XVM/RSX PART VI
INPUT/OUTPUT OPERATIONS

CHAPTER 1

RSX INPUT/OUTPUT

1.1 INTRODUCTION TO RSX I/O

Under RSX, I/0 1is flexible and essentially device~independent.
Although certain operations require the identification of a specific
device, most user and system requests are for logical units that are
temporarily associated with particular physical devices. Requests for
service are queued and subsequently processed according to the
priority of the requesting task. Because the hardware I/0 Processor
runs in parallel with the Central Processor Unit, the system is
capable of concurrent task execution and I/O processing.

I/0 requests can be issued by user MACRO or FORTRAN programs by means
of the functions described in this manual. All of these functions
generate forms of the QUEUE I/0 system directive. I/0 functions can
be used to request performance of such operations as opening and
closing I/0 files, reading and writing, obtaining information about a
specified I/0 device handler task, and giving a task exclusive use of
an I/0 device.

This manual describes everything a user must know in order to write
programs that request 1I/0 operations of standard I/0O device handler
tasks. Chapter 2 describes the operations of certain basic I/0
functions available to all devices in the RSX system. Each subsequent
chapter details the operation of one device and the handler task
associated with that device, and describes I/O functions specific to
that device.

1.2 TI/0 TABLES, LISTS AND TASKS

The following sections describe the basic tables, lists and tasks used
in RSX I/0 processing.

1.2.1 Logical Unit Table

I/0 requests are made to a logical device identified by a logical unit
number (LUN). Each LUN assigned in RSX corresponds, at least
temporarily, to a particular physical device. LUN assignments can
initially be made at system startup time and can subsequently be
reassigned via the REASSIGN MCR function or the ASSIGN MULTIACCESS

XVM/RSX V1B VI-1-1 September 1976

Monitor command by setting up a Logical Unit Table (LUT) that relates
logical unit numbers to the corresponding physical device assignments.

The Logical Unit Table Is a block of contiguous core with a one-word
entry or slot for each possible logical unit number in RSX. Each
entry consists of the address of a PDVL node. Slots are assigned
sequentially from LUN-1 to LUN-64. (It is possible to change the
number of LUNs in the system, up to a maximum of 511, by reassembling
the RSX Executive.) LUT entries corresponding to unassigned LUNs
contain zeros. When a LUN assignment is made, the LUT slot is filled
with the address of a node in the Physical Device List (PDVL) that
contains information about the physical device associated with the
relevant LUN. For example, the physical device "terminal unit 1" may
be assigned to logical unit 12 (LUN-12). The twelfth Logical Unit
Table entry then contains the address of the PDVL node that has
information on terminal unit 1.

In RSX systems with MULTIACCESS, there are two distinct types of LUNs:
"system" LUNs and "virtual" LUNs. System LUNs are those logical unit
numbers related to physical devices via the LUT. This is precisely
the relationship described in the previous paragraphs. System LUNs
are numbered in the same way that LUT entries are numbered (the first
LUT entry - the entry with the lowest absolute address - corresponds
to system LUN-1, and so forth. Virtual LUNs are assigned to users in
blocks of 25 LUNs, always numbered from 1 to 25. Virtual LUNs are the
only LUNs that a user task can access. The MULTIACCESS Monitor
ensures that the wvirtual LUNs accessed by a user are "mapped" into
system LUNs prior to the queuing of any I/O request.

In the following descriptions of I/0 functions, the use of the term
"LUN" should be understood as virtual LUN for tasks run under control
of MULTIACCESS and as system LUN for all other tasks.

1.2.2 Attach Flag Table

The Attach Flag Table (AFT) is constructed with entries parallel to
those in the Logical Unit Table. The AFT contains one-word entries,
each of which corresponds to a single LUN. These entries are normally
set to zero. When a wuser task requests that a physical device be
attached to his task by specifying a particular LUN, the AFT entry
corresponding to that LUN is filled with the address of a node in the
System Task List (STL) that contains a description of the task
requiring attachment.

1.2.3 Physical Device List
The Physical Device List (PDVL) is a standard system list or deque.

This deque consists of a series of nodes, each of which contains the
following information concerning one unit of a physical device:

KVM/RXS V1B vVIi-1-2 September 1976

Word Contents

0 Forward pointer
1 Backward pointer
2 Device name (first half)
3 Device name (second half always 0)
4 Device attach flag
5 Device unit number
6 Device request queue (deque list-head) forward
pointer
7 Deyice request queue (deque list-head) backward
pointer
10 Trigger event variable address
11 Assign inhibit and files open flag

When a task requests that a unit be attached, word 4 in the PDVL node
for that wunit is filled with the address of the AFT entry that
references the attaching task and corresponds to the LUN assigned to
the attached physical device.

1.2.4 1I/0 Rundown Task and Queue

I/0 rundown is defined as delaying the availability of a core
partition wuntil all transfers to and from that partition have stopped
or have been allowed to complete. This procedure is performed when a
task exits or 1is forced to exit and its transfers-pending count is
nonzero.

A task can exit in one of the following ways:
1. Ordinary exit (STOP for FORTRAN or CAL (10) for MACRO)

2. Termination by the Executive because of memory-protect or
similar violation

3. Termination by the console operator via the ABORT MCR
Function task

Checking for the need for I/O rundown is performed in the EXIT code in
the Executive.

When a task exits, its transfers-pending count is examined. If the
count is nonzero, the node for that task is removed from the Active
Task List and inserted by priority in a deque of I/O requests called
the I/0 Rundown Queue (IORDQ). The task 1is not officially
deactivated, however, until completion of I/O rundown. To accomplish
this, the resident task IORD (I/O Rundown) is triggered to process
entries in the I/O Rundown Queue.

XVM/RSX V1B VIi-1-3 September 1976

IORD performs I/O0 rundown for only one task at a time. It uses the
UNMARK system directive to nullify any outstanding mark-time requests
made by the given task. Then, if the transfers-pending count is still
nonzero, it scans the Physical Device List for active I/0 handlers.
As long as this count remains nonzero, the next active handler is
called to stop I/0 for the indicated task. IORD places a
priority-zero ABORT I/0 request at the head of the I/0 reguest deque
in the first PDVL node for the device. Magtape, for example, may have
up to eight PDVL nodes; one per physical tape unit. The first node
does not necessarily correspond to device unit 0. It is simply first
in the PDVL. Only one request is made per handler.

After this request has been queued, IORD sets bit 2 of the handler
trigger event variable, declares a significant event, and then waits
for the handler to signal completion by setting the IORD event
variable.

When the entire PDVL has been scanned and the transfers-pending count
is still nonzero, the system assumes that some handler is not
functioning properly. IORD outputs the following message containing
the task name and transfers-pending count via the Task Termination
Notice List to LUN-3*:

TASK ABORTED; YET TRANSFERS PENDINC COUNT = XXXXXX

Meanwhile, the count is set to zero, the task is deactivated and the
task partition is freed for use by other tasks.

1.3 1/0 DEVICE HANDLER TASKS

Nearly all I/O operations are executed in a device-independent manner
by tasks called I/0 device handler tasks. One device handler task is
ordinarily associated with all wunits of a particualr physical
device - for example, with all DECtape units.

I/0 device handler tasks for standard Digital-supplied devices are
provided as part of the standard RSX system. It is possible for the
user to write his own handlers, as well. Part XI of this manual
(Construction of Advanced Tasks) contains instructions for coding an
I/0 handler. A summary of I/0 handler names is given in Table 1-1.

* For tasks running under MULTIACCESS, the message is output via the
TDV Exit OQueue (TDV.EQ) instead of the Task Termination Notice List.
The output goes to the user terminal instead of to LUN-3.

XVM/RSX V1B VI-1-4 September 1976

Table 1-1
RSX Devices

Device Name Device Handler Task

 TTn Terminal TTY
DTn DECtape DT....
MTn Magtape MT....
DK Disk Driver DSK
PF Fixed-Head Disk RF....
RPn Disk Pack RP....
RKn Disk Cartridge RK....
PR Paper Tape Reader PR....
PP Paper Tape Punch PP....
CD Card Reader CDh....
Cp Card Punch CP....
Lp Line Printer LP....
AD Analog-to-Digital Converter AD....
AF Automatic Flying Capacitor Scanner AF....
uD Universal Digital Controller UD....
ccC System COMMON Communicator CcC....
VTn Display VT....

. VWn Writing Tablet VW....
Xy XY Plotter XY....

Although under RSX most I/O is processed via handler tasks, this
method is a convention and not a system requirement. It is possible
for the user to perform I/O directly. For example, if a user has a
special 1I/0O device that is accessed by only one task, I/0 service can
be coded as part of that task. This offers the advantage of bypassing
all Executive functions except for interrupt connect and disconnect

XVM/RSX V1B VI-1-5 September 1976

logic. It is also easier and more efficient to write the code for a
Task-oriented I/0 routine than to create a new I/O Device Handler
Task. This approach, however, does not support standard I/O calls and
does not facilitate the protection of I/0 Rundown.

1.3.1 Handler Initialization

Each time a LUN is assigned to a physical device unit, the Handler
Task associated with that unit is requested by the REASSIGN MCR
Function Task. When in core, the Handler initializes itself by
connecting to an interrupt line and by entering its Trigger Event
Variable address in the appropriate word of the corresponding Physical
Device List node (or nodes if the device can have more than one unit).

This informs the system that the Handler is ready to service I/0
requests., Then it wuses the WAITFOR System Directive to suspend
Handler execution until its Trigger Event Variable is set.

1.3.2 I/0 Request Queuing

Tasks make I/0 requests by specifying one of the available forms of
the QUEUE I/0 Directive. All I/O forms or functions are described in
detail in subsequent sections of this manual, Each I/0 request
references a s8pecific LUN, which must have a corresponding nonzero
entry in the Logical Unit Table. The RSX Executive expects to find in
this LUT slot the address of the Physical Device List node containing
information about the physical device assigned to the relevant LUN,
This PDVL node contains, in turn, the Trigger Event Variable address
of the I/0 Device Handler Task associated with this device. The
address is set when the Handler Task is initialized.

If the Executive determines that the relevant LUT slot contains a
zero, the I/O request is rejected because the LUN has not been
assigned to a physical device. If the Trigger Event Variable address
in the relevant PDVL node is zero, the request is rejected because the
Handler Task has not been properly initialized. If all necessary
information is present, information from the CAL Parameter Block (CPB)
of the I/O request is placed in a new node which is inserted in an I/0
request queue for the appropriate device (there is a separate I/0
request queue for each physical device unit). Pointers to this queue
are found in words 6 and 7 of the PDVL node corresponding to the
device. The queue is ordered by the priority of the Task issuing the
I/0 function; requests of equal priority are inserted in the order in
which requests are made.

After a request has been queued, the Handler Task associated with the
requested device is "triggered" by setting the Handler's Trigger Event
Variable and declaring a Significant Event. If a Handler Task is
triggered while it is servicing a previous request, the request will
be ignored until the request being processed is complete,

VI-1-6

1.3.3 Event Variables

When issuing an I/O function from a MACRO or FORTRAN Task, the user
can specify an Event Variable in the I/0 call itself. This variable
is set to inform the user about the status of the I/O request and the
success of the 1I/0 operation. If the request cannot be queued, and
the user has specified an Event Variable, one of the following is
returned:

Event Variable Meaning
=101 LUN out of range
=102 LUN not assigned to a

physical device

-103 Nonresident or noninitialized
I/0 Device Handler Task

-777 Deque node unavailable
(empty pool)

If the request is successfully queued, the requester's Event Variable
is set to zero, indicating that the request is pending. Eventually,
when the requested operation is attempted, the Event Variable is set
either to a positive value (normally +1), indicating success, or to a
negative number whose value pinpoints the reason for failure of the
operation. Appendix A lists and describes returned Event Variables.

1.3.4 I/0 Request Processing

I/0 requests are handled by the appropriate I/O Device Handler Task.
An individual request is dequeued (removed from the queue) by the
Handler at software priority API-7 (Task Level). Requests are
typically processed in order of Task priority by stripping the front
node from the device's request queue. However, if a device has been
attached, the Handler for that device will service only requests from
the attaching Task until a DETACH is accepted. The fact that one Task
has attached a device does not prevent another Task from queuing I/O
requests to that device. Pending or current I/0 requests can be
aborted by means of the I/O Rundown Task, described above,

In general, all I/O Handlers make validity checks on arguments which
reference core memory, but the checks are made only for I/0 requests
from USER-mode Tasks. Few checks are made on the arguments passed on
by EXEC-mode Tasks.

1.3.5 Handler Exit
When a logical unit/physical device relationship is dissolved by means

of the REASSIGN MCR Function Task so that no further Logical Unit
entries are assigned to a Handler, the following takes place:

VI-1-7

l. The assign inhibit flag (word 11, bit 0) of the relevant
device's PDVL node is set.

2. The Trigger Event Variable address (word 10) of the PDVL node
is cleared to prevent acceptance of further requests for the
device.

3. A DISCONNECT & EXIT request is inserted at the end of the
request queue for the device. This is the last request a
Handler sees because it is inserted with a priority of 514,
which is lower than that of any other Task.

The Handler Task services this request by performing the following:

l. Causes all system resources (e.g., nodes) held by the Task to
be released.

2. Closes any open files.
3. Ensures that I/0 under Handler control has terminated.
4, Disconnects from the device's interrupt line.

5. Clears the assign inhibit flag in the PDVL node associated
with the Handler.

6. Exits.

1.3.6 I/0 Data Modes

RSX utilizes four distinct data modes. These are shown below, with
corresponding codes:

Table 1-2
I/0 Data Modes
Code I/0 Data Mode
0 IOPS BINARY
1 IMAGE BINARY
2 IOPS ASCII
3 IMAGE ASCII

The implications and uses of these data modes are described in detail
in the XVM/DOS USER'S MANUAL. Line-buffer construction under RSX is
also the same as the description of logical records in the XVM/DOS
manual.

The devices summarized in the following table support one or more of
the standard 1I/0 data modes,

VI-1-8

Table 1-3
I/0 Data Modes by Device

Handler Name Device I/0 Data Mode
TTY Terminal IOPS ASCII
IMAGE ASCII
DTeeee DECtape All modes
MTeooe Magtape All modes
RFeesos Fixed=-Head Disk All modes
RPecee Disk Pack All modes
RKeoos Disk Cartridge All modes
PRecee Paper Tape Reader All modes
PP..s. Paper Tape Punch All modes
CDesos Card Reader IOPS ASCIT
LPeeeo Line Printer IOPS ASCII
IMAGE ASCII
XYoo XY Plotter JOPS BINARY
IOPS ASCII

Data modes are not applicable to the Disk Driver, the AD
Analog-to-Digital Converter, the AFC Automatic Flying Capacitor
Scanner, the UDC Universal Digital Controller, the COMMON
Communicator, and certain other devices.

VIi-1-9

CHAPTER 2

STANDARD I/O FUNCTIONS

This chapter describes in some detail all of the basic I/0 functions
common to standard RSX devices. Each section describes one form of
the QUEUE I/O System Directive. In all models and examples included
in this chapter, the following conventions apply:

1. A space in the text indicates an actual space in the function
call. .

2., Square brackets ([]) indicate optional parameters.

3. In "Form"™ models, upper case characters indicate those
required by the system, while lower case characters indicate
entries which are t©0 be specified by the user and are
dependent on the particular Task.

Rules about line termination and error correction conform to MACRO or
FORTRAN program standards.

Each of the I/O functions described in this Chapter has a unique

function code. The following table summarizes codes and calls for all
standard I/0 calls.

VIi-2-1

Table 2-1
Standard I/0 Functions

Code MACRO Call FORTRAN Call Function

1700 — —— ABORT I/0 for Task

2300 —-— —-——— PREALlocate I/O buffer
space

2400 ATTACH CALL ATTACH Obtain exclusive use of
I/0 device

2500 DETACH CALL DETACH Release attached device

2600 READ READ READ input into buffer

2700 WRITE WRITE WRITE output from
buffer

3200 SEEK CALL SEEK Open file for input

3300 ENTER CALL ENTER Open file for output

3400 CLOSE CALL CLOSE CLOSE file

13400 —— —-—— ERROR close file ==
internal disk file
Handler function

3500 DELETE CALL DELETE DELETE file name from
directory

3600 HINF CALL HINF Request Handler Task
information

3700 RENAME CALL RENAME Open file for RENAMing

77700 —— — DISCONNECT from
interrupt line
& EXIT

2.1 QUEUE I/O: QUEUING REQUESTS FOR A DEVICE

The QUEUE I/0 system directive is responsible for generating calls to
a variety of I/O functions defined in RSX and described in subsecuent
sections of this chapter. This directive places an I/0 request for a
device in a gueue of requests for a given unit on that device. 1In all
cases, the inclusion of a logical unit number (LUN) in the 1I/0 call
serves to identify the device. However, a few I/O calls (e.q.,
ALLOCATE, DEALLOCATE, GET and PUT) are device-dependent and, when
specifying one of these, the user must include the address of a
device-dependent table of control information.

Prior to sending an I/0 request to a device handler (L.e., queueing an
I/0 request), the QUEUE I/0 directive determines whether the request
was made by a task accessing a virtual (mapped) LUN. If so, and the
LUN specified in the OQUEUE 1I/0 directive is between 1 and 25, the
directive maps the virtual LUN into the corresponding system LUN as it
queues the request.

The QUEUE I/0 directive is implemented as a set of CAL parameter
blocks (CPBs), each of which contains a unigue function-code word.
This word indicates the specific operation to be performed in
connection with the requested device.

This chapter illustrates MACRO and FORTRAN calls for different forms
of QUEUE I/O. The generalized CPB for this directive is:

Word Contents
0 CAL function code (00; bits 12-17) and
I/0 function code (bits 3-11)
1 Event variable address
2 Logical unit number (LUN)*
3 Unique to I/0O call
4 Unique to I/0 call
5 Unique to I/O call

As is clear from the above, the I/O function code included in Table
2-1 actually consists of two components: a CAL function code of 00,
indicating a form of QUEUE 1I/0, and an actual I/0 function code
preceding the CAL function code, indicating the particular form of
QUEUE I/O that is generated. A directive code of 0000 is illegal.

As in all system directives, the event variable is filled with a code
(Appendix A) indicating that an operation is pending, has succeeded or
has failed. 1In the case of a failure, the code also indicates a
reason. Pending status of a call can occur in the following way.
Once the QUEUE I/O directive has accepted the call as valid, it enters

*LUNs in MACRO programs are usually coded in octal, but they are coded
in decimal elsewhere in the system (e.g., FORTRAN code or REASSIGN MCR
function).

XVM/RSX V1B VI-2-3 September 1976

the request in the device I/0 queue, sets the trigger event variable
for the device, declares a significant event, and then passes control
to the handler. There is a potential delay during which the reguest
is queued but has not been acted on by the I/O device handler. During
this time, the event variable associated with the I/0 request is set
to zero (the "pending" state).

After issuing a call to execute some I/O function, the user task must
generally issue a call to wait for function completion, which is
signaled when the handler sets the associated event variable to a
nonzero value. This wait is required only at the point where the user
task cannot continue processing without assurance that the 1/0
function has completed. The exceptions to the preceding rule are a
few specific FORTRAN statement-level I/O functions (e.g., READ, WRITE,
REWIND and ENDFILE), which have no associated event variables. In
these cases, the wait for completion is performed by the FORTRAN OTS
routines responsible for issuing the call.

If the directive has been issued by a user task, the name and priority
of the issuing task are used as the requester name and priority. 1If
the directive is issued from an interrupt service routine, no name 1is
assigned to the request and a default priority of one is supplied.
Following is an example of an I/O call. This vparticular function
reads input into a buffer. Examples of MACRO expansions for different
I/0 calls appear in subsequent sections of this chapter.

CPB 2600 /CAL PARAMETER BLOCK TO READ (I/O FUNCTION
/CODE=26; CAL FUNCTION CODE=00)
EV /BDDRESS OF EVENT VARIABLE
4 /FROM LUN #4
2 /IN IOPS ASCII (MODE 2).
BUFFER /TRANSFER TO CORE IS TO BEGIN AT
100 /"BUFFER" AND CONTINUE FOR NO MORE THAN

/100 (OCTAL) WORDS.

Wherever possible, it is recommended that the user specify an event
variable when issuing I/O requests. The specification of an event
variable is desirable because, under most circumstances, the user
should be aware of any 1I/O errors that occur. It is the event
variable that informs the user of these errors. Furthermore, the
event variable is used to signal the completion of an I/O operation.
In most cases, the WAITFOR directive is closely tied to the event
variable. The directive is described in Part V of this manual.

VIi-2-4

ABORT

2.2 ABORT: ABORTING I/O FOR A TASK

The ABORT function generates a form of the QUEUE I/O directive that is
normally issued only by the I/O Rundown task, IORD. It informs the
appropriate I/0 device handler tasks that they must stop all I/0 for
the task to be ABORTed. ABORT functions cannot typically be issued by
user tasks. Only the terminal handler, TTY, will process such a
request 1if issued by a task other than IORD. The I/O function called
ABORT should not be confused with the ABORT MCR Function task.

This function is inserted at the head of the queue with priority code
Zero; as though a task at priority zero has issued the QUEUE I/0
directive. Also, whether or not the physical device is attached, the
DQRQ subroutine in the Executive degueues the ABORT request.

The ABORT CPB has the following format:

Word Contents
0 1700 (I/0 function code)
1 Event variable address
2 Logical unit number (zero)

XVM/RSX V1B VI-2-5 September 1976

ATTACH

2.3 ATTACH: ATTACHING AN I/0 DEVICE

The ATTACH function generates a form of the QUEUE I/0 System Directive
which requests the exclusive use of an I/O device for the calling
Task. If the Directive is accepted, no other Task can use the device,
regardless of priority. However, all requests by other Tasks are
queued. When the device is freed by a DETACH call, requests queued by
other Tasks are once again considered on the basis of Task priority.
Only the DETACH I/O function or the REASSIGN MCR function can override
an ATTACH.

ATTACH functions can be issued by MACRO and FORTRAN programs,
Following is the FORTRAN call:

Form: CALL ATTACH(LUN{,ev])
Where: LUN is decimal and represents the Logical Unit
Number
ev is the integer Event Variable
Example: Request ATTACHment of the device assigned to
LUN-32:

CALL ATTACH(32,IEV)

The CAL Parameter Block (CPB) for this form of QUEUE I/O consists of
the following:

Word Contents
0 2400 (I/0 function code)
1 Event Variable address
2 Logical Unit Number

Following is the MACRO expansion for this function:

/
/ **%* ATTACH LUN[,EV]

/
«DEFIN ATTACH,LUN,EV
CAL .+2
JMP .+4
2400
EV+0
«DEC; LUN; ,OCT
« ENDM

VI-2~6

CLOSE

2.4 CLOSE: CLOSING A FILE

The CLOSE function generates a form of the QUEUE I/O Directive which
informs the I/O Device Handler Task assigned to the specified Logical
Unit Number that the issuing Task has completed a set of related 1I/O
overations on the current file. CLOSE 1is wused primarily to
directoried devices to close a file that was opened via SEEK, ENTER,
or RENAME. It is also interpreted in a special way by the Paper Tape
Reader Handler to mean unload the tape.

Because issuing a CLOSE implies that a file is currently open on the
specified LUN, a file name 1is only needed as part of the call to
specify a new file name following a RENAME. If the CLOSE is accepted,
subsequent references to the CLOSEd file are not allowed until an
appropriate SEEK, ENTER, or RENAME is issued.

CLOSE functions can be issued by MACRO and FORTRAN programs.,
Following is the FORTRAN call:

Form: CALL CLOSE (LUN, [nHname,nHext[,ev]])
Where: LUN is decimal and represents the Logical Unit
Number

n is the number of characters in name/ext

name of file CLOSEd is a string of one to five
ASCII characters

ext represents the file extension and is a
string of one to three ASCII characters

ev is the integer Event Variable

Example: CLOSE file named DATA SRC on the device
associated with LUN=-6:
CALL CLOSE (6 ,4HDATA,3HSRC,IEV)
or
CALL CLOSE (6)

The CPB for this form of QUEUE I/O consists of the following:

Word Contents
0 3400 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 File name (first half)
4 File name (second half)
5 File name extension

VI-2-7

Words 3 through 5 of this CPB are required only when CLOSing a file
which has been opened in order to be renamed. Otherwise, a three-word
CPB is sufficient.

Following is the MACRO expansion for this function:

/ **** CLOSE LUN[,FLNAM,EXT(,EV]]

/
.DEFIN CLOSE,LUN,FLNAM,EXT,EV
CAL e +2
JMP «+7
3400
EV+0

.DEC ;LUN; .OCT
i «SIXBT 'FLNAM'

L]

0; « LOC eet2
«SIXBT 'EXT'
« ENDM

A special form of the CLOSE function, called ERROR CLOSE, exists
primarily for internal use within the disk file Handlers.

VI-2-8

DELETE

2.5 DELETE: DELETING A FILE

The DELETE function generates a form of the QUEUE I/0 Directive which
requests the I/0 Device Handler Task assigned to the specified Logical
Unit Number to remove a particular file name from the device's file
directory.

DELETE functions can be issued by MACRO and FORTRAN programs.
Following is the FORTRAN call:

Form: CALL DELETE (LUN,nHname,nHext[,ev])
Where: LUN is decimal and represents the Logical Unit
Number

n is the number of characters in name/ext

name of file DELETEd is a string of one to five
ASCII characters

ext represents the file extension and is a
string of one to three ASCII characters

ev is the integer Event Variable

Example: DELETE file named DATA SRC from the directory
of the device associated with LUN=-6:
CALL DELETE(6,4HDATA,3HSRC,IEV)

The CPB for this form of QUEUE I/0 consists of the following:

Word Contents
0 3500 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 File name (first half)
4 File name (second half)
5 File name extension

VIi-2-9

Following is the MACRO expansion for this function:

/ ***% DELETE

/
«DEFIN
CAL
JMP
3500
EV+0
«DEC;

eeTei «SIXBT

0; .LOC

«SIXBT
« ENDM

LUN;

"FLNAM"
eet2

"EXT"

LUN,FLNAM,EXT[,EV]

DELETE,LUN,FLNAM,EXT,EV
o t+2
«+7

.OCT

VI-2-10

DETACH

2.6 DETACH: FREEING AN ATTACHED I/O DEVICE

The DETACH function generates a form of the QUEUE I/O System Directive
which releases an attached device from exclusive use by the calling
Task. If the DETACH is accepted, previous requests which were queued
while the device was attached can be processed. The Task issuing the
DETACH must be the same Task which issued the ATTACH. A DETACH to an
unattached device is treated as a valid request.

DETACH functions can be issued by MACRO and FORTRAN programs,
Following is the FORTRAN call:

Form: CALL DETACH (LUN(,ev])
Where: LUN is decimal and represents the Logical Unit
Number

ev is the integer Event Variable

Example: DETACH the device assigned to LUN-32:
CALL DETACH(32,IEV)

The CPB for this form of QUEUE I/0 consists of the following:

Word Contents
0 2500 (I/0 function code)
1 Event Variable address
2 Logical Unit Number

Following is the MACRO expansion for this function:

/
/ **** DETACH LUN[,EV]

/
+DEFIN DETACH,LUN,EV
CAL o +2
JMP «+4
2500
EV+0
.DEC; ©LUN; LOCT
« ENDM

VIi-2-11

DISCONNECT & EXIT

2.7 DISCONNECT & EXIT: CLEARING THE INTERRUPT LINE

The DISCONNECT & EXIT function is requested only by the REASSIGN MCR
Function when no LUNs are associated with the given I/0 device.
Acceptance of this function causes the Handler to disconnect from its
interrupt line, to clear flags in the Physical Device List (PDVL) mode
for device unit zero, and to exit,

VIi-2-12

ENTER

2.8 ENTER: OPENING A FILE FOR OUTPUT

The ENTER function generates a form of the QUEUE I/0 Directive which
opens a sequential-access file for output. It is not used for
random-access files., ENTER requests the I/O Device Handler Task
assigned to the specified Logical Unit Number to search the file
directory of the associated device for a free directory entry in which
to place a new file name. If a file of the same name already exists,
it will be deleted and replaced when the new file is closed. For the
case in which the device is DECtape, an entry for the new file is not
recorded until the file is closed. For disk, however, an entry is
made by the ENTER function prior to writing, because multiple Tasks
may write files on the disk simultaneously. If the file is not
already being manipulated, it is opened for output only. Oon
directoried devices, ENTER must be issued before any data transfers
using the WRITE function can be initiated.

ENTER functions can be issued by MACRO and FORTRAN programs.
Following is the FORTRAN call:

Form: CALL ENTER(LUN,nHname,nHext[,ev])
Where: LUN is decimal and represents the Logical Unit
Number

n is the number of characters in name/ext

name of file ENTERed is a string of one to five
ASCII characters

ext represents the file extension and is a
string of one to three ASCII characters

ev is the integer Event Variable

Example: ENTER a file named DATA SRC into the directory
of the device associated with LUN-6:
CALL ENTER(6,4HDATA, 3HSRC, IEV)

The CPB for this form of QUEUE I/0 consists of the following:

Word Contents
0 3300 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 File name (first half)
4 File name (second half)
5 File name extension

VI-2-13

Following is the MACRO expansion for this function:

/
/ **%** ENTER

LUN,FLNAM,EXT(,EV]

/
.DEFIN ENTER,LUN,FLNAM,EXT,EV
CAL «+2
JMP «+7
3300
EV+0
«DEC; LUN; .OCT
«e=e; +SIXBT "FLNAM"
0; JLOC ,.+2
«SIXBT "EXT"
« ENDM

VI-2-14

HINF

2.9 HINF: REQUESTING I/0O HANDLER INFORMATION

The HINF function generates a form of the QUEUE I/0 Directive which
provides certain information about the physical device and I/O Device
Handler Task associated with a specified Logical Unit Number. Handler
information is coded into a single word which is stored in the Event
Variable of the calling Task., The Event Variable is thus a required
parameter in the HINF call, HINF functions can be issued by MACRO and
FORTRAN programs. Following is the FORTRAN call:

Form: CALL HINF (LUN,ev)
Where: LUN is decimal and represents the Logical Unit
Number

ev is the integer Event Variable

Example: Request information about the device and I/0
Device Handler Task associated with LUN-6:
CALL HINF(6,IEV)

The CPB for this form of QUEUE I/0 consists of the following:

Word Contents
0 3600 (I/0 function code)
1 Event Variable address
2 Logical Unit Number

VI-2-15

If HINF is accepted, the Event Variable is filled with the following
device and Handler information:

Bit
0

4-11
12-17

Contents

Always zero; this implies that all actual Handler
information is represented by a positive Event
Variable; a negative Event Variable indicates that
Handler information is not available (e.g., LUN is not
assigned)

Input: set to 1 if data can be input from the device
to a Task

Output: set to 1 if data can be output from a Task to
the device

Directory-Oriented: set to 1 if the Handler accesses
files on the device via a file directory; this
implies that a file must be referenced by name and
opened for input or output before reading or writing
can be performed

Unit Number: must be in range 0-255 decimal

Device Code: must be in range 1-63 decimal; zero is
illegal; see Table 2-2 for standard DEC device codes;
users should assign codes to their own devices
in reverse order, beginning with 63.

The following codes have been assigned to standard RSX devices:

VI-2-16

Table 2=-2
I/0 Devices and Codes

Device Code

Handler Name

Device

g O e W N

10
11
12

13
14
16

17
20
21
22
23
24
25
26

TTY

RFeeeon
RP.oee
DTeese
MT..oo
PReoceoo
CDesew
PPeces

LP....

VT...-
CC.O..

AF....

UDeeeo
ADsooe
BDeoeoo
CPevoo
VWeeoo
RKeooo
CDeveo

XY....

Terminal

Fixed-Head Disk

Disk Pack

DECtape

Magtape

Paper Tape Reader

Card Reader (CR15 and CRO3B)
Paper Tape Punch

Line Printer

Reserved For Storage Scope
Handler

Display
System COMMON Communicator

Automatic Flying Capacitor
Scanner

Universal Digital Controller
Analog-to-Digital Converter
Batch Handler Task

Card Punch

Writing Tablet

Disk Cartridge

Card Reader (CR1l)

XY Plotter

Vi-2-17

Following is the MACRO expansion for this function:

/
/ **** HINF LUN,EV

/
+DEFIN HINF,LUN,EV
CAL o+2
JMP «+4
3600
EV+0
.DEC; LUN; .OCT
« ENDM

VI-2-18

PREAL

2.10 PREAL: PREALLOCATING I/0 BUFFERS

The PREAL function generates a form of the QUEUE I/O Directive which
PREALlocates an area of a Task's partition for I/0 buffers. This
function reserves storage but does not allocate it to a specific
device.

PREAL is typically not called by user Tasks. It is relevant to such
system programs as the FORTRAN IV Compiler and the MACRO Assembler,
which utilize "free core" to build dynamic tables., PREAL is used
prior to and in conjunction with the RAISEB System Directive. Its CPB
consists of the following:

Word Contents
0 2300 (I/O function code)
1l Event Variable address
2 Logical Unit Number

VI-2-19

READ

2.11 READ: READING FROM AN I/0O DEVICE

The READ function generates a form of the QUEUE I/0 System Directive
which READs input into a buffer via the I/O Device Handler Task
assigned to the specified Logical Unit Number. Input may be entered
in any of the data modes supported by RSX, including IOPS BINARY,(
IMAGE BINA%Y, IOPS éﬁCII, and IM%G? ASCII,

i { =

The CPB for this form of QUEUE I/O consists of the following:

Word Contents
0 2600 (I/0 function code)
1l Event Variable address
2 Logical Unit Number
3 I/0 data mode
4 Core line-buffer starting address
5 Core line~buffer size

If the user wants to READ from within a FORTRAN task, no subroutine
CALL is required. le can simply use the standard FORTRAN READ
statement described in the FORTRAN IV XVM LANGUAGE MANUAL. Following
is an example of a FORTRAN READ which will read data in IOPS ASCII
from the device assigned to LUN-3 and store them in the buffer named
TXTBF:

DIMENSION TXTBF (128)

READ (3,10) TXTBF
10 FORMAT (128A5)

Following is the MACRO expansion for this function:

/
/ **** READ LUN,MODE,BUFF,SIZE[,EV]
/
+DEFIN READ,LUN,MODE,BUFF,SIZE,EV
CAL ot+2
JMP o+7
2600
EV+0
+DEC; LUN; .OCT
MODE
BUFF
SIZE
« ENDM

VIi-2-20

RENAM

E

2,12 RENAME: RENAMING A FILE

The RENAME function generates a form of the QUEUE I/O Directive which

opens a file

assigned to a specified Logical Unit Number to search the
directory of the associated device for a specified file name.
actual process of RENAMing this file is not completed until after
user issues a CLOSE function in which the new file name is given.

RENAME functions

for RENAMing. It requests the I/0 Device Handler Task

file
The
the

can be issued by MACRO and FORTRAN programs.
Following is the FORTRAN call:

Form:

CALL RENAME (LUN,nHname,nHext[,ev])

Where:

LUN is decimal and represents the Logical Unit
Number

n is the number of characters in name/ext

name of file to be RENAMEd is a string of one
to five ASCII characters

ext represents the file extension and is a
string of one to three ASCII characters

ev is the integer Event Variable

Example:

Search the directory of the device assigned to
LUN-8 for a file named DATA 001 and rename
the file to DATA 002:

CALL RENAME (8,4HDATA,3H001,IEV)
CALL WAITFR(IEV)
IF(IEV)10,10,20

C LABEL l10=ERROR LOCATION

20 CALL CLOSE (8, 4HDATA,3H002,IEV)

CALL WAITFR(IEV)

The CPB for this

Word

(S I T S e

form of QUEUE I/O consists of the following:

Contents
3700 (I/0 function code)
Event Variable address
Logical Unit Number
File name (first half)
File name (second half)

File name extension

VI-2-21

Following is the MACRO expansion for this function:

/ *hk

RENAME

«DEFIN
CAL
JMP
3700
EV+0
«SIXBT

0; .LOC

«SIXBT
« ENDM

LUN;
"FLNAM"

LUN,FLNAM,EXT[,EV]
RENAME , LUN,FLNAM,EXT,EV
ot2

. t+7

.OCT

..+2

"EXT"

VI-2-22

SEEK

2.13 SEEK: OPENING A FILE FOR INPUT

The SEEK function generates a form of the QUEUE I/0O Directive which
requests the I/0 Device Handler Task assigned to the specified Logical
Unit Number to search the file directory of the associated device for
a specified file name. If the file exists and is not being
manipulated in a conflicting way, it is opened for input only. SEEK
pertains only to sequential-access files, not to random-access files.
On directoried devices, SEEK must be issued before any data transfers
using the READ function can be initiated.

SEEK functions can be issued by MACRO and FORTRAN programs. Following
is the FORTRAN call: '

Form: CALL SEEK (LUN,nHname,nHext[,ev])
Where: LUN is decimal and represents the Logical Unit
Number

n is the number of characters in name/ext

name of file sought is a string of one to five
ASCII characters

ext represents the file extension and is a
string of one to three ASCII characters

ev is the integer Event Variable

Example: Search directory of device assigned to LUN=-6
for a file named DATA SRC:
CALL SEEK(6,4HDATA,3HSRC,IEV)
C WAIT FOR SEEK TO COMPLETE
CALL WAITFR(IEV)

The CPB for this form of QUEUE I/O consists of the following:

Word Contents

0 3200 (I/0 function code)
Event Variable address
Logical Unit Number
File name (first half)

File name (second half)

v S W NN

File name extension

VI--2-23

Following is the MACRO expansion for this function:

/
/ **** SEEK LUN,FLNAM,EXT{,EV]

/
«DEFIN SEEK,LUN,FLNAM,EXT,EV
CAL . +2
JMP «+7
3200
EV+0

.DEC; LUN; ,OCT
ee=e} «SIXBT "FLNAM"

0; JLOC ..+2

«SIXBT “EXT"

« ENDM

VI-2-24

WRITE

2.14 WRITE: WRITING TO AN I/O DEVICE

The WRITE function generates a form of the QUEUE I/0O Directive which
WRITEs output from a buffer to the I/0O Device Handler Task assigned to
the specified Logical Unit Number. Output may be produced in any of
data modes IOPS BINARY, IMAGE BINARY, IOPS ASCII, or IMAGE ASCII,

D) K5) &
The CPB for this form of QUEUE I/O consists of the following:

Word Contents
0 2700 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 I/0 data mode
4 Core line~buffer starting address

If the user wants to WRITE from within a FORTRAN task, no subroutine
CALL is required. He can simply use the standard FORTRAN WRITE
statement described in the FORTRAN IV XVM LANGUAGE MANUAL. Following
is an example of a FORTRAN WRITE which will write IOPS ASCII data from
the buffer named TXTBF to the device assigned to LUN-3:

DIMENSION TXTBF(128)

WRITE (3,10) TXTBF
10 FORMAT(1X,128A5)

The next example illustrates the WRITing of a message, followed by a
frequency, on LUN-3:

WRITE (3,10) IFREQ
10 FORMAT (29H WARNING, XFC OSCILLATING AT ,I16//)

Following is the MACRO expansion for this function:

; **** WRITE LUN,MODE,BUFF [,EV]
.DEFIN WRITE,LUN,MODE,BUFF,EV
CAL ot2
JMP o+6
2700
EV+0
.DEC; LUN; .OCT
MODE
BUFF
.ENDM

VI-2-25

L

CHAPTER 3

DISK FILE I/O AND RF DISK I/O

3.1 RELATIONSHIP OF RF, RP, AND RK

RSX has sequential and random-access disk file I/O Handler Tasks for
three types of disk: RF Fixed-head DECdisk, RK cartridge disk, and RP
disk pack. These Tasks should not be confused with the Disk Driver
Task. The sources for these Tasks can be conditionally assembled to
produce all three versions., Most of this chapter applies to all
three, but to avoid cumbersome notation, this chapter refers only to
the RF, Chapters on the RP and RK describe the exceptions.

RSX supports up to eight RP units, up to eight RK units, one RF with
up to eight platters, or any combination of these. Only one disk can

be the system device (the device on which the RSX core image resides).

A user with a mixture of disks can choose any one of the following as
system disk: RF, unit 0 of the RK's or unit 0 of the RP's.

Previous versions of RSX supported only the RF disk. References to RF
disk platters and disk addresses have the same meaning as in the
earlier versions, but these terms have slightly different meanings
when applied to RP and RK disks. Similarly, RSX still supports word
addressability for the RF, but the RP and RK are block-oriented.

3.2 RF HANDLER TASK

The I/0 Device Handler Task responsible for servicing requests for RF
DECdisk operation is named RF.... and handles calls submitted through
special forms of the QUEUE 1/0 Directive. The device name is RF for
purposes of reassignment.

3.3 DESIGN DECISIONS

The RF Fixed~head DECdisk has two types of files: sequential access
and random access.

pisk file Handler design allows DOS and RSX to reside on the same
disk. The structures of bit maps, MFDs (Master File Directories),
and UFDs (User File Directories) are identical. Sequential files in
RSX are identical to those in DOS, but their random-access files
differ.

VI-3-1

F

Because the directory is open-ended, a virtually limitless number of
sequential and random-access files may exist on the disk. In addition,
any number of files may be simultaneously active or open.

3.4 SEQUENTIAL-ACCESS FILES

The Disk I/O Driver Task allocates blocks of disk space in increments
of 256 decimal words. A file consists of one or more of these blocks
linked together to form a chain. These linkage pointers make it
unnecessary to locate the blocks adjacent to one another. Example:

Block 1 Block 5 Block 12
data data data
777777 1 5
5 12 777777

The figure above shows a three-=block linked file. In each block, the
first 254 (decimal) words may contain data. Word 255 is a backward
link. It contains the number of the preceding file data block. If
there is no preceding block, it contains 777777 (-1). Similarly, word
256 is a forward link, containing the number of the next file data
block or 777777 if none follows.

The only way to determine where the nth file data block is on the disk
is to read sequentially through the first n-l1 blocks or look at the
RIB (Retrieval Information Block(s) list). The XVM/DOS USER'S MANUAL
describes the RIB in detail. ' H

S

3.4.1 Data Records within a Sequential-Access File

Except for the restriction that physical data records must be 254
decimal words or less in length (in order to fit into a single disk
block), the fact that sequential-access files consist of linked blocks
should be logically transparent to user Tasks. (Physical records
should not be confused with FORTRAN logical records,)

One or more data records may be stored within a disk block:; however,
data records may not be split between two blocks. The four data modes
supported by this Handler all require line buffer header word pairs,
which are recorded with the data. During creation (writing) of a
file, if space remains in the current block, but the next record is
too long to fit in the space, RF.... sets the next word to zero. A
zero word in the position of a header indicates that no more data
remains in the present block.

VI-3-2

)]

Header word pair

record 1
data
Header word pair
record 2
data
0
unused

Backward link

Forward link

SAMPLE FILE BLOCK
(SEQUENTIAL-ACCESS FILE)

3.5 RANDOM-ACCESS FILES

At the level of the I/O Handler in DOS, random- and sequential-access
files are both created as noncontiguous disk blocks. To perform
DOS-style random access, the Retrieval Information Block (a list of
the real disk location of each physical block in the file) must be in
core. This can be very costly when simultaneous access to many random
access files is needed.

Random-access files in RSX consist of contiguous disk storage. At the
FORTRAN level, however, the user hardly notices the difference in
recording techniques.,

A single command to the I/0 Handler can create a file. The file size
is a multiple of the disk block size (256 words). The size may range
from 1 to 777 octal blocks (one block less than half the capacity of
one RF disk plattér or 130,944 words).

once the file has been created, the user must access the space
allocated for it by calling on the resident Disk I/0 Driver, not on
this file Handler (RF). Calling on DSK speeds access to such files,
because the file Handler processes only one I/O request at a time and
could become tied up with lengthy file 1lookup requests. FORTRAN
run-time subroutines automatically handle this process in a FORTRAN
program.

Unlike sequential files, random-access files are only opened and
closed to be renamed. They are simply created, and the user program
has the responsibility of noting where the file is on the disk.
FORTRAN run-time subroutines automatically handle this process in a
FORTRAN program. Because the Disk I/O Driver handles access to the
data in such files, there is no protection or interlock to keep two or
more Tasks from trying to access the same data simultaneously. The
danger, of course, is that one Task may modify part of the data while
the other Task is trying to read it. Protection against this sort of
problem is provided for sequential-access files. The cost, however,

VI-3-3

is that additional core is needed to remember the activity status of
every open file and it takes longer to read/write data in
sequential-access files.

A user Task normally does not have more than two or three
sequential-access files open simultaneously because that requires
additional buffer space within the Task partition of about 274 words
(decimal) per file. Oon the other hand, the number of random—-access
files one may simultaneously access is potentially quite large because
very 1little information about each file is needed. At the FORTRAN
level, the maximum of four open files is governed by table space al-
lotted in the DEFINE subroutine, part of the FORTRAN OTS library. The
file capacity can be expanded by redefining an assembly parameter in
DEFINE.

3.5.1 Data Records within a Randonm=-Access File

Because the space within a random-access file on the disk is
contiguous and because access to the data in such a file is handled by
GET and PUT commands to the Disk I/O Driver, there is no such thing as
a data record as far as the RF Handler is concerned. The user Task is
free to read/write starting at any word in the file and may specify
any word count (record size). At the FORTRAN level, the concept of a
random-access data record takes on meaning because a structure is
imposed by the FORTRAN run-time subroutines that handle random-access
I/o.

3.6 USER FILE DIRECTORY (UFD)

The existence of each file is recorded in a file directory. It has an
entry for each file giving its name, the number of its first block,
the total number of blocks in the file, and the date it was created.
For random-~access files, two additional pieces of "accounting
information" are recorded. When used by FORTRAN, the accounting
information indicates the number of records in the file, the record
size, and the type of data {formatted or unformatted).

To read data from a sequential-access file, a Task must first open it
by issuing a SEEK command (from a MACRO program) or a CALL SEEK (from
a FORTRAN program) so that the starting block may be found. To read
data from a random-access file, a Task must issue a CREATE command
(from a MACRO program) or CALL DEFINE (from a FORTRAN program) to find
the location for the file or to create space if it does not exist.

VI-3-4

File directories are called UFDs because they are identical to User
File Directories in DOS. RSX supports multipleUFDs for each disk on
the system. The LUN-UFD table in the executive is used to store the
SIXBT representation of UFD names. This table has a one to one
relationship with the LUT so a unique UFD can be specified for each
LUN associated with a disk. Initially, during System Configuration, the
LUN-UFD +table is set to zero to indicate that no LUN's or UFD's are
associated with any disk. This table may be subsequently modified in
two ways. For "user" disks, the MNT MCR and TDV functions will enter
the specified UFD name into the LUN-UFD table entries for all LUN's
associated with the disk named. Furthermore, MNT will set the UFD name
into the appropriate entry of the DISK~-UFD table for future possible
use by REASSIGN,. The second way to modify the LUN-UFD table is via
REASSIGN. When any disk is to be associated with a LUN, the user can
specify a UFD name in REASSIGN's command string. If no such specifica-
tion is made, REASSIGN will look up the default UFD name for the disk
in the DISK-UFD table. This table has one entry for each disk which
might be present on the system. Initially, the DISK-UFD table 1is zero
except for the entry corresponding to the system disk. This entry is
set to the .SIXBT representation of the RSX UFD by the System Configu-
rator. When REASSIGN has obtained the UFD name, it enters the name in-
to all entries of the LUN-UFD table for those LUN's being assigned to
the disk specified. Hence, for each disk there can be as many UFD's
accessible to a user's tasks as there are LUN's assigned to that disk.
Whenever a UFD for a particular LUN disk palr must be accessed by the
file handler, the handler obtains the name of the UFD associated with
the LUN from the appropriate entry of the LUN-UFD table. The handler
then scans the Master File Directory (MFD) of the disk to obtain the
starting block of the UFD. Subsequently, the £file handler can
manipulate UFD entries with the data obtained from the MFD.

Each file entry consists of eight words and each UFD block can have 37
(octal) entries. The UFD can consist of several blocks linked in the
same manner as a sequential-access file. The UFD is initially created
by the System Configuration Task and is initially one block long and
empty. Each UFD file entry has the following format:

Word Contents
0 Filename (first half)
1l Filename (second half)
2 File extension
3 Truncation and first data block
4 Type and number of data blocks
5 First RIB block or accounting information
6 Protection code- and pointer to start of RIB or

accounting information

7 File creation date

VI-3-5

Words 0-2, filename and extension, are entered in ,SIXBT form. If the
entry is unused, these words are zero. Word 3 consists of the
following:

Bit Contents
0 Set 1 if file is truncated

1-17 Number of file's first data block

Word 4 consists of the following:

Bit Contents
0 File type (0 for sequential access;

1l for random access)

1-17 Number of data blocks in the file

When a sequential file is being created, an entry is made in the UFD
(prior to any WRITE statements) so that a UFD slot is reserved. At
this time the starting block number and the total file length (words 3
and 4) are unknown. The file cannot be read in this state. Bit 0 of
word 3 is set to one to signal this, normally implying that the file
is still being created. 1If, due to software or hardware error, file
creation is never properly terminated, the file may remain in this
unfinished, "truncated" state.

For sequential files, Word 5 contains the starting block having RIRB
data. Word 6 has a pointer for the first RIB block, indicating where
the RIB data start. In bits 0-2, this word also has the protection
code (set 1 for files written in RSX), though RSX ignores the code.

For RSX created files, Words 5 and 6 contain random access accounting

information. Refer to the discussion on CREATE to obtain the format
of these words.

Word 7 contains the date the file was created, using the following
format:

Bit Contents
0=5 Month (1=12, decimal)

6=-11 Day (1-31, decimal)

12-17 Year (beginning at 1970 = 0, decimal)

VI-3-6

3.7 RF HANDLER STRUCTURE
The RF Handler is written in several overlay segments:
Resident Code Task Initialization
I/0 function dequeue and dispatch
HINF
PREAL
DISCONNECT & EXIT

Block allocate and deallocate
subroutines

I/0 request completed code
Active LUN Deque

Overlay 1 Directives to open files:
SEEK
ENTER
RENAME

Overlay 2 READ
WRITE

Overlay 3 CLOSE

ERROR CLOSE

ABORT
Overlay 4 DELETE
Overlay 5 CREATE

I/0 requests are processed to completion one at a time and are
dequeued (removed from the queue) in the resident code. Provided that
the I/0 function is legal and that it was requested from Task level
(this specifically excludes interrupt service routines), the
dispatcher transfers to the appropriate routine, which might call in a
different overlay from the disk.

The block allocate and deallocate subroutines are used in common by
the overlays to get or relinquish disk space.

The I/O request completed code is a common exit point for all 1I/0
functions when they have been completed.

VI-3-7

The Active LUN Deque is a list maintained by RF.... to indicate which
Tasks have open files and via which LUNs. More than one Task may open
files via the same LUN, but each Task may have only one open file per
LUN,

As a general rule, whenever an error occurs while a request is being
processed and the requesting Task has a file open on the indicated
LUN, the file is CLOSEd. An exception to this occurs when an already
existing sequential file is in the process of being recreated. If an
error occurs, the partially written new file is discarded and the old
file is retained.

This could happen if a USER-mode Task were to EXIT immediately after a
CLOSE without waiting for the CLOSE to finish.

3.8 RF HANDLER REQUESTS

Special forms of the QUEUE I/O Directive can be issued to queue
requests to the RF I/0O Device Handler Task. Following are the legal
function calls which may be issued for RF service and a brief
description of each:

VIi-3-8

Table 3-=1
RF Disk I/0 Functions

RF Call Function

HINF Request Handler Task information
SEEK Open file for input

ENTER Open file for output
DELETE Delete file name from directory
RENAME Open file for renaming

PREAL Preallocate I/0 buffer space
ABORT Abort I/0 for a Task

DISCONNECT & EXIT Disconnect Handler from interrupt line
and exit

READ Read input into buffer

WRITE Write output from buffer

CLOSE Close file

ERROR CLOSE Handler internally closes file

CREATE Create random-access file

Except For READ, WRITE, CLOSE, ERROR CLOSE, and CREATE, all the
functions 1listed above operate almost exactly as described in Chapter
2. When requested by the RF Handler Task, however, these functions do
require the few special considerations listed below.
of the I/0 functions listed above, some may be used any time. Others
are legal only if they appear in the proper context or sequence, as
shown below. Bracketed items [] may appear any number of times,
including zero.

SEEK, [READ], CLOSE

ENTER, [WRITE], CLOSE

RENAME, CLOSE

DELETE (legal any time)

CREATE (legal any time)

HINF (legal any time)

PREAL (legal any time)

Vi-3-9

3.8.1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set ¢to
+340002 to indicate the following:

Bit Contents
0 Set 0 to make Event Variable positive
1=2 Set 3 to indicate input and output device
3 Set 1 to indicate a directory-oriented Handler

4-11 Device unit 0

12=17 Device code 2 (RF disk)

3.8.2 SEEK: Opening a File for Input

The SEEK function opens a sequential=-access file for input, SEEK must
be executed prior to any READ statement. A file may be opened for
input provided that it exists in the disk's file directory and
provided that it is not open for any reason other than to be read.
For instance, one cannot read a file if it is in the process of being
rewritten or renamed.

Lf the SEEK is successfully performed, a node is added to the Active
LUN Deque indicating that this Task has a file open on the specified
LUN, and an 1/0 buffer is created in the top of the Task's partition
to serve as an intermediate file data buffer., The Task must be in a
partition large enough to contain a buffer for each file that is open
at a given time,

3:.8.3 ENTER: Opening a File for Output
The ENTER function opens a sequential-access file for output.

If the file does not exist, it is created by the ENTER=-WRITE-...-CLOSE
sequence, If the file already exists, ENTER opens the file to be
rewritten. This function must be executed prior to any WRITE
statement.,

A file may be opened for output provided that it exists in the disk's
Eile directory and provided that it is not already open.

As with SEEK and RENAME, when ENTER is successfully performed, a node
is added to the Active LUN Deque to signal an open file and a file
buffer is created in the partition of the requesting Task. The Task
must be in a partition large enough to contain a buffer for each file
that is open at a given time.

VI-3-10

3.8.4 DELETE: Deleting a File Name from the Directory

The DELETE function is legal provided that the file exists in the
directory and provided that it is not open (for reading, writing, or
renaming) .

3.8.5 RENAME: Opening a File for Renaming

The RENAME function opens a file for renaming. The file opened by
RENAME is renamed by the CLOSE function. RENAME is identical to SEEK
except that the file cannot be read and the file cannot be renamed if
it is already open. Both sequential and random-access files can be
renamed in this way.

3.8.6 PREAL: Preallocating I/0O Buffer Space

The PREAL function preallocates space in the Task's partition for an
I/0 buffer.

This function is typically used by Tasks such as the Assembler and
Compiler, which determine how much free core is available by issuing
the RAISEB Directive. Because RAISEB increases the Task size, I/0
buffers must first be reserved. PREAL would be unnecessary if the
Task were to open all its files before issuing RAISEB, The buffer
size used by RF.... is 274 decimal.

3.8.7 ABORT: BAborting I/0 for a Task

ABORT closes all open files for a given Task and causes system
resources (I/O buffers and nodes) to be relinquished.

3.8.8 DISCONNECT & EXIT: Clearing the Interrupt Line

The DISCONNECT & EXIT function requests RF.... to disconnect from its
interrupt line ({although RF.... is not connected) and to exit.

If any files are open, REASSIGN informs the operator via the MCR
terminal (LUN=-3) and asks if he wants to reassign anyway. If so, all
open files are closed. As with ERROR CLOSE, however, partially
rewritten files are deallocated so that the old files remain intact.

VI-3-11

CLOSE

3.9 CLOSE: CLOSING A FILE

The CLOSE function is legal provided that a file has been opened. It
operates almost exactly as described in Chapter 2, with the exceptions
and special features described below.

If the file was opened by SEEK, CLOSing the file simply means
relinquishing the I/0 buffer (in the Task's partition) and removing
the Active LUN node.

If the file was opened by ENTER, an end-of-file record is written and
the file's entry in the file directory is updated to indicate the
file's starting block and size. Then RIB blocks (Retrieval
Information Blocks) are recorded for the file and the RIB data is
recorded in the directory. If the file was being rewritten, the old
version is removed from the directory and its blocks are deallocated,
Then the I/0 buffer and the Active LUN nodes are released.

If a file is being rewritten and the user Task neglects to wait for
completion of the CLOSE function before it exits, e.g.,

CALL CLOSE (LUN, 4HFILE, 3HSRC)
STOP

the old file may be retained and the new file discarded. The correct
sequence is

CALL CLOSE (LUN, 4HFILE, 3HSRC, IEV)

CALL WAITFR (IEV)

STOP
If the file was opened by RENAME, then CLOSE specifies the new file
name. The CLOSE is legal provided that the new file is not being
manipulated (as determined by a scan of the Active LUN Deque) and does

not already exist in the directory. After the file is renamed, the
I/0 buffer and Active LUN node are released.

VI-3-12

CREATE

3.10 CREATE: CREATING A RANDOM-ACCESS FILE

The CREATE function CREATEs a random-access file, if it does not
already exist, by allocating a contiguous block of disk storage and
recording the file's existence in the file directory. The CAL
Parameter Block (CPB) for CREATE is as follows:

Word Contents
0 1600 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Control Table address

The Control Table consists of the following:

Word Contents
0 Filename (first half)
Filename (second half)
File extension
File size (number of 256-word blocks)
Accounting information

Accounting information

o v aTw N M

Update indicator (zero for no update;
nonzero for update)

~

Platter number (bits 0~2 contain unit number)

8 Disk address

Words 0-2, file name and extension, are entered in .SIXBT form.

The legal range for the file size is 1 to 777 octal blocks. If the
file already exists, the size in the Control Table must match that of
the existing file. If not, an error is declared (see below).

The accounting information need bear no relation to the file size.
These two words are recorded as part of the file entry information in
the directory when the file is first created. If the file already
exists and the update indicator is zero, signifying that no update is
requested, the accounting information in the CTB must match that in
the file directory or else an error is declared (see below), If the
update indicator is nonzero, the new accounting information is written
into the directory entry. An example of the use of updating occurs

when a user wishes to keep track of the last time he accessed the
file. Thus, every time he accesses the file with a CREATE he must
store a new date in the accounting information.

Because the accounting information is used by the random-access
run~-time subroutines, it is not accessible to the FORTRAN user. The
first word (5) indicates the number of records in the file, The
second word indicates the record size and the data mode. It has the
following format:

Bit Contents

0 Data mode (0 for unformatted
(IOPS BINARY); 1 for formatted
(IOPS ASCII))

1-17 Record size (words per record
for IOPS BINARY; characters
per record for IOPS ASCII)

If the file already exists and a mismatch error is detected, the
correct file size and accounting information are stored in the
CREATEr's Control Table. Regardless of error, if the file exists,
then the starting location of the file (platter number and disk

address) is returned to the Control Table. If the file did not
previously exist, the starting location of the file 1is returned in
words 7 and 8 of the Control Table. In this case, the values

returned bear no relationship to the initial values of these two
words. The user needs the starting location of the file so that he
can construct GET and PUT requests to the Disk I/0 Driver (DK via
LUN-1). The FORTRAN user, however, does not need to know this. Once
he has created the file with a CALL DEFINE statement, he employs the
‘random-access form of the READ and WRITE statements as indicated in
the FORTRAN manual. It is the random-access run-time subroutines that
actually perform GET and PUT to the disk.

The CALL DEFINE statement is basically 1like the FORTRAN IV CALL
DEFINE. The RSX version of this statement has three noteworthy
differences. :

CALL DEFINE (d,rsiz,fsiz,fnam,v,mode,a,dcod[,ev])

First, the arqument shown as a is ignored in RSX (though something
must appear in the calling sequence). This is the file size adjustment
parameter. Under DOS-15, random—-access files, once created, can be
extended at a later time to a larger size. This is not so in RSX
because of the requirement that storage in such a file be contiguous.

Second, when a random-access file is first created under DOS, the data
in the file are initialized to zeros, because the file is created by

sequential WRITEs. In RSX, the initial state of the data in the file
is random.

VI-3-14

Third, the RSX call has an additional parameter. It is an integer
Event Variable, shown in brackets because it is optional. If the
arquments in the call appear to be legitimate to the DEFINE
subroutine, it attempts to create or look up the named file by calling
on the disk file Handler. If the file Handler returns an erxrror
indication, this is returned in the Event Variable, if one was
specified in the CALL DEFINE, Therefore, the user program should wait
for the setting of the Event Variable by using CALL WAITFR. Following
that, it should test for an error (negative Event Variable value) or
success (positive Event Variable value).

1 - % Lo, won wrzady e / i
o e (il et priobuelg ok

VI-3-15

ERROR CLOSE

3.11 ERROR CLOSE: HANDLER'S INTERNAL CLOSING OF A FILE

The ERROR CLOSE function exists primarily for internal use within the
RF file Handler. Whenever an 1/0 error is detected, RF puts an ERROR
CLOSE request in its I/O queue as if it had been issued by the Task
which caused the error., ERROR CLOSE is identical to CLOSE except when
an already existing file is being recreated. In this case, the new
file is discarded and the old file is retained. The new file's blocks
are deallocated and its entry in the file directory is removed. If no
old file exists, the new file is retained.

VIi-3-16

READ

3.12 READ: READING INPUT INTO A BUFFER

The READ function READs input into a buffer via the RF Handler Task
assigned to the specified Logical Unit Number. It operates almost
exactly as in the description of READ in Chapter 2, with the
exceptions and special features described below.

Provided that a file was opened with a SEEK, READ is 1legal in 1IOPS
BINARY (Data Mode 0), IMAGE BINARY (Data Mode 1), IOPS ASCII (Data
Mode 2), and IMAGE ASCII (Data Mode 3). All four modes require a 1line
buffer header. Since the Handler does not have to pack or unpack
data, it handles them in the same manner.

With every READ statement a data 1line is transferred to the
requester's line buffer, The requesting Task should examine the
header word to see if end-of-file has been reached or if a checksun,
parity, or buffer overflow error has occurred. If READs are issued
after end-of-file is 1reached, they result in the return of
end-of-file,

Since several data lines fit into a disk block, not every READ
requires a disk transfer.

If a checksum or buffer overflow error occurs, it applies only to a
single data line. When a parity erxrror occurs, however, it is flagged
in each data line coming from the same file data block, since it is
not known where in the block the error occurred.

VIi-3-17

WRITE

3.13 WRITE: WRITING OUTPUT FROM A BUFFER

The WRITE function WRITEs output from a buffer to the RF Handler Task
assigned to the specified Logical Unit Number. It operates almost
exactly as in the description of WRITE in Chapter 2, with the
exceptions and special features described below.

Provided that a file was opened with an ENTER, WRITE is legal in IOPS
BINARY (Data Mode 0), IMAGE BINARY (Data Mode 1), IOPS ASCII (Data
Mode 2), and IMAGE ASCII (Data Mode 3), All four modes require a line
buffer header. Since the Handler does not have to pack or unpack
data, it handles them in the same manner.

If the data line fits into the unused space in the current data block,
it 1is stored there (in core) and WRITE processing is completed. If
the line does not fit, the current block is written to the disk after
another block is allocated. The new block then becomes the current
block, and the data line is transferred to it.

Every data line has a two-word header at the beginning. The RF

Handler sets the data mode (header word 0) and the checksum (header
word 1).

VI-3-18

CHAPTER 4

RK DISK I/0

This chapter describes the ways in which input/output operations for
the RK cartridge disk differ from I/O for the RF DECdisk.

4,1 RK HANDLER TASK

The I/0O Device Handler Task responsible for servicing requests for RK
disk operation is named RK.... and handles calls submitted through
special forms of the QUEUE 1/0 Directive. The device name is RKn for
purposes of reassignment. The device code is 24 for uses in functions
such as HINF,

The PDVL must have a node for each RK unit., Requests are dequeued on
a priority basis, beginning with unit 0 and proceeding through the
highest unit.

4,2 DISK PLATTERS AND DISK ADDRESSES

For the RK disk, the address and platter mentioned in Chapter 3
represent a 26=bit disk address. The high-order three bits of the
platter word are reserved for a unit number when multiple RKs are
present. The low~order eight bits of the platter word prefix the main
disk address word, resulting in a 26-bit disk address.

The RK is block-oriented. Because disk accesses must therefore start
on block boundaries, the low-order eight bits of the address word must
be zero. Nevertheless, it is possible to access part of a block if
access begins on a block boundary, but the rest of the block is
zeroed, when writing only part of a block in this way. If access does
not begin on a block boundary, an error occurs,

VI-4-1

CHAPTER 5

RP DISK I/O

This chapter describes the ways in which input/output operations for
the RP disk pack differ from I/O for the RF DECdisk,.

5.1 RP HANDLER TASK

The I/0 Device Handler Task responsible for servicing requests for RP
disk operation is named RP.... and handles calls submitted through
special forms of the QUEUE I/O Directive. The device name is RPn for
purposes of reassignment. The device code is 3 for use in functions
such as HINF,

The PDVL must have a node for each RP unit. Requests are dequeued on
a priority basis, beginning with unit 0 and proceeding through the
highest unit,

5.2 DISK PLATTERS AND DISK ADDRESSES

For the RP disk, the address and platter mentioned in Chapter 3
represent a 26-bit disk address. The high-order three bits of the
platter word are reserved for a unit number when multiple RPs are
present. The low-order eight bits of the platter word prefix the main
disk address word, resulting in a 26-bit disk address.

The RP is block~oriented. Because disk accesses must therefore start
on block boundaries, the low-order eight bits of the address word must
be zero. Nevertheless, it is possible to access part of a block if
access begins on a block boundary, but the rest of the block is
zeroed, when writing only part of a block in this way. If access does
not begin on a block boundary, an error occurs.

VI-5-1

CHAPTER 6

DISK DRIVER I/0

The I/O Driver for the RF DECdisk, the RK cartridge disk, and the RP
disk pack consists of two Tasks, DSK and DSA, DSK and DSA are
permanently core-resident and form an integral part of the RSX
Executive,

6.1 DISK DRIVER TASKS

These Tasks are considered an I/0 Driver rather than an I/0 Handler
because they perform only primitive I/0 functions and do not deal with
file structuring and data modes. The RF, RK, and RP Handlers deal
with the more complex functions.

Recorded on each disk is a series of bit maps which indicate those
areas of the disk that are free (to be allocated) and those which are
reserved (already allocated). Since there may be many bit maps per
disk, it is possible for an ALLOCATE request to require several disk
transfers (requiring up to 300 milliseconds). To prevent holding off
high=-priority disk requests for this length of time, the Disk Driver
consists of two Tasks: DSK, the actual Disk Driver, and DSA, a
lower-priority Task that handles disk ALLOCATE/DEALLOCATE requests.

Whenever DSK encounters an ALLOCATE or DEALLOCATE request in its 1I/0
request queue, it simply moves the request node from its own queue to
another queue belonging to DSA. Then it sets DSA's Trigger Event
variable and declares a Significant Event so that DSA will run (DSA
runs at a priority level lower than DSK).

Previous versions of RSX supported only the RF disk. References to
the RF disk platters and disk addresses have the same meaning as in
the earlier versions, but these terms have slightly different meanings
when applied to RP and RK disks. For these two disk types, the
address and platter represent a 26-bit disk address. The high-~order
three bits of the platter word are reserved for a unit number when
multiple RK's or RP's are present, The low-order eight bits of the
platter word prefix the main disk address word, resulting in a 26-bit
disk address.

The following calculation may be used to obtain a disk block number

from the address and platter words when referring to any of the three
types of disk:

VIi-6-1

CLL
LAC ADDRESS

LMQ

LAC PLATTER /Remove unit number
AND (077777)

LRSS 10 /AC now contains the
LACQ /block number

The following calculation may be used to obtain a disk address and
platter from a block number on any of the three types of disk:

ECLA=641000 /Clear AC with EAE
LAC BLOCK
LMQ
LLSS!IECLA 10
DAC PLATTER
LACQ
DAC ADDRESS

Word addressability is still supported for the RF. The RK and RP,
however, are block-oriented. Because disk accesses must therefore
start on block boundaries, the low-order eight bits of the address
word must be zero. Nevertheless, it is possible to access part of a
block if access begins on a block boundary, but the rest of the block
is zeroed, when writing only part of a block in this way. If access
does not begin on a block boundary, an error occurs.

Only one disk can be the system device (the device on which DOS and
RSX core image reside). A user with a mixture of disks can choose any
one of the following as system disk: RF, unit 0 of the RK's, or unit
0 of the RP's,

6.2 BIT MAPS

Bit maps are identical to the SAT blocks in DOS. The location for the
first bit map on each type of disk is:

Disk Type Block Number
RF 1776
RK 1776
RP 764

VI-6-2

The structure of these bit maps is as follows:

Word Contents

0 Total number of blocks on the disk

1l Total number of blocks in this bit map
2 Number of blocks occupied on this bit map
3

First actual word of bit map

376 Pointer to previous bit map or =l

377 Pointer to next bit map or =~1

6.3 DISK ERRORS

Whenever a hardware-detected error occurs during a disk transfer, DSK
reexecutes the transfer. If the error persists after the eighth try
(the number of tries is actually an assembly parameter), a disk
failure is assumed and the Event Variable associated with the I/O
request is set with the contents of the Disk Status Register to help
pinpoint the cause of the error.

Because not all Tasks can be expected to report Disk errors, two SCOM
registers are updated by the Disk Driver:
Octal
Register Contents
152 The number of times disk transfers were retried

153 The number of disk failures that have occurred

6.4 DISK DRIVER REQUESTS
Special forms of the QUEUE I/0 Directive can be issued to queue

requests for the Disk I/0 Driver Tasks, Following are the legal
function calls that may be issued and a brief description of each:

VI-6-3

Table 6-1
Disk Driver I/O Functions

Driver Call Function
HINF Request Driver Task information
ABORT Abort I/0 for a Task
ALLOCATE Reserve storage
DEALLOCATE Free storage
GET Read from disk
PUT Write to disk

In addition, a FORTRAN wutility routine called UPKEV has been
implemented to aid in unpacking the Event Variable returned by the
HINF function. All functions and subroutines are described in
subsequent sections.

HINF and ABORT operate almost exactly as described in Chapter 2, When

requested by the Disk I/O Driver, however, these two functions do
require the few special considerations discussed below.

6.4.1 HINF: Requesting Driver Task Information

If a request for HINF is accepted, the Event Variable is set to
+3000xx to indicate the following:

Bit Contents
0 Set 0 to make Event Variable positive
1-2 Set 3 to indicate input and output device
3 Set 0 to indicate a non-directory-oriented
Driver
4-11 Device unit 0
12-17 Set xx, where xx is device code for

the system disk (02 for RF; 03 for
RP; 24 for RK)

VIi-6-4

6.4.2 ABORT: Aborting I/0 for a Task

The Disk I/O Driver honors this function by removing from its queue
all I/O requests made by the Task being ABORTed., Because the disk is
a fast device, no attempt is made to stop an I/O transfer already in
progress. The ABORT request is simply dequeued (removed from the
queue) after the current transfer is completed.

ALLOCATE

6.5 ALLOCATE: RESERVING STORAGE

The ALLOCATE function generates a device-dependent form of the QUEUE
I/0 Directive which reserves storage on a disk. If the amount
requested is available, information about the storage area is returned
to a Control Table whose location is specified in the I/0 call.

The information from the Control Table is not queued along with the
information from the CAL Parameter Block. Therefore, after making the
I/0 request, one must not modify the Control Table until after
completion of the request.

ALLOCATE functions can be issued only in EXEC mode, by both MACRO and
FORTRAN programs. As explained@ above, the RF, RP, or RK may serve as
system disk or "user" disk., Whether a disk is dedicated to the system
or the user, the MACRO and FORTRAN calls it requires for ALLOCATion do
not vary. The CAL Parameter Block and Control Table, however, do
vary. Following is the FORTRAN call:

Form: CALL DSKAL(table,words,dvcode,unit [,ev])

Where: table is an integer array of at least three
words representing the Control Table:; a
seven-word table is preferable if DSKGETs
or DSKPUTs follow

words is a decimal integer representing the
number of words of storage desired

dvcode is an integer representing the code of
the device on which space will be allocated

unit is an integer representing the unit
number of the device on which space will be
allocated

ev is the integer Event Variable

Example: ALLOCATE 768 words of disk storage on an RP
disk, unit 2, and suspend execution until
completion:

DIMENSION ICTB (7)

IRP=3

IUNIT=2

CALL DSKAL (ICTB,768,IRP,IUNIT,IDKEV)
CALL WAITFR (IDKEV)

VI-6-6

For the system disk, the CPB for ALLOCATE consists of the following:

Word Contents
0 1500 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Control Table address

When an ALLOCATE request is issued for space on the system disk, word
0 of the Control Table is set with the amount of storage space
desired:

Woxd Contents
0 Requested storage (number of words)
1 Any value
2 Any value

Disk space allocation cannot occur immediately; therefore, it is
necessary to specify an Event Variable address in the ALLOCATE CPB and
to wait for completion of the request before attempting to read the
parameters. If the ALLOCATE request for the system disk is honored,
the 3-word Control Table is modified as follows:

Word Contents
0 Storage granted (number of words)
1 Disk platter
2 Disk address

Because storage is allotted in blocks of 256 words (400 octal), the
amount of storage granted may exceed the amount requested. The disk
platter and disk address serve to locate the beginning of the storage
plock, which resides entirely on a single bit map.

130816 (377400 octal) is the upper 1limit on allowable allocation

because 377401 would have to be rounded up to 400000, which is a
negative number,

VI-6-7

To reference any disk, the CPB for ALLOCATE consists of the following:
Word Contents
0 11500 (1/0 function code)
Event Variable address
Logical Unit Number

Control Table address

s W N e

Disk type (2 for RF; 3 for RP;
24 for RK; 0 for system disk)

When a generalized ALLOCATE request is issued, word 0 of the Control
Table is set with the amount of space desired:

Word Contents
0 Requested storage (number of words)
1 Device unit number
2 Any value

Word 1 of the Control Table has the following form:

Bit Contents
0=~2 Device unit number

3-17 Any value

If the ALLOCATE is honored, the Control Table is modified as follows:

Word Contents
0 Storage granted (number of words)
1 Unit and platter numbers
2 Disk address

Word 1 of the Control Table then has the following form:

Bit Contents
0-2 Device unit number

3-17 Platter number

VI-6-8

DEALLOCATE

6.6 DEALLOCATE: FREEING STORAGE

The DEALLOCATE function generates a device-dependent form of the QUEUE
I/0 Directive which frees a block of disk storage that was reserved by
an ALLOCATE command.

The information from the Control Table is not queued along with the
information from the CAL Parameter Block., Therefore, after making the
1I/0 request, one must not modify the Control Table until after
completion of the request.

DEALLOCATE functions can be issued only in EXEC mode, by both MACRO
and FORTRAN programs. As explained above, the RF, RP, or RK may serve
as system disk or "user" disk. Whether a disk is dedicated to the
system or the wuser, the MACRO and FORTRAN calls it requires for
DEALLOCATion do not vary. The CAL Parameter Block and Control Table,
however, do vary. Following is the FORTRAN call:

Form: CALL DSKDAL (table,dvcode,unit[,ev])

Where: table is an integer array of at least three
words, representing the Control Table; a
seven-word table is preferable if
ALLOCATEs, DSKGETs, or DSKPUTs use the same
CTB

dvcode is an integer representing the code of
the device on which space is allocated

unit is an integer representing the unit
number of the device on which space is
allocated

ev is the integer Event Variable

Example: DIMENSION ICTB(7)

IRP=3

IUNIT=2

CALL DSKDAL (ICTB,IRP,IUNIT,IDKEV)
CALL WAITFR (IDKEV)

For the system disk, the CPB for DEALLOCATE consists of the following:

VI-6-9

Word Contents

0 1600 (IX/0 function code)
1 Event Variable address

2 Logical Unit Number

3 Control Table address

Usually the content of first three words of the Control Table would be
exactly the same as that received after some ALLOCATE request. In
addition, the same values of dvcode and unit would typically be used.
In general, the Control Table is established before the DSKDAL call as
follows:

Word Contents
0 Storage granted (number of words)
1l Disk platter number (bits 3=17)
2 Disk address

Bits 0-2 of word 1 need not contain the unit number. They will, in
any case, be ignored and replaced within DSKDAL by the rightmost three
bits of the unit parameter.
No test is made to see if the disk space to be DEALLOCATEA actually
has been reserved, However, several checks are made on the Control
Table arguments.
To reference any disk, the CPB for DEALLOCATE consists of the
following:

Word Contents

0 11600 (I/0 function code)

Event Variable address
Logical Unit Number

Control Table address

bW ON e

Disk type (2 for RF;
3 for RP; 24 for RK; O
for system disk)

When a generalized DEALLOCATE is issued, the Control Table should
contain the following:

VIi-6-10

Word Contents

0 Storage granted (number of words)
1l Unit and platter numbers
2 Disk address

Word 1 of the Control Table has the following form:

Bit Contents
0-2 Unit number

3-17 Platter number

VI-6-11

GET

6.7 GET: READING FROM DISK

The GET function generates a device-dependent form of the QUEUE I/0
Directive which reads a specified number of contiguous words from disk
into core. In addition to the Disk Driver, several I/O Handlers use
GET.

The information from the Control Table is not queued along with the
information from the CAL Parameter Block. Therefore, after making the
I1/0 request, one must not modify the Control Table until after
completion of the request.

As explained above, the RF, RP, or RK may serve as system disk or
"user" disk. Whether a disk is dedicated to the system or the user,
the MACRO and FORTRAN calls it requires for GETting words from disk do
not vary. The CAL Parameter Block and Control Table, however, do

vary.

Before the DSKGET call, the first three words of the table array are
typically identical to the Control Table returned by a DSKAL call.
The remaining four words of the Control Table are unspecified and
later filled in by the DSKGET subroutine.

VI-6-12

Following is the FORTRAN call for a disk GET:

Form: CALL DSKGET (table,offset,words,array,dvcode,
unit([,ev])

Where: table is a seven-word integer array, the
first three words of which represent a
DSKAL Control Table, and the 1last four
words of which provide space for the DSKGET
Control Table

offset is decimal and represents the offset
from the base address of a block of disk
storage at which the transfer from the disk
is to begin

words is decimal and represents the number of
words to be transferred

array is the name of the array to which data
are transferred

dvcode is an integer representing the code of
the device from which data are obtained

unit is an integer representing the unit
number of the device specified by dvcode

ev is the integer Event Variable

Example: Allocate 512 words of disk storage on the
disk assigned to LUN-2 and read the last
256 words into IARRAY;

DIMENSION ICTB (7),IARRAY (256)

CALL HINF (2,IDKEV)
CALL WAITFR (IDKEV)
CALL UPKEV (IDKEV,IODIR,IDEV,IUNIT)

CALL DSKAL (ICTB,512,IDEV,IUNIT,IDKEV)
CALL WAITFR (IDKEV)

CALL DSKGET (ICTB,256,256,IARRAY,IDEV,IUNIT,
IDKEV)

If the device specified by the dvcode parameter is an RP Disk Pack or
an RK Disk Cartridge, only block addressability is allowed. This
requires that the offset value (a subroutine parameter) plus the disk
starting address (a Control Table parameter) must equal a positive
integral multiple of 256 (decimal) , i.e., the low-order eight bits of
the sum must be zero. Otherwise, a negative Event Variable is
returned., For the system disk, the CPB for GET consists of the
following:

VI-6-13

Word Contents

0 3000 (1I/0 function code)
1 Event Variable address
2 Logical Unit Number

3 Control Table address

The Control Table associated with a GET command for the system disk is
as follows:

Word Contents
0 Disk platter number
1 Disk address
2 Core address
3 Number of words

To reference any disk, the CPB for GET consists of the following:

Word Contents
0 13000 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Control Table address
4 Disk type (2 for RF; 3 for RP;

24 for RK; 0 for system disk)

VI-6-14

The Control Table for the generalized GET command has the
form:

Word Contents
0 Unit and platter numbers
1 Disk address
2 Core address
3 Number of words

Word 0 of the Control Table has the following form:

Bit Contents
0=-2 Device unit number

3=17 Platter number

Vi-6-15

following

PUT

6.8 PUT: WRITING TO DISK

The PUT function generates a device-dependent form of the QUEUE I/0
Directive which writes a specified number of contiguous words from
core to disk. The function is allowed for USER- as well as
EXEC-mode Tasks to perform random access. In addition +to the Disk
Driver, several I/O Handlers use PUT.

The information from the Control Table is not queued along with the
information from the CAL Parameter Block. Therefore, after making the
I/0 request, one must not modify the Control Table until after
completion of the request,

As explained above, the RF, RP, or RK may serve as system disk or
“user" disk. Whether a disk is dedicated to the system or the user,
the MACRO and FORTRAN calls it requires for PUTting data on the disk
do not vary. The CAL Parameter Block and Controi Table, however, do
vary.

Before the DSKPUT call, the first three words of the table array are
typically identical to the Control Table returned by a DSKAL call.
The remaining four words are unspecified and later filled in by the
DSKPUT subroutine,

VI-6-16

Following is the

FORTRAN call for a disk PUT:

Form:

CALL DSKPUT (table,offset,words,array,dvcode,
unit([,ev])

Where:

table is a seven-word integer array, the
first three words of which represent a
DSKAL Control Table, and the 1last four
words of which provide space for the DSKPUT
Control Table

offset is decimal and represents the relative
position within a block of allocated disk
storage at which the transfer to the disk
is to begin

words is decimal and represents the number of
words to be transferred

array is the name of the array from which
data are transferred

dvcode is an integer representing the code of
the device from which data are obtained

unit is an integer representing the unit
number of the device specified by dvcode

ev is the integer Event Variable

Example:

Allocate 1280 words of disk storage on the
disk assigned to LUN=2 and write out 256
words onto the disk from IARRAY, Begin
writing 128 words beyond the starting
address of the disk storage area:

DIMENSION ICTB (7),IARRAY(256)

CALL HINF (2,IDKEV)
CALL WAITFR (IDKEV)
CALL UPKEV (IDKEV,IODIR,IDEV,IUNIT)

CALL DSKAL (ICTB,1280,IDEV,IUNIT,IDKEV)
CALL WAITFR (IDKEV)

CALL DSKPUT (ICTB,128,256,IARRAY,IDEV,IUNIT,
IDKEV)

If the device specified by the
an RK Disk Cartridge, only
requires that the offset value
starting address (a Control

dvcode parameter is an RP Disk Pack or
block addressability is allowed. This
(a subroutine parameter) plus the disk
Table parameter) must equal a positive

integral multiple of 256 (decimal), i.e., the low-order eight bits of
the sum must be =zero. Otherwise, a negative Event Variable is

returned,

VI-6-17

For the system disk, the CPB for PUT consists of the following:

Word

0

1
2
3

Contents
3100 (I/0 function code)
Event Variable address
Logical Unit Number

Control Table address

The Control Table associated with a PUT command for the system disk is

as follows:
Word
0
1l
2
3
To reference any

Word

0

bW N e

The Control Table for the generalized PUT command has

form:

Contents
Disk platter number
Disk address
Core address

Number of words

disk, the CPB for PUT consists of the following:

Contents
13100 (I/0 function code)
Event Variable address
Logical Unit Number
Control Table address

Disk type (2 for RF; 3 for RP;
24 for RK; 0 for system disk)

VI-6-18

the

following

Word Ccontents

0 Unit and platter numbers
1l Disk address

2 Core address

3 Number of words

Word 0 of the Control Table has the following form:

Bit Contents
0=-2 Device unit number

3-17 Platter number

VI-6-19

UPKEV

6.9 UPKEV: UNPACKING AN EVENT VARIABLE

A special FORTRAN utility routine aids in constructing the device code
and unit number parameters for a DSKGET or DSKPUT call, It unpacks
the Event Variable returned by the HINF function. Unpacking occurs
whether or not the Event Variable is negative. UPKEV is not an I/0
operation and need not be followed by a WAITFOR.

It is called after a WAITFOR is done for a HINF,

The call follows:

Form: CALL UPKEV (ev,iodir,dvcode,unit)
Where: ev is the HINF-formatted integer Event Variable
to unpack

iodir is an integer and returns with bits 0-3 of
ev (I/0 status and directory information),
right-adjusted

dvcode is an integer and returns with bits 12-17
of ev (device type code), right-adjusted

unit is an integer and returns with bits 4-11 of
ev (unit number), right-adjusted

Example: CALL HINF (LUN,IEV)
CALL WAITFR (IEV)

CALL UPKEV (IEV,IODIR,IDEV,IUNIT)

VI-6-20

CHAPTER 7

DECTAPE 1/0

7.1 DT HANDLER TASK

The I/0 Device Handler Task responsible for servicing requests for
DECtape operation is named DT.... and handles calls submitted through
special forms of the QUEUE I/0 Directive. The device name is DTn for
purposes of reassignment. The Handler services up to eight DECtape
drives, but can handle only one file at a time.

7.2 DT HANDLER REQUESTS

Special forms of the QUEUE I/O Directive can be issued to queue
requests to the DT I/O Device Handler Task. Following are the legal
function calls which may be issued for DT service and a brief
description of each:

VI-7-1

Table 7-1
DECtape I/0 Functions

DT Call Function

HINF Request Handler Task information
ATTACH Obtain exclusive use of DECtape drive
DETACH Release attached DECtape drive

READ Read input into buffer

WRITE Write output from huffer

SEEK Open file for input

ENTER Open file for output

CLOSE Close file

ABORT Abort I/0 for a Task

DISCONNECT & EXIT Disconnect Handler from interrupt 1line
and exit
GET Read from DECtape
PUT Write to DECtape

Except for GET and PUT, all the functions listed above are basic I/0
calls and operate almost exactly as described in Chapter 2. When
requested by the DT Handler Task, however, these functions do require
the few special considerations discussed below.

7.2.1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set to
+34xx04 to indicate the following:

Bit Contents

0 Set 0 to make Event Variable positive

1-2 Set 3 to indicate input and output device

3 Set 1 to indicate a directory-oriented Handler
4-11 Set to xx, where xx is the device unit number

12-17 Device code 4 (DECtape)

VI-7-2

7.2.2 ATTACH: Obtaining Exclusive Use of a Device

If there is an open file on the DECtape drive to be ATTACHed, the
request is rejected.

7.2.3 DETACH: Releasing an Attached Device

If there is an open file on the DECtape drive to be DETACHed, the
request is rejected.

7.2.4 READ: Reading Input into a Buffer

READ is legal only after a SEEK on a file. Reading an EOF effects a
CLOSE. This function supports I10OPS BINARY (Mode 0), IMAGE BINARY
(Mode 1), IOPS ASCII (Mode 2), and IMAGE ASCII (Mode 3).

7.2.5 WRITE: Writing Output from a Buffer

WRITE is legal only after an ENTER on a file. The function supports
IOPS BINARY, IMAGE BINARY, IOPS ASCII, and IMAGE ASCII.

7.2.6 SEEK: Opening a File for Input

The SEEK function searches the DECtape directory and, if the file is
found, reads the first block and opens the file for input. If no
ATTACH to the DECtape has occurred, the Handler issues its own ATTACH,
which remains effective only while the file is open. Only one file
may be open at a time,

7.2.7 ENTER: Opening a File for Output

The ENTER function searches the DECtape directory for an empty file
slot and an available DECtape block. The search for a DECtape block
begins at block 103, If the drive is not currently attached, the
DECtape Handler issues its own ATTACH, which remains effective only
while the file is open. Only one file may be open at a time.

7.2.8 CLOSE: Closing a File
The CLOSE function clears a "File Open. Switch" (making SEEK and ENTER

legal) and executes a DETACH if no ATTACH has been requested by the
calling Task.

vVI-7-3

7.2.9 DISCONNECT & EXIT: Clearing the Interrupt Line

The Handler cannot DISCONNECT & EXIT from one unit unless no files are
open on any unit. The function checks that the Reassign inhibit flag

is set for all units before DISCONNECTing.

VI-7-4

GET

7.3 GET: READING FROM DECTAPE

The GET function causes reading from DECtape, but is only legal as
long as no files are open. Only entire blocks may be read. Blocks
read in the reverse direction are the complement obverse of those read
in the forward direction.

GET is device-dependent. The CPB for DECtape is as follows:

Word Contents

0 3000 (I/0 function code)
Event Variable address
Logical Unit Number
Block information

Core buffer address

i s W N

Word count

Word 3 consists of the followings

Bit Contents
0 Direction to read (0 for forward, 1

for reverse)

1-17 Block number

VI-7-5

PUT

7.4 PUT: WRITING TO DECTAPE

The PUT function causes writing to DECtape, but is only legal as long
as no files are open. Only entire blocks may be written., If only
part of a block is written, the state of the remainder of the block is
not guaranteed. Blocks written in the forward direction should be
read in that direction; blocks written in reverse should be read that
way. Otherwise the data appears in complement obverse form.

PUT is device-dependent. The CPB for DECtape is as follows:

Word Contents
0 3100 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Block information
4 Core buffer address

Word count

n

Word 3 consists of the following:

Bit Contents
0 Direction to write (0 for forward,

1 for reverse)

1-17 Block number

VI-7-6

CHAPTER 8

MAGTAPE I/0

8.1 MT HANDLER TASK

The I/0 Device Handler Task responsible for servicing requests for
Magtape is named MT.... and handles calls submitted through special
forms of the QUEUE I/0 Directive. This Handler Task services
DECmagtape transports connected to the TC59 Magtape Controller, both
7- and 9-track, in a manner compatible with industry standards. The
device name is MTn for reassignment purposes,

The Magtape Handler services up to eight units in round-robin order.
After completing a requested function, the Handler moves to the next
ready unit as soon as the Magtape controller is ready. This allows
overlapped operation during settling=-down time.

If a unit is rewinding, it is not considered ready. The Handler does
not wait on a "not ready" unit unless it is attempting error recovery.
In that case it prints a message such as the following on LUN-3:

MT 0 NOT READY

The unit number is set appropriately. Error recovery is described in
detail at the end of this chapter. Before performing any Magtape
operations, the user Task should establish the operating mode by
issuing a FORMAT request. If this is not done, the prevailing parity,
density, etc., will be those which were last used on the given LUN,

8.2 MT HANDLER REQUESTS

Special forms of the QUEUE 1I/0 Directive can be issued to queue
requests to the MT I/0 Device Handler Task. Following are the legal
function calls which may be issued for MT service and a brief
description of each:

vIi-8-1

Table 8-1
Magtape I/O Functions

MT Call Function

HINF Request Handler Task information
ATTACH Obtain exclusive use of Magtape drive
DETACH Release attached Magtape drive

ABORT Abort I/0 for a Task

READ Read input into buffer

WRITE Write output from buffer

RDCOMP Read and compare record
BSPREC Backspace one or more records

BSPFIL Backspace one or more files

REWIND Rewind tape

WREOF Write end-of-file mark

FSPREC Space forward one or more records
FSPFIL Space forward one or more files
FSPEOT Space forward to logical end-of-tape
FORMAT Specify tape's density and mode
MOUNT Mount or dismount tape

LABEL Read or write tape label

MTGET Read from tape directly into user's

buffer
MTPUT Write to tape directly from |user's
buffer

HINF, ATTACH, DETACH, and ABORT are basic I/0 calls and operate almost
exactly as described in Chapter 2. When requested by the MT Handler
Task, however, these functions do require the few special
considerations discussed below.

VI-8-2

8.2,1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set ¢to
+300x05 (octal) to indicate the following:

Bit Contents
0 Set 0 to make Event Variable positive
1-2 Set 3 to indicate input and output
device
3 Set 0 to indicate a non-directory-

oriented Handler

4-11 Set to x, where x is the device
unit number

12-17 Device code 5 (Magtape)

8.2,2 ABORT: Aborting I/0O for a Task

The ABORT function is queued in the request queue of the first Magtape
physical device node encountered. The Handler empties its queues of
I/0 requests made by the Task, but it does not stop the current I/0
function in progress.

VI-8-3

BSPFIL

8.3 BSPFIL: BACKSPACING ONE OR MORE FILES

The BSPFIL function is used to backspace the tape a specified number
of files,

BSPFIIL is issued by a FORTRAN program in the following way:

Form: CALL BSPFIL (LUN,files(,ev])
Where: LUN is decimal and represents the Logical Unit
Number

files is decimal and represents the number of
files to be backspaced
ev is the integer Event Variable

Example: CALL BSPFIL (25,2,IEV)

Following is the CPB for this function:

Word Contents
0 4300 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Number of files to be backspaced

VI-8-4

BSPREC

8.4 BSPREC: BACKSPACING ONE OR MORE RECORDS

The BSPREC function is used to backspace the tape a specified number
of physical records.

BSPREC is issued by a FORTRAN program in the following way:

Form: CALL BSPREC (LUN,recs([,ev])
Where: LUN is decimal and represents the Logical Unit
Number

recs is decimal and represents the number of
records to be backspaced
ev is the integer Event Variable

Example: CALL BSPREC (25,60,IEV)

The following is the CPB for this function:

Word Contents
0 4200 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Number of records to be

backspaced

VI-8-5

FORMAT

8.5 FORMAT: SPECIFYING TAPE FORMAT

The FORMAT function is used to specify tape density, parity, 7- or
9-track mode, error-recovery mode and core-dump mode (9-track only).

FORMAT is issued by a FORTRAN program in the following way:

Form: CALL FORMAT (LUN,typel,ev])

Where: LUN is a decimal number representing the logical
unit number

type is an integer code in the range 1 to 13
(decimal) representing the tape format

ev is the integer event variable

Examples: CALL FORMAT (25,ITYPE,IEV)
CALL FORMAT (25,7,IEV)

Format codes are:

Code Meaning
1 7-track, 200 BPI
2 7-track, 556 BPI
3 7-track, 800 BPI
4 7-track, even parity
5 7-track, odd parity
6 9-track, even parity, 800 BPI
7 9-track, odd parity, 800 BPI
8 9-track, even parity, core-dump mode, 800 BPI
9 9-track, odd parity, core-dump mode, 800 BPI
10 9-track, 800 BPI, default parity
11 7-track, 800 BPI, default parity
12 Handler error recovery (default)
13 User error recovery

Because format codes are not bit designations in an 18-bit word,

formats cannot be microcoded. For example, two separate FORMAT
functions must be issued to specify 7-track, 200 BPI, with user error
recovery. The default parity is odd, except for 7-track BCD (ASCII

READ and WRITE). Formats 1 to 3 do not alter the prevailing parity.
Formats 4 to 11 do not alter the prevailing density.

XVM/RSX V1B VI-8-6 September 1976

Following is the CPB for this function:

Woxrd

0

1
2
3

Contents
5000 (I/0 function code)
Event Variable address
Logical Unit Number

Format code

vIi-8-7

FSPEOT

8.6 FSPEOT: SPACING FORWARD TO EOT

The FSPEOT function is wused to space forward to the logical
end-of-tape, which consists of two successive end-of-file marks. The
user is solely responsible for creating a logical end-of-tape. This
mark is not necessarily equivalent to the physical end-of-tape.

FSPEOT is issued by a FORTRAN program in the following way:

Form: CALL FSPEOT (LUN{,ev])
Where: LUN is decimal and represents the Logical Unit
Number

ev is the integer Event Variable

Example: CALL FSPEOT (25,IEV)

Following is the CPB for this function:

Word Contents
0 4700 (I/0 function code)
1 Event Variable address
2 Logical Unit Number

vVi-8-8

FSPFIL

8.7 FSPFIL: SPACING FORWARD ONE OR MORE FILES

The FSPFIL function is used to space the tape forward a specified
number of files.,

FSPFIL is issued by a FORTRAN program in the following way:

Form: CALL FSPFIL (LUN,files([,ev])
Where: LUN is decimal and represents the Logical Unit
Number

files is decimal and represents the number of
files to space forward
ev is the integer Event Variable

Example: CALL FSPFIL (25,2,IEV)

Following is the CPB for this function:

Word Contents
0 4600 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Numbexr of files to space

forward

VI-8-9

FSPREC

8.8 FSPREC: SPACING FORWARD ONE OR MORE RECORDS

The FSPREC function is used to space the tape forward a specified
number of records.

FSPREC is issued by a FORTRAN program in the following way:

Form: CALL FSPREC (LUN,recs{,ev])
Where: LUN is decimal and represents the Logical Unit
Number

recs is decimal and represents the number of
records to space forward
ev is the integer Event Variable

Example: CALL FSPREC (25,50,IEV)

Following is the CPB for this function:

Word Contents
0 4500 (I/O0 function code)
1 Event Variable address
2 Logical Unit Number
3 Number of records to space forward

VI-8-10

LABEL

8.9 LABEL: READING OR WRITING A TAPE LABEL

The READ/WRITE LABEL function rewinds the tape to the
beginning-of-tape and then causes the first record (the tape label) to
be read or written. A code included in the I/O call identifies the
operation. WRITE LABEL causes a previously unlabeled tape to be
declared and treated as a labeled tape. If READ LABEL is requested
when a tape is assumed to be unlabeled, the first record on the tape
is read and no error condition is flagged.

LABEL is issued by a FORTRAN program in the following way:

Form: CALL LABEL (LUN,code,buf,words(,ev])
Where: LUN is decimal and represents the Logicél Unit
Number

code is 0 to read a label, 1 to write a label

buf is an integer array representing a core
buffer

words is decimal and represents the number of
words to be read or written

ev is the integer Event Variable

Example: CALL LABEL (25,0,IBUF,50,IEV)

The CPB for this function is:

Word Contents

0 5200 (I/0 function code)
Event Variable address
Logical Unit Number
Read (0) or write (l) code

Core buffer address

e W N

Core buffer size

VI-8-11

MOUNT

8.10 MOUNT: MOUNTING OR DISMOUNTING TAPE

The MOUNT function is used to MOUNT or disMOUNT a labeled or unlabeled
tape. A subfunction code included in the I/O call identifies the
specific operation to be performed.

MOUNT is issued by a FORTRAN program in the following way:

Form: CALL MOUNT (LUN,subl[,ev])
Where: LUN is decimal and represents the Logical Unit
Number

sub is the integer subfunction code and may
be 1, 2, or 3 (see values below)
ev is the integer Event Variable

Examples: CALL MOUNT (25,ISUBF,IEV)
CALL MOUNT (25,2,IEV)

The subfunction code may have one of three values:

Code Meaning
1 MOUNT labeled tape
2 MOUNT unlabeled tape
3 DisMOUNT tape

Following is the CPB for this function:

Word Contents
0 5100 (I/0 function code)
1l Event Variable address
2 Logical Unit Number
3 Subfunction code

A labeled tape has a record which contains some sort of identifying
information, written immediately after the beginning-of-tape mark. A
tape is declared to be labeled when a MOUNT labeled tape function is
executed and also when a WRITE LABEL function is executed.

8.10.1 MOUNT a Labeled Tape

To MOUNT a labeled tape, the requesting Task should first type out a
message to the operator telling him which tape to mount. Then, when

VIi-8-12

it issues the MOUNT labeled tape request, the Magtape Handler prints
out the following message on LUN-3 (example is for tape 5):

*** MOUNT TAPE MT5S

Then the Handler periodically checks the status of that tape drive and
considers it ready if it is on-line and at the beginning-of-tape mark.

The tape label record can be read or rewritten only by the READ/WRITE
LABEL function. If the head is positioned at the beginning-of=-tape
and a READ, WRITE, MTGET, MTPUT, READ/COMPARE, or SPACE FORWARD
request is received, the Handler automatically spaces forward past the
tape label before it begins to execute the function.

Note that because of this, one cannot, for example, WRITE a record
starting from the beginning-of-tape, BACKSPACE RECORD, and expect to
return to the beginning-of-tape.

8.10.2 MOUNT an Unlabeled Tape

To MOUNT an unlabeled tape, the same operations should be performed as
for mounting a labeled tape.

Since the tape is declared unlabeled, the special operation to space
past the beginning-of-tape label of a labeled tape is not required.

8.10.3 DISMOUNT a Tape

The TC Magtape controller does not permit complete unloading of a tape
under program control., The DISMOUNT tape function is equivalent to a
REWIND followed by a SPACE FORWARD RECORD. No message is printed.
The SPACE FORWARD will make sense in the 1light of the typical
operating sequence described below.

Consider that tape drive 3 holds the first of a series of tapes to be
processed by a certain Task on the same drive., The Task has just
finished with tape 1 and needs tape 2.

The Task issues a DISMOUNT request to the Magtape Handler, types out a
message to the operator, then issues a MOUNT request. The MOUNT
request is not processed until the DISMOUNT is completed, so that the
message

**% MOUNT TAPE MT3
will not be printed until after the tape has spaced forward away from
the beginning-of=-tape. Recall that the MOUNT function periodically

checks to see if the tape is at the beginning-of-tape mark. The
operator can then unload tape 1 and mount tape 2.

VI-8-13

MTGET

8.11 MTGET: READING FROM TAPE INTO USER'S BUFFER

The form and meaning of GET are device-dependent. The MTGET function
is used to transfer any number of words directly from tape into the
user's buffer area. Unlike READ, MTGET performs no data translation
(e.g., EBCDIC to ASCII), and its buffer does not have a header word
pair. A WAITFR call is required to determine completion of the
operation. Several MTGETs can be active simultaneously on different
LUNs. MTGET permits overlapped I/O.

0dd parity, 800 BPI, and 7-track operation are default assumptions.
1f the prevailing mode is 9-track, the data are read from the tape in
9-track core-dump mode. "

MTGET is issued by a FORTRAN program in the following way:

Form: CALL MTGET (LUN,buf,words,ctb[,ev])
Where: LUN is decimal and represents the Logical Unit
Number
buf is the integer array into which data are
transferred
words is the number of integer words to be
transferred

ctb is a three-word integer array representing
the Control Table
ev is the integer Event Variable

Example: DIMENSION ICTB(3)

CALL MTGET (LUN,IA,ICNT,ICTB,IEV)

Following is the MTGET CPB:

Word Contents
0 3000 (I/0 function code)
1l Event Variable address
2 Logical Unit Number
3 Control Table address

vT-8-14

The Control Table (CTB) is as follows:

Word Contents
0 Core buffer address
1l Number of words to be transferred;

when done, the Handler replaces this
with the actual number of words trans-
ferred

2 Magtape status is stored here at
completion of the operation

The information from the Control Table is not queued along with the
information from the CAL Parameter Block. Therefore, after making the

I/0 request, one must not modify the Control Table until after
completion of the request.

VI-8-15

MTPUT

8.12 MTPUT: WRITING TO TAPE FROM USER'S BUFFER

The MTPUT function is used to transfer words directly from the user's
buffer area to tape. Unlike WRITE, MTPUT performs no data translation
(e.g., ASCII to BCD), and its buffer does not have a header word pair.
A WAITFR call is required to determine completion of the operation.
Several MTPUTs can be active simultaneously on different LUNs. MTPUT
permits overlapped I/O.

0odd parity, 800 BPI, and 7-track operation are default assumptions.
If the prevailing mode is 9-track, the data are written in 9-track
core-dump mode.

MTPUT is issued by a FORTRAN program in the following way:

Form: CALL MTPUT (LUN,buf,words,ctbl[,ev])
Where: LUN is decimal and represents the Logical Unit
Number
buf is the integer array from which data are
transferred
words is the number of integer words to be
transferred

ctb is a three-word integer array representing
the Control Table
ev is the integer Event Variable

Example: DIMENSION ICTB(3)

CALL MTPUT (LUN,IA,ICNT,ICTB,IEV)

Following is the MTPUT CPB:

Word Contents
0 3100 (I/0 function code)
1 Event Variable address
2 Logical Unit Number

3 Control Table address

VI-8-16

The Control Table (CTB) is as follows:

Word Contents
0 Core buffer address
1 Number of words to be trans-
ferred
2 Magtape status is stored here

at completion of the operation
8.13 ERROR RECOVERY

The user has the choice of two modes of operation when hardware errors
occur.

8.13.1 Handler Recovery

The normal mode of operation assumed by the Magtape Handler is that it
is responsible for error recovery. When an error occurs, the Handler
attempts to reexecute the function in case the error is only
transient. After eight more +tries, it treats the error as
unrecoverable,

Unrecoverable errors include parity error, bad tape, write 1lock (on
output functions), and error caused by a tape unit that is not ready
during function execution. The last condition should not occur unless
the hardware fails or the operator mistakenly sets the transport
not-ready.

Unrecoverable errors usually set the requester's Event Variable to
-12, The one exception occurs when a parity error persists during a
READ. 1In such a case, the data are passed on and the error is flagged
in the data validity bits in the line buffer header,

83.13.2 User Recovery

when user recovery is specified, the Handler does not try to reexecute
a function that has failed. 1Instead, the user's Event Variable is set
with the Magtape status after all such fatal errors (bad tape, data
late, and write 1lock (on output functions)). The tape is left after
the last record that was read, written, or spaced over when the error
occurred. If, however, the tape unit becomes not ready during
function execution, the Event Variable is set to =12,

VI-8-17

Table 8«2
ASCII to BCD Conversion

Character ASCII BCD Character ASCII BCD
Null 0 0 - 255 40
1 261 1l J 312 41
2 262 2 K 313 42
3 263 3 L 314 43
4 264 4 M 315 44
5 265 5 N 316 45
6 266 6 0 317 46
7 267 7 P 320 47
8 270 10 Q 321 50
] 271 11 R 322 51
0 260 12 ! 241 52
=,4# 275,243 13 $ 244 53
" 247,242 14 * 252 54
: 272 15] 333 55
> 276 16 ; 273 56
UNDERSCORE 137 17 FORM FEED 214 57
SPACE 240 20 +,& 253,246 60
/ 257 21 A 301 61
s 323 22 B 302 62
T 324 23 C 303 63
U 325 24 D 304 64
v 326 25 E 305 65
W 327 26 F 306 66
X 330 27 G 307 67
Y 331 30 H 310 70
Z 332 31 I 311 71
CAR. RET. 215 32 ? 277 72
’ 254 33 . 256 73
(,% 250,245 34) 251 74
TAB 211 35 [335 75
RUBOUT 377 36 < 274 76
LINE FEED 212 37 ALTMODE 375 77
NOTE

Where multiple characters are shown, the

first is the

conversion from BCD to ASCII.

characters not shown are discarded.

character generated on

All

VI-8-1¢

Table 8-3
ASCII to EBCDIC Conversion

Character ASCII EBCDIC Character ASCII EBCDIC
Null 0 0 < 274 114
LINE FEED 212 45 = 275 176
CAR. RET, 215 25 > 276 156
SPACE 240 100 ? 277 157
! 241 132 c] 300 174
" 242 177 A 301 301
243 173 B 302 302
TAB 211 5 C 303 303
$ 244 133 D 304 304
% 245 154 E 305 305
& 246 120 F 306 306
' 247 175 G 307 307
(,[250,333 115 H 310 310
Y.l 251,335 135 I 311 311
* 252 134 J 312 321
+ 253 116 K 313 322
‘ 254 153 L 314 323
- 255 140 M 315 324
. 256 113 N 316 325
/ 257 141 (o] 317 326
0 260 360 P 320 327
1 261 361 Q 321 330
2 262 362 R 322 331
3 263 363 s 323 342
4 264 364 T 324 343
5 265 365 U 325 344
6 266 366 v 326 345
7 267 367 W 327 346
8 270 370 X 330 347
9 271 371 Y 331 350
H 272 172 Z 332 351
: 273 136 RUBOUT 377 7
UNDERSCORE 137 137
NOTE

Where multiple characters are shown, the
first is the character generated on
conversion from EBCDIC to ASCII. All
characters not shown are discarded.

VIi-8-19

RDCOMP

8.14 RDCOMP: READING AND COMPARING A RECORD

The RDCOMP I/O function is used to read and compare a record after
data have been transferred by a GET or PUT call or a binary READ or
WRITE. The user should previously have backspaced to position the
tape head before the record to be read and compared. A WAITFR call is
required to determine completion of the operation. Default parameters
are 7-track, 800 BPI, and odd parity. It makes little sense to
READ/COMPARE without first performing one of the operations previously
fnentioned. RDCOMP permits overlapped I/0.

The tape record is compared directly with the contents of the user's
core buffer. Because the tape contains BCD or EBCDIC characters, tape
records cannot be compared to ASCII-mode core buffer data. Several
RDCOMPs can be active simultaneously on different LUNs.

RDCOMP is issued by a FORTRAN program in the following way:

Form: CALL RDCOMP (LUN,buf,words,ctb{,ev])
Where: LUN is decimal and represents the Logical Unit
Number
buf is an integer array to which data are
transferred

words is decimal and represents the number of
words to be transferred

ctb is a three-word integer array representing
the Control Table

ev is the integer Event Variable

Example: DIMENSION ICTB(3)

CALL RDCOMP (25, IBUFF,50,ICTB,IEV)

Following is the CPB for this function:

Word Contents
0 4000 (I/O0 function code)
1 Event Variable address
2 Logical Unit Number
3 Control Table address

VI-8-20

The Control Table is constructed as follows:

Word
0
1l
2

Magtape status

Contents
Core buffer address
Decimal number of words to compare

Magtape status

(word 2) is returned on completion of the

VI-8-21

operation,

READ

8.15 READ: READING INPUT INTO A BUFFER

The READ I/0 function READs input into a buffer wvia the MT Handler
Task assigned to the specified Logical Unit Number. It operates
almost exactly as in the description in Chapter 2, with the exceptions
and special features described below.

Both 7~ and 9-track binary tapes as well as 9-track ASCII tapes are
read in odd parity. Seven-track ASCII is read in even parity.
Nine-track binary is written in core dump mode, a recording method
employed on 9-track drives. The parity and density may be overridden
by a FORMAT request. The default is 800 BPI (bits per inch).

If an end-of=-file mark is encountered, this condition is flagged in
the standard manner in the line buffer header word 0. In addition, the
requester's Event Variable is set to +3.

If end-of-tape is passed during a READ, the function is performed and
the Event Variable is set to +4. If both end-of-tape and end-of-file
occur, the end-of-tape indication takes precedence.

On completion of the READ request, the data validity bits in 1line
buffer header word 0 are set nonzero if one of the following errors
has occurred. Because only one condition can be flagged, they are
listed in order of precedence:

1. Parity error (checksum not computed)
2. Short line buffer error (checksum not computed)

3. Checksum error

8.15.1 1IOPS BINARY (Mode 0)

The format of data returned to the requester is standard IOPS BINARY
(including the header word pair). Data are transferred from the tape
directly to the user's core buffer.

8.15.2 IMAGE BINARY (Mode 1)

Use of the IMAGE BINARY data format means that only binary data are
read from the tape (directly into the requester's buffer). The header
word pair, which is not written on the tape in this mode, is
constructed by the Handler and stored in the user's buffer header.

8.15.3 1IOPS ASCII (Mode 2)

Because ASCII characters are not written on the tape, the Handler must
convert from one character set to another when data are read in. The
record is read in even parity BCD for a 7-track tape and odd parity
EBCDIC for 9-track tape. These are converted to ASCII characters and
packed into the requester's line buffer in the standard IOPS ASCII

VI-8-22

form. If there are not enough tape characters to fill the last word
pair completely, the last character positions are set to zero (null
characters). The I/0 Handler computes and sets the header word pair in
the line buffer.

8.15.4 1IMAGE ASCII (Mode 3)

READ in this mode unpacks a tape record in BCD or EBCDIC in the same
manner as for IOPS ASCII, except for the way in which the characters
are stored in the user's line buffer. For IOPS ASCII, characters are
packed five for every two words of memory. In IMAGE ASCII, which is
sometimes a programming convenience, only one character is stored per
word. Records written in IOPS ASCII can be read in IMAGE ASCII. The
Handler computes and sets the line buffer header word pair.

VI-8-23

REWIND

8.16 REWIND: REWINDING THE TAPE

The REWIND function is used to REWIND the tape and position the tape
head at the beginning-of-tape mark.

If the user wants to REWIND from a FORTRAN task, no subroutine call is
required. He can simply use the standard FORTRAN REWIND statement.

Following is the CPB for this function:

Word Contents
0 4100 (I/0 function code)
1l Event Variable address
2 Logical Unit Number

VI-8-24

WREOF

8.17 WREOF: WRITING AN END-OF-FILE MARK

The WREOF function is used to write an end-of-file mark on the tape at
the parity and density of the file preceding the mark. In particular,
writing in 9-track binary requires an explicit FORMAT request so that
the end-of-file mark is written in core-dump mode.

If the user wants to write an end-of-file mark from a FORTRAN Task, no
subroutine call is required. He can simply use the standard PDP-15
FORTRAN ENDFILE statement.

Following is the CPB for this function:

Word Contents
0 4400 (I/0 function code)
1 Event Variable address
2 Logical Unit Number

VI-8-25

WRITE

8.18 WRITE: WRITING OUTPUT FROM A BUFFER

The WRITE function call WRITEs output from a buffer to the MT Handler
Task assigned to the specified Logical Unit Number. It operates
almost exactly as described in Chapter 2, with the exceptions and
special features discussed below.

Both 7- and 9-track binary tapes as well as 9=track ASCII tapes are
written in odd parity; 9-track binary is written in core dump mode.
A FORMAT request is mandatory prior to writing 9-track binary;
otherwise the end-of-file mark may be unreadable. 7-track ASCII is
written in even parity. The parity and density may be overridden by a
FORMAT request. The default density is 800 BPI.

If end-of-tape is passed during a WRITE, the function is performed and
the requester's Event Variable (if indicated) is set to +4. After
that, WRITE requests are illegal.

8.18.1 IOPS BINARY (Mode 0)

The IOPS BINARY record is written directly to the tape from the user's
line buffer, including his 1line buffer header word pair, First,
however, the Magtape Handler computes the checksum and stores it in
line buffer header word l. Since the data are written directly from
the user's core area, he must not modify the contents of the line
puffer until the transfer is completed. The tape is written in odd
parity and an even number of words is transferred.

8.18.2 1IMAGE BINARY (Mode 1)

The IMAGE BINARY record is transferred to the tape directly from the
user's line buffer without the line buffer header. Consequently, the
buffer should not be altered until after the transfer is completed.,
The tape is written in odd parity and an even number of words is
transferred.

8.18.3 IOPS ASCII (Mode 2)

The IOPS ASCII data is moved from the user's line buffer into a buffer
internal to the Magtape Handler. There it is unpacked and converted
into industry standard BCD (7-track) or EBCDIC (9-track). Null (zero)
characters following the last ASCII character in the line buffer are
not suppressed and no header word pair is recorded, The maximum
record size is 376 octal (254 decimal). Characters are written one per
tape frame. The BCD and EBCDIC characters are industry-compatible
where possible (see conversion charts). The 7-track tapes may be read
on industry-compatible machines with Data Translator off and with Data
Converter off,

VI-8-26

8.18.4 IMAGE ASCII (Mode 3)

IMAGE ASCII data are packed one per word in the user's 1line buffer.
Otherwise, they are treated identically to IOPS ASCII when written to

tape.

VI-8-27

CHAPTER 9

TERMINAL I/0

9.1 TTY HANDLER TASK

The multiterminal I/O Device Handler Task responsible for servicing
requests for terminals is named TTY and handles calls submitted
through special forms of the QUEUE I/O Directive. The device name is
TTn for purposes of reassignment,

This Handler Task controls I/0 to the console terminal TTY and to the
devices connected to LT15 or LT19D control hardware. llote that the
LT15 Teletype control is indistinguishable from the LT19D from a soft-
ware point of view.

A maximum of seventeen terminals, including the console terminal, can
be supported. This is not an inherent software limitation,
Therefore, if a replacement for the LT19D is built that can support,
for example, 23 terminals, it would be easy to convert the Terminal
Handler accordingly. The limitation would be the total effective baud
rate.

A variety of terminals are supported by XVM/RSX. 2All terminals in the
system must he defined by the DTC (define Terminal Characteristics)
MCR function.

9,2 TERMINAL CHARACTERISTICS

A terminal may be characterized as send-only (to the CPU),
receive-only (from the CPU), or send-receive. Terminals that can both
send and receive operate in full duplex mode so that input does not
mix with output. At present, it is assumed that the terminal does not
have a local copy mechanism. This means that the software (here the
TTY Task) must send characters input by the terminal back to its
"nrinter."” The console terminal operates in full duplex mode and local
copy 1is suppressed by the use of the KRS instruction rather than KRB,
The local copy facility should not be confused with the term "half
duplex.”

RSX cannot necessarily support any device that can be physically
connected to the LT19D,

Most keyboard/printer devices have special form control functions

which cannot be performed within a single character time, e.g.,
horizontal tab, vertical tab, form feed, and bell. Usually the

VI-9-1

hardware does not provide the necessary delay to ensure that such
functions have completed before printing characters are transmitted.
For these devices, the TTY task provides the delay by following the
control character with a specific number of fillers (usually the null
character). TTY generates fillers for horizontal tab, vertical tab,
bell and form feed for both input and output in both IMACE ASCITI and
IOPS ASCII data modes. Filler characters are generated as needed and
are not stored in the requester's buffer.

Horizontal tab, vertical tab and form feed mechanisms are assumed to
exist on all output terminals, but RSX does not depend on this. This
means that these functions are not simulated by the software in the
absence of the hardware. However, for editing and listing assembly
language programs, horizontal tab is a necessity. For proper
operation, horizontal tab stops should be eight spaces apart, vertical
tab stops should be six lines apart and the form-feed stop should
coincide with a vertical tab stop. A form (or page) should contain 66
lines.

All output terminals should have an audible alarm, such as a bell, for
ASCII code 07 (CTRL/G). This facility is not now used by RSX, but it
might be used in the future.

The paper tape input facility on KSR terminals is not supported,
chiefly because the software cannot read one character at a time on
demand. Therefore, it is possible for characters to pass through the
reader unnoticed. ASCII tapes can be punched on KSR terminals and can
be read by the PC15 high-speed paper tape reader handler. Oil-base
tape, however, cannot be read photoelectrically, because it transmits
too much light. The reader handler recognizes seven-bit code 04
(CTRL/D or EOT) as the end-of-file when reading in IOPS ASCII. Code
04 is punched by the PC15 punch handler when closing an 1IOPS ASCII
file, but the TTY handler ignores the CLOSE function. Hence, it is
useful to have an end-of-file tape handy (a tape consisting of a
single eight-bit character: 204) .

Characters are normally output as seven-bit quantities without parity.
If output parity is required, the RSX Executive should be reassembled
with the PARITY parameter defined (set equal to any value).

9.3 LEGAL DATA MODES

IOPS ASCII (mode 2) and IMAGE ASCII (mode 3) are legal for both READ
and WRITE functions.

IMAGE ASCII, as treated by the terminal handler, is not a pure image
mode. That is, the user program does not have complete control .over
what is sent to or received from a device. The handler supplies
timing (filler) characters following horizontal tab, vertical tab,
form feed and bell, even in IMAGE ASCII mode.

Also, on output, null, rubout and altmode characters are usually
screened and not printed. Nulls and rubouts are not printed, so they
can be used as the last character(s) in an IMAGE ASCII output 1line
buffer. In particular, this means that output of one character at a

XVM/RSX V1B VIi-9-2 : September 1976

time can occur at full speed (recall that the word-pair count is used,
which implies an even number of characters in the buffer).

9.4 TYPE-IN

For each terminal, only one input character can be processed at a time
(i.e., there 1is no type-ahead buffering scheme). This means that
characters typed might be ignored. With the exception of special
control characters (CTRL/C, CTRL/P, CTRL/Y, CTRL/T, CTRL/X and
CTRL/U), this occurs when the terminal has not received a READ command
or when the character previously typed has not been processed. The
latter situation can occur when a form feed is followed by printing
characters.

Because send/receive terminals are operated in full-duplex mode, the
typist can tell that a character has been ignored when it is not
immediately displayed.

Input characters are read as eight-bit values and are truncated to
seven bits.

9.4.1 CTRL/C from the MCR Terminal

One of the terminals that has a keyboard is designated as the MCR
device. The Monitor Console Routine can be invoked (by typing CTRL/C)
from this unit only.

Whenever CTRL/C is typed at the MCR device, the interrupt service
routine in the terminal handler (TTY) examines a software flag called
MCRRI (the MCR request inhibit flag). When MCRRI is zero, neither the
Resident MCR task (...MCR) nor any of the disk-resident MCR function
tasks is active. In this case, TTY sets MCRRI to one and requests the
Resident MCR task.

If CTRL/C is typed and MCRRI is nonzero, indicating that an MCR
function is active, the Resident MCR task is not reguested and MCRRI
is set to -1. Several MCR function tasks (those that are capable of
producing lengthy output) use the fact that MCRRI is -1 to prematurely
terminate output. Therefore, CTRL/C has a dual function in the
system.

The operator can redefine the MCR device by using the REASSIGN MCR
task as follows:

MCR>REA 2,3 TT1 TTO

9.4.2 CTRL/T to Invoke MULTIACCESS

Whenever CTRL/T 1is typed at terminal "nn", TTY requests the
MULTIACCESS Monitor task, TDV..., and sets bit nn of memory location
226 (MA.CT). The change of state in SCOM word MA.CT indicates to
TDV... that the user at terminal nn reguires service.

XVM/RSX V1B VI-9-3 September 1976

9.4.3 C(CTRL/X for Remote Stimulus

Whenever CTRL/X is typed at terminal "nn", TTY reauests a task called
TTY.nn. For example, if CTRL/X is typed on TT3, a task named TTY.O03
is requested. If the task does not exist or if it is already active,
CTRL/X is ignored.

This feature is independent of any TTY READ or WRITE requests that
might be pending or in progress. It provides the user with a means of
signaling to the system that he is at a specific terminal and that he
wants attention.

9.4.4 CTRL/Y to Abort a User Task Under MULTIACCESS

Whenever CTRL/Y is typed at terminal "nn", TTY sets bit nn of memory
location 227 (MA.CY). The change of state in SCOM word MA.CY
indicates to TDV... that the user at terminal nn wishes to abort his
current task.

9.4.5 CTRL/P to Resume the Task USR.nn

Whenever CTRL/P is typed at terminal "nn", TTY issues a RESUME
directive for the task named USR.nn. This facility enables users to
resume tasks suspended under MULTIACCESS.

9.5 TTY HANDLER REQUESTS

Special forms of the QUEUE I/0 directive can be issued to queue
requests to TTY. Following are the legal function calls that can be
issued for terminal service, with a brief description of each:

Table 9-1
Terminal I/0 Functions

TTY Call Function

HINF Request handler task information
ATTACH Obtain exclusive use of terminal
DETACH Release attached terminal

READ Read input into buffer

WRITE Write output from buffer

ABORT Abort I/0 for a task

XVM/RSX V1B VI-9-4 September 1976

HINF, ATTACH and DETACH are basic I/O calls and operate almost exactly
as described in Chapter 2. However, ATTACH and DETACH are essentially
ignored for user-mode tasks with mapped LUNs (i.e., all user-mode

tasks run under MULTIACCESS), except that the specified event
variable, if any, is set to +1.

When requested by the terminal handler task, HINF reguires the special
considerations described in the following paragraph.

9.5.1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the event variable is set to
+y0xx01 to indicate the following:

Field Bit Contents

+y 0 Set to 0 to make the event variable positive
1-2 Set to y, where y is 1 if the device allows

only output, 2 if only input, 3 if both

0xx 3 Set to 0 to indicate a non-directory-
oriented handler

4-11 Set to xx, where xx is the device
unit number

01 12-17 Set to device code 01 (terminal)

XVM/RSX V1B VI-9-5 September 1976

ABORT

9.6 ABORT: ABORTING I/O FOR A TASK

Unlike handlers for other low-speed devices, TTY does not wait for
completion of any I/O. Consequently, the ABORT request is dequeued in
the normal way. ABORT is gueued in only the first terminal node in
the Physical Device List. The handler, however, must abort I/O by the
indicated task on each terminal unit, provided that the ARORT request
was queued by the I/O Rundown task, IORD.

For each terminal, the following operations are performed:

1. TIf the task has attached the device, a DETACH operation is
performed.

2. Any task-made I/O requests that remain in the I/O request
queue for this terminal unit are removed and the nodes are
returned to the poocl of empty nodes.

3. If I/0 by the task is in progress to this terminal unit, it
is terminated.

Unlike other I/O handlers, TTY permits tasks to abort their own I/0
for a specified LUN. Such ABORT requests are handled in the same way
as requests by IORD, except that ABORT requests by IORD abort all 1I/0
operations for the specified task on all terminal units. ABORT
requests from other tasks abort 1I/0 operations for only the LUN
specified.

¥VM/RSX V1B VI-9-6 September 1976

READ

9.7 READ: READING INPUT INTO A BUFFER

The READ
handler

function call reads input into a buffer via the terminal
task assigned to the specified logical unit number. It is

legal only if the terminal can send data to the CPU. It operates
almost exactly as described for READ in Chapter 2, with the exceptions
and special features described below.

If the last READ/WRITE command was in IOPS ASCII and was terminated by
a carriage return, a line feed is output to move off the last printed

line.

9.7.1 IOPS ASCII (Mode 2)

This section summarizes the characteristics of TIOPS ASCII mode

relevant

1.

XVM/RSX V1B

to terminal input:

Characters are packed in the requester 1line buffer in 5/7
ASCII format, and the line buffer header is set to reflect

the data mode (2) and the number of word pairs actually read
in.

Codes 03 (CTRL/C), 24 (CTRL/T), 25 (CTRL/U), 30 (CTRL/X), 20
(CTRL/P), 31 (CTRL/Y), 177 (rubout), 33 and 176 cannot be
read into the requester line buffer. Codes 33 and 176 are
alternate forms of altmode. They are converted to 175, the
standard internal representation of altmode. Code 176 may
become available, because it is used by older terminals.

The line buffer size given in the I/0 call must be at least
+4. An odd size 1is truncated to an even size (without
changing the requester CAL parameter block). 1In other words,
the odd word is ignored. The largest word-pair count that
can be recorded in a line buffer header is 377. If the
buffer size is 1larger than 776 (twice 377), the size is
considered to be 776. For a user-mode task, a check is made
to ensure that the buffer 1lies entirely within the task
partition.

The editing functions CTRL/U and rubout apply. CTRL/U 1is
printed as "@" and signifies that the line buffer has been
reset to empty. Rubout is ignored if the 1line buffer is
empty. If not, it is printed as "\" and it erases the last
character in the line buffer.

Normal 1line termination occurs when an altmode or
carriage-return character 1is received. Because it is often
desirable to know which terminator it is without having to
scan the line, the requester event variable is set to +1 for
altmode and +2 for carriage return

Abnormal line termination occurs when too many characters are
received, causing buffer overflow. Buffer overflow occurs
when the buffer is full except for one character, and the
next character received 1is a character other than rubout,
CTRL/U, carriage return or altmode. This causes the final
character to be replaced by a carriage return (which is
printed) and causes the line buffer header validity bits (12
and 13) to be set to 11.

VIi-9-7 September 1976

7. CTRL/D is not a special character. The standard method of
inputting end-of-file from a terminal in RSX is to type a
line consisting of two characters: either C™rL/D and
carriage return or CTRL/D and altmode.

9.7.2 IMAGE ASCII (Mode 3)

This section summarizes characteristics of IMAGE ASCII mode relevant
to terminal input:

1. Seven-bit characters are stored one per word, right-justified
in the requester line buffer. The line buffer header is set
to reflect the data mode (3) and the number of word pairs
actually read in. If an odd number of characters is input,
the second word of the last word pair used is not modified by
TTY.

2. Codes 03 (CTRL/C), 24 (CTRL/T), 30 (CTRL/X), 33, 20 (CTRL/P),
31 (CTRL/Y) and 176 cannot be read into the reguester line
buffer. Codes 33 and 176 are alternate forms of altmode.
They are converted to 175, the standard internal
representation of altmode. Code 176 may become available,
because it is used by older terminals. Codes 25 (CTRL/U) and
177 (rubout), which are not passed on to the requester if the
data mode is IOPS ASCII, are stored in the line buffer if the
mode is IMAGE ASCII.

3. The line buffer size given in the I/0 call must be at least
+3. The largest word-pair count that can be recorded in a
line buffer header is 377. 1If the buffer size is larger than
776 (twice 377), the size is considered to be 776. For a
user-mode task, a check is made to ensure that the buffer
lies entirely within the task partition.

4. The editing functions CTRL/U and rubout, which are used in
IOPS ASCII, do not apply in IMAGE ASCII. Those characters
are simply recorded in the reguester line buffer.

5. CTRL/D is not a special character. The standard method for
inputting end-of-file from a terminal in RSX is to type a
line consisting of two characters: either CTRL/D and
carriage return or CTRL/D and altmode.

XVM/RSX V1B VIi-9-8 September 1976

WRITE

9.8 WRITE: WRITING OUTPUT FROM A BUFFER

The WRITE I/0 function call WRITEs output from a buffer to the
Terminal Handler Task assigned to the specified Logical Unit Number.
It is legal only if the terminal can receive data from the CPU, It
operates almost exactly as in the description of WRITE in Chapter 2,
with the exceptions and special features described below.

9.8,1 IOPS ASCII (Mode 2)

This section summarizes characteristics of IOPS ASCII mode relevant to
terminal output:

1. Seven-bit characters are unpacked from the requester's line
buffer in 5/7 ASCII (IOPS ASCII) format. TTY outputs an
8-bit, even-parity character, which certain devices may
require. :

2. Codes 00 (null), 175 (ALTMODE), and 177 (rubout) are not
printed if they come from the requester's line buffer.

3., Line termination is based on the occurrence of a carriage
return or ALTMODE character.

4, The editing function CTRL/U applies to IOPS ASCII output.
If CTRL/U is typed in while the terminal is performing IOPS
ASCII output, the remainder of the line is not printed, and
carriage return is printed in place of CTRL/U.

Normally, line termination causes the requester's Event
Variable to be set to +l1; however, it is set to +2 when
CTRL/U aborts the output.

5. IOPS ASCII lines constructed by the FORTRAN Object-Time
System (OTS) begin with a vertical form control character and
terminate with a carriage return, e.g.,

<12> TEXT <15>

The vertical form control characters are: line feed (12),
vertical tab (13), form feed (page eject) (14), overprint
(20), and double space (21). OTS does not use vertical tab.
Overprint and double space are not the meanings assigned to
codes 20 and 21 in the USASCII Standard.

Traditionally, normal output 1lines constructed by MACRO
language programs do not contain an initial line feed, e.g.,

TEXT <15>

Therefore, carriage return has always meant carriage return-
line feed in IOPS ASCII mode.

However, in order to implement overprint, the implied 1line

feed cannot be output until the next READ/WRITE command is
processed. For IOPS ASCII WRITE, the first character in the

VI-9-9

line buffer is examined. If it is not a line feed or
overprint, and if the last READ/WRITE command was also in
IOPS ASCII mode and terminated with a carriage return, a
leading line feed is printed by TTY. On the other hand, if
the last READ/WRITE command was in IMAGE ASCII mode, it is
assumed that the line terminated with carriage return-line
feed. Therefore, if the first IOPS ASCII character is a line
feed, it is discarded to prevent unwanted double spacing.

Code 21, alias double space, is handled only to satisfy the
output format requirements of FORTRAN IV. Even though it is
a leading form control character, TTY first prints a line
feed., Then, code 21 is replaced by code 12 (line feed) so
that a second line feed is printed. Double spacing occurs
only when code 21 appears at the beginning of an IOPS ASCII
output line, assuming that the previous line was also in I0PS
ASCII and ended with a carriage return. All other
occurrences of the double space character cause only a single
line feed.

9.8.2 IMAGE ASCII (Mode 3)

This section summarizes characteristics of IMAGE ASCII mode relevant
to terminal output.

1,

Seven-bit characters are taken right-justified, one per word,
from the requester's 1line buffer. TTY converts them to
8-bit, even-parity characters, which certain devices may
require.

If the last READ/WRITE command was in IOPS ASCII and was
terminated by a carriage return, a line feed is output to
move off the last printed line.

Codes 00 (null), 175 (ALTMODE), and 177 (rubout) are not
printed if they come from the requester's line buffer.

The word-pair-count is taken from the line buffer header and
must be at least +2. If the Task runs in USER-mode, a check
is made to ensure that the buffer lies entirely within the
Task's partition. To output an odd number of characters,
the last character in the buffer should be a null (zero),
which is not printed.

The editing function CTRL/U, which applies to 1IOPS ASCII
output, does not apply to IMAGE ASCII output,

H TS Wl PRILT LR reganady rYem oA

N

VI-9-10

CHAPTER 10

CARD READER 1/0

10.1 CD HANDLER TASK

The I/0 Device Handler Task responsible for servicing requests for the
card reader is named CD.... and handles calls submitted through
special forms of the QUEUE I/O Directive. The device code is CD for
reassiqgnment purposes,

The CD Handler Task supports all card readers connected to the CR15
Controller and through the UCl5 Unichannel as well as the CRO3B. The
Handler's default is 029 punched card formats and must be reassembled
for 026 format (see the procurement document).

10.2 CD HANDLER REQUESTS

Special forms of the QUEUE I/O Directive can be issued to queue
requests to the CD I/O Device Handler Task. Following are the legal
function calls which may be issued for CD service and a brief
description of each:

Table 10-1
Card Reader I/O Functions
CD Call Function

HINF Request Handler Task information

ATTACH Obtain exclusive use of card reader

DETACH Release attached card reader

ABORT Abort I/0 for a Task

DISCONNECT & EXIT Disconnect Handler from interrupt 1line

and exit

READ Read input into buffer

HINF, ATTACH, DETACH, ABORT, and DISCONNECT & EXIT are basic I/0 calls
and operate almost exactly as described in Chapter 2. When requested
by the CD Handler Task, however, HINF does require the few special
considerations discussed below,

VI-10-1

10.2.1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set
+200007 (octal) to indicate the following:

Bit Contents

0 Set 0 to make Event Variable positive
1-2 Set 2 to indicate input-only device

3 Set 0 to indicate a non-directory-

oriented Handler
4-11 Device unit 0

12-17 Device code 7 (card reader)

VI-10-2

to

READ

10.3 READ: READING INPUT INTO A BUFFER

The READ 1/0 function READs input into a buffer via the CD Handler
Task assigned to the specified Logical Unit Number. It operates
almost exactly as in the description of READ in Chapter 2, with the
exceptions and special features described below.

A card image is read, a carriage return character is appended, and the
modified image is packed into a requester-specified IOPS ASCII (data
mode 2) line buffer. The following CPB is used to gqueue a READ
request:

Word Contents
0 2600 (I/0 function code)
Event Variable address

Logical Unit Number

1

2

3 I/0 data mode (2)

4 Line buffer address
5

Buffer size (in words)

Eighty card columns are read and interpreted as Hollerith data (029 or
026 code, depending upon the version of the Handler), mapped into the
corresponding 65-graphic subset of ASCII (DEC029 or DEC026 code) and
stored in the user's line buffer in 5/7 format. Compression of
internal blanks (spaces) to TABs and truncation of trailing blanks are
not performed. A carriage return character (015 octal) is appended to
the input line; thus a total of 81 characters is returned by the
Handler in IOPS ASCII mode.

The single addition to the Hollerith set, necessitated by the
constraints of system programs, is the provision for the internal
generation of the ALTMODE terminator. The appearance of a 12-1-8
punch on the card is mapped into the standard ALTMODE character (175
octal) in the user's line.

Another special punch configuration is the end-of-file card (all rows
punched in column 1). When an end-of~-file card is encountered, the
remainder of the card is ignored and the Handler returns the standard
EOF designation (1005 in word 0 of the line buffer header) to the
user's program.

10.4 CRl15 ERROR MESSAGES

Corrective action can be taken for a variety of malfunctions. These
are therefore treated as a form of non-terminal error with recovery as
described below. Error messages ordinarily appear on LUN-64, but the
user can conditionally assemble the Handler so that they appear on a
different LUN.

VI-10-3

l, *** CD READER NOT READY

Cause: Hopper empty, READ "STOP" button pushed, or power
off.

Corrective action: Place card in input hopper, push "POWER"
on button and/ox push "RESET" button. (The reader takes a
few seconds to build up its air foil.)

2., *** CD PICK ERROR
Cause: Card failed to leave input hopper on READ request,

Corrective action: Juggle cards in input hopper and depress
"RESET" button.

3. *** CD DATA MISSED/PHOTO ERROR

Cause: Loss of power while reading a card or hardware
malfunction in photo sensing devices.

Corrective action: Remove top card from output stacker,
place card at bottom of card deck in input hopper. Depress
"POWER" button and/or depress "RESET" button.

4, *** CD ILLEGAL PUNCH

Cause: Illegal card punch detected on 1last card read.
(Hollerith code not part of DEC029 or DEC026 set,)

Corrective action: Depress "STOP" button to disable card
reader, Remove top card from output stacker, punch new card
to correct columns containing incorrect Hollerith code, place
corrected card at bottom of card deck in input hopper and,
finally, depress "RESET" button to enable card reader,

NOTE

When transferring a card deck to any
device, be sure to include an
end-of-file card at the end of the input
card deck.

10.5 UC15 OPERATION

To a very large extent, the UCl5 readers are programmed and operated
exactly as the CRl5 readers are. The primary difference is the
presence of spooling in the PDP-1l. When this feature is enabled (with
the DOS SPOOL function), card images proceed from the card reader to
the user's program via the RKO5 disk. This means that a large deck of
cards can be fed into the card reader and onto the RKO05 prior to their

use in the XVM. Indeed, CD.... need not event bhe core-resident at the
time of the initial card reading. When the cards are needed, they can
be read from the RK05 at disk speed. This whole operation is

transparent to the user program.

VI-10-4

A special card is needed as a deck delimiter for the Spooler. This is
called an end-of-deck card. This EOD card is used in addition to the
ordinary EOF card. It has ALTMODE punches (12=-1-8) in columns 1 and
2., In general, each job nas several decks, each ending with an EOF
card; an EOD card follows the entire job.

If desired, spooling can be disabled by assembling CD.... with the
assemoly parameter NOSPL=0, To obtain a UC15 Handler, independent of
spooling, the assembly parameter UCl1l5=0 is needed.

10.6 UCl5 ERRORS

The basic mechanism of error handling and recovery for the UC15
Unichannel readers is similar to that of the CR15: the user corrects
the error, and the Handler resumes operation when the reader becomes
ready. The types of errors and recovery procedure are also similar.
The error printout format, however, is different.

The PDP-11 handles errors. Any errors that occur are placed in a
table in the PDP-1l. An RSX monitor program in the XVM called the

POLLER transfers any such entries to the MCR terminal. The message
format is:

**% [JC1l5 ERROR CDU XXXYYY
where xxx is the Spooler error code, and yyy is the card reader error

code, A Spooler error code of 004 means that the card Spooler was
empty when it received a READ, The card reader error codes are:

Code Meaning

074 Column done interrupt before previous one serviced

012 Read check (covers a variety of hardware problems)

072 Illegal punch combination

004 Reader off line (not returned if spooling): a number
of causes, usually a hopper or stacking error.

075 Hardware is busy, but driver is not

076 Hardware error between cards

045 More than 80 columns found on card

003 Illegal interrupt, or unexpected reader-to~on-line

VI-10-5

Table 10-2
DEC029 Character Set
Hollerith Card Code - Type 29 Punch

Digit Zone

None 12 1l 0
None Space & - 0
1 1 a 3j /
2 2 b k s
3 3 c 1 t
4 4 d m u
5 5 e n v
6 6 f o w
7 7 g p X
8 8 h q Yy
9 9 i r z
8=2 : (D) ! (n
8-3 # - s ’
8=4 @ < * %
8«5 ! () («)
8-6 = + ; >
8=7 " (t) (\) ?

Special characters:

ALTMODE

end=-of-

In

= 12-1-8 multiple punched

file = All rows punched in column 1

NOTE

the table above, the following

punch configurations have graphic
representations which at present do

not conform to DEC standards. The
characters shown in parentheses
(above) indicate the ASCII
equivalents in the DEC029 Character
Set:

12-8-2 cent sign

0-8=5 underscore
12-8-7 vertical bar
11=8-7 logical NOT sign

VI-10-6

Table 10-3
DEC026 Character Set
Hollerith Card Code - Type 26 Punch

Characters in parentheses indicate
the ASCII equivalents in the DEC026
Character Set. The following punch
configurations are sometimes
associated with the following
alternate graphic representations:

12 ampersand (&)
8=3 pound sign (#)
8-4 apostrophe (')
0-8-4 percent (%)
12-8=-4 square box

Digit Zone
None 12 11 0
None Space + - 0
1 1 a 3 /
2 2 b k s
3 3 c 1 t
4 4 d m u
5 5 e n v
6 6 £ o w
7 7 g p X
8 8 h q Yy
9 9 i r Z
8-3 = . $ ’
8-4 @) * (
Card Punch Combinations Below Multiple Punched
8-2 (<) (?) (z) (7)
8=5 (t) (1) () ")
8-6 (') (<) (> (#)
8=~7 \) (1) (&) (%)
NOTE

Special characters:

ALTMODE

= 12-1-8 multiple punched

end-cf-file = All rows punched in column 1

VI-10-7

10.7 OPERATION OF THE CR0O3B HANDLER

The CRO3B card reader handler task operates in the same way as the
CR15 handler task with the following exceptions.

1.

To restart the CRO3B after an error has been detected,
depress the motor start and read start buttons instead of the
power and reset buttons.

The error message:
*** CD BAD DATA

will be printed by the CR03B handler task whenever 1light
check, dark check, itacher fail, or sync fail errors occur,
To correct any of these errors remove the top card from the
output itacher, place it at the bottom of the card deck in
the input hopper, and restart the card reader.

The error message:

#%%% CD DATA MISSED/PHOTO ERROR
signifies the card reader received N column ready interrupts
where N was not equal to 80. The cause and corrective action
are 1identical to those for the CR15 handler with the
exception noted in (1) above.
The source file for the CR03B handler task is named CR.03B

nnn instead of CD.... nnn where nnn is the file's edit
number.

VI-10-8

CHAPTER 11

LINE PRINTER I/O

11.1 LP HANDLER TASK

The I/0 Device Handler Task responsible for servicing requests for the
line printer is named LP.... and handles calls submitted through
special forms of the QUEUE I/O Directive. The device name is LP for
purposes of reassignment,

There are no imposed page ejects. The user is free to count lines and
print titles, or to construct continuous charts over form
perforations.

The following line formats are supported:

l. IOPS ASCII. A two-word header, 5/7 packed text, and a
carriage return, ALTMODE, or vertical control character
line-terminator

2. IMAGE ALPHA. A two-word header, character-per-word (bits
11-17) text, and a carriage return, ALTMODE, or vertical
control character line-terminator

3. OTS ASCII. A two-word header, an "OTS Control Character,"
5/7 packed text, and a carriage return, ALTMODE, or vertical
control character 1line terminator, The OTS Control
Characters are:

Code Meaning
12 Space and print
14 Eject page and print
20 Overprint previous line
21 Double space and print

Output in all data modes is accomplished by first moving the line from
the requester's 1line buffer to a buffer within the Handler Task,
because the line may have to be modified. The line buffer header
word-pair-count is used to determine the line size and the checksum
word is ignored. The request is considered completed once the 1line
has been moved and before the line is actually printed.

VIi-1l1-1

Output in IOPS ASCII and IMAGE ALPHA is preceded by an up-space (line
feed). Output in OTS ASCII requires that the handler modify the
header to indicate two lines. This is necessary so that the '"print
multiple" IOT can be used and the OTS control character can be changed
to a 15 code (carriage return) if it is a 20 code (overprint).

11.2 LP EANDLER REQUESTS

Special forms of the QUEUE 1I/0 Directive can be issued to queue
requests to the LP I/O device handler task. Following are the legal
function calls that can be issued for LP service, with a brief
description of each:

Table 11-1
Line Printer I/O Functions
LP Call Function
HINF Request handler task information
ATTACH Obtain exclusive use of line printer
DETACH Release attached line printer
ABORT Abort I/O for a task
WRITE Write output from buffer
CLOSE Relay CLOSE to the ©PDP-11 (UWICHANNEL
version only)

HINF, ATTACH, DETACH and ABORT are basic I/0 calls that operate almost
exactly as described in Chapter 2. When requested by the LP handler

task, however, HINF does require the special considerations described
below.

11.2.1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the event variable is set to
+100011 (octal) to indicate the following:

Bit Contents

0 Set to 0 to make the event variable positive
1-2 Set to 1 to indicate an output-only device

3 Set to 0 to indicate a non-directory-

oriented handler
4-11 Set to device unit 0

12-17 Set to device code 11 (LP)

XVM/RSX V1B VI-11-2 - September 1976

WRITE

11.3 WRITE: WRITING OUTPUT FROM A BUFFER

The WRITE I/O function causes the Handler to print a line. It is
unnecessary to attach before WRITing. WRITE operates almost exactly
as described in Chapter 2. Its CPB has the following form:

Word Contents
0 2700 (I/0 function code)
1l Event Variable address
2 Logical Unit number
3 I/0 data mode (2 indicates

ASCII; 3 indicates IMAGE)

4 Line header address

11.4 UCl5 OPERATION

The UCl5 printers are programmed exactly like the XVM printer. The
primary difference is the presence of the spooling feature in the
PDP-11. When this feature is enabled (with the DOS SPOOL function),
print lines proceed to the line printer via the RKO05 disk. To the
program, the line printer appears to run at disk speed. The PDP-11
then prints out the accumulated information on the disk. New print
information may be added while a previous job is still printing.

In case of a line printer error, the POLLER will print the following
on LUN-3:

% UCl5 ERROR LPU 000004
To obtain a UCl5 Handler, the assembly parameter UCl5=0 must be

specified. If desired, the spooling feature may be disabled by
assembling with the parameter NOSPL=0.

VIi-11-3

CHAPTER 12

PAPER TAPE READER I/0

12.1 PR HANDLER TASK

The I/O Device Handler Task responsible for servicing requests for the
paper tape reader is called PR.... and handles calls submitted through
special forms of the QUEUE I/O Directive. The device name is PR for
purposes of reassignment.

NOTE

Tapes punched on model ASR Teletypes
typically are the oil-base, non-fanfold
variety. Such tapes conduct 1light too
easily and cannot be reliably read
photoelectrically.

12,2 PR HANDLER REQUESTS

special forms of the QUEUE I/O Directive can be issued to queue
requests to the PR I/0 Device Handler Task. Following are legal
function calls which may be issued for PR service and a brief
description of each:

Table 12-1
Paper Tape Reader I/O Functions
PR Call Function
HINF Request Handler Task information
ATTACH Obtain exclusive use of paper tape
reader
DISCONNECT & EXIT Disconnect Handler from interrupt line
and exit
DETACH Release attached paper tape reader
READ Read input into buffer
CLOSE Unload tape
ABORT Abort I/0 for Task

vi-l2-1

HINF, ATTACH, DETACH, and DISCONNECT & EXIT are basic I/O calls and
operate almost exactly as described in Chapter 2. When requested by
the PR Handler Task, however, HINF does require the few special
considerations discussed below.

12,2,1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set to
+200006 (octal) to indicate the following:

Bit Contents

0 Set 0 to make Event Variable positive
1-2 Set 2 to indicate input-only device

3 Set 0 to indicate a non-directory-

oriented Handler
4-11 Device unit 0

12-17 Device code 6 (paper tape reader)

VI-12-2

READ

12.3 READ: READING INPUT INTO A BUFFER

The READ I/O function call READs input into a buffer via the PR
Handler Task assigned to the specified Logical Unit Number. It
operates almost exactly as in the description of READ in Chapter 2,
with the exceptions and special features described below.

All tape frames are read one at a time regardless of the data mode,
When the physical end of a tape is reached, a hardware flag is raised
which is also set when the reader OFF LINE switch is pushed.

Since the two conditions cannot be distinguished from one another,
end-of-tape is transparent to the requesting program. Whenever
end-of-tape or OFF LINE is detected, the following message is printed
on the MCR terminal (LUN-3):

*** LOAD PAPER READER (OFF LINE)

The operator is requested to load another tape in the reader. He must
have the reader switch in the OFF LINE position., Once this has been
done and the reader switch is set in the ON LINE position, the tape
begins to move immediately. (The Handler uses a MARK-time Directive
to give up control for a brief interval, and when it regains control
it rechecks the reader status.) The primary use of the OFF LINE switch
is to suspend reading so that portions of a large tape file can be
easily removed or inserted.

Two minor drawbacks result from not terminating a READ when
out-of-tape condition arises:

1., It is difficult to write a simple paper tape copy program
since the program has no way of determining the length of a
tape without resorting to a cue from the operator.

2. A data frame is read as the trailing edge of the tape passes
through the reader. 1If this erroneous frame is blank, it is
ignored in the IOPS data modes; however, it is possible to
receive a nonzero frame, For this reason, files should not
be segmented onto several tapes unless the Task that is
reading the tapes can utilize the CLOSE function to avoid the
problems of transition between two tapes.

If the size of the requester's line buffer is larger than 776, it is
taken to be 776 (twice 377) since 377 is the largest word-pair-count
that can be recorded in the line buffer header,

12.,3.1 IOPS BINARY (Mode 0)

This section summarizes characteristics of IOPS BINARY mode relevant
to paper tape input.

1. All IOPS BINARY tape frames are punched in odd parity with
bit 8 always set. All frames which do not have the eighth
bit set are ignored. A parity test is made only on data
frames that enter the requester's line buffer; this excludes
ignored tape frames and excess data (see below).

VI-12-3

2,

3.

12.3.2

Three binary tape frames constitute one binary word.

IOPS BINARY is the only data mode in which a header word pair
is punched on paper tape. Therefore, the buffer size given
by the READ request limits, but does not specify, the number
of data words to be read from the tape. The first word read
from tape is header word 0., The word-pair-count must be
greater than zero, the data validity bits must be zero, and
the data mode must be 2zero (IOPS BINARY). Bits 9-11 are
ignored since they may be nonzero if the tape was punched in
the Advanced Software System.

If the record size, which is given by the word-pair-count, is
larger than the line buffer, the data validity bits in line
buffer header word 0 are set to indicate a short buffer
error., The buffer is then filled and the words remaining in
the tape record are declared excess data, which are simply
read and ignored.

As data words are entered in the line buffer, they are added
together to form a checksum, which should be zero when the
record has been read.

The data validity bits (12, 13) in header word 0 can only
indicate one type of error. If multiple errors occur during
a READ, the line buffer header is set in order of precedence
as follows: parity error, then short line, and finally
checksum error. Even if these three errors occur, the
requester's Event Variable is set to +1 to indicate
completion of the I/0O request.

IMAGE BINARY (Mode 1)

This section summarizes characteristics of IMAGE BINARY mode relevant
to paper tape input.

1.

2.

3.

IMAGE BINARY tape frames are punched with bit 8 always set.
All frames which do not have the eighth bit set are ignored.

Three binary tape frames constitute one binary word.

In this data mode, the tape has no header word pair.
Therefore, the record size is determined by the size of the
line buffer. Because no end-of-file, end-of-tape, or
end-of-medium condition can be returned to the requester, the
requesting program must have information on the number of
data words on the tape.

No error conditions are flagged in the data validity bits of
line buffer header word 0 since parity and checksum tests are
not made. The left half of header word 0 is set with the
word-pair-count (computed from the buffer size), and the
right half is set to mode 1 (IMAGE BINARY). The contents of
header word 1 (the checksum word) are left unchanged.

VI-12-4

12.3.3 1IOPS ASCII (Mode 2)

This section summarizes characteristics of IOPS ASCII mode relevant to
paper tape input.

1.

3.

4,

8.

IOPS ASCII tape frames contain 7-bit ASCII characters with
the eighth bit set so that the frame parity is even (as
opposed to binary tapes).

Since no header word pair is punched on the tape, the 1line
buffer size is used initially as the record size. This count
is truncated to an even number because IOPS ASCII packs data
in word-pairs. Input to the 1line buffer is normally
terminated when an IOPS ASCII 1line terminator character
(carriage return or ALTMODE) is read from the tape.

If the character codes 33 or 176 are read, they are converted
to 175, which is the standard internal representation for
ALTMODE.

Null (0) and rubout (177) characters are discarded. Nulls
form the blank leader and trailer on a tape and are used as
timing characters following horizontal tab, vertical tab, and
form feed. Rubout may also be used for timing in this way,
and in off-line tape preparation it is punched over
characters that were mistakes (it is difficult to erase holes
in a paper tape).

The character 04, representing CTRL/D or EOT (8=-bit code
204), is special. It is treated as an end-of-file marker in
lieu of an end-of-file header. So that tapes may be listed
off-line, headers are not punched in IOPS ASCII.

If this character is read, an end-of-file flag is set (see
below) and the character is converted into a carriage return
(15).

If a character is not ignored as excess data (see below), its
parity is checked., 0dd parity is an error, but the character
is still passed on to the requester and reading continues.

If a line terminator (carriage return or ALTMODE) is not
encountered when the end of the line buffer is reached, a
short buffer error condition is flagged in the data validity
bits of header word 0 and the last character in the buffer is
changed to a carriage return as a precaution. It is assumed
that the requester's line buffer is too short -- the tape
must be positioned to the beginning of the next line.
Characters continue to be read from the tape, but are treated
as excess data and are discarded.

When input is terminated, header word 0 is set as follows:
the word-pair-count is stored in the left half; the mode is
set to 5 if end-of-file occurred, otherwise it is set to 2 to
indicate 1IOPS ASCII; the data validity bits are set if an
error occurred. A parity error takes precedence over a short
buffer error.

VIi-12-5

9.

12.3.4

Checksum is not computed. The checksum word (header word) is
set to zero.

IMAGE ASCII (Mode 3)

This section summarizes characteristics of IMAGE ASCII mode relevant
to paper tape input.

l.

3.

IMAGE ASCII tape frames contain 8-bit data. Therefore, there
is no required parity, and the eighth bit has no special
characteristics.

Each 8=bit character is stored in one line buffer word.

The record size is determined directly from the line buffer
size and this determines the word-pair-count set in header
word 0. The tape itself has no header word pair, The mode in
header word 0 is set to 3 to indicate IMAGE ASCII and the
data validity bits are set to 0 since no error checking is
done.

Checksum is not computed and the checksum word (line buffer
header word 1) is unaltered.

The program must know how much data to read because IMAGE
ASCII mode provides no way to create an end-of-file and
because the end-of-tape condition is not passed on to the
requesting program. . Note that null (blank) tape frames are
passed on to the line buffer in this data mode.

vVIi-12-6

CLOSE

12.4 CLOSE: CLOSING A FILE AND UNLOADING TAPE

CLOSE is associated with directory-oriented devices, It is a
declaration that there are to be no further references (data
transfers) to or from the current file and that therefore the file is
to be CLOSEd. CLOSE operates almost exactly as described in Chapter
2.

Each paper tape should be treated as a file. The CLOSE function
causes the remainder of the tape to pass through the reader. Tape
frames are ignored. This function is not simply a convenience to the
operator. It prevents a Task from starting a read operation at the
trailer end of the last tape. A nonzero frame might be read as the
trailing edge of the tape passes through the reader.

vI-12-7

ABORT

12,5 ABORT: ABORTING I/O FOR A TASK

The Handler for a high-speed device can ignore a pending ABORT request
until it finishes the current I/0 operation. The reader Handler
cannot ignore a pending ABORT, It may process the ABORT in two
situations:

1. When I/0 is not in progress and the ABORT node is the next
request to be dequeued

2. When the Handler has continued execution following an "I/0
done" response from its interrupt service routine, from the
TTY Handler, or at completion of a mark-time request

In the latter case, I/O is in progress, but not necessarily for the
Task being ABORTed. The ABORT is honored as described below and then
the I/0 that was in progress is resumed, provided it was for a
different Task.
The following is done for the ABORT function:
l. If the Task has attached the device, a DETACH is performed.
2. Any I/O requests made by that Task which remain in the I/0

request queue are removed, and the nodes are returned to the
Pool of Empty Nodes.

VIi-12-8

CHAPTER 13

PAPER TAPE PUNCH I/O

13.1 PP HANDLER TASK

The I/O Device Handler Task responsible for servicing requests for the
paper tape punch is named PP.... and handles calls submitted through
special forms of the QUEUE I/O Directive. The device name is PP for
purposes of reassignment.

13.2 PP HANDLER REQUESTS

Special forms of the QUEUE I/O Directive can be issued to queue
requests to the PP I/0 Device Handler Task. Following are legal
function calls which may be issued for PP service and a brief
description of each:

Table 13-1
Paper Tape Punch I/0O Functions

PP Call Function
HINF Request Handler Task information
ATTACH Obtain exclusive use of paper tape
punch
DETACH Release attached paper tape punch
DISCONNECT & EXIT Disconnect Handler from interrupt
line and exit
WRITE Write output from buffer
CLOSE Close file
ABORT Abort I/0 for Task

HINF, ATTACH, DETACH, and DISCONNECT & EXIT are basic I/O calls and
operate almost exactly as described in Chapter 2. When requested by
the PP Handler Task, however, HINF does require the few special
considerations discussed below.

VI-13-1

13.2.1 HINF:

Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set
4100010 (octal) to indicate the following:

Bit

4-11
12-17

Contents
Set 0 to make Event Variable positive
Set 1 to indicate an output-only device

Set 0 to indicate a non-directory-
oriented Handler

Device unit 0

Device code 10 (paper tape punch)

VI-13-2

to

WRITE

13.3 WRITE: WRITING OUTPUT FROM A BUFFER

The WRITE I/0 function call WRITEs output from a buffer to the PP
Handler Task assigned to the specified Logical Unit Number. It
operates almost exactly as in the description of WRITE in Chapter 2,
with the exceptions and special features discussed below.

All tape frames are punched one at a time regardless of data mode,
When only one inch of tape remains, an out-of-tape flag is raised but
does not cause a program interrupt. Therefore, the tape status is
checked before each frame is punched.

If the punch is out of tape, the following message is output to
Logical Unit 3 (the MCR terminal):

*** LOAD PAPER PUNCH, THEN, "RESUME PP...."

The punch Handler then issues a SUSPEND Directive., The operator must
reload the punch and request resumption of punch Handler execution.

Since tape frames are punched one at a time, the paper tape reader
Handler reads binary records one frame at a time and binary words may
be sptit between two tapes. However, files should not be segmented
this way onto several paper tapes. The trailing edge of a tape may be
mistakenly read as an erroneous data frame.

For the very first WRITE request and for the first WRITE request
following a CLOSE, two fanfolds of blank tape are punched to form a
leader.

13.3.1 IOPS BINARY (Mode 0)

This section summarizes characteristics of IOPS BINARY mode relevant
to paper tape output,

l. All IOPS BINARY tape frames (3 per binary word) are punched
in odd parity with bit 8 always set to one.

2. 1IOPS BINARY is the only data mode in which a line buffer
header word pair is punched on paper tape. The right half of
header word 0 (the data validity bits and the mode indicator)
is set to zero by the punch Handler. Header word 1 {the
checksum word) is computed and set by the punch Handler so
that the two's complement sum of all the words in the record
(including the header word pair) is zero.

3. The word-pair-count in the line buffer header determines the
size of the punched record. A single blank tape frame
separates binary records from one another. The blank frame
is ignored when read and acts only as a visual record
separator,

VI-13-3

13.3.2

IMAGE BINARY (Mode 1)

This section summarizes characteristics of IMAGE BINARY mode relevant
to paper tape output.

1.

13.3.3

All IMAGE BINARY tape frames (3 per binary word) are punched
in odd parity with bit 8 always set to one. The parity is
not required in this mode and is ignored by the paper tape
reader Handler. It is computed and punched because both
binary modes share common code in the paper tape punch
Handler. This means that read-in-mode tapes cannot be
punched in this mode.

The word-pair-count specified in the 1line buffer header
determines the record size, but the line buffer header is not
punched. A single blank tape frame separates binary records
from one another. The blank frame is ignored when read and
acts only as a visual record separator.

IOPS ASCII (Mode 2)

This section summarizes characteristics of IOPS ASCII mode relevant to
paper tape output.

l.

3.

4.

IOPS ASCII tape frames contain 7-bit ASCII characters with
the eighth bit set so that the frame parity is even (as
opposed to binary tapes).

Because no header is punched in this mode, the tape may be
listed off-line if desired.

The first character in the line buffer is checked to see if
it is a line feed or overprint, If it is neither, a line
feed is punched before the buffer is punched. The line feed
is not substituted for the first character in the buffer.

This makes off-line tape listing possible. It is typical for
ASCII lines output by MACRO programs to end with a carriage
return and not to include a vertical form control character.

Again, to facilitate off-line tape listing, timing (or
filler) characters are punched following horizontal tab,
vertical tab, and form feed. Two nulls are punched after a
horizontal or a vertical tab, and ten nulls are punched after
a form feed. These fillers provide the timing delay that is
necessary to ensure the completion of the carriage control
function before the next character is printed. They give
adequate protection for listings on 1l0-baud terminals.

Punching of an IOPS ASCII line normally terminates when a
carriage return or ALTMODE character is encountered. The
word-pair-count given in the line buffer header is used as a
limit factor. If the entire buffer is punched but no line
terminator is found, a carriage return is punched and the
line is thereby terminated.

vIi-13-4

13.3.4

IMAGE ASCII (Mode 3)

This section summarizes characteristics of IMAGE ASCII mode relevant
to paper tape output.

1.

3.

IMAGE ASCII tape frames consist of 8=bit data completely
specified by the wuser; hence the Handler does not compute
parity.

The word-pair-count given in the line Dbuffer header
determines the number of frames to be punched, but no header
word pair is output to the tape. One tape frame is punched
from bits 10 through 17 of each data word in the line buffer.

This data mode gives the user complete control over what is
punched on a tape.

VI-13-5

CLOSE

13.4 CILOSE: CLOSING A FILE

The CLOSE I/0 function call informs the PP Handler Task assigned to
the specified Logical Unit Number that the issuing Task has completed
a set of related 1I/0 operations on the current file. CLOSE operates
almost exactly as described in Chapter 2, with the exceptions and
special features discussed below. Independent of the most recent data
mode, CLOSE causes two fanfolds of blank tape (a "trailer") to be
punched.

13.4.1 IOPS BINARY (Mode 0)

If the data mode associated with the most recent WRITE request is IOPS
BINARY, an end-of-file record consisting of two words is punched:

001005
776773

Word 0 indicates a word-pair-count of one and gives the end-of-file
indicator (5) in the mode bits. Word 1, the checksum word, is simply
the two's complement of Word O.

13.4.2 IOPS ASCII (Mode 2)

This section summarizes characteristics of IOPS ASCII mode relevant to
closing a file after punching, If the data mode associated with the
most recent WRITE request is 1IOPS ASCII, a pseudo-end-of-file is
punched as follows:

8 null tape frames
204

The null tape frames are provided for visual separation and make it
easy to remove the 204 from the tape. ASCII code 04 representing
CTRL/D or end-of-transmission (8-bit code 204), is treated by the
paper tape reader Handler as an end-~of-file character (when reading in
IOPS ASCII mode only). The reader Handler does not pass the code 04 to
the requester's line buffer. Instead, it stores a carriage return and
sets the mode bits in the 1line buffer header to 5, which means
end~of=-file,

Use of code 04 in this way is necessary if IOPS ASCII files are to be
punched on several paper tapes (segmented). This is so because, in
RSX, the fact that a file is segmented onto several tapes is
transparent to the program reading the file. But in the Advanced
Software System, the end-of-tape (end-of-medium) condition is passed
on to the requesting program. Consequently a code 04 is not punched
at the end of an IOPS ASCII file when prepared with ADSS.

VI-13-6

13.4.3 IMAGE BINARY and IMAGE ASCII (Modes 1 and 3)

For IMAGE BINARY and IMAGE ASCII modes, CLOSE does not punch an
end-of~file, Consequently, the length of the file cannot be
determined by a program which does not have information on the data
encoding scheme (e.g., PIP in ADSS).

VI-~13-7

ABORT

13.5 ABORT: ABORTING I/O FOR A TASK

The Handler for a high-speed device need not respond to a pending
ABORT request until it finishes the current 1/0 operation. The punch
Handler cannot ignore a pending ABORT. It may process the ABORT in
three situations:

1. When I/0O is not in progress and the ABORT node is the next
request to be dequeued

2, When the Handler has continued execution following an "I/O
done" response from its interrupt service routine or from the
TTY Handler

3. When the Handler has resumed execution following its SUSPEND
for an out-of-tape condition

In cases 1 and 2, I/0 is in progress, but not necessarily for the Task
being ABORTed. The ABORT is honored as described below and then the
I/0 that was in progress is resumed, provided it was for a different
Task.

The following is done for the ABORT function:
1., If the Task has attached the device, a DETACH is performed.
2. Any I/0 requests made by that Task which remain in the 1I/0
request queue are removed, and the nodes are returned to the
Pool of Empty Nodes.
3. If I/0 is not in progress for a different Task, a flag is

reset so that the next Task to use the punch will get two
fanfolds of leader.,

VI-13-8

CHAPTER 14

ANALOG=-TO~DIGITAL CONVERTER 1/0

The AD Analog-to-Digital Converter is a special-purpose device which
runs under RSX and facilitates the conversion of analog signals to a
digitized format. To program this device properly, the user must be
intimately aware of the operational characteristics of the hardware
peripherals and of the software I/O Handler.

14.1 AD HANDLER TASK

The I/O Device Handler Task responsible for servicing requests for the
AD converter is named AD.... and handles calls submitted through
special forms of the QUEUE I/0 Directive. The device name is AD for
purposes of reassignment. It allows protected and privileged Tasks to
read digitized analog signals from the AD Analog Subsystem. The
number of signals that can be converted per QUEUE I/O request is an
important consideration, since the AD converter permits a maximum of
25,000 conversions per second (40 microseconds per conversion). This
implies that the user Task must have a large enough buffer to
accommodate these signals or that the Handler itself can provide a
special facility to allow multibuffering without loss of conversions.
Two special-purpose I/0 function calls, ADRSET and ADSSET, facilitate
this multibuffering requirement and are described in this chapter.

The AD.... Handler Task must be built to run in EXEC mode at priority
1.

14.2 AD HANDLER REQUESTS

Special forms of the QUEUE I/0 Directive can be issued to queue
requests to the AD I/O Device Handler Task. Following are the legal
function calls which may be issued for AD service and a brief
description of each:

VIi-14-1

Table 14-1
AD Converter I/0 Functions

AD call Function
HINF Request Handler Task information
ABORT Abort I/0 for a Task
DISCONNECT & EXIT Disconnect the Handler from

interrupt line and exit

ADCON Connect AD Handler to Task

ADDIS Disconnect AD Handler from Task

ADSSET Establish AD sequential data-
channel mode

ADRSET Establish random data=-channel
mode

ADSTRT Start AD conversion

ADSTOP Stop AD conversion

In addition, two FORTRAN-callable subroutines, ADSMAP and ADRMAP, have
been implemented to map input status parameters into an appropriate
internal format before starting sequential and random AD conversion
respectively. All functions and subroutines are described in
subsequent sections,

HINF, ABORT, and DISCONNECT & EXIT are basic I/O function calls and
operate almost exactly as described in Chapter 2. When requested by

the AD Handler Task, however, HINF does require the few special
considerations discussed below.

14.2.1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set to
+200020 to indicate the following:

VI-14-2

Bit Contents

0 Set 0 to make Event Variable positive
1-2 Set 2 to indicate input-only device
3 Set 0 to indicate a non-directory-
oriented Handler
4-11 Device unit 0
12-17 Device code 20 (AD Converter)

14.2.2 Significant Event Declaration

When a USER-mode Task is connected, AD.... does not declare a
Significant Event each time an AD interrupt occurs. Instead, it sets
register 146 (octal) of the Executive so that a clock-generated
Significant Event occurs after a certain number of clock ticks (146
octal normally contains 60 decimal). The number of clock ticks is an
assembly parameter with a default of 1. When the AD Handler Task
exits, or when the connected USER-mode Task disconnects or is aborted,
the previous contents of 146 are restored. This is done to prevent
the rate of Significant Event declaration from climbing so high that
it would shut out the rest of the system.

The above precaution is not observed for EXEC-mode Tasks. If the Task

connected to the AD Handler is built in EXEC mode, every AD interrupt
causes declaration of a Significant Event.

vI-14-3

ADCON

14.3 ADCON: CONNECTING AD TO A TASK

The ADCON I/O function call connects the AD Handler to the Task which
requests it. Acceptance of the ADCON request results in initializing
the link table and establishing exclusive Task use of the AD Handler.
ADCON must be issued before any other AD request can be accepted. It
is used instead of ATTACH, because ATTACH implies that more than one
Task might be able to use the AD.... Handler if it were detached.

ADCON can be issued by a FORTRAN program in the following format:

Form: CALL ADCON (LUN[,ev])

Where: LUN is decimal and represents the
Logical Unit Number
ev is the integer Event Variable

Example: CALL ADCON (LUN,IEV)

The CPB for this form of QUEUE I/0 follows:

Word Contents
0 0500 (I/0 function code)
1l Event Variable address
2 Logical Unit Number

VI-14-4

ADDIS

1l4.4 ADDIS: DISCONNECTING AD FROM A TASK

The ADDIS I/O function call disconnects the AD Handler from the
requesting Task. This frees the Handler for use by other Tasks.

ADDIS can be issued by a FORTRAN program in the following format:

Form: CALL ADDIS (LUN[,evl])

Where: LUN is decimal and represents the
Logical Unit Number
ev is the integer Event Variable

Example: CALL ADDIS (LUN,IEV)

The CPB for this form of QUEUE I/0 follows:

Word Contents
0 0600 (I/0 function code)
1 Event Variable address
2 Logical Unit Number

VI-14-5

ADSSET

14.5 ADSSET: ESTABLISHING SEQUENTIAL LINKS

The ADSSET I/0 function call sets
within the AD Handler for
operation. A table consists of ten (decimal) links.

issued by a FORTRAN program in the following format:

Form: CALL ADSSET (LUN,num,type,lch,uch,isw,dvt(,
rep[,lev[,moev(,ev]]]])
Where: LUN is decimal and represents the Logical
Unit Number
num is the link number (1-10 decimal)
type is the link type (0-3)
lch is the lower channel number (0-127
decimal)
uch is the wupper channel number (0-127
decimal)
isw is the input status word address
dvt is the first element of the digital
values table
rep is the repeat count (if no nonzero value
is specified, 1 is assigned)
lev is the integer Link Event Variable
moev is the integer Memory Overflow Event
Variable
ev is the integer QUEUE I/O Event Variable
Example: CALL ADSSET (LUN,LKNO,LKTYPE,LCH,UCH,ISW,
IDVTE, ICNT,LEV,IMOEV,IEV)

The CPB for this

form of QUEUE I/0 follows:

up an I/0 parameter 1link table
subsequent sequential data-—-channel mode
ADSSET can be

Word Contents
0 0100 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Control Table address

The Control Table is constructed as follows:

VI-14-6

Word

Y. NS I T R R

10

Contents
Link number (1=-10 decimal)
Link type (0, 1, 2, or 3)
Lower channel number (0-127 decimal)
Upper channel number (0-127 decimal)
Input status word address
Digital values table address
Repeat count (default value 1)
Link Event Variable

Memory Overflow Event Variable

The link type (word 2) may contain one of the following:

Type
0
1

Meaning
Null link; ignore during I/0 processing

Chain link; after this link is processed, process
the next link in the AD Handler Task link table

End link; after this link is processed, stop I/0

Loop link; after this link is processed, go to head
of link table and process the next link

If no end link is encountered, end-around looping on the link table is

performed,

If all links are null, no I/O processing is initiated.

For sequential mode conversions, only a single input status word (word

4) is used.

It has the following bit designations:

VI-14-7

Bit Contents

0-1 Gain (00 = 1, 01 = 2, 10 = 4, 11 = 8)
2-5 Unused

6 Memory overflow (1 = enabled)

7 Data channel break (1 = enabled)

8 Internal/external sync (1 = external)
9 Add-to-memory mode (1 = enabled)
10 Data channel operation (1 = enabled)

11-17 Analog channel address

The starting analog channel number (bits 11-17) is set by ADSSET
processing. A FORTRAN-callable subroutine called ADSMAP is
responsible for mapping parameters into input status form for the
FORTRAN programmer using sequential conversion.

Once I/0 has been initiated (via the ADSTRT function), the Link Event
Variable (word 7) is set to one plus the number of repetitions
remaining for the specified 1link number (word 0) following each
transfer.

VI-14-8

ADRSET

14.6 ADRSET: ESTABLISHING RANDOM LINKS

The ADRSET I/0O function call sets up an I/O parameter link within the
AD Handler for subsequent random data-channel mode operation. A table
consists of ten (decimal) links. ADRSET can be issued by a FORTRAN
program in the following format:

Form: CALL ADRSET (LUN,num,type,pts,stat,dvt[,rep[,
lev([,moev[,ev]]]])
Where: LUN is decimal and represents the Logical
Unit Number
num is the link number (1-10 decimal)
type is the link type (0-3)
pts is the number of points to convert
stat is the first element of the input status
table
dvt is the first element of the digital
values table
rep is the repeat count (if no nonzero value
is specified, 1 is assigned)
lev is the integer Link Event Variable
moev is the integer Memory Overflow Event
Variable
ev is the integer QUEUE I/0O Event variable
Example: CALL ADRSET (LUN,LKNO,LKTYPE,NPTS,ISTEI,
IDVTE,ICNT,LEV,MOEV,IEV)

The CPB for this

Word
0
1l
2

3

form of QUEUE I/O follows:

Contents
0200 (I/0 function code)
Event Variable address
Logical Unit Number

Control Table address

The Control Table is constructed as follows:

vi-14-9

Word Contents
0 Link number (1-10 decimal)

Link type (0, 1, 2, or 3)

2 Number of conversions

3 Input status table address

4 Digital values table address

5 Repeat count (default value 1)
6 Link Event Variable

7 Memory Overflow Event Variable

The link type (word 2) may contain one of the following:

Type Meaning
0 Null link; ignore during I/0 processing
1 Chain link; after this link is processed, process
the next link in the AD Handler Task link table
2 End link; after this link is processed, stop I/0
3 Loop link; after this link is processed, go to head

of link table and process the next link
If no end link is encountered, end-around looping on the link table is
performed. If all links are null, no I/0 processing is initiated.
With ADRSET there is a one-to-one correspondence between the Input

Status Table and the Digital Values Table. The bit assignments for
words in the Input Status Table are as follows:

VI-14-10

Bit Contents
0-1 Gain (00 = 1, 01 = 2, 10 = 4, 11 = 8)

2=5 Unused

6 Memory overflow (1 = enabled)
7 Data channel break (1 = enabled)
8 Internal/external sync (1 = external)
9 Add-to-memory mode (1 = enabled)
10 Data channel operation (1 = enabled)

11-17 Analog channel address

A FORTRAN-callable subroutine called ADRMAP is responsible for mapping
parameters intoc input status form for the FORTRAN programmer using
random conversion.

once I/0 has been initiated (via the ADSTRT function), the Link Event
Variable (word 6) is set to one plus the number of repetitions
remaining for the specified 1link number (word O0) following each
transfer.

VI-14-11

ADSTRT

14,7 ADSTRT: STARTING AD CONVERSION

The ADSTRT I/0 function call starts conversion by the AD
Analog-to-Digital Converter by initiating processing of the Handler's
link table.

ADSTRT can be issued by a FORTRAN program in the following format:

Form: CALL ADSTRT (LUN[,ev])

Where: LUN is decimal and represents the
Logical Unit Number
ev is the integer Event Variable

Example: CALL ADSTRT (LUN,IEV)

The CPB for this form of QUEUE I/O follows:

Word Contents
0 0300 (I/0 function code)
1 Event Variable address
2 Logical Unit Number

ADSTRT actually initiates I/0 transfers, while ADSSET and ADRSET set
up the AD Handler's 1link table which controls I/0 transfers at the
interrupt level.

VI-14-12

ADSTOP

14,8 ADSTOP: STOPPING AD CONVERSION

The ADSTOP I/0 function call stops conversion by the AD Converter by
terminating processing of the Handler's link table. Processing will
terminate after completion of the next I/0O transfer.

ADSTOP can be issued by a FORTRAN program in the following format:

Form: CALL ADSTOP (LUN{,ev])

Where: LUN is decimal and represents the
Logical Unit Number
ev is the integer Event Variable

Example: CALL ADSTOP (LUN,IEV)

The CPB for this form of QUEUE 1/0 follows:

Word Contents
0 0400 (I/0 function code)
1 Event Variable address
2 Logical Unit Number

VIi-14-13

ADSMAP

14.9 ADSMAP: MAPPING SEQUENTIAL INPUT PARAMETERS

ADSMAP is a FORTRAN-callable subroutine used to map input status
parameters into the proper internal form prior to starting sequential
conversion. ADSMAP is not an actual I/0 function, but its subroutine
call takes the following form:

Form: CALL ADSMAP (isw,gain,error|(,addmeml[,sync
[,mov]]])
Where: isw is the input status word
gain is the integer gain value (1, 2, 4, or
8)

error is the integer error variable set
nonzero on error

addmem is the integer add-to-memory variable
(nonzero value enables add-to-memory:; 2zero
value (default) disables add=-to-memory)

sync is an integer variable (nonzero value
signifies external sync; zero value
(default) signifies internal sync

mov is an integer variable (nonzero value
disables memory overflow; zero value
(default) enables memory overflow)

VI-14-14

ADRMAP

14.10 ADRMAP: MAPPING RANDOM INPUT PARAMETERS

ADRMAP is a FORTRAN-callable subroutine used to map input status
parameters into the proper internal form prior to starting random
conversion. ADRMAP is not an actual I/O function, but its subroutine
call takes the following form:

Form: CALL ADRMAP (stat,gain,chan,error, [,addmem{,
sync{,mov]]])

Where: stat is an element in the input status table
corresponding to the appropriate analog
channel

gain is the integer gain value (1, 2, 4, or
8)

chan is the integer analog channel number

error is the integer error variable set
nonzero on error

addmem is the integer add-to-memory variable
(nonzero value enables add-to-memory; zero
value (default) disables add-to-memory)

sync is an integer variable (nonzero value
signifies external sync; zero value
(default) signifies internal sync)

mov is an integer variable (nonzero value
disables memory overflow; zero value
(default) enables memory overflow)

VI-14-15

CHAPTER 15

AUTOMATIC FLYING CAPACITOR SCANNER I/0

The AFC Automatic Flying Capacitor Scanner is a special-purpose
front-end device which runs under RSX. The AFC is a differential
analog input device for industrial data-acquisition control systems.
While minimizing noise, it multiplexes differential input analog
signals, selects gain, and performs analog-to-digital conversion. To
program it properly, the user must be intimately aware of the
operational characteristics of the hardware peripherals and of the
software I/0 Handler.

15.1 AF HANDLER TASK

The I/0 Device Handler Task responsible for servicing requests for the
AFC Scanner is named AF.... and handles calls submitted through
special forms of the QUEUE I/0 Directive, Requests are queued by
requester priority and dequeued either by priority or by Task,
depending on whether a Task has attached the device. The AFC Scanner
is considered a single-unit device whose name is AF for Logical Unit
assignment purposes.

The AF Handler Task must be assembled with the parameters FMAD and
NMOD defined. FMAD is a constant defining the address of the first
module in bits 0 through 7, and NMOD is a constant defining the number
of AFC modules. For hardware purposes, the module address is
considered to have three parts: X in bits 0 through 2, Y in bits 3
through 5, and WD in bits 6 through 7.

15.2 AF HANDLER REQUESTS

Special forms of the QUEUE I/0 Directive can be issued to queue
requests to the AF I/0 Device Handler Task. The Logical Unit Number
(LUN) is assigned to AF. Following are the legal function calls that
may be issued for AF service and a brief description of each:

vVI-15-1

Table 15-1
AFC I/0 Functions

AF Call Function
HINF Request Handler Task information
ATTACH Obtain exclusive use of AFC Scanner
DETACH Release attached AFC Scanner
AI Queue request to read sequence of analog
channels

They are basic I/O calls and operate almost exactly as described in
Chapter 2. When requested by the AF Handler Task, however, HINF does
require the few special considerations discussed below.

15.2,1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set to
+200016 (octal) to indicate the following:

Bit Contents
0 Set 0 to make Event Variable positive
1-2 Set 2 to indicate input-only device
3 Set 0 to indicate non-directory-oriented Handler
4-11 Device unit 0
12-17 Device code 16 (AFC Scanner)

VI-15-2

Al

15.3 AI: READING A SEQUENCE OF ANALOG CHANNELS

The AI function (which is a type of GET function) is used to read a
sequence of analog input channels on the AFC Automatic Flying
Capacitor Scanner. Because an A/D conversion is performed in 5ms, and
a channel may not accurately be re-read within 50ms, the Handler Task
inserts a delay when necessary to prevent re-reading a channel too
soon. To facilitate this delay, channel 2047 is dedicated for Handler
use,

AI is only issued by a FORTRAN program in the following way:

Form: CALL AI (LUN,fchan,lchan,gain,datal,ev])

Where: LUN is decimal and represents the Logical
: Unit Number

fchan is the first channel number (from one)

lchan is the last channel number (from one)

gain is the integer Gain Table array,
initialized with gain-per-channel
information

data is the integer Data Table array which
receives digitized values

ev is the integer Event Variable

Example: Read analog input channels 17 through 26 with
a gain of 1000, and output the six digital
values to LUN=-10:

DIMENSION IGA(6) ,IDA(6)

DO 100 J=1,6
100 IGA(J)=1000
CALL AI(10,17,26,IGA,IDA,IEV)
CALL WAITFR(IEV)
WRITE (10,200) IDA
200 FORMAT (6I4)

Channel fchan is multiplied by gain (1), digitized, and stored in data
(1).

The CPB for this form of QUEUE I/0 has the following form:

Word Contents
0 3000 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Control Table address

VI-15-3

The Control Table is constructed as follows:

Word

0
1
2
3

Contents
First channel number (from zero)
Last channel number
Gain Table address

Data Table address

The information from the Control Table is not queued along with the
information from the CAL Parameter Block. Therefore, after making the

I/0 request,

one must not modify the Control Table until after

completion of the request,

VI-15-4

CHAPTER 16

UNIVERSAL DIGITAL CONTROLLER I/O

The UDC Universal Digital Controller is a special-purpose front-end
device which runs under RSX. The UDC operates as a high-level digital
multiplexer, interrogating digital inputs and driving digital outputs
located on directly addressable functional modules. To program this
device properly, the user must be intimately aware of the operational
characteristics of the hardware peripherals and of the software I/O
Handler.

16.1 UD HANDLER TASK

The I/0 Device Handler Task that services requests for the UDC is
named UD.... and handles calls submitted through special forms of the
QUEUE I/O Directive. Requests are queued by requester priority and
dequeued "off the top." The Universal Digital Controller is considered
a single-unit device whose name is UD for Logical Unit assignment
purposes.

Because of the generality of the UDC hardware, it is normally
necessary to edit the Handler Task source to indicate the module-types
to be serviced and their positions (addresses) in the UDC. The
Handler is coded (by conditional assembly) so that code to support
nonexistent modules may be eliminated.

A "module-address table" is defined for each module type this Handler
Task supports. Modules are numbered from zero in the order of the
module address table. Channels and points are numbered from zero,
starting with module =zero., The present set of UDC modules contains
four analog channels per D/A module, and sixteen discrete points per
digital input and output module.

16.2 UD HANDLER REQUESTS

Special forms of the QUEUE I/0 Directive can be 1issued to dueue
requests to the UD I/0 Device Handler Task. The Logical Unit Number
(LUN) is assigned to UD. Following are the legal function calls which
may be issued for UD service and a brief description of each:

VI-1l6-1

Table 16-1
UDC I/0 Functions

UD Call Function
HINF Request Handler Task information
AO Set analog output channel voltage
DOS Pulse digital output point
DOL Set digital output point
DI, (RBIN,
RBCD,RDP) Read contact sense/interrupt module
CTDI Connect buffer for digital input
DFDI Disconnect connected buffer

In addition, a FORTRAN-callable subroutine, RDDI, has been implemented
to read digital input and clear the Trigger Event Variable. All
functions and subroutines are described in subsequent sections. HINF
is a basic I/O call and it operates almost exactly as described in
Chapter 2. When requested by the UD Handler Task, however, it does
require the few special considerations discussed below. :

16.2.1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set to
+300017 (octal) to indicate the following:

Bit Contents
0 Set 0 to make Event Variable positive
1-2 Set 3 to indicate input and output
device
3 Set 0 to indicate non-directory-

oriented Handler
4-11 Device unit 0

12-17 Device code 17 (UDC)

VI-16-2

16.2.2 FORTRAN Interface

In the FORTRAN calls described below, the Event Variable is optional.
It is necessary, however, when request completion information is
needed, because control is returned to the caller after a request is
queued and often before completion of the requested function.

To maintain consistency with the FORTRAN convention of counting from
one rather than zero, modules, channels, and points are numbered from
one. Module, channel, and point numbers are thus one greater than
those used to request UDC service from an assembly language program.

VI-16-3

AO

1l6.3 AO: ANALOG OUTPUT -- A633 MODULES

The AO I/O function call sets an indicated analog output channel to an
indicated voltage.

AO is only issued by a FORTRAN program in the following way:

Form: CALL AO (LUN,channel,volt[,ev])

Where: LUN is decimal and represents the Logical
Unit Number

channel is decimal and represents the output
channel number

volt is the integer output voltage
representation (0-1023 decimal represents
0-10 volts)

ev is the integer Event Variable

Example: Set channel 2 to 5 volts and, when it is set,
zero channel 3:

IVOLTS=5,0*102,4-1,

CALL AO(32,2,IVOLTS,IEV)

CALL WAITFR(IEV)

CALL AO(32,3,0)

The CPB for this form of QUEUE I/0 follows:

Word Contents

0 6700 (I/0 function code)
Event Variable address
Logical Unit Number

Output channel number

s W N

Output voltage representation

VI-16-4

DOS

16.4 DOS: DIGITAL OUTPUT, SINGLE~SHOT =-- M687 AND M807 MODULES

The DOS I/O function call pulses (closes for a preset time interval)
an indicated digital output point. DOS is only issued by a FORTRAN
program in the following way:

Form: CALL DOS (LUN,point(,ev])

Where: LUN is decimal and represents the
Logical Unit Number

point is decimal and represents the
digital point number

ev is the integer Event Variable

Example: Pulse single-shot point 3:
CALL DOS(32,3,IEV)

The CPB for this form of QUEUE I/O follows:

Word Contents
0 6000 (I/0 function code)

1 Event Variable address
2 Logical Unit Number
3

Digital point number

VI-16-5

DOL

16.5 DOL: DIGITAL OUTPUT LATCHING =- M685,M803,AND M805 MODULES

The DOL I/0 function call sets an indicated digital output point to an
indicated 1logical value. A logical value of .TRUE. implies CONTACTS
CLOSED and is represented by a word with all bits set on. A logical
value of (FALSE. implies CONTACTS OPEN and is represented by a word
with all bits cleared (set 0). DOL is only issued by a FORTRAN program
in the following way:

Form: CALL DOL (LUN,point,var(,ev])
Where: LUN is decimal and represents the Logical
Unit Number

point is decimal and represents the digital
point number

var is the logical variable

ev is the integer Event Variable

Example: Close (short) latching output points 10-19:
DO 100 IDP = 10,19
100 CALL DOL (32,1DP, .TRUE., IEV)

The CPB for this form of QUEUE I/0 follows:

Word Contents
0 6100 (I/O function code)
1 Event Variable address
2 Logical Unit Number
3 Digital point number
4 Logical variable

Vi-1l6-6

RBIN
RBCD
RDP

16.6 DI(RBIN,RBCD,RDP): CONTACT SENSE/INTERRUPT DIGITAL
INPUT =-- W731 AND W733 MODULES

The DI I/O function call reads a contact sense or contact interrupt
module. The CPB has the following form:

Word Contents
0 7400 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Module number
4 Module data word address

The module data are returned in the low-order 16 bits of word 4.

A contact sense or contact interrupt module can only be read by a
FORTRAN program in one of three ways: RBIN,RBCD, or RDP. Since the
data returned by the Handler must be modified to provide the required
results for RBCD and RDP, a WAITFR is included in the library routine
and control is not returned to the calling program until after the
results are returned.

16.6.1 RBIN: Read Binary

Read the indicated module data into the low-order 16 bits of the
specified data word.

Form: CAﬁL RBIN (LUN,module,word[,ev])

Where: LUN is decimal and represents the Logical
Unit Number

module is an integer representing the module
number

word is an integer variable to be set with
the module data

ev is the integer Event Variable

Example: CALL RBIN (23,16 ,IDATA,IEV)

16.6.2 RBCD: Read BCD

Read the indicated module data as four BCD digits and set the
indicated word to the corresponding value.

VI-16-7

Form: CALL RBCD (LUN,module,word(,ev])

Where: LUN is decimal and represents the Logical
Unit Number

d. module is an integer representing the
module number

word is an integer variable to be set with
the module data

ev is the integer Event Variable

Example: CALL RBCD (23,16,IDATA,IEV)

16,6.3 RDP: Read Point

Read the value of the indicated digital point and set a 1logical word
to its state.

Form: CALL RDP (LUN,point,state[,ev])

Where: LUN is decimal and represents the Logical
Unit Number

point is a decimal integer and is the digital
point number

state is a logical variable set to the state
(.TRUE. or .FALSE) of the indicated point

ev is the integer Event Variable

Example: CALL RDP (27,89,LV,IEV)

VIi-16-8

CTDI
RDDI
DFDI

16.7 CTDI,RDDI,AND DFDI: CONTACT INTERRUPT DIGITAL INPUT =-- W733
MODULES

Digital input from contact interrupt modules is reported in a
requester-provided circular buffer. Each buffer entry is four words
long and is of the following format:

Word Contents
0 Entry existence indicator
1 Module number
2 COS gates output
3 Module data

The entry existence indicator is set nonzero when a buffer entry is
made. When the requester has removed or processed an entry it must
clear the existence indicator to free the buffer entry position.
Entries are made in a circular fashion, starting at the first (low
address), filling in order of increasing core addresses to the last
(high address), and wrapping around from last to first, If inputs
occur in a burst of sufficient duration to overrun the buffer, data
are discarded and a count of data overruns is incremented. The
nonzero entry existence indicator also serves as an overrun indicator.
A positive wvalue (+1) indicates no overruns between buffer entries,
and a negative wvalue is the two's complement of the number of times
data was discarded between buffer entries,

The module number indicates a module on which one or more discrete
points has undergone a change of state. The module number consists of
the high-order bits (0-13) of point numbers.

The COS (change-of=-state) gates output indicates which points on the
indicated module have changed state. The position of one bit in the
COS output may be used to determine the 1low-order bits (14-17) of
point numbers, i.e., COS bits 0 and 2 represent input from points
16M+0 and 16M+2, where M is the module number.

The module data bits 0-15 indicate the polarity (state) of points 0-15
of the indicated module.

Contact interrupt input is reported to only one Task,. This 1is
controlled by two UDC Handler Task functions: CTDI, which connects a
buffer for digital input, and DFDI, which disconnects a buffer from
digital input. While a buffer is connected, all other connect
requests are rejected, and a disconnect request is only accepted from
a Task containing a buffer that is connected.

VI-16-9

16.7.1 CTDI: Connecting a Buffer

The CTDI I/0O function call connects a buffer to receive digital input
from contact interrupt modules,

CTDI is only issued by a FORTRAN program in the following way:

Form: CALL CTDI (LUN,buf,size,tev(,ev])

Where: LUN is decimal and represents the Logical
Unit Number

buf is the circular buffer array

size is the integer size of the buffer array

tev is the Trigger Event Variable

ev is the integer Event Variable

Example: CALL CTDI (32,1BUF,ISIZE,ITEV,IEV)

The buffer must be a multiple of four words long and may be as small
as four words. Whenever a buffer entry is made, the Trigger Event
variable (word 3), which is required, is set to +1, and a Significant
Event is declared.

The CPB for this form of QUEUE I/O has the following form:

Word Contents
0 7000 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Trigger Event Variable address
4 First (low) address of circular buffer
5 Last (high) address of circular buffer

VI-16-10

16.7.2 RDDI: Reading a Buffer

RDDI is a FORTRAN-callable subroutine, not an I/0O function, It reads
digital input from a circular buffer (connected by CTDI to the UDC)
and clears the Trigger Event Variable.

The RDDI FORTRAN call is issued in the following way:

Form: CALL RDDI (point,state[,count]) [ev]

Where: point is an integer variable which is set
with the digital point number (nonzero) if
a buffer entry is found

state is a logical variable which is set to
the state (.TRUE. or J.FALSE.) of the
indicated point

count is set to the integer buffer overrun
count (normally zero)

ev is the integer Event Variable

Example: CALL RDDI (IDP,LV,IOC)

If all digital inputs in the buffer have been reported, RDDI sets
point and state to zero. If unreported digital inputs exist, they are
reported by setting point and state. Since as many as sixteen digital
inputs may be recorded in each buffer entry (for each trigger), RDDI
is normally called repeatedly until a zero is returned as a point
number., :

VI-16-11

16.7.3 DFDI: Disconnecting a Buffer

The DFDI I/0 function call disconnects a digital input buffer from the
ubpcC.

DFDI is only issued by a FORTRAN program in the following way:

Form: CALL DFDI (LUN) [ev]

Where: LUN is decimal and represents the Logical
Unit Number
ev is the integer Event Variable

Example: Connect Task for digital input (STOP 1 if
connect rejected) and request Tasks JOE,
PETE, or BILL if contact closures or points
1,2, or 3 are detected, respectively; STOP
2 if input occurs on points other than the
above:

LOGICAL L

DIMENSION IBUF (40), TASK(3)

DATA TASK(1l)/3HJOE/,TASK(2)/4HPETE/,

TASK(3) /4HBILL/
o
CALL CTDI (32,IBUF,ITEV,IEV)
CALL WAITFR (IEV)
IF (IEV .LT. 0) STOP 1
C

100 CALL WAITFR (ITEV)
200 CALL RDDI (N,L)
IF (N .EQ. 0) GO TO 100
IF (N .GT. 3) GO TO 300
IF (L) CALL REQST (TASK(N),0)

GO TO 200

c

300 CALL DFDI (32)
STOP 2
END

The CPB for this form of QUEUE I/O has the following form:

Word Contents
0 7100 (I/0 function code)
1l Event Variable address

N

Logical Unit Number

VIi-16-12

1l6.8 SAMPLE PROGRAM

Following is a program to drive a control panel. It illustrates use
of DOL, RBCD, and RDDI, The contact sense modules are wired for
"pulse open" and "pulse close® operation, but the program discards
contact closures (IF (LV) GO TOees)e.

VI-16-13

OO OoOCcoO0OOD OO0 oOoODDOOCc oD oOooOoOoOnDoOoODDoOOOOnNO00

TDSP === TASK DISPATCHER, TASK TO DRIVE THE SCHEDULE

MODULE OF THE RSX=~13 DEMO PANEL,
EOIT #4¢ 16 0CT 71

DIGITAL QUTPUT LATCHING (DOL) POINTS USED?
== "SELECT" LAMP (READ TASK NUMBER)
=a WCANCELY" LAMP

3 == N"SCHED" | AMP

4 == 'NOW" LLAMP [SYNC UNITS)

5 == "SEC" LAMP
6
7
B

N ==

== UMIN" LAMP

wem "HOUR" | AMP

== "NO" LAMP [RESCHEDULING? NO/YES)
9 == "YES" LAMP

10 == "TICKS" LAMP [RESCHEDULE PERIOD UNITS]

11 == "SEC" LAMP

12 == "MIN" LAMP

13 == "HOURS" LAMP

14 == "EXECUTE" LAMP

19 == FAULT INDICATOR LAMP

CONTACT INTERRUPT (CI) POINTS USED?

1 == "SELECT" CONTACTS (READ TASK NUMBER]

== "CANCEL" CONTACTS

== MSCHED" CONTACTS

== UNOW" CONTACTS [SYNC UNITS)
== WSEC" CONTACTS

== "MIN" CONTACTS

== "HOUR" CONTACTS

XN DWLN

== "YES" CONTACTS

10 == "TICKS" CONTACTS (RESCHEDULE PERIOD UNITS]

11 == "SEC" CUONTACTS

12 == "MIN" CONTACTS

13 =« "HOURS" CONTACTS
14 == "EXECUTE" CUNTACTS

CONTACT SENSE (CS) MODULES USED?
1 == TASK NUMBER (3 BCD THUMBWHEELS)

2 == RESCHEDULE PERIQOD (3 BCD THUMBWHEELS)

INTEGER EV,TEV,BUF
LOGICAL LV

DIMENSION BUF (44),1ID(2),TASK(6),ISP(5)

TASK NAMES & NUMBERS!
DATA TASK(1) /5HCALIB/
DATA TASK(2) /4HCSPT/
DATA TASK(3) /4HCSPV/
DATA TASK(4) /3HSET/
DATA TASK(5) /S5HLTEMP/
DATA TASK(6) /3HPTEMP/

DATA ID(1),1D(2)/3,1/
DATA ISP(2),ISP(3)/1,1/

NTMAX=6
LUNS3Y

VI-16-14

== "NO" CONTACTS (RESCHEDULING? NO/YES)

o000

DO DEe=0000

OO0 OoOO0OnDD 00 oOoOO0On

- OO000O0O0

CONNECT 'BUF! TO RECEIVE DIGITAL INPUT FROM CONTACT
INTERRUPT MODULES, "STOP {" IF CONNECT REJECTED,

CalLL CTDI UN,BUF, TEV,EY)
CALL WAITFR (EV)
IF (EV LLT, @) STOP 1

TURN OFF ALL BUTTON LAMPS (DOL 1=14)

DO 101 J=i,14
CALL DOL (LUN,J, JFALSE,)

FLASH "SELECT" BUTTON (DOL #1) UNTIL IT IS PRESSED, TeEwy
UNTIL A CONTACT CLOSURE 18 ODETECTED ON CI1 #i.

CALL DOL C(LUN,1,,.TRUE,)
CALL MARK (ID,EV)

CALL WAITFR (EV)

IF (TEV o NE, @) GU TO 110
CALL MARK (1D,EV)

CALL WAITFR (EV)

IF (TEV .NE, ©) GO TO 1@
CaLl DOL (LUN,31,,FALSE,)
CALL MARK (ID,EV)

CALL WAITFR (EV)

IF (TEV .EG, @) GO TO 105
CALL RDDI (N,LV)

IF (N LEQ, ©®) GO TO 145
IF (LV) GO TO (i@

IF (N NE, 1) GO TO 110

REAID REDUNDANT CI POINTS, SO THAT CONTACT BOUNCE ON
CI #1 1S NOT TAKEN AS A RESET GQUE WHILE WAITING FOR
CI #2 OR Cl #3,

CALL MARK (ID,EV)
CALL WAITFR (EV)
CALL RDDI (N,LV)
IF (N oNE. #) GO TO 11

A CONTACT CLOSURE HAS BEEN DETECTED ON CI #1 (“"SELECT"
BUTTON)s TURN "SELECT" BUTTON (DOL #1) OFF, TURN "FAULT"
BUTTON (NOL ®19) OFF, AND READ TASK NUMBER 'NT! FROM
CONTACT SENSE MOD #{ (3 BCD THUMBWHEELS).

CALL DOL CLUN,1,,FALSE.)
CALL DOL (LUN,19,,FALSE,)

CALL RBCD C(LUN,L1,NT,EV)
CALL WAITFR (EV)

FAULT IF OUT OF RANGE TASK NUMBER

IF (NY LEG, @) GO TO 90«
IF (NT ,EQ@, 999) GO TO 115
IF (NT ,GT. NTMAX) GO TO 9@

TURN BOTH THE "CANCEL" & "SCHEOULE" BUTTONS (DOL #2 &
DOL #3) ON AND WAIT FOR A CONTACT CLOSURE ON EITHER
CI #2 ("CANCEL"™ BUTTON) OR CI #3 ("SCHEDULE" BUTTON),
RESTART IF C1 #1 CLOSURE,

CALL DO
CALL DO

LUN,2,,TRUE,)
LUN,3,.TRUE,)

i

 —~f—~

VI-16-15

200
210

oo O0OO0O0n

2214
222

sNeXeNoNe Ryl

NOOOODoDoDoOo

2314
232
233

(s NeNsNsNes Ny

235

CALL WAITFR (TEV)

CALL RODI (N,LV)

IF (N LEG, 55 GO TO 200
IF (LV) GO TO 210

IF (N ,EQ, 2) GO TO 229
IF (N LEG, 3) GO TO 230
IF (N LEG, 1) GO TO 100
GO TO 21@

A CONTACT CLOSURE HWAS BEEN DETECTED ON CI #2 ("CANCEL"™ BUTTON),

TURN "SCHEDULE" BUTTON (DOL #3) OFF, TURN "GO" BUTTON
(DOL #14) ON, AND WAIT FOR A CONTACT CLOSURE ON CI #14
("GO" BUTTON). RESTART IF CI #1 CLOSURE,

CALL DOL (LUN,3,,FALSE,)
CALL DOL (LUN,14,,TRUE,)
CALL WAITFR (TEV)

CALL RDDI (N,LV)

IF (N .EG, @) GO T0 221

IF (LV) GO TO 222

IF (N LEG., 1) GO TOU 1P@

IF (N ,NE, 14) GO TO 222

A CONTACT CLOSURE HAS BEEN ULETECTED ON CI ®#14 ("GO" BUTTON),
TURN "GO" BUTTON OFF (DOL #14) AND CANCEL INDICATED

TASK, SPECIAL CASE IF CANCEL TASK #999: EXIT TASK
DISPATCHER,

IF (NT ,EQ, 999) GO 7O 999
CALL CANCEL (TASK(NT),EV)
IF (Ev .LT. 2) GO TO 900
GO TO 1ee

A CONTACT CLOSUKRE HaS BEEN DETECTED ON CI #3 ("SCHEDULE"
BUTTON), TURN "CANCEL" BUTTUN OFF (DOL #2), TURN SCHEOULE
TIME BUTTONS ("NOW", DOL #4; "NEXT SEC", DOL 855 "NEXT MIN",
DOL #6p & "NEXT HR", LOL #7) ON, AND WAIT FOR A CONTACT
CLOSURE ON EITHER OF THE FOUR BUTTONS (CONTACT INTERRUPT
POINTS 4=7), RESTART IF CI #1 CLOSURE,

CALL DOL (LUN,2,,FALSE,)
1F (NT .EG, 999) GO TO 900
DO 231 J=4,7

CALL DOL (LUN,J,,TRUE,)
CALL WAITFR (TEV)

CALL RODI (N,LV)

IF (N ,EG, @) GO TO 232
IF (LV) GO TO 233

IF (N ,EG, 1) GO TO 120
IF (N (LT. 4) GO TO 233
IF (N LG6T, 7) GO TO 233

A CONTACT CLOSURE HAS BEEN DETECTED ON CI #N (WHERE
3<N<8), RECORD SCHEDULE TIME (SYNC UNITS 'ISP(1)'), AND
TURN OFF THREE BUTTONS NOT PRESSED, 'ISP(1)!' == 1, NOW)
2, NEXT SECy 3, NEXT MIN) & 4, NEXT HR,

ISP (1)aN=3

DO 235 Js=4,7

IF (J .EQs N) GO TO 235
CALL DOL (LUN,J, FALSE,)
CONTINUE

VI-16-16

ODDO

3a2e

LDOODOOO

ODODODOLOOOO0
O
1]

F -
-
-

412

OoOO0OO0On0O0O0

420

o000

o0

TURN ON RESCHEDULE "NO" & "YES" BUTTONS (DOL #8 & DOL #9),
AND WAIT FOR A CONTACT CLOSURE ON EITHER BUTTON (CI #8 OR
€I #9), RESTART IF CI #1 CLOSURE.

CA poL (LUN,B,,TRUE,)
CALL DOL (LUN,9,,TRUE,)
CALL WAITFR (TEV)
CALL RDDI (N,LV)

N LEQ, G0 TO 31@
IF (LV) GO TO 320
IF (N L,EG, 8) GO TO 380
IF (N ,EQ, 9) GO TO 392
IF (N LEQ, 1) GO TO 102@
GO TO 320

A CONTACT CLOSURE HAS BEEN DETECTED ON CI #8 ("NO" BUTTON),

TURN OFF "YES" BUTTON (DOL #9) AND ZERQ RESCHEDULE DELTA
[ISP(4)] & RESCHEDULE UNITS (ISP(5)1, TURN "GO" BUTTON (DOL ¥14)
ON, AND WAIT FOR CONTACT CLOSURE ON CI #14 (GO BUTTON),

CALL DO (LUN,9,,FALSE,)
ISP (4) =@

18P (5) =@

GO TO 680

A CONTACT CLOSURE HAS BEEN DETECTED ON PT #9 ("YES" BUTTON),
TURN OFF "NO" BUTTON, AND PROCEDE TO DETERMINE RESCHEDULE
DELTA [ISP(4)] & RESCHEDULE UNITS [ISP(5)].

CALL DOL (LUN,B,,FALSE.)
TURN ON RESCHEDULE UNITS BUTTONS ("TICK", DOL #1s) “SEC",
DOL #11; "MIN", DOL #123 "HUUR", DOL #13), AND WAIT
FOR A CONTACT CLOSURE ON ONE OF THE BUTTONS (CONTACT
INTERRUPT POINTS 1@=13), RESTART IF CI #1 CLOSURE,

DO 412 J=1¢,13

CALL DOL_ (LUN,J,TRUE,)
CALL WAITFR (TEV)

CALL RDDPI (N,LV)

IF (N EG, ©) GO TO 411
IF (Lv) GO T0 412

IF (N LEG. 1) GO TO 1u@
IF (N LT, 1B) GO TO 412
IF (N 6T, 13) GO TO 412

A CONTACT CLOSULRE HAS BEEN DETECTED ON CI #N (WHERE
9<N<14), RECORD RESCHEDULE UNITS (I8P(5)]), AND TURN
OFF THREE BUTTONS NQT PRESSED, 'ISP(5)!' == 1, TICK}
2, SEC; 3, MIN) & 4, HR,

ISP(5)mN=9

DU 420 J=1P,13

IF (J .EQG, N) GO TO 420
CALL DOL (LUN,J, FALSE.)
CONTINUE

READ RESCHEDULE DELTA FROM CONTACT SENSE MOD #2 (3 BCD
THUMBWHEELS)

CALL RBCD (LUN,2,ISP(4),EV)
CALL WAITFR (EV)

LIMIT PERIOD OF CYCLIC RESCHEDULING TO ONE DAY, SINCE

VIi-16-17

OO0

[ZoNeNgl ielsBely]

VOO

ONLY THREE DIGITS MAY HBE IMPUT, THE ONLY CHANCE OF
EXCEEDING 24 HRS [S WHEN THE UNITS ARE HOURS (4),

IF (ISP(5) ,NE, 4) GO TQ 6up
IF (ISP(4) ,GT. 24) GO TO 9an

A SCHEDULE HAS BEEN ESTABLISHED (ONE TIME OR CYCLIC),
TURN "GO" BUTTON (DOL #14) ON, AND WAIT FOR A CONTACT
CLOSURE ON CI #{4 ("GU" BUTTON), RESTART IF CI #i
CLOSURE,

CALL DOL (LUN,14,,TRUE,)
CALL WAITFR (TEV)

CALL RDDI (N,LV)

IF (N ,EQ, @) GO TO 619
IF (LV) GO 10 620

IF (N (EQ, 1) GO TO i@
IF (N e NE, 14) GO TU 62u

A CLOSURE HAS BEEN DETECTED ON CI #14 ("GO" BUTTON),
SYNC DIRECTIVE AND RESTART DISPATCH CYCLE,

CALL SYNL (TASK(NT),ISP,2,EV)
IF (EV LLT. 8) GO TO 92
GO TO 1ne
A FAULT HAS OCCURREDs SET "FAULT" LITE AND RESTART

CALL 0O0L (LLN,19,.TRUE,)
GO T0 ieg

EXIT TASK DISPATCHER ("TASK" w999 CANCELLED)

CALL DOL (LUN,2,,FALSE,)
CALL DOL_(LUN, 14, ,FALSE,)

CALL OFDI (LUN)
§Top
END

VI-16-18

CHAPTER 17

COMMON COMMUNICATOR 1/0

The COMMON Communicator is the intermediary between System COMMON
Blocks and USER-mode tasks. Because USER-mode tasks run with memory
relocation and protection, they cannot directly access System COMMON
Blocks, which are external to the task partitions, unless they use the
XVM/RSX core sharing feature. EXEC-mode tasks can also (but need not)
use this task.

17.1 CC HANDLER TASK

The COMMON Communicator, associated with device name CC, is structured
like an I/O device Handler called CC.... and handles communication via
core-to-core block transfers directed by special forms of the QUEUE
I/0 Directive. Up to 32K of System COMMON Blocks can be accessed per
QUEUE I/0 request.

17.2 CC HANDLER REQUESTS

Special forms of the QUEUE I/0 Directive can be issued to queue
requests to the CC Handler Task. Following are legal function calls
which may be issued for CC service and a brief description of each:

Table 17-1
COMMON Communicator I/O Functions
CC Call Function
HINF Request Handler Task information
ATTACH Obtain exclusive use of COMMON
Communicator
DETACH Release attached COMMON Communicator
COMGET Transfer data from COMMON to Task
COMPUT Transfer data from Task to COMMON

VI-17-1

They are basic I/0 calls and operate almost exactly as described in
Chapter 2. When requested by the CC Handler Task, however, HINF does
require the few special considerations discussed below.

17.2,1 HINF: Requesting Handler Task information

If a request for HINF is accepted, the Event Variable is set to
+300014 (octal) to indicate the following:

Bit Contents

0 Set 0 to make Event Variable positive
1=-2 Set 3 to indicate input and output device

3 Set 0 to indicate non-directory-oriented Handler
4-11 Device unit 0

12-17 Device code 14 (CC)

VI-17-2

COMGET

17.3 COMGET: TRANSFERRING DATA FROM A COMMON BLOCK TO A TASK

The COMGET FORTRAN-callable subroutine transfers data from a System
COMMON Block to a user Task. It is in a library program called
COMCOM,

COMGET is issued by a FORTRAN program in the following way:

Form: CALL COMGET (LUN,wc,vn,scn[,offset][,ev])

Where: LUN is decimal and represents the Logical
Unit Number

wc is the positive decimal integer word count

vn is the variable name in the issuing Task
to which the contents of scn are transferred

scn is the System COMMON name, a string of
one to five ASCII characters

offset is the positive decimal integer offset
(default is zero)

ev is the integer Event Variable

Example: See COMPUT example

The CPB follows:

Word Contents
0 3000 (I/0 function code)
1 Event Variable address
2 Logical Unit Number
3 Control Table address

The Control Table has the following form:

Word Contents

0 .SIXBT system COMMON Block name
(first half)

1 .SIXBT system COMMON Block name
(second half)

2 Offset from base of COMMON Block

3 Current address in Task area

4 pecimal word count (number of words to
transfer)

VI-17-3

The information from the Control Table is not queued along with the
information from the CAL Parameter Block. Therefore, after making the

I/0 request, one must not modify the Control Table until after
completion of the request,

VI-17-4

COMPUT

17.4 COMPUT: TRANSFERRING DATA FROM A TASK TO A COMMON BLOCK

The COMPUT FORTRAN-callable subroutine transfers data from a user Task
to a System COMMON Block. It is in a library program called COMCOM.

COMPUT is issued by a FORTRAN program in the following way:

Form: CALL COMPUT (LUN,wc,vn,scnl,offset][,ev])
Where: LUN is decimal and represents the Logical
Unit Number

wc is the positive decimal integer word count

vn is the variable name in the issuing Task
whose contents are transferred to scn

scn is the System COMMON name, a string of
one to five ASCII characters

offset is the positive decimal integer offset
(default is zero)

ev is the integer Event Variable

Example: Test COMGET and COMPUT:

C EDIT | S/24/T1
C TESTS F4 CALLABLE COMGET AND COMPUT.
C
DIMENSION KDIM(1@),RDIMC1®),KDSCK(1@),RDSCK(1@)
COoMMON KCOM(18),RCOM(10),KCSCR(18),RCSCKC11)
¢
C READ 1N PARAMETERS VIA LUN 7.
¢ MESSAGE OUTPUT VIA LUN 4.
C COMMON COMMUNICATION VIA LUN 6.
C
2 WRITEC(4,68)
6 FORMAT(' TYPE LUN WC OFFSET EXITSW')
READ(7,)LUN,IWC,IOFF,IEXIT
C
C IF NON-ZERO IEXIT READ IN, EXIT FROM TASK.
C
IFCIEXIT.NE.@)CALL EXIT
c
C INIT ARRAYS.
C
Do 1 I=1,10
KDSCR(I)=0
KCSCR(1):=0
RDSCR(I)=@.
RCSCR(I)=0.
KDIM(I) =1
KCoM(I)=-1
RDIM(I)=I
l RCOM(I)=-1I

VI-17-5

o Ee ke Ne]

PUT KDIM AND KCOM ARRAYS IN SYSTEM COMMON.,

CALL COMPUT(LUN,IWC,KDIM(l), ABCDE",I0FF,1EV)
CALL WAITFRC(IEW)

IF(IEV.NE.1)WRITE(4,)1EV

CALL COMPUT(LUN,IWC,KCOM(1), " WXYZ',IOFF,IEV)
CALL WAITFR(IEV)

IFCIEV.NE.1)WRITEC4,)IEV

GET SYSTEM COMMON INTO KDSCR AND KCSCR ARRAYS.

CALL COMGET(LUN,IWC,KDSCR(1)," " WXYZ',I0FF,1EV)
CALL WAITFRCIEV)

IFCIEV.NE.IDWRITE(4,)IEV

CALL COMGET(LUN,IWC,KCSCR(l),'ABCDE',IOFF,I1EW)
CALL WAITFR(IEV)

IFCIEV.NE.1DWRITE(4,)IEV

REPEAT PROCESS FOR REAL ARRAYS RDIM AND RCOM.
DON'T SPECIFY AN EVENT VARIABLE.

IWC=2*xIWC

I0FF=2*I0FF

CALL COMPUT(LUN,IWC,RDIM(I),'ABCDE',IOFF)
CALL COMPUTC(LUN,IWC,RCOMC1), WXYZ',I0FF)

CALL COMGET(LUN,IWC,RDSCRC(l)," 'WXYZ',IOFF)
CALL COMGET(LUN,IWC,RCSCR(1)"ABCDE’,IOQFF)

CHECK DATA. SCRATCH ARKAYS SHOULD BE NEGATIVE OF

ORIGINAL ARRAYS.

DO 3 I=1,18

o EeNa R

w

IF(KDIM(I)+KDSCR(I).NE @IWRITEC4,)KDIM(I) ,KDSCR(I),I

IF(KCOM(I)+KCSCR(I) . NE.@)WRITE(4,)KCOM(I),KDSCh(I),1

IF(RDIMCI)+RDSCR(I).NE.O.)WPITE(4)HDIM(I) RDSCR(I) 1
IF(RCOM(I)+RCSCK(I)«NE.@.)WKITE(4,)RCOMCI) ,RCSCR(I),I
CONTINUE

TEST DONE.
WRITE(4,5)
FORMAT(1X, "TEST DONE")

GO TO 2
END

VI-17-6

The CPB follows:

word
0
1
2
3

Contents
3100 (1/0 function code)
Event Variable address
Logical Unit Number

Control Table address

The Control Table has the following form:

Word

0

Contents

«SIXBT system COMMON Block name
(first half)

+«SIXBT System COMMON Block name
(second half)

Offset from base of COMMON Block
Current address in Task area

Decimal word count (number of words
to transfer)

The information from the Control Table is not queued along with the
information from the CAL Parameter Block. Therefore, after making the

I/0 request, one

must not modify the Control Table until after

completion of the request.

VI-17-7

CHAPTER 18

XY PLOTTER I/O

18,1 XY HANDLER TASK

The I/O Device Handler Task responsible for servicing requests for the
XY plotter is named XY.... and handles calls submitted through
special forms of the QUEUE I/0 Directive. The device name is XY for
purposes of reassignment. The XY plotter is interfaced to a PDP-11,
s0 a UNICHANNEL configuration 1is required for this handler.
Therefore, the handler task must reside in the XVM so that it is
within the PDP-11 addressing space. That is, for an 8K PDP-11, it
must be below 50000 and for a 12K PDP-1ll it must be below 40000. The
handler task requires 1400 for a partition size.

The Device Handler can be assembled to support two PDP-11 interfaces,
the XyY1ll and the XY31l1, The XY1ll supports a single-pen
300-step=-per-second plotter; the XY311 supports a triple-pen
1800-step=-per-second plotter.

18,2 XY HANDLER REQUESTS

The following table lists the legal QUEUE I/0 Directives that can bhe
made to XY....:

Table 18-1
XY Plotter I/O Functions
Call Functions
ABORT Abort I/0 for a task
ATTACH Obtain exclusive use of the plotter
CLOSE Force output of any buffered lines
DETACH Release ATTACHed plotter
ENTER Reset character size to default
HINF Obtain Handler Task information
READ Obtain current state of the plotter
WRITE Output lines, characters etc. to plotter

18.2.1 ABORT

This function is entirely standard; see Chapter 2,

vVI-18-1

18.2.2 ATTACH

This function is entirely standard; see Chapter 2.

18.2.3 CLOSE

There are two levels of buffering for plotter information. The handler
collects 10 XY pairs for line commands for each request to the PDP-11,
to minimize interprocessor overhead. The PDP~-11 SPOOLER, if
activated, buffer plotter requests onto the disk. The CLOSE
Directive forces any lingering information in either buffer to go out
to the PDP-1ll. It is recommended to issue a CLOSE at the end of all
plotter programs.

18.2.4 DETACH

This functon is entirely standard; see Chapter 2.

18.2.5 ENTER

The PDP-11 keeps information as to the size and shape of plotted
characters. The ENTER directive resets these parameters to their
default values., The standard default is to plot characters along the
+X Axis with a size of 1/5" by 1/5".

18.2.6 HINF

If a HINF request is accepted, the Event Variable is set to 100026.
The 26 is the device code for the plotter. The leading 1l says that
this 1is an output-only device. (The READ directive returns
information to the user, but does no input I/0.)

18.2.7 READ

The READ directive obtains plotter status from the handler, but does
no physical I/0. The returned buffer contains 8 words for a XYll, and
9 for the X¥31l1l, as described in the following table:

Table 18-2
Format of Information Returned by READ

Word# Contents (octal integers)

400000, control word for FORTRAN, ignore

present pen position, X Co-ordinate

present pen position, Y Co-ordinate

X size of character, in steps

Y size of character, in steps

200000*SIN(2), where Z is the angle of the character
200000*COS (2) . string from horizontal.

0 if pen up, 100000 if down

if Xy31ll, which pen in use (1-3)

VoNOOTUTAEWNE

VI-18-2

18.2.8 WRITE

The WRITE Directive is used to output character information, 1line

information and control information to the plotter. Co-ordinate data

are in integer plotter steps. Scaling is the responsibility of the
user. The XY1ll has 100 steps per inch; the XY311l 500 steps per inch.

Plus X is toward the paper feed roll.

IOPS ASCII is supported in the standard format with the following
exceptions. The control characters, those in the octal range 0-37,
are totally ignored, not even being sent to the PDP-11l. Characters in
the range 140-177 are sent as characters in the range of 100-137, thus
converting lower case to upper case. The character count of the I/0
directive, rather than control characters, is used to terminate the
string. Only the first 132 characters are sent across to the PDP-1l,
regardless of the size of the arriving string.

Each character is plotted inside a rectangular boundary of 1X by 1Y
plotter steps. The size of these values are specified under mode 10
of 1IOPS BINARY write, The X direction spacing includes the
intercharacter spacing so that the first and second characters share a
vertical boundary.

IOPS BINARY is used for all of the remaining type of plotter control.
The first data word of the buffer is an integer mode word whose value
ranges from 0-10 decimal (11 for the Xy31ll). There follow in the
buffer a variable number of integer arguments, as described in the
following table:

Table 18-3
IOPS Binary Modes
Mode No Arguments Action
0 None Lift pen
1 None Lower pen
2 n,IX,IY pairs Lift pen, move to absolute co-ordinates
specified by each IX,IY pair
3 n,IX,IY pairs Lower pen, move to absolute co-ordinates
specified by each IX,IY pair
4 n,IX,IY pairs Lift pen, move delta x, delta y
specified by each IX,IY pair
nIX,IY pairs Lower pen, move delta x, delta y
specified by each IX,IY pair
6 count,char. string| Alternate character method; a char.
count, followed by the string
7 IX,IY Define present position as co-ordinates
IX,IY
8 nIX,IY pairs Leave pen, move to the absolute
co-ordinates specified by each
IX,IY pair
9 nIX,1¥Y pairs Leave pen, move delta x, delta v
specified by each IX,IY pair
10 IX,1Y,ISIN,ICOS Set character size to IX wide, IY high;
character string angle 2 gives 200000%*
SIN(Z) for ISIN, and 200000*COS (z) for
ICOS. :
11 number X¥31ll select pen (1-3)

VI-18-2

18.3 UNICHANNEL OPERATION

The presence of the PDP-1l is largely transparent to the plotter user,
but not entirely. The plotter interface basically doesn't recognize
errors, for example, out of paper, out of ink, pen pinned on edge of
plotter. There is not even an off 1line switch, to allow clean
operator intervention, on the XY1l. A software switch was built into
the PDP-11 PIREX monitor. If console switch #2 is raised, PIREX acts
as if the plotter is offline. WNo notification comes back to the XVM;
the plotter resumes when the switch is again lowered. The XY31l does
have an offline switch, and switch #2 is no longer operational (PIREX
has an assembly parameter for plotter type). For the XY21l there is
still no message at the XVM.

If the PIREX SPOOLING facility is turned on under DOS, and RSX is then
invoked, SPOOLING remains active under RSX., This means that a plot
job under RSX generates a plot file in the SPOOLER, and may then
complete long before the physical plot is done. Additional jobs may
then ATTACH to the plotter and generate additional plotter output to
be plotted later. However, it is the responsibility of these plotter
jobs to ensure that they do not use the same space on the plotter,
The SPOOLER will continue from one job to the next, not allowing time
for operator intervention. A job separation standard should be
adopted suitable for each installation. The handler could not make an
arbitrary spacing assumption; applications have already been observed
that create "layered" plots from several inputs.,

18.4 FORTRAN EXAMPLES

The following program fragments show the use of FORTRAN to generate
calls to the XY Plotter Handler Task. It is assumed that the XY
plotter has been reassigned to LUN 7.

18.4.1 Use of IOPS ASCII

S=2 []
SQ=SQRT(S)
WRITE (7,100) SQ
100 FORMAT (1X, 5HSQ=,ElS5.8)

18.4.2 Characters From IOPS Binary.

DIMENSION T(4)

DATA T(1)/5H ABCD/,T(2)/5HEFGHI1/
IM=6

IC=9

WRITE (7) 1IM, IC, T

(Note: The array may also be filled by I/0.)

VIi-18-4

18.4.3 Make Characters Double Sized and Vertical (XY1ll)

IM=10

IX=40

IY=40

IS=#200000

Ic=0

WRITE (7) IM, IX, IY, IS, IC

18.4.4 Transfer an Array of 25 Lines
DIMENSION IL(50)

IM=3
WRITE (7) IM, IL

18.4.5 Recommended Close-out for Plotter Job (LUN=7)

CALL CLOSE (7,5H@e@e@,3H@@@,IEV)
CALL WAITFR (IFV)

vI-18-5

CHAPTER 19

CARD PUNCH INPUT/OUTPUT

19.1 CARD PUNCH HANDLER TASK

The Input/Output Device Handler Task responsible for servicing
requests for the card punch is called CP.... and handles calls
submitted through special forms of the QUEUE 1I/0 Directive, The
device name is CP for purposes of reassignment.

19.2 CP HANDLER REQUESTS

Special forms of the QUEUE I/0 Directive can be issued to queue
requests to the CP 1I/0 Device Handler Task. Following are legal
function calls which may be issued for CP service and a brief
description of each:

Table 19-1

Card Punch I/O Functions
CP Call Function
HINF Request Handler Task information
ATTACH Obtain Exclusive use of card punch
DISCONNECT & EXIT Disconnect Handler from interrupt line and exit
DETACH Release attached card punch
WRITE Punch output from buffer
CLOSE Close punch file
ABORT Abort I/O for Task

19.2.1 HINF: Requesting Handler Task Information

If a request for HINF is accepted, the Event Variable is set to
+100022 (octal) to indicate the following:

Bit Contents
0 Set 0 to make Event Variable positive
1-2 Set 1 to indicate an output-only device

VIi-19-1

Bit Contents

3 Set 0 to indicate a non-directory-oriented
Handler
4-11 Device unit 0
12-17 Device code 22 (card punch)

19.3 WRITE: WRITING OUTPUT FROM A BUFFER

The WRITE I/0O function call, WRITEs output from a buffer to the CP
Handler Task assigned to the specified Logical Unit Number. It
operates almost exactly as in the description of WRITE in Chapter 2,
with the following exceptions and special features.

If the punch is not ready, the following message is output to Logical
Unit 3 (the MCR terminal):

*%% CP NOT READY

The card punch handler then waits until the device is ready. Unlike
some other I/0 Device Handler Tasks, the CP Handler Task will not
SUSPEND under such circumstances. Hence, it is never required that
the operator RESUME this Handler Task.

The only legal data mode for WRITEs to this Handler Task is IOPS ASCII
(mode 2). In this mode up to 80 characters can be punched per card.
Prior to punching each ASCII character, the CP Handler Task converts
the ASCII code into either of +two Hollerith codes (DEC026 or DEC029).
The codes punched are compatible with those expected by the Card
Reader I/0 Handler Task.

19.4 CLOSE: CLOSING A FILE

The CLOSE I/0 function call informs the CP Handler Task assigned to
the specified Logical Unit Number that the issuing task has completed
a set of related I/0 functions on the current file. The CLOSE
directive results in the punching of an End-of-File card.

VI-19-2

APPENDIX A

EVENT VARIABLES

Event Variables are software flags set by RSX for system or other
Tasks. When issuing an I/0 function from a MACRO or FORTRAN Task, the
user can specify an Event Variable in the I/0 call itself. It is set
to inform him about the status of the I/O request and the success of
the I/O operation. 1In all but a few cases, inclusion of this variable
is optional.

If it is included, it usually takes the form of a variable to which
has been assigned the address to contain the Event Variable. Word 1
of the CPB normally contains the address. If no Event Variable has
been specified, the contents of this word remains zero. If an Event
Variable has been specified, the contents of the address pointed to by
Word 1 are initially set to zero to indicate that the function has not
yet been processed.

If the request cannot be queued, -101,-102,-103, or =777 (see Table
A-l) is returned, If the request is successfully queued, the Event
variaple remains zero, indicating that the request is pending.
Eventually, when the requested operation is attempted, the Event
Variable is set either to a positive value, indicating success, or to
a negative number whose value pinpoints the reason for failure of the
operation. Thus the returned code is in the following ranges:

Code Meaning
+n Function succeeded; n is almost always 1
0 Function pending
-n Function failed; n is a number indicating why failure
occurred

A Significant Event is declared whenever an Event Variable is set.

Some Event Variables are specific to a particular function; others
are common to two or more functions. Table A-1l provides a summary of
all negative Event Variables that may be returned to RSX I/0
functions, as well as possible reasons for failure. Table A-2 lists
special meanings some Event Variables may have in reference to certain
functions.

VIi-A-1l

Table A-1
Returned Event Variables

Event Variable

Reason

4
L

17

7,

~1

~

¥
n

+1

-26

=27

=31

-32

Successful completion
No floating-point hardware on this machine

Illegal header word read from device; data mode
incorrect or data validity bits improperly set

Unimplemented or illegal I/0 function

Illegal I/0 data mode

Some file still open by same Task on same LUN
File not open

DECtape or Magtape error or illegal block pointer
File not found

Directory full

I/0 device medium full

Output word-pair-count or input buffer-size error
Read/compare error

Backspace illegal at beginning of tape
End-of-tape reached

Input word-pair-count error

LUN has been reassigned while request was in I/0
request queue

Buffer preallocation unsuccessful; insufficient
room remains in partition

Illegal function for a USER-mode Task
Nonexistent disk unit number

Address for USER-mode Task is outside the Task's
partition

I/0 parameter exceeds COMMON Block bounds

Nonexistent System COMMON Block

(Continued on next page)

VI-A-2

Table A=l (Cont.)
Returned Event Variables

Event Variable

Reason

74 =33
714 &34
745 =35
Az =36
39 =50
727 a5
2L =52
70 w53
7od =54
723 =55
2z =56
“! =57
rzo =60
7t -6l
e <62
Ve =70
) !
(12
7.5 273
A =77
€v7 =101
~ e =102
=103

Unit dismounted or directory not initialized
Data missed

Illegal device code or nonexistent disk type
Nonexistent block number

Rename error; file already exists in the
Directory

Illegal to read a truncated file

Input file has no end of file

Illegal (null) file name or extension

This file already open

This file already open for modification

No I/O buffer available
Sequential/random-access file name conflict
Random-access file size error

Random—-access file accounting information error

Random-access file size error; size requested is
negative or greater than 777 octal blocks

I/0 parameter error

Buffer connect or disconnect error

Stop I/0 or start I/0 error

Add-to-memory overflow

Violation of restricted usage of Directive
LUN out of range

LUN not assigned to a physical device

Nonresident or noninitialized I/0 Device Handler
Task or RASP not running

(Continued on next page)

VI-A-3

Table A-1 (Cont.)
Returned Event Variables

Event Variable Reason
-104 Parameter (in CPB or Control Table)
=201 Task not in system
=202 Task is active

Task is inactive

-203 Request not Task-issued

=204 Task is disabled

=205 Task not suspended

=206 Illegal Task priority

-207 Task already fixed
Task not fixed

=210 Partition occupied

-211 Partition not in system

-212 Partition for Task's STL node 1lost because of
reconfiguration

-213 Partition assigned to Task currently being
reconfigured

=301 Line number rejected

=302 Line is connected

Line is not connected
=777 Deque node unavailable (empty pool)
nnn I/0 hardware error, where nnn is the device status

word; because the error flag is represented by
bit 0, nnn is negative

VI-A-4

Table A=-2

Special Meanings of Event Variables

Event
Variable | Function Reason
+n HINF Special code of device and Handler
information
+4 WRAOF, Successful completion; end-of-tape en-
FSPREC, countered; for Magtape, +4 overrides
FSPFIL, any other setting
FSPEOT,
MTGET,
MTPUT,
READ, WRITE
+3 MTGET, Successful completion; end-of-file en-
MTPUT, countered
READ
+3 MTGET, Successful completion; end-of-file mark
FSPFIL encountered; forward spacing terminated
and tape head left positioned following
file mark
BSPREC, Successful completion; end-of-file mark
BSPFIL encountered; backspacing terminated and
tape head left positioned before file
mark
WREOF Successful completion; end-of-file
written; head positioned after
end-of-file mark
FSPEOT Successful completion; forward spacing
terminated and tape head left positioned
after logical end-of-tape mark
+2 READ requests Carriage return terminated line (IOPS
to Terminal ASCII)
Handler
WRITE requests CTRL/U aborted output (IOPS ASCII)
to Terminal
Handler
+1 READ Successful completion, but parity,
checksum, or buffer overflow errors may
have occurred
+1 READ requests ALTMODE terminated line (IOPS ASCII)

to Terminal
Handler

(continued on next page)

VI-A-5

Table A=2 (Cont.)
Special Meanings of Event Variables

Event
Variable | Function Reason
ATTACH Successful completion or ATTACH request
is redundant and is ignored
DETACH Successful completion or DETACH request
is redundant and is ignored
-5 READ requests to Illegal header word, header data mode
disk file Handlers | does not match READ data mode;
end-of-file indicator is an exception
because mode is 5
=15 Requests to Disk Insufficient contiguous free storage
Driver available on any single disk platter
-16 Requests to IOPS ASCII input == line buffer size
Terminal Handler less than 4; IMAGE ASCII input == 1line
buffer size 1less than 3; IMAGE ASCII
output - line buffer header
word-pair-count less than 2
Request to Paper Word=-pair-count in the line buffer
Tape Punch Handler | header less than 2
Requests to Paper Illegal buffer size (from CPB); size
Tape Reader less than 3 for data modes 0, 1, and 3;
Handler size less than 4 for data mode 2
Requests to disk Illegal input buffer size (less than 3)
file Handlers or illegal output word=-pair-count (zero
or greater than 200 octal)
=21 Requests to Event Variable was +4 and an attempt to
Magtape Handler move tape forward has been rejected
-23 Requests to Paper Word-pair-count is 0 in header word 0,
Tape Reader which was read from the tape in IOPS
Handler BINARY mode
-73 ADSSET, Add-to-memory overflow; for FORTRAN
ADRSET convenience, when this error occurs, the

(if
the

Memory Overflow Event Variable
included) will be set to 1 plus
number of the overflowing channel

(Continued on next page)

VI-A-6

Table A-2 (Cont.)
Special Meanings of Event Variables

Event
Variable | Function Reason
-104 Requests to Disk Error in Control Table argument; may

-n

Driver

Requests to
Magtape Handler

Requests to
Disk Driver

5.

signify:

1. Amount of storage to be allocated is
negative, zero, or greater than
377400 octal

2, Amount of storage to be deallocated
is negative, zero, or not a multiple
of 256 (400 octal)

3. Illegal disk platter number; number
is negative or too large

4, Disk address is not a multiple of

356 (400 octal)

Disk address plus the amount of
storage to be allocated or
deallocated indicates ALLOCATE or
DEALLOCATE request is attempting to
deal with more than 511 contiguous
blocks

Magtape error status when user recovery
is specified

Persistent disk error; -n represents
the contents of the disk status register

VI-A-7

APPENDIX B

THE MACRO DEFINITIONS FILE

All system MACROs implemented in the RSX system are defined in one of
the files supplied as part of RSX and known as the MACRO Definitions
File. This Appendix contains definitions only for currently
implemented standard system MACROs used for I/O. The manual on System
Directives describes all others.

B.1l READ: READING FROM AN I/O DEVICE

+DEFIN READ,LUN,MODE,BUFF,SIZE,EV
CAL o2

JMP ot+7

2600

EV+0

+DEC; LUN; .OCT

MODE

BUFF

SIZE

« ENDM

B.2 WRITE: WRITING TO AN I/0 DEVICE

+DEFIN WRITE,LUN,MODE,BUFF,EV
CAL ot+2

JMP «+6

2700

EV+0

.DEC; LUN; .OCT

MODE

BUFF

« ENDM

B.3 DSKAL: RESERVING STORAGE

.DEFIN DSKAL,CTB,EV
CAL o+2

JMP o+5

1500

EV+0

1

CTB

. ENDM

VI-B-1

B.4 DSKDAL: FREEING STORAGE

«DEFIN DSKDAT,CTB,EV
CAL «t+2

JMP «+5

1600

EV+0

1l

CTB

« ENDM

B.5 DSKPUT: WRITING TO DISK

«DEFIN DSKPUT,CTB,EV
CAL o t+2

JMP «+5

3100

EV+0

1l

CTB

« ENDM

B.6 DSKGET: READING FROM DISK

«DEFIN DSKGET,CTB,EV
CAL «+2

JMP «+5

3000

EV+0

1

CTB

« ENDM

B.7 MDALLO: RESERVING STORAGE =~ MULTIPLE DISKS

.DEFIN MDALLO,CTB,UNIT,TYPE,EV
CLL

LAC (UNIT
ALS 17
DAC CTB+1
CAL o+2
JMP «+6
11500

EV

1l

CTB

TYPE

« ENDM

VI-B-2

B.8 MDDEAL: FREEING STORAGE =~ MULTIPLE DISKS

.DEFIN MDDEAL,CTB,UNIT,TYPE,EV

CLL

LAC CTB+1
AND (77717
DAC CTB+1
LAC (UNIT
ALS 17
TAD CTB+1
DAC CTB+1
CAL o+2
JMP «+6
11600

EV

1

CTB

TYPE

« ENDM

B.9 MDGET: READING FROM MULTIPLE DISKS

.DEFIN MDGET,CTB,UNIT,TYPE,EV

CLL

LAC CTB
AND (7777
DAC CTB
LAC (UNIT
ALS 17
TAD CTB
DAC CTB
CAL «+2
JMP «+6
13000

EV

1l

CTB

TYPE

« ENDM

B.1l0 MDPUT: WRITING TO MULTIPLE DISKS

CLL

LAC CTB
AND (7777
DAC CTB
LAC (UNIT
ALS 17
TAD CTB
DAC CTB
CAL o+2
JMP «t+6
13100

EV

1

VI-B-3

CTB
TYPE
« ENDM

B.ll ATTACH: ATTACHING AN I/O DEVICE

.DEFIN ATTACH,LUN,EV

CAL o+2

JMP .+4
2400

EV+0

.DEC, LUN; .OCT
.ENDM

B.12 DETACH: FREEING AN ATTACHED I/0 DEVICE

«DEFIN DETACH,LUN,EV

CAL o+2

JMP «t+4
2500

EV+0

«DEC; LUN; .OCT
« ENDM

B.13 SEEK: OPENING A FILE FOR INPUT

-DEFIN SEEK,LUN,FLNAM,EXT,EV

CAL o+2
JMP «t+7
3200
EV+0

+DEC; LUN; ,.OCT
ee=e; «SIXBT "FLNAM"

O; «LOC ..+2

«SIXBT "EXT"

« ENDM

B.14 ENTER: OPENING A FILE FOR OUTPUT

.DEFIN ENTER,LUN,FLNAM,EXT,EV

CAL «+2
JMP o+7
3300
EV+0

+DEC; LUN; .OCT
se=e} «SIXBT "FLNAM"

0; JLOC ..+2

«SIXBT "EXT"

« ENDM

VI-B-4

B.l5 DELETE: DELETING A FILE

.DEFIN DELETE,LUN,FLNAM,EXT,EV

CAL «t+2
JMP ot+7
3500
EV+0

+DEC; LUN; .OCT
ee=e} .SIXBT "FLNAM"

0; LLOC ..+2

«SIXBT "EXT"

+« ENDM

B.,16 CLOSE: CLOSING A FILE

«DEFIN CLOSE,LUN,FLNAM,EXT,EV

CAL o+2
JMP o+7
3400
EV+0

«DEC; LUN; .OCT
=,; LSIXBT 'FLNAM'

0; .LOC .,.+2

«SIXBT ‘'EXT'

« ENDM

B.l17 RENAME: RENAMING A HLE

«DEFIN RENAME,LUN,FLNAM,EXT,EV

CAL o+2
JMP ot+7
3700
EV+0

+DEC; LUN; .OCT
ee=e} «SIXBT "FLNAM"

0; .LOC ..+2

+SIXBT "EXT"

« ENDM

B.1l8 HINF: REQUESTING I/O HANDLER INFORMATION

+DEFIN HINF,LUN,EV

CAL o+2
JMP ot+4
3600

EV+0

«DEC; LUN; .OCT
+« ENDM

VI-B-5

INDEX

ABORT, 2-5, 3-11, 6-5, 9-6, Card punch handler
12-8, 13-8, 18-1 requests, 19-1
Aborting I/0 for task, 2-5, task, 19-1
3-11, 6-5, 9-6, 12-8, 13-8 Card punch input/output, 19-1
AD conversion functions, 19-1
starting, 14-12 Card reader 1/0, 10-1
stopping, 14-13 functions, 10-1
AD handler CC handler
requests, 14-1 requests, 17-1
task, 14-1 task, 17~1
ADCON, 14-4 CD handler
ADDIS, 14-5 requests, 10-1
ADRMAP, 14-15 task, 10-1
ADRSET, 14-9 Clearing interrupt line, 2-12,
ADSMAP, 14-14 3-11, 7-4
ADSSET, 14-6 CLOSE, 2-7, 3-12, 7-3, 12-7,
ADSTOP, 14-13 13-6, 18-2, 19-2
ADSTRT, 14-12 CLOSE macro, B-5
AF handler Closing a file, 2-7, 3-12, 7-3
requests, 15-1 12-7, 13-6, 19-2
task, 15-1 COMGET, 17-3
AFC I/0 functions, 15-2 Common communicator I/0
AFT, 1-2 functions, 17-1
AI, 15-3 Comparing a record, 8-20
ALLOCATE, 6-6 COMPUT, 17-5
Analog channels, reading Connecting AD to task, 14-4
sequence of, 15-3 Connecting buffer, 16-10
Analog output =--- A633 modules, Contact interrupt digital input --
16-4 W733 module, 16-9 .
Analog-to-digital converter 1/0, Contact sense/interrupt digital
14-1 input -- W731, W733 modules,
functions, 14-2 16-7
AO, 16-4 Core partition
ASCII to BCD conversion, 8-18 availability, 1-3
ASCII to EBCDIC conversion, 8-19 CREATE, 3-13
ATTACH, 2-6, 7-3, 18-2 Creating random-access file, 3-13
Attach Flag Table (AFT), 1-2 CR15 error messages, 10-3
ATTACH macro, B-4 CRO3B handler
Attaching I/0 device, 2-6 operation, 10-8
Automatic flying capacitor CTDI, 16-9, 16-10
scanner I1/0, 15-1 CTRL/C, 9-3
functions, 15-2 CTRL/P, 9-4
CTRL/T, 9-4
CTRL/X, 9-4
CTRL/Y, 9-4
Backspacing
files, 8-4
records, 8-5
Bit maps, 6-2 Data modes, 1-8
BSPFIL, 8-4 by devi 19
BSPREC, 8-5 y device,
' legal, 9-2

Data records
random-access file, 3-4

CAL parameter blocks (CPB), sequential-access file, 3-2
2-3, 2-6, 2-25 DEALLOCATE, 6-9
CALL DEFINE statement, 3-14 DEC026 character set, 10-7

XVM/RSX V1B VI-Index-1 September 1976

INDEX (CONT.)

DEC029 character set, 10-6
DECtape 1/0, 7-1
functions, 7-2
DELETE, 2-9, 3-11
DELETE macro, B-5
Deleting file name from
directory, 3-11
Deleting files, 2-9
DETACH, 2-11, 7-3, 18-2
DETACH macro, B-4
Devices, 1-5
DFDI, 16-9, 16-12
DI, 16-7
Digital output latching -- M685,
M803, M805 modules, 16-6
Digital output, single shot --
M687 and M807 modules,
16-5
DISCONNECT, 2-12, 3-11, 7-4
Disconnecting AD from task, 14-5
Disconnecting buffer, 16-12
Disk address, 4-1
RK, 4-1
RP, 5-1
Disk block number, 6-1
Disk driver requests, 6-3
Disk driver 1I/0, 6-1
functions, 6-4
Disk driver tasks, 6-1
Disk errors, 6-3
Disk file 1/0, 3-1
Disk platters,
RK, 4-1
RP, 5-1
Dismounting tape, 8-12, 8-13
DOL, 16-6
DOS, 16-5
DQRQ, 2-5
Driver call, 6-4
DSKAL macro, B-1
DSKDAL macro, B-2
DSKGET, B-2
DSKPUT macro, B-2
DT handler requests, 7-1
DT handler task, 7-1

ENTER, 2-13, 3-10, 7-3, 18-2
ENTER macro, B-4
EOT, 8-8
ERROR CLOSE, 3-16
Error messages
CR15, 10-3
UC1l5, 10-5
Error recovery, 8-17
handler, 8-17
user, 8-17
Establishing random links, 14-9

XVM/RSX V1B

VI-Index-2

Establishing sequential links,
14-6]
Event variables, 1-7, A-1
returned, A-2
special meanings, A-5
Examples, 18-4
EXIT, 2~12, 3-11, 7-4

FORMAT, 8-6

Format of information returned
by READ, 18-2

FORTRAN examples, 18-4

FORTRAN interface, 16-3

Freeing attached I/0 device,

Freeing storage, 6-9

FSPEQOT, 8-8

FSPFIL, 8-9

GET, 6-12, 7-5

Handler exit, 1-7
Handler initialization, 1-6
Handler recovery, 8-17
Handler's internal closing of
file, 3-16
HINF, 2-15, 3-10, 6-4, 7-2, 8-3,
9-5, 10-2, 11-2, 12-2, 13-2,
14-2, 15-2, 16-2, 17-2, 18-2
19-1
HINF macro, B-5
Hollerith card code
type 26 punch, 10-7
type 29 punch, 10-6

Image ALPHA, 11-1
Image ASCII, 1-8
mOde 3, 8_23, 8-27’ 9_8’ 9"10.
12-6, 13-5, 13-7
Image binary, 1-8
mode 1, 8-22, 8-26, 12-3, 13-4
13-7
Introduction, 1-1]
I/0 data modes, 1-8
I/0 device handler tasks, 1-4
I/0 devices and codes, 2-17
I/0 functions, 2-1, 2-2
I/0 request
processing, 1-7
queuing, 1-6
I/0 Rundown task and queue, 1-3

September 1976

INDEX (CONT.)

I/0 tables, lists, and tasks,
1-1
IOPS ASCII, 1-8
mode 2, 8-22, 8-26, 9-7, 9-9,
11-1, 12-5, 13-4, 13-7
IOPS binary, 1-8
mode 0, 8-22, 8-26, 12-3,
13-3, 13-7
modes, 18-3
IORD, 1-4, 9-6
IORDQ, 1-3

LABEL, 8-11
Line formats
supportad
~.ne printer 1/0, 11-1
functions, 11-2
Logical Unit Table (LUT), 1-1
LP handler
requests, 11-2
task, 11-1
LUN, 1-1, 2~3
mapping, 2-3
LuT, 1-1

MACRO definitions file, B-1
Magtape I/0, 8-1
functions, 8-2
Mapping
LUNs, 1-2
Mapping random input parameters,
14~15 .
Mapping sequential input
parameters, 14-14
MCR terminal, 9-3
MDALLO macro, B-2
MDDEAL macro, B-3
MDGET macro, B-3
MDPUT macro, B-3
MFD, 3-1
MOUNT, 8-12
Mounting tape, 8-12
unlabeled, 8-13
MT handler
requests, 8-1
task, 8-1
MTGET, 8-14
MTPUT, 8-1l6
MULTIACCESS, 1-2

Obtaining exclusive ugse of
device, 7-3

Opening file for input, 2-23,
3-10, 7-3

Opening file for output, 2-12,
3-10, 7-3

XVM/RSX V1B

VI-Index~3

Operatioft f CR0O3B hangdl , 10-
0TS ASCIT 131 ery 10-8

Paper tape¢ punpch I/0, 13-1
functions | 333

Paper t?Pe teader I/0, 12-1
functions , 12-1

PARITY para peter, 9-2

PDVL, 1-2, 4-1, 5~1

Physical De';j.q List (PDVL _
Plotter, 18] (), 1-2

= _handler
13-1
L
PR handler
requests, 12-1
task, 12-1

PREAL, 2-19, 3-11

Preallocating I/0 buffers, 2-19
space, 3-11

PUT’ 6-16' 7_6

QUEUE I/0, 2-3
Queuing requests for a device,
2-3

Random access file, 3-1, 3-3
Random links
establishing, 14-9
RBCD, 16-7
RBIN, 16-7
RDCOMP, 8-20
RDDI[16-9' 16-11
RDP, 16-7
READ, 2"'20; 3"17, 7"'3, 8-22'
9-7, 10-3, 12-3, 18-2
Read
binary, 16-7
READ macro, B-1
Read point, 16-8
Reading
buffer, 16-11
from DECtape, 7-5
from disk, 6-12
from I/0 device, 2-20
from tape into user buffer,
8-14
input into buffer, 3-17, 7-3,
8-22, 9-7, 10-3, 12-3
record, 8-20
sequence of analog channels,
15-3
tape label, 8-11

September 1976

INDEX (CONT.)

TDV terminal, 9-4

Record Terminal characteristics, 9-1
comparing, 8-20 Terminal I/0, 9-1
reading, 8-20 functions, 9-4
Remote stimulus, 9-4 Transferring data from COMMON
RENAME, 2-21 block to task, 17-3
RENAME macro, B-5 Transferring data from task
Renaming file, 2-21 to COMMON block, 17-5
Requesting driver task TTY HANDLER
information, 6-4 REQUESTS, 9-4
Requesting handler task TASK, 9-1
information, 3-10, 7-2 TYPE-IN, 9-3

9-5, 10-2, 11-2, 12-2.
13-2, 14-2, 15-2, 16-2,
17-2, 19-1
Requesting I/0 handler
information, 2-15,
Reserving storage, 6-6
Returned event variables, A-2

6-3 uC1s
ERRORS, 10-5
OPERATION, 10-4, 11-3

REWIND, 8-24 o UDC I/0 functions, 16-2
. o UF handler
Rewinding tape, 8-24 requests, 16-1
functions, 3-9 UFD 3L1 3-4
RF handler 2! ! ;
requests, 3-8 Unichannel operation, 18-4
d ! B Universal digital controller
structure, 3-7 1/0, 16-1
- 7
Rth?Zé %/é 4-1 functions, 16-2
RK handler task, 4-1 Unloading tape, 12-7
RP disk 1,/0, 5-1 Unpagﬁégg an event variable,
RP handler task, 5-1

UPKEV, 6-20
User file directory (UFD), 3-4
User recovery, B8-17 e
Sample program, 16-13
SAT blocks, 6-2
SEEK, 2-23, 3~10, 7-3 ,
SEEK'macro: B-4 ’ Virtual LUNs, 1-2
Sequential access file, 3-1, 3-2
Sequential links

establishing, 14-6 WREOF, 8-25
Significant event declaration, WRITE, 2-25, 3-18, 7-3, 8-26,
14-3 9-9, 11-3, 13-3, 18-3, 19-2
Spacing forward WRITE macro, B-1
flleS, 8-~9 Writing

records, 8-10 end-of~-file mark, 8-25

Spacing forward to EOT, 8-8 output from buffer, 3-18, 7-3,
Specifying tape format, 8-6 ~ 8-26, 9-9, 11-3, 13-3, 19-2
Starting AD conversion, 14-12 tape label, 8-11 '

Stopping AD conversion, 14-12 to DECtape, 7-€

to disk, 6-~16
to I/0 device, 2-25

Tape to tape from user buffer,
dismounting, 8-12, 8-13 8-16
mounting, 8-12
Tape label
regd, 8-11 XY handler
write, 8~-11 requests, 18-~1
Task task, 18-1
aborting I1/0 for, 2-5, 6-5 XY plotter I/0, 18-1
exit, 1-3 functions, 18-1

XVM/RSX V1B VI-Index~4 September 19°

	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	15-01
	15-02
	15-03
	15-04
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	Index-1
	Index-2
	Index-3
	Index-4

