirely between the field descrip-
tor and the external record. The interaction between the format speci-

~, fication and the I/0O list is described in detail in Section 7.8.

Data written out to a storage device under format control can be read

in again using the same format. Also, within limits, one type of de-
vice may be used in lieu of another without requiring a change in the
user's program. This is referred to as device independence. MNote,
however, that a FORMAT statement is treated differently for printing
devices than it is for non-printing devices. For printing:devices,
the FORTRAN Object Time System interprets the first character of each

record as a carriage control indicator. This is discussed in Sec-

A
E tion 7.3.

7.2 FIELD DESCRIPTORS
The individual field descriptors that may appear in a format specifica-
tion are described in detail in the following sections. The field de-
scriptors ignore leading spaces in the external field, but treat em-

e bedded and trailing spaces as zeros.
7.2.1 Field Width Constraints

T All field descriptors which specify data conversion (A, D, E, F, G, I,

L., R) indicate a field width, w. The field width must be large enough
to contain all characters, including decimal point and sign, required

N to constitute the data value. If on output the field width is too
small to contain all the converted characters, the field is filled with
asterisks instead, including the decimal point if pertinent; e.g.,
k% k%%, Tf on input the external data field is wider than the width
indicated in the corresponding field descriptor, only the leftmost (most
significant) characters are retained; once the first w characters have

been input, the remaining characters in the external field are lost.
If on input the external data field is shorter than the width specified




Format Statements

in the corresponding field descriptor, trailing blanks are as-
sumed .

7.2.2 I Field Descriptor

The I field descriptor governs the translation of both integer and

double integer data. It appears as:
Iw or rlIw

The I field descriptor causes an input statement to read w characters
from the external record, convert them to an internal format, and store
them in the associated integer element of the I/0O list. The external
data must be an integer or double integer; it must not contain a deci-
mal point or exponent field. The I field descriptor interprets an
all-blank field as a zero value. If the value of the external field
exceeds the range of the corresponding integer list element, an error
occurs. If the first non-blank character of the external field is a
minus symbol, the I field descriptor causes the field to be stored as

a negative value; a field preceded by a plus symbol, or an unsigned

field, is treated as a positive value. For example:

Format External Field Internal Representation
14 2788 2788
I3 -26 -26
I9 AAAANAAB L2 312
I9 3.12 not permitted; error
I3 -A5 -05
I11 +1234567890 1234567890

The I field descriptor causes an output statement to transmit the value
of the associated integer I/0 list element to an external field w char-
acters in length, right justified, replacing any leading zeros with
spaces. If the value of the list element is negative, the field will
have a minus symbol as its leftmost non-blank character. Space must
therefore be included in w for a minus symbol if one is expected.

Plus symbols, on the other hand, are suppressed and need not be ac-
counted for in w. If w is too small to contain the output value, the

entire external field is filled with asterisks. For example:

-~




Format Statements

Format Internal Value External Representation
13 284 284
14 -284 -284
I5 174 AALT4
I2 3244 *k
13 -473 *kk
I7 29.812 not permitted; error
Example 1

READ (3,100) IHOUR, IMIN, ISEC
100 FORMAT (I2,1X,I2,1X,I2)

In this first example, three integer fields of width 2, separated from
each other by a space, are input from logical unit 3. This might be
used at a terminal to specify hours, minutes and seconds. Consider the
following input data ‘and the values stored in the variables specified
in the I/O list.

input stream IHOUR IMIN ISEC
03A15A20 3 15 20
19:35:00 19 35 0
3A15A20 30 50 0
3:15:20 error

The input streams in lines 1 and 2 are correct because each integer is
comprised of two digits and each integer field is separated by one char-
acter (which does not have to be a space). Line 3, though improperly
formed, does not violate the rules. An embedded blank is treated as a
zero, hence 3A is converted to 30 for the first value. The 1 is dis-
carded (skipped) in accord with the 1x descriptor and so 5A is taken

as the second field and converted to 50. The 2 is ignored because of

the second 1X descriptor and finally the last argument value is simply 0.

Example 2

11=333
I2=65000
13=10
WRITE (6,20) I1,I2,I3
20 FORMAT (1X,I3,1X,I3,1X,I3)




Format Statements

Tn this example, assuming that the output is going to a printing device,
such as a line printer, the first character in the FORMAT statement is
treated as a carriage control indicator (see Section 7.3) and not as a
space character. The first and third variable values can be expressed

in three digits and so are output as expected.

333A%**AA10

Because the value of the second variable cannot be expressed in a field

width of 3, asterisks are printed instead.

7.2.3 O Field Descriptor

The O field descriptor governs the transmission of octal integer or

octal double integer values. It appears as follows:

Ow or rOw

The 0 field descriptor causes an input statement to read w characters
from the external record, assigning them to the associated I/0 list
element as an octal value. The list element must be of integer, double
integer or logical type. The external field must contain only the

numerals 0 through 7; it must not contain a sign, a decimal point, an

exponent field, or (for octal double integers) a D prefix. For example:
Format External Field Internal Octal Representation
05 32767 32767
04 16234 1623
06 13AAAA 130000
03 974 not permitted; error
06 -1 777777
012 400000000000 400000000000

The O field descriptor causes an output statement to transmit the value
of the associated I/0 list element, right justified, to a field "w"
characters long. If the data does not fill the field, leading zeros
are inserted:; if the data exceeds the field width, only the rightmost
"' characters are transmitted. No signs are output; a negative value
is transmitted in its octal (two's complement) form. The I/0 list ele-

ment must be of integer, double integer or logical type. For example:




e

Format Statements

Internal (octal) ‘ :
Format Value External Representation

06 77777 077777

02 14261 61

04 33 0033

05 13.52 not permitted; error
012 123456654321 , 123456654321

7.2.4 F Field Descriptor

. The ¥ field descriptor specifies the data conversion and editing of

real or double precision values. It is written as shown below. (In
all appearances of the F field descriptor, w must be greater than or

equal to d+1.)
Fw.d or rFw.d

The corresponding I/0 list element must be of real or double precision

type.

On input, the F field descriptor causes w characters to be read from
the external record and to be assigned as a real value to the related
I/0 list element. If the first non-blank character of the external
field is a minus sign, the field is treated as a negative value; a
field that is preceded by a plus sign, or an unsigned field, is consid-
ered to be positive. An all-blank field is considered to have a value

of zero.

If the external field contains neither a decimal point'nor an exponent,
it is treated as a real number of w digits, iﬁkWhich the rightmost d
digits are to the right of the decimal point. If the field contains

an explicit decimal point, the location of that decimal point overrides
the location specified by the field descriptor. If the field contains
an‘exponent (in the same form as described in section 2.2.2 for real
constants or 2.2.3 for double prediSion constants), that exponent is
used in establishing the magnitude of the value befofe it is assigned
to the list element. The number itself must be restricted to 11 digits
to ensure proper conver51on, otherwise, the results would be unpredlct—
able. For example, here are some of the more commonly used input
fields:




Format Statements

Format External Field Internal Representation
F6.3 A13457 13.457

F6.3 1.3457 1.3457

F9.2 ~21367. -21367.

On output, the F field descriptor converts the value of the related
I/0 list element to a minus sign (if negative), an integer portion, a
decimal point, and a fractional part rounded to d significant digits.
If the converted data consists of fewer than w characters, leading
spaces are inserted so that the number is right-justified; if the data

exceeds w characters, the entire field is filled with asterisks.

The total field width specified must be large enough to accommodate a
minus sign, if one is expected (plus signs are suppressed), at least
one digit to the left of the decimal point which may be zero, the
decimal point itself, and d digits to the right of the decimal. For
this reason, w should always be greater than or equal to (d+3). Ex-

amples follow:

Format Internal Value External Representation
F8.5 2.3547188 A2.35472

F9.3 8789.7361 A8789.736

F2.3 51.44 not permitted; error
F10.4 ~23.24352 AA-23.2435

F5.2 325.013 *EhEE

F5.2 -.2 -0.20

F3.2 -.2 kdkok

Note in the third example that the format field descriptor is incorrect

because the field width, w, is less than d.

7.2.5 E Field Descriptor

The E field descriptor handles the transmission of real data in ex-
ponential format. It appears as follows:

@

Ew.d or rEw.d

The corresponding I/0 list element must be of real or double precision

type.

The E field descriptor causes a READ statement to input w characters
from the external record. It interprets and assigns that data in ex-

actly the same way as the F field descriptor. The number itself must

7-8

—




P

Format Statements

be restricted to 11 digits to ensure proper conversion; otherwise, the

results would be unpredictable. For example:

Format External Field Internal Representation

E9.3 734.432E3 734432.0

E12.4 AA1022.43E-6 1022.43E-6
E15.3 52.3759663AAAAA 52.3759663
E1l2.5 210.5271D+10 210.5271E10

Note that in the last example the E field descriptor disregards the
double precision connotation of a D exponent field indicator and treats

it as though it were an E indicator.

The E field descriptor causes a WRITE statement to transmit the value
of the corresponding list element to an ekternal field w characters in
width, right justified. If the number of characters in the converted
data is less than w, leading spaces are inserted; if the number of
characters exceeds w, the entire field is filled with asterisks.

Data output under control of the E field descriptor is transmitted in
a standard form, consisting of a minus sign if the value is negative
(plus signs are suppressed), a zero, a decimal point, d digits to the

right of the decimal, and a 4-character exponent of the form:

Etnn

where nn is a 2-digit integer constant. The d digits to the right of
the decimal point represent the entire value, scaled to a decimal frac-

tion.

Because w must be large enough to include a minus sign (if one is ex-
pected), a zero, a decimal point, and an exponent, in addition to d
digits, w should always be equal to or greater than (d+7). Some ex-

anples are:

Format Internal Value External Representation
E9.2 475867.222 A0 .48E+06

E12.5 475867.222 A0.47587E+06
E12.3 0.00069 AAAD.690E-03
E10.3 -0.5555 -0.556E+00

E5.3 56.12 hkkEE




Format Statements

7.2.6 D Field Descriptor

The D field descriptor governs the transmission of real or double pre-

cision data. It appears as follows:
Dw.d or rDw.d
On input, the D field descriptor functions exactly as an equivalent E

field descriptor, except that the input data is converted and assigned

as a double precision entity, as in the following examples:

Format External Field Internal Representation
D10.2 12345AAAAA 12345000.0D0

D10.2 ALL23.454A 123.45D0

D15.3 367.4981763D+04 3.674981763D+06
D13.6 A+34567890123 34567.890123

At most 11 significant digits can be input without truncation. The
largest positive number is 34359738367. Larger values are converted

to meaningless values.

on output the effect of the D field descriptor is identical to that of
the E field descriptor, except that the D exponent field indicator is

used in place of the E indicator. For example:

Format Internal Value External Representation
D14.3 0.0363 AAAAAD.363D-01

D23.12 5413.87625793 AAAAAD.541387625793D+04
D9.6 1.2 kkkkkkkkk

7.2.7 G Field Descriptor

The G field descriptor transmits real or double precision data in a
form that is in effect a combination of the F and E field descriptors.
It appears as follows:

Gw.d or rGw.d

On input, the G field descriptor functions identically to the F field

descriptor (see Section 7.2.3).

On output, the G field descriptor causes the value of the associated

I/0 list element to be transmitted to an external field w characters

7-10

N




Format Statements

in length, right justified. The form in which the data is output is:
a function of the magnitude of the data itself, as described in
Table 7-1.

Table 7-1
Effect of Data Magnitude on G Format Conversions
Data Magnitude Effective Conversion
m < 0.1 Ew.d
0.1 <m < 1.0 F(w-4) .4, 4X
1.0 <m < 10.0 F(w-4).(d~1), 4X
1092 < 1097t F(w-4) .1, 4%
d-1 d
10 <m < 10 F(w-4).0, 4X
m > lOél Ew.d

The 4X field descriptor, which is (in effect) inserted by the G field
descriptor for values within its range, specifies that four spaces

are to follow the numeric data representation. The X field descriptor
is described in Section 7.2.12.

The field width, w, must include space for a minus sign, if one is
expected (plus signs are suppressed), at least one digit to the left
of the decimal point, the decimal point itself, d digits to the right
of the decimal, and (for values that are outside the effective range
of the G field descriptor) a 4-character exponent. - Therefore, w
should always be equal to or greater than (d+7). Examples of G out-

put conversions are:

Format Internal Value External Representation
G13.6 0.01234567 A0.123457E-01
G13.6 -0.12345678 ~0.123457AAAA
G1l3.6 1.23456789 AAL.23457AAAA
G13.6 12.34567890 AAL2 .3457AANAA
G13.6 123.45678901 AAL23.457AAAA
G1l3.6 -1234.5678901 A=-1234.57AAAA
Gl3.6 12345.678901 AAL12345.7TAAAA
G1l3.6 123456.78901 AA123457 .AAAA
Gl3.6 -1234567.8901 ~0.123457E+07




Format Statements

For comparison, consider the following example of the same values out- x
put under the control of an equivalent F field descriptor.
Format Internal Value External Representation 2
F13.6 0.01234567 AAAAAD.012346
F13.6 -0.12345678 AAAA-0.123457
Fl3.6 1.23456789 AANAAAL . 234568
F1l3.6 12.34567890 AAAAL2,345679 -
F13.6 123.45678901 AAA123.856789
F13.6 -1234.,5678901 A-1234.567890
F13.6 12345,.678901 A12345,.678901
F13.6 123456.78901 123456.789010
F13.6 -1234567.8901 Rhkdkkkh kkrhEk i o~
.2, i i
7 8 L Field Descriptor ~
The L field descriptor governs the transmission of logical data. It FQ‘
appears as:
ILw or rLw
The corresponding I/0 list element must be of logical or integer type.
The L field descriptor causes an input statement to read w characters e
from the external record. If the first non-blank character of that
field is the letter T, the value .TRUE. is assigned to the associated
I/0 list element. If the first non-blank character of the field is
the letter F or any other character but T, or if the entire field is
blank, the value .FALSE. is assigned.
.
The I field descriptor causes an output statement to transmit either :
the letter T, if the value of the related list element is .TRUE., or
the letter F, if the value is .FALSE., to an external field w charac-
ters wide. Any non-zero value in this situation is treated as .TRUE.. N
The letter T or F is in the rightmost position of the field, preceded
by w-1 spaces. For example:
Format Internal Value External Representation
L5 . TRUE. AAAAT
Ll .FALSE. F .




Format Statements

7.2.9 A Field Descriptor

The A field descriptor controls the transmission of alphanumeric data.

It is written as shown below.
Aw oOr rAw

On input, the A field descriptor causes w characters to be read from
the external record and stored in ASCII format in the associated I/O
list element. The maximum number of characters that can be stored in
a variable or array element depends on the data type of that element,

as follows:

I/0 List Maximum Number
Element of Characters
Logical 2
Integer 2

Double Integer 5

Real 5

Double Precision 5

If w is greater than the maximum number of characters that can be
stored in the corresponding I/0 list element, only the rightmost two
or five characters (depending on the data type of the variable or ar-
ray element) are assigned to that entity; the leftmost excess charac-
ters are lost. If w is less than the number of characters that can

be stored, w characters are assigned to the list element, left justi-
fied, and trailing spaces are added to fill the variable or array ele-

ment. For example:

Format External Field Internal Representation
Al HELLO! HA (Integer)
A2 HELLO! HE (Integer)
A3 HELLO! HELAA (Real)
Al HELLO! HELLA (Real)
A5 HELLO!. HELLO (Real)
A6 HELLO! BELLO! (Real)

On output, the A field descriptor causes the contents of the related
I/0 list element to be transmitted to an external field w characters
wide. If the list element contains fewer than w characters, the data

appears in the field right-justified with leading spaces. If the list




Format Statements

element contains more than w characters, only the leftmost w characters

are transmitted. For example:

Format Internal Value External Representation

A5 OHMS A OHMSA
A5 VOLTS VOLTS
A2 VOLTS VO

A6 VOLTS AVOLTS

The A and R field descriptors perform similar conversions, the latter

storing characters internally right-justified rather than left-justified.

Because of the manner in which characters are stored in integer or -y
logical (single word) variables, characters stored in A format are not

in the same positions in the word as characters stored in R format. T
Thus, it is not possible to output characters from an integer or logi- e
cal variable (or array element) using A format that were input using

R format, or vice versa.
7.2.10 R Field Descriptor

The R field descriptor controls the transmission of alphanumeric data. .

It is written as follows:
Rw Or rRw

On input, the R field descriptor causes w characters to be read from
the external record and stored in ASCII format in the associated I/0
list element. The maximum number of characters that can be stored in
a variable or array element depends on the data type of that element, WNmﬁ

as shown in Section 7.2.9.

If w is greater than the maximum number of characters that can be
stored in the corresponding I/O list element, only the rightmost two

or five characters (depending on the data type of the variable or ar-
ray element) are assigned to that entity; the leftmost excess charac-
ters are lost. If w is less than the number of characters that can

be stored, w characters are stored, right justified, and leading spaces

are added to fill the variable or array element. For example:




Format Statements

Format External Field Internal Representation
R1 HELLO! Al (Integer)
R2 ' HELLO! 0! (Integer)
R3 HELLO! AAT.O! (Real)
R4 HELLO! ALLO! (Real)
R5 HELLO! ELLO! (Real)

R6 HELLO! - ELLO! (Real)

On output, the R field descriptor causes the contents of the related
I/0 list element to be transmitted to an external field w characters
wide. If the list element contains fewer than w characters, the data
appears in the field right-justified with leading spaces. If the list
element contains more than w characters, only the rightmost w charac-—

ters are transmitted. TFor example:

Format Internal Value External Representation
R5 OHMSA OHMSA
R5 VOLTS VOLTS
R2 VOLTS TS
R6 VOLTS AVOLTS

At the end of Section 7.2.9, a restriction pertaining to A and R for-

mat usage is discussed.
7.2.11 H Field Descriptor
The H field descriptor takes the form of a Hollerith constant:
anlczc3 ces C
n specifies the number of characters that are to be

transmitted

c is an ASCII character.

When the H field descriptor appears in a format specification, data
transm1331on takes place between the external record and the field

descriptor itself.

The H field descriptor causes an input statement to read n characters
from the external record and to place them in the field descriptor,
with the first character appearing immediately after the letter H.
Any characters that had been in the field descriptor prior to input
are replaced by the input characters.




Format Statements

The H field descriptor causes an output statement to transmit the n char-
acters in the field descriptor following the letter H to the external
record in ASCII form. An example of the use of H field descriptors for

input and output follows:

WRITE (1,100)

100 FORMAT (41HAENTERAPROGRAMATITLE,AUPATOA20ACHARACTERS)
READ (1,200)

200 FORMAT (20HAATITLEAGOESAHEREAAA)

The WRITE statement transmits the characters from the H field descrip-
tor in statement 100 to logical unit 1, assumed to be connected to the
user's terminal. The READ statement accepts the response from the key-
board, placing the input data in the H field descriptor in statement
200. The new characters replace the words TITLE GOES HERE and the two
leading and three trailing spaces; if the user enters fewer than 20
characters, the remainder of the H field descriptor is filled with

spaces to the right.

7.2.11.1 Alphanumeric Literals - An alphanumeric literal (an ASCII
character string enclosed in apostrophes) can be used in place of an
H field descriptor. Both types of format specifiers function identi-
cally.

The apostrophe character is written within an alphanumeric literal as

two apostrophes. For example:

50 FORMAT ('TODAY''SADATEAIS:A',I2,'/',I2,'/',12)

A pair of apostrophes used in this manner is considered to be a single

character.

For historical reasons, the characters double gquote and dollar sign
can be used rather than single quote to enclose an alphanumeric lit-
eral, but single quote is the preferred character for compatibility
with other DEC FORTRANs. 'ABC' and "ABC" and $ABCS are equivalent.

o,




Format Statements

Example
Hollerith field descriptors may be. combined with other field descrip-
tors. For instance, the following output to a printing device gives a

readable answer to a numerical computation.

I=2
ICUBED=I*%*3
WRITE (1,10)I,ICUBED
10 FORMAT (1X,I6, 4H**3=,I6)

The resulting printout would be:

AAAAA2**%3=AAAAAS
Note that the comma following a Hollerith field (in this case follow-
ing the =) is optional, but it is generally retained for readability
to help separate field descriptors.
7.2.12 X Field Descriptor
The X field descriptor is written:

nX

The X field descriptor causes an input statement to skip over the next

n characters in the input recoxd.

The X field‘descriptor causes an output statement to transmit n spaces

to the external record. For example:

WRITE (5,90) NPAGE

90 FORMAT (13H1PAGEANUMBERA,I2,16X,23HGRAPHICAANALYSIS,ACONT.)

The WRITE statement prints a record similar to:
PAGE NUMBER nn GRAPHIC ANALYSIS, CONT.

where "nn" is the current value of the variable NPAGE. The numeral 1
in the first H field descriptor is not printed, but is used to advance
the printer paper to the top of a new page. Printer carriage control

is explained .in Section 7.3.




Format Statements

7.2.13 T Field Descriptor

The T field descriptor, which appears as follows:

Tn

is a tabulation specifier. The value of n on output must be greater
than or equal to two, but not greater than the number of characters
allowed in the external record. On input, the value of n must be

greater than or equal to cne.

On input, the T field descriptor causes the external record to be
positioned to its nth character position. For example, if a READ

statement input a record containing:

ABCAAAXYZ

under control of the FORMAT statement:

10 FORMAT (T7,A3,T1,A3)

the READ statement would input the characters XYZ first, then the char-
acters ABC.

On output to non-printing devices, the T field descriptor states that
subsequent data transfer is to begin at the nth character position of
the external record. For output to a printing device, data transfer
begins at position (n-1). The first position of a printed record is
reserved for a carriage control character (see Section 7.3) which is

never printed.

Examples:

WRITE (3,25)
25 TFORMAT (TS51,'COLUMNA2',T21,'COLUMNAL')

would cause the following line to be printed:

Position 20 Position 50
COLUMN 1 COLUMN 2

th




Format Statements

In the next example,

READ (2,10)
10 FORMAT (T4,'ABC')

if the input string is ABCDEFGHI, then the FORMAT statement is changed
to

10 FORMAT (T4, 'DEF')

In this last example,

WRITE (6,20)
20 FORMAT (1X,'IAWON''T',T4,'/////AWILL")

the printout beginning in column 1 will appear as:

IAWGR )/ TAWILL
7.2.14 Scale Factor

The location of the decimal point in real and double precision values
can be altered during input or output through the use of a scale fac-=

tor, which takes the form:
nP

where n is a signed or unsigned decimal integer constant in the range
-127 to +127 specifying the number of positions the decimal point is
to be moved to the right or left.

A scale factor may appear anywhere in a format specification, but must
precede the field descriptors with which it is to be associated. It

is normally written as follows:
nPFw.d nPEw.d - nPDw.d nPGw.d
Data dinput under control of one of the above field descriptors is mul-

tiplied by 10~
element. For example, a 2P scale factor multiplies an ‘input value

before it is assigned to the corresponding I/O list

by .01, moving the decimal point two places to the left; a -2P scale

factor multiplies an input value by 100, moving the decimal point two




Format Statements

places to the right. If the external field contains an explicit ex-

ponent, however, the scale factor has no effect. For example:

Format External Field Internal Representation
3PE10.5 AAA3T.614A .037614
3PE10.5 AA37.614E2 3761.4
-3PE10.5 AAAA3T . 614 37614.0

The effect of the scale factor on output depends on the type of field
descriptor with which it is associated. For the F field descriptor,
the value of the I/0 list element is multiplied by 10" before being
transmitted to the external record. Thus, a positive scale factor
moves the decimal point to the right; a negative scale factor moves
the decimal point to the left.

Values output under control of an E or D field descriptor with scale
factor are adjusted by multiplying the basic real constant portion of
each value by 10" and subtracting n from the exponent. Thus a posi-
tive scale factor moves the decimal point to the right and decreases
the exponent; a negative scale factor moves the decimal point to the

left and increases the exponent.

The effect of the scale factor is suspended while the magnitude of the
data to be output is within the effective range of the G field descrip-
tor, since it supplies its own scaling function. The G field descrip-
tor functions as an E field descriptor when the magnitude of the data
value is outside its range; the effect of the scale factor is there-

fore the same as described for that field descriptor.

Note that on input, and on output under control of an F field descrip-
tor, a scale factor actually alters the magnitude of the data; on out-
put, a scale factor attached to an E, D, or G field descriptor merely
alters the form in which the data is transmitted. Note also that on
input a positive scale factor moves the decimal point to the left and
a negative scale factor moves the decimal point to the right, while on

output the effect is just the reverse.

If no scale factor is attached to a field descriptor, a scale factor
of zero is assumed. Once a scale factor has been specified, however,
it applies to all subsequent real and double precision field descrip-
tors in the same format specification, unless another scale factor ap-
pears; that scale factor then assumes control. A scale factor of zero

can only be reinstated by an explicit 0P specification.

7~-20

e,




Gy

Format Statements

Some examples of scale factor effect on output are:

Format Internal Value External Representation
3PE12.3 -270.139 -270.139E+00
1PE12.3 -270.139 AA-2.701E+02
1PE12.2 -270.139 AAA=2 . T0F+02

-1PE12.2 -270.139 AAA-0.03E+04
7.2.15 Grouping and Group Repeat Specifications
Any field descriptor (except H, T or X) may be applied to a number of

successive data fields by preceding that field descriptor with an un-

signed integer constant, called a repeat count, that specifies the

number of repetitions. TFor example, the statements:
20 FORMAT (El2.4,E12.4,E12.4,15,1I5,I5,1I5)
and
20 FORMAT (3E12.4,415)
have the same effect.
Similarly, a group of field descriptors may be repeatedly applied to

data fields by enclosing those field descriptors in parentheses, with

an unsigned integer constant, called a group repeat count, preceding

the opening left parenthesis. For example:

50 FORMAT (218,3(F8.3,E15.7))
is equivalent to:

50 FORMAT (I8,18,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7)

—
1 2 3

An H or X field descriptor, which could not otherwise be repeated, may
be enclosed in parentheses and treated as a group repeat specification,

thus allowing it to be repeated a desired number of times.

If a group repeat count is omitted, it is presumed to be 1.




Format Statements

7.3 CARRIAGE CONTROL

The first character of every record transmitted to a printing device
(line printer, Teletypewriter, VP15A Storage Scope and XY1ll Plotter)
is never printed; instead, it is interpreted as a carriage control

character. The FORTRAN I/0 system recognizes certain characters for

this purpose; the effects of those characters are shown in Table 7-2.

Table 7-2
Carriage Control Characters

Character Effect

A space Advances one line (line feed)

0 zero Advances two lines (double space)
1 one Advances to top of next page

(form feed)

+ plus Does not advance (allows over-
printing)
All others Advances one line (line feed)

Note in Table 7-2 that any character other than those explicitly de-
scribed is treated as though it were a space, and is deleted from
the print line. Whatever action is specified by the carriage control

character occurs prior to the printing of the record.

Records can be written to and read back from non-printing devices
(disk, magtape, DECtape, and paper tape) using the FORMAT statements.
It is permissible to omit the carriage control character at the head
of each format record. However, data files created in this manner
cannot later be transferred from, say, disk to line printer without
loss of data because of the missing carriage control characters unless
the data were read back under the original format and printed using a

different format.

It is possible to write a program in which the source of input data
(the type of device being used) as well as the destination of output

data can be varied from one run to the next without necessitating

™

-~

Y




S

Format Statements

rebuilding the program. This is called device independence. For ex-

ample, the following statements

READ (1,100) I,J,K
100 FORMAT (3I6)

could be used to input data values from cards, paper tape, keyboard or
a DECtape, magtape or disk file. Similarly, the following statements

WRITE (6,200)I,J,K
200 FORMAT (1X,3T6)

could be used to write out the values of three integer variables to
either a line printer, teleprinter, paper tape, VP15A storage scope,

or to a DECtape, magtape or disk file. When the data is written to a
non-printing device, such as disk, the carriage cohtrol characters are
left as is and not converted into the appropriate vertical format char-
acters (e.g., line feed and form feed). Such a file can later be
listed on a printing device using the PIP XVM program in XVM/DOS and

a special command option (V) to perform the Carfiage control conver-~

sion.

Note that in the previous READ and WRITE examples that data written

out under FORMAT statement 200 cannot be correctly retrieved by read-~
ing with FORMAT statement 100. However, the data could be reread using
the identical FORMAT under which data was written.

Example 1
READ(1,20)I,J
20 FORMAT (21I2)
Input String I Value J Value
3040 30 ) 40
A3040 3 4
30440 30 4

The first example illustrates the importance of inputting data exactly

as specified in the format.

Example 2

READ (1,20)I,J
20 FORMAT (1X,I2,1X,I2)




Format Statements

Input String I value J Value
3040 4 0
A3040 30 0
A30A40 30 40

This example differs from the first in that the "skip one character”
indicator appears before each integer field. The first 1X would typi-
cally be used to skip past the carriage control character from the
original output record. However, if the input string is from a key-
board or cards, the typist must be told exactly how to format his in-

put. The third string in this example is correctly formed.

Example 3
I=123
J=678
WRITE (1,100) I,J
100 FORMAT (1X,I3,1X,I3)
Output to Printer Output to Disk

1234678 A123A678

Note that the carriage control character to the disk is written exactly
as received; to the printer it is converted to a space one line command

and does not appear in the printed record.

Example 4

=123

J=678

WRITE (1,100) I,J
100 FORMAT (I3,1X,I3)

Output to Printer Output to Disk

(top of form)
23A678 123A678

This example is the same as the previous one except that the carriage
control character was omitted in the format specification. The out-

put record for the printer is first formed as 123A678 (just as it ap-
pears on disk). Then, however, the "1" character is treated as a car-

riage control function. It is replaced by a form feed character so




Format Statements

that the printer skips to top of form and prints the record as shown

above.
Example 5

I=100
J=200
K=300 \
WRITE (1,200)I,J,K
200 FORMAT (1X,I3/'0',I3/'+AAA',TI3)

Output to Printer Output to Disk
(single space)
100 A100
(double space) 0200
200300 +AAA300

Here, three records are written; note the forms control character which
appears at the head of each disk record. To the printer, the first
record is printed on a new line, the second record is printed after a

double space and the third line is printed over the second line.
7.4 FORMAT SPECIFICATION SEPARATORS

Field descriptors in a format spgcification are generally separated

from one another by commas. Slashes (/) may also be used to separate
field descriptors. A slash has the additional effect of being a rec-
ord terminator, causing the input or output of the current record to

be terminated and a new record to be initiated. For example:

WRITE (5,40) K,L,M,N,O0,P
40 FORMAT (306/I6,2F8.4)

is equivalent to:

WRITE (5,40) K,L,M
40 TFORMAT (306)

WRITE (5,50) N,O,P
50 FORMAT (I6,2F8.4)

It is possible to bypass input records or to output blank records (line
feed, carriage return sequences) by the use of multiple slashes. If

n consecutive slashes appear between two field descriptors, they cause
(n-1) records to be skipped on input or (n-1) blank records to be out-

put. (The first slash terminates the current record; the second slash




Format Statements

terminates the first skipped or blank record, and so on.) If n slashes
appear at the beginning or end of a format specification, however, they
result in n skipped or blank records, because the initial and terminal
parentheses of the format specification are themselves a record initi-
ator and record terminator, respectively. An example of the use of

multiple record terminators is as follows:

WRITE (5,99)
99 FORMAT ('l1'T51'HEADING LINE'//T51'SUBHEADING LINE'//)

The above statements output the following:

Column 50, top of page

HEADING LINE
(blank line)

SUBHEADING LINE
(blank line)
(blank line)

7.5 EXTERNAL FIELD SEPARATORS

A field descriptor such as Fw.d specifies that an Input statement is
to read w characters from the external record. If the data field in
question contains fewer than w characters, the Input statement would
read some characters from the following field unless the short field
were padded with leading zeros or spaces. To avoid the necessity of
doing so, the data can be read using an implied format specification
(see Section 7.7) which, among other things, permits short records to
be terminated by a comma, which overrides the field descriptor's field

width specification. This practice, called short field termination,

is particularly useful when entering data from a terminal keyboard.

7.6 OBJECT TIME FORMAT

Format specifications may be stored in real or double integer arrays,
both actual arrays and dummy arrays. Such a format specification
(termed an object time format) can be constructed or altered during
program execution. The form of a format specification in an array is
identical to a FORMAT statement, except that the word FORMAT and the
statement label are not present. The initial and terminal parentheses

must appear, however. An example of object time format is as follows:

ST




E

Format .Statement

TABLECD 00 GLE, 0.

WRITE S FORRAY Y {TaBRLESK .0

gy CORNT TR

In this example, the DATA statement assigns a left parenthesis to the
first element of FORRAY and assigns a right parenthesis and three field
descriptors to variables for later use. The proper field descriptors
are then selected for inclusion in the format specifidatioﬁ, based dn
the magnitude of the individual elements of array TABLE. A right paren-
thesis is then addedyto the format specification just before its use

by the WRITE statement. Thus, the format specification changes with
each iteration of the DO loop. ' '

Here is a second example which establishes an object time format speci-
fication (I7, F1§.3) entered via a READ statement.

DIMENSION ARRAY (1)
READ(3,2f8) (ARRAY(I),I=1,1f)
28 FORMAT (1gA5)

READ (3,ARRAY) J,X

The first READ statement enters the format into ARRAY. The second READ
statement references ARRAY rather than a FORMAT statement number.

7.7 IMPLIED FORMATS

Formatted input/output is normally performed by explicitly referencing
in the READ or WRITE statement a FORMAT statement number or an array
name, the array containing an object time format specification. How-

ever, when a format is not explicitly referenced, as in

READ (1,) I,J,K




Format Statements

or
WRITE (3'5,) X(5)

then the data format is implied by the following rules. &

On input, data items are delimited not by field width but by the occur-
rence of either a space, comma, or line terminator.! For each variable
in the input/output list, one item is read, converted to the data type
- of the variable, and stored. 1In all cases, a value will be assigned to
each variable even if the value cannot be properly converted. For in-
stance, if the value read for an integer variable exceeds the maximum ™.

value for integers, the maximum value will be assigned.

If an illegal character appears in any data item, an error message is
printed and then input continues. For keyboard input, the user may
reenter the erroneous line. The following indicate the acceptable forms

of data items under implied format control:

1. Alphanumeric Literals - The rules for forming alphanu-
meric literals are given in Section 2.2.7.1. If more
than five characters are specified within the delimiters T,
of a literal, conly the first five are stored; the remain-
der are discarded. Following the string delimiter (norm- -
ally a single quote) must be a data item delimiter (space,
comma, or line terminator). If more than two characters
are expected in an alphanumeric literal, it should be as-
signed to a double integer variable. The nH text form
of Hollerith constant is not acceptable as a substitute
for an alphanumeric literal. Some examples of alphanu-
meric literals are:

'"TITLE' T,
573" i
'A+B="

2. Decimal and Octal Constants - The rules of formation for
the numeric constants appear in Sections 2.2.1, 2.2.2,
2.2.3, and 2.2.4. An octal integer whose magnitude ex- dh
ceeds 131071 will be considered to be a double integer
even if D is not supplied. Some examples follow:

123

-12.3
-1.23E+2
+10@.234D+15

#123 .
$1.23
$D1234567

lcarriage Return and Altmode are ASCII line terminator characters.




Format Statements

3. Logical Constants - The rules for forming a logical con-
stant appear in Section 7.2.8. Examples of these are:

T

F

AATRUE

.FALSE.
On output, the variable name (with subscript if it is an array element)
followed by an equals sign followed by the variable's value are output

according to the variable's data type.

Variable Type Implied Output Format
LOGICAL Ll

INTEGER 17

DOUBLE INTEGER I12

REAL G16.8

DOUBLE PRECISION D20.11

Example

LOGICAL L

DOUBLE INTEGER DI
DOUBLE PRECISION  DP(S)
I=#100

DI=12345678

R=99.9
DP(1)=9.99999999D3944
L=.TRUE.

WRITE (10,) L,I,DI,R,DP(1)

The resulting output would appear as:

IL|=T

'I=AAAAAG4
'DI'=AAAAL12345678
'R'=AAA99.900000AAAA

'DP (1) '=A0.9999999900D3945

7.8 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT LISTS

Format control is initiated with the beginning of execution of a for-
matted I/0 statement. Each action of format control depends on infor-
mation provided jointly by the next element of the I/O list (if one
exists) and the next field descriptor of the FORMAT statement or format
array or the implied format specification. Both the I/0 list and the
format specification, except for the effects of repeat counts, are
interpreted from left to right.




Format Statements

1f the I/0 statement contains an I/0 list, at least one field descrip-
tor of a type other than H, X, T or P must exist in the format specifi-

cation.

When a formatted input statement is executed, it reads one record from
the specified device and initiates format control; thereafter, addi-
tional records may be read as indicated by the format specification.
Format control demands that a new record be input whenever a slash is

encountered in the format specification, or when the last outer right

parenthesis of the format specification is reached and I/O list elements

remain to be filled. Any remaining characters in the current record

are discarded at the time the new record is read.

When a formatted output statement is executed, it transmits a record

to the specified device as format control terminates. Records may also
be output during format control if a slash appears in the format speci-
fication or if the last outer right parenthesis is reached and more I/0

list elements remain to be transmitted.

Each field descriptor of types I, O, F, E, D, G, L, A, and R corre-
sponds to one element in the I/0 list. No list element corresponds to
an H, X, T, or alphanumeric literal field descriptor. In the case of
H and alphanumeric literal field descriptors, data transfer takes

place directly between the external record and the format specification.

When format control encounters an I, O, F, E, D, G, L, A, or R field
descriptor, it determines if a corresponding element exists in the I/O
list. 1If so, format control transmits data, appropriately converted to
or from external format, between the record and the list element, then
proceeds to the next field descriptor (unless the current one is to be
repeated). If there is no associated list element, format control ter-

minates.

When the last outer right parenthesis of the format specification is
reached, format control determines whether or not there are more I/O
list elements to be processed. If not, format control terminates. If
additional list elements remain, however, the current record is termi-
nated, a new one initiated, and format control reverts to the rightmost
top-level group repeat specification (the one whose left parenthesis
matches the next-to-last right parenthesis of the format specificétion).

If no group repeat specification exists in the FORMAT statement or

™

{a




Format Statements

format array, format control returns to the initial left parenthesis

of the format speeifiCation. Data transfer continues from that point.
7.9 SUMMARY OF RULES FOR FORMAT STATEMENTS

The following is a summary of the rules pertaining to the construction
and use of the FORMAT statement or format'array and its components, and
to the construction of the external fields and records with which a
format specification communicates. . The rules for implied format I/O

are covered in Section 7.7.
7.9.1 General

1. A FORMAT statement must always be labeled.

2. In a field descriptor such as rIw or nX, the terms r,
w, and n must be unsigned integer constants greater
than zero. The repeat count may be omitted; the field
width specification must be present.

3. In a field descriptor such as Fw.d, the term d must be
an unsigned integer constant. It must be present in
F, E, D, and G field descriptors even if it is zero.
The decimal point must also be present. The field
width specification, w, must be greater than or equal
to d.

4. In a field descriptor such as nHclc2 ... cn, exactly
n characters must be present. Any printable ASCIT
character, including space, may appear in this field
descriptor (an alphanumeric literal field descriptor
follows the same rule).

5. In a scale factor of the form nP, n must be a signed
or unsigned integer constant. Use of the scale fac-
tor applies to F, E, D, and G field descriptors only.
Once a scale factor has been specified, it applies to
all subsequent real or double precision field descrip-
tors in that format sp601flcatlon until another scale
factor appears; an explicit 0P spec1flcat10n is re-
quired to relnstate a scale factor of zero.

6. No repeat count is permltted in H, X, T or character
constant descriptors unless those field descriptors
are enclosed in parentheses and treated as a group
repeat specification.

7. .If an I/0 list is present in the associated I/0 state-
ment, the format specification must contain at least
one fleld descriptor of a type other than H, X, T or
alphanumeric literal.

8. A format specification in an array must be constructed
identically to a format specification in a FORMAT state-
ment, 1nclud1ng the 1n1t1al and terminal parentheses.




Format Statements

When a format array name is used in place of a FORMAT
statement label in an I/0 statement, that name must
not be subscripted.

7.9.2 Input

1. An external input field with a negative value must be
preceded by a minus symbol; a positive-value field
may optionally be preceded by a plus sign.

2. An external field whose input conversion is governed
by an I field descriptor must have the form of a deci-
mal integer constant. An external field input under
control of an O field descriptor must have the form of
an octal integer constant without a leading pound sign
(#) or D designator. Neither may contain a decimal
point or an exponent.

3. An external field whose input conversion is handled by
an ¥, E, or G field descriptor must have the form of
an integer constant or a real or double precision con-
stant. It may contain a decimal point and/or an E or
D exponent field.

4., If an external field contains a decimal point, the ac-
tual size of the fractional part of the field, as indi-
cated by that decimal point, overrides the d specifica-~
tion of the associated real or double precision field
descriptor.

5. If an external field contains an exponent, it causes
the scale factor (if any) of the associated field de-
scriptor to be inoperative for the conversion of that
field.

6. The field width specification must be large enough to
accommodate, in addition to the numeric character
string of the external field, any other characters that
may be present (algebraic sign, decimal point, and/or
exponent) .

7. When data are read via implied format, a comma is the
only character that is acceptable for use as an external
field separator. It is used to terminate input of fields
that are shorter than the number of characters expected,
or to designate null (zero-length) fields.

7.9.3 Output

1. A format specification must not demand the output of
more characters than can be contained in the external
record (for example, a line printer record cannot con-
tain more than 133 characters including the carriage
control character).

2. The field width specification, w, must be large enough
to accommodate all characters that may be generated by
the output conversion, including an algebraic sign,




Format Statements

decimal point, and exponent (the field width specifica-
tion in an E field descriptor, for example, should be
large enough to contain (d+7) characters).

The first character of a record output to a printing
device is used for carriage control; it is never
printed. The first character of such a record should
be a space, 0, 1, or +. Any other character is treated
as a space and is deleted from the record.







CHAPTER 38

SUBPROGRAMS

A subprogram is a program which is invoked by name from other progfams
(with the exception of an arithmetic statement function) whenever the
operations it performs are required. It is a convenient and efficient
means for encoding frequently used or complex operations since the
statements appear only once in the object program regardless of the
number of times they are used. In addition, a subprogram may be de-

signéd to handle a variety of different values which may be transmitted

‘as arguments whenever the subprogram is invoked. The process of estab-

lishing a subprogram is referred to as subprogram definition; the state-
ments to be executed are referred to as the body of the subprogram;
the process of invoking the subprogram and transmitting arguments is

referred to as a subprogram call.

FORTRAN subprograms are divided into two general classes: those that
are written by the user and those that are supplied by the FORTRAN sys-
tem. User-written subprogréms are grouped into/the categories of func-
tions, which includes both arithmetic statement functions and FUNCTION
subprograms, subroutines, and BLOCK DATA subprograms.

8.1 USER-WRITTEN SUBPROGRAMS

One difference between functions and subroutines is that control is
transferred to a function by means of a function reference while con-
trol is passed to a subroutine by a CALL statement. A function refer-
ence is simply the name of the function, together with its arguments,

appearing in an expression.

A second difference is that a function returns a value to the calling

program whenever a normal RETURN statement is executed (without a




Subprograms

statement return variable). Both functions and subroutines may return

additional values via assignment to their arguments.

Arguments are represented in two ways: as dummy arguments and as actual
arguments. Dummy arguments appear in the FUNCTION statement, SUBROUTINE
statement, or arithmetic statement function definition and are used to

represent the value of the corresponding actual argument. Actual argu-

ments appear in the function reference or CALL statement and provide

actual values to be used for computation. The actual and dummy argu-

ments become associated at the time control is transferred to the sub-

program. Actual arguments may be constants, variables, array names, oy

array elements, subprogram names, or expressions.

8.1.1 Arithmetic Statement Function (ASF)

An arithmetic statement function is a computing procedure defined by a
single statement, similar in form to an arithmetic assignment statement.
The appearance of a reference to the function within the same program
unit causes the computation to be performed and the resulting value made

available to the expression in which the ASF reference appears.

The statement that defines an arithmetic statement function is non-

executable and appears in the following general form:

f (pl,pl...)=e
£ is a symbolic name of the ASF in the same form as a
variable name e

P is a symbolic name of a dummy argument in the same
form as a variable name

e is an arithmetic expression that defines the computa-
tion to be performed by the ASF N
A function reference to an ASF is executable and takes the form:

£ (plspl...)

where £ is the name of the ASF, and each p is an actual argument. An »

actual argument may be any arithmetic expression.

When a reference to an arithmetic statement function appears in an ex- Y

pression, the values of the actual arguments are associated with the




P
/ :

£

il s

Subprograms

dummy arguments in the ASF definition. The expression in the defining
statement is then evaluated and the resulting value is used to complete

the evaluation of the expression containing the function reference.

The data type of an ASF is determined either implicitly by the initial
letter of the name or explicitly by appearance in a data type declara-

tion statement.

The expression, e, which defines the value of an ASF may include dummy
variables, ordinary variables, non-Hollerith constants, and previously-
defined external functions and arithmetic statement functions. The
dummy variables used to define the ASF may also appear in a specifica-
tion statement, other than COMMON, DATA and EQUIVALENCE, but in no other
context. Up to 20 dummy arguments may appear in a single definition.

The definition of aﬁ ASF must not contain a reference to itself.

Any dimensioning information associated with the dummy argument name
will be ignored in the ASF. The name of the ASF, however, cannot be

used to represent any other entity within the same program unit.

Any reference to an ASF must appear in the same program unit as the
definition of that function.

An ASF reference must appear as, or be part of, an expression; it must

not be used as a variable or array name on the left of an equal sign.

Actual arguments must agree in number, order, and data type with their
corresponding dummy arguments. Values must have been assigned to them

before control is transferred to the arithmetic statement function.

Examples
ASF Definitions
VOLUME (RADIUS) = 4.189*RADIUS**3
SINH (X) = (EXP(X)-EXP(-X))*0.5
AVG(A,B,C,3.) = (A+B+C)/3. (Invalid; constant as dummy

argument not permitted)

In the second example, the function EXP is an exponential function sup-
plied in the FORTRAN Library. It raises the value of the mathematical
constant e (approximately 2.71828) to the power of the argument.




Subprograms

ASF References ﬂma
AVG(A,B,C) = (A+B+C)/3. (Definition)
GRADE = AVG(TEST1,TEST2,XLAB)
IF (AVG(P,D,Q).LT.AVG(X,Y,Z)) GO TO 300
FINAL = AVG(TEST3,TEST4,LAB2) (Invalid; data type of third
argument does not agree with o
dummy argument)
8.1.2 FUNCTION Subprogram
. ~
A FUNCTION subprogram is a program unit that consists of a FUNCTION
statement followed by a series of statements that define a computing ”“ﬁ
procedure. Control is transferred to a FUNCTION subprogram by a func- .
™
tion reference and returned to the calling program unit by a RETURN
Statenent.
A FUNCTION subprogram returns a single value to the calling program
unit by assigning that value to the function's name. The data type of
the value returned is determined by the function's name. N
The FUNCTION statement appears in the following general form:
[typ] FUNCTION nam pl,pl...)
typ 1s a type specifier, such as INTEGER, REAL, etc.
nam 1is a symbolic name of the function in the same —
form as a variable name ™
P is a symbolic name of a dummy argument, which
must be an unsubscripted symbolic name
. f\(
A function reference that transfers control to a FUNCTION subprogram
takes the general form:
nam (pl(,pl...)
where nam is the symbolic name of the function to receive control, and
each p is an actual argument, which may be any valid expression or the o
name of an external function or subroutine. There may be up to 20
arguments. -




Subprograms

When control is transferred to a FUNCTION subprogram, the values sup-
plied by the actual arguments are associated with the dummy arguments

in the FUNCTION statement. The statements in the subprogram are then
executed, using those values. The name of the function must be assigned
a value before a RETURN statement is executed in that function. When
control is returned to the calling program unit, the value thus assigned
to the function's name is made available to the expression that contains
the function reference, and is used to complete the evaluation of that

expression. A function reference may appear only in an expression.

The type of a function name may be specified implicitly, explicitly in

the FUNCTION statement, or explicitly in a type declaration statement.

The FUNCTION statement must be the first statement of a function sub-
program. It must not be labeled.

Dummy arguments must not appear in EQUIVALENCE, COMMON, or DATA state-

ments, within the subprogram.

A FUNCTION subprogram must not contain a SUBROUTINE statement, a BLOCK
DATA statement, or a FUNCTION statement other than the initial state-
ment of the subprogram. -

If an actual argument is a constant, subprogram name, or statement label,
the function must not attempt to alter the value of the'correspondihg

dummy argument.

A FUNCTION subprogram may contain references to other subprograms, but
not to itself; recursion is not allowed.

Actual arguments must agree in number, order, and data type with the
dummy arguments of the function. The type of the function name as de~
fined in the FUNCTION subprogram must be the same as the type of the

function name in the calling program unit.

They need not all be of the same type and need not be of the same type

as the function name.

When arrays are involved, DIMENSION statements (or the equivalent) must
appear for the actual arrays in the calling program and for the corre-
sponding dummy arrays in the body of the subprogram. If the dummy vari-
able is not used as an array name (discussed below) then a DIMENSION

8-5




Subprograms

statement is not used in the subprogram, although it is still necessary

in the calling program.

For example:

Eed

Calling Program

DIMENSION SQUARE (10,10)
BASE = 1.0E-05+AVG (SQUARE,100)

§x

Subprogram
FUNCTION AVG(A,TI) o
DIMENSION A (I) ’

In the above example, the FUNCTION subprogram to compute an average !

value of all the elements of an array uses two dummy arguments; one is

).

the dummy array name and the other is the dummy array size. Both are

used in a dimension statement within the function subprogram. Using

an adjustable array in this fashion allows the subprogram to know each

time it is called how large the array is. Note that the actual array

has two dimensions but that the dummy array has one. The number of

subscripts in the dummy array need not correspond with the number of SN
subscripts in the actual array. Also, the dummy array size need not L i
be the same as that of the actual array. If it is larger, however,

one runs the risk of accessing undefined data unless it is known what

follows the actual array in core storage due to COMMON and/or EQUIVAL-

ENCE statements.

If the actual argument in a call or reference to a subprogram is an
array name, the corresponding dummy argument need not be an array name.
If it is, the subprogram will have access to the entire array (provided
that the dimensions are equivalent). If it is not, it is a simple

variable which becomes equated with the first element of the array. -~
For example:

Calling Program

DIMENSION X (200)
ANS=F (X)

Subprogram

FUNCTION F (A)
F=A**2+0.9




Subprograms

If the value stored in the first element of array X were X(1)=0.1,
then the evaluation of the function would be equivalent to F(X(1l))=0.1
**2+0.9 which becomes 0.91.

If the actual argument is not an array name, but is a simple variable,
array element, or constant, the dummy variable associated with it may
be an array name or simply a variable name. If the dummy argument is
an array name, then the actual argument, if it is a variable name or
array element, is treated as the first element of the dummy array.
There are two practical cases where this makes sense. The first is
where the actual variable is equated with an element (not necessarily
the first) of an actual array or the actual element is passed in the

call. For instance,

Calling Program

DIMENSION A(100)
ANSWER=SUM (A (1))

ANSWER=SUM (A (51) )

Subprogram

FUNCTION SUM(WINDOW)
DIMENSION WINDOW(50)
SUM=0

DO'1 I=1,50
SUM=SUM+WINDOW (I)
RETURN

END

Here a subprogram is called twice to compute the partial sum of elements
within a 50-word window in an array. The actual argument transmitted
is not an array name but an array element; however, the dummy argument
is an array name. The second practical case where the dummy wvariable
is an array name but the actual argument is a variable or array element
occurs when the passed argument is a variable equated to an element of
an array or is an element in a common block in which more elements fol-

low. The following example shows a permissible sequence:

Calling Program

COMMON A (10), B(20)
EQUIVALENCE (C,A(6))
R=F (C)




Subprograms

Subprogram

FUNCTION F (X)
DIMENSION X (25)

This sequence allows function F to access the last five elements of

array A and all twenty elements of array B as a single array X.

Finally, the case where the actual argument is a constant and the dummy
argument is an array name, is meaningless and errors are certain to oc-

cur.

The logical termination of a FUNCTION subprogram is signalled by a
RETURN statement. The physical end is indicated by an END statement.

Example

FUNCTION ROOT (A)
X =1.0

2 EX = EXP(X)
EMINX = 1./EX

ROOT = ((EX+EMINX)*,5+C0OS(X)-A)/((EX - EMINX)*.5-SIN(X))
IF (ABS(X-ROOT).LT.1.E-6) RETURN

X = ROOT

GO TO 2

END

The function in this example uses the Newton-Raphson iteration method

to obtain the root of the function:

F(X) = cosh(X) + cos(X) - A =20

where the value of A is passed as an argument. The iteration formula

for this root is:

Cosh (Xi)+cos(Xi)-A
sinh (Xi)-sin (Xi)

Xi+l = Xi -

which is repeatedly calculated until the difference between Xi and Xi+l
is less than 1 x 10_6. The function makes use of the FORTRAN Library
functions EXP, SIN, COS, and ABS.

,A§

P
kY




Subprograms
8.1.3 SUBROUTINE Subprogram

A SUBROUTINE subprogram is a program unit that consists of a SUBROUTINE
statement followed by normal FORTRAN statements with the added require-
ment that the body of the SUBROUTINE contain at least one RETURN state-
ment. The RETURN statement is the logical end of a subroutine; whereas,
the END statement is the‘physical END of the subroutine.

Control is transferred to a subroutine by a CALL statement and returned

to the calling program unit by a RETURN statement.
The SUBROUTINE statement appears in the following‘form:
SUBROUTINE nam [(p[,pl...)]

nam 1is the symbolic name of the subroutine, of the same
form as a variable name.

P is a dummy argument, which must be an unsubscripted
symbolic name

The form of the CALL statement is described in Section 4.5, and the
RETURN ‘statement in Section 4.6. The ability to have several return

points is explained in these sections.

When control is transferred to the subroutine, the values supplied by
the actual arguments (if any) in the CALL statement are associated with
the corresponding dummy arguments (if any) in the SUBROUTINE statement,
making those values available to the subprogram.

The SUBROUTINE statement must be the first statement of a subroutine;
it must not have a statement label.

The argument list in a SUBROUTINE statement may contain up to 2§ dummy
arguments, or none. Dummy arguments must not appear in a COMMON, DATA,
or EQUIVALENCE statement within the subprogram.

A subroutine cannot contain a FUNCTION statement, a BLOCK DATA state-
ment, or a SUBROUTINE statement other than the initial statement of the
subprogram. A CALL statement in a subroutine may ‘transfer control to
other subroutines but must not transfer control to the subroutine of
which it is a part.




Subprograms

The name of the subroutine must not be used as a variable in the call-
ing program unit and may not appear within any statement in the body
of the subroutine. Because the subroutine name, unlike a FUNCTION sub-
program name, is not associated with a data value to be returned to

the caller, the subroutine name is not typed (see Section 2.0).

Statements in a subroutine may establish or redefine values for any dummy
argument whose associated actual argument is not a constant, expres-
sion, subprogram name, or statement label. In such a case, the dummy
argument in the body of the subroutine must appear either on the left-
hand side of an arithmetic assignment statement or in a variable list

as part of a READ statement.

Actual arguments in a CALL statement must agree in number, order, and
data type with the dummy arguments in the corresponding SUBROUTINE

statement.

When arrays are involved, DIMENSION statements (or the equivalent) must
appear for the actual arrays in the calling program and for the corre-
sponding dummy arrays in the body of the subprogram. If the dummy
variable is not used as an array name (discussed below) then a DIMEN-
SION statement is not used in the subprogram, although it is still

necessary in the calling program.

The number of subscripts in the dummy array and its total size need
not match that of the actual array. Analogous examples in Section

8.1.2 on FUNCTION subprograms explain the consequences.

If the actual argument in a call or reference to a subprogram is an
array name, the corresponding dummy argument need not be an array name.
If it is, the subprogram will have access to the entire array (pro-
vided that the dimensions are equivalent). If it is not, it is a
simple variable which becomes equated with the first element of the

array.

If the actual argument is not an array name, but is a simple variable,
array element or constant, the dummy variable associated with it may

be an array name or simply a variable name. If the dummy argument is
an array name, the actual argument, if it is a variable name or array

element, is treated as the first element of the dummy array.




Examples

Subprograms

Main Program

DIMENSTON adL0o0yy B0 COLOM

(TR

*
£

k3

MERGE (AsRBeCy 1000

SUBROUTINE Subprogram

10

In this example, a subroutine is called to merge two arrays into a

SUBROUTINE MERGE (XeYy&d»l
DIMENSTON X(I)y Y(Ixs ZOI

ny 10 J=Le I

L0Sy=Y ()

TF X)L GE . YY)
RETURN

ENI

}
)

AR

¥

Fa

(QVD]

third, keeping the largest value of each element.

Main Program

"

G

3

COMMON NFaARES » EDGE » VOLUME

“

P

°

[3

+
RE&L (G685 NFAGESy EDGE

FORMAT (L2 F8.5)
Call. PLYMOL

L




Subprogram

SUBROUTINE Subprogram

iy MOLUME

SrRedrIrdrdrd Ay S e S e SrderdededeBed Yy NFADES
GellTRS

B awl
CUBED

CUBET ¥ 0.47140
CURET & 7.86863132
= GURBED & 218170

(FelG0r MFACES
MO REGUALRE POLYHEDRON Hag o137 FACES. )

The subroutine in this example computes the volume of a regular polyhe-
dron, given the number of faces and the length of one edge. It uses the
computed GO TO statement to determine whether the polyhedron is a tetra-
hedron, cube, octahedron, dodecahedron, or icosahedron, and to transfer
control to the proper procedure for calculating the volume. If the num-
ber of faces of the body is other than 4, 6, 8, 12, or 20, the subrou-
tine displays an error message on the user's terminal. Note that in
this example the subroutine arguments, rather than being passed in the
CALL statement, are stored in common which can be accessed by both the

main program and subroutine.

8.1.4 ENTRY Statement

The ENTRY statement provides multiple entry points within an external

subprogram. It is not executable and can appear within a function or

subroutine subprogram after all specification statements and statement

function definitions. Execution begins with the first executable state-
ment following the ENTRY statement.

An ENTRY statement may appear in the following form:

ENTRY nam (pl[,pl-..)




—

B

Subprograms

nam is the entry name

jo) is a dummy argument.

The entry name must not be referenced from inside the program unit in

which it appears.
The ENTRY statement cannot appear within a DO loop.

Entry names appearing in ENTRY statements within SUBROUTINE subprograms
must be referenced by CALL statements, and entry names appearing in
ENTRY statements within FUNCTION subprograms must be referenced as ex-

ternal function references.
A function entry name can appear in a type statement.

Any entry name can appear in an EXTERNAL statement and be used as an
actual argument; the entry name in an ENTRY statement cannot be a dummy

argument.

Entry names cannot appear in executable statements that physically pre-

cede the appearance of the entry name in an ENTRY statement.

The order, number, type and names of the dummy arguments in an ENTRY
statement can be different from the‘order, number, type and names of
the dummy arguments in the FUNCTION statement, SUBROUTINE statement,
and other ENTRY statements in the same subprogram. However, each ref-
erence to a function, subroutine, or entry must use an actual argument
list that agrees in order, number and type with the dummy argument list
in the corresponding FUNCTION, SUBROUTINE, or ENTRY statement. The
dummy arguments of an ENTRY may appear in the body of the subprogram
prior to the ENTRY statement only if they are also arguments of a prior
ENTRY or of the SUBROUTINE or FUNCTION definition;

8.1.4.1 ENTRY in Function Subprogram - The function and entry names
are not required to be the same type, but at the execution of a RETURN
statement, the name used to reference the function subprogram must be
defined. Note that an entry name cannot appear in executable state-
ments that precede the appearance of the entry name in an ENTRY state-
ment.




Subprograms

8.1.4.2 ENTRY and Array Declarator Interaction - A dummy argument is
undefined if it is not currently associated with an actual argument.

An adjustable array is undefined if the dummy argument array is not
currently associated with an actual argument array or if any of the
variables appearing in the adjustable array declarator are not cur-
rently associated with an actual argument or are not in a COMMON block.
Although an adjustable array name and its adjustable dimensions may ap-
pear as dummy arguments in the ENTRY statement, no size adjustment of
the array is performed. Such adjustable arrays must first be dimen-
sioned following the SUBROUTINE or FUNCTION definition, and the array
cannot be referenced unless entry is first made at the SUBROUTINE or
FUNCTION definition. Note that there is no retention of argument as-
sociation between one reference of a subprogram and the next reference

of that subprogram. Consider the following example:

SUBROUTINE S(A,I,J)
DIMENSION A(I)

A(I) = J

ENTRY S1(I,A,2)
A(I) = A(I) + 1
ENTRY S2

RETURN

END

If B is a real array with 10 elements, as in
DIMENSION B(10)

then the statement
CALL S(B,2,3)

would set B(2) = 4 and the statement
CALL S1(5,B)

would increment B(5) by 1.

A single function routine that provides the hyperbolic functions sinh,

cosh, and tanh appears in Figure 8-1.

4




G

Subprograms

FRE Al FUNCTIDN TENH X0

& ABF TO COMPUTE TWICE S1TNH
THINHOY ) = EXPY) -~ EXF{-Y3

: ABF TO COMPUTE TWICE COSH
TCOHHIY Y = EXFY) 4+ EXPO-YD

[ COMPUTE TadH

TaH = THEINHCXY / TCOBHOD
RETURN

G COMPUTE SINH

ENTRY SIMHX
. = THIMMOXY A0 2.0

G COMPUTE COSH

SNTRY COSHOX
iMom TROBHKY /2.0

EM

. . Figure 8-1
A Single Functlor} Subprogram to Provide the Hyperbolic
Functions SINH, COSH, and TANH '




Subprograms

8.1.5 BLOCK DATA Subprogran

A BLOCK DATA subprogram is used to assign initial values to entities
in a single labeled common block, at the same time establishing and
defining that block. It consists of a BLOCK DATA statement followed

by a series of nonexecutable statements (specification statements).

The BLOCK DATA statement appears in the form:

BLOCK DATA

The statements allowed in a BLOCK DATA subprogram are: Type Declara-
tion, IMPLICIT, DIMENSION, COMMON, EQUIVALENCE, and DATA statements.

The BLOCK DATA subprogram functions at compilation time only. The
specification statements in the subprogram establish and define a
common block, assign variables and arrays to that block, and place

initial data in those components.

The BLOCK DATA subprogram is the only way in which components in
labeled common blocks can be initialized. Components in blank common

can never be initialized.

A BLOCK DATA statement must be the first statement of a BLOCK DATA

subprogram. It must not be labeled.
A BLOCK DATA subprogram must not contain any executable statements.

If any entity in a labeled common block is initialized in a BLOCK DATA
subprogram, a complete set of specification statements to establish
the entire block must be present, even though some of the components

in the block do not appear in a DATA statement.

More than one common block may be defined in a BLOCK DATA subprogram;
however, DATA statements must be used only to initialize the last
block. To initialize more than one named common block, one must use
more than one BLOCK DATA subprogram. The following example, although

it will not cause a compilation error, will not function properly.

BLOCK DATA

COMMON /N1/I(10)/N2/J(20)
DATA I/10%1/,3/20%2/

END

.




Subprograms

Example

BLOCK DATA
INTEGER S,X

LOGICAL T,W

DOUBLE PRECISION U

DIMENSION R(3)

COMMON /AREA1l/R,S,T,U,W,X,Y

DATA R/1.0,2*2.0/,T/.FALSE./,U/0.214537D-7/,W/.TRUE./,Y/3.5/
END

8.2 FORTRAN LIBRARY FUNCTIONS

The FORTRAN library functions are listed in Table B-1. In order to use
a library function in any FORTRAN program, it is only necessary to use
the symbolic name of the function, together with the required data ref-
erences (arguments) upon which the function is to act. The value ob-

tained from the execution of the function is made available to the con-

taining expression. For example,
J = IFIX(2*SQRT(C))

where SQRT is an external library function and IFIX is an intrinsic

library function.

The data type of each library function is predefined as described in
Table B-1l. Arguments passed to these functions may consist of sub-
scripted or simple variable names, expressions, constants, arithmetic
functions. Arguments to these functions must correspond to the type
indicated in Table B-1.







APPENDIX A

CHARACTER CODES

A.l FORTRAN CHARACTER SET

The FORTRAN character set consists of:

1.
2.
3.

The letters A through Z
The numerals 0 through 9

The following special characters:

Character

A
*,

+

-~ N ®

o b

® F= o~

Name

Space or blank or tab
Tab

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis

Right Parenthesis
Comma

Decimal Point
Apostrophe (Single Quote)
Double Quote

Dollar Sign

Left (Open) Bracket
Right (Close) Bracket
Colon

Semicolon

Sharp Sign (Pound Sign)
At sign



Character Codes

Other printable characters may appear in a FORTRAN statement only as

part of a Hollerith constant, alphanumeric literal, or a comment.

A.2

ASCII CHARACTER CODE

The following table shows the correspondence between the PDP-15 64-
character graphic subset of ASCII and the DEC 029/026 Hollerith codes.

Both 029 and 026 codes are identical for numeric and alphabetic char-

acters but vary for symbol representation.

indicated by brackets [],

The 029 code,
is a subset of the standard Hollerith punched
card code specified in ANSI standard X3.26-1970.

except as

PARITY PARITY
CHARACTER ASCII DECO029 DEC026 CHARACTER ASCII DEC029 DEC026
SPACE 240 NONE NONE @ 300 8 4 8 4
! 041 11 8 2 12 8 7 A 101 121 12 1
" 042 8 7 085 B 102 12 2 12 2
# 243 8 3 086 C 303 12 3 12 3
$ 044 11 8 3 11 8 3 D 104 12 4 12 4
% 245 08 4 08 7 E 305 12 5 12 5
& 246 12 11 8 7 F 306 12 6 12 6
! 047 8 5 8 6 G 107 12 7 12 7
( 050 12 8 5 0 8 4 H 110 12 8 12 8
) 251 11 8 5 12 8 4 I 311 12 9 12 9
* 252 11 8 4 11 8 4 J 312 11 1 11 1
+ 053 12 8 6 12 K 113 11 2 11 2
’ 254 08 3 08 3 L 314 11 3 11 3
- 055 11 11 M 115 11 4 11 4
. 056 12 8 3 12 8 3 N 116 11 5 11 5
/ 257 01 01 0 317 11 6 11 6
0 060 0 0 P 120 11 7 11 7
1 261 1 1 Q 321 11 8 11 8
2 262 2 2 R 322 11 9 11 9
3 063 3 3 S 123 02 0 2
4 264 4 4 T 324 03 0 3
5 065 5 5 8] 125 0 4 0 4
6 066 6 6 Y 126 05 05
7 267 7 7 W 327 0 6 06
8 270 8 8 X 330 07 07
9 071 9 9 Y 131 0 8 0 8
: 072 8 2 11 8 2 Z 132 09 09
; 273 11 8 6 08 2 [ 333 12 8 2 11 8 5
< 074 12 8 4 12 8 6 \ 134 11 8 7 8 7
= 275 8 6 8 3 ] 335 08 2 12 8 5
> 276 086 11 8 6 + or 336 11 8 7 8 5
? 077 087 12 8 2 < or 137 0 8 5 8 2

1. ASCII codes
DEC 026 and
here.

2. ALT MODE is

simulated by a 12-8-1 punch (multiple punch A8).

00-37 and 140-177 have no corresponding codes in the
029 Hollerith sets and therefore, are not presented

3. End-of-file corresponds to a 12-11-0-1 punch (multiple punch A0-1).

A=2

J




P

APPENDIX B

FORTRAN LANGUAGE SUMMARY

B.1l EXPRESSION OPERATORS

Operators in each type are shown in order of descending precedence.

Type Operator Operates Upon
Arithmetic *% exponentiation arithmetic or logical
- unary minus constants, variables,
*,/ multiplication, array elements, func-
division tion references and
+, - addition and expressions
subtraction
(but not unary
minus)
Relational .GT. greater than arithmetic or logical
.GE. greater than or constants, variables,
equal to array elements, function
LT less than references, and expres-
.LE. less than or sions (all relational
equal to operators have equal
.EQ. equal to priority)
NE. not equal to
Logical .NOT. .NOT.A is true logical or integer
if and only if constants, variables,
A is false array elements,
function references
JAND. A.AND.B is true and expressions
if and only if A
and B are both
true .
.OR. A.OR.B is true
: - 1if and only if
either A or B or
both are true
.XOR. A.XOR.B is true
if and only if A
.is true and B is
false, or B is
true and A is
false.




FORTRAN Language Summary

B.2 STATEMENTS

The following summary of statements available in the XVM FORTRAN
language defines the general format for the statement. If more de-
tailed information is needed, the reader is referred to the Section(s)

in this manual dealing with that particular statement.

Manual
Statement Formats Effect Section
Arithmetic/Logical Assignment
vl=V2=...=vn=e 3.1
v is a variable name or an array element name
e is an expression
The value of the arithmetic or logical
expression is assigned to each variable,
from right to left.
Arithmetic Statement Function
f(pl,p]...)=¢e 8.1.1
£ is a symbolic name
o) is a symbolic name
e is an arithmetic expression
Creates a user-defined function having
the variables p as dummy arguments.
When referenced, the expression is
evaluated using the actual arguments in
the function call.
ASSIGN s TO v 3.3
S is an executable statement label
v is an integer variable name
Associate the statement number s with
the integer variable v for later use in
an assigned GO TO statement.
BACKSPACE u 6.8.2

u is an integer variable or constant

The currently open file on logical unit
number u is backspaced one record.




FORTRAN Language Summary

Manual
Statement Formats : Effect Section

BLOCK DATA 8.1.5

N Specifies the subprogram which follows
as a BLOCK DATA subprogram.

CALL s[(al,al...)] 4.5
s is a subprogram name

a is an expression, a procedure name, or an
array name

Calls the SUBROUTINE subprogram with the
name specified by s, passing the actual
arguments a to replace the dummy argu-
ST ments in the SUBROUTINE definition.

COMMON [/[cbl/] nlist [/[cbl/ nlist]... 5.4
cb is a common block name

nlist is a list of one or more variable names, ar-
ray names, .or array declarators separated by
commas .,

Eal Reserves one or more blocks of storage
space under the name specified to con-
tain the variables associated with that
block name.

CONTINUE 4.4

Causes no processing, and is most often
used to terminate DO loops.

DATA nlist/clist/[,nlist/clist/]... 5.7

nlist is a list of one or more variable names, ar-
ray names, or array element names separated
by commas. Subscript expressions must be
N constant.

clist is a list of one or more constants separated
by commas, each optionally preceded by j*,
. where j is a nonzero, unsigned integer con-
stant.

Causes elements in the list of values to
be initially stored in the corresponding
elements of the list of variable names.




FORTRAN Language Summary

Manual
Statement Formats Effect Section
DECODE (c,alf][,ERR=s]) [list] 6.9
c is an integer expression
a is an array name
£ is a FORMAT statement label or array name
s is a statement label
list is an I/0 list
Changes the elements in the I/O list
from ASCII into the desired internal
format; ¢ specifies the number of
characters, f specifies the format,
and a is the name of an array contain-
ing the ASCII characters to be converted.
DIMENSION a{(d)[,a(d)]... 5.3
a(d) is an array declarator
Specifies storage space requirements
for arrays.
DO s i = vl,v2[,[-]v3] 4.3
S is the label of an executable statement
i is an integer variable name
vn are integer expressions
1. Set i = vl
2. Execute statements through statement
number s
3. Evaluate 1 = izv3
4, Repeat 2 through 3 for
INT ((v2 - v1)/v3) iterations.
ENCODE (c,alf][,ERR=s]) [list] 6.9
c is an integer expression
a is an array name
f is a FORMAT statement label or an array name
s is a statement label
list is an I/0 list




s

P

ENCODE (cont.)

END

ENDFILE u

u

ENTRY nam

nam

p

- Statement Formats

FORTRAN Language Summary

Effect

Changes the elements in the list of vari-
ables into ASCII format; c specifies the
number of characters in  the buffer,

f specifies the format statement number,
and a is the name of the array to be

used as a buffer.

Specifies the physical end of a program
unit. '

is an integer variable or constant

An end-file record is written on logical
unit u, following output statements to
that unit.

(pl,pl...)

is a symbolic name

is a symbolic name

Defines an alternate entry point within
a SUBROUTINE or FUNCTION subprogram.

EQUIVALENCE (nlist)[, (nlist)]...

nlist

is a list of two or more variable names,

array names, or array element names separated
by commas. Subscript expressions must be con-
stant. ' i ~

" Each of the names (nlist) within a set

EXTERNAL v[,v]...

v

is

a

EXTERNAL v[,v]...

v

is

a

of parentheses is assigned beginning at
the same storage location.

procedure name

Informs the system that the names speci-
fied are tho§e of FUNCTION or SUBROUTINE
programs.

procedure name

Informs the system that the names speci-
fied are user~defined.

Manual
Section




FORTRAN Language Summary

Statement Formats Effect

FORMAT (field specification,...)
Describes the format in which one or

more records are to be transmitted;
a statement label must be present.

[typ] FUNCTION nam(p[,pl...)

typ is a type specifier
nam is a symbolic name
P is a symbolic name

Begins a FUNCTION subprogram, indicat-
ing the program name and any dummy argu-
ment names, p. An optional type speci-~
fication can be included.

GO TO s
s is an executable statement label

(Unconditional GO TO) Transfers control
to statement number s.

GO TO (slist),v

slist is a list of one or more executable statement
labels separated by commas.

v is an integer variable

(Computed GO TO) Transfers control to
the statement label specified by the
value v. (If v=1 control transfers to
the first statement label. If v=2 it
transfers to the second statement label,
etc.) If v is less than 1 or greater
than the number of statement labels
present, no transfer takes place.

GO TO v[, (slist)]

v is an integer variable name

slist is a list of one or more executable statement
labels separated by commas

(Assigned GO TO) Transfers control to
the statement most recently associated
with v by an ASSIGN statement.

Manual
Section

7.1 -

4.1.1

4.1.2

7.8




FORTRAN Language Summary

: Manual
Statement Formats ; Effect Section
IF (e) vl,v2,v3 4.2.1
e is an expression
vi are executable statement labels or variables
to which statement labels have been ASSIGNed.
ﬁ (Arithmetic IF) Transfers control to
statement number vi depending upon the
value of the expression. If the value
of .the expression is less than zero,
ey transfer to vi; if the wvalue of the
s expression is equal to zero, transfer
to v2; if the value of the expression
e is greater than zero, transfer to v3.
s IF (e) st 4.,2.2
e is an expression
st is any executable statement except a DO or a
logical IF statement
(Logical IF) Executes the statement if
o the logical expression is true.
IMPLICIT typ (al,al...)[,typlal,al...)]... 5.1
typ is a data type specifier
a is either a single letter, or two letters in
alphabetical order separated by a dash (i.e.,
X=Yy)
. The elements a represent single (or a
S _ range of) letter(s) whose presence as
the initial letter of a variable speci-
fies the variable to be of that type.
—~ PAUSE [dlSp]\ t 4.7
disp is an octal integer constant.
Suspends program execution and prints
the display, if one is specified.
PRINT See WRITE, for which PRINT is a synonym. 6.4.5

I




FORTRAN Language Summary

Statement Formats Effect

READ (u,[f][,END=s] [,ERR=s]) [1list]

u is an integer variable or constant

£ is a FORMAT statement label or an array name
S is an executable statement label

list is an I/0 list

(Formatted Sequential) Reads at least
one logical record from device u accord-
ing to format specification f and assigns
values to the variables in the optional
list.

READ (u'r,[fl1[,ERR=s])[listl]

u is an integer variable or constant

r is an integer expression

£ is a FORMAT statement label or an ARRAY name
s is an executable statement label

list is an I/0 list

(Formatted Direct Access READ) Reads
record number r from unit u and assigns
values to the elements of the list ac-
cording to format f.

READ (u[ ,END=s] [ ,ERR=s]) [1list]

u is an integer variable or constant
s is an executable statement label
list is an I/0 list

(Unformatted Sequential READ) Reads one
unformatted record from device u, assign-
ing values to the variables in the optional
list.

READ(u'r[,ERR=s]) [list]

u is an integer variable or constant
r is an integer expression

s is an executable statement label
list is an I/0O list

Manual

Section

6.4.1




FORTRAN Language Summary

: Manual
Statement Formats Effect Section

(Unformatted Direct Access READ) Reads
N record r from logical unit u, assigning
) values to the variables in the optional
list.
RETURN [v] : : 4.6
v is an integer variable
Returns control to the calling program
from the current subprogram. If v is
specified, control is returned to the
statement label associated with v in
the subprogram call.
- REWIND u : : : 6.8.1
u is an integer variable or constant
~Repositions logical unit number u to the
beginning of the physical medium or to
the currently opened- file.
S STOP [disp] 4.8
disp is an octal integer constant
Terminates program execution and prints
the display, if one is specified.
SUBROUTINE nam[ (p[,;pl...)] : 8.1.3
nam is a symbolic name
P is a symbolic name
-Begins a SUBROUTINE subprogram, indi-

cating the program name and any dummy
argument names, p.: -

TYPE See WRITE, for which TYPE is a synonym.

Type declaration
typ vi,v]... 5.2
typ is a data type specifier, one of:

DOUBLE PRECISION
REAL

e DOUBLE INTEGER

‘ INTEGER
' LOGICAL




FORTRAN Language Summary

Manual
Statement Format Effect Section
Type Declaration
(cont.)
v is a variable name, an array name, a function
or function entry name, or an array declarator.
(Type Declarations) The symbolic names,
v, are assigned the specified data type
in the program unit.
WRITE (u,[f][,ERR=s]) [list] 6.4.2
u is an integer variable or constant
£ is a FORMAT statement label or an array name
S is an executable statement label
list is an I/0 list
(Formatted Sequential WRITE) Causes one
or more logical records containing the
values of the variables in the optional
list to be written onto device u, accord-
ing to the format specification f.
WRITE (u'r,[fl[,ERR=s]) [list] 6.6.2
u is an integer variable or constant
r is an integer expression
£ is a FORMAT statement label or an array name
s is an executable statement label
list is an I/0 list
(Formatted Direct Access WRITE) Causes a
record formed from the list and format f
to be written onto record r of unit u.
WRITE (ul,ERR=s]) [list] 6.3.2
u is an integer variable or constant
s is an executable statement label
list is an I/0 list

(Unformatted Sequential WRITE) Causes
one unformatted record containing the
values of the variables in the optional
list to be written onto device u.

o

™

PN




FORTRAN Language Summary

Manual

Statement Formats Effect Section

WRITE (u'r[,ERR=s]) [list] 6.5.2

u
r
S

list

END=s,ERR=s

is
is
is

is

an integer variable or constant
an integer expression

an executable statement label
an I/0 list

(Unformatted Direct Access WRITE) Causes
a record containing the values of the
variables in the list to be written onto
record r of logical unit u.

(Transfer of Control on end-of-file or
error condition) Is an optional element
in each type of I/O statement allowing
the program to transfer to statement -
number s on an end-of-file (END=) or
error (ERR=) condition.




FORTRAN Language Statements

Table B-1
FORTRAN Library Functions

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE
ABS (X) Real absolute wvalue Real Real
IABS(I) Integer absolute value Integer Integer
DABS (X) Double precision absolute value Double P Double P
JABS (I) Double Integer absolute value Double I Double I
FLOAT (I) Integer to Real conversion Integer Real
IFIX (X) Real to Integer conversion
IFIX(X) is equivalent to INT(X) Real Integer
SNGL (X) Double precision to Real conversion Double P Real
DBLE (X) Real to Double precision conversion Real Double P
JFIX(X) Real to Double integer conversion Real Double I
JFIX (X) Double precision to Double integer conversion Double P Double I
ISNGL (I) Double integer to integer conversion Double I Integer
JDBLE Integer to Double integer Double P Double I
JDFIX (X) Double precision to Double integer conversion Double P - Double I
FLOATJ (1) Double integer to Real conversion Double I Real
DBLEJ (T) Double integer to Double precision conversion Double I Double P
Truncation functions return the sign of the
argument * largest integer f_largl
AINT (X) Real to Real truncation Real Real
INT (X) Real to Integer truncation Real Integer
IDINT (X) Double precision to Integer truncation Double P Integer
JINT (X) Real to Double integer truncation Real Double I
JDINT (X) Double precision to Double integer truncation Double P Double T
Remainder functions return the remainder when
the first argument is divided by the second.
AMOD (X, Y) Real remainder (X/Y<131072) Real Real
MOD (I,J) Integer remainder Integer Integer
DMOD (X, Y) Double precision remainder (X/Y<131072) Double P Double P
JMOD (I,J) Double integer remainder (I/J3<131072) Double I Double I
Maximum value functions return the largest
value from among the argument list; > 2
arguments
AMAXO(I,J,...) Real maximum from Integer list Integer Real
AMAX1(X,Y,...) Real maximum from Real list Real Real
MAXO({(I,J,...) Integer maximum from Integer list Integer Integer
MAX1(X,Y,...) Integer maximum from Real list Real Integer
DMAX1 (X,Y¥,...) Double precision maximum from Double precision
list Double P Double P
JMAXO(I,J,...) Double integer maximum from Double integer list  Double I Double I
Minimum value functions return the smallest
value from among the argument list; > 2 argu-
ments -
AMINO(I,J,...) Real minimum of Integer list Integer Real
AMIN1(X,Y,...) Real minimum of Real list Real Real
MINO(I,J,...) Integer minimum of Integer list Integer Integer
MIN1(X,Y,...) Integer minimum of Real list Real Integer
DMIN1(X,Y,...) Double minimum of Double list Double P Double P
JMINO(I,J,...) Double integer minimum of Double integer list Double I Double I

B-12

iy

™




A

FORTRAN Language Statements

Table B-1 (Cont.)
FORTRAN Library Functions

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE

The transfer of sign functions return (sign of

the second argument) * (absolute value of the

first argument).
SIGN (X,Y) Real transfer of sign Real Real
ISIGN(I,J) Integer transfer of sign Integer Integer
DSIGN (X,Y) Double precision transfer of sign Double P Double P
JSIGN(I,J) Double integer transfer of sign Double I Double I

Positive difference functions return the first

argument minus the minimum of the two arguments.
DIM(X,Y) Real positive difference Real Real
IDIM(I,J) Integer positive difference Integer Integer
JDIM(I,J) Double integer positive difference Double I Double I

Exponential functions return the value of e

raised to the argument power.

X

EXP (X) e (x > 0) Real Real
DEXP (X) e (x> 0) Double P  Double P
ALOG (X) Returns loge(X) Real Real
ALOG10 (X) Returns log, (x) x > 0) Real . Real
DLOG (X) Returns logeQX) - Double P Double P
DLOG10 (X) Returns 1oglO(X) Double P Double P
SQRT (X) Square root of Real argument (X > 0) Real Real
DSQRT (X) Square root of Double precision argument (X > 0) Double P Double P
SIN(X) Real sine Real Real
DSIN (X) Double precision sine Double P Double P
COS (X) Real cosine Real Real
DCOS (X) Double precision cosine Double P Double P
TANH (X) Hyperbolic tangent Real Real
ATAN (X) Real arc tangent Real Real
DATAN (X) Double precision arc tangent Double P Double P
ATAN2 (X,Y) Real arc tangent of (X/Y) Real Real
DATAN2 (X,Y) Double precision arc tangent of (X/Y) Double P Double P







APPENDIX C

FORTRAN PROGRAMMING EXAMPLES

P
Four examples of FORTRAN programs are given below. These examples are
7 intended to show possible methods of handling Input/Output, iterative
e calculations, the FORTRAN Library functions, and subprogram usage in
k the context of problems likely to face a FORTRAN programmer. These
particular programs should not be considered as the correct or optimal
approach to the specified problems since many other methods are pos-
sible in each case.

o The program in example one performs linear regression on a set of X,Y
coordinates. The program uses standard formulae to calculate the slope
and intercept of the line which best fits the data points entered. The
program listing and a sample run follow:

EXAMPLE 1 LISTING:
5 COTHIE FROGREAM PE

! COWHIOH L Gl CUHL A TED S &
1
20 TRECTHE MUMEBER OF XY POIRSE 7

TN
& Swle s LIRESR OF Ko PATRE D
70
kY
JERNEILE ®
GLEMY = Y
ﬁ‘“’m“\,




FORTRAN Programming Examples

100 SIGMXK = BIHMXX + X4X
EN o= N
Ao (BTEMXY-STGEMORBTGEMY /A ZNY / (STOMXX-8LEMXRSTEMY S/ ZN)
Bo= (BIGMY -~ A % ST6GMX)Y /7 2ZN
WRITE (4:300) AsE
300 FORMAT (/7 THE RBEST FIT X8 v= oFB8.38y 7 X o 8.3
GO TO 10
NI

EXAMPLE 1 SAMPLE RUN:

THIS PROGERAM PERFORMS LINEAR REGRESST

THE LIME WHICH RBEST FITE & 8ET T8 CalCULATED

TYFE TN THE NUMBER OF XY PATR&
10 ‘

TYPE IN 1O LIMES DF XY PATRS

‘ .\O ’46:?
2.0 9.4
F.0 14,1
4,0 18.8
9.0 23,0
b0 RE
10.0 47,0
12.0 5.4
130 611
20,0 94,0

THE RBEST FIT I8 Y= 4,700 K= Q5000

TYFE TN THE NUMBER OF Xof PaTRES:
0

STOF 000000




FORTRAN Programming Examples

AT The program in example two manipulates data representing test scores.
' k The scores are read from the source file, placed in descending order,
and sent to an output file. ‘Then the absolute total and histogram of
the test scores in each 10-point interval are output on the terminal.

. The program listing and a sample run follow:

EXAMPLE 2 LISTING:

I STARS B0 s ARRAY (ZOQY 2 HIST 1O
IaTa STARSABOK X /v TALT/AEZH40007
II(T l QO Tl e 200
3 Qe ERD=1000 ARRAY (1)
. 20 I(Nuﬁﬁl (GRS
‘ 10 CONTINLUE
106 lblfm
o= 18
ngo120 e
KR = 40
7 DO 110 KesKKy B
TFCARRAY (3 :
TTMF = AREAY (D
ARRAY (U3 = ARKRAY (KD
ARRAY (Y = THP
111G CONTINUE
120 CONTINUE

0o 028 K=l I8TEE

F. ARKAY (Y)Y GO TO 110

N 125 WRITE (Ze 200 ARRAY (K
N VR e 10

13é HIST RS {
Do 130 RKe=le I8
Hos ARRAY (R)Y /o 1
- FENY = HISETNY + 1
. WRITE (S L35
135 FORMAST (LXe 7 THE NUMBER OF TE
o TR EACH 10 POINT INTERVAL
DY 150 Ks10e 10010
: 10
) , I e L A0 ||l‘:-]'(|*xI()Iy«."ll\v]f)l T
P 140 FORMAT (707 lZe’ IN T :
TF AHESTORATGY JEQ.
ddm H RALOD
WRITE (Sela5)  (STARSIM) =l e Jdy e TALT
FORMAT CIH+»2X 8001
WRITE (He144)
FORMAT (7 73
WRITE (S 1860 1TGQTZE
1a0 FORMST (77 THE TOTAL NUMBER OF TEST SCORES = .13
STOE
# R

ANDL A HISTOERAM 7
LOWES 7S

TO S TEeinl




FORTRAN Programming Examples

EXAMPLE 2 SAMPLE RUN:

THE NUMEER OF TEST S0 A HISTOGRAM
I EaCH 10 POINT INTERVAL FOLLOWSE

SOLHOTHE RANGE JOTO LG delokdkk

O LN THE REMNGE 10 To 20

LOTR THE R&MGE 20 TD 30 X%

S0En THE R&ENGE 30 TO 40 k¥

TR THE RAMGEE 40 TO S0 dolololeoolok
LT THE RaMGE 50 T 40 X

& TR THE RaNGE &0 T 700 sdoldcioksk

& TN OTHE RANGE 70 TO 80 doklokkd
FOTN THE RaNGE B0 TO 20 ok

20T THE RanNGE 20 TO

-~
i
s
o

HH

THE TOTAL MUMBER OF TEST SCORES = 39
SBTOF Q00000

Example three shows a method of calculating the prime factors of an in-
teger. A simple table look-up method was used to determine the neces-
sary primes. Note the unusual use of FORTRAN carriage control to
facilitate the prime factor output. MOD is a Library function and is

described in Section 8.2. The program listing and a sample run follow:

EXAMPLE 3 LISTING:

INTEGER FeHOLD
natTa TALTAE7640007
WRITE (42500

INDG THE FRIME FACTORS OF 7y
S $ z RING A& NEGATIVE OR ZERQD? »
T EXECUTION. ©/)

50 FORMATCS THIES
1 g

AN LN
ONUMBIER
; LETE (421000
1G0 FORMAT (/7 ENTER
EATICS Y 3 NUMBER
] (HUMBER L LE. 0) STOF
THERT = SART ONUMBER?

f 1

TFLAG = 0

HOLG = NUMBER

TF (HOLD LE. 3 G0 TO 240

= el

184




# s .

Sy

200
205

FORTRAN Programming Examples

MODCHOL T )
SEQL. 0) G0 TO 400
TEARTY GO TO 200
SHEL QY GO TO 300
G010 NLUIME
IS & PRI

ME MUMBEFR /)
iﬁ CHOLLU 6T, 1) WRITEC4»350) HOLD
FORMAT (16)

TO 80,

Too LY GOOTO HOO
(44000 FZ' v LAlT
TCLde” Kovirld

1IN
ERN

FLUNCTTON NF |\|I“ H ll-
ll'i‘il N y

E zf'f LolZeldZel®e 230291 eZ7540 048947y
; .»ly?"\v?"
g 137139y .|. A‘,’} LEHL e
TFOCTOLY EGe 1y N o= D

= MPRTME (ND

DB BV FT L0l 103y LOP v 10V e 1130 127
Fe L8 e L7 vl 730079 18Le 190 0193 197 1909/

el 3l




EXAMPLE 3 SAMPLE RUN:

THIS
ENTER

ENTER

ENTER A

2

e

ENTER 4

3

ENTER

3

L

ENTER 4

~y
FoA

ENTER 6

STOf

FORTRAN Programming Examples

IS A PROGRAM TO FIND
ING A NEGATIVE OR ZERO NUMBER

L
2 I8 A PRIME

QOO000

NUMBER

”y

~n

X

17%

THE

PRI ME

FaCTORS OF AN INTEGER <

TERMINATES EXECUTION.

.....

5]

131072,

-




e

APPENDIX D

ERROR MESSAGES

D.1 FORTRAN ERROR MESSAGES
FORTRAN errors are detected both at the time a program is éompiled (gen-
erally syntax errors) and at the time it is executed (typically, com-
puted values out of range or I/0 device error). FORTRAN run time er-
rors are detectéd and messages printed by the FORTRAN Object Time Sys-
tem (OTS). Other system error messages are not listed in this manual.
D.2 COMPILER ERROR MESSAGES
FORTRAN compiler error messages are printed in the form:

>mnA<

where:

mn is the error number

A is the alphabetic mnemonic characterizing the class
of error ‘

All error messages are given below.

Number Letter Meaning

Common, equivalence, data errors:

01 C No open parenthesis after variable name in
DIMENSION statement

02 C No slash éfter common block name

03 C Common block name previously defined
04 C Variable appears twice in COMMON

(continued on next page)



Error Messages

Number Letter Meaning
Common, Equivalence and Data errors (cont.)
05 C EQUIVALENCE list does not begin with open
parenthesis
06 C Only one variable in EQUIVALENCE class
07 C EQUIVALENCE distorts COMMON
08 C EQUIVALENCE extends COMMON down
09 C Inconsistent EQUIVALENCing
10 C EQUIVALENCE extends COMMON down
11 C Illegal delimiter in EQUIVALENCE list
12 C Non-COMMON variables in BLOCK DATA
15 C Illegal repeat factor in DATA statement
16 C DATA statement stores in COMMON in non-BLOCK
DATA statement or in non-COMMON in BLOCK DATA
statement
DO errors:
01 D Statement with unparenthesized = sign and
comma not a DO statement
04 D DO variable not followed by = sign
05 D DO variable not integer
06 D Initial value of DO variable not followed by
comma
07 D Improper delimiter in DO statement
09 D Illegal terminating statement for DO loop
External symbol and entry-point errors:
01 E vVariable in EXTERNAL statement not simple
non-COMMON variable or simple dummy variable
02 E ENTRY name non-unigue
03 E ENTRY statement in main program
04 E No = sign following argument list in arith-
metic statement function
05 E No argument list in FUNCTION subprogram
06 E Subroutine list in CALL statement already
defined as variable
08 E Function or array name used in expression

without parenthesis

(continued on next page)




o

Error Messages

Number Letter Meaning
External symbol and entry-point errors: (cont.)
09 E Function or array name used in expression
without open parenthesis
Format errors:
01 F Bad delimiter after FORMAT number in I/0
statement
02 P Missing field width, illegal character or
unwanted repeat factor
03 F Field width is 0
04 P Period expected, not found
05 F Period found, not expected
06 F Decimal length missing (no "d" in "Fw.d")
07 F Missing left parenthesis
08 F Minus without number
09 F No P after negative number
10 F No number before P
12 F No number or 0 before H
13 F No number or 0 before X
15 F Too many left parentheses
Hollerith errors:
02 H More than two characters in integer or logical
Hollerith constant
03 H Number preceding H not between 1 aund 5
04 H Carriage return inside Hollerith field
05 H Number preceding H not an integer
06 H More than five characters inside quotes
07 H Carriage return inside quotes
Various illegal errors:
01l I Unidentifiable statement
02 I Misspelled statement
03 I Statement out of order
04 I Executable statement in BLOCK DATA subroutine
05 I Illegal character in I/0O statement, following

unit number

D-3 (continued on next page)




Error Messages

Number Letter Meaning
Various illegal errors: (cont.)

06 I Illegal delimiter in ASSIGN statement

07 I Illegal delimiter in ASSIGN statement

08 I Illegal type in IMPLICIT statement

09 I Logical IF as target of logical IF

10 I RETURN statement in main program

11 I Semicolon in COMMON statement outside of BLOCK
DATA

12 I Illegal delimiter in IMPLICIT statement

13 I Misspelled REAL or READ statement

14 I Misspelled END or ENDFILE statement

15 I Misspelled ENDFILE statement

16 I Statement function out of order or undimen-
sioned array

17 I Typed FUNCTION statement out of order

18 I Illegal character in context

19 I Illegal logical or relational operator

20 I Illegal letter in IMPLICIT statement

21 I Illegal letter range in IMPLICIT statement

22 I Illegal delimiter in letter section of IMPLICIT
statement .

23 I Illegal character in context

24 I Illegal comma in GOTO statement

26 I Illegal variable used in multiple RETURN
statement

Pushdown list errors:

01 L DO nesting too deep

02 L Illegal DO nesting

03 L Subscript/function nesting too deep

04 L Incomplete DO loop caused by backwards DO

loop or error in DO loop foot statement or
I/0 statement with implied DO loop

(continued on next page)

/"m_\




iy

st

Error Messages

Number Letter Meaning
Overflow errors:
0l M EQUIVALENCE class list full
02 M Program size exceeds 8K
03 M Local array(length larger than 8K
04 M Elemenﬁ position in local array larger than
8K or in common array larger than 32K
(EQUIVALENCE, DATA)
06 M Integer negative or larger than 131071
07 M sxponent of floating point number larger than
6 ,
08 M Overflow accumulating constant - too many
digits
09 M Overflow accumulating constant - too many
digits '
10 M Overflow accumulating constant - too many
digits
Sﬁatement number errors:
01 N Multiply defined statement number or compiler
error
02 N Statement erroneously labeled
03 N Undefined'statement number
04 N FORMAT statement without statement number
05 N ’Statement number expected, not found
07 N Statement number more than five digits
08 N Illegal statement number
09 N Invalid statement label or continuation
Partword errors:
01 P Expected colon, found none
02 P Expected close bracket, found none
03 P Last bit number larger than 35
04 p First bit ﬁumber larger than lést bit number.
05 P First and iast bit numbers not simple integer

constants

(continued on next page)




Error Messages

Number Letter Meaning
Subscripting errors:
0l S Illegal subscript delimiter in specification
statements
02 S More than three subscripts specified
03 S Illegal delimiter in subroutine argument list
04 S Non-integer subscript
05 S Non-scalar subscript
06 S Integer scalar expected, not found
10 S Two operators in a row
11 s Close parenthesis following an operator
12 S Adjustable dimension not in dummy array
13 s Adjustable dimension not a dummy integer
14 S Two arguments in a row
15 S Digit or letter encountered after argument
conversion
16 S Number of subscripts stated not equal to num-
ber declared
Table overflow errors:
01 T Arithmetic statement, computed GOTO list, or
DATA statement list too large
02 T Too many dummy variables in arithmetic state-
ment function
03 T Symbol and constant tables overlap
Variable errors:
01l v Two modes specified for same variable name
02 v Variable expected, not found
03 \Y Constant expected, not found
04 \Y/ Array defined twice
05 \Y Error: variable is EXTERNAL or argument
(EQUIVALENCE, DATA)
07 v More than one dimension indicated for scalar
variable
08 v First character after READ or WRITE not open

parenthesis in I/0 statement

(continued on next page)

EY




Error Messages

Number Letter Meaning
Variable errors: (cont.)

09 v Illegal constant in DATA statement

11 v Variables outnumber constants in DATA state-
ment

12 v Constants outnumber variables in DATA state~
ment )

14 \Y Illegal dummy variable (previously used as
non-dumny variable)

16 v Logical operator has non-integer, non-logical
arguments

17 v Illegal mixed mode expression

19 v Logical operator has non-integer, non-logical
arguments or unbalanced parentheses

21 Y ‘Signed variable left of equal sign

22 v Illegal combination for exponentiation

25 \Y .NOT. operator has non-integer, non-logical
argument

27 \4 Function in specification statement

28 \Y Two exponents in one constant

29 v Illegal redefinition of a scalar as a function

30 v No number after E or D in a constant

32 v Non-integer record number in random access I/0

35 v Illegal delimiter in I/O statement

36 v Illegal syntax in READ, WRITE, ENCODE, or
DECODE statement

37 v END and ERR exits out of order in I/0O state-
ment

38 v Constant and variable modes don't match in
DATA statement

39 v ENCODE or DECODE not followed by open paren-
thesis

40 v Illegal delimiter in ENCODE/DECODE statement

41 \Y% Array expected as first argument of ENCODE/
DECODE statement

42 v Illegal delimiter in ENCODE/DECODE statement

(continued on next page)




Error Messages

Number Letter Meaning
Expression errors:

01 X Carriage return expected, not found

02 X Binary WRITE statement with no I/0 list

03 X Illegal element in I/0O list

04 X Illegal statement number list in computed or
assigned GOTO

05 X Illegal delimiter in computed GOTO

07 X Illegal computed GOTO statement

10 X Illegal delimiter in DATA statement

11 X No close parenthesis in IF statement

12 X Illegal delimiter in arithmetic IF statement

13 X Illegal delimiter in arithmetic IF statement

14 X Expression on left of equals sign in arithme-
tic statement

15 X Too many right parentheses

16 X Illegal open parenthesis (in specification
statements)

17 X Illegal open parenthesis

19 X Too many right parentheses

20 X Illegal alphabetic in numeric constant

21 X Symbol contains more than six characters

22 X .TRUE., .FALSE., or .NOT. preceded by an argu-
ment

23 X Unparenthesized comma in arithmetic expression

24 X Unary minus in I/0 list

26 X Illegal delimiter in I/O list

27 X Unterminated implied - DO loop in I/O list

28 X Illegal equals sign in I/0 list

29 X Illegal partword operator

30 X Illegal arithmetic expression

31 X Illegal operator sequence

32 X Illegal use of =

(continued on next page)

o

LES




Error Messages

Number Letter : Meaning
Expression errors: (cont.)
33 X Missing parentheses in I/O statement with im~
plied DO loop - will also cause >04L<
34 X Extraneous characters within or at end of ex-
pression S
D.3 OTS ERROR MESSAGES
Following

error; (T)

is a list of OTS error messages. (R) indicates a recoverable

a terminal error.

FORTRAN OTS error messages in XVM/DOS are‘printed on the console ter-

minal (or

where

nn

FORTRAN OT
ated with

where

nn
tasknm

mmmmmm

line printer in BOSS XVM) in the form

.0TS nn
P C=mmmmmm

is an octal error number. The recoverable/non-recoverable
indicator in the table below is not printed as part of the
message.

is the 6 octal digit program counter where the error oc-

curred ;

S error messages in XVM/RSX are printed on the device associ-
LUN-3 in the following form:

OTS = nn-tasknm
PC = mmmmmm

is a 2-digit octal error code
is the name of the task with the error
is the 6-~octal digit program counter where the error oc-

curred. (Relative to the start of the partition if nor-
mal mode task.




Error Messages

Error Number

Error Description

direct
access
errors

05

06

07

10

11

12

13

14

15

16
17
20
21
22
23
24

25

\_ 26
30

231

233
234
235

236

(R)
(R)
(R)
(T)
(T)
(T)
(T)

(R)

(R)

(R)
(R)
(T)

(T)

(T)
(T)

(T)

(R)
(R)
(R)
(R)
(R)
(R)

(R)

Negative REAL square root argument

Negative DOUBLE PRECISION square root argument
Illegal index in computed GO TO

Illegal I/0 device number

Bad input data - IOPS mode incorrect

Bad FORMAT

Negative or zero REAL logarithmic argument

Negative or zero DOUBLE PRECISION logarithmic
argument

Zero raised to a zero or negative power (zero
result is passed)

ATAN2 (0.0.0.0) attempted; PI/2 returned
DATAN2 (0.0,DQ,0.0D0) attempted; PI/2 returned
Fatal I/0 error (RSX only)

Undefined file

Illegal record size

Size discrepancy

Too many records per file or illegal record number

Mode discrepancy

Too many open files

Single integer overflow!

Extended (double) integer overflow"
Single floating point overflow
bouble floating point overflowJr
Single floating point underflow
Double floating point underflow+

Floating point divide check

lonly detected when

fixing a floating point number.

’Also prints out PC with FPP system.
3 If extended integer divide check, prints out PC with FPP system.

*With non-floating Point Processor system, only detected when fixing a

floating point number.

+Not detected by software floating point routines (only by FPP system).




Error Messages

Error Number Error Description
137 (R) Integer divide check
40 (T) Illegal number of characters specified [legal:
0<c<626]
41 (R) Array exceeded
42 (T) Bad input data
250 (T) FPP memory protect/non-existent memory
51 (T) READ to WRITE illegal I/O Direction Change to Disk
without intervening CLOSE or REWIND
52 (T) Attempt to initialize JEA register on machine
without floating point hardware.

The arithmetic errors which result in the printing of the error messages
.0TS 38 through 37 are all recoverable errors, which is to say thét
program execution continues after the message has been printed. In
most cases, as the table below indicates, a value is assumed as the
final result of the computation. Where a "none" value is indicated,
the results are meaningless. Results differ depending upon whether or

not floating point hardware is used.

ASSUMED VALUE

£

Error

FPP Hardware

FPP Software

Single Floating Overflow
(.0TS 32)

Double Floating Overflow
(.0TS 33)

Single Floating Underflow
(.0TS 34) )

Double Floating Underflow
(.0Ts 35)

Floating Divide Check
(.OTS 36)

Integer Overflow
(.0TS 30)

+ largest single
floating value

+ largest single
floating value

Zero
zZero
+ largest single

floating value

limited detection®

+ largest single
floating value

‘not detected

zero

not detected

+ largest single
floating wvalue

limited detection?

11f extended integer divide check, prints out PC with FPP system.
2Also prints out PC with FPP system.

$When fixing a floating point number, integer and double integer over-
In these instances, plus or minus the largest in-

flow is detected.

teger for the data mode is assumed as the result.




Error Messages

ASSUMED VALUE

Error FPP Hardware FPP Software
Double Integer Overflow none? limited detection!
(.0Ts 31)
Integer Divide Check none none
(.0Ts 37)

!When fixing a flecating point number, integer and double integer over-
flow is detected. In these instances, plus or minus the largest in-
teger for the data mode is assumed as the result.

2With the FPP hardware all extended (double) integer overflow condi-
tions are detected, but the results are meaningless. Further, when
converting a double integer, the magnitude of which is >217-1, to a

single integer, no error is indicated and the high order digits are
lost.




APPENDIX E

EXTENSIONS AND RESTRICTIONS TO ANSI 1966 STANDARD

FORTRAN for the XVM conforms to the specifications for American National
Standard FORTRAN X3.9-~1966 with extensions and with restrictions., Num-

bers in parentheses refer to applicable sections of the standard.
E.1 EXTENSIONS TO STANDARD FORTRAN

1. Alphanumeric Literals - Alphanumeric literals, character
strings bounded by apostrophes, may be used in place of
Hollerith constants. (5.1.1.6) '

2. Array Subscripts - Subscript expressions for arrays may
be any valid integer-type expression provided any array
elements contained in the expressions have only a single
subscript. (5.1.3.3)

3. ASSIGN Statement - An integer variable assigned . the value
of a statement label in an ASSIGN statement may be used
as a statement label argument in an arithmetic IF state-
ment, a CALL or function reference as well as an assigned
GO TO statement. (7.1.1.3 and 7.1.2.2)

4. Assigned GO TO Statement - The statement label list in
an assigned GO TO statement is optional. (7.1.2.1.2)

5. Assignment Statements - Multiple variables may have values
assigned to them in a single arithmetic or logical assign-
ment statement, as in A=B=C=l. «

6. _CALL Statements - The arguments to a subroutine refer-
enced in a CALL statement may include statement labels,
each preceded by the @ sign, to facilitate return. from
the subroutine to statements other than the one follow-
ing the CALL.

7. COMMON Statements - An extension of the form of the COMMON
statements permits data initialization specifications,
which conform to those for DATA statements, to appear
directly in a COMMON statement which is part of a BLOCK
DATA subprogram.

8. DATA Statements - An implied DO loop, similar to that
used in an I/0O statement, may be used in a DATA statement.

. E-1




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Extensions and Restrictions to ANSI 1966 Standard

Direct Access Input/Output - Direct access files, both
formatted and unformatted, are supported on disk. The
CALL DEFINE statement creates and opens the file for
access. Data are transferred to and from records in
any random order of record reference by use of extended
forms of the READ and WRITE statements,

DO Statement - The DO statement may have a negative in-
crement as well as negative or zero initial and terminal
values. (7.1.2.8)

DOUBLE INTEGER Type - A double word integer data type is
supported extending the range for integer data.

ENCODE/DECODE Statements - The ENCODE and DECODE state-

ments implement memory-to-memory data conversions from/to

ASCII to/from binary form under format control.

END=s/ERR=s Input/Output Option - The specifications
END=s and ERR=s, where s represents a statement number,
may be included in any READ or WRITE statement to trans-

fer control to the specified statements upon detection of

an end-of-file, end-of-medium or an error condition.

ENTRY Statements - ENTRY statements may be used in SUB-
ROUTINE and FUNCTION subprograms to define multiple en-
try points in a single routine.

FORMAT Specification - Additional format conversion
specifiers have been defined: O (octal conversion),

R (alphanumeric conversion, right-adjusted), and alpha-
numeric literals (quoted strings which replace nH Hol-
lerith fields). Also, the T specification permits
field alignment with numbered columns.

FUNCTION Statements - The arguments to a FUNCTION sub-
program passed in a function reference may include
statement labels, each preceded by the €@ sign to facili-
tate error returns to statements other than the one in
which the function reference appears.

IMPLICIT Statement - The IMPLICIT statement has been
added to permit the user to redefine the implied data
type of symbolic names.

Implied-Format Input/Output - In a modified form of
formatted READ and WRITE statements where no reference
is made to format statements or arrays, data conversion
is governed by an implied format which is directed by
the data type of each element in the input/output list.

Input/Output Extensions - Several subroutines have been
made available to perform special purpose input/output
functions, notably those to access named files on direc-
toried devices.

Mixed~Mode Expressions - Mixed mode expressions may con-
tain elements of any data type (6.1).

Octal Constants - Numeric quantities may be specified
in octal form as well as in decimal.




e

PRy

22,

23.

24.

25,

Extensions and Restrictions to ANSI 1966 Standard

Part-Word Notation - Elements in arithmetic expressions
may be modified by using a "part-word" notation which
permits specification of bit fields to be used.

RETURN Statement -~ The RETURN statement may reference a
dummy argument which corresponds to a statement number

in the actual argument list to facilitate a conditional
return to a statement other than the one following the

CALL or function reference.

WRITE Statement - Two synonyms are permitted for the
WRITE statement: PRINT and TYPE.

.XOR. Operator - An additonal logical operator, .XOR.,
is provided to perform the "exclusive or" function.
(6.3)

RESTRICTIONS TO STANDARD FORTRAN

BLOCKDATA Subprogram - Within a BLOCKDATA subprogram
several common blocks may be defined but only the last
one may be initialized with data. (8.5)

COMMON Statement - The name of a named common block
must be unique to the program unit in which it appears.
(7.2.13 and 10.1.1)

COMPLEX Type - The COMPLEX data type is not supported.
(4.2.4, 5.1.1.4, 7.2.1.6 and 8.2)

EQUIVALENCE Statement - The EQUIVALENCE statement may
not produce redundant or circular definitions. (7.2.1.4)

Hollerith Constants - Hollerith data does not have a
unique data type. Instead, it is typed as either REAL
or as DOUBLE INTEGER, depending upon the form used.
(4.2.6)

Specification Statements - The specification statements
must appear in a definite order.







—

Addition, 2-19
Adjustable array, 8-14
Adjustable dimensions; 5-4
A field descriptor, 7-13
Alphanumeric (ASCII) format,
6-44
Alphanumeric data, 7-13, 7-14
Alphanumeric literals, 2-11,
7-16, 7-28
ANSI 1966 Standard
extensions and restrictions,
E-1 ‘
Apostrophe (') in alphanumerlc
literals, 7-16
Arguments, 8-2, 8-5, 8-9
Arithmetic
assignment statement, 3-1
errors, D-11
expressions, 2-18
operators; 2-19, B-1

Arithmetic IF statement, 3-6,
4-4

Arithmetic statement function
(ASF), 8-=2

Array declarators, 2-15
in COMMON statement,; 5-8
interaction with ENTRY state-

ment, 8-14

Arrays, 2 14, 8-=5
adjustable, 8-14
definition of, 2-1
equivalent, 5-9
size of, 1-9

storage of, 2-16
unsubscripted, 6-4
Array subscrlpt, 4-9

ASCII
character code, A-2
character string, 7-16
- format, 6-44 )
formatted record sizes, 6=19
Assigned GO TO, 3-6, 4-3
Assignment statements, 3-1, 3-3
ASSIGN statement, 3-6
Associated variables, 2-12
Asterisks (*) in output data,
7-3
Auxiliary input/output state-
ments, 6-27

INDEX

INDEX-1

BACKSPACE statement, 6-2,
6~41, 6-42

Binary operators, 2-19

Blank common; 5-=6

Blank lines, 1-2

BLOCK DATA subprogram, 8-16

Branching, 4-1

6-28,

CALL CLOSE statement,
6-40
CALL DEFINE statement,
6-17, 6-32, 6-33 ;
CALL DELETE statement, 6-2,
6-40, 6-41
in XVM/RSX, 6-39
CALL DLETE statement in XVM/DOS,
6-38
CALL ENTER statement,
6-40, 6-41
in XVM/DOS, 6-32
in XVM/RSX, 6-33
CALL FSTAT statement
6-40, 6-41
CALL READ statement, 6-40
CALL RENAME statement 6-2,
6-40, 6-41 .
in XVM/DOS, 6-37
in XVM/RSX, 6-37
CALL SEEK statement,
6-40, 6-41
in XVM/DOS, 6-30
in XVM/RSX, 6-30
CALL statement,” 4-135, 8-9, 8-13
CALL WRITE: statement, 6-40
Carriage control characters, 7-22
Change filename, 6-36
Character code, ASCII, A-2
Character set, 1-3
FORTRAN, A-1
Close a file, 6-34
Coding forms, 1-4
Commas in DO statement, 6-5
Comma (,) used as fleld separator,
7=-2, 7-25
Comments, 1-2
indicator, 1-6
COMMON blocks, 1-9

6-2, 6-34,
6-13, 6-15,

6-38,

6—2, 6-31,

6-2, 6-36,

6-36,

6-2, 6-29,




COMMON interaction, EQUIVALENCE
and, 5-11

COMMON statement, 5-6

and data initialization, 5-8

with array declarators, 5-8
Compiler error messages, D-1
Computed GO TO statement, 4-2
Constants, 2-4

definition of, 2-1

logical, 7-30

numeric, 7-29
Continuation

character, 1-5

field, 1-6

line, 1-2
CONTINUE statement, 4-12
Control statements, 4-1
Control transfers, 4-12

in DO loops, 4-11
Create a file, 6-31

Data initialization of COMMON
elements, 5-8, 5-14
Data record size
DOUBLE INTEGER, 6-20
DOUBLE PRECISION, 6-20
Data, rounded numeric, 6-12
DATA statement, 5-13
Data truncation, 6-10, 6-12,
6-14, 7-3, 7-13, 7-14
Data type by implication, 2-13
Data type declaration state-
ments, 2-12
Data types, 2-3
of arithmetic expression, 2-22
of array, 2-17
Decimal
constants, 7-28
double integer constants, 2-6
integer constants, 2-4
Decimal point, 7-19
DECODE statements, 6-2, 6-44
Delete file, 6-38
A (delta), x
Devices, 6-3, 6-4
D field descriptor, 7-10
Dimensions, adjustable, 5-4
Dimensions of array, 2-14
DIMENSION statement, 5-3, 8-5
Direct access file I/0O sequences,
6-40
Direct access files in RSX, 6-29
Direct access input/ocutput, 6-1
formatted, 6-22
unformatted, 6-13 )
Direct access READ statement,
formatted, 6-22
unformatted, 6-13
Direct access WRITE statement,
formatted, 6-24
unformatted, 6-14
Directoried devices, 6-2, 6-41

INDEX~-2

Division, 2-19
Documentation conventions, x
DO lists, implied, 6-5
Dollar sign character ($), 7-16
DO statements, 4-7
Double integer
constants, 2-6
definition, 2-3
operations, 2-23
DOUBLE INTEGER data record size,
6-20
Double precision
constants, 2-9
data, 7-10
definition, 2-3
operations, 2-23
values, 7-7
DOUBLE PRECISION data record
size, 6-20
Double quote character ("), 7-16
Dummy arguments, 8-2, 8=-5, 8-9

E field descriptor, 7-8
Elements, array, 2-14
Ellipsis (...), x
ENCODE statements, 6-2,
ENDFILE statement, 6-2, 6-28,
6-40, 6-41, 6-42

End-of-file, 6-2, 6-26
END statement, 4-16
ENTRY statement, 8-12

and array declarator interac-

tion, 8-14
in function subprogram, 8-13
Equal sign (=) in assignment

statement, 3-1

EQUIVALENCE statement, 2-18, 5-8

and COMMON interaction, 5-11
Equivalent arrays, 5-9
Error condition, 6-2, 6-26
FError messages, D-1
Error types, 6-27
Examples, C-1

SUBROUTINE subprogram, 8-11
Executable statements, 1-1
Exponential format, 7-8
Exponentiation, 2-19, 2-20
Expression operators, B-1
Expressions, 2-18

definition of, 2-1
Extended range, 4-11, 4-12
External field separators, 7-26
EXTERNAL statement, 5-11

F field descriptor, 7-7

Field
descriptors, 7-2, 7-3, 7-30
separators, 7-2
width, 7-3




A
K .,

File
backspace, 6-28
close, 6-34
creation, 6-31
deletion, 6-38
management functions, 6-27
positioning functions, 6-2
rename, 6-36
replacement, 6-31
search, 6-29
size, 6-15
size adjustment, 6-18
status, 6-36
structure, 6-15
Format control, 7-29
Formats, implied, 7-27
Format specification separators,
7-25
Format specifiers, 6-3
FORMAT statements, 7-1
summary, 7-31
Formatted ASCII record sizes,
6-18
Formatted direct access input/
output, 6-2, 6-22
READ statement, 6-22
WRITE statement, 6-24
Formatted sequential
input/output, 6-1, 6-9
READ statement, 6-9
WRITE statement, 6-11
Formatting, 1-4
Forms control character, 7-25
FORTRAN character set, A-1l
Functions, 8~1 i
arithmetic statement (ASF),
8-2
LIBRARY, 8-17
FUNCTION. subprogram, 8-4

G field descriptor, 7-10

GO TO statements, 4-1

Group repeat specifications,
7-21 . :

H field descriptor, 7-15
Hollerith, 2-3, 6-~11, 6-23,
6-24
constants, 2-10, 7-15
data, 2-13, 5-14
data storage, 2-14
Hyperbolic functions, 8-15

I field descriptor, 7-4

IF statement, 4-4

IMPLICIT statement, 2-13, 5-1
Implied DO lists, 6-5

INDEX-3

Implied formats, 6-~10, 7-27
Input/output

auxiliary statements, 6-27

devices, 6-3°

errors, 6-26

lists, 6-4

records, 6-3

statement sequences, 6-40

subroutines,; 6-39 i
Input/output,

formatted direct access, 6-22

formatted sequential, 6-9

unformatted direct access, 6-13

unformatted sequential, 6-7
Input/output sequences,

direct access file, 6-40

named file, 6-42

sequential access named file,

6-40

unnamed file, 6-43
INPUT/QUTPUT statements, 6-1
Integer, 2-3

constants, 2-4

data, 7-4

operations, 2-23

variables, 2-13
INTEGER data record size, 6-19

Jumping, 4-1

Label, statement, 1-2
Language overview, 1-1
Language summary, B-1l
I, field descriptor, 7-12
LIBRARY functions, 8-17
Lines, 1-2
Lists, input/output, 6-4
Logical, 2-3
assignment statement, 3-5
constants, 2-10, 7-29
data, 7-12 i
expressions, 2-25
operators, 2-25, B-1
unit numbers, 6-3 ‘
LOGICAL data record size, 6-19
Logical IF statement, 4-6
Looping, 4-1
Loops, nested DO, 6-6
Lower-case words, X

Memory, 2-3, 5-7, 5-10
Multi-dimensional array, 2-16
Multiplication, 2-19 -

Named common, 5-6




Named—-file input/output se-
quences, 6-40, 6-42

Names of arrays, 5-8

Negative decimal double integer

constant, 2-6
Negative decimal integer con-
stant, 2-5
Negative double precision con-
stant, 2-9
Negative increments, 4-8
Nested DO loops, 4-10, 6-6
Newton-Raphson iteration, 8-8
Nondirectoried device, 6-42
Nonexecutable statements, 1-1

Numeric constants, 7-28
Numeric data, 2-19
Numeric data output, rounded,

6-25

Object programs, 1-1

Object time format, 7-26

Octal constants, 7-28

Octal double integer constant,
2-7

Octal integer constants, 2-5

Octal integer values, 7-6

O field descriptor, 7-6

Operators,
arithmetic, 2-19
expression, B-1
logical, 2-25
relational, 2-24

OTS error messages, D-9
Output sequences, sequential
access named-file, 6-40

Parentheses, 2-25
as logical operators, 2-27
in arithmetic expressions, 2-
in DO statement, 6-5
Partword notation, 3-4
PAUSE statement, 4-15
Precedence of arithmetic opera-
tors, 2-20
PRINT statement,
6-15, 6-25
Program, description of,
Program unit structure,
Punched cards, 1-4

6-9, 6-12,
1-1
1-7

Range of the DO loop, 4-8

READ statement, 6-41, 6-42
formatted direct access,
formatted sequential, 6-9
unformatted direct access, 6-
unformatted sequential, 6-8

6-22

21

13

INDEX-4

Real, 2-3
constants,
operations, 2-23
variables, 2-13

REAL data record size, 6-19

Real or double precision values,

7-7

Records, input/output,

Record size, 6-18, 6-20
for formatted ASCII,
for unformatted binary,

Record terminators, 7-26

Reference, definition of, 2-1

Relational expressions, 2-24

Relational operators, 2-24,

Rename a file, 6-36

Repeat count, 7-2, 7-21

RESUME command, 4-15

RETURN statement, 4-14,

REWIND statement, 6-2,

6-41, 6-42
R field descriptor, 7-14
Rounded numeric data, 6-12,
7-8

2-8

6-3

6-19
6-21

B-1

8-4, 8-9

6-27,

6-25,

Scale factor, 7-2, 7-19

Sequence number field, 1-7

Sequence of I/0 statements,

Sequential access named-file
I/0 sequences, 6-40

6-40

Sequential access unnamed file I/O

sequences, 6-40, 6-41
Sequential input/output, 6-1
formatted, 6-9
unformatted, 6-7
Sequential READ statement,
formatted, 6-9
unformatted, 6-8
Sequential WRITE statement,
formatted, 6-11
unformatted, 6-9
Short field termination,
Simple I/0 list, 6-4
Size,
COMMON block, 5-7
record, 6-18

7-26

Slash (/) used as field separator,

7-2, 7-25
Source programs,
SPACE bar, x
Spaces

in output data, 7-17

in statement field, 1-5, 7-3
Specification statements, 5-1
Square brackets ([ 1), x
Statement

field, 1-7

label, 1-2

number field,

1-1

1-6

~




mp

P

S %

7 -

Statements, 1-1, 2-1
assignment, 3-1
control, 4-1
format, 7-1
input/output, 6-1
specification, 5-1
summary, B-2
Statement sequences, input/
output, 6-40
Statements, TYPE DECLARATION,
5-2
Status of file, 6-36
STOP statement, 4-16
Storage, 2-3, 5-7, 5-10
Subprograms, 1-1, 8-1
Subroutines, input/output, 6-39
SUBROUTINE subprogram, 8-9
Subscript progression, 2-16
Subscripts, 2-14, 2~17
Subtraction, 2-19
Symbolic names, 2-2, 2-15
Symbols used in manual, x

-4 Tab character, x

Tabulation specifier, 7-18

Tape operations, 6-27, 6-28

Terminal statement of DO loop,
4-8, 4-9

Terminal usage, 1-5

Terminators, record, 7-26

Text editor, 1-5

T field descriptor, 7-18

Truncation, data, 6-10, 6-12,
6-14, 7-3, 7-10, 7-13, 7-14

TYPE DECLARATION statements, 5-2

TYPE statement, 6-9, 6-12, 6-15,
6-25

Unary operator, 2-19

Unconditional GO TO statement,
4-2

Unformatted binary record size
for single block records,
6-21

Unformatted direct access input/
output, 6-1, 6-13

Unformatted direct access READ
statement, 6-13

Unformatted direct access WRITE
statement, 6-14

Unformatted sequential input/
output, 6-1, 6-7

Unformatted sequential READ
statement, 6-8

Unformatted sequential WRITE
statement, 6-9

Unnamed file input/output
sequences, 6-41, 6-43

Unsubscripted array, 6-4

Upper—-case words and letters, x
User-written subprograms, 8-1

Variables,
definition of, 2-1
value of, 2-12

Width of field, 7-3
WRITE statement, 6-41, 6-42
formatted direct access, 6-24
formatted sequential, 6-11
unformatted direct access,
6-14
unformatted sequential, 6-9

X field descriptor, 7-17

INDEX-5




épm

W




Ly

Please cut along this line.

FORTRAN IV XVM
Language Manual
DEC-XV-LF4MA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be repcrted on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher~level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
wiStreet
Ccity/ State zip Code
/ or
Country

ILf+you require a written reply, please check here. Ej




Fold Here -

Do Not Tear - Fold Here and Staple - -

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

N

[




digital equipment corporation



