
PART VII
XVM/RSX ON-LINE TASK DEVELOPMENT

CHAPTER 1

INTRODUCTION TO MULTIACCESS

1.1 FUNCTION OF TASK DEVELOPMENT

RSX has the capability of multiuser on-line task development with
concurrent batch processing. Multiuser task development (TDV) is
known as the MULTIACCESS facility. RSX offers a full range of TDV
functions under control of the MULTIACCESS Monitor. By calling
different TDV system modules (function tasks) supplied with RSX, the
user can enter or change source code, compile a FORTRAN IV program or
assemble a MACRO program, and bu~ld this program as a task that will
execute under RSX control. (In addition, the user can invoke utility
routines to perform a variety of file listing and maintenance
functions.) The TDV function tasks supplied as part of RSX are listed
in Table 1-1.

Besides the TDV function tasks, the MULTIACCESS Monitor supports a set
of commands that control the user TDV environment. The MULTIACCESS
Monitor commands are listed in Table 1-2. Furthermore, three
control-character facilities have been provided to help the user
control his particular task development. The MULTIACCESS
control-character facilities are listed in Table 1-3.

JOB, BAT and END (not listed in Table 1-1) are classified as TDV
functions, but because they have meaning only when batch processing,
they are separtely described in Part VIII of this manual.

Another TDV function task (not listed in Table 1-1), PUP (Peripheral
Utility Program), resembles PIP (Peripheral Interchange program),
which is used on other systems. PUP enables the user to transfer
files from one device to another. Although it is not supplied with
RSX, the user can obtain it from the DEC User Society (DECUS).

The MULTIACCESS facility can be used from any number of terminals up
to the maximum number supported by the particular system
configuration. However, for most installations, the number of
terminals used simultaneously for task development should be limited
to six. This is suggested because of the large size of several
critical TDV function tasks.

XVM/RSX VIB VlI-l-l September 1976

I

•
•

I

TDV Function Task

FOR [TRAN]

MAC [RO]

EDI [TOR]

SLI [P]

TKB [UILDER]

BTK

FIN [PUT]

DEC [K]

FOU [TPUT]

LIS[T]

TYP [E]

DEL [ETE]

REN[AME]

DIR[ECTORY LIST]

DTD [IRECTORY]

NEW [DIRECTORY]

INS [TALL] *

REQ[UEST]*

REM [OVE]*

MNT*

DSM*

CON [STRUCT]

STA[TUS]

QUE[UE]

ODT

ACI

ACD

Table 1-1
TDV Function Tasks

Function Performed

Compile a FORTRAN IV program

Assemble a MACRO program

Text-edit source code

Edit batch files

Build a task for execution

Basic Task Builder

Transfer a sequential file to disk

Batch transfer to disk

Transfer a sequential file from disk

Transfer a sequential file from disk
to printing device

Transfer a sequential file from disk
to printing device

Delete file from disk

Rename file stored on disk

List files in file directory on disk

List DEC tape file directory

Write out a new DECtape file directory

Install a task in the system

Request task execution

Remove a task from the system

Logically mount a disk

Logically dismount a disk

Store a task on a user disk

Print MULTIACCESS Monitor statictics

Queue a batch job

Octal Debugging Technique

Initialize batch account file

Display batch account file

I *Not recommended for use under MULTIACCESS

XVM/RSX VlB VII-1-2 September 1976

Command

OFF

DEV [ICES]

PAR[TITION]

KPAR[TITION]

ASG (ASSIGN)

XQT

Table 1-2
MULTIACCESS Monitor Commands

Function Performed

Log the user off of the MULTIACCESS
system

Print the
relationship

user's LUN-to-device

Specify the user's memory requirements

Specify the userls memory requirements

Assign the user's LUNs to peripheral
devices

Execute a user task

Table 1-3
MULTIACCESS Control-Character Facilities

Control Character

CTRL/T

CTRL/Y

CTRL/P

XVM/RSX V1B

Function Performed

Begin the login process, if the user
is not logged in.

Inform the user of his current job
status, if the user is logged in.

Abort the user's current task (TDV
function or user-written task), if one
is active.

Resume a user task if it has been
suspended by a FORTRAN PAUSE statement
or MACRO SUSPEND directive.

VII-1-2.1 September 1976

All TDV function tasks are invoked through the MULTIACCESS Monitor, an
exec-mode task that is built for any user-specified partition within
the first 32K of core. TDV function tasks, such as the FORTRAN IV
Compiler, reside on the disk until requested by the Resident TDV
Dispatcher. These tasks typically share a core partition, although
they can be built to run in any partition.

To facilitate concurrent operations, it is necessary to assign virtual
user LUNs in such a way that devices need not be reassigned when the
user switches from one TDV function to another. Table 1-4 contains
recommended virtual LUN assignments for TDV use. Device names
correspond to devices listed in Table 1-5. Function names are given
in Table 1-1.

NOTE

Thoughout this part of the manual and
wherever user LUNs are referred to, it
must be understood that these are
virtual LUNS. virtual LUNS are
automatically "mapped" to system LUNs by
the MULTIACCESS Monitor.

The MULTIACCESS Monitor accepts requests for specific functions as
input from a dynamically allocated system LUN. The resident task then
requests that a specific TDV function task be brought into its core
partition from disk. This function task assumes control and can
perform the jobs described in subsequent chapters.

TDV function tasks accept command input from LUN-12, in much the same
way as the Resident MCR accepts requests for MCR functions from LUN-2.
TDV error messages are sent to LUN-13 just as MCR error messages are
sent to LUN-3. The MULTIACCESS user should leave virtual LUNs 12 and
13 assigned to TT (the default assignment) •

Actual time of execution of TDV function tasks, like
depends on partition availability and task priority.
descriptions of this process appear below and in Part
manual.

XVM/RSX VIB VII-1-3

user tasks,
More detailed

XI of this

September 1976

<:
H
H
I
I-'
I
~

LUN

Recornr.lended
Device
Assignr.tents

LUN
Use

1

OK

DIR
dsk
drvr

5 10

RF, RF,
RP or RP or
RK RK

TKB
sys
lihr

Table 1-4
TOV Virtual LUN Assignments

11 12 13 14 15 16

RF, TT TT RF, LP
RP or RP or
RK RK

TDV TDV
cmd err
in log

FOR FOR FOR FOR
cmd err SRC list
in msgs in

MAC MAC MAC MAC
cmd err SRC list
in msgs in

EDI EDI EDI
cmd err aux
in msgs out

TKB TKB TKB
user cmd term
libr in out

FIN FIN
cmd err
in msgs

FOU FOU
cmd err
in msgs

LIS LIS LIS
cmd err list
in msgs

DEL DEL
cmd err
in msgs

REN REN
cmd err
in msgs

OIR OIR OIR
cmd err list
in msgs

17 18 19 20 21

RF, RF, DT TT TT
RP or RP or
RK RK

FOR
BIN
out

MAC MAC MAC
BIN sec aux
out in in

EDI EDI EDI EDI
SRC temp aux term
I/O file in I/O

TKB TKB
BIN TSK
in out

FIN FIN
file file
out in

FOU FOU
file file
in out

LIS
file
in

DEL
file
I/O

REN
file
I/O

(Continued)

c:::
H
H
I

I-'
I

111

LUN 1 5 10

INS
TSK
in

CON
TSK
in

Table 1-4 (Cont.)
TDV Virtual LUN Assignments

11 12 13 14 15 16

DTD DTD
cmd err,
in list

NEW NEW
cmd err
in msgs

INS INS
cmd err
in msgs

REO REO
cmd err
in msgs

REM REM
cmd err
in msgs

MNT MNT
cmd err
in msgs

DSM DSM
cmd err
in msgs

XQT XOT
cmd err
in msgs ..
CON CON
cmd err
in msgs

DF.C DEC DrC
cmd err file
in msgs in

17 18 19 20 21

DTD
tape
in

NEW
tape
out

I
nEe
file
out

Device Name

TTn

DTn

MTn

RF

RPn

RKn

PR

PP

CD

CP

LP

AD

AF

UD

CC

VTn

VWn

Xy

I CD

XVM/RSX VIB

Table 1-5
I/O Devices

Terminal

DEC tape

Magtape

Device

Fixed-Head Disk

Disk Pack

Disk Cartridge

Paper Tape Reader

Paper Tape Punch

Card Reader

Card Punch

Line Printer

Analog-to-Digital Converter

Automatic Flying Capacitor Scanner

Universal Digital Controller

System COMMON Communicator

Display

writing Tablet

XY Plotter

Card Reader (CRll)

VII-1-6 September 1976

1.2 REQUESTING THE RESIDENT TDV DISPATCHER

Task development can be requested from any idle terminal by typing
CTRL/T. This usually causes the LOGIN Processor to be invoked.
CTRL/T is ignored, however, if the terminal is ATTACHed or if the
Resident TDV Dispatcher cannot execute for any reason (e.g., if it has
not been INSTALLed, if it is DISABLEd or if its partition is in use) .

If the user is already logged into
stgtus of the current function
status message is:

MULTIACCESS,
to be printed.

TASKNME PARTITION ATL STATUS ABBREVIATION

CTRL/T causes the
The format of this

where TASKNAME is the name of the user program or system function,
PARTITION is the name of the partition in which the task is running
and ATL STATUS ABBREVIATION is one of the following:

ATL Status Abbreviation

CREATING TASK

WAITING FOR PARTITION

ON DISK

WAITING AT (address)

EXECUTING

SUSPENDED

ABORTING
SYSTEM ERROR­
TASK NOT IN ATL

Meaning

Task is not yet active

ATL status 1 or 2

ATL status 3 (restart address is printed
after the abbreviation)

ATL status 4,5,7 or 10

ATL status 6 (equivalent to PAUSE in
FORTRAN)

If no user-specified task is running (i.e., if the Resident TDV
Dispatcher is waiting for the user to enter a command), the following
message is printed:

TDV AWAITING COMMAND
TDV>

If the user is not logged into MULTIACCESS, the LOGIN Processor
determines whether there are sufficient resources available to log the
user into the system. If resources are not available, the LOGIN
Processdr prints the message:

MULTIACCESS - TOO MANY JOBS

on the terminal and ignores any user-typed commands until CTRL/T is
typed again. If resources are available, the LOGIN Processor logs in
the user and prints the message:

XVM/RSX VIBOOO MULTIACCESS

MONTH/DAY/YEAR HOUR: MINUTE

XVM/RSX V1B VII-1-7 September 1976

NN USERS LOGGED IN

SPECIFY DISK TYPE (RK, RP OR RF), UNlT AND UFO>

The user must then respond by typing the requested data in the
following format:

(e.g., RK5 <XYZ»

The default disk type is the same as that of the system disk, the
default unit number is 0 and the default UFO is <SCR>.

If the user does not complete the response with a line terminator
within 60 seconds, the LOGIN Processor returns the terminal to the
idle state. If the UFO specified does not exist for the disk
specified, the LOGIN Processor creates it. In this event, the LOGIN
Processor informs the user by printing the message:

UFO CREATED: <UFO>

During the login process, user errors cause the following messages to
be printed:

Error Message

NONEXISTANT UNIT NUMBER
RETYPE>

SYNTAX ERROR
RETYPE>

UFO CREATION ERROR

SYSTEM ERROR­
MISSING PDVL NODE

Cause

The unit number specified does not
exist.

The command line contains a syntax
error.

A new UFO was specified and disk errors
prevented its creation. This is a fatal
error.

This is a fatal error.

Fatal errors cause an automatic logoff to occur.

Once the user has successfully logged into MULTIACCESS, the system
responds by printing the prompter:

TDV>

In response to this prompter, the user can enter any legal TDV
command.

1.3 TDV/SYSTEM COMMUNICATION

Consider the following command line as an example of invoking the
FORTRAN IV compiler:

TDV>FOR BPROGI

In RSX, both the command to run the Compiler and the command to the
Compiler itself are typed on the same line.

XVM/RSX VIB VII-1-8 September 1976

When the Compiler is loaded into core and begins to run, it issues a
system directive called XFRCMD, which causes the line read by the
Resident TDV Dispatcher to be transferred to the Compiler. This is a
command used by all TDV function tasks regardless of whether or not
they request any command input. until XFRCMD is issued, the Resident
TDV Dispatcher command line buffer is occupied.

Once the command line is transferred and
completed its operation, the Resident
automatically requested by the TDV function
in this example). Alternatively, the user
task and invoke the Resident TDV Dispatcher

1.4 TDV COMMAND CONVENTIONS

the requested task has
TDV Dispatcher task is

task (the FORTRAN Compiler
can abort the current user
by typing CTRL/Y.

Requests for individual TDV function tasks are entered according to
the following conventions:

1. Command strings are terminated by either a carriage return or
an altmode. These terminators are treated identically by
MULTIACCESS.

2. Each element of the command string must be separated by
either a comma, a space or a back arrow, as appropriate.

3. Any number of characters (except a comma or space) can be
inserted between a TDV function task name and its arguments
or command-string terminator (carriage return or altmode).
This facility is useful for improving the readability of
teleprinter copy. For example, the following two commands
illustrate the abbreviated and the more readable way of
calling the Editor:

TDV>EDI

or

TDV>EDITOR

4. If the user discovers an error in the command string before
the terminator has been typed, the line can be deleted as far
back as the prompting character (» by typing a single
CTRL/U. An "at~ symbol (@) is echoed, informing the user
that he can now retype the command string. Rubout, echoed as
a backslash (\), can be used to delete characters one by one,
starting with the last character typed.

1.5 TDV FUNCTION TASKS

Each of the following chapters describes one TDV function task. In
all models and examples included in these chapters, the following
conventions apply:

XVM/RSX VIB VII-1-9 September 1976

1. A space in the text indicates an actual space in the command
line.

2. +indicates an actual backward arrow in the command line.

3. V indicates a terminator. This can be either a carriage
return or an altmode.

4. Square brackets ([, .••]) indicate optional characters.

5. Optional items that can be repeated are indicated by dots
following the item in square brackets. If a comma precedes
tbese dots ([•.•]), only the last parameter can be repeated.
Repetitions must be separated by commas. Therefore, in:

FIN[9] [option]name [ext] [, •..]

at least one name with an optional extension must be
specified. Additional file names, each with an optional
extension, can be included, as in:

TDV>FIN Fl,F2,F3

TDV>FIN Fl SRC,F2 BIN

TDV>FIN FI,F2 SRC

6. In ~form" models, upper-case characters (except LUN) indicate
those required by the system. Lower-case characters indicate
entries that are to be specified by the user and are
dependent on his particular task.

7. All LUNs requested are virtual LUNs.

8. Braces ({l) enclosing a stack of items indicate that one item
in the stack must be selected.

Five TDV functions described in the following chapters are not
recommended for use under MULTACCESS. They are:

INSTALL
REQUEST
REMOVE
MOUNT
DISMOUNT

They can be included
procedures), but only
ba tch streams.

XVM/RSX VIB

in
to

the system (via atypical system-build
maintain compatibility with existing user

VII-I-IO September 1976

CHAPTER 2

FORTRAN: COMPILING A FORTRAN PROGRAM

The FORTRAN TDV Function Task
Compiler is a two-pass system
code. The Task Builder (TKB)
Object-Time System (OTS)
additional user-specified
routines.

invokes the FORTRAN IV Compiler. This
program that produces relocatable object
then links this code with required

library routines and optionally with
FORTRAN-compiled or MACRO-assembled

Systems with a Floating-Point Processor (FPP) have a special version
of the FORTRAN IV Compiler and OTS which utilizes hardware
instructions rather than software calls. For example, RELEAE, the
REAL arithmetic p~ckage, is not included in FPP systems since REAL
arithmetic expreSS10ns are evaluated with the aid of hardware
instructions. The FPP FORTRAN System consists of the standard FORTRAN
IV Compiler and Object-Time System interfaced (via conditional
assembly and additional routines) to the hardware FPP (Floating-Point
Processor). The interface applies to single and double precision
floating-point arithmetic and extended integer arithmetic (double
integers). Single integer arithmetic is still handled, in part, by
software. Installations with a Floating-Point Compiler should delete
FOR ••• and rename F4F ••• as FOR ••••

The FORTRAN Compiler can also be invoked in batch mode.

2.1 INVOKING THE FORTRAN IV COMPILER

The user can invoke the FORTRAN IV Compiler by typing a command
according to the following formata

VII-2-1

Form: FOR[TRAN) [option[,) •••)+name[,name •••]V

Where: option is a one-character symbol specifying a
compilation option (see Table 2-1), option
characters may be either concatenated or
separated by commas

name of program to be compiled is a string of
one to six .SIXBT characters, at least one
name is required, but several programs may
be compiled in sequence to produce separate
binary files

Example: Compile program named PROG, creating a binary
file (B) and a listing (L) :

TDV>FOR BL+PROG

Table 2-1 illustrates all compiler options available under RSX. Any
number of these may be concatenated in a TDV command string.

Option

B

H

L

o

S

R

Table 2-1
FORTRAN IV Compiler Options

Action

Binary output

Use subroutine .S5
to generate addresses
of two- and three­
dimensional array
elements

Source listing

Object listing

Symbol map

Print Compiler ver­
sion number and END
PASS1 on output
terminal

VII-2-2

Default

No binary file

Use in-line code to
generate array element
addresses (except for
I/O parameter list
elements)

No listing

No listing

No symbol map

No printout

2.2 INPUT/OUTPUT

The following LUN assignments should be made before the FORTRAN IV
Compiler is invoked under MULTIACCESS: I

LUN Assignment

13 Error messages (terminal recommended)

15 Source file input

16 Listing output

17 Binary file output

If an I/O error occurs during compilation, the message:

FOR-I/O ERROR LUN xx yyyyyy

is produced on LUN-13. In this message, xx represents the logical
unit number (decimal) and yyyyyy represents the event variable value
(octal), indicating the cause of the error.

2.3 COMPARISON WITH OTHER VERSIONS OF FORTRAN

The FORTRAN IV language employed under XVM/RSX is basically the same
as that used under the XVM/DOS system. It differs, however, from the
versions of the Compiler used in support of previous versions of RSX.
All user FORTRAN programs developed under previous versions of RSX
must be recompiled and rebuilt by the Task Builder to enable them to
run under XVM/RSX.

The basic l~nguage and operating conventions of XVM/RSX FORTRAN are
described 1n the FORTRAN IV XVM Language Manual and FORTRAN IV XVM
Operating Environment Manual. Nevertheless, RSX user interaction with
FORTRAN IV differs in some ways from the descriptions in those
manuals. The main differences occur in support of the auxiliary disk,
input/output, the STOP and PAUSE statements, the floating-point
processor, OTS output and table initialization. These differences are
described in more detail below. Differences in methods for opening,
closing, deleting and renaming files are described in Part VI of this
manual.

2.3.1 Auxiliary Disk

FORTRAN IV under RSX supports all standard
certain~magtape and auxiliary disk I/O
BACKSPACt, etc.).

XVM/RSX VIB VII-2-3

FORTRAN features, except
functions (e.g., REWIND,

September 1976

2.3.2 Input/Output

The Input Command Decoder of the Compiler has been modified to use
standard task development function input and to compile multiple files
with the same switches. For example:

FOR BLFILEI,FILE2

causes the FORTRAN IV Compiler to compile programs FILEI and FILE2 in
sequence and to produce separate binary files and listings.

More specifically, RSX random-access I/O to the disk differs slightly
from the description in the manuals listed above. The description of
disk I/O in Part VI of this manual gives details on random-access I/O.

2.3.3 STOP and PAUSE Statements

FORTRAN IV STOP and PAUSE statements call library routines that have
been slightly modified for RSX use. A STOP message prints on the
terminal only if nonzero arguments are present; otherwise, the task
simply exits. PAUSE produces a new message that includes the task

I name. To continue after a PAUSE, the user can type a CTRL/P or the
operator can use the RESUME MCR Function Task.

I

2.3.4 Floating-Point Processor

Under RSX, the JEA register for the floating-point processor (FPP) is
initialized by the SETJEA system directive. If the system has not
been configured for FPP hardware, an unrecoverable .OTS 52 error is
output.

2.3.5 OTS Output

Output from the FORTRAN object-time system, such as .OTS errors and
STOP and PAUSE messages, goes to LUN-4, typically assigned to the user
TDV terminal, except when the system is batch processing. When
FORTRAN jobs are run under MCR, LUN-4 is typically assigned to the MCR
terminal.

2.3.6 Table Initialization

Under RSX, the I/O Table Initialization Routine (.FP) has been removed
from FlOPS and now exists as a separate routine. This implementation
prevents unnecessary loading of FlOPS when no I/O capability is
required.

XVM/RSX VIB VII-2-4 September 1976

2.4 ERROR MESSAGES

Tables 2-2, 2-3, and 2-4 list possible error messages and their
implications. All messages in Table 2-2 are printed in the following
form:

Form:

Where:

Number

01

02

03

04

05

06

07

08

09

10

11

12

15

16

>mA<

m
A

is the error number
is the alphabetic mnemonic
error class

Table 2-2
FORTRAN Error Messages

characterizing the

Letter Meaning

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Common, equivalence, data errors:

No open parenthesis after variable name
in DIMENSION statement

No slash after COMMON block name

COMMON Block name previously defined

Variable appears twice in COMMON

EQUIVALENCE list does not begin with
open parenthesis

Only one variable in EQUIVALENCE class

EQUIVALENCE distorts COMMON

EQUIVALENCE extends COMMON down

Inconsistent equivalencing

EQUIVALENCE extends COMMON down

Illegal delimiter in EQUIVALENCE list

Non-COMMON variables in BLOCK DATA

Illegal repeat factor in DATA statement

DATA statement stores in COMMON
non-BLOCK DATA statement or
non-COMMON in BLOCK DATA statement

in
in

(Continued on next page)

VII-2-5

Number

01

04

05

06

07

09

01

02

03

04

05

06

08

09

01

02

Table 2-2 (Cont.)
FORTRAN Error Messages

Letter Meaning

D

D

D

D

D

D

E

E

E

E

E

E

E

E

F

F

00 errors:

Statement with unparenthesized = sign
and conuna not a DO statement

DO variable not followed by = sign

DO variable not integer

Initial value of
followed by conuna

00 variable

Improper delimiter in DO statement

not

Illegal terminating statement for DO
loop

External symbol and entry-point
errors:

Variable in EXTERNAL statement not
simple non-COMMON variable or simple
dununy variable

ENTRY name non-unique

ENTRY statement in main program

No = sign following argument list in
arithmetic statement function

No argument list in FUNCTION subprogram

Subroutine list in CALL
already defined as variable

statement

Function or array name used
expression without open parenthesis

Function or array name used
expression without open parenthesis

Format errors:

in

in

Bad delimiter after FORMAT numqer in I/O
statement

Missing field width, illegal character
or unwanted repeat factor

(Continued on next page)

VII-2-6

Number

03

04

05

06

07

08

09

10

12

13

15

02

03

04

05

06

07

01

02

03

04

Table 2-2 (Cont.)
FORTRAN Error Messages

Letter Meaning

F

F

F

F

F

F

F

F

F

F

F

H

H

H

H

H

H

I

I

I

I

Field width is 0

Period expected, not found

Period found, not expected

Decimal length missing (no
"Fw.d")

Missing left parenthesis

Minus without number

No P after negative number

No number before P

No number or 0 before H

No number or 0 before X

Too many left parentheses

Hollerith errors:

Rd" in

More than two characters in Integer or
Logical Hollerith constant

Number preceding H not between 1 and 5

Carriage return inside Hollerith field

Number preceding H not an integer

More than five characters inside quotes

Carriage return inside quotes

Various illegal errors:

Unidentifiable statement

Misspelled statement

Statement out of order

Executable statement in
subroutine

BLOCK DATA

(Continued on next page)

VII-2-7

Number

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

Table 2-2 (Cont.)
FORTRAN Error Messages

Letter Meaning

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Illegal character in I/O statement,
following unit number

Illegal delimiter in ASSIGN statement

Illegal delimiter in ASSIGN statement

Illegal type in IMPLICIT statement

Logical IF as target of logical IF

RETURN statement in main program

Semicolon in COMMON statement outside of
BLOCK DATA

Illegal delimiter in IMPLICIT statement

Misspelled REAL or READ statement

Misspelled END or ENDFlLE statement

Misspelled ENDFlLE statement

Statement function out of order
undimensioned array

Typed FUNCTION statement out of order

Illegal character in context

Illegal logical or relational operator

Illegal letter in IMPLICIT statement

or

Illegal letter
statement

range in IMPLICIT

Illegal delimiter in letter section of
IMPLICIT statement

Illegal character in context

Illegal comma in GOTO statement

Illegal variable used in multiple RETURN
statement

(Continued on next page)

VII-2-8

Number

01

02

03

04

01

02

03

04

06

07

08

09

10

01

02

03

Table 2-2 (Cont.)
FORTRAN Error Messages

Letter Meaning

L

L

L

L

M

M

M

M

M

M

M

M

M

N

N

N

Pushdown list errors:

DO nesting too deep

Illegal DO nesting

Subscript/function nesting too deep

Incomplete DO loop-caused by backwards
DO loop, error in DO loop foot state­
ment, or error in I/O statement with
implied DO loop

Overflow errors:

EQUIVALENCE class list full

Program size exceeds 8K

Local array length larger than 8K

Element position in local array larger
than 8K or in common array larger than
32K (EQUIVALENCE, DATA)

Integer negative or larger than 131071

Exponent of floating point number larger
than 76

Overflow accumulating
many digits

Overflow accumulating
many digits

Overflow accumulating
many digits

constant - too

constant - too

constant - too

Statement number errors:

Multiply defined statement number or
compiler error

Statement erroneously labeled

Undefined statement number

(Continued on next page)

VII-2-9

Nwnber

04

05

07

08

09

01

02

03

04

05

01

02

03

04

05

06

10

11

12

Table 2-2 (Cont.)
FORTRAN Error Messages

Letter Meaning

N

N

N

N

N

p

p

p

p

p

5

5

5

5

5

S

S

S

S

FORMAT
number

statement without statement

statement number expected, not found

Statement number more than five digits

Illegal statement number

Invalid statement label or continuation

Partword errors:

Expected colon, found none

Expected close bracket, found none

Last bit number larger than 35

First bit number larger than last bit
number

First and last bit numbers not simple
integer constants

Subscripting errors:

Illegal subscript delimiter in
specification statements

More than three subscripts specified

Illegal delimiter in subroutine argument
list

Non-integer subscript

Non-scalar subscript

Integer scalar expected, not found

Two operators in a row

Close parenthesis following an operator

Adjustable dimension not in dummy array

(Continued on next page)

VII-2-10

Number

13

14

15

16

01

02

03

01

02

03

03

05

07

08

09

11

12

Table 2-2 (Cont.)
FORTRAN Error Messages

Letter Meaning

S

S

S

S

T

T

T

v

v

v

v

v

v

v

v

v

v

Adjustable dimension not a dummy integer

Two arguments in a row

Digit or letter encountered
argument conversion

after

Number of subscripts stated not equal to
number declared

Table overflow errors:

Arithmetic statement, computed GOTO
list, or DATA statement list too large

Too many dummy variables in arithmetic
statement function

Symbol and constant tables overlap

Variable errors:

Two modes specified for same variable
name

Variable expected, not found

Constant expected, not found

Array defined twice

Error: variable is EXTERNAL or argument
(EQUIVALENCE, DATA)

More than one dimension indicated for
scalar variable

First character after READ or WRITE not
open parenthesis in I/O statement

Illegal constant in DATA statement

Variables outnumber constants in DATA
statement

Constants outnumber variables in DATA
statement

(Continued on next page)

VII-2-11

Number

14

16

17

19

21

22

25

27

28

29

30

32

35

36

37

38

39

40

Table 2-2 (Cont.)
FORTRAN Error Messages

Letter Meaning

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

Illegal dummy variable (previously used
as non-dummy variable)

Logical operator has
non-logical arguments

non-integer,

Illegal mixed mode expression

Logical operator has non-integer,
non-logical arguments

Signed variable left of = sign

Illegal combination for exponentiation

.NOT. operator has non-integer,
non-logical argument

Function in specification statement

Two exponents in one constant

Illegal redefinition of a scalar as a
function

No number after E or D in a constant

Non-integer record number in
random-access I/O

Illegal delimiter in I/O statement

Illegal syntax in READ, WRITE, ENCODE,
or DECODE statement

END or ERR exists out of order in I/O
statement

Constant and variable modes don't match
in DATA statement

ENCODE or DECODE not followed by open
parenthesis

Illegal delimiter
statement

in ENCODE/DECODE

(Continued on next page)

VII-2-12

Number

41

42

01

02

03

04

05

07

10

11

12

13

14

15

16

17

19

20

21

Table 2-2 (Cont.)
FORTRAN Error Messages

Letter Meaning

v

v

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Array expected as first argument of
ENCODE/DECODE statement

Illegal delimiter
statement

in ENCODE/DECODE

Expression errors:

Carriage return expected, not found

Binary WRITE statement with no I/O list

Illegal element in I/O list

Illegal statement number
computed or assigned GOTO

list

Illegal delimiter in computed GOTO

Illegal computed GOTO statement

Illegal delimiter in DATA statement

No close parenthesis in IF statement

Illegal delimiter in
statement

Illegal delimiter in
statement

Expression on left of
arithmetic statement

arithmetic

arithmetic

= sign

in

IF

IF

in

Unequal number of right and left parentheses

Illegal open parenthesis (in
specification statements)

Illegal open parenthesis

Unequal number of right and left parentheses

Illegal alphabetic in numeric constant

Symbol contains more than six characters

(Continued on next page)

VII-2-l3

Number

22

23

24

26

27

28

29

30

31

32

33

34

Table 2-2 (Cont.)
FORTRAN Error Messages

Letter Meaning

x

x

x

x

x

x

x

x

x

x

x

x

.TRUE., .FALSE., or .NOT.
an argument

Unparenthesized comma
expression

Unary minus in I/O list

preceded by

in arithmetic

Illegal delimiter in I/O list

Unterminated implied-DO loop in I/O list

Illegal = sign in I/O list

Illegal partword operator

Illegal arithmetic expression

Illegal operator sequence

Illegal use of = sign

Missing parenthesis in I/O statement
with implied DO loop will also cause
>041<

Extraneous characters at the end of
assignment statement

VII-2-l4

In Table 2-3, (R) indicates a recoverable error and (T) indicates a
terminal error.

Table 2-3
OTS Error Messages

Number possible Source Meaning

05 (R) SQRT Negative REAL square-root argument

06 (R)

07 (R)

10 (T)

11 (T)

12 (T)

13 (T)

14 (R)

15 (R)

16 (R)

17 (R)

20 (T)

21 (T)

22 (T)

23 (T)

24 (T)

25 (T)

DSQRT

.GO

.FR, .FW, .FS, .FX,
DEFINE, RANCOM

.FR, .FA, .FE, .FF,

.FS, RANCOM,
RBINIO, RBCDIO

.FA, .FE, .FF

.BC, .BE, ALOG

.BD, .BF, .BG, .BB,
OLOG, DLOGIO

• BB , • BC , • BD , • BE ,
• BF, • BG , • BH

ATAN2

DATAN2

Negative DOUBLE PRECISION square-root
argument

Illegal index in computed GOTO

Illegal I/O device number

Bad input data - lOPS mode incorrect

Bad FORMAT

Negative or zero REAL logarithmic
argument (terminal)

Negative or zero DOUBLE PRECISION
logarithmic argument

Zero raised to a zero or negative
power (zero result is passed)

ATAN2 (0.0,0.0) attempted Pl/2
returned

OATAN2 (0.000, 0.000) attempted Pl/2
returned

FlOPS, AUXIO, RANCOM Fatal I/O error (RSX only) •
The message format is
"OTS-20-XXX-NNNNNN-TSKNM", where XXX
is the LUN, NNNNNN is the event
variable (two's complement) and
TSKNM is the task name.

21 to 26 are direct-access errors:

RANCOM

DEFINE

RANCOM

DEFINE, RANCOM

RANCOM

Undefined file

Illegal record size

Size discrepancy

Too many records per file or illegal
record number

Mode discrepancy

(Continued)

XVM/RSX VIB VII-2-l5 September 1976

I

I

Table 2-3 (Cont.)
OTS Error Messages

Number possible Source Meaning

26 (T)

30 (R)

31 (R)

32 (R)

33 (R)

34 (R)

35 (R)

36 (R)

37 (R)

40 (T)

41 (R)

42 (T)

43 (T)

50 (T)

51 (T)

DEFINE

RELEAE, . FPP

DBLINT, JFIX,
JDFIX, ISNGL

RELEAE

RELEAE

RELEAE

INTEAE

ENCODE

ENCODE

DDIO

DA

BCDIO, BINIO

XVM/RSX VlB

Too many open files

Single integer overflow (detected only
when fixing a floating-point number)

Extended (double) integer overflow;
also prints PC with FPP system (with
non-floating-point processor system,
detected only when fixing a
floating-point number)

Single floating-point overflow;
prints PC with FPP system

also

Double floating-point overflow; also
prints PC with FPP system (detected
only by FPP system, not by software
system)

Single floating-point underflow; also
prints PC with FPP system

Double floating-point underflow; also
prints PC with FPP system (detected
only by FPP system, not by software
system)

Floating-point divide check;
prints PC with FPP system

also

Integer divide
integer divide
FPP system

check; if extended
check, prints PC with

Illegal number of characters specified
(legal: O<c<625)

Array exceeded

Bad input data

Attempt to pass more arguments than
expected

FPP memory-protect/nonexistent memory;
also prints PC with FPP system

READ to WRITE illegal I/O direction
change to disk without intervening
CLOSE or REWIND

VII-2-16 September 1976

In software systems, arithmetic errors resulting in the OTS error
messages summarized above are detected in the arithmetic package
(RELEAE and INTEAE). In the hardware FPP systems, these errors are
detected by the hardware (with the exception of single integer divide
check) and serviced by a trap routine in the FPP routine .FPP.

Where applicable, on such error conditions, the result is patched for
both software and hardware systems as summarized in the following
table.

Table 2-4
OTS Error Messages in FPP Systems

Error

Single Floating
Overflow (.OTS 32)

Double Floating
Overflow (.OTS 33)

Single Floating
Underflow (.OTS 34)

Double Floating
Underflow (.OTS 35)

Floating Divide
Check (• OTS 36)

Integer OVerflow
(.OTS 30)

Double Integer
detection

Overflow (.OTS 31)

Integer Divide
Check (.OTS 37)

Patched Value

FPP Hardware System

± largest single floating
value

± largest double floating
value

zero

zero

± largest single floating
value

limited detection

none

none

Software System

same

not detected

same

not detected

same

same

limited

same

"Limited detection" means that while a floating-point number is being
fixed, integer overflow and extended integer overflow are detected.
In these instances, plus or minus the largest integer for the data
mode is patched as result.

For Double Integer OVerflow, "none" means that with the FPP system all
extended integer overflow conditions are detected, but the results are
meaningless. Elsewhere, "none" means the result is meaningless.

Further, when converting an extended integer, the magnitude of which
is >2(17) -1, to a single integer, no error is indicated and the high
order digits are lost.

VII-2-17

CHAPTER 3

MACRO: ASSEMBLING A MACRO PROGRAM

The MACRO Assembler produces relocatable binary object code that can
be loaded for debugging or execution. The Assembler prepares the
object program for relocation, and the Task Builder sets up linkages
to external subroutines.

The MACRO Assembler processes source programs in either a two-pass or
three-pass operation. In the two-pass assembly operation the source
program is read twice and the object program (and printed listing when
requested) are produced during the second pass. During the first pass
(PASSl) the locations to be assigned the program symbols are resolved
and a symbol table is constructed by the Assembler. The second pass
(PASS2) uses the information computed during PASSl to produce the
final object program.

In an optional three-pass assembly operation, PASS2 calls in a third
pass (PASS3) portion of the Assembler program. PASS3, when called,
performs a cross-referencing operation during which a listing is
produced which contains all user symbols, where each symbol is
defined, and the number of each program lin~ in which a symbol is
referenced. On completion of its operation, PASS3 calls the PASSl and
PASS2 portions of the Assembler program back into core for further
assembly operations.

The MACRO Assembler can also be invoked in batch mode.

VII-3-1

3.1 INVOKING THE MACRO ASSEMBLER

The user can invoke the MACRO Assembler by typing a command according
to the following format:

Form:

Where:

Example:

MAC [ROl [option [,1 ••• 1 +name [ext] [, •••] 'iJ

option is a one-character symbol specifying
an assembler option (see Table 3-1), option
characters may be either concatenated or
separated by commas

name of program to be assembled is a string
of one to six .SIXBT characters, one or
more names may be required, depending on
whether or not certain assembly options
(e.g., FZ) have been requested, several
programs may be specified so that they are
assembled in sequence to produce separate
binary files

ext is a string of one to three .SIXBT
characters representing the extension. SRC
is the default

Assemble program named TMAC, creating
binary file (B) and a listing (L):

TDV>MAC BL+TMAC

a

Assemble programs PI and P2 to produce a
separate binary file (B) for each, both
require the use of a parameter file (P):

TDV>MAC PB+PARAM,Pl,PARAM,P2

Table 3-1 illustrates all Assembler options. Any number of these
options, in any order and optionally separated by commas, may be
included in a TDV command string.

Option

B

L

N

C

Table 3-1
Assembler Options

Action

Generate a binary file

Generate a listing file on
the requested output device

Number each source line (dec­
imal), it is not necessary to
type the L option

Do not print program areas
that fall between unsatisfied
conditionals; it is not
necessary to type the L option

VII-3-2

Default

No binary file

No listing file (see options
N, C, G)

Do not number source lines

Print all source lines

(Continued on next page)

Option

G

P

A

v

S

H

x

o

Table 3-1 (Cont.)
Assembler Options

Action

Print only the source line of
a MACRO expansion; it is not
necessary to type the L option

Before assembly begins, read
program parameters from LUN-
20; (the code read from LUN-
20 is read only once; for
this reason only direct as­
signments should be used)

Print symbols at end of PASS2
in alphanumeric sequence

Print symbols at end of PASS2
in value sequence

Same as selecting both A and
V above

If A, V, or S option is used,
print symbols one to a line

At completion of PASS2, load
PASS3 to perform the cross­
referencing operation; at
completion of PASS3, the
Assembler calls in PASSI and
PASS2 to continue assembling
programs; if the command
string is terminated by an
ALTMODE, control returns to
RSX at the end of assembly

Do not output the source
extension and the linking
loader code 33 as a special
code in the binary file; this
option must be used when as­
sembling programs in RSX to
run in Background/Foreground

VII-3-3

Default

Generate printouts for MACRO
expansions and expandable
pseudo-ops (e.g., .REPT)

No parameters; begin assembly
immediately after command
string termination

Do not print symbols in
alphanumeric sequence (see
options V, S, and H)

Do not print symbols in value
sequence (see options A, S,
and H)

DO not print symbols unless
option A, option V, or both
are requested (see option H)

If A, V, or S option is used,
print symbols horizontally,
four to a line

Do not provide a cross­
reference and do not call in
PASS 3

Assemble as usual (use of
unique extensions permits
easy identification of dif­
ferent versions of a program)

(Continued on next page)

Option

E

T

R

I

F

Z

Table 3-1 (Cont.)
Assembler Options

Action

Print any errors occurring
during assembly on the
console printer (LUN-l3) in
addition to the device
assigned to LUN-16; the L or
N option should be used with
the I option; this option is
particularly useful to users
who assign nonprinting
devices to LUN-16

Generate a Table of Contents
during PASSI; the table will
contain the page number and
text of all assembled .TITLE
statements in the program

Identify assembler version
number; print END PASSI, END
PASS2, and error count on
output terminal

Ignore .EJECTs; treat the
.EJECT pseudo-op as a com­
ment

Assembly includes an
additional file: a macro
definition file, a second
parameter file, or a second
part of the program file;
this additional file is
specified in the command
string and it is read via
LUN-IS; (see option Z)

Assemble the file associated
with the F option not only
during PASSI but also PASS2;
this allows assembly of a
two-part source file on two
different devices or on the
same device; this option
takes effect only if the F
option is also specified

VII-3-4

Default

Output errors only to the
listing device (LUN-16)

No table of contents

Do not print version number,
END PASS1, END PASS2,
or error count

Skip to head of form when
.EJECT is encountered

No additional file

F-option file is referenced
only during PASSl and
therefore may contain
only direct assignment
statements and comments

If the L and X options are entered in the same command string, MACRO
assumes that the N option is also entered. Without the N option, the
user would obtain a cross-reference that would be virtually useless,
because the source lines of the listing would not be numbered.

3.2 INPUT/OUTPUT

The following LUN assignments should be made before the MACRO
Assembler is invoked under MULTIACCESS:

LUN Assignment

13 Error messages (terminal recommended)

15 Source file input

16 Listing output

17 Binary file output

18 Secondary source file input

20 Auxiliary input (terminal recommended)

A secondary input device is needed to assemble a program from two
different sources. An auxiliary input device is needed to supply
parameters for a file that is to be assembled.

If an I/O error occurs during assembly, the message:

MAC-I/O ERROR LUN xx yyyyyy

is produced on LUN-13. In the message, xx represents the logical unit
number (decimal) and yyyyyy represents the event variable value
(octal), indicating the cause of the error.

XVM/RSX VIB VII-3-5 September 1976

•

3.3 COMPARISON WITH OTHER VERSIONS OF MACRO

The MACRO Assembler is essentially the same under RSX as it is under
the other XVM monitor systems. The basic instructions and operation
conventions are described in MACRO XVM ASSEMBLER LANGUAGE MANUAL.

Nevertheless, RSX user interaction with the MACRO Assembler differs in
some ways from the descriptions in the manual. The main differences
occur in support of dump mode, input/output, parameter input, the
definitions of certain standard functions and certain pseudo-ops.
These differences are discussed in more detail below.

3.3.1 Dump Mode

MACRO under RSX supports all standard MACRO features except the
pseudo-ops • IODEV, .ABS, .ABSP .• FULL, and .FULLP. This is because
RSX \f70 Device Handler Tasks do not support dump mode (mode 4).

3.3.2 Input/Output

The Assembler's Input Command Decoder has been modified to use
standard Task Development function input and to assemble multiple
files with the same switches. For example:

MAC BNX+FILEl,FlLE2

causes the MACRO Assembler to assemble programs FlLEl and FILE2 in
sequence and to produce separate binary files and listings.

3.3.3 Parameter Input

If the P assembly option is used and input is to come from the
terminal, the MACRO Assembler types the following message:

MAC-INPUT PARAMETER DEFINITIONS

on the output terminal (LUN-20). The user responds by entering input
parameters. To terminate input, he types a CTRL/D (to) followed by a
carriage return.

3.3.4 MACRO Definitions File

The RSX Assembler does not contain within itself the definition of
standard, frequently-used System Directive and I/O calls. These exist
in a MACRO Definitions File (ru1C.nn SRC where nn is the current edit
number) which is provided as part of the RSX system. During assembly,
this definition file can be accessed via the secondary-input LON
(LUN-lS) if assembly option F is specified. (Z is also needed when
two passes are required.) This file cannot be read via the auxiliary
input LON (LUN-20) using the P option because many MACROs make forward
symbolic references, necessitating a second pass on the file.

VII-3-6

3.4 ERROR MESSAGES

The Assembler examines each source statement for
statement containing an error is flagged by one
the left-hand margin of the line, or, if the
between the line number and the location. The
error flags and their meanings.

possible errors. A
or several letters in
lines are numbered,
following table lists

Table 3-2
MACRO Assembler Error Flags

Flag Meaning

A Error in direct symbol table assignment - assignment
ignored

B

C

1. Memory bank error (program segment
large)

too

2. Page error - the location of an instruction
and the address it references are on
different memory pages (error in page mode
only)

A .ENDC or
conditional.
line.

a .CBE is
The error

gi ven \iith no
appears on the

opening
offending

D Statement contains a reference to a multiply-defined
symbol - the first value is used

E 1. Symbol not found in user's symbol table
during PASS2

2. Operator combined with its operand may
produce erroneous results

F Forward reference - symbol value is not resolved by
PASS 2

I Line ignored:

1. Redundant pseudo-op

2. A second .LOCAL pseudo-op appears before a
matching .NDLOC pseudo-op

3. An .NDLOC appears without an associated
.LOCAL pseudo-op

4. Too many .LTORG pseudo-ops (more than eight)

L Literal error:

1. Phase error - literal encountered in PASS 2
does not equal any literal found in PASSI

2. Nested literal (a literal within a literal)

(Continued on next page)

VII-3-7

Flag

Table 3-2 (Cont.)
MACRO Assembler Error Flags

Meaning

M Multiple symbol definition - first value defined is
used

N Error in number usage (digit 8 or 9 used under • OCT
influence)

P Phase error:

1. PASSl symbol value not equal to PASS2 symbol
value (PASS2 value ignored)

2. A tag defined
pseudo-op) is
area

in
also

a local area (.LOCAL
defined in a non-local

Q Questionable line:

1. Line contains two or more
operators (e.g., LAC A+*B)

sequential

2. Bad line
terminated

delimiter - address fteld not
with a semicolon, carriage

return, or comment

3. Bad argument in .REPT pseudo-op

R Possible relocation error

S Symbol error - illegal character used in tab field

U Undefined symbol

W Line overflow during macro expansion

X Illegal use of macro name or index reqister

y A .CBS was given with no closing .CBE, a .DEFIN has
no corresponding .EliDM and/or a .IF conditional has
no closing .ENDC. This error is output on the .END
statement at the end of PASS 1.

VII-3-a

In addition, certain conditions cause assembly to be terminated
prematurely. The following table lists possible error messages and
their meanings.

Table 3-3
MACRO Assembler Error Messages

Message

SYNTAX ERR

NAME ERROR

TABLE OVERFLOW

CALL OVERFLOW

CORE EXHAUSTED
AT LINE nnn

Meaning

Bad command string; control
returns to TDV

File named in command string
not found; control returns to TDV

Too many symbols and/or MACROs;
control returns to TDV

Too many embedded MACRO calls:
control reutrns to TDV

PASS3 error; too many Symbol
references; control
returns to TDV

VII-3-9

CHAPTER 4

EDITOR: TEXT-EDITING SOURCE CODE

The Text Editor is an effective text editing program that allows the
modification and creation of symbolic source programs and other ASCII
text material. The Editor reads and writes standard lOPS ASCII lines.
By means of keyboard commands, the Editor is directed to bring a line
or group of lines from an input file to an internal buffer. By means
of additional commands, the user can then examine, delete and change
the contents of the buffer, and insert new text at any point in the
buffer. When the line or block of lines has been edited, it is
written into a new file on the output device.

The Editor is most frequently used to modify MACRO and FORTRAN IV
source programs, but it can also be used to edit any symbolic text.

The Editor operates in either an "edit" or "inputh mode. In the
"editll (or command) mode, the program accepts and acts on control-word
and data strings to open and close files; to bring lines of text from
an open file into the work area; to change, delete or replace the
line currently in the work area; and to insert single or multiple
lines after the line in the work area. In the "input" (or text) mode,
lines from the 'keyboard are interpreted as text to be added to the
open file. Commands are available for conveniently changing from one
operating mode to the other.

Data from the input file are made available for editing in two ways:
in line-by-line mode or in block mode. In the line-by-line mode, a
single line is the unit of the input file available to the user for
modification at any point. In the block mode, a user-specified
portion of the input file is held in a core buffer for editing until
the user requests that the contents of the buffer be added to the
output file. Line-by-line mode is the default data mode.

4.1 INVOKING THE TEXT EDITOR

The user can invoke the Text Editor by typing a command in the format:

Form: TDV>EDIV

To return to the MULTIACCESS Monitor after editing and closing a file, I
the user must type:

XVM/RSX VIB VII-4-1 September 1976

I

I

I

I

•

E [XIT]

An example of interaction with the Text Editor follows (> is a
prompter) :

TDV>EDI
EDITOR XVM/RSX VlBOOO
>OPEN FILNAM EXT

EDIT
>
>T

>N
>P

.TITLE FILNAM

>C /TOR/TION/

.TITLE FILNAM

>CLOSE
>EXIT
TDV>

4.2 INPUT/OUTPUT

User invokes Text Editor
Editor gives version number
Open the file FILNAM, with extension
EXT, for editing
Editor indicates EDIT mode
Go to top of file
Print current line: nothing is printed,
because pointer is above first line
of file
Go to next line
Print current line

/EDIT COMMAND DEMONSTRATOR

Change DEMONSTRATOR to DEMONSTRATION

/EDIT COMMAND DEMONSTRATION

Close file
Exit from Text Editor

Make the following LUN assignments before the Text Editor is invoked
under TDV:

LUN Assignment

16 Auxiliary output (listing)

17 Source file input/output (disk)

18 Source file scratch input/output
(temporary file) (disk)

19 Auxiliary output file (disk)

20 Auxiliary input

If an I/O error occurs during editing, the message:

EDI - I/O ERROR LUN xx yyyyyy

is sent to LUN-13. In the message, xx represents the logical unit
number (decimal) and yyyyyy represents the octal event variable,
indicating the cause of the error.

XVM/RSX VIB VII-4-2 September 1976

4.3 COMPARISON WITH OTHER VERSIONS OF THE TEXT EDITOR

The Text Editor runs the same way under RSX as it does under the other
XVM operating systems. Program commands and conventions are described
in the EDIT/EDITVP/EDITVT XVM utility Manual.

RSX user interaction with the Text Editor differs in some ways from
the descriptions in the manual. The main differences occur in
disk-to-disk editing, buffer size and partition size. The differences
are described in detail in the following sections.

4.3.1 Disk-to-Disk Editing

RSX supports
disk-to-disk
the to disk.

all standard EDIT features, but is restricted to
editing. Therefore, LUN-17 and LUN-18 must be assigned

4.3.2 Buffer and Partition Size

On program initialization, the maximum buffer size parameter for the
SIZE command is computed. The parameter retains the computed value or
is set to 56, whichever is smaller. The SIZE command is then
restricted to a value less than or equal to the maximum buffer size.

If the partition size is too small to permit buffers, the message:

EDI-PARTITION TOO SMALL

is set to LUN-13 and the Text Editor exits.

4.4 ERROR MESSAGES

When a colon follows an error message, the incorrect command line is
printed below the error message.

XVM/RSX VIB VII-4-3 September 1976

•

Table 4-1
Editor Error Messages

Message

BUFFER NON-EMPTY

NOT A REQUEST:

?

END OF BUFFER REACHED BY:

END OF FILE REACHED BY:

READ ERROR:

TRUNCATED:

BUFFER CAPACITY EXCEEDED BY:

NO FILE NAME GIVEN.

NO INPUT FILE PRESENT.

FILE name IS PRESENT ON OUTPUT
DEVICE. PLEASE RENAME IT OR IT
WILL BE DELETED.

NOTHING IN FILE

SIZE TOO SMALL

NOT ENOUGH LINES
END OF FILE REACHED BY:

NOT ENOUGH BUFFER SPACE

LINES MOVED TO END

NO STRING

NOT FOUND

VII-4-4

Meaning

BLOCK OFF command issued
before Block Buffer emptied by
WRITE command

Command string error

Command string error
BRIEF mode ON

Command has moved
below last line

Command has moved
below last line

while

pointer

pointer

Incorrect parity or checksum

Line too long

Buffer overflowed in
Mode

File name missing

Input file missing

Block

More than one file called name

No output to file

When Block Mode is ON, number
of lines specified in MOVE >
size of current block buffer

When Block Mode is OFF, number
of lines MOVE specifies to be
moved > number in current file

Not enough buffer space to
store lines being moved

Line containing text string
specified in MOVE not found

Convert missing first argument

First argument
never found

of CONVERT

CHAPTER 5

SLIP: EDITING BATCH FILES

The SLIP command invokes a batch-oriented file editor, which not only
can edit ASCII source programs and data sets, but can also produce
line-numbered listings and perform operations similar to those of
PIP.

SLIP complements EDIT, the TDV interactive Text Editor. SLIP is
designed particularly for batch operation or for file manipulation,
while EDIT is designed for the on-line user who manipulates text
within a single file. SLIP works at the record level, while EDIT has
extensive intrarecord facilities.

SLIP processes as many as four streams of information in a run, as
shown in the following diagram:

Correction Input
(commands and insertion)

input
(original file)

external
file

inputs

~ output
~(edited file)

This editor SLIPs information from one file to another. It always
generates a new file so that the original file can be preserved.
Batch operation requires this; otherwise a minor change, incorrectly
specified, could destroy an important file. The user can maintain
many backup levels.

VII-5-1

5.1 INVOKING SLIP

The user can invoke SLIP in one of two ways. From TDV, the command
has the following format:

Form: SLIP option [, •••]V

Where: option is an option from Table 5-1

Example: TDV>SLIP N

The user can also invoke SLIP in BATCH mode as part of a job with the
following control record:

$SLIP options

as explained in 5.1.1.

A SLIP run must contain the following four sections:

1. TDV>SLIP options or $SLIP options

2. *FILE specifications

3. SLIP control records and insertion records

4. End-of-file (-$ in DV or $EOF in BATCH or TDV)

5.1.1 $SLIP Options

The $SLIP record has the following format:

Form: $SLIP option [, ...)
Where: option is an option from Table 5-1

Example: List output file and suppress trailing spaces
of input file:

$SLIP L,S

VII-5-2

option

N[LIST)

Table 5-1
SLIP Options

Meaning

No printout except *FILE cards and errors

C[HANGES] List control records, deleted lines, *FILE cards,
and errors (default)

L[IST)

K[EEP)

List entire output file, with line numbers,
inserted lines, deleted lines, *FILE cards, and
errors

Retain trailing spaces on input records

S[UPPRESS) Suppress trailing spaces (in multiples of 5) from
input record (default)

5.1.2 *FILE Specifications

SLIP uses *FILE, an indirect file selection system. The user must
specify exactly one input and one output file as follows:

Form:

Where:

Example:

*FILE I[NPUT):LUN=' [infile [ext)]'O[UTPUT]:
LUN=' [outfile [ext])'$

LUN is a one- or two-digit Logical unit
Number

infile is a string of one to six .SIXBT
characters representing the input file and
is optional only if the input LUN is
non-file-oriented

ext is a string of one to three .SIXBT
characters representing the file extension

outfile is a string of one to six .SIXBT
characters representing the output file and
is optional only if the output LUN is
non-file-oriented

Input FILEI RC from LUN-17 to be edited and
output on LUN-18:

*FILE I:17='FILEl SRC' :18='FILEI SRC'$

The infile ext and outfile ext can be identical, but it is better to
keep a backup file. If a backup file is desired, the user should
enter a sequence such as the following:

VII-5-3

$DELETE file bak

$RENAME file src, file bak

$SLIP options

*FILE I:LUN='file bake O:LUN='file src'

$EOF

If the user then makes a bad edit run, she can remove the $DELETE and
$RENAME records and rerun the update, because the original file is
still intact as "file bak."

Note that certain SLIP commands described below require additional
*FILE records.

5.1.3 SLIP Control Records and Insertion Records

SLIP logically numbers all lines within each file it processes so that
the first line in each file is number 1. If a SLIP run includes a LIST
option, but no control or insertion records, it produces a line
printer listing of the file with line numbers as in the example below.

Whether or not the run includes control and insertion records, the
listing always shows the final, resultant line numbers, those to be
used for the next SLIP performed on that file. Because the
renumbering occurs after editing and before output of the listing, the
user refers while editing to the original line numbers.

Renumbering does occur, however, when any of the four search commands
is used. The line selected by the search becomes line 1. Line
references in all subsequent commands are then relative to that line.
For instance, after a command causes a search for 'C' in the sample
input file below, the command

-3,3

will delete the line containing 'E', which was originally line 5.

Each search sets the selected line to 1. It is impossible to reference
the original line numbers after any search has been conducted.

The file in the example below will be the input file for all
subsequent SLIP examples:

Example: 1. A
2. B
3. C
4. 0
5. E
6. F
7. G

VII-5-4

Subsequent sections give details on the nine SLIP control commands,
which are:

• INSERT

• INSERT FILE

• REPLACE

• REPLACE WITH FILE

• SEARCH AND INSERT

• SEARCH AND INSERT FILE

• SEARCH AND REPI~CE

• SEARCH AND REPLACE WITH FILE

• END-OF-FILE

All control commands must follow the *FILE specification and must
begin with a minus sign (-) in column one, followed by one or more
parameters. Embedded blanks are allowed within the parameters and are
ignored except when between single quotes ('). The commands that
permit insertion of an entire file are especially useful for inserting
subroutines.

5.1.4 End-of-File

A set of correction cards must be terminated by an end-of-file
specification. This is $EOF in BATCH mode or the command -$ in BATCH
or TDV.

5.2 CONTROL RECORDS

The following sections summarize SLIP control records and provide
examples of usage.

VII-S-S

5.2.1 INSERT

The user can specify an INSERT operation by a control record of the
following format:

Form: -n

Where: n is the number of the line after which the
insertion will be made

All records that follow the INSERT control record and precede another
control record or an $EOF are inserted into the output file following
line n of the input file. For example if the following records

-1
X
Y
Z
-$

are specified to edit the input file in 5.1.3, the resulting output
file is:

1. A
2. X
3. Y
4. Z
5. B
6. C
7. D
8. E
9. F

10. G

VII-5-6

5.2.2 INSERT FILE

An INSERT FILE operation requires two control records. The first is
in the forma t:

Form: -n

Where: n is the number of the line after which the
insertion is to be made

The second record is a *FILE record in the format:

Form: *FILE I [NPUT] :LUN='secfile ext'

Where: LUN is the logical unit number, which must
be different from those used for the input
and output files of the edit

secfile is a string of one to six .SIXBT
characters representing the file to be
inserted

ext is a str ing of one to three .SIXBT
characters representing the file extension

The entire second file is inserted into the input file after relative
line number n. Another control record usually follows the *FILE
record. If noncontrol records follow it, they are inserted after the
last line of the inserted file and before the next line of the input
file.

For example, if the second file, ZZZ RC, consists of:

1. XX
2. YY
3. zZ
4. KK

and is inserted into the input file in 5.1.3 by the commands:

-1
*FILE I:15=IZZZ SRC'$

the resulting output file is:

1. A
2. XX
3. YY
4. ZZ
5. KK
6. B
7. C
8. D
9. E

10. F
11. G

XVM/RSX VIB VII-5-7 September 1976

I

5.2.3 REPLACE

The user can specify a replacement by a control record of the
following format:

Form: -n,m

Where: n is the number of the first line to be deleted
and replaced

m is the number of the last line to be deleted
and replaced

All input file records numbered n through m, inclusive, are deleted
and all insertion records following the REPLACE control record are
inserted in the output file following the (n-l)th record of the input
file.

Note that if no records are inserted, lines n through m are deleted.
The command

-204,99999

deletes all lines after 203. The command

-204,204

deletes only line 204.

The following example illustrates the case in which records are
inserted. If the records

-2,4
X
Y
Z
-$

are specified to edit the input file in 5.1.3, the resulting output
file is:

1. A
2. X
3. y
4. Z
5. E
6. F
7. G

VII-S-8

5.2.4 REPLACE WITH FILE

A REPLACE WITH FILE operation requires two control records. The first
is in the following format:

Form: -n,m*

Where: n is the number of the first line to be deletedJ
second file will follow line n-l

m is the number of the last line to be deleted;
second file will precede line m+l

The second record is a *FILE record in the following format:

Form: *FILE I[NPUT):LON='secfile ext'

Where: LON is the Logical Unit Number
secfile is a string of one to six .SIXBT

characters representing the file to replace
the deleted lines

ext is a string of one to three .SIXBT
characters representing the file extension

Lines n through m are deleted and replaced with the entire second file
specified. Another control record usually follows the *FILE record.
If other insertion records follow it, they are inserted after the last
line of the second file.

For example, if the following control records:

-3,4*
*FILE I:l5='ZZZ SRC'$
-$

are specified to delete lines 3 and 4 of the input file in 5.1.3 and
to replace them with the second file, ZZZ SRC in 5.2.2,the resulting
output file is:

1. A
2. B
3. XX
4. YY
5. ZZ
6. KK
7. E
8. F
9. G

VII-5-9

5.2.5 SEARCH AND INSERT

The user can specify a SEARCH AND INSERT operation by a control record
of the following format:

Form: -'xxxxx'

Where: xxxxx is a string of one to five characters;
the insertion will be made after the line
beginning with the string

The search facility is designed to detect FORTRAN line numbers. SLIP
examines each line of the input file until it finds one beginning with
the string xxxxx. All lines that follow the SEARCH AND INSERT control
record and precede another control record or $EOF are inserted into
the output file following the line containing xxxxx in the input file.

For example, if the following records

-'A'
X
Y
Z
-$

are specified to edit the input file in 5.1.3, the resulting output
file is:

1. A
2. X
3. y
4. Z
5. B
6. C
7. D
8. E
9. F

10. G

Renumbering occurs when the search is successful. The line selected
by the search becomes line 1.

VII-5-10

5.2.6 SEARCH AND INSERT FILE

A SEARCH AND INSERT FILE operation requires two control records. The
first is in the following format:

Form: -'xxxxx'*

Where: xxxxx is a string of one to five characters:
the file will be inserted after the line in
which the string appears

The second record is a *FILE record in the following format:

Form: *FILE I[NPUT):LUN='secfile ext'$

Where: LUN is the Logical unit Number
secfile is a string of one to six .SIXBT

characters representing the file to be
inserted

ext is a string of one to three .SIXBT
characters representing the file extension

SLIP examines each line of the input file until it finds one beginning
with the string xxxxx. The entire second file is inserted into the
output file after the line containing xxxxx. Another control record
usually follows the *FILE record. If other insertion records follow
it, they are inserted after the last line of the inserted file.

For example, if the following records

-'A'
*FILE I:15='ZZZ SRC'$
-$

are specified to insert the second file, ZZZ SRC in 5.2.2, after line
i of the input file in 5.1.3, the resulting output file is:

1. A
2. XX
3. YY
4. ZZ
5. KK
6. B
7. C
8. D
9. E

10. F
11. G

Renumbering occurs when the search is successful. The line selected
by the search becomes line 1.

VII-S-ll

5.2. 7 SEARCH AND REPLACE

The user can specify a SEARCH AND REPLACE operation by a control
record of the following for.mat:

For.m: -'xxxxx' ,m

Where: xxxxx is a string of one to five characters;
the line containing the string is the first
to be deleted and replaced

m is the number of the last line to be
deleted and replaced

SLIP examples each line of the input file until it finds one beginning
with the string xxxxx. All input file records from the line
containing the string through line m, inclusive, are deleted.

All insertion records following the SEARCH AND REPLACE control record
are inserted in the output file following the record just before the
record containing xxxxx.

Note that if no records are inserted, the specified lines are deleted.
The command

-' ABC' ,99999

deletes all lines after the one containing 'ABC'. The command

-' ABC' ,1

deletes only that line.

The following example illustrates the case in which records are
inserted. If the records

-'B',3
X
Y
z
-$

are specified to edit the input file in 5.1.3, the
file is:

1. A
2. X
3. Y
4. Z
5. E
6. F
7. G

resulting output

Renumbering occurs when the search is successful. The line selected
by the search becomes line 1.

VII-5-12

5.2.8 SEARCH AND REPLACE WITH FILE

A SEARCH AND REPLACE WITH FILE operation requires two control records.
The first is in the following format:

Form: -'xxxxx', m*

Where: xxxxx is a string of one to five characters:
the line containing the string is the first
to be deleted: second file will follow the
preceding line

m is the number of the last line to be
deleted: second file will precede line m+l

The second record is a *FILE record in the following format:

Form: *FILE I [NPUT] :LUN='secfile ext'S

Where: LUN is the Logical Unit Number
secfile is a string of one to six .SIXBT

characters representing the file to replace
the deleted lines

ext is a string of one to three .SIXBT
characters representing the file extension

SLIP examines each line of the input file until it finds one beginning
with the string xxxxx. All input file records from the line
containing the string through line m, inclusive, are deleted and
replaced with the file specified. Another control record usually
follows the *FlLE record. If other insertion records follow it, they
are inserted after the last line of the second file.

For example, if the following records:

_IC' ,2*
*FlLE I:15='ZZZ SRC'$
-$

are specified to delete lines 3 and 4 of the input file in 5.1.3 and
to replace them with the second file, ZZZ SRC in 5.2.2, the resulting
output file is:

1. A
2. B
3. XX
4. YY
5. ZZ
6. KK
7. E
8. F
9. G

Renumbering occurs when the search is successful. The line selected
by the search becomes line 1.

VII-5-13

5.2.9 END-OF-FILE

The user can specify END-OF-FILE by a control record of the following
format:

-$

5.3 INPUT/OUTPUT

The SLIP TDV Function Task is assigned Task name SLI... at
Task-Building time. SLIP uses LUN-12 for command input and LUN-16 for
listing output. The user may use Logical units for files as he
wishes. Normal editing operations use LUN-17 for input, LUN-IS for
output, and LUN-15 for secondary input.

5.4 ERROR MESSAGES

SLIP detects four types of errors:

· *FILE specification errors

· $SLIP control record errors

· SLIP command syntax errors

· SLIP sequencing errors

5.4.1 *FILE Errors

A message of the following form indicates a *FILE error:

*FILE ACCESS ERROR xx -- PROGRAM TERMINATED

where xx is a code in Table 5-2.

VII-5~14

Code

1

2

3

4

5

6

7

8

9

Table 5-2
Error Codes for *FILE Routine

Meaning

*FlLE does not appear in columns 1-5 of card read

File type inputs or outputs not found

Colon missing after file type

Missing Logical unit Number (i.e., INPUT:='file ')

Logical unit Number does not consist of digits 0-9

Logical Unit Number is too long (more than 2 digits)

Missing equal sign (=) after Logical unit Number

Missing quote (I) after equal sign

Invalid delimiter within file name or missing quote (I)
after file name

10 Illegal file type, not INPUT: or OUTPUT:

11 File not found on input device

12 File already open for output

13 Not enough space in partition for buffer

14 Logical Unit is not assigned to a device

15 Empty system pool

16 File I/O error other than codes 11-15

17 File already open but cannot be closed

18 File name is greater than 8 characters (only first 6
are used): probably missing space between file name and
extension or missing quote (I)

19 Incorrect number of files specified:
meet program requirement

5.4.2 $SLIP Control Record Errors

input does not

Selecting a nonexistent processing option causes a nonfatal $SLIP
control record error of the following form:

SLIP DOES NOT HAVE A x OPTION

where x is the nonexistent option.

VII-5-15

5.4.3 SLIP Command Syntax Errors

SLIP command syntax errors are more serious, for they might cause
considerable damage to a file. Therefore, most errors of this type
cause SLIP to perform a reasonable action. It usually runs through to
the end-of-file, copying the rest of the input file into the output
file.

Illegal characters in the command line are detected, however.
cause the following message to appear:

CORRECTION CARD ERROR -- ILLEGAL CHARACTER x

They

where x is the illegal character. Because the faulty line is treated
as if it were

-99999

SLIP processes through to the end-of-file, making no
corrections. The remaining command records are ignored.

5.4.4 SLIP Sequencing Errors

further

A SLIP sequencing error is caused by a reference to a line number that
has already been passed. This indicates that the correction deck is
out of order. SLIP exits immediately after producing a message of the
following form:

CORRECTION CARD ERROR

CURRENT LINE = xx

AFFECTED LINE - xx -- xx

If an existing file bears the same name as the output file specified,
the existing file is retained. If not, a new but incomplete file is
generated.

5.5 DEMONSTRATION OF SLIP EDITING

$LIST SLTJOB JOB

page eject

$JOB 50(002) DEMONSTRATION OF SLIP EDITING
$LIST SLTJOB JOB
$OECK TESTIN SRC
~
BBBBBBBB
CCCCCCCC
DODDDODD
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH

VII-5-16

11111111
JJJJJJJJ
KKKKKKKK
LLLLLLLL
MMMMMMMM
$EOF
$LIST TESTIN SRC
$SLIP L,S
*FlLE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $
-$
$SLIP L,S
*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $
-3
XXXXXXXX
YYYYYYYY
zzzzzzzz
-$
$LIST TESTOU SRC
$SLIP L,S
*FlLE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $
-2,5
XXXXXXXX
YYYYYYYY
zzzzzzzz
-$
$LIST TESTOU SRC
$SLIP L,S
*FlLE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $
-'GGG'
-2,2
XXXXXXXX
-$
$LIST TESTOU SRC
$DECK EXTIN SRC
ITHIS IS A USEFUL WAY
IOF INSERTING OPERATING
/INSTRUCTIONS INTO A LISTING WITHOUT
lRAVING TO TYPE THEM TWO OR MORE TIMES.
$EOF
$LIST EXTIN SRC
$SLIP L,S
*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $
-3*
*FlLE IN:15='EXTIN SRC' $
-6*
*FlLE IN:15='EXTIN SRC' $
-$
$LIST TESTOU SRC
$SLIP L,S
*FlLE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $
-'HHH' ,2*

*FlLE IN: 15= ' EXTIN SRC' $
-$
$LIST TESTOU SRC
$END
$DECK TESTIN SRC
$LIST TESTIN SRC

VII-S-17

page eject

AAAAAAAA
BBBBBBBB
CCCCCCCC
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH
IIIIIIII
JJJJJJJJ
KKKKKKKK
LLLLLLLL
MMMMMMMM

page eject

$SLIP L,S
*FlLE IN:1717='TESTIN SRC' OUT:lS'TESTOU SRC' $

* *CHANGE* * -$
1 AAAAAAAA
2 BBBBBBBB
3 CCCCCCCC
4 DDDDDDDD
5 EEEEEEEE
6 FFFFFFFF
7 GGGGGGGG
S HHHHHHHH
9 IIIIIIII

10 JJJJJJJJ
11 KKKKKKKK
12 LLLLLLLL
13 MMMMMMMM

********** S LIP COM P LET E **********

page eject

$SLIP L,S
*FlLE IN:17='TESTIN SRC' OUT:lS='TESTOU SRC' $

* *CHANGE* * -3
1 AAAAAAAA
2 BBBBBBBB
3 CCCCCCCC
4 XXXXXXXX

VII-5-18

5
6

* * CHANGE * *
7
8
9

10
11
12
13
14
15
16

yyyyyyyy
zzzzzzzz
-$
00000000
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH
IIIIIIII
JJJJJJJJ
KKKKKKKK
LLLLLLLL
MMMMMMMM

********** S LIP COM P LET E **********

$LIST TESTOU SRC

page eject

AAAAAAAA
BBBBBBBB
CCCCCCCC
XXXXXXXX
yyyyyyyy
ZZZZZZZZ
00000000
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH
IIIIIIII
JJJJJJJJ
KKKKKKKK
LLLLLLLL
MMMMMMMM

page eject

$SLIP L,S
*FlLE IN:17='TESTIN SRC I UT:18='TESTOU RC I $

* * CHANGE * * -2,5
1 AAAAAAAA

* *DELETE * * BBBBBBBB
2 XXXXXXXX
3 YYYYYYYY
4 ZZZZZZZZ

* * CHANGE * * -$

VII-5-19

DELETE
DELETE
DELETE

5
6
7
8
9

10
11
12

CCCCCCCC
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH
IIIIIIII
JJJJJJJJ
KKKKKKKK
LLLLLLLL
MMMMMMMM

********** S LIP COM P LET E **********

$LIST TESTOU SRC

page eject

AAAAAAAA
XXXXXXXX
yyyyyyyy
ZZZZZZZZ
FFFFFFFF
GGGGGGGG
HHHHHHHH
IIIIIIII
JJJJJJJJ
KKKKKKKK
LLLLLLLL
MMMMMMMM

page eject

$SLIP L,S
*FlLE IN:17='TESTIN RC' OUT:18='TESTOU SRC' $

* * CHANGE * *
1
2
3
4
5
6
7

* * CHANGE * *
* * DELETE * *

8
* * CHANGE * *

9

-'GGG'
AAAAAAAA
BBBBBBBB
CCCCCCCC
DODOOODD
EEEEEEEE
FFFFFFFF
GGGGGGGG
-2,2
HHHHHHHH
xxxxxxxx
-$
IIIIIIII

VII-5-20

10 JJJJJJJJ
11 KKKKKKKK
12 LLLLLLLL
13 MMMMMMMM

********** S LIP COM P LET E **********

$LIST TESTOU SRC

page eject

AAAAAAAA
BBBBBBBB
CCCCCCCC
DODODOOD
EEEEEEEE
FFFFFFFF
GGGGGGGG
XXXXXXXX
11111111
JJJJJJJJ
KKKKKKKK
LLLLLLLL
MMMMMMMM
$OECK EXTIN SRC
$LIST EXT IN SRC

page eject

/THIS IS A USEFUL WAY
/OF INSERTING OPERATING
/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES.

page eject

$SLIP L,S
*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $

* * CHANGE * * -3*
*FILE IN:15='EXTIN SRC' $

1 AAAAAAAA
2 BBBBBBBB
3 CCCCCCCC
4 /THIS IS A USEFUL WAY
5 /OF INSERTING OPERATING
6 /INSTRUCTIONS INTO A LISTING WITHOUT
7 /HAVING TO TYPE THEM TWO OR MORE TIMES.

* * CHANGE * * -6*

VII-5-21

*FlLE IN:15='EXTIN SRC' $
8 DDDDDDDD
9 EEEEEEEE

10 FFFFFFFF
II/THIS IS A USEFUL WAY
12 /OF INSERTING OPERATING
13 /INSTRUCTIONS INTO A LISTING WITHOUT
14 /HAVING TO TYPE THEM TWO OR MORE TIMES.

* * CHANGE * * -$
15 GGGGGGGG
16 HHHHHHHH
17 11111111
18 JJJJJJJJ
19 KKKKKKKK
20 LLLLLLLL
21 MMMMMMMM

********** S LIP COM P LET E **********

$LIST TESTOU SRC

page eject

AAAAAAAA
BBBBBBBB
CCCCCCCC
/THIS IS A USEFUL WAY
/OF INSERTING OPERATING
/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES.
DDDDDDDD
EEEEEEEE
FFFFFFFF
/THIS IS A USEFUL WAY
/OF INSERTING OPERATING
/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES.
GGGGGGGG
HHHHHHHH
11111111
JJJJJJJJ
KKKKKKKK
LLLLLLLL
MMMMMMMM

page eject

$SLIP L,S
*FlLE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $

VII-S-22

* *CHANGE* * -'HHH',2*
*FlLE IN:15='EXTIN SRC' $

1 AAAAAAAA
2 BBBBBBBB
3 CCCCCCCC
4 DDDDDDDD
5 EEEEEEEE
6 FFFFFFFF
7 GGGGGGGG

DELETE HHHHHHHH
8 /THIS IS A USEFUL WAY
9 /OF INSERTING OPERATING

10 /INSTRUCTIONS INTO A LISTING WITHOUT
11 /HAVING TO TYPE THEM TWO OR MORE TIMES.

* * DELETE ** IIIIIIII
* * CHAN GE** -$
DELETE JJJJJJJJ

12 KKKKKKKK
13 LLLLLLLL
14 MMMMMMMM

********** S LIP COM P LET E **********

$LIST TESTOU SRC

page eject

AAAAAAAA
BBBBBBBB
CCCCCCCC
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
/THIS IS A USEFUL WAY
/OF INSERTING OPERATING
/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES.
KKKKKKKK
LLLLLLLL
MMMMMMMM

VII-S-23

CHAPTER 6

TASK BUILDER AND BASIC TASK BUILDER: BUILDING A TASK FOR EXECUTION

The Task Builder is an interactive program used to build user and
system tasks from relocatable binary files. This program links the
user's binary files to library functions to create an executable task.
By responding to questions asked by the Task Builder, the user
supplies information on run priority, core partition, COMMON block
requirements, and other task operating characteristics.

The Task Builder is flexible, allowing the user to build
one-program task with no overlays or very complex tasks
multiple programs (some written in FORTRAN and some written
a resident portion, and multiple overlays and suboverlays.
be built for a variety of execution modes with the
characteristics:

1. Uses floating-point hardware or not

2. Runs in BANK addressing mode or in PAGE mode

a simple
made up of
in MACRO),
Tasks may
following

3. Runs in USER mode (protected) or EXEC mode (privileged)

4. If in USER mode, runs in XVM mode (wide addressing) or not

The user generates a system of overlays - a resident main program
which may include resident subprograms, a resident blank COMMON
storage area, and a set of subroutines which overlay each other at the
user's request. Subroutines are organized into units called LINKs
which may overlay each other. Several LINKs may overlay a larger LINK
without overlaying each other. A LINK is loaded into core when a
subroutine within the LINK is called and it remains resident until
overlayed. A LINK's core image is not recorded or ·swapped out· when
it is overlayed. The same image is brought into core each time a LINK
is loaded.

For the user who wants to build a simple Task, the flexibility of the
Task Builder can be a nuisance. For that reason, a second version of
the Task Builder whose task name is BTK... (Basic Task Builder) is
provided. BTK... assumes answers to all the questions that the
standard Task Builder, TKB ••• , asks directly. Section 6.5 describes
BTK in more detail.

All disk-resident RSX tasks are built and incorporated in the system
in the . same way. Throughout the process, the task name is usually
used as file name, but the extension changes. Tasks are assembled or
compiled from source code to produce relocatable binary (extension
BIN) files. The binary files (combined perhaps with other binary
files, typically library subprograms) are fed through the Task B·uilder
to produce a binary task file (extension TSK) , ... which is cme _ ste~
closer to the executable form than BIN files. Finally, TSK files are

VII-6-1

I read by the FININS task or the INSTALL function task, which converts
the task file into absolute core-image form, stores it on the disk for
rapid loading and records its existence in the System Task List.

6.1 INVOKING THE TASK BUILDER

The Task Builder is invoked under TDV in the following way:

Form: TDV>TKBV

Control is passed to the Task Builder, which establishes dialogue with
the user by typing a question and a prompting character (», and
expecting a response. An example of user interaction with TKB appears
in Figure 6-1. In all cases, user responses are identified by their
placement after the prompting character. Each TKB question is
described in detail later in this chapter.

XVM!RSX VIB VII-6-2 September 1976

TDV>TI,B
TASK BUILDER XVM V1A003
LIST OPTIONS
>BI·U;:, NRM, NFF'
NAME TASK
>STI~+ +.

SPECIFY DEFAULT PRIORITY

DESCRIBE PARTITION

DEFINE RESIDENT CODE
)STATUS,CORE,USERS,TASKS
DESCRIBE LINKS & STRUCTURE

ALLOC. STRATEGV:BOTTOM UP
ACTUAL PARTITION 8IZE:032000
EFFECTIVE PARTITION SIZE:032000
VIRTUAL PARTITION 51ZE:032000

ST(~Tl.JS 000020··-00 ()"72-4
CORE OOO"?;~~:=;-··()():l 00:·5
USERS 001004-00:l421
TASKS 00 1422·-()():L 677
DATF.5 SF~C 00:L700-()()1737
SPYF.1 SF~C 001740·-00:1.763
.DA 015 001·764--00:?O63
BCDIO 056 002064····00612l
STOP 008 006 122-00613~)
FlOPS 047 ()06136-()()70~.:;6

BBlINT 007 007057-007455
INTEAE 009 007456-007606
RELEAE 011 007607-01070~5
OTSER 016 010706-()11225
SPMSG 01.4 011226·-()1135~5
.CB 004 011356-()11377
.FP 000 011400-011401

MINIMUM EFFECTIVE PARTITION 51ZE:012000

CORE REQ'D
000000-011401.

Tnv>

Figure 6-1
Task Builder Session

An altmode is a null entry. To terminate command input prematurely,
the user should type CTRL/Q followed by a carriage return in response
to any command output message. This causes the Task Builder to exit.

XVM/RSX VIB VII-6-3 Septe.mber 1976

6. 2 INPUT/OUTPUT

The following LON assignments should be made before the Task Builder
is invoked under TDV:

LON Assignment

10 System Library input

11 User Library input

12 Terminal input

13 Terminal output

17 Binary file input

18 Task file output

If an I/O error occurs during Task Building, the following message:

TKB - I/O ERROR LUN xx yyyyyy

is produced on LUN-l3; xx represents the Logical Unit Number (decimal)
. and yyyyyy the octal Event Variable indicating the cause of the error.

6.3 COMPARISON WITH CHAIN AND EXECUTE DIALOGUE

The operations of the Task Builder under RSX are very similar to those
of the CHAIN and EXECUTE programs which run under control of DOS.
Interaction with these prograITlS is described in detail in the CHAIN
XVM/EXECUTE xvr1 UTILITY MANUAL. i~ote that all command lines logically
terminate with an ALTTvlODE character. Lines terminated by a carriage
return are continued on the next physical line; therefore, a logical
command line may ~onsist of several physical lines.

User interaction with the Task Builder differs in some ways from the
descriptions in the manual. The following sections summarize those
components of the dialogue which remain the same as well as those
which differ significantly under RSX.

6.3.1 List Options

Any of the list, execution mode, and library options, shown in Table
6-1 may be specified. If more than one option is included, entries
must be separated by commas.

VII-6-4

Table 6-1
Task Builder List, Execution Mode, and Library Options

Option

BKR

BUFFS:n

EXM

FP

GM

NFP

NM

//Ni~M "

PAL

PAR

PGR

Action

BANK-mode relocation
(13-bit addressing)

Reserve n decimal I/O
buffers of 422 octal words
each when calculating
effective partition size

EXEcutive mode (neither
protection nor relocation)

Hardware Floating-Point
Library (floating-point
hardware available)

Output global symbol and
file name in load maps

Allows task to issue lOT
instructions. (Permitted
only for USER-mode
tasks)

Non-hardware Floating­
Point Library (no float­
ing point hardware
available)

No load map

USER-mode (protection
and relotation)

Pause after outputting
each link

Pause after outputting
resident code

Page-mode relocation
(l2-bit addressing)

Default

PGR

n = 0

NRM

See MFP option

Output program names
in load maps

Don't allow task to
issue lOT instruction
unless task is any
EXEC-mode task

In default, the FP/NFP
option is dynamically
determined by the
availability of floating­
point hardware

Output load map

NRM

No pause after out­
putting each link

No pause after out­
putting resident code

PGR

1 XWI hardware must exist on the installation if this option is to
be used.

VII-6-S

Table 6-1 (Cont.)
Task Builder List, Execution Mode, and Library Options

Option

RES/name, ••• ,name/

SAC

SL:
name

SZ

UL:
name

Action

Force the COMMONs named
to be part of the resident
code and load them from
the top of the virtual
partition space down

Single allocation of
COMMON blocks.
Elements of labelled
COMMONs may be ref­
erenced by any co­
resident link

Some COMMON blocks
should be allocated memory
within Shared Addressing
Space. Request specifi­
cation of these COMMONs
later in dialogue, (per­
mitted only for USER-
mode tasks)

System Library name
(alternate user-specified
System Library name)

Output size in load maps

User Library name
(alternate User Library
name)

XVM mode or l7-bit
indirect addressing
mode, (permitted only
for USER-mode tasks)

Default

Make only those COMMONs
declared in the resident
code resident

Elements of labelled
CO~1MONs may not be
referenced by any co­
resident link

There will be no
COMMONs allocated
in Shared Addressing
Space

.LIBRX (non-floating­
point hardware) or
.LIBFX (floating­
point) ,depending on
choice of NFP or FP,
respectively

No size in load maps

.LIBRS

IS-bit addressing

1 XVI-.! hardware must exist on the installation if this option is to
be used.

VII-6-6

6.3.1.1 PAGE Mode - Bits 6-17 of a memory-reference instruction are
taken as an operand address, and bit 5 is used to select address
modification via the Index Register (XR). Thus 4K of core is directly
addressable.

6.3.1.2 BANK Mode - Bits 5-17 of a memory reference instruction are
taken as an operand address. Thus aK of core is directl~ addressable,
but the Index Register cannot be used for address modification.

6.3.1.3 EXEC Mode - Tasks running in EXEC mode are not restricted in
the core they may reference or alter, or in the instructions which
they may· execute. I/O Handler and MCR Function tasks must run in EXEC
mode. Hardware relocation is not used in this mode. Thus the IS-bit
addressing range limits EXEC-mode tasks to partitions below 32K. If a
machine does not have hardware relocation, all tasks must be run in
EXEC mode. EXEC-mode tasks are assumed to be debugged and
well-behaved. For this reason, the system performs practically no
checking on EXEC-mode tasks.

6.3.1.4 USER Mode - This is anonprivileged mode in which a task is
prohibited access or execution outside its partition. It may not
direct the system by means ~ I/O Directives or System Directives to
alter any core partition but its own.

The only exceptions are:

1. USER-mode Tasks may transmit data to and receive data from
System COMMON Blocks by using the COMMON Communicator I/O
Handler task as an intermediary.

2. USER-mode Tasks may transmit data to and receive data from
System COMMON Blocks or partitions using XVM core sharing
hardware, the SHR option, and the SHARE directive.

3. USER-mode Tasks may access memory via the Spy and SPYSET
directives.

A USER-mode Task is also prohibited by the hardware from executing
such privileged instructions as HLT, rOT, OAS, or double XCT (unless
the rOT option was specified when the task was built).

Reasonable protection is provided, but this m~e should .not ~
considered II idiot proof, II because a USER-mode Task l.S not restrl.cted l.n
issuing Directives which affect areas other than core. Such a Ta~k
may, for example, interfere with the scheduling of other TasksJ l.t
may tie up I/O devices by attaching them indefinitely: and it may
enter tight loops, making continued system requests that could exhaust
the Pool of Empty Nodes.

USER-mode Tasks are relocated to zero, and use hardware relocation and
upper-bound checking to effect memory protection. Unless XVM mode is
specified, IS-bit addressing range limits the size of such a task's
useful partition space to 32K. However, hardware r~locati_on permits
positioning of partitions for USER-mode tasks anywhere in l28K.

VII-6-7

I

I

The protected/relocated mode is called "user" mode to emphasize the
fact that it is the normal mode; the mode recommended for tasks,
unless they must run unprotected. A task that is to run "protected"
is not protected from other tasks; rather, other tasks are protected
from it. Such protection is necessary when debugging a new task.

Most tasks under RSX can be aborted (i.e., forced to exit). In this
event, I/O rundown is performed for the task. For example, if a task
should exit, leaving some device attached and several files open on
the disk, I/O Rundown is invoked. In effect, this detaches the device
and closes all of the files.

An advantage to building user-mode tasks is that their partitions can
be redefined without requiring that the tasks be rebuilt. All user
tasks that run under MULTIACCESS must be built in user mode to
preserve system integrity.

If XVM mode as well as user mode is specified for a task, that task
can indirectly access memory via l7-bit addressing. Such a task could
access up to l28R if such a partition were allowed in the system. In
practice, however, the maximum partition size is l14K*. Despite this
wide addressing capability, the executable code and initialized COMMON
blocks** of such a task cannot exceed 32K. Nevertheless, XVM mode is
highly useful if a task contains extensive code as well as large
uninitialized COMMON blocks. The ability to access such COMMON blocks
is the primary use of XVM mode. The XVM option depends on the
existence of XVM hardware. Users without an XVM or PDP-IS with an
XM-lS option should not attempt to build a task in XVM mode.

6.3.2 Name Tasks

The user specifies a one- to six-character task name identifying the
task to be built.

6.3.3 Specify Default priority

The user specifies the default priority at which a task will run.
This is an optional parameter. It can be entered or changed when the
task is installed. If specified, the priority must be between 1
(highest priority) and decimal 512 (lowest priority). If not
specified, TKB assumes a default priority of 400.

*Since l28K is the maximum supported core size and must include space
for the Executive, I/O handlers and MCR partition, the maximum
partition size is l14K.

**COMMON blocks are initialized by block data subprograms in FORTRAN
and by the .CBS/.CBC/.CBE pseudo-ops in MACRO.

XVM/RSX VlB VII-6-8 September 1976

6.3.4 Describe Partition

The user identifies the core partition in which the task will run,
using the form:

Form: Cname [(size)] J for a user-mode task
name[(base,size)] for an exec-mode task

Where: name identifies a partition that has already
been defined

base is the octal starting address of the
partition

size is the octal size of the partition

Example: DESCRIBE PARTITION
)P40.0

Typing an altmode causes the task being built to be relocated for the I
partition currently in use by the user's copy of TKB. This feature is
available for convenience. Normally, the MULTIACCESS Monitor
dynamically selects the partition assignment of all user-mode tasks
executed under MULTIACCESS.

If the partition base and size are unspecified, the named partition is
presumed to exist in the current configuration. The Partition Block
Description List (PBDL) is scanned by the Task Builder for the named
partition and the existing values of base and size are used.
Alternately, if the partition does not exist in the current
configuration and the task is being built to run in user mode
(relocated), only the partition size need be specified; the base can
be omitted. Exec-mode tasks require both base and size
specifications.

The execution mode is not a characteristic of a given partition.
Consequently, the user can build tasks with different execution modes
to run within the same partition. Partitions must be a multiple of
400 (octal) words in size. Partitions can be defined starting
immediately above the top of the Executive.

The size of the partition specified to TKB or the existing value of
the partition size is called the actual partition S1ze. This value is
reduced by the buffer space, specified by the BUFFS option, to obtain
what is called the effective partition size. This is the space that
could be used by the task, assuming that it were able to address it.
For user-mode tasks, buffer space is always rounded to the next
highest increment of 400 (octal) words to permit effective use of the
memory-protection/relocation hardware. The virtual partition size is
that part of the effective paitition size that the task can address.
Usually the effective partition size is equal to the virtual partition

XVM/RSX VlB VII-6-9 September 1976

only reason the effective partition size might exceed the virtual
partition size is if the effective partition size were greater than
the maximum virtual partition size for a task built with a particular
set of options. The maximum virtual partition size for a task can be
determined from the following chart.

Options Specified Maximum Virtual Partition Size

EXM

NR14 (not

NRM, XVM

NRI-1, SHR

URM, XVM,

XVM and not

(not SHR)

(not XVM)

SHR

SHR)

32K

32K

l28K

24K

l20K

The Task Builder allocates code and COInI.'lon bloe1::s within the virtual
partition space with one exception. Shared common blocks are always
allocated memory within the shared address space (SAS) which is
immediately above the virtual partition space ,-rhenever the SHR option
is specified.

6.3.5 Describe System or Shared COMMON Blocks

If the task is being built in EXEC'mode, the user will be asked to
specify System COMMON blocks. If the task is being built in USER-mode
and the SHR option was declared, the user will be asked to specify
Shared COMMON Blocks. The way in which such COMMON blocks are
indicated is quite similar but tilere are some differences between the
formats used to specify System or Shared cor·u,'tONs.

6.3.5.1 Describe System COMMON Blocks

Here the user identifies co~rnON blocks which are
task but may be common to all tasks in RSX.
Blocks are used for communication between tasks;
also have its own internal COl-1MON blocks.

referenced by the
These System COMMON

however, a task may

EXEC-mode tasks can indirectly access System COMMONs provided such
COMMONs lay within the first 32K of core. This is because EXEC-mode
tasks reside within the lower 32K of memory and run unprotected~
EXEC-mode tasks cannot indirectly access system COMMONs which reside
above 32K.

Each such COMMON block is specified according to the following format:

VII-6-10

Form: name (base,size) [, ••• l

Where: name identifies a COMMON block which has been
defined in RSX at System Startup time

base is the octal starting address of the
COMMON block

size is the octal maximum size of the COMMON
block

Example: DESCRIBE SYSTEM COMMON BLOCKS
>FLAG(36400,400)

The user can enter as many as four COMMON block descriptions by
inserting commas between entries. Those COMMON blocks in the user
program which are not declared to the Task Builder to be System COMMON
Blocks are allocated within the task's virtual partition space and are
referenced only by that task. Blank COMMON has the name .XX.

6.3.5.2 Describe Shared COMMON Blocks

The user must identify those COBMON Blocks referenced by the task
which should be allocated memory within the task's Shared Address
Space. These COl4MONs must be named and uninitialized. The physical
memory actually accessed when the task references a word in such a
Crn/illON will depend upon the state of the MM register at the time of
the access. The I~ register will be set when the task issues the
SHARE directive. Once the SHARE directive has been issued with the
correct parameters, ~~ hardware will map the task's accesses to
Shared Addressing Space (SAS) into other locations within physical
memory. Since a task's SAS is not part of the task's virtual
partition space, accesses to shared cm~ONs prior to issuing the SHARE
directive will cause a.memory protection violation, forcing the task
to be aborted.

SAS is divided into Internal Shared Address Space (ISAS) and External
Shared Address Space (ESAS). ISAS is always 400 octal words long and
its base is identical to the base of SASe ESAS begins at the base of
SAS plus 400 octal words (i.e., at the end of ISAS). The length of
ESAS depends upon parameters given in the SHARE directive. For tasks
not built in XVM-mode, SAS starts at word 60000 octal relative to the
partition's base. SAS starts at word 360000 octal relative to the
partition's base for tasks built in XVM-mode.

When the task has issued the SHARE directive, accesses to ISAS will be
mapped into the first 400 octal words of the task's partition.

References to ESAS will be mapped into an area of physical memory
specified in the SHARE directive.

The use of the SHR option depends upon the existence of XVM hardware
and the SHARE directive. If the user does not have such hardware or
the NOXM assembly parameter was defined when the RSX executive was
assembled, no tasks -should be built in SHR mode.

VII-6-11

Each Shared COMMON Block is specified according to one of the
following formats:

Form 1: name (offset, size) [, •••]

Form 2: name (size) [, •••]

Form 3: name [, •••]

In these formats, name identifies a COMMON Block declared by the task.
In Form 1, offset is added to the base of ESAS to obtain the base
address of the COMMON named. The offset from ESAS can be negative but
cannot cause a shared COMMON to start outside of the task's SASe For
example, it is possible to set the offset equal to -400 octal. This
would cause the base of the named COMMON to coincide with the base of
SASe Offset and size should be specified as octal numbers. Size
specifies the length in words, of the shared CO~~ON Block. Note that
size also specifies the base address of the next shared COMMON
relati ve to the base of the current shared COr~ON. The only exception
to this rule is that a specification made using Form 1 will override
all previous specifications. The value of size must be a positive
octal number and cannot direct TKB to allocate space for a shared
COMMON outside SASe Form 3 is simply a short form for Form 2 with a
size of zero, (e.g., "COl-1," means "COM(O) ,"). The use of each of
these forms is apparent from the following example.

Shared COMMON Definition COr-1MON Base

COMl(-400, 1000) , SAS = ESAS - 400

CO~12 (100) , SAS + 1000 = ESAS + 400

COM3, SAS + 1100 = ESAS + 500

COM4, SAS + 1100 = ESAS + 500

COl-iS (0 , 20 0) , SAS + 400 = ESAS

COM6(100) , SAS + 600 = ESAS + 200

COM7(2000, 0) SAS + 2400 = ESAS + 2000

If forms 2 or 3 are used prior to form 1, the base of the first shared
COI~ON named is made to coincide with the base of ESAS.

The user can enter as many shared COMr·10N Blocks as are declared in the
task by inserting commas between entries. All shared crn1MONs must lay
within SASe Those COMHON Blocks in the user's program which are not
declared to be shared are allocated within the task's virtual
partition wall and are referenced only by that task. Blank COMMON
cannot be shared.

VII-6-12

Since the Task Builder does not allocate space for shared CO~1MONs
within the task's virtual partition space, the actual size of any
shared CONl.'l.iON is irrelevant. Hence, when calculating ':.he size of a
shared COHl:10N to be printed in load maps, TKB assumes that its top
address coincides \vi th the top of ESAS.

6.3.6 Define Resident Code

Here the user lists the names of files containing reiocatable binary
units of routines to be resident throughout a run and the names of
library routines (flagged by library indicators (I» to be resident
throughout a run. These names are listed in the following format:

Form: name [, •••]

Where: name is the name of a file or of a library
routine (see above) to be resident throughout
a run

Example: DEFINE RESIDENT CODE
>ZZZ.12,ILIBl

RSX transfers initial control to the entry point of the first resident
routine relocated, i.e., the first routine of the first file listed,
unless resident code consists exclusively of library' rou~ines. The
response~o DEFINE RESIDENT CODE must be at least one ~ame.

6.3.7 Describe Links and Structures

Here the user describes the overlay structure in terms of LINK names.
When a LINK is to qonsist of only Qne external component, the name of
the file containing the external component may be used as the LINK
name. However, when a LINK is to consist of more than one external
component, the LINK must be named and defined.

In the DOS system, the supervision of core overlays.is handled by a
system program called EXECUTE, which exists as a separate file from
the user's XCT file built by CHAIN. In XVM/RSX, the equivalent of
EXECUTE is a subroutine called EXU.13 (the number may vary). lihenever
the Task Builder constructs a file with qverlays, it expects to find
EXU.lJ in the system library, .LIBRX or .• 'LIBFX. If the appropriate
library file is not present on LUN-lO when an overlay task is being
built, an error message will be printed during the expansion of the
resident code: '

TKB-I/O ERROR LUN 10 13

Code 13 means that the file was not found.

VII-6-13

6.3.7.1 LINK Definitions - Each LINK definition requires one line of
command input in the following format:

rxtfile [, ••• 1 !II [intfilel [, ••• 1 }
Form: name =

[extfile 1 [, •••] [/1 intfile [, ••• 1

Where: name is the name of the LINK
extfile is the name of an external LINK

component
intfile is the name of an internal LINK

component

Example: Define the LINK named ABC to consist of
external components SUBI and SUB2 and
internal components SUB3 and SUB4:

DESCRIBE LINKS & STRUCTURES
>ABC=SUBl,SUB2/SUB3,SUB4

A LINK definition is a list of the names of files which contain the
relocatable binary units that comprise the LINK components. The
individual file names listed are separated by commas (,)~ the two
types of LINK components which may be used (external and internal) are
separated within the definition by a slash (I). All external LINK
component names must be listed before (to the left of) the slash
separator~ all internal LINK components must be listed after (to the
right of) the slash. External LINK components are accepted only from
files with names which match the external component name (i.e., GLOBAL
symbol definition).

Rules for defining a LINK:

1. A LINK may not be a component of another LINK.

2. The names of the components of a LINK may not be used as LINK
names. When a LINK consists of only one component, the
component's file name may be used as the LINK name in the
overlay structure description, but not in a LINK definition~
i.e., it is not necessary to define a single component LINK
but, if defined, the LINK name cannot be the component name.

3. A file name used in the resident code description cannot be
used in a LINK definition.

4. A file name preceding a slash may be used only once.

5. A file name following a slash may be used in other LINK
definitions (following a slash).

VII-6-14

6.3.7.2 over~ay structure Description - An overlay structure is
described uS1ng the names of defined LINKS, or the names of files
containing LINK. components and the operators colon (:) and comma (,).

This description has the following basic format:

Form: overlaid: [•••]overlaying[, •••]

Where: overlaid is the name of the part of the
structure to be overlaid (a defined LINK
or a file containing a LINK component)

overlaying is the name of the part of the
structure to overlay overlaid (a defined
LINK or a file containing a LINK component)

Example: SUB2 overlays SUBl:
DESCRIBE LINKS & STRUCTURES
SUB1:SUB2

The following rules apply:

1. A line is an independent statement processed from left to
right.

2. A colon signifies "is overlayed by." Core mapping, but no
loading order, is implied.

3. A comma signifies "and." The following:

SUB1:SUB2
SUB2:SUBl,SUB4

indicates that SUBl is overlayed by (uses the same core as)
SUB2, SUB2 is overlayed by SUB3 and SUB4, but SUBl and SUB4
do not overlay each other.

4. A colon operator may not be used in a line after a comma has
been used. This restriction prevents the following
ambiguity:

SUB2:SUBl,SUB4:SUBS

The above line is rejected because it is not clear whether
SUBS overlays SUB3 or SUB4 or both. All four of the
following examples are acceptable:

SUB2:SUBl,SUB4
SUB4:SUB5

SUB2:SUBl,SUB4
SUB3:SUB5

VII-6-l5

SUBS uses the same core as
SUB4 but not the same core
as SUBl.

SUBS uses the same core as
SUB3 but not the same core
as SUB4.

SUB2:SUBS:SUB3,SUB4

LINK=SUB3,SUB4
SUB2:LINK:SUBS

SUBS uses the same core as
SUB3 and SUB4. SUB3 and
SUB4 are loaded individu­
ally (if nonresident) as
called.

SUBS uses the same core as
SUB3 and SUB4. Both SUB3
and SUB4 are loaded (if
nonresident) whenever
either is called.

5. A LINK name may appear only once preceding a colon and only
once following another colon.

6. If a LINK name is used twice, it must be used following a
colon before being used before another colon.

7. Several LINKs overlaying each other may be defined in one
statement, as in the following:

SUBl:SUB2:SUB3,SUB4 Core mapping, but no
loading order, is implied.
This is a short method of
defining the same overlay
structure as in the first
example, under rule 3.

Although rules 5 and 6 may appear restrictive, they do not limit the
user's description of an overlay structure, but do prevent mUltiple
description of the position of a LINK in an overlay structure. A LINK
may be both overlayed and overlaying, and it may not be possible or
convenient to describe both conditions by using the LINK name only
once, as follows:

SUBl:SUB2:SUB3 SUB2 is overlaying SUBl and is overlayed
by SUB3.

Therefore, when a LINK is both overlaying and overlayed, its LINK name
may be used twice, but the LINK(s) overlayed by it must be described
before the LINK(s) by which it is overlayed, as follows:

SUB2:SUB3,SUB4
SUB3:SUBS

SUB3 overlays SUB2.
SUB3 is overlayed by SUBS.

NOTE

The description of an overlay structure
only defines a desired core mapping,
i.e., stating that SUBl is overlayed by
SUB2 means that both are to be relocated
to the same core and cannot coreside,
but does not ~ply that SUBl must be
called before SUB2. There is no imposed
order in which routines must be called,
nor is there restriction of the routines
callable by any routine.

VII-6-16

6.3.8 Completion of Dialogue

After all of the previously described characteristics have been
supplied by the user and accepted by TKB, the program computes the
amount of core required by the task and prints it in the format:

XVM/RSXV1B VII-6-17 September 1976

I
•

Form: start-end size

Where: start is the octal starting address of the task
in the core partition identified above

end is the last filled octal location in this
partition

size is the octal size of the task

Example: CORE REQ'D
40000-46266 06267

TK8 terminates interaction with the user by returning control to the
MULTIACCESS Monitor. When in control, the Monitor requests another
function by typing:

TDV>

6.4 CONVERSION TO XVM/RSX

XVM/RSX user interaction with the Task Builder differs from
interaction with previous versions of the Task Builder. All user
FORTRAN programs developed under previous versions of RSX must be
recompiled and rebuilt by the Task Builder to enable them to run under
XVM/RSX. Similarly; assembly language programs should be reassembled
and rebuilt for XVM/RSX operation.

6.5 BTK: BASIC TASK BUILDER

BTK, the Basic Task Builder, closely resembles TKB,
different input. BTK is useful for building
particularly for batch-processing. BTK is invoked in
way:

Form: BTK name[,name ...]V

Where: name is the name of the task to be

Example: TDV>BTK SCAN,SCSUB

but requires
simple tasks,
the following

built

BTK assumes the following options and conditions (refer to Table 6-1):

NRM
FP or NFP
PGR
priority of 400
TDV partition
The resident code that has been entered

BTK generates a load map.
removes trailing spaces
Monitor.

XVM/RSX VIB

As an aid to the system, the batch handler
from card images passed to the MULTIACCESS

VII-6-I8 September 1976

6.6 ERROR MESSAGES

Tables 6-2 and 6-3 list possible error messages and their
implications. Messages regarding command string errors immediately
follow the erroneous logical line. The command is ignored and must be
retyped.

The > prompt follows the message if the error is recoverable. When
possible, the faulty character or name is output after the error
message. If the error is not recoverable, TKB exits to TDV after
typing the message.

Below is a sample sequence of miscellaneous recoverable errors:

TDi..»TI<B
TASK BUILDER XVM V1AOOO

:> r:: (.~l F;.: ~ ~:) z:
r', Uf'.JF::FCOGN I ZED B'y'··'i.f:()i... }::':\I;:~

SPECIFY DEFAULT PRIORITY

- IMPROPER PRIORITY
~3P[CIF'{ DEF/'IU!...T PF:IDPIT"'(
>- ~:S ()()
DESCRIBE PARTITION
>BLK1- PAR1ITION NOT IN SYSTEM

DEFINE REBIDENT CODE

:> L.. :< :!. :::: :.:;; U n:i. ;' F.::.::

~ IMPROPER BREAK CHA~

:> 1...!-':; j. :; L.l< :::::

~ NAME USED LEFT OF COLON TWICE -- LKl

VII-6-19

Table 6-2
Messages Produced by Recoverable TKB Errors

Error Message

t UNRECOGNIZABLE SYMBOL

tRES ROUTINE REQ'D

tLINK NAME USED PRV

tNAMELENGTH ERR

t IMPROPER BREAK CHAR

tINTERNAL NAME REPEATED IN LINE

tEXTERNAL NAME USED PRV

tCOMPONENT NAME USED AS LINK NAME

tLINK DEF WITHIN OVERLAY
DESCRIPTION

tCOLON MUST FOLLOW FIRST
LINK NAME

tMORE THAN ONE LINK OVERLAYED

tNAME RIGHT OF COLON USED PRV

tNAME USED MORE THAN TWICE

tNAME USED LEFT OF COLON TWICE

tLIB IND ON LINK NAME

tINTERNAL NAME USED PRV

tRES ROUTINE NAME USED AS LINK NAME

tNAME USED MORE THAN ONCE

INCONSISTENT OPTION

VII-6-20

Meaning

Unrecognizable
command string

symbol in

No resident routine has been
declared

Name used previously

Legal name has 1-6 characters

Break character used incor­
rectly

Internal LINK component name
used more than once within
LINK

External LINK component name
used previously within overlay
system

Name of LINK component used as
name of a LINK

LINK definition within overlay
description

Colon missing after first LINK
name

More than one LINK overlayed

LINK name used more than once
to right of colon

LINK name used more than twice

LINK name used more than once
to left of colon

Library indicator (#) on LINK
name

Internal name used before

Name of resident routine used
as LINK name

LINK name used more than once

The option specified is
incompatible with other
declared options.

Table 6-2
Messages Produced by Recoverable TKB Errors

Error Message

~IMPROPER PRIORITY

~PARTITION STARTS ABOVE 32K

ApARTITION ENDS ABOVE 32K

ATOO MANY DEFINITIONS

ApARTITION NOT IN SYSTEM

~ILLEGAL SIZE

ALIB IND ON EXTERNAL NAME

~LIB IND ON INTERNAL NAME

~COMMON OUT OF SAS

XVM/RSX VIB VII-6-20.l

Meaning

The specified priority is out
of range (greater than 512)

The partition for an exec-mode
task starts above 32K

The partition for an exec-mode
task ends above 32K

The amount of table space in
free core is exceeded for user
information

The specified partition does
not exist in the system

The partition size is not a
multiple of 400 (octal) words

The user has incorrectly
applied the library indicator
to an external name

The user has incorrectly
applied the library indicator
to an internal name

The common block specified is
larger than the shared address
segment and cannot be
addressed

September 1976

Table 6-3
Messages Produced, by Urtrecov~~able TKB.Errors

Error Messages

TABLE OVERLAP

READ ERROR

ILLEGAL LOADER CODE

LABELED COMMON BLK SIZE ERR--

UNRESOLVED GLOBAL(S):

ABS PROG

MISSING GLOBAL DEF

DUPLICATE GLOBAL DEF

TASK IS LARGER THAN PARTITION

TKB-PARTITION TOO SMALL

TOO MANY BUFFERS SPECIFIED

CORE OVERFLOW

MODULE TOO LARGE--

XVM/RSX VIB

Patch table and symbol table
overlap occurred during
relocation of resident code
and links to the TSK file

An error occurred on the input
device

The input file contains
unrecognizable loader code

The labeled common block is
now declared larger than in a
previous declaration. The
block name follows the
message.

One or more global symbols are
unresolved during relocation
of the resident code and links
to the TSK file. The system
generates a list of all
unresolved globals •

• ABS programs are not allowed,
because they are not
relocatable

A global definition is
missing. The system lists it.

There. is a
definition.
it.

duplicate global
The system lists

The task is too large for its
partition

The specified partition cannot
run the job

The~escribed buffer space
exceeds the partition size

The executable code portion,
including initialized common
blocks of the overlay
structure defined by the user,
does not fit into available
core

The named module is larger
than 4K for page mode or 8K
for bank mode. The module
name follows the message.

(Continued)

September 1976

•

I

•

Table 6-3 (Cont.)
Messages Produced by Unrecoverable TKB Errors

Error Messages

COMMON BLOCKS DECLARED RESIDENT

ABSOLUTE LOAD ADDRESS

GLOBAL SYMBOL TOO BIG--

ILLEGAL ATTEMPT TO INITIALIZE
COMMON BLOCK--

*** BLOCK DATA SUBROUTINE--

COMMON BLOCK TOO BIG--

XVM/RSX V1B VII-6-22

Meaning

A resident module has been
specified with the same name
as a common block

A module has been read that
has an absolute· starting
address

The user has
reference an
scope of the
The symbol
message.

a t temp ted to
area beyond the
given symbol.

follows the

The user has attempted to do
one of the following:

1. Initialize a common block
that is part of another
link

2. Initialize a common block
that has been declared
with the RES option

3. Initialize a shared common
block

4. Initialize a system common
block

A block data subroutine
been encountered.
subroutine name follows
message.

has
The
the

The user has attempted to
allocate a common block larger
than 77777. The block name
follows the message.

September 1976

CHAPTER 7

FIN
DEC
FOU
liS
TYPE I

FILE INPUT, DECK, FILE OUTPUT, LIST AND TYPE I

The FILE INPUT, DECK, FILE OUTPUT, FILE LIST and TYPE TDV Function I
tasks transfer sequential-access files from one device to another.
The four tasks are built and invoked in identical fashion. They
differ only in their assignment of LUNs for I/O. They perform the
following operations:

· FILE INPUT (FIN) transfers a sequential file from LUN-19 to
LUN-17

• DECK (DEC) transfers a sequential file from LUN-14 to LUN-17

• FILE OUTPUT (FOU) transfers a sequential file from LUN-17 to
LUN-19

· FILE LIST (LIS) transfers a sequential file from LUN-17 to
LUN-16: a line printer or some other printing device

· TYPE (TYPE) is identical to LIS, but outputs data to LUN-13 I

These function tasks can also be invoked in batch mode.

The most common use for these functions is for backup and restoration.
FOU is often used to backup a disk file on DECtape and sometimes on
magtape or paper tape. FIN is used to restore the copied file to
disk. LIS usually dumps a file from disk to the line printer. DEC is
usually used during batch operations to transfer a file from LUN-14
(normally assigned to the card reader) to LUN-17 (normally assigned to
a disk). It is possible to use FIN, DEC, FOU, LIS and TYPE for any I
copy function, simply by reassigning LUNs.

XVM/RSX VIB VII-7-1 September 1976

I

•

7.1 INVOKING FIN, DEC, FOU, LIS AND TYPE

FIN, DEC, FOU, LIS and TYPE are invoked according to the same format:

Form:

Where:

Example:

lFIN I DEC
FOU
LIS[T]
TYPE

[9] [option [,] ...] name [ept] [,.,]V'

9 preceding the first space character
signifies 9-track magtape operation. In
its absence, 7-track operation is assumed.

option is a one-character symbol: N or F. N
specifies no parity check; F allows form feeds
in the output (see the following paragraphs
for more information).
The option characters can be either
concatenated or separated by commas.

name is a string of one to six .SIXBT
characters and represents the input file.
At least one name must be supplied.

ext is a string of one to three .SIXBT
characters and identifies a file extension.
It is optional. SRC is the default.

Copy a binary file from DEC tape (LUN-l~) to
disk (LUN-17):

TDV>FIN SCAN BIN

Make no parity check on the file NOCHEK SRC,
but perform parity checking on CHECK SRC
and CHECK2 SRC:

TDV>FIN NNOCHEK,CHECK,CHECK2 SRC

Insert form feeds in the output for the files
FORMAT SRC, FORMT2 SRC, and FORMT3 SRC, but
not for NOFMT SRC:

TDV> LIS FFORMAT,FORMT2,NOFMT,FFORMT3

Perform parity checking, but not formatting, for
NOFMT SRC, NOFMT2 SRC and NOFMT3 SRC
(A is ignored as an illegal option letter):

TDV>LIS NOFMT,NOFMT2,ANOFMT3

The options Nand F are entered by typing either or both option
letters followed by the file name, and so on. When the back-arrow
appears with no preceding option characters, it is assumed that these
options are not to be used. Because the characters space, comma and

XVM/RSX VIB VII-7-2 September 1976

back-arrow are treated as delimiters in the command string, they
cannot be used in file names even though they are part of the .SIXBT
character set.

The N option suppresses the typeout of parity error messages (N stands
for "no parity check~). It is used to allow input of nonstandard
paper tapes by using the RSX paper tape reader handler task PR •••••

The F option allows form feeds to be inserted in the output at
expected locations. The purpose is to format FORTRAN and MACRO
language source programs on the output listing device. The F option
has no effect on binary files. A form feed is inserted after every
line that contains an .EJECT optionally preceded by any number of
spaces and horizontal tabs. A form feed is inserted prior to every
line containing a .TITLE optionally preceded by any number of spaces
and horizontal tabs. Finally, a form feed is inserted after every 56
lines of text following the last form feed.

Files with extensions of BIN or TSK are transferred in lOPS binary
data mode. All others are transferred in lOPS ASCII mode. Image mode
files are not supported.

$DECK causes Batch to read all lines following it and preceding $EOF.
It resembles a FIN function task, because it performs transfers of
data, FORTRAN programs and so forth to disk. It can transfer anything
but a job file. The sequence below is legal:

$DECK namel, name2, name3

$EOF

$EOF

$EOF

7.2 INPUT/OUTPUT AND TASK BUILDING

The FILE INPUT, DEC, FILE OUTPUT, FILE LIST and TYPE TDV Function I
tasks are assigned task names FIN ••. , DEC •.• , FOU ••• , LIS .•• and
TYP ••• , respectively, at task-building time. These tasks can be built
to run in either user mode (protected and relocated) or exec mode.
All of these tasks expect LUN-13 (recommended dedicated terminal) to
receive error messages and expect the following LUNs as file devices:

Task Input Recommended Output Recommended
Name LUN Input Device LUN Output Device

FIN ••• 19 DEC tape 17 Disk

FOU ..• 17 Disk 19 DEC tape

LIS •.• 17 Disk 16 Line printer

DEC ••• 14 Card reader 17 Disk

TYP ••• 17 Disk 13 Terminal I

XVM/RSX VIB VII-7-3 September 1976

For all three Tasks, if the input device has a directory, a SEEK is
invoked to open a file for input. If not, an ATTACH is issued to
obtain exclusive control of the device. Similarly, if the output
device has a directory, ENTER opens a file for output; if not, an
ATTACH is issued. If several files are being transferred,
ATTACH-DETACH is done for each file, to allow a higher-priority Task
to use the device if necessary.

If the output device is a line printer or terminal, a page eject is
performed before each file is transferred. If the input device is a
terminal, a check is made for end-of-file by examining the first word
of the input line for CTRL/D followed by ALTMODE or carriage return.

7.3 MAGTAPE OPERATION

Since the software cannot determine dynamically whether a tape drive
is 9-track or 7-track, 7-track operation is assumed unless the user
specifies a 9 in the appropriate place in the command line.

The following FORMAT parameters are issued for the different data
modes:

Mode

9-track ASCII
9-track BINARY

7-track ASCII
7-track BINARY

Parameters

9-track; 800 BPI; odd parity
9-track; 800 BPI; odd parity;

core-dump mode
7-track; 800 BPI; even parity
7-track; 800 BPI; odd parity

Data cannot be transferred from a 7-track drive to a 9-track drive, or
vice versa, without using the disk as an intermediary.

Whenever end-of-tape is encountered after a READ, WRITE, or WRITE
END-OF-FILE, the tape is dismounted (REWIND followed by a SPACE
FORWARD RECORD) and the following messages are printed (example is for
tape unit 3):

FIN-DISMOUNT MT3
FIN-THEN, "RESUME FIN ••• "

As soon as tape motion has stopped and the message printouts have
ended, the function (FIN... in this case) suspends itself. This
allows the operator to unload the tape manually and mount a
continuation tape at the load point if desired. When the new tape is
ready, the operator must resume the indicated Task. If no
continuation is desired, he must abort the file transfer function.

VII-7-4

7.4 ERROR MESSAGES

Table 7-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>FIN string
FIN-message
TDV>

In the above example and in Table 7-1, FIN can be replaced by FOU or
LIS. All messages are applicable to the three Tasks.

Table 7-1
FILE INPUT, OUTPUT, and LIST Error Messages

Error Message Meaning

FIN-LINE TOO LONG Command string exceeds
permissible length
(75 characters)

FIN-SYNTAX ERROR Violation in command
string formation

FIN-HINF ERROR "Input or output device
Handler does not per­
form HINF Directive:
possible that nothing
is assigned to the
input or output LUN

FIN-NOT INPUT DEV I/O Handler assigned
to input LUN cannot
perform input: assign­
ments should be checked

FIN-NOT OUTPUT DEV I/O Handler assigned
to output LUN cannot
perform output: assign­
ments should be checked

FIN-FILE NOT FOUND One of the specified
files cannot be found
in the file directory

VII-7-S

System Action

Command ignored

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

Command ignored

Command ignored

Command ignored

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

(Continued on next page)

Table 7-1 (Cont.)
FILE INPUT, OUTPUT, and LIST Error Messages

Error Message

FIN-SEEK ERR

FIN-ATTACH ERR

FIN-ENTER ERR

FIN-READ ERR

FIN-PARITY ERR

FIN-CHECKSUM ERR

FIN-BUF OVERFLOW

Meaning

Error (other than FILE
NOT FOUND) occurred
while SEEK Directive
was being processed

ATTACH Directive to the
input or output device
rejected (ATTACH is not
issued to a directoried
device); error might
occur in the unlikely
event that the input or
output LUN was reassigned
to another device before
completion of the transfeI

Error occurred while
ENTER Directive was
being processed

Error (other than
PARITY, CHECKSUM, or
BUFFER OVERFLOW) oc­
curred while READ
Directive was being
processed

Parity error exists some­
where within the device
block (usually 256 words)
from which the last input
record was read

CHECKSUM error exists
in data record just read

Record larger than 68
words (including header)
encountered in input

System Action

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

Command ignored

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY· LIST

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

File transfer continues
after printing error
message; file probably
contains altered data
as a result of this
error

File transfer continues
after printing error
message; file contains
altered data as a
result of this error

Only a partial record
is written; file trans­
fer continues after
printing error message

(Continued on next page)

VII-7-6

Table 7-1 (Cont.)
FILE INPUT, OUTPUT, and LIST Error Messages

Error Message

FIN-WRITE ERR

FIN-CLOSE INPUT
ERR

FIN-CLOSE OUTPUT
ERR

FIN-DETACH ERR

FIN-FILE STILL
OPEN

FIN-DISMOUNT MT3
FIN-THEN, "RESUME
FIN ••• "

FIN-WRITE EOF ERR

Meaning·

Error occurred while
WRITE Directive was
being processed

Error occurred while
CLOSE Directive on
input file was being
processed

Error occurred while
CLOSE Directive on
output file was being
processed

DETACH Directive issued
to the input or output
device was rejected
(DETACH is not issued
to a directoried device)

Some other Task is ref­
erencing the file in a
manner that conflicts
with the current re­
quest

End-of-tape reached
during Magtape READ,
WRITE, or WREOF

Error occurred while
writing an end-of-file
mark on Magtape

VII-7-7

System Action

Remainder of command
ignored; because some
files may have been
transferred,the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
transferred,the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

Remainder of command
ignored

Remainder of command
ignored; because some
files may have been
tranferred, the user
should request a
DIRECTORY LIST

Task is suspended until
resumed after a new
tape is mounted or
until aborted

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

CHAPTER 8

DELETE: DELETING A FILE FROM DISK

The DELETE FILE TDV Function Task is used to DELETE files from disk.
It can be invoked in batch mode.

8.1 INVOKING DELETE FILE

The user can invoke DELETE FILE by typing a command according to the
following format:

Form: DEL [ETE] name[ext) [,name[ext) •••)V

Where: name of file DELETEd is a string of one to six
.SIXBT characters; if more than one name is
included, the entries must be separated by
commas

ext is a string of one to three .SIXBT
characters and identifies a file extension;

SRC is the default extension

Examples: TDV>DELETE FILE
TDV>DEL Fl,F2,F3
TDV>DEL Fl,F2 003,F3 BIN,F4 SRC
TDV>

8.2 INPUT/OUTPUT AND TASK BUILDING

The DELETE FILE TDV Function Task is assigned Task name DEL... at
Task-Building time. This Task can be built to run in either USER
(protected and relocated) or EXEC mode. It expects LUN-13
(recommended dedicated terminal) to receive error messages and LUN-17
(normally disk) as the file device.

8.3 ERROR MESSAGES

Table 8-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>DEL
DEL-message
TDV>

VII-8-1

Error Message

DEL-LINE TOO LONG

DEL-SYNTAX ERR

DEL-FILE NOT FOUND

DEL-DELETE ERR

DEL-FILE STILL OPEN

Table 8-1
DELETE FILE Error Messages

Meaning

Command string exceeds
permissible length
(75 characters)

Violation in command
string formation

One of the specified
files cannot be found
in the file directory

DELETE Directive re­
jected; possible that:

1. no I/O Handler as­
signed to proper
LUN

2. I/O Handler does
not perform DELETE

3. disk hardware er­
ror occurred

Some other Task is
referencing the file
in a manner that con­
flicts with the cur­
rent request

VII-8-2

System Action

Command ignored

Remainder of command
ignored; because some
files may have been
DELETEd, the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
DELETEd, the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
DELETEd, the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
DELETEd, the user
should request a
DIRECTORY LIST

CHAPTER 9

RENAME: RENAMING A FILE STORED ON DISK

The RENAME TDV Function Task is used to RENAME files stored on disk.
It can be invoked in batch mode.

9.1 INVOKING RENAME FILE

The user can invoke RENAME FILE by typing a command according to the
following format:

Form:

Where:

Examples:

{
new [newext]}

REN[AME] old [oldext], [new] newext V

old is a string of one to six .SIXBT
characters and represents the old name of
the file

oldext is a string of one to three .SIXBT
characters and identifies the old file
extension, SRC is the default extension

new is a string of one to six .SIXBT
characters and represents the new name of
the file, old is the default

newext is a string of one to three .SIXBT
characters and identifies the new file
extension, oldext or its default (SRC) is
the default

TDV>RENAME FILEI,FILE2
TDV>REN OLDFIL SRC,NEWFIL 003
TDV>REN OLDFIL 002, 003
TDV>REN OLDFIL BIN,NEWFIL
TDV>

Either a new name or a new extension is required.

VII-9-1

9.2 INPUT/OUTPUT AND TASK BUILDING

The RENAME FILE TDV Function Task is assigned Task name REN... at
Task-Building time. This Task can be built to run in either USER
(protected and relocated) or EXEC mode. It expects LON-l 3
(recommended dedicated terminal) to receive error messages and LON-17
(disk) as the file device.

9.3 ERROR MESSAGES

Table 9-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>REN string
REN-message
TDV>

Error Message

REN-LINE TOO LONG

REN-SYNTAX ERR

REN-FlLE NOT FOUND

REN-CAN • T RENAME

REN-RENAME ERR

REN-FlLE STILL OPEN

Table 9-1
RENAME FILE Error Messages

Meaning

Command string exceeds
permissible length (75
characters)

Violation in command
string formation

Specified file cannot
be found in the file
directory

I/O Handler does not
perform RENAME (only
for disk Handlers)

Error occurred while
file being opened or
closed; disk hardware
error possible

Same other Task is ref­
erencing the file in a
manner that conflicts
with the current request

VII-9-2

System Action

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored
(there is a remote
chance that RENAME
was performed if disk
error occurred while
rewriting UFD block)

Conunand ignored

CHAPTER 10

DIRECTORY LIST: LISTING FILES IN DISK DIRECTORY

The DIRECTORY LIST TDV Function Task is used to list all files in a
file directory on RF DECdisk, RK cartridge disk, or RP disk pack.
These may be either sequential or random-access files.

This Function Task can be invoked in batch mode.

10.1 INVOKING DIRECTORY LIST

The user can invoke DIRECTORY LIST by typing a command according to
the following format:

Form: DIR[ECTORY LIST] Rmn (UFD> 'J

Where: m is F, K, or P and represents the type of
disk: RF DECdisk, RK cartridge disk, or RP
disk pack respectively

n represents the unit number of the disk
UFD is the name of the user file directory

Example: TDV> DIR RK2 <ABC>
3027 USER BLOCKS
6361 FREE BLOCKS

FILE RND 426 20 3-AUG-7l 1000 10
TASKOl BIN 446 3 l8-AUG-7l
DIRECT 008 0 0 2-SEP-7l*

'In the above example, the number of user blocks is the amount of
storage already allocated on the disk. The number of free blocks is
the amount of storage available to the user. Each of the next output
lines has the following components:

VII-IO-l

• File name: One to six characters

• File Name Extension: One to three characters

• Starting Block Number: One- to six-character octal number (0
if sequential-access file is truncated)

• File Size (Number of Blocks): One- to six-character octal
number (0 if sequential-access file is truncated)

• File creation Date: In form day-month-year where day and year
have one or two decimal digits

• Truncation Mark: Asterisk if file is truncated. Truncation
usually indicates a file in the process of being created but
occasionally identifies one that was never properly closed.
The latter might occur as the result of a disk hardware error.
-Truncation- applies only to sequential-access files.

• Random-Access Information: Two one- to six-character octal
numbers of accounting information are supplied if it is a
random-access file. If the file was created using the FORTRAN
CALL DEFINE statement, these numbers represent the number of
records in the file and the record size, respectively. If the
file was created using MACRO, the user determines the meaning
of these numbers.

Bit 0 in the second word is 0 to indicate a BINARY
(unformatted) file or 1 to indicate an ASCII (formatted) file.

10.2 INPUT/OUTPUT AND TASK-BUILDING

The DIRECTORY LIST TDV Function Task is assigned Task name DIR... at
Task-Building time. This Task can be built to run in either USER
(protected and relocated) or EXEC mode. It expects LUN-13
(recommended dedicated terminal) to receive error messages, LUN-l6 to
accept the file listing, and LUN-l for the Multi-Disk Driver Task.

10.3 ERROR MESSAGES

Table 10-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>DIR
DIR-message
TDV>

VII-IO-2

Table 10-1
DIRECTORY LIST Error Messages

Error Message

DIR-ATTACH ERR

DIR-NOT A LISTING
DEV

DIR-DISK ERR

DIR-PRINTOUT ERROR

DIR-DETACH ERR

DIR-EMPTY

DIR-UFD DOES NOT EXIST

DIR-TDV ERROR

DIR-FORMAT ERROR

DIR-NON-EXISTENT DISK

DIR-DEVICE IS NOT A
DISK

Meaning

ATTACH Directive to the
listing device re­
jected; possible that
nothing is assigned to
the listing LUN

HINF function indicates
that the device assigned
to the listing LUN is
not a listing device
(i.e., it cannot per­
form output or it has a
directory)

Attempt to read in a UFO
block failed; possible
disk hardware malfunction

WRITE to the listing de­
vice declared to be in
error; error does not
occur without drastic
cause (e.g., ~xhausting
Pool of Empty Nodes)

DETACH Directive to the
listing device declared
to be in error; error does
not occur unless operator
reassigns listing LUN in
midstream

No files in the file
directory

The UFD specified is not
listed in the disk's MFD
CHaster Fil~ Directory)

DIR ••• could not read the
TDV command string

Format error detected in
conunand string

Disk specified in command
string is logically not
present

Device name typed was
not RF, RK, or RP

VII-IO-3

System Action

Command ignored

Command ignored

Printing of
DIRECTORY ceases

Printing of
DIRECTORY ceases

Command ignored

Command ignored

Conunand ignored

Command ignored

Command ignore,d

Command ignored

Command ignored

CHAPTER 11

DECTAPE DIRECTORY: LISTING FILES IN DECTAPE DIRECTORY

The DECTAPE DIRECTORY LIST TDV Function Task is used to list all files
recorded in the file directory of a DECtape in standard format.

11.1 INVOKING DECTAPE DIRECTORY LIST

The user can invoke DECTAPE DIRECTORY LIST by typing a command
according to the following format:

Form: DTD [IRECTORY LIST] V

Example: TDV>DTD
DECTAPE UNIT 4

3l-DEC-7l
1004 FREE BLKS

3 USER FILES
10 SYSTEM BLKS

FILNAM EXT 1 15
TABLE BIN 2 23
DTD.l SRC 3 24
TDV>

DTD prints out the following:

• DECtape Unit Number

• Today's Date: In form day-month-year where day and year have
one or two decimal digits

• Free Blocks: Number of free blocks in the file directory in
octal format

User Files: Number of user files in the file directory in
octal format~ this is equivalent to the number of files listed
below~ system tapes consist of user files and system files~
both are listed, but system files are not included in the count
of user files

• System Blocks: Number of system blocks in the file directory
in octal format: the minimum number of system blocks is 10
octal: system blocks include blocks occupied by the file
directory (blocks 71 through 100 octal) and system files (none
if tape initialized and written under RSX control)

VII-ll-l

Each of the next output lines has the following components:

• File name: One to six characters

• File Name Extension: One to three characters

• Starting Block Number: one- to six-character octal number

• File Size (Number of Blocks): One- to six-character octal
number (0 if system file, not user file)

11.2 INPUT/OUTPUT AND TASK BUILDING

The-DECTAPE DIRECTORY LIST TDV Function Task is assigned Task name
DTD ••• at Task-Building time. This Task can be built to run in either
USER (protected and relocated) or EXEC mode. It expects LON-13
(recommended dedicated terminal) to receive error messages, LUN-13 to
accept the file listings, and LUN-19 for DEC tape input.

11.3 ERROR MESSAGES

Table 11-1 lists possible e~ror messages and their implications. All
messages are printed in the following format:

TDV>DTD
DTD-message
TDV>

VII-11-2

Table 11-1
DECTAPE DIRECTORY LIST Error Messages

Error Message

DTD-AT'l'ACH ERR

DTD-NOT A LISTING DEV

DTD-NOT DECTAPE

DTD-DECTAPE ERR

DTD-PRINTOUT ERR

DTD-DETACH ERR

Meaning

ATTACH Directive rejected;
possible that proper I/O
Handler not assigned to
the input or listing LUNs

HINF function indicates that
the device assigned to the
listing LUN is not a listing
device (i.e., it cannot
perform output or it has a
directory)

Input LUN not assigned to
the DECtape Handler

Attempt to read in one of
the DEC tape directory
blocks failed

WRITE to the listing de­
vice declared to be in
error; error does not oc­
cur without drastic cause
(e.g., exhausting Pool of
Empty Nodes)

DETACH Directive to the
listing device or to the
DECtape Handler declared
to be in error; error does
not occur unless operator
reassigns listing LON in
midstream

VII-11-3

System Action

Conunand ignored

Command ignored

Command ignored

Command ignored

Printing of
DIRECTORY ceases

Command ignored

CHAPTER 12

NEW DECTAPE DIRECTORY: WRITING NEW DECTAPE DIRECTORY

The NEW DECTAPE DIRECTORY TDV Function Task is used to write a new
file directory on DECtape in standard format.

12.1 INVOKING NEW DECTAPE DIRECTORY

The user can invoke NEW DECTAPE DIRECTORY by typing a command
according to the following format:

Form: NEW [DIRECTORY] 'iJ

Example: TDV>NEW
NEW DIRECTORY ON DECTAPE UNIT 4
TDV>

12.2 INPUT/OUTPUT AND TASK-BUILDING

The NEW DIRECTORY TDV Function Task is
Task-Building time. This Task can
(protected and relocated) or EXEC
(recommended dedicated terminal) to
messages and LUN-19 for DECtape output.

12.3 ERROR MESSAGES

assigned Task name NEW... at
be built to run in either USER
mode. It expects LUN-13
receive error and confirmation

Table 12-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>NEW
NEW-message
TDV>

VII-12-1

Table 12-1
NEW DIRECTORY Error Messages

Error Message Meaning System Action

NEW-ATTACH ERR ATTACH Directive to the Command ignored
output device rejected;
possible that DECtape
I/O Handler not assigned
to the output LUN

NEW-NOT DECTAPE output LON not assigned Command ignored
to the DECtape I/O
Handler

NEW-DECTAPE ERR Attempt to write out one No further action
of the DEC tape directory
blocks failed

NEW-DETACH ERR DETACH Directive to the Command ignored
listing device rejected;
error does not occur un-
less operator reassigns
listing LON in midstream

VII-12-2

CHAPTER 13

INSTALL: INSTALLING A TASK IN THE SYSTEM

The INSTALL TDV Function task (also an MCR function task) adds a task
to RSX previously built using the Task Builder. The Task Builder
creates a binary file as output. When the INSTALL TDV Function task
is invoked, the binary file is read from LUN-5 and recorded as an
absolute image on the disk. The existence of the task is recorded in
the System Task List.

This function task has been implemented for batch processing, not for
use under the MULTIACCESS Monitor. Its inclusion in the system (via
atypical system build procedures) is permitted only to maintain
compatibility with existing user batch streams.

13.1 INVOKING INSTALL

The user can invoke INSTALL by typing a command according to the
format:

Form: INS [TALL] name [p]V

Where: name of task to be INSTALLed is a string of one
to six .SIXST characters

p is an integer in the decimal range 1 to 512,
specifying the task priority

Examples: priority has been set dur ing task building:
TDV>INSTALL SCAN
TDV>

Priority was not set at task building time or
priority redefined here as 10:

TDV>INS SCAN 10
TDV>

The user can override a priority specified during task building by
indicating a priority in the INSTALL command line.. If a priority has
not previously been specified during task-building, an INSTALL
priority is a required parameter.

XVM/RSX VIS VII-13-l September 1976

I

13.2 INPUT/OUTPUT AND TASK-BUILDING

The r:tmTAJJL Function Task is assign~r. task name rTf; • • • at
Task-Building time. This task must he built to run EXEC mode. It
expects LUN-13 (recor~ended dedicated terminal) to receive error
messages and LU~-5 for binary filp, input.

13.3 ERROR MESSAGES

Table 13-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>INS
INS-message
TDV>

VII-13-2

Error Message

INS-SYNTAX ERROR

INS-TASK ALREADY IN
SYSTEM

INS-PARTITION NOT IN
SYSTEM

INS-TASK WOULD OVER­
FLOW PARTITION

INS-OUT OF POOL

INS-OUT OF DISK

INS-INPUT CHECKSUM ERR

INS-INPUT PAR ERR

INS-SYS COM BLK ERR

Table 13-1
INSTALL Error Messages

Meaning

Task name omitted or
priority invalid

Task to be INSTALLed has
node in STL

Partition name specified
at Task-Building time not
available

Task to be INSTALLed too
large for available par­
tition

No nodes left in pool to
create new STL entry

No room left on the disk

Error while performing
checksum processing

Error while performing
parity checking

INSTALL needs system common
block not currently in
system

INS-READ ERR ON LUN-S Error in reading binary
file from LUN-S

INS-DISK ERR Error while performing
disk get or allocate oper­
ation

INS-NO DEFAULT PRIORITY Priority not specified in
INSTALL command, and no
priority included at Task­
Building time

INS-FILE NOT FOUND ON Binary file not available
LUN-S for input from LUN-S

INS-RELOCATION HARD- No relocation hardware
WARE NOT AVA available on machine

INS-FLOATING POINT No floating-point hardware
HARDWARE NOT AVA available on machine

VII-13-3

System Action

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command Ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

CHAPTER 14

REQUEST: REQUESTING TASK EXECUTION

The REQUEST TDV Function task (also an MCR function task) REQUESTs the
execution of a task at a specified software priority. Actual time of
execution depends on task priority and partition availability.

This function task has been implemented for batch processing, not for
use under the MULTIACCESS Monitor. Its inclusion in the system (via
atypical system build procedures) is permitted only to maintain
compatibility with existing user batch streams.

Tasks requested by this TDV function will not execute under control of
the MULTIACCESS Monitor.

14.1 INVOKING REQUEST

The user can invoke REQUEST by typing a command according to the
format:

Form: REQ [UEST] name [p]V

Where: name of task REQUESTed is a string of one to
six .SIXBT characters

p is an integer in the decimal range 1 to 51,
specifying the task priority

Examples: Priority has been set during task building or
installation:

TDV>REQUEST SCAN
TDV>

Priority is redefined here at 50:
TDV>REQ SCAN 50
TDV>

The priority that has been specified during task building or
installation can be overridden when the task is REQUESTed. If a new
priority is not included in the command line, the task runs at the
previously specified default priority.

14.2 INPUT/OUTPUT AND TASK BUILDING

The REQUEST TDV Function task is assigned task name REQ... at
task-building time. This task can be built to run in either user mode
(protected and relocated) or exec mode. It expects LUN-13
(recommended dedicated terminal) to receive error messages.

XVM/RSX VIB VII-14-1 September 1976

14.3 ERROR MESSAGES

Table 14-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>REQ
REQ-message
TDV>

Error Message

REQ-SYNTAX ERR

REQ-TASK NOT IN SYSTEM

REQ-TASK ALREADY
ACTIVE

REQ-TASK DISABLED

REQ-POOL EMPTY

REQ-PART LOST

Table 14-1
REQUEST Error Messages

Meaning

Task name omitted or
priority invalid

STL node for REQUESTed
Task cannot be found

REQUESTed Task is
currently active

Task has been disabled
and is unavailable

No nodes left in pool
create new CKQ entry

to

Partition in which Task
to run has been lost

is

because of reconfiguration

VII-14-2

System Action

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

CHAPTER 15

REMOVE: REMOVING A TASK FROM THE SYSTEM

The REMOVE TDV Function task (also an MCR function
inactive task from the system. If the user
reinstall a task, he must REMOVE it first.

task) deletes an
plans to alter and

This function task has been implemented for batch processing, not for
use under the MULTIACCESS Monitor. Monitor. Its inclusion in the
system (via atypical system build procedures) is permitted only to
maintain compatibility with existing user batch streams.

15.1 INVOKING REMOVE

The user can invoke REMOVE by typing a command according to the
format:

Form: REM [OVE] name"

Where: name of task to be REMOVEd is a string of one
to six .SIXBT characters

Example: TDV> REMOVE SCAN
TDV>

15.2 INPUT/OUTPUT AND TASK BUILDING

The REMOVE TDV Function task is assigned task name REM... at
task-building time. This task must be built to run in exec mode. It
expects LUN-13 (recommended dedicated terminal) to receive error
messages.

15.3 ERROR MESSAGES

Table 15-1 lists possible error messages and their implications. All
messages are printed in the format:

TDV> REM
REM-message
TDV>

XVM/RSX VIB VII-1S-l September 1976

I

Error Message

REM-TASK ACTIVE

REM-SYNTAX ERR

REM-TASK NOT IN SYSTEM

REM-DISK ERR

REM-ALLOCATE ERROR

I REM-TASK HAS
MULTIPLE STL
ENTRIES

XVM/RSX VlB

Table 15-1
REMOVE Error Messages

Meaning

Task to be REMOVEd
currently active

Task name omitted

STL node Eor task to

is

be
REMOVEd cannot be found

Error while performing
disk GET operation

Error while performing
disk ALLOCATE operation

Disk space allocated to
this task cannot be
deallocated at this time

VII-lS-2

System Action

Command ignored

Command ignored

Command ignored

Command i~nored

Command ignored

Command ignored

September 1976

CHAPTER 16

MOUNT: LOGICALLY MOUNTING A DISK

The MNT TDV Functions task (also an MCR function task) specifies UFOS
for all LUNs assigned to the named disk where no UFO specification has
previously been made. For additional information, refer to the
documentation on the MNT MCR Function task in Part IV of this manual.

This function task is not recommended for use under the MULTIACCESS
Monitor. Its inclusion in the system (via atypical system build
procedures) is permitted only to maintain compatability with existing
user batch streams.

16.1 INVOKING MOUNT

The user can invoke MOUNT by typing a command according to the format:

Form: MNT Rnm UFDV

Where: Rn is disk type: RF, RP or RK
m is a valid disk unit number
UFO is a valid three-character user file

directory

Example: TDV>MNT RP3 ABN
TDV>

16.2 INPUT/OUTPUT AND TASK BUILDING

The MOUNT TDV Function task is assigned task name MNT... at
task-building time. This task must be built to run in exec mode. It
expects LUN-13 (recommended dedicated terminal) to receive error
messages.

16.3 ERROR MESSAGES

Table 16-1 lists possible error messages and their implications. All
messages are printed in the format:

TDV>MNT
MNT-message
TDV>

XVM/RSX VIB VII-16-1 September 1976

I

Error Message

MNT-ALLOCATION ERROR

MNT-DISK PUT ERROR

MNT-FORMAT ERROR

MNT-DISK HAS NO PDVL
NODE

MNT-DEVICE IS NOT A
DISK

MNT-ILLEGAL TO MOUNT
THE SYSTEM DISK

MNT-DISK NOT DIS­
MOUNTED

MNT-DISK GET ERROR

Table 16-1
MOUNT Error Messages

Meaning

Error while performing
disk ALLOCATE operation

Error while performing
disk PUT operation

Invalid device name, unit,
or UIC

PDVL node for specified
disk cannot be found

Device name does not cor­
respond to a disk in the
RSX system

Device name corresponds to
the system disk

Specified disk has not
been dismounted since last
mount

Error while performing
disk GET operation

VII-16-2

System Action

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

CHAPTER 17

DISMOUNT: LOGICALLY DISMOUNTING A DISK

The DSM TDV Function task (also an MCR function task) dismounts a user
disk and, therefore, disables all file-oriented I/O addressed to the
disk. For additional information, refer to the documentation on the
DSM MCR Function task in Part IV of this manual.

This function task is not recommended for use under the MULTIACCESS
Monitor. Its inclusion in the system (via atypical system build
procedures) is permitted only to maintain compatability with existing
user batch streams.

17.1 INVOKING DISMOUNT

The user can invoke DISMOUNT by typing a command according to the
forma t:

Form: DSM RnmV

Where: Rn is disk type: RF, RP or RK
m is a valid disk unit number

Example: TDV>DSM RK6
DISK IS READY FOR DISMOUNTING
TDV>

17.2 INPUT/OUTPUT AND TASK BUILDING

The DISMOUNT TDV Function task is assigned task name DSM... at
task-building time. This task can be built to run in exec mode. It
expects LUN-13 (recommended dedicated terminal) to receive error
messages.

17.3 ERROR MESSAGES

Table 17-1 lists possible error messages and their implications. All
messages are printed in the format:

TDV>DSM
DSM-message
TDV>

XVM/RSX VIB VII-17-1 September 1976

I

Error Message

DSM-FORMAT ERROR

DSM-DISK HAS NO PDVL
NODE

DSM-DEVICE IS NOT A
DISK

DSM-ILLEGAL TO DIS­
MOUNT THE SYSTEM
DEVICE

DSM-DEVICE NOT MOUNTED

DSM-DEVICE IS IN USE

DSH-HA.RK TIHE ERROR

Table 17-1
DISMOUNT Error Messages

Meaning

Invalid device name or
unit

PDVL node for specified
disk cannot be found

Device name does not cor­
respond to a disk in the
RSX system

Device name corresponds to
the system disk

Disk to be dismounted is
not currently mounted

Specified disk is current­
ly being used for I/O

Error encountered while
marking time until all
open files are closed

.VII-17-2

System Action

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

This page intentionally left blank.

XVM/RSX VIB VII-lS-l September 1976

This page intentionally left blank.

XVM/RSX VIB VlI-lS-2 September 1976

CHAPTER 19

CONSTRUCT: STORING A TASK ON A USER DISK

The CONSTRUCT TDV Function task (also an MCR function task) adds a
task to RSX previously built by the Task Builder. When CONSTRUCT is
invoked, the binary file is read from LUN-5. Unlike the INSTALL
function, however, the task core image is stored in a created file on
a disk, not simply in allocated space on the system disk. Because
space on the user disk is allocated by the disk file handler, a LUN
that specifies the disk on which the created file is to reside must
usually be included in the CONSTRUCT command. Unlike INSTALL,
CONSTRUCT does not affect the System Task List in any way.

19.1 INVOKING CONSTRUCT

The user can invoke CONSTRUCT by typing a command according to the
format:

Form: CON [STRUCT] name [LUN]V

Where: name of task to be CONSTRUCTed is a
string of one to six .SIXBT characters

LUN is an integer representing a logical
unit number currently associated with
a disk (the default value is decimal
14)

Example: TDV>CON SCAN 16
TDV> ."

19.2 INPUT/OUTPUT AND TASK BUILDING

The CONSTRUCT TDV Function task is assigned task name CON... at
task-building time. This task can be built to run in either user mode
(protected and relocated) or exec mode. It expects LUN-13
(recommended dedicated terminal) to receive error messages and LUN-5
to be assigned for binary file input.

XVM/RSX VIB VII-I9-1 September 1976

•

I

I

•

•

•

19.3 ERROR MESSAGES

Table 19-1 lists possible error messages and their implications. All
messages are printed in the format:

TDV>CON
CON-message
TDV>

Error Message

CON-SYNTAX ERROR

CON-CREATE ERR

CON-READ ERR

CON-DISK ERR

CON-FILE NOT FOUND

XVM/RSX VIE

Table 19-1
CONSTRUCT Error Messages

Meaning System Action

Task name or LUN omitted Command ignored
or invalid or out-of-range
LUN

Error while performing
create operation

Error while performing
READ operation

Error while performing
disk GET or ALLOCATE
operation

Binary file not available
on LUN-5

VII-19-2

Command ignored

Command ignored

Command ignored

Command ignored

September 1976

This page intentionally left blank.

XVM/RSX VIB VII-20-1 September 1976

This page intentionally left blank.

XVM/RSX V1B VII-20-2 September 1976

This page intentionally left blank.

XVM/RSX VIB VII-20-3 September 1976

This page intentionally left blank.

XVM/RSX VlB VII-20-4 September 1976

CHAPTER 21

QUEUE: QUEUING A BATCH JOB

The QUEUE TDV Function task (also an MCR function task) informs the
batch processor that a job is ready to be run, whether or not the
batch handler is in core. The user can specify the name of the job to
be queued, the LUN from which it comes and a series of job
characteristics, including:

• Maximum time that the job can run (in minutes)

• Class at which the job can run

• Memory use

• Use of sequencing (run in order of submission)

• Whether the job requires operator availability

• Whether QUEUE expects to find the job on the specified device
a t this time

• Whether the job file should be deleted after the job runs

• Use of hold mode

• Whether the job is to be forced

21.1 INVOKING QUEUE

Job characteristics can be delimited in the command string by one or
more spaces, commas or both. The following examples show various
forms of delimited parameters. The user can invoke QUEUE by typing a
command according to the format:

XVM/RSX VIB VII-2l-1 September 1976

•

I

•
I

I

Form:

Where:

Examples:

All parameters of
however, a name
reasons:

QUE[OE] [name] [LUN] [T=time] [C=class]
[M=memory] [SEQ] [OPR] [NCK] [DEL]
[HLD] [STK] [FRC]V

name of task to be queued is a string of one
to six characters (first character must be
alphabetic). E..x.-r ~U"i"'" 13£ ":::ro6

i1

LUN is an integer representing a logical unit
number currently in the system

time is an integer in the decimal range 1 to
1023, representing the maximum number of
minutes that the job can run

class is an integer in the decimal range 0 to
7

memory is an integer in the decimal range 1
to 128, representing memory use (in K)

TDV>QUE COMPIL
TDV>QUE NAMX 15 SEQ C=2
TDV>QUE SCAN 5 T=C C=3 M=28 SEQ SPN
'rOV>QUE 14 NCK

the QUEUE command are optional. In practice,
or LUN is often specified for one of the following

1. The default LUN is LUN-17; usually assigned to the disk.
Specification of an explicit LUN is necessary to override
this default.

2. The name can be omitted if the LUN from which it comes is not
associated with a file-oriented device. In the example:

TDV>QUE 14

14 is associated with the card reader and the command
requires no explicit name definition.

3. If the first character of a QUEUE command line is numeric, it
is assumed that the name has been omitted and the number
represents the LUN of a non-file-oriented device. The user
should ensure that names included in the command line begin
with an alphabetic character.

The HLD option causes QUEUE to queue the job, but to leave it in the
hold mode until the operator releases it. The STK option causes QUEUE
to stack the job by copying it into a temporary file on disk and
queuing it. STK implies deletion after execution.

If the file is on DEC tape or disk and if NCK and STK have not been
specified, QUEUE opens the file, reads the JOB record and outputs
errors, if necessary. If a memory size is specified and not enough
core is available to run, the job waits until the TDV partition is

• large enough.

XVM-RSX VIB VII-2l-2 September 1976

Job information defaults are:

Parameter Default

T Time specified in the job file

C Zero

M Core available at the time the job is run (0)

SEQ No use of sequencing

OPR Job does not require operator availability

NCK Job is on the specified device at this time

DEL Preserve the job file after the run

HLD Run the job as soon as priority permits

STK Do not copy the job file to the disk

F~ Do not force

21.2 INPUT/OUTPUT AND TASK BUILDING

The QUEUE Function task is assigned task name QUE ••• at task building
time.· This task can be built to run in either user mode (protected
and relocated) or exec mode. It uses LUN-13 to receive error
messages.

21.3 ERROR MESSAGES

Table 21-1 lists possible error messages and their implications. All
messages are printed in the format:

TDV>QUE
message
TDV>

XVM/RSX VIB VII-21-3 September 1976

•
•

I

Error Message

FORMAT ERROR IN COMMAND

Table 21-1
QUEUE Error Messages

Meaning

One or more
nonexistent options
in conunand line

ILLEGAL VALUE FOR ARGUMENT Illegal T,C,M, or U
argument

CANNOT INPUT FROM
DEVICE SPECIFIED

NEED FILE NAME FOR
THIS DEVICE

FILE NOT FOUND

READ ERROR

JOB RECORD MUST BE
FIRST LINE

INCORRECT JOB LINE
FOLLOWS

IMPOSSIBLE TO
QUEUE JOB

TDV COMMAND
TRANSFER ERROR

Nothing to input
from that LUN

File-oriented LUN

File cannot be found

Error during READ
operation

First line not JOB
record

Incorrect time limit
specification~ not
three digits or not
in correct sequence

Exec or empty
nodes unavailable

Error in TDV
Command transfer

VII-21-4

System Action

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

COIn.'"nand ignored

Command ignored

Command ignored

CHAPTER 22

aDT: aCTAL DEBUGGING TECHNIQUE

The aDT TDV Function task allows users to debug tasks with an "octal
debugging technique II under XVM/RSX. It permits users to start and
stop tasks, examine and modify task registers and locations within the
task partition, set and remove breakpoints within the task, and
proceed with task execution after a breakpoint has been reached. aDT I
allows the user to define symbols for program addresses so that
command parameter inputs can be given as either octal numbers or
previously defined symbols. Furthermore, aDT monitors task progress I
to ensure that the task does not permanently prevent other system
activities if it enters an infinite loop.

Because of the way that breakpoints are handled, the following
restrictions apply to tasks debugged using aDT:

1.

2.

Tasks must be built in user mode. If the user attempts to
debug an exec-mode task with aDT, the error message "EXEC
MODE" is printed and ODT is reinitialized.

Tasks can have no overlays. If the user debugs a task with
overlays using ODT, he should use extreme caution so that no
breakpoints are set within a link.

3. Tasks cannot modify virtual address
register X17).

17 (autoincrement

4. Tasks cannot modify virtual addresses 0 to 3.

5. Tasks cannot modify the instruction at a breakpoint.

I
I

The last four restrictions are not checked by ODT. If the user task I
violates these restrictions, system integrity is not compromised, but
the user task will probably fail to run correctly.

•

XVM/RSX VIB VII-22-1 September 1976 I

•

I

22.1 INVOKING ODT

The user can invoke aDT by typing a command according to the format:

Form: ODT name [LUN]\?

Where: name of a CONSTRUCTed task
image is a string of
one to six .SIXBT characters

LUN is an integer representing the
logical unit number on which
the file resides (the default
value is decimal 14)

Example: TDV>ODT SCAN 16
TDV>

22.2 DEBUGGING WITH ODT

When ODT begins execution, it prints a header message and attempts to
fix the specified task in core. If the task can be fixed, ODT
requests additional commands by typing the prompter:

ODT>

If the task cannot be fixed in its partition
prints the message "FIX ERR" and exits.

for any reason, ODT

I In response to the ODT prompter, the user can enter anyone of the
following commands:

Command

OPEN
START
EXIT
DEFINE
SET
REMOVE
CONTINUE

RESTAR'r
RELOAD

DUMP*

DECODE*

REGISTERS*

Function

Opens a register or memory location
Starts the task
Exits and aborts the task
Defines a symbol
Sets a breakpoint
Removes a breakpoint
Continues task execution after
reaching a breakpoint
Restarts the task at some location
Reloads the task with symbols and
breakpoints
Dumps the task partition into a
created file on disk
Decodes the opened memory locations
or stops decoding the opened memory
locations
Prints all registers when the task
has reached a breakpoint

Each of these commands is described in detail in the following
paragraphs.

* Legal only if ONEPLS was defined

I XVM/RSX VIB VII-22-2 September 1976

22.2.1 OPEN

The OPEN command examines and optionally modifies the contents of task
registers or locations within the task partition. The format of this
command is:

ODT>OPE[N] nnnnnn

I

where nnnnnn is an address relative to the base of the task partition. •
The nnnnnn specification can be a symbol or one of the following
registers: $AC, $MQ, $XR, $LR, $LINK or $XIO TO $XI6.

OOT prints the contents of the location or register and waits for a I
response. If a value (octal only) is then given as a response, that
value replaces the former contents. If only a terminator is typed,
aOT does not modify the current contents of the register or location. I
If the response is terminated with an altmode, a new command is
requested. If the response is terminated with a carriage return, the
next location is opened (unless a register was specified). If a
register was specified, a new command is always requested.

If a new value for the link is to be entered, only bit 17 of the octal I
word typed is relevant.

This command is legal any time, but registers can be opened only if
the task is at a breakpoint.

22.2.2 START

The START command begins execution of the task being debugged. The
format of this command is:

ODT>STA[RT]

This command can be used only if the task has not already been
started.

22.2.3 EXIT

The EXIT command terminates the debugging session for a particular
task. The format of this command is:

ODT>EXI[T]

The EXIT command causes the task to abort. This command is legal any
time.

•

I

•

XVM/RSX VIB VII-22-3 September 1976 I

I 22.2.4 DEFINE

The DEFINE command defines a symbol. Once a symbol has been defined,
it can replace program addresses indicated in octal notation in other
cOffimand string inputs. The format of this command is:

ODT)DEF [INE] xxx=nnnnnn

where xxx is a one- to three-character symbol and nnnnnn is any octal
number. After the first three characters of a symbol are input,
subsequent characters are ignored. Unlike other commands, nnnnnn for
this command cannot be a symbol.

This command is legal any time.

I 22.2.5 SET

The SET command enters a breakpoint into the task at some location
specified. When the executing task reaches a breakpoint, its progress
is stopped prior to the execution of the instruction at which the
breakpoint is SET. The format of this command is:

ODT)SET nnnnnn

• where nnnnnn is an address relative to the base of the task partition,
and can be a symbol.

This command is legal any time.

I 22.2.6 REMOVE

The REMOVE command removes a breakpoint from the task. It complements
the SET command. The format of this command is:

ODT)REM[OVE] nnnnnn

• where nnnnnn is an address relative to the base of the task partition,
and can be a symbol.

This command is legal any time.

I XVM/RSX VIB VII-22-4 September 1976

22.2.7 RESTART

'rhe RESTART command causes the task to be started at the loca tion
specified once that task has reached a breakpoint. The format of this
command is:

ODT)RES[TART] nnnnnn

•

where nnnnnn is an address relative to the base of the task partition, •
and can be a symbol.

This command is legal only if the task is at a breakpoint.

22.2.8 RELOAD

The RELOAD command instructs ODT to reload the task image (i.e.,
refresh the task partition with a new copy of the task). Breakpoints
and symbols defined when this command is issued are retained, but the
contents of user-modified locations are lost. The format of this
command is:

ODT)REL[OAD]

This command is legal any time.

22.2.9 CONTINUE

The CONTINUE command is used to resume task execution once a
breakpoint has been reached. The format of this command is:

ODT)CON [TINUE]

This command is legal only if the task is at a breakpoint.

22.2.10 REGISTERS

The REGISTERS command is legal only if the assembly parameter ONEPLS
was defined. The format of this command is:

ODT) REG [ISTERS]

This command prints the contents of the AC, MQ, XR, LR and link.

This command is legal only if the task is at a breakpoint.

22.2.11 DECODE

The DECODE command sets a flag to tell the OPEN command whether it
should print the opcodes of opened locations as well as their
contents. The format of this command is:

ODT)DEC[ODE] string

I

I

I

I

XVM/RSX VlB VII-22-5 September 1976 I

Where string is either "ON" or "OFF"

If string is "ON", tne opcodes are decoded. If string is "OFF;', the
opcodes are not decoded. (No opcode decoding is the default mode of
operation for the OPEN command.) The DECODE command is valid only if

I ONEPLS was defined when ODT was assembled.

This command is legal any time.

I 22.2.12 DUMP

The DUMP command is used to write an image of t;le task partition into
an RSX-created file on disk. The file is named TSKNAM DMP, where
TSKNAM is the task name. The image of the task does not contain
breakpoints, but all breakpoints are restored whe~ the dumping process
is complete. This command is valid only if ONEPLS was defined when

lOOT was assembled. The format of this command is:

aOT>DUM[P]

This command is legal any time.

I 22.3 MONITORING TASK PROGRESS

I

I

Whenever a task has been started, restarted or continued after a
breakpoint, ODT monitors its progress. If the task does not exit or
reach a breakpoint within several seconds, ODT prints the task ATL
status and asks the user whether the task should be aborted. If the
user types "NO'I, aDT resumes monitoring task progress. If the user
types "YES", aDT reloads the task, aborting it in the process. If the
task exits while aDT is monitoring its progress, the message "TASK HAS
EXITED" is printed. The task is then reloaded.

I 22.4 AN EXAMPLE aF ODT USE

I
The following listing gives an example of a task to be debugged with
ODT. This program contains two errors that will be found and
subsequently corrected using ODT. The program consists of a main
section and a single subroutine. The function of the main section is
to simulate input data and call the subroutine. The subroutine, which
is presumably used in another program, is intended to count the bits
that are set in the accumulator on entry to the subroutine. It is
this subroutine that contains errors and can be debugged using ODT.

When the example program is task built,
location 0 1n the listing corresponds
partition for this task plus 20 (octal).

it is relocated so that
to the base address of the

The example program is listed on the following page:

I XVM/RSX V1B VII-22-6 September 1976

< H
H
I
~
~
I
~

..

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

440000
000010

00000 R 200053
00001 R 060054

00002 R 200055
00003 R 100013
00004 r , 200056
00005 R 100013
00006 R 777777
00007 R 100013
00010 r , 750000
00011 r , 100013
00012 R 000054

00013 R 000000
00014 R 652000
00015 R 777756
00016 R 040051
00017 R 744000
00020 R 641002
00021 R 740010
00022 R 740400
00023 R 440052
00024 R 440051
00025 R 600021
00026 R 200052
00027 R 060010
00030 r , 620013

00031 R
00051 R 000000
00052 R 000000

000000
00053 R 000030
00054 R 000010
00055 R 654321
00056 r , 123456

SIZE=00057

A
A

R
R

R
R
R
R
A
R
A
R
R

A
A
A
R
A
A
A
A
R
R
R
r ,
A
R

A
A
A
A
R
A
A
A

*L
*L
*L
*L

I
I THIS PROGRAM IS INTENDED TO TEST THE SUBROUTINE 'ONECNT'
I WHICH COUNTS THE 1 BITS IN THE AC ON ENTRY TO THE
I SUBROUTINE.
I
I AS GIVEN HERE~ THIS SUBROUTINE HAS TWO ERRORS.
I
IDX=ISZ IUSED IF INTENT IS TO INCREMENT
Xl0=10 IAUTOINCREMENT REGISTER 10
I
START LAC (BUFF-l IINITIALIZE Xl0

DAC* (Xl0 IUSE Xl0 AS A BUFFER POINTER FOR
ISTORING RESULTS.

LAC (654321 IGET 1ST DATA WORD
JMS ONECNT IGO COUNT THE ONE'S
LAC (123456 IGET 2ND DATA WORD
JMS ONECNT IGO COUNT THE ONE'S
LAW -1 IGET 3RD DATA WORD
JMS ONECNT 100 COUNT THE ONE'S
CLA IGET 4TH DATA WORD
JMS ONECNT IGO COUNT THE ONE'S
CAL (10 IEXIT

I
I SUBROUTINE ONECNT -- COUNT THE ONE BITS IN THE AC ON ENTRY?
I STORE RESULTS VIA Xl0
I
ONECNT 0

lOOP

I

LMQ
LAW
DAC
elL
lACQ
RAl
SNL
IDX
ISZ
JMP
lAC
DAC*
JMP*

BUFF .BlOCK
BITCNT 0
ONES 0

.END

NO ERROR LINES

-22
BITCNT

ONES
BITCNT
LOOP
ONES
Xl0
ONECNT

20

ISAVE THE DATA WORD IN MQ
ISET UP A BIT COUNTER

ICLEAR THE lINK
IRETRIEVE DATA WORD
ISHIFT BITS AND TABULATE ONE'S

IDONE WITH WORD?
INO -- CONTINUE
IYES -- STORE RESULT

IRETURN

IRESULTS BUFFER
IBIT COUNTER
lONE'S COUNTER

ONLY

The following terminal output shows how ODT can be used to debug the
subroutine in the example program:

TDV>ODT TEST

onT V1BOOO
ODT>DEF BUF::::31
ODT>DEF BIT=::~51

ODT>DEF ONE=::52
(}DT>SET 24
ODT>SET 26
ODT>SET 30
ODT>SET 32
ODT>STAI~T
BRKPT AT 000024

ODT>OF'EN BlJF
000051 : 00001:L
000052 :101550
00005~5 : 60041:1.
ODT>OPEN ONE
000072 :000011
ODT>OF'EN BIT
000071 :000000
ODT>CONT
BRKPT AT ()OOO~~6

ODT>OF'EN BUF
000051 :000011
000052 :000022
000053 : 60041:1.
ODT>OPEN ONE
000072 :000022
ODT>RELOAD

ODT>OPEN :~7
000037 :744000 :140072
ODT>START
BRKPT AT 000024

OIlT>OF'EN BUF
000051 :000011
000052 :101.550
000053 :6()0411
ODT>OF'EN ONE
000072 :000011
OIIT>CONT
BRKF'T AT 000026

ODT>OPEN BUF
000051 :000011
000052 :000011.
000053 :600411
ODT>OF'EN ONE
000072 :00001.1
ODT>CONT
BRKF'T AT 000030

+-Name program to be debugged.

}
Define symbols for later use
in command inputs.

Set breakpoints at all } subroutine return addresse:--; .

-St·lrt execution of the task.
+-A breakpoint has been reached
loca tion 4 (Ll).

at

} Open those locations that show
the results of the subrouti~e.
The first result is correct.

} Open subroutine temporary
variables to check them. They
are OK so far.

-Continue task execution.
-A breakpoint has been reached at
location 6 (L2).

}

Check the results buffer and
subroutine temporary storage
locations. An error has been
found. The temporary storage
location ONES must be zeroed
before counting.

-Reload the task into memory
keeping symbols and breakpoints.

-Change loc~tion 17 from a CLL to
a DZM ONES.

-Start task execution.
-The first breakpoint has been
reached.

} Check results. They look OK.

-Continue task execution.
-The next breakpoint has been
reached.

} Check results again. OK.

-Contlnue.
-Another breakpoint has been
reached.

XVM/RSX V1B VII-22-8 September 1976

OIlT>OPEN BUF
000051 :000011
000052 :000011
000053 :000000
OIlT)RELOAII
OIlT>OPEN 42
000042 :740400 :741400
OIlT>OPEN 37
000037 :744000 :140072
OIlT>START
BRKPT AT 000024
OIlT)OPEN BUF
OOOO~l :000011
000052 :101550 :
000053 :600411 :
OIlT)CONT
BRKPT AT 000026
OIlT>OPEN BUF
000051 :000011
000052 :000011
000053 :600411
OIlT)CONT
BRKPT AT 000030
OIlT)OPEN BUF
000051 :000011
000052 :00001:1.
000053 :000022
000054 :101635
000055 : 2042:1.7
ODT>CONT
BRKPT AT 000032
ODT>OPEN BUF
000051 :000011
000052 :000011
000053 :000022
0000~j4 : 000000
000055 :204217
ODT>OPEN $X10
777770 :000054
OnT>EXIT

Tnv>

22.5 ERROR MESSAGES

Check results again. Another
error has been found. The
subroutine is counting cleared
bits instead of set bits.

+-Reload the task once again.

}
Change location 22 from an SNL
to an SZL instruction.

+-Enter previous correction.

+-Start task execution and check
the results at each breakpoint as
they are reached. Use the same
procedures as above.

+-The final breakpoint has been
reached and the subroutine
output looks fine.

+-Examine autoincrement register
10 to be sure that it points to
the correct location within the
data buffer. It does, so leave
ODT.

Table 22-1 lists possible error messages and their implications.

XVM/RSX VlB VII-22-9 September 1976

I

Message

HINF ERR

I PUT ERR

I CREATE ERR

ILLEGAL

BRDPT AT XCT

I EXEC MODE*

READ ERR*

I

I FIX ERR*

I TASK NOT IN STL*

WHAT?

ALREADY STARTED

I REQUEST ERR*

I *Causes ODT to exit.

Table 22-1
aDT Error Messages

Meaning

HINF error on LUN-14

ODT is unable to write
the task image to disk

oo'r is unable to
CREATE a file on
LUN-14

Registers cannot be
opened unless the task
is at a breakpoint

Illegal to have a
breakpoint at XCT
instruction

Task is in exec mode

Terminal read error

Violation of command
syntax

ODT is unable to FIX
the task

Task specified is not
in the system**

unrecognized command

Task was previously
started

ODT is unable to
REQUEST the task

Routines Generating
Error Message

DUMP

DUMP

OPEN

SET, OPEN

ODT INITIALr~~rION

ODT INITIALIZATION,
COMMAND DISPATCH,
OPEN, MONITOR
ROUTINE

ODT INITIALIZATION,
COMMAND DISPATCH,
RESTART, SET,
REMOVE, OPEN,
DECODE

ODT INITIALIZATION,

ODT INITIALIZATION

COMMAND DIS~~TCH

START

START

(Continued)

**This error should never appear unless the system list structure has
been corrupted.

I XVM/RSX V1B VII-22-10 September 1976

Message

TABLE FULL

ALREADY OEF I ~~e: I)

NOT AT A BRKPT

NOT IN TABLE

ATTACH ERR*

TASK NOT IN ATL*

OU'f OF BOUNDS

*Causes ODT to exit.

XVM/RSX VIB

Table 22-1 (Cant.)
ODT Error Messages

Meaning

Breakpoint or symbol
table full

~reakpoint has already
been defined or set

Task is not at a
breakpoint

Breakpoint is not in
the table

ODT is unable to
ATTACH the terminal

Task is deleted from
ATL

Address is not within
the task partition
space

VII-22-11

Routines Generating
Error Message

DEFINE, SET

SET

RESTART, CONTINUE,
REGISTERS

CONTINUE, REMOVE

ODT INITIALIZATION,
COMMAND DISPATCH,
MONITOR

ODT INITIALIZATION,
CONTINUE

RESTART, SET,
REMOVE, OPEN

I

I

I

I

September 1976 I

CHAPTER 23

STATUS: MULTIACCESS STATUS REPORT

The STATUS TDV Function task prints a status report of internal
MULTIACC~SS information. This status information is intended for use
by the system manager and, in general, is not of interest to the TDV
user.

23.1 INVOKING STATUS

The user can invoke STATUS by typing a command according to the
format:

Form: STA[TUS]V

Example: TDV>STA
TDV>

23.2 INPUT/OUTPUT AND TASK BUILDING

The STATUS TDV Function task is assigned task name STA... at
task-building time. This task is written in FORTRAN and should be
built to run in user mode (protected and relocated). Output status
information is sent to LUN-16.

A sample STATUS report is listed below:

XVM/RSX VlB VII-23-1 September 1976

TIIV>STr::}
MULTIACCESS STATUS REPORT 13-JUL-76

:1. ACTIVE USEi=H S)
TOTAL NUMBER OF USER(S) = 1
TOTAL NUMBER OF JOBCS) = 15
MEAN WAIT TIME IS O~OO SECONDS/JOB
ACTIVE TERMINAL NUMBERS ARE: 0
THERE ARE 198 (10) WORDS OF DYNAMIC STORAGE

OOOO()()"~OO:L ?7"7
006()OO'~'0077"77
O:L 4000· .. ·0 1 ~:)777
()22000 ()2~3·77·?
0;·5()OOO· .. ·031 '?T?
0:36000'-037"7T7
044000 0457T7
0~:i2000· .. ·0~53777
060000-061777
066000,-0677"77
07 4000-07~57T7

Tnl»

T(")SI< SIZE HI~:)TOGi=;;i;~I~'j

o 002000-003777
o 010000-011777

o
()

o
o
()

o
()

o

():I. 60()0 O 1'7::?/'7
024000 02!:5777
0320()O 03377"?
04()OOO 041 TT7
046000 .. ··04 '7:.7'77
O~.:j40()() ()~j~57'77
062000 06~~77"?
070000 07:1. ,/'77

076000·· .. 077·?77

()

()

o
()

o
o
o
o
o
()

o :i. :?OOO O J. :::<,]'77
() ::.~ () (;c I) () () :::.~ 1 '~.") ';7 ',?
() ::.~ \~) () () () () ::.~ ~l)' ',? ::.:.t

034000 03!::.i??·/
04;;.~()OO-04::~ 1'77
O~)OOOO""O!:i:l. '777
o ~5 bO 0 0 .~. 0 !~; '7 "/ '7 7
() {:) -'1 () () () ~) f.) !:5 :7 ';:., ~")
07 2000· .. ·0'?:3 7 '.1'-;:-'

:I. O()O 00 '.1'777 '77

"j ,.: ..

:1.

-<+

o
()

o
()

I.)

()
()

The status report presents important current information and
historical information compiled since TDV stqrted running. Current
information includes:

• Number of active users

• Active terminal numbers

• Words of dynamic storage (this system management concept is
fully documented in the TDV code listing)

Historical information includes:

• Total number of different users

• Total number of jobs handled

• Mean wait time per job

• Number of tasks that have been run in each of 33 size ranges,
each progressively increasing by 2000 (octal) words

XVM/RSX V1B VII-23-2 September 1976

CHAPTER 24

BATCH ACCOUNT FILE INITIALIZATION AND DISPLAY

~
~

Two TDV function tasks, ACI and ACD, control batch job accounting and
account summaries. The use of ACI and ACD is described in Part VIII
of this manual, Batch Processing.

24.1 ACI: INITIALIZE BATCH ACCOUNT FILE

ACI allows the system manager to initialize (clear to zero) the Batch
processor account file or create an account file if one does not exist.

24.2 ACD: DISPLAY BATCH ACCOUNT FILE

ACD allows the system manager to list the Batch Processor account file.

XVM/RSX VlB VII-24-l September 1976

INDEX

Abbreviations for commands, 1-9
ACD, TDV Function task, 24-1
ACI, TDV Function task, 24-1
Altmode, 1-8, 6-3, 6-9
Assembler options, 3-2
Assembling a MACRO program, 3-1
"At" sign (@), 1-9
Auxiliary disk functions, 2-3

Backarrow (+), 1-9, 7-3
Backslash (\), 1-9
Bank-mode option, 6-7
Basic Task Builder, 6-1, 6-18
Batch account file,

display, 24-2
initialization, 24-2

Batch file editing, 5-1
Batch mode, 3-1

FORTRAN, 2-1
MACRO Assembler, 3-1
processing, 13-1, 14-1, 15-1

Block-mode editing, 4-1
Braces ({ p, 1-10
Breakpoints in a task, 22-1
Buffer and partition size, 4-3
Building a task for execution,

6-1

Carriage return, 1-8
CHAIN and EXECUTE programs, 6-4
Characters, upper/lower case,

1-10
Comma character, 7-2
Command abbreviations, 1-9
Command string terminators, 1-8
Command syntax errors, SLIP,

5-16
Commands, MULTIACCESS Monitor,

1-2.1
COMMON blocks, 6-8, 6-10, 6-11
Compiler options, FORTRAN IV,

2-2
Compiling a FORTRAN program, 2-1
CONSTRUCT TDV Function task, 19-1

error messages, 19-2
Control-character facilities, 1-2.1
Control records, SLIP, 5-4
Conventions for TDV command, 1-8
Conversion to XVM/RSX, 6-18
CTRL/D, 3-6
CTRL/Q, 6-3
CTRL/T, 1-7
CTRL/U, 1-9

Date, 11-1
Debugging with ODT, 22-2
DECtape Directory List TDV,

Function task, 11-1
error messages, 11-2, 11-3

Default priority of task, 6-8
Delete character or line, 1-9
DELETE FILE error messages, 8-2
DELETE FILE, TDV Function

task, 8-1
Delimiters, 7-3
Devices, I/O, 1-6
Dialogue, TKB, 6-17
DIRECTORY LIST, TDV Function

task, 10-1
error messages, 10-2, 10-3

Disk directory, 10-1
Disk, task storage on, 19-1
Disk-to-disk editing, 4-3
DISMOUNT, TDV Function task, 17-1

error messages, 17-1
Dismounting a disk (logically),

17-1
Dismount tape, 7-4
-$ command, 5-5
DSM, TDV Function task, 17-1
Dump mode, 3-6

Editor, 4-1
error messages, 4-3, 4-4

Editing batch files, 5-1
Editing disk-to-disk, 4-3
END-OF-FILE, 5-14
End-of-file, SLIP, 5-5
Error codes for *FILE routine,

5-15
Error flags, MACRO Assembler, 3-7
Error messages,

CONSTRUCT, 19-2
DECTAPE DIRECTORY LIST, 11-3
DELETE FILE, 8-1
DIRECTORY LIST, 10-3
DISMOUNT, 17-2
EDITOR, 4-3, 4-4
FORTRAN, 2-5
INSTALL, 13-3
MACRO Assembler, 3-9
MOUNT, 16-2
NEW DIRECTORY, 12-2
ODT, 22-10
OTS, 2-15, 2-17
QUEUE, 21-4
REMOVE, 15-2
RENAME FILE, 9-2
REQUEST, 14-2

XVM/RSX VIB VII-Index-l September 1976

INDEX (CONT •)

Error messages (cont.)
SLIP, 5-14
TDV, 7-5
TKB, 6-19

Errors,
$SLIP control record, 5-15
SLIP sequencing, 5-16
TKB recoverable, 6-20

Executive-mode option, 6-7
External links, 6-14
EXU.13, 6-13

File creation date, 10-2
*FILE errors, 5-14
File name and extension, 10-2
File name list, 6-13
*FILE records, 5-4
File size, 10-2
*FILE specification, SLIP, 5-3
File transfer, 7-3, 7-4
FIN, TDV Function task, 7-2
Floating-Point Processor (FPP) ,

2-1, 2-4
F option, 7-3
Form feeds, 7-3
FORTRAN error messages, 2-5
FORTRAN IV Compiler options,

2-2
FORTRAN line numbers, 5-10
FORTRAN, other versions, 2-3
FORTRAN program compilation,

2-1
FOU, TDV Function task, 7-2
FPP system OTS error messages,

2-17
Free blocks, 11-1
Function tasks, TDV, 1-2

Historical system information,
23-2

Image mode, 7-3
Index register (XR), 6-7
Initialize FORTRAN I/O tables,

2-4
Input/output, 2-3

CONSTRUCT, 19-1
DEC TAPE DIRECTORY LIST, TDV

Function task, 11-2
DELETE FILE, 8-1
DIRECTORY LIST, TDV Function

task, 10-2
DSM, 17-1

Input/output (cont.)
EDITOR, 4-2
FORTRAN IV, 2-4
INSTALL, TDV Function task, 13-2
MACRO Assembler, 3-5, 3-6
MOUNT, 16-1
QUEUE, 21-3
RE~10VE, 15-1
RENAME FILE, TDV Function task,

9-2
REQUEST, 14-1
SLIP, 5-14
STATUS, 23-1
Task Builder, 6-4
TDV function tasks, 7-3

INSERT, 5-6, 5-7
Insertion records, SLIP, 5-4
INSTALL, TDV Function task, 13-1

error messages, 13-1
Internal links, 6-14
Introduction, 1-1
lnvoking,

CONSTRUCT, 19-1
DECTAPE DIRECTORY LIST, 11-1
DIRECTORY LIST, 10-1
DISMOUNT, 17-1
FIN, DEC, FOU, LIS and

TYPE, 7-2
FORTRAN IV Compiler, 2-1
INSTALL, 13-1
MACRO Assembler, 3-2
MOUNT, 16-1
NEW DECTAPE DIRECTORY

LIST, 12-1
ODT, 22-2
QUEUE, 21-1
REMOVE, 15-1
REQUEST, 14-1
SLIP, 5-2
STATUS, 23-1
Task Builder, 6-2
Text Editor, 4-1

I/O devices, 1-6
lOPS ASCII mode, 7-3
lOPS binary data mode, 7-3

Library files, 6-13
Library routines, 6-13
Line-by-line mode editying, 4-1
Linkages, 3-1
LINK definitions, 6-14
Links and structures description,

6-13
LIS, TDV Function task, 7-2
List options, Task Builder, 6-4
Lower-case characters, 1-10

XVM/RSX V1B VII-Index-2 September 1976

INDEX (CONT.)

LUN assignments,
Editor, 4-2
FORTRAN IV, 2-3
MACRO Assembler, 3-5
TDV function tasks, 1-4

MACRO Assembler
error flags, 3-7
error messages, 3-9
other versions, 3-6

MACRO definitions file, 3-6
MACRO program assembly, 3-1
Magtape operation, 7-4
Memory protection, 6-7
MNT, TDV Function task, 16-1

error messages, 16-1
Monitoring task prograss, ODT,

22-6
Mounting a disk logically, 16~1
Mount tape, 7-4
MULTIACCESS, 1-1

control-character facilities,
1-2.1

Monitor commands, 1-2.1

Name task option, 6-8
NEW DECTAPE DIRECTORY, TDV

Function task, 12-1
error messages, 12-2

N option, 7-3
No parity check, 7-3

Object-Time System (OTS)
library routines, 2-1

ODT, 22-1
commands, 22-2
error messages, 22-10
example, 22-6
monitoring task progress, 22-6
restrictions, 22-1

Optional characters, 1-9
Optional itmes, 1-10
Options,

Assembler, 3-2
SLIP, 5-3
$SLIP, 5-2

OTS error messages, 2-15
OTS error messages in FPP

systems, 2-17
OTS output, 2-4
Overlay structure description,

6-15

Page eject, 7-4
Page-mode option, 6-7
Parameter input,

MACRO assembler, 3-6
Partition Block Description

List. (PBDL), 6-9
Partition description, 6-9
Partition size, 4-3, 6-7, 6-8

6-9
Parity error message suppression,

7-3
PASS1, PASS2, PASS3, 3-1
PAUSE statements, 2-4
Pool of Empty Nodes, 6-7
Priority default, 6-8
PUP (Peripheral Utility Program) ,

1-1

QUEUE, TDV Function task, 21-1
error messages, 21-3

Random-access information, 10-2
Recoverable TKB errors, 6-20
REMOVE, TDV Function task, 15-1

error messages, 15-2
RENAME FILE, TDV Function

task, 9-1
error messages, 9-2

REPLACE, 5-8
REPLACE WITH FILE, 5-9
REQUEST, TDV Function task, 14-1

error messages, 14-2
Resident code definition, 6-13
Resident TDV Dispatcher, 1-7
Rubout, 1-9

SEARCH AND INSERT, 5-10, 5-11
SEARCH AND REPLACE, 5-12
SEARCH AND REPLACE WITH FILE, 5-13
Sequential files transfer, 7-1
Shared address space (SAS) , 6-10,

6-11
external (ESAS), 6-11
internal (ISAS), 6-11

Shared COMMON block description,
6-10, 6-11

SIZE command, 4-3
SLIP, 5-1

command syntax errors, 5-16
control records, 5-4
editing demonstration, 5-16
error messages, 5-14
options, 5-3
sequencing errors, 5-16

XVM/RSX VIB VII-Index-3 September 1976

INDEX (CONT •)

$SLIP control record errors, 5-13
$SLIP options, 5-2
Source programs, 3-1
Space, 1-10
Space character, 7-2
Square brackets ([]), 1-10
Starting block number, 10-2
STATUS, TDV Function task, 23-1
STOP Statements, 2-4
Structures description, 6-13
Symbol table, 3-1
System blocks, 11-1
System COMMON blocks description,

6-10
System library, 6-13
System status, 23-1

Table Initiali~ation, 2-4
Task breakpoint, 22-1
TASK BUILDER, 6-1

input/output, 6-4
options, 6-5

Task building,
CONSTRUCT, 19-1
DELETE FILE, 8-1
DECTAPE DIRECTORY LIST, 11-2
DIRECTORY LIST, 10-2
DISMOUNT, 17-1
FILE INPUT, 7-3
INSTALL, 13-1
MOUNT, 16-1
NEW DECTAPE DIRECTORY, 12-1
QUEUE, 21-3
REMOVE, 15-1
RENAME FILE, 9-2
REQUEST, 14-1
STATUS, 23-1

Task development (TDV), 1-1
Task name, 6-8
Task storage on disk, 19-1
TDV command conventions, 1-9
TDV error messaqes, 7-5
TDV function tasks, 1-2, 1-9
TDV/system communication, 1-8

(terminator), 1-10
Terminators, command string, 1-9
Text-editing source code, 4-1
Text Editor, other versions, 4-3
TKB errors, 6-19

recoverable, 6-20
unrecoverable, 6-21

Transferred files, 7-3
Truncation mark, 10-2
TYPE, TDV Function task, 7-1

UFD, 16-1
Unrecoverb1e TKB errors, 6-21
Upper-case characters, 1-10
User files, 11-1
Us~r-mode option, 6-7

,/

V~rtual partition size, 6-10

XFRCMD system directive, 1-9

XVM/RSX VIB VlI-Index-4 September 1976

	07_00
	07_01-01
	07_01-02.0
	07_01-02.1
	07_01-03
	07_01-04
	07_01-05
	07_01-06
	07_01-07
	07_01-08
	07_01-09
	07_01-10
	07_02-01
	07_02-02
	07_02-03
	07_02-04
	07_02-05
	07_02-06
	07_02-07
	07_02-08
	07_02-09
	07_02-10
	07_02-11
	07_02-12
	07_02-13
	07_02-14
	07_02-15
	07_02-16
	07_02-17
	07_03-01
	07_03-02
	07_03-03
	07_03-04
	07_03-05
	07_03-06
	07_03-07
	07_03-08
	07_03-09
	07_04-01
	07_04-02
	07_04-03
	07_04-04
	07_05-01
	07_05-02
	07_05-03
	07_05-04
	07_05-05
	07_05-06
	07_05-07
	07_05-08
	07_05-09
	07_05-10
	07_05-11
	07_05-12
	07_05-13
	07_05-14
	07_05-15
	07_05-16
	07_05-17
	07_05-18
	07_05-19
	07_05-20
	07_05-21
	07_05-22
	07_05-23
	07_06-01
	07_06-02
	07_06-03
	07_06-04
	07_06-05
	07_06-06
	07_06-07
	07_06-08
	07_06-09
	07_06-10
	07_06-11
	07_06-12
	07_06-13
	07_06-14
	07_06-15
	07_06-16
	07_06-17
	07_06-18
	07_06-19
	07_06-20.0
	07_06-20.1
	07_06-21
	07_06-22
	07_07-01
	07_07-02
	07_07-03
	07_07-04
	07_07-05
	07_07-06
	07_07-07
	07_08-01
	07_08-02
	07_09-01
	07_09-02
	07_10-01
	07_10-02
	07_10-03
	07_11-01
	07_11-02
	07_11-03
	07_12-01
	07_12-02
	07_13-01
	07_13-02
	07_13-03
	07_14-01
	07_14-02
	07_15-01
	07_15-02
	07_16-01
	07_16-02
	07_17-01
	07_17-02
	07_18-01
	07_18-02
	07_19-01
	07_19-02
	07_20-01
	07_20-02
	07_20-03
	07_20-04
	07_21-01
	07_21-02
	07_21-03
	07_21-04
	07_22-01
	07_22-02
	07_22-03
	07_22-04
	07_22-05
	07_22-06
	07_22-07
	07_22-08
	07_22-09
	07_22-10
	07_22-11
	07_23-01
	07_23-02
	07_24-01
	07_Index-01
	07_Index-02
	07_Index-03
	07_Index-04

