: PART VII
XVM/RSX ON-LINE TASK DEVELOPMENT

CHAPTER 1

INTRODUCTION TO MULTIACCESS

1.1 FUNCTION OF TASK DEVELOPMENT

RSX has the capability of multiuser on-line task development with
concurrent batch processing. Multiuser task development (TDV) is
known as the MULTIACCESS facility. RSX offers a full range of TDV
functions wunder control of the MULTIACCESS Monitor. By calling
different TDV system modules (function tasks) supplied with RSX, the
user can enter or change source code, compile a FORTRAN IV program Or
assemble a MACRO program, and build this program as a task that will
execute under RSX control. (In addition, the user can invoke utility
routines to perform a variety of file 1listing and maintenance
functions.) The TDV function tasks supplied as part of RSX are listed
in Table 1-1.

Besides the TDV function tasks, the MULTIACCESS Monitor supports a set
of commands that control the user TDV environment. The MULTIACCESS
Monitor commands are 1listed in Table 1-2. Furthermore, three
control-character facilities have been provided to help the user
control his =~ particular task development. The MULTIACCESS
control-character facilities are listed in Table 1-3.

JOB, BAT and END (not listed in Table 1-1) are <classified as TDV
functions, but because they have meaning only when batch processing,
they are separtely described in Part VIII of this manual.

Another TDV function task (not listed in Table 1-1), PUP (Peripheral
Utility Program), resembles PIP (Peripheral Interchange Program),
which is used on other systems. PUP enables the user to transfer
files from one device to another. Although it is not supplied with
RSX, the user can obtain it from the DEC User Society (DECUS) .

The MULTIACCESS facility can be used from any number of terminals up
to the maximum number suppor ted by the particular system
configuration. However, for most installations, the number of
terminals used simultaneously for task development should be limited
to six. This is suggested because of the 1large size of several
critical TDV function tasks.

XVM/RSX V1B VII-1-1 September 1976

TDV

Table 1-1
Function Tasks

TDV Function Task

Function Performed

FOR[TRAN]
MAC [RO]
EDI[TOR]
SLI[P]
TKB[UILDER]
BTK
FIN[PUT]
DEC[K]
FOU[TPUT]

LISI[T]

TYP[E]

DEL[ETE]
REN[AME]
DIR[ECTORY LIST]
DTD[IRECTORY]
NEW[DIRECTORY]
INS[TALL] *
REQ[UEST] *
REM[OVE] *
MNT*

DSM*
CON[STRUCT]
STA[TUS]
QUE[UE]

oDT

ACI

ACD

Compile a FORTRAN IV program
Assemble a MACRO program

Text~edit source code

Edit batch files

Build a task for execution

Basic Task Builder

Transfer a sequential file to disk
Batch transfer to disk

Transfer a sequential file from disk

Transfer a sequential file from disk
to printing device :

Transfer a sequential file from disk
to printing device

Delete file from disk

Rename file stored on disk

List files in file directory on disk
List DECtape file directory

Write out a new DECtape file directory
Install a task in the system

Request task execution

Remove a task from the system
Logically mount a disk

Logically dismount a disk

Store a task on a user disk

Print MULTIACCESS Monitor statictics
Queue a batch job

Octal Debugging Technique

Initialize batch account file

Display batch account file

*Not recommended for use under MULTIACCESS

XVM/RSX V1B

Vii-1l-2 September 1976

Table 1-2
MULTIACCESS Monitor Commands

Command Function Performed
OFF Log the user off of the MULTIACCESS
: system

DEV[ICES] Print the user's LUN-to-device
relationship

PAR[TITION] Specify the user's memory requirements

KPAR[TITION] Specify the user's memory requirements

ASG (ASSIGN) Assign the user's LUNs to peripheral
devices

XQT ’ Execute a user task
Table 1-3

MULTIACCESS Control-Character Facilities

Control Character Function Performed

CTRL/T Begin the login process, if the user
is not logged in.

Inform the user of his current job
status, if the user is logged in.

CTRL/Y ’ Abort the wuser's current task (TDV
function or user-written task), if one
is active.

CTRL/P Resume a user task if it has been
suspended by a FORTRAN PAUSE statement
or MACRO SUSPEND directive.

XVM/RSX V1B vVIir-1-2,1 September 1976

All TDV function tasks are invoked through the MULTIACCESS Monitor, an
exec-mode task that is built for any user-specified partition within
the first 32K of core. TDV function tasks, such as the FORTRAN IV
Compiler, reside on the disk until requested by the Resident TDV
Dispatcher. These tasks typically share a core partition, although
they can be built to run in any partition.

To facilitate concurrent operations, it is necessary to assign virtual
user LUNs 1in such a way that devices need not be reassigned when the
user switches from one TDV function to another. Table 1-4 contains
recommended virtual LUN assignments for TDV use. Device names
correspond to devices listed in Table 1-5. Function names are given
in Table 1-1.

NOTE

Thoughout this part of the manual and
wherever user LUNs are referred to, it
must be understood that these are
virtual LUNSs. Virtual LUNs are
automatically "mapped" to system LUNs by
the MULTIACCESS Monitor.

The MULTIACCESS Monitor accepts requests for specific functions as
input from a dynamically allocated system LUN. The resident task then
requests that a specific TDV function task be brought into its core
partition from disk. This function task assumes control and can
perform the jobs described in subsequent chapters.

TDV function tasks accept command input from LUN-12, in much the same
way as the Resident MCR accepts requests for MCR functions from LUN-2.
TDV error messages are sent to LUN-13 just as MCR error messages are
sent to LUN-3. The MULTIACCESS user should leave virtual LUNs 12 and
13 assigned to TT (the default assignment).

Actual time of execution of TDV function tasks, like wuser tasks,
depends on partition availability and task priority. More detailed
descriptions of this process appear below and in Part XI of this
manual.

XVM/RSX V1B VII-1-3 September 1976

P-1-IIA gTA XS¥/WAX

9L6T xoqualdas

LUN

Recommended
Device
Assignments

LUN
Use

Table 1-4
TDV Virtual LUN Assignments
1 5 1o 11 12 13 14 15 16 17 18 19 20 21
DK RF, RF, RF, TT TT RF, LP RF, RF, DT TT TT
RP or RP or RP or RP or RP or RP or
RK RK RK RK RK RK
TDV TDV
cmd err
in log
FOR FOR FOR FOR FOR
cmd err SRC list | BIN
in msgs in out
MAC MAC MAC MAC MAC MAC MAC
cmd err SRC list | BIN sec aux
in msqgs in out in in
EDI EDI EDI EDI EDI EDI EDI
cmd err aux SRC temp aux term
in msqgs out 1/0 file in 1/0
TKB TKB TKB TKB TKB TKB
sys user cmd | term BIN TSK
libr libr in out in out
FIN FIN FIN FIN
cmd err file file
in msgs out in
FOU FOU . FOU FOU
cmd err file file
in msgs in out
LIS LIS LIS LIS
cmd err list | file
in ‘msgs in
DEL DEL DEL
cmd err file
in msgs I/0
REN REN REN
cmd err file
in msgs 1/0
DIR DIR DIR DIR
dsk cmd err list
drvr in msgs

(Continued)

G-T-IIA 9TA XS¥/WAX

9,61 Taquaidas

LUN

Table 1-4 (Cont.)

TDV Virtual LUN Assignments

5 10 11 12 13 14 15 16 17 18 19 20 21
DTD DTD DTD
cmd err, tape
in list in
NEW NEW NEW
cmd | err tape
in msgs out

INS INS INS
TSK cmd err
in in msgs
REQ REQ
cmd err
in . msgs
REM REM
cmd err
in msgs
MNT | MNT
cmd err
in msgs
DSM DSM
cmd err
in msgs
XQT XQT
cmd err
in msgs
CON CON CON
TSK cmd err
in in msgs
DFEC DEC DFEC DEC
cmd |err file file
in msgs in out

Table 1-5
I/0 Devices

Device Name

Device

TTn
DTn
MTn

RF

PR
PP
CD
CP
LP
AD
AF
UD
cc
VTn
VWn
XY

Cb

Terminal

DECtape

Magtape
Fixed-Head Disk
Disk Pack

Disk Cartridge
Paper Tape Reader
Paper Tape Punch
Card Reader

Card Punch

Line Printer

Analog-to-Digital Converter
Automatic Flying Capacitor Scanner
Universal Digital Controller

System COMMON Communicator

Display
Writing Tablet

XY Plotter

Card Reader (CR11l)

XVM/RSX V1B

VII-1-6

September 1976

1.2 REQUESTING THE RESIDENT TDV DISPATCHER

Task development can be requested from any idle terminal by typing
CTRL/T. This usually causes the LOGIN Processor to be invoked.
CTRL/T is ignored, however, if the terminal is ATTACHed or if the
Resident TDV Dispatcher cannot execute for any reason (e.qg., if it has
not been INSTALLed, if it is DISABLEd or if its partition is in use).

If the user is already logged into MULTIACCESS, CTRL/T causes the
status of the current function to be printed. The format of this
status message is:

TASKNME PARTITION ATL STATUS ABBREVIATION
where TASKNAME is the name of the user program or system function,

PARTITION is the name of the partition in which the task is running
and ATL STATUS ABBREVIATION is one of the following:

ATL Status Abbreviation Meaning

CREATING TASK Task is not yet active

WAITING FOR PARTITION

ON DISK ATL status 1 or 2

WAITING AT (address) ATL status 3 (restart address is printed
after the abbreviation)

EXECUTING ATL status 4,5,7 or 10

SUSPENDED ATL status 6 (equivalent to PAUSE in
FORTRAN) »

ABORTING

SYSTEM ERROR-
TASK NOT IN ATL

If no user-specified task 1is running (i.e., if the Resident TDV
Dispatcher 1is waiting for the user to enter a command), the following
messade is printed:

TDV AWAITING COMMAND
TDV>

If the user is not 1logged into MULTIACCESS, the LOGIN Processor
determines whether there are sufficient resources available to log the
user into the system. If resources are not available, the LOGIN
Processor prints the message:

MULTIACCESS - TOO MANY JOBS
on the terminal and ignores any user-typed commands until CTRL/T is
typed again. 1If resources are available, the LOGIN Processor logs in
the user and prints the message:

XVM/RSX V1B000 MULTIACCESS

MONTH/DAY/YEAR HOUR:MINUTE

XVM/RSX V1B VIIi-1-7 September 1976

NN USERS LOGGED IN
SPECIFY DISK TYPE (RK, RP OR RF), UNIT AND UFD>

The user must then respond by typing the requested data in the
following format:

RD
{RP {0-7 s <UFD> (e.g., RKS <XY2%>)
RF

The default disk type is the same as that of the system disk, the
default unit number is 0 and the default UFD is <SCR>.

If the user does not complete the response with a 1line terminator
within 60 seconds, the LOGIN Processor returns the terminal to the
idle state. If the UFD specified does not exist for the disk
specified, the LOGIN Processor creates it. 1In this event, the LOGIN
Processor informs the user by printing the message:

UFD CREATED: <UFD>

During the login process, user errors cause the following messages to
be printed:

Error Message Cause

NONEXISTANT UNIT NUMBER The unit number specified does not

RETYPE> exist.

SYNTAX ERROR The command line contains a syntax

RETYPE> error.

UFD CREATION ERROR A new UFD was specified and disk errors
prevented its creation. This is a fatal
error.

SYSTEM ERROR- This is a fatal error.

MISSING PDVL NODE
Fatal errors cause an automatic logoff to occur.

Once the user has successfully logged into MULTIACCESS, the system
responds by printing the prompter:

TDV>

In response to this prompter, the user can enter any legal TDV
command .

1.3 TDV/SYSTEM COMMUNICATION

Consider the following command line as an example of invoking the
FORTRAN IV compiler:

TDV>FOR BPROG1

In RSX, both the command to run the Compiler and the command to the
Compiler itself are typed on the same line.

XVM/RSX V1B ViI-1-8 September 1976

When the Compiler is loaded into core and begins to run, it issues a
system directive <called XFRCMD, which causes the line read by the
Resident TDV Dispatcher to be transferred to the Compiler. This is a
command used by all TDV function tasks regardless of whether or not
they request any command input. Until XFRCMD is issued, the Resident
TDV Dispatcher command line buffer is occupied.

Once the command line is transferred and the requested task has
completed its operation, the Resident TDV Dispatcher task is
automatically requested by the TDV function task (the FORTRAN Compiler
in this example). Alternatively, the user can abort the current user
task and invoke the Resident TDV Dispatcher by typing CTRL/Y.

1.4 TDV COMMAND CONVENTIONS

Requests for individual TDV function tasks are entered according to
the following conventions:

1. Command strings are terminated by either a carriage return or
an altmode. These terminators are treated identically by
MULTIACCESS.

2. Each element of the command string must be separated by
either a comma, a space or a back arrow, as appropriate.

3. Any number of characters (except a comma or space) can be

~ inserted between a TDV function task name and its arguments
or command-string terminator (carriage return or altmode).
This facility is wuseful for improving the readability of
teleprinter copy. For example, the following two commands
illustrate the abbreviated and the more readable way of
calling the Editor:

TDV>EDI
or
TDV>EDITOR

4., If the user discovers an error in the command string before
the terminator has been typed, the line can be deleted as far
back as the prompting character (>) by typing a single
CTRL/U. An "at" symbol (@) is echoed, informing the user
that he can now retype the command string. Rubout, echoed as
a backslash (\), can be used to delete characters one by one,
starting with the last character typed.

1.5 TDV FUNCTION TASKS
Each of the following chapters describes one TDV function task. In

all models and examples included in these chapters, the following
conventions apply:

XVM/RSX V1B Vvii-1l-9 September 1976

7.

8.

A space in the text indicates an actual space in the command
line.

«indicates an actual backward arrow in the command line.

V indicates a terminator. This can be either a carriage
return or an altmode.

Square brackets ([,...]) indicate optional characters.
Optional items that can be repeated are indicated by dots
following the item in square brackets. If a comma precedes
these dots ([...]), only the last parameter can be repeated.
Repetitions must be separated by commas. Therefore, in:

FIN[9] [option]lname [ext] [,...]
at least one name with an optional extension must be
specified. Additional file names, each with an optional
extension, can be included, as in:

TDV>FIN F1,F2,F3

TDV>FIN F1 SRC,F2 BIN

TDV>FIN F1,F2 SRC
In "form" models, upper-case characters (except LUN) indicate
those required by the system. Lower-case characters indicate
entries that are to be specified by the user and are
dependent on his particular task.
All LUNs requested are virtual LUNs.

Braces ({}) enclosing a stack of items indicate that one item
in the stack must be selected.

Five TDV functions described in the following chapters are not
recommended for use under MULTACCESS. They are:

INSTALL
REQUEST
REMOVE
MOUNT
DISMOUNT

They can be included in the system (via atypical system-build
procedures), but only to maintain compatibility with existing user
batch streams.

XVM/RSX V1B VII-1-10 September 1976

FOR

CHAPTER 2

FORTRAN: COMPILING A FORTRAN PROGRAM

The FORTRAN TDV Function Task invokes the FORTRAN IV Compiler. This
Compiler is a two-pass system program that produces relocatable object
code. The Task Builder (TKB) then 1links this code with required
Object=Time System (oTs) 1library routines and optionally with
additional user-specified FORTRAN=-compiled or MACRO-assembled
routines.

Systems with a Floating-Point Processor (FPP) have a special version
of the FORTRAN IV Compiler and OTS which utilizes hardware
instructions rather than software calls. For example, RELEAE, the
REAL arithmetic package, is not included in FPP systems since REAL
arithmetic expressions are evaluated with the aid of hardware
instructions. The FPP FORTRAN System consists of the standard FORTRAN
IV Compiler and Object-Time System interfaced (via conditional
assembly and additional routines) to the hardware FPP (Floating-Point
Processor). The interface applies to single and double precision
floating-point arithmetic and extended integer arithmetic (double
integers). Single integer arithmetic is still handled, in part, by
software. Installations with a Floating-Point Compiler should delete
FOR... and rename F4F... as FOR.es =«

The FORTRAN Compiler can also be invoked in batch mode.

2.1 INVOKING THE FORTRAN IV COMPILER

The user can invoke the FORTRAN IV Compiler by typing a command
according to the following format:

Vii-2-1

Form:

FOR[TRAN] [option[,]...]«name(,name...}]V

Where:

option is a one-character symbol specifying a
compilation option (see Table 2-1); option
characters may be either concatenated or
separated by commas

name of program to be compiled is a string of
one to six .SIXBT characters; at least one
name is required, but several programs may
be compiled in sequence to produce separate
binary files

Example:

Compile program named PROG, creating a binary
file (B) and a listing (L):
TDV>FOR BL+«PROG

Table 2-1 illustrates all compiler options available under RSX., Any
number of these may be concatenated in a TDV command string.
Table 2-1
FORTRAN IV Compiler Options
Option Action Default
B Binary output No binary file
H Use subroutine .SS Use in-line code to
to generate addresses generate array element
of two- and three- addresses (except for
dimensional array 1/0 parameter list
elements elements)
L Source listing No listing
o Object listing No listing
S Symbol map No symbol map
R Print Compiler ver- No printout
sion number and END
PASS1 on output
terminal

VII-2-2

2.2 INPUT/OUTPUT

The following LUN assignments should be made before the FORTRAN IV
Compiler is invoked under MULTIACCESS:

LUN Assignment

13 Error messages (terminal recommended)
15 Source file input

16 Listing output

17 Binary file output
If an I/0 error occurs during compilation, the message:
FOR~I/O ERROR LUN XX yyyyyvy

is produced on LUN-13. 1In this message, xxX represents the 1logical
unit number (decimal) and yyyyyy represents the event variable value
(octal), indicating the cause of the error.

2.3 COMPARISON WITH OTHER VERSIONS OF FORTRAN

The FORTRAN IV language employed under XVM/RSX is basically the same
as that used under the XVM/DOS system. It differs, however, from the
versions of the Compiler used in support of previous versions of RSX.
All user FORTRAN programs developed under previous versions of RSX
must be recompiled and rebuilt by the Task Builder to enable them to
run under XVM/RSX.

The basic language and operating conventions of XVM/RSX FORTRAN are
described in the FORTRAN IV XVM Language Manual ‘and FORTRAN IV XVM
Operating Environment Manual. Nevertheless, RSX user interaction with
FORTRAN IV differs in some ways from the descriptions in those
manuals. The main differences occur. in support of the auxiliary disk,
input/output, the STOP and PAUSE statements, the floating-point
processor, OTS output and table initialization. These differences are
described in more detail below. Differences in methods for opening,
closing, deleting and renaming files are described in Part VI of this
manual. ‘

2.3.1 Auxiliary Disk
FORTRAN IV under RSX supports all standard FORTRAN features, except

certain magtape and auxiliary disk I/0 functions (e.g., REWIND,
BACKSPACE, etc.).

XVM/RSX V1B _ VII-2-3 September 1976

2.3.2 Input/Output

The Input Command Decoder of the Compiler has been modified to use
standard task development function input and to compile multiple files
with the same switches. For example:

FOR BLFILEl,FILE2

causes the FORTRAN IV Compiler to compile programs FILEl and FILE2 in
sequence and to produce separate binary files and listings.

More specifically, RSX random-access I/O to the disk differs slightly
from the description in the manuals listed above. The description of
disk I/0 in Part VI of this manual gives details on random-access I/0.

2.3.3 STOP and PAUSE Statements

FORTRAN IV STOP and PAUSE statements call library routines that have
been slightly modified for RSX use. A STOP message prints on the
terminal only if nonzero arguments are present; otherwise, the task
simply exits. PAUSE produces a new message that includes the task
name. To continue after a PAUSE, the user can type a CTRL/P or the
operator can use the RESUME MCR Function Task.

2.3.4 Floating-Point Processor

Under RSX, the JEA register for the floating-point processor (FPP) is
initialized by the SETJEA system directive. 1If the system has not
been configured for FPP hardware, an unrecoverable .0TS 52 error is
output.

2.3.5 OTS Output

Output from the FORTRAN object-time system, such as .0OTS errors and
STOP and PAUSE messages, goes to LUN-4, typically assigned to the user
TDV terminal, except when the system 1is batch processing. When
FORTRAN jobs are run under MCR, LUN-4 is typically assigned to the MCR
terminal.

2.3.6 Table Initialization

Under RSX, the I/0 Table Initialization Routine (.FP) has been removed
from FIOPS and now exists as a separate routine. This implementation
prevents unnecessary loading of FIOPS when no I/0 capability is
required.

XVM/RSX V1B VII-2-4 September 1976

2.4 ERROR MESSAGES

Tables 2-2, 2-3, and 2-4 1list possible error messages and their
implications. All messages in Table 2-2 are printed in the following
form:

Form: >MA<

Where: m is the error number
A is the alphabetic mnemonic characterizing the
error class

Table 2-2
FORTRAN Error Messages
Number Letter Meaning
Common, equivalence, data errors:
01 (o No open parenthesis after variable name
in DIMENSION statement
02 Cc No slash after COMMON block name
03 C COMMON Block name previously defined
04 C Variable appears twice in COMMON
05 Cc EQUIVALENCE list does not begin with
open parenthesis
06 Cc Only one variable in EQUIVALENCE class
07 C EQUIVALENCE distorts COMMON
08 C EQUIVALENCE extends COMMON down
09 Cc Inconsistent equivalencing
10 C EQUIVALENCE extends COMMON down
11 (o] Illegal delimiter in EQUIVALENCE list
12 C Non-COMMON variables in BLOCK DATA
15 o] Illegal repeat factor in DATA statement
16 C DATA statement stores in COMMON in
non-BLOCK DATA statement or in
non-COMMON in BLOCK DATA statement

(Continued on next page)

VII-2-5

Table 2=2 (Cont.)

FORTRAN Error Messages

Number Letter Meaning
DO errors:

01 D Statement with unparenthesized = sign
and comma not a DO statement

04 D DO variable not followed by = sign

05 D DO variable not integer

06 D Initial value of DO variable not
followed by comma

07 D Improper delimiter in DO statement

09 D Illegal terminating statement for DO
loop

External symbol and entry=-point
errors:

01 E Variable in EXTERNAL statement not
simple non-COMMON variable or simple
dummy variable

02 E ENTRY name non-unique

03 E ENTRY statement in main program

04 E No = sign following argument 1list in
arithmetic statement function

05 E No argument list in FUNCTION subprogram

06 E Subroutine 1list in CALL statement
already defined as variable

08 E Function or array name used in
expression without open parenthesis

09 E Function or array name used in
expression without open parenthesis

Format errors:

01l F Bad delimiter after FORMAT number in I/0
statement

02 F Missing field width, illegal character

or unwanted repeat factor

(Continued on next page)

VII-2-6

Table 2-2 (Cont.)

FORTRAN Error Messages

Number Letter Meaning
03 F Field width is 0
04 F Period expected, not found
05 F Period found, not expected
06 F Decimal 1length missing (no "gq" in
"Fw.d")
07 F Missing left parenthesis
08 F Minus without number
09 F No P after negative number
10 F No number before P
12 F No number or 0 before H
13 F No number or 0 before X
15 F Too many left parentheses
Hollerith errors:
02 H More than two characters in Integer or
Logical Hollerith constant
03 H Number preceding H not between 1 and 5
04 H Carriage return inside Hollerith field
05 H Number preceding H not an integer
06 H More than five characters inside quotes
07 H Carriage return inside quotes
Various illegal errors:
01 I Unidentifiable statement
02 I Misspelled statement
03 I Statement out of order
04 I Executable statement in BLOCK DATA

subroutine

(Continued on next page)

VIi-2-7

Table 2-2 (Cont.)

FORTRAN Error Messages

Number Letter Meaning

05 I Illegal character in 1I/0 statement,
following unit number

06 I Illegal delimiter in ASSIGN statement

07 I Illegal delimiter in ASSIGN statement

08 I Illegal type in IMPLICIT statement

09 I Logical IF as target of logical IF

10 I RETURN statement in main program

11 I Semicolon in COMMON statement outside of
BLOCK DATA

12 I Illegal delimiter in IMPLICIT statement

13 I Misspelled REAL or READ statement

14 I Misspelled END oxr ENDFILE statement

15 I Misspelled ENDFILE statement

16 I Statement function out of order or
undimensioned array

17 I Typed FUNCTION statement out of order

18 I Illegal character in context

19 I Illegal logical or relational operator

20 I Illegal letter in IMPLICIT statement

21 I Illegal letter range in IMPLICIT
statement

22 I Illegal delimiter in letter section of
IMPLICIT statement

23 I Illegal character in context

24 I Illegal comma in GOTO statement

26 I Illegal variable used in multiple RETURN

statement

(Continued on next page)

VII-2-8

Table 2-2 (Cont.)

FORTRAN Error Messages

Number Letter Meaning
Pushdown list errors:
0l L DO nesting too deep
02 L Illegal DO nesting
03 L Subscript/function nesting too deep
04 L Incomplete DO 1loop-caused by backwards
DO loop, error in DO loop foot state-
ment, or error in I/0 statement with
implied DO loop
Overflow errors:
0l M EQUIVALENCE class list full
02 M Program size exceeds 8K
03 M Local array length larger than 8K
04 M Element position in local array larger
than 8K or in common array larger than
32K (EQUIVALENCE, DATA)
06 Integer negative or larger than 131071
07 Exponent of floating point number larger
than 76
08 M Overflow accumulating constant - too
many digits
09 M Overflow accumulating constant - too
many digits
10 M Overflow accumulating constant - too
many digits
Statement number errors:
01 N Multiply defined statement number or
compiler error
02 N Statement erroneously labeled
03 N Undefined statement number

(Continued on next page)

VII-2-9

Table 2-2 (Cont,)

FORTRAN Error Messages

Number Letter Meaning
04 N FORMAT statement without statement
number
05 N Statement number expected, not found
07 N Statement number more than five digits
08 N Illegal statement number
09 N Invalid statement label or continuation
Partword errors:
0l P Expected colon, found none
02 P Expected close bracket, found none
03 P Last bit number larger than 35
04 P First bit number larger than last bit
number
05 P First and last bit numbers not simple
integer constants
Subscripting errors:
0l S Illegal subscript delimiter in
specification statements
02 S More than three subscripts specified
03 S Illegal delimiter in subroutine argument
list
04 S Non-integer subscript
05 S Non-scalar subscript
06 S Integer scalar expected, not found
10 S Two operators in a row
11 S Close parenthesis following an operator
12] Adjustable dimension not in dummy array

(Continued on next page)

VII-2-10

Table 2=-2 (Cont.)

FORTRAN Error Messages

Number Letter Meaning

13 s Adjustable dimension not a dummy integer

14 S Two arguments in a row

15 S Digit or letter encountered after
argument conversion

16 S Number of subscripts stated not equal to
number declared

Table overflow errors:

0l T Arithmetic statement, computed GOTO
list, or DATA statement list too large

02 T Too many dummy variables in arithmetic
statement function

03 T Symbol and constant tables overlap

Variable errors:

0l v Two modes specified for same variable
name

02 \'4 Variable expected, not found

03 v Constant expected, not found

03 v Array defined twice

05 \'4 Error: variable is EXTERNAL or argument
(EQUIVALENCE, DATA)

07 \'4 More than one dimension indicated for
scalar variable

08 \'4 First character after READ or WRITE not
open parenthesis in I/0 statement

09 \' Illegal constant in DATA statement

11 v Variables outnumber constants in DATA
statement

12 \'4 Constants outnumber variables in DATA

statement

(Continued on next page)

VII-2-11

Table 2-2 (Cont.)

FORTRAN Error Messages

Number Letter Meaning

14 \'4 Illegal dummy variable (previously used
as non-dummy variable)

16 \'4 Logical operator has non-integer,
non-logical arguments

17 v Illegal mixed mode expression

19 \'4 Logical operator has non-integer,
non-logical arguments

21 \'4 Signed variable left of = sign

22 \'4 Illegal combination for exponentiation

25 \'4 .NOT. operator has non-integer,
non-logical argument

27 \' Function in specification statement

28 Two exponents in one constant

29 \'4 Illegal redefinition of a scalar as a
function

30 \'4 No number after E or D in a constant

32 Non-integer record number in
random-access 1/0

35 v Illegal delimiter in I/0 statement

36 v Illegal syntax in READ, WRITE, ENCODE,
or DECODE statement

37 v END or ERR exists out of order in 1I/0
statement

38 v Constant and variable modes don't match
in DATA statement

39 v ENCODE or DECODE not followed by open
parenthesis

40 v Illegal delimiter in ENCODE /DECODE

statement

(Continued on next page)

VII-2-12

Table 2-2 (Cont.)

FORTRAN Error Messages

Number Letter Meaning

4] v Array expected as first argument of
ENCODE/DECODE statement

42 v Illegal delimiter in ENCODE/DECODE
statement

Expression errors:

0l X Carriage return expected, not found

02 X Binary WRITE statement with no I/0 list

03 X Illegal element in I/0 list

04 X Illegal statement number list in
computed or assigned GOTO

05 X Illegal delimiter in computed GOTO

07 X Illegal computed GOTO statement

10 X Illegal delimiter in DATA statement

11 X No close parenthesis in IF statement

12 X Illegal delimiter in arithmetic IF
statement

13 X Illegal delimiter in arithmetic IF
statement

14 X Expression on left of = sign in
arithmetic statement

15 Unequal number of right and left parentheses

16 X Illegal open parenthesis (in
specification statements)

17 X Illegal open parenthesis

19 X Unequal number of right and left parentheses

20 X Illegal alphabetic in numeric constant

21 X Symbol contains more than six characters

(Continued on next page)

VII-2-13

Table 2-2 (Cont.)

FORTRAN Error Messages

Number Letter Meaning

22 X +TRUE.,, .FALSE., or .NOT. preceded by
an argument

23 X Unparenyhesized comma in arithmetic
expression

24 X Unary minus in I/0 list

26 X Illegal delimiter in I/O0 list

27 X Unterminated implied-DO loop in I/O list

28 X Illegal = sign in I/O list

29 X Illegal partword operator

30 X Illegal arithmetic expression

31 X Illegal operator sequence

32 X Tllegal use of = sign

33 X Missing parenthesis in I/O statement
with implied DO loop will also cause
>041<

34 X Extraneous characters at the end of

assignment statement

VII-2-14

In Table 2-3, (R) indicates a recoverable error and
terminal error.

(T) indicates a

Table 2-3
OTS Error Messages
Number Possible Source Meaning
05 (R) SQRT Negative REAL square-root argument
06 (R) DSQRT Negative DOUBLE PRECISION square-root
argument
07 (R) .GO Illegal index in computed GOTO
10 (T) .FR, .FW, .FS, .FX, Illegal I/0 device number
DEFINE, RANCOM
11 (T) .FR, .FA, .FE, .FF, Bad input data - IOPS mode incorrect
.FS, RANCOM,
RBINIO, RBCDIO
12 (T) .FA, .FE, .FF Bad FORMAT
13 (T) .BC, .BE, ALOG Negative or zero REAL logarithmic
argument (terminal)
14 (R) .BD, .BF, .BG, .BH, Negative or zero DOUBLE PRECISION
DLOG, DLOGl0 logarithmic argument
15 (R) .BB, .BC, .BD, .BE, Zero raised to a zero or negative
.BF, .BG, .BH power (zero result is passed)
16 (R) ATAN2 ATAN2 (0.0,0.0) attempted Pl/2
returned
17 (R) DATAN2 DATAN2 (0.0D0, 0.0D0) attempted P1l/2
returned
20 (T) FIOPS, AUXIO, RANCOM | Fatal I/O error (RSX only).
The message format is
"OTS-20-XXX-NNNNNN-TSKNM", where XXX
is the LUN, NNNNNN is the event
variable (two's complement) and
TSKNM is the task name.
21 to 26 are direct-access errors:
21 (T) RANCOM Undefined file
22 (T) DEFINE Illegal record size
23 (T) RANCOM Size discrepancy
24 (T) DEFINE, RANCOM Too many records per file or illegal
record number
25 (T) RANCOM Mode discrepancy
(Continued)

XVM/RSX V1B

VIiIi-2-15 September 1976

Table 2-3 (Cont.)
OTS Error Messages

Number Possible Source Meaning

26 (T) DEFINE Too many open files

30 (R) RELEAE, .FPP Single integer overflow (detected only
when fixing a floating-point number)

31 (R) DBLINT, JFIX, Extended (double) integer overflow;

JDFIX, ISNGL also prints PC with FPP system (with

non-floating-point processor system,
detected only when fixing a
floating~-point number)

32 (R) RELEAE Single floating-point overflow; also
prints PC with FPP system

33 (R) Double floating-point overflow; also
prints PC with FPP system (detected
only by FPP system, not by software
system)

34 (R) RELEAE Single floating-point underflow; also
prints PC with FPP system

35 (R) Double floating-point underflow; also
prints PC with FPP system (detected
only by FPP system, not by software
system)

36 (R) RELEAE Floating-point divide check; also
prints PC with FPP system

37 (R) INTEAE Integer divide check; if extended
integer divide check, prints PC with
FPP system

40 (T) ENCODE Illegal number of characters specified
(legal: 0<c<625)

41 (R) ENCODE Array exceeded

42 (T) DDIO Bad input data

43 (T) DA Attempt to pass more arguments than
expected

50 (T) FPP memory-protect/nonexistent memory;
also prints PC with FPP system

51 (T) BCDIO, BINIO READ to WRITE 1illegal 1I/0 direction

change to disk without intervening
CLOSE or REWIND

XVM/RSX V1B

VII-2-16 September 1976

In software systems, arithmetic errors
summarized above are detected
(RELEAE and INTEAE). In the hardware FPP

messages

resulting

systems,

in the OTS error
in the arithmetic package
these

errors are

detected by the hardware (with the exception of single integer divide
check) and serviced by a trap routine in the FPP routine .FPP,

Where applicable, on such error conditions, the result is patched for

both software and hardware systems as summarized in the following
table.
Table 2-4
OTS Error Messages in FPP Systems
Patched Value
Error

FPP Hardware System

Software System

Single Floating
Overflow (.OTS 32)

Double Floating
Ooverflow (.0TS 33)

Underflow (.0TS 35)

Check (.0TS 37)

* largest single floating
value

t+ largest double floating
value

same

not detected

Single Floating zero same
Underflow (.O0TS 34)
Double Floating zero not detected

Floating Divide * largest single floating same
Check (.0TS 36) value

Integer Overflow limited detection same
(.OTS 30)

Double Integer none limited
detection

Overflow (.0OTS 31)

Integer Divide none same

"Limited detection" means that while a floating-point number is
integer overflow and extended integer overflow are detected.
integer for the data

fixed,

In these instances, plus or minus the largest

being

mode is patched as result.

For Double Integer Overflow, "none" means that with the FPP system all
extended integer overflow conditions are detected, but the results are
meaningless. Elsewhere, "none" means the result is meaningless.

Further, when converting an extended integer, the magnitude of which

is >2(17) -1, to a single integer, no error is indicated and the high
order digits are lost.

VII-2-17

MAC

CHAPTER 3

MACRO: ASSEMBLING A MACRO PROGRAM

The MACRO Assembler produces relocatable binary object code that can
be loaded for debugging or execution. The Assembler prepares the
object program for relocation, and the Task Builder sets up linkages
to external subroutines.

The MACRO Assembler processes source programs in either a two-pass or
three-pass operation, In the two-pass assembly operation the source
program is read twice and the object program (and printed listing when
requested) are produced during the second pass. During the first pass
(PASSl) the locations to be assigned the program symbols are resolved
and a symbol table is constructed by the Assembler. The second pass
(PASS2) uses the information computed during PASS1l to produce the
final object program.

In an optional three-pass assembly operation, PASS2 calls in a third
pass (PASS3) portion of the Assembler program. PASS3, when called,
performs a cross-referencing operation during which a 1listing is
produced which contains all user symbols, where each symbol is
defined, and the number of each program line in which a symbol is
referenced. On completion of its operation, PASS3 calls the PASS1 and
PASS2 portions of the Assembler program back into core for further
assembly operations,

The MACRO Assembler can also be invoked in batch mode.

VII-3-1

3.1 INVOKING THE MACRO ASSEMBLER

The user can invoke the MACRO Assembler by typing a command according
to the following format:

Form: MAC([RO] [option[,]...)+name [ext][,...]V

Where: option is a one-character symbol specifying
an assembler option (see Table 3-1); option
characters may be either concatenated or
separated by commas

name of program to be assembled is a
of one to six .SIXBT characters; one or
more names may be required, depending on
whether or not certain assembly options
(e.g., F2) have been requested; several
programs may be specified so that they are
assembled in sequence to produce separate
binary files

ext is a string of one to three
characters representing the extension.
is the default

string

«SIXBT
SRC

Example: Assemble program named TMAC, creating a
binary file (B) and a listing (L):

TDV>MAC BL+TMAC

Assemble programs Pl and P2 to produce a
separate binary file (B) for each; both
require the use of a parameter file (P):

TDV>MAC PB+PARAM,P1l,PARAM,P2

Table 3-~1 illustrates all Assembler options.
options, in any order and optionally
included in a TDV command string.

Any number of these
separated by commas, may be

Table 3-1
Assembler Options
Option Action Default

B Generate a binary file No binary file

L Generate a listing file on No listing file (see options
the requested output device N, C, G)

N Number each source line (dec- Do not number source lines
imal); it is not necessary to
type the L option

C Do not print program areas Print all source lines
that fall between unsatisfied
conditionals; it is not
necessary to type the L option

VII-3-2

(Continued on next page)

Table 3-1 (Cont.,)
Assembler Options

Option Action Default
G Print only the source line of Generate printouts for MACRO
a MACRO expansion; it is not expansions and expandable
necessary to type the L option | pseudo-ops (e.g., .REPT)
P Before assembly begins, read No parameters; begin assembly
program parameters from LUN- immediately after command
20; (the code read from LUN=- string termination
20 is read only once; for
this reason only direct as-
signments should be used)
A Print symbols at end of PASS2 Do not print symbols in
in alphanumeric sequence alphanumeric seguence (see
options V, S, and H)
\' Print symbols at end of PASS2 Do not print symbols in value
in value sequence sequence (see options A, S,
and H)
] Same as selecting both A and Do not print symbols unless
V above option A, option V, or both
are requested (see option H)
H If A, V, or S option is used, If A, V, or S option is used,
print symbols one to a line print symbols horizontally,
four to a line
X At completion of PASS2, load Do not provide a cross-
PASS3 to perform the cross- reference and do not call in
referencing operation; at PASS3
completion of PASS3, the
Assembler calls in PASS1 and
PASS2 to continue assembling
programs; if the command
string is terminated by an
ALTMODE, control returns to
RSX at the end of assembly
0 Do not output the source Assemble as usual (use of

extension and the linking
loader code 33 as a special
code in the binary file; this
option must be used when as-
sembling programs in RSX to
run in Background/Foreground

unique extensions permits
easy identification of dif-
ferent versions of a program)

VII-3-3

(Continued on next page)

Table 3-1 (Cont.)
Assembler Options

Option

Action

Default

Print any errors occurring
during assembly on the
console printer (LUN-13) in
addition to the device
assigned to LUN=-16; the L or
N option should be used with
the I option; this option is
particularly useful to users
who assign nonprinting
devices to LUN-16

Generate a Table of Contents
during PASS1l; the table will
contain the page number and
text of all assembled .TITLE
statements in the program

Identify assembler version
number; print END PASS1, END
PASS2, and error count on
output terminal

Ignore .EJECTs; treat the
«EJECT pseudo-op as a com-
ment

Assembly includes an
additional file: a macro
definition file, a second
parameter file, or a second
part of the program file;
this additional file is
specified in the command
string and it is read via
LUN-18; (see option Z)

Assemble the file associated
with the F option not only
during PASS1 but also PASS2;
this allows assembly of a
two-part source file on two
different devices or on the
same device; this option
takes effect only if the F
option is also specified

Output errors only to the
listing device (LUN-16)

No table of contents

Do not print version number,
END PASS1, END PASS2,
or error count

Skip to head of form when
+EJECT is encountered

No additional file

F-option file is referenced
only during PASS1 and
therefore may contain

only direct assignment
statements and comments

VII-3-4

If the L and X options are entered in the same command string, MACRO
assumes that the N option is also entered. Without the N option, the
user would obtain a cross-reference that would be virtually useless,
because the source lines of the listing would not be numbered.

3.2 INPUT/OUTPUT

The following LUN assignments should be made before the MACRO
Assembler is invoked under MULTIACCESS:

LUN Assignment
13 Error messages (terminal recommended)
15 Source file input
16 Listing output
17 Binary file output
18 Secondary source file input
20 Auxiliary input (terminal recommended)

A secondary input device is needed to assemble a program from two
different sources. An auxiliary input device is needed to supply
parameters for a file that is to be assembled.
If an I/0 error occurs during assembly, the message:

MAC-I/0 ERROR LUN xx yyyvyY
is produced on LUN-13. 1In the message, xx represents the logical unit

number (decimal) and yyyyyy represents the event variable value
(octal), indicating the cause of the error.

XVM/RSX V1B VII-3-5 ’ September 1976

3.3 COMPARISON WITH OTHER VERSIONS OF MACRO

The MACRO Assembler is essentially the same under RSX as it is unqer
the other XVM monitor systems. The basic instructions and operation
conventions are described in MACRO XVM ASSEMBLER LANGUAGE MANUAL.,

Nevertheless, RSX user interaction with the MACRO Assembler differs in
some ways from the descriptions in the manual. The main differences
occur in support of dump mode, input/output, parameter input, the
definitions of certain standard functions and certain pseudo-ops.
These differences are discussed in more detail below.

3.3.1 Dump Mode

MACRO under RSX supports all standard MACRO features. except the
pseudo-ops .IODEV, .ABS, .ABSP .FULL, and .FULLP. This is because
RSX !T/0 Device Handler Tasks do not support dump mode (mode 4).

3.3.2 Input/Output

The Assembler's Input Command Decoder has been modified to use
standard Task Development function input and to assemble multiple
files with the same switches. For example:

MAC BNX<«FILEl,FILE2

causes the MACRO Assembler to assemble programs FILE1l and FILE2 in
sequence and to produce separate binary files and listings.

3.3.3 Parameter Input

If the P assembly option is used and input is to come from the
terminal, the MACRO Assembler types the following message:

MAC~-INPUT PARAMETER DEFINITIONS

on the output terminal (LUN=-20). The user responds by entering input
parameters. To terminate input, he types a CTRL/D (4D) followed by a
carriage return.

3.3.4 MACRO Definitions File

The RSX Assembler does not contain within itself the definition of
standard, frequently-used System Directive and I/O calls. These exist
in a MACRO Definitions File (RMC.nn SRC where nn is the current edit
number) which is provided as part of the RSX system. During assembly,
this definition file can be accessed via the secondary-input LUN
(LUN-18) if assembly option F is specified. (Z is also needed when
two passes are required.) This file cannot be read via the auxiliary
input LUN (LUN-20) using the P option because many MACROs make forward
symbolic references, necessitating a second pass on the file.

VII-3-6

3.4 ERROR MESSAGES

The Assembler examines each source statement for possible errors. A
statement containing an error is flagged by one or several letters in
the left-hand margin of the line, or, if the 1lines are numbered,

between the

line number and the location. The following table lists

error flags and their meanings.

Table 3-2
MACRO Assembler Error Flags

Flag Meaning

A Error in direct symbol table assignment - assignment
ignored

B l. Memory bank error (program segment too

large)

2, Page error - the location of an instruction
and the address it references are on
different memory pages (error in page mode
only)

C A -ENDC or a LCBE is given with no opening
conditional. The error appears on thé offending
line.

D Statement contains a reference to a multiply-defined
symbol - the first value is used

E 1. Symbol not found in user's symbol table

during PASS2

2. Operator combined with its operand may
produce erroneous results

F Forward reference - symbol value is not resolved by
PASS2

I Line ignored:

l. Redundant pseudo-op

2, A second .LOCAL pseudo-op appears before a
matching .NDLOC pseudo-op

3. An ,NDLOC appears without an associated
.LOCAL pseudo-op

4, Too many .LTORG pseudo-ops (more than eight)

L Literal error:

1. Phase error - literal encountered in PASS2
does not equal any literal found in PASS1

2, Nested literal (a literal within a literal)

(Continued on next page)

vir-3-7

Table 3-2 (Cont.)
MACRO Assembler Error Flags

Flag Meaning
M Multiple symbol definition - first value defined is
used
N Error in number usage (digit 8 or 9 used under .OCT
influence)
P Phase error:

l. PASS1 symbol value not equal to PASS2 symbol
value (PASS2 value ignored)

2, A tag defined in a 1local area (.LOCAL
pseudo-op) is also defined in a non-local
area

Q Questionable line:

l. Line contains two or more sequential
operators (e.g., LAC A+*B)

2., Bad 1line delimiter - address field not
terminated with a semicolon, carriage
return, or comment

3. Bad argument in ,REPT pseudo-op

R Possible relocation error

S Symbol error -'illegal character used in tab field

U Undefined symbol

w Line overflow during macro expansion

X Illegal use of macro name or index register

Y A .CBS was given with no closing .CBE, a .DEFIN has

no corresponding .ENDM and/or a .IF conditional has
no closing .ENDC. This error is output on the .END
statement at the end of PASS 1.

VIii-3-8

certain conditions
The

In addition,
prematurely.
their meanings.

cause assembly to be terminated

following table lists possible error messages and

Table 3-3
MACRO Assembler Error Messages

TABLE OVERFLOW

CALL OVERFLOW

CORE EXHAUSTED
AT LINE nnn

Message Meaning
SYNTAX ERR Bad command string; control
returns to TDV
NAME ERROR File named in command string

not found;

Too many symbols and/or MACROS;
control returns to TDV

Too many embedded MACRO calls;
control reutrns to TDV

PASS3 error;
references;
returns to TDV

control returns to TDV

too many symbol
control

VII-3-9

EDI

CHAPTER 4

EDITOR: TEXT-EDITING SOURCE CODE

The Text Editor is an effective text editing program that allows the
modification and creation of symbolic source programs and other ASCII
text material. The Editor reads and writes standard IOPS ASCII lines.
By means of keyboard commands, the Editor is directed to bring a line
or group of lines from an input file to an internal buffer. By means
of additional commands, the user can then examine, delete and change
the contents of the buffer, and insert new text at any point in the
buffer. When the 1line or block of 1lines has been edited, it is
written into a new file on the output device.

The Editor is most frequently used to modify MACRO and FORTRAN 1V
source programs, but it can also be used to edit any symbolic text.

The Editor operates in either an "edit" or "input" mode. In the
"edit" (or command) mode, the program accepts and acts on control-word
and data strings to open and close files; to bring lines of text from
an open file into the work area; to change, delete or replace the
line currently in the work area; and to insert single or multiple
lines after the line in the work area. In the "input" (or text) mode,
lines from the keyboard are interpreted as text to be added to the
open file. Commands are available for conveniently changing from one
operating mode to the other.

Data from the input file are made available for editing in two ways:
in 1line-by-line mode or in block mode. In the line-by-line mode, a
single line is the unit of the input file available to the user for
modification at any point. In the block mode, a user-specified
portion of the input file is held in a core buffer for editing until
the user requests that the contents of the buffer be added to the
output file. Line-by-line mode is the default data mode.

4.1 INVOKING THE TEXT EDITOR

The user can invoke the Text Editor by typing a command in the format:

Form: TDV>EDIV

To return to the MULTIACCESS Monitor after editing and closing a file,
the user must type:

XVM/RSX V1B VII-4-1 September 1976

E[XIT]

An example of interaction
prompter) :

with the

Text Editor follows (> 1is a

TDV>EDI User invokes Text Editor
] EDITOR XVM/RSX V1B00O Editor gives version number
>OPEN FILNAM EXT Open the file FILNAM, with extension
EXT, for editing
EDIT Editor indicates EDIT mode
> Go to top of file
>T Print current line; nothing is printed,
because pointer is above first line
of file
>N Go to next line
>P Print current line
.TITLE FILNAM /EDIT COMMAND DEMONSTRATOR
l >C /TOR/TION/ Change DEMONSTRATOR to DEMONSTRATION
.TITLE FILNAM /EDIT COMMAND DEMONSTRATION
>CLOSE Close file
>EXIT Exit from Text Editor
TDV>
4.2 INPUT/OUTPUT
Make the following LUN assignments before the Text Editor is invoked
under TDV:
LUN Assignment
| 16 Auxiliary output (listing)
17 Source file input/output (disk)
18 Source file scratch input/output
(temporary file) (disk)
| 19 Auxiliary output file (disk)
20 Auxiliary input
°
If an I/0 error occurs during editing, the message:
EDI - I/0 ERROR LUN XX YYYYYY
is sent to LUN-13. 1In the message, xx represents the 1logical unit

number

(decimal)

and yyyyyy

represents the octal event variable,

indicating the cause of the error.

XVM/RSX V1B

VIIi-4-2 September 1976

4.3 COMPARISON WITH OTHER VERSIONS OF THE TEXT EDITOR

The Text Editor runs the same way under RSX as it does under the other
XVM operating systems. Program commands and conventions are described
in the EDIT/EDITVP/EDITVT XVM Utility Manual.

RSX user interaction with the Text Editor differs in some ways from
the descriptions in the manual. The main differences occur in

disk-to-disk editing, buffer size and partition size. The differences
are described in detail in the following sections.

4.3.1 Disk-to-Disk Editing
RSX supports all standard EDIT features, but 1is restricted to

disk-to-disk editing. Therefore, LUN-17 and LUN-18 must be assigned
the to disk.

4.3.2 Buffer and Partition Size

On program initialization, the maximum buffer size parameter for the

SIZE command is computed. The parameter retains the computed value or

is set to 56, whichever is smaller. The SIZE command is then

restricted to a value less than or equal to the maximum buffer size.

If the partition size is too small to permit buffers, the message:
EDI-PARTITION TOO SMALL

is set to LUN-13 and the Text Editor exits.

4.4 ERROR MESSAGES

When a colon follows an error message, the incorrect command line is
printed below the error message.

XVM/RSX V1B VII-4-3 September 1976

Table 4-1

Editor Error Messages

Message

Meaning

BUFFER NON~-EMPTY

NOT A REQUEST:

?

END OF BUFFER REACHED BY:

END OF FILE REACHED BY:

READ ERROR:
TRUNCATED:

BUFFER CAPACITY EXCEEDED BY:

NO FILE NAME GIVEN,

NO INPUT FILE PRESENT.

FILE name IS PRESENT ON OUTPUT
DEVICE. PLEASE RENAME IT OR IT
WILL BE DELETED.

NOTHING IN FILE

SIZE TOO SMALL

NOT ENOUGH LINES
END OF FILE REACHED BY:

NOT ENOUGH BUFFER SPACE

LINES MOVED TO END

NO STRING

NOT FOUND

BLOCK OFF command issued
before Block Buffer emptied by
WRITE command

Command string error

Command string error while
BRIEF mode ON

Command has moved pointer
below last line

Command has moved pointer

below last line
Incorrect parity or checksum
Line too long

Buffer
Mode

overflowed in Block

File name missing
Input file missing

More than one file called name

No output to file

When Block Mode is ON, number
of lines specified in MOVE >
size of current block buffer

When Block Mode is OFF, number
of lines MOVE specifies to be
moved > number in current file

Not enough buffer space to
store lines being moved

Line containing text string
specified in MOVE not found

Convert missing first argument

First argument of CONVERT

never found

VII-4-4

SLIP

CHAPTER 5

SLIP: EDITING BATCH FILES

The SLIP command invokes a batch-oriented file editor, which not only
can edit ASCII source programs and data sets, but can also produce
line-numbered listings and perform operations similar to those of
PIP.

SLIP complements EDIT, the TDV interactive Text Editor. SLIP is
designed particularly for batch operation or for file manipulation,
while EDIT is designed for the on~line user who manipulates text
within a single file. SLIP works at the record level, while EDIT has
extensive intrarecord facilities.

SLIP processes as many as four streams of information in a run, as
shown in the following diagram:

, Correction Input
(commands and insertion)

input ‘ output
(original file) (edlted file)

external
file
inputs

This editor SLIPs information from one file to another. It always
generates a new file so that the orlglnal file can be preserved.
Batch operation_ requires this; otherwise a minor change, incorrectly
specified, could destroy an important file., The user can maintain
many backup levels.

VII-5-1

5.1 INVOKING SLIP

The user can invoke SLIP in one of two ways. From TDV, the command
has the following format:

Form: SLIP option [,...]V
Where: option is an option from Table 5-1
Example: TDV>SLIP N

The user can also invoke SLIP in BATCH mode as part of a job with
following control record:

$SLIP options

as explained in 5.1.1.

A SLIP run must contain the following four sections:

1. TDV>SLIP options or $SLIP options

2. *FILE specifications

3. SLIP control records and insertion records

4., End-of-file (=$ in DV or $EOF in BATCH or TDV)

5.1.1 $SLIP Options

The $SLIP record has the following format:

the

Form: $SLIP option [,e..]
Where: option is an option from Table 5-1
Example: List output file and suppress trailing spaces

of input file:

$SLIP L,S

VII-5-2

Table 5-1
SLIP Options

Option Meaning

N(LIST] No printout except *FILE cards and errors

C[HANGES] |List control records, deleted lines, *FILE cards,
and errors (default)

L[IST] List entire output file, with line numbers,
inserted 1lines, deleted 1lines, *FILE cards, and
errors '

K[EEP] Retain trailing spaces on input records

S [UPPRESS]| Suppress trailing spaces (in multiples of 5) from
input record (default)

5.1.2 *FILE Specifications

SLIP uses *FILE, an indirect file selection system, The user must
specify exactly one input and one output file as follows:

Forms

*FILE I[NPUT]:LUN='[infile [ext]]'O[UTPUT]:
LUN="' [outfile [ext]]'$

Where:

LUN is a one- or two-digit Logical Unit
Number

infile is a string of one to six JSIXBT
characters representing the input file and
is optional only if the input LUN is
non-file-oriented

ext is a string of one to three .SIXBT
characters representing the file extension

outfile is a string of one to six SIXBT
characters representing the output file and
is optional only if the output LUN is
non-file-oriented

Example:

Input FILEl RC from LUN-17 to be edited and
output on LUN-18:
*FILE I:17='FILEl SRC' :18='FILEl SRC'$

The infile ext and outfile ext can be identical, but it is better to
keep a backup file, If a backup file is desired, the user should
enter a sequence such as the following:

VII-5-3

SDELETE file bak
SRENAME file src, file bak
$SLIP options

*FILE JI:LUN='file bak' O:LUN='file src'

SEOF

If the user then makes a bad edit run, she can remove the S$DELETE and
SRENAME records and rerun the update, because the original file is
still intact as "file bak."

Note that certain SLIP commands described below require additional
*FILE records. -

5.1.3 SLIP Control Records and Insertion Records

SLIP logically numbers all lines within each file it processes so that
the first line in each file is number 1, If a SLIP run includes a LIST
option, but no control or insertion records, it produces a line
printer listing of the file with line numbers as in the example below.

Whether or not the run includes control and insertion records, the
listing always shows the final, resultant line numbers, those to be
used for the next SLIP performed on that file. Because the
renumbering occurs after editing and before output of the listing, the
user refers while editing to the original line numbers.,

Renumbering does occur, however, when any of the four search commands
is used. The line selected by the search becomes line l. Line
references in all subsequent commands are then relative to that 1line,
For instance, after a command causes a search for 'C' in the sample
input file below, the command

-3,3
will delete the line containing 'E', which was originally line 5.

Each search sets the selected line to 1. It is impossible to reference
the original line numbers after any search has been conducted.

The file in the example below will be the input file for all
subsequent SLIP examples:

Example: 1. A
2. B
3. C
4. D
5. E
6. F
7. G

VII-5-4

Subsequent sections give details on the nine SLIP control commands,
which are:

« INSERT

« INSERT FILE

. REPLACE

« REPLACE WITH FILE

« SEARCH AND INSERT

« SEARCH AND INSERT FILE

o SEARCH AND REPLACE |

« SEARCH AND REPLACE WITH FILE

« END-OF-FILE
All control commands must follow the *FILE specification and must
begin with a minus sign (~) in column one, followed by one or more
parameters. Embedded blanks are allowed within the parameters and are
ignored except when between single quotes ('). The commands that

permit insertion of an entire file are especially useful for inserting
subroutines.

A set of correction cards must be terminated by an end-of-file

specification, This is $EOF in BATCH mode or the command -$ in BATCH
or TDV,

5.2 CONTROL RECORDS

The following sections summarize SLIP control records and provide
examples of usage.

VII-5-5

5.2.1 INSERT

The user can specify an INSERT operation by a control record of the
following format:

Form: -n

Where: n is the number of the line after which the
insertion will be made

All records that follow the INSERT control record and precede another
control record or an SEOF are inserted into the output file following
line n of the input file. For example if the following records

-1

X

Y

2

-3

are specified to edit the input file in 5.1.3, the resulting output
file is:

1.

wn
L]
QHEBOOWNK XD

VII-5-6

5.2.2 INSERT FILE

An INSERT FILE operation requires two control records. The first is
in the format:

Form: -N

Where: n is the number of the line after which the
insertion is to be made

The second record is a *FILE record in the format:

Form: *FILE I[NPUT]:LUN='secfile ext'

Where: LUN is the logical unit number, which must
be different from those used for the input
and output files of the edit

secfile is a string of one to six .SIXBT
characters representing the file to be
inserted

ext is a string of one to three .SIXBT
characters representing the file extension

The entire second file is inserted into the input file after relative
line number n. Another control record usually follows the *FILE
record. If noncontrol records follow it, they are inserted after the
last line of the inserted file and before the next line of the input
file.

For example, if the second file, Z%Z%Z RC, consists of:

1. XX
2. YY
3. 22
4. KK

and is inserted into the input file in 5.1.3 by the commands:

-1
*FILE I:15='%ZZ SRC'S

the resulting output file is:

1. A

2. XX
3. YY
4. 172
5. KK
6. B

7. C

8. D

9. E
10. F

11. G

XVM/RSX V1B VII-5-7 September 1976

5.2.3 REPLACE

The user can specify a replacement by a control record of the
following format:

Form: -n,m

Where: n is the number of the first line to be deleted
and replaced

m is the number of the last line to be deleted
and replaced

All input file records numbered n through m, inclusive, are deleted
and all insertion records following the REPLACE control record are
inserted in the output file following the (n-1)th record of the input
file.

Note that if no records are inserted, lines n through m are deleted.
The command

-204,99999

deletes all lines after 203. The command
-204,204

deletes only line 204.

The following example illustrates the case in which records are
inserted. If the records

-2 '4
X
Y
Z

-$

are specified to edit the input file in 5.1.3, the resulting output
file is:

l1. A
2. X
3. Y
4, 2
5. E
6. F
7. G

VII-5-8

5.2.4 REPLACE WITH FILE

A REPLACE WITH FILE operation requires two control records. The first
is in the following format:

Forms =n,m*

Where: n is the number of the first line to be deleted:
second file will follow line n-1l

m is the number of the last line to be deleted;
second file will precede line m+l

The second record is a *FILE record in the following format:

Forms *FILE I[NPUT] :LUN='secfile ext'

Where: LUN is the Logical Unit Number

secfile is a string of one to six .SIXBT
characters representing the file to replace
the deleted lines

ext is a string of one to three .SIXBT
characters representing the file extension

Lines n through m are deleted and replaced with the entire second file
specified. Another control record usually follows the *FILE record.
If other insertion records follow it, they are inserted after the last
line of the second file.,

For example, if the following control records:

-3,4%
*FILE I:15='22Z SRC'S$
-$

are specified to delete lines 3 and 4 of the input file in 5.1.3 and
to replace them with the second file, ZZZ SRC in 5.2.2,the resulting
output file is:

l. A
2, B
3. XX
4, YY
5. 2%
6. KK
7. E
8. F
9. G

VII-5-9

5.2.5 SEARCH AND INSERT

The user can specify a SEARCH AND INSERT operation by a control record
of the following format:

Form: -'xxxxx"'

Where: xxxxx is a string of one to five characters;
the insertion will be made after the line
beginning with the string

The search facility is designed to detect FORTRAN line numbers. SLIP
examines each line of the input file until it finds one beginning with
the string xxxxx. All lines that follow the SEARCH AND INSERT control
record and precede another control record or $SEOF are inserted into
the output file following the line containing xxxxx in the input file.

For example, if the following records

'A'

N X

-$

are specified to edit the input file in 5.1.3, the resulting output
file is:

1.
2,

(-2}
L]
QHEOOWNK XY

Renumbering occurs when the search is successful. The 1line selected
by the search becomes line 1.

VII-5-10

52.6 SEARCH AND INSERT FILE

A SEARCH AND INSERT FILE operation requires two control records. The
first is in the following format:

Form: - xxxxx'*

Where: xxxxx is a string of one to five characters;
the file will be inserted after the line in
which the string appears

The second record is a *FILE record in the following format:

Form: *FILE I[NPUT]:LUN='secfile ext'$

Where: LUN is the Logical Unit Number

secfile is a string of one to six ,SIXBT
characters representing the file to be
inserted

ext is a string of one to three .SIXBT
characters representing the file extension

SLIP examines each line of the input file until it finds one beginning
with the string =xxxxx. The entire second file is inserted into the
output file after the line containing xxxxx. Another control record
usually follows the *FILE record. If other insertion records follow
it, they are inserted after the last line of the inserted file.

For example, if the following records
_IAO
*FILE I:15='2ZZ SRC'S$
-$

are specified to insert the second file, ZZ2Z SRC in 5.2.2, after 1line
1 of the input file in 5.1.3, the resulting output file is:

wn
L]
GMMUOU’ﬁSﬁgEI#

Renumbering occurs when the search is successful. The line selected
by the search becomes line 1l.

VII-5-11

5.2.7 SEARCH AND REPLACE

The user can specify a SEARCH AND REPLACE operation by a control
record of the following format:

Form: =" xxxxx',m

Where: xxxxXx is a string of one to five characters;
the line containing the string is the first
to be deleted and replaced

m is the number of the last line to be
deleted and replaced

SLIP examples each line of the input file until it finds one beginning
with the string xxxxx. All input file records from the line
containing the string through line m, inclusive, are deleted.

All insertion records following the SEARCH AND REPLACE control record
are inserted in the output file following the record just before the
record containing xxxxx.

Note that if no records are inserted, the specified lines are deleted.
The command

-'ABC',99999

deletes all lines after the one containing 'ABC', The command
-'ABC',1

deletes only that line,

The following example illustrates the case in which records are
inserted., If the records

-'B. '3
X

Y

Z

-$

are specified to edit the input file in 5.1.3, the resulting output
file is:

-~
[]
QN XD

Renumbering occurs when the search is successful. The 1line selected
by the search becomes line 1.

VII-5-12

5.2.8 SEARCH AND REPLACE WITH FILE

A SEARCH AND REPLACE WITH FILE operation requires two control records.
The first is in the following format:

Form: - xxxxx', m*

Where: xxxxx is a string of one to five characters;
the line containing the string is the first
to be deleted; second file will follow the
preceding line

m is the number of the 1last 1line to be
deleted; sécond file will precede line m+1l

The second record is a *FILE record in the following format:

Form: *FILE I[NPUT] :LUN='secfile ext'$

Where: LUN is the Logical Unit Number

secfile is a string of one to six .SIXBT
characters representing the file to replace
the deleted lines

ext is a string of one to three ,SIXBT
characters representing the file extension

SLIP examines each line of the input file until it finds one beginning
with the string xxxxx. All input file records from the 1line
containing the string through 1line m, inclusive, are deleted and
replaced with the file specified. Another control record usually
follows the *FILE record. If other insertion records follow it, they
are inserted after the last line of the second file.

For example, if the following records:

~tCt, 2%
*FILE I:15='22Z SRC'S$
-$

are specified to delete lines 3 and 4 of the input file in 5.1.3 and
to replace them with the second file, 22Z SRC in 5.2.2, the resulting
output file is:

l. A
2. B
3. XX
4. YY
5. 2Z
6. KK
7. E
8., F
9. G

Renumbering occurs when the search is successful. The 1line selected
by the search becomes line 1.

VII-5-13

The user can specify END-OF-FILE by a control record of the following
format:

-$

5.3 INPUT/OUTPUT

The SLIP TDV Function Task is assigned Task name SLI... at
Task-Building time, SLIP uses LUN-12 for command input and LUN-16 for
listing output. The user may use Logical Units for files as he

wishes. Normal editing operations use LUN=-l17 for input, LUN=-18 for
output, and LUN-15 for secondary input.

5.4 ERROR MESSAGES

SLIP detects four types of errors:
. *FILE specification errors
. SSLIP control record errors
« SLIP command syntax errors

. SLIP sequencing errors

5.4.1 *FILE Errors
A message of the following form indicates a *FILE error:
*FILE ACCESS ERROR xX == PROGRAM TERMINATED

where xx is a code in Table 5-2,

VII-5-14

Table 5-2
Error Codes for *FILE Routine

Code Meaning

1 *FILE does not appear in columns 1-5 of card read

2 File type inputs or outputs not found

3 Colon missing after file type

4 Missing Logical Unit Number (i.e., INPUT:='file')

5 Logical Unit Number does not consist of digits 0-9

6 Logical Unit Number is too long (more than 2 digits)

7 Missing equal sign (=) after Logical Unit Number

8 Missing quote (') after equal sign

9 Invalid delimiter within file name or missing quote (')
after file name

10 Illegal file type, not INPUT: or OUTPUT:

11 File not found on input device

12 File already open for output

13 Not enough space in partition for buffer

14 Logical Unit is not assigned to a device

15 Empty system pool

16 File I/0 error other than codes 1l1l~15

17 File already open but cannot be closed

18 File name is greater than 8 characters (only first 6
are used); probably missing space between file name and
extension or missing quote (')

19 Incorrect number of files specified; input does not
meet program requirement

5.4.2 $SLIP Control Record Errors

Selecting a nonexistent processing option causes a nonfatal $SLIP
control record error of the following form:

SLIP DOES NOT HAVE A x OPTION

where x is the nonexistent option.

VII-5-15

5.4.3 SLIP Command Syntax Errors

SLIP command syntax errors are more serious, for they might cause
considerable damage to a file., Therefore, most errors of this type
cause SLIP to perform a reasonable action. It usually runs through to
the end-of-file, copying the rest of the input file into the output
file.

Illegal characters in the command line are detected, however. They
cause the following message to appear:

CORRECTION CARD ERROR == ILLEGAL CHARACTER x

where x is the illegal character. Because the faulty line is treated
as if it were

=99999

SLIP processes through to the end-of-file, making no further
corrections. The remaining command records are ignored.

5.4.4 SLIP Sequencing Errors

A SLIP sequencing error is caused by a reference to a line number that
has already been passed. This indicates that the correction deck is
out of order. SLIP exits immediately after producing a message of the
following form:

CORRECTION CARD ERROR
CURRENT LINE = xx
AFFECTED LINE - XX == XX

If an existing file bears the same name as the output file specified,
the existing file is retained. If not, a new but incomplete file is
generated.

5.5 DEMONSTRATION OF SLIP EDITING
$LIST SLTJOB JOB
page eject

$JOB 50(002) DEMONSTRATION OF SLIP EDITING
SLIST SLTJOB JOB
SDECK TESTIN SRC
AAAAAAAA
BBBBBBBB
cccceece
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH

VII-5-16

IIIIIIII

J3IIIIII

KKKKKKKK

LLLLLLLL

MMMMMMMM

SEOF

$LIST TESTIN SRC

$SLIP L,S

*FILE IN:17="TESTIN SRC' OUT:18='TESTOU SRC' §
-$

$SLIP L,S

*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' §
-3

XXXXXXXX

YYYYYYYY

22222227

SLIST TESTOU SRC

$SLIP L,S

*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $
-2,5

XXXXXXXX

YYYYYYYY

22222227

-$

SLIST TESTOU SRC

$SLIP L,S

*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' §
_IGGG!

-2,2

XXXXXXXX

-$

SLIST TESTOU SRC

$DECK EXTIN SRC

/THIS IS A USEFUL WAY

/OF INSERTING OPERATING

/INSTRUCTIONS INTO A LISTING WITHOUT

/HAVING TO TYPE THEM TWO OR MORE TIMES,

SEOF

$LIST EXTIN SRC

$SLIP L,S

*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $
_3*

*PILE IN:15='EXTIN SRC' $

-'6*

*FILE IN:15='EXTIN SRC' §

-$

SLIST TESTOU SRC

$SLIP L,S

*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' §
-'HHH'®,2*

*FILE IN:15='EXTIN SRC' $
-$

SLIST TESTOU SRC

SEND

$DECK TESTIN SRC

SLIST TESTIN SRC

VII-5-17

page eject

AAAAAAAA
BBBBBBBB
ccceceecc
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH
IIIIIIIIX
JJIJIIIIIT
KKKKKKKK
LLLLLLLL
MMMMMMMM

page eject

$SLIP L,S
*FILE IN:1717='TESTIN SRC' OUT:18°'TESTOU SRC' §

* *CHANGE** _$

AAAAAAAA
BBBBBBBB
cceeeccee
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH
IIITIIII
JJIIIIIIT
KKKKKKKK
LLLLLLLL
MMMMMMMM

WONAUTISWN -

.
WO

KRRRKRRRRAX S L I P COMPULTETE *thhkkkhhas

page eject

$SLIP L,S
*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $

CHANGE =3
1 AAAAAAAA
2 BBBBBBBB
3 ccccceec
4 XXXXXXXX

VII-5-18

YYYYYYYY
222222722
-$

DDDDDDDD
EEEEEEEE
FFFFFFFF
10 GGGGGGGG
11 HHHHHHHH
12 IIIIIIII
13 JJ3JJ333J
14 KKKKKKKK
15 LLLLLLLL
l6 MMMMMMMM

**CHANGE* *

Vool owvm

RAKRKRXRXXX S [, T P COMPULETE **%kkkkhkk

SLIST TESTOU SRC
page eject

AAAAAAAA
BBBBBBBB
cccceececec
XXXXXXXX
YYYYYYYY
222722222
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH
ITIIIIII
JJJIJITJ
KKKKKKKK
LLLLLLLL
MMMMMMMM

page eject

$SLIP L,S
*FILE IN:17="TESTIN SRC' UT:18='TESTOU RC' §$

CHANGE =2,5
AAAAAAAA
BBBBBBBB
XXXXXXXX
YYYYYYYY
222222722
*X*CHANGE** «$

DELETE

awnN -

VII-5-19

DELETE CCCCCCCC
DELETE DDDDDDDD
DELETE EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH
ITIIIIII
JJIJJIIIIT
10 KKKKKKKK
11 LLLLLLLL
12 MMMMMMMM

VoM

RAXRRARRARXE S L T P C OMPLETE *khkrhihis

SLIST TESTOU SRC
page eject

AAAAAAAA
XXXXXXXX
YYYYYYYY
22222227
FFFFFFFF
GGGGGGGG
HHHHHHHH
IIIIIIII
JJIJIIIIT
KKKKKKKK
LLLLLLLL
MMMMMMMM

page eject

$SLIP L,S
*FILE IN:17='TESTIN RC' OUT:18='TESTOU SRC' §

CHANGE ~'GGG'
AAAAAAAA
BBBBBBBB
ccceceee
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
CHANGE =2,2
DELETE HHHHHHHH

8 XXXXXXXX
CHANGE ~$

9 IIIIIIII

SNV W -

VII-5-20

10 JJJIIIIJT
11 KKKKKKKK
12 LLLLLLLL
13 MMMMMMMM

RRRRRRXAXX S I, I P COMPULETE *kkhkihhtk

SLIST TESTOU SRC
page eject

AAAAAMAAA
BBBBBBBB
Ccccceecee
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
XXXXXXXX
IIIIIIII
JJJIIIIT
KKKKKKKK
LLLLLLLL
MMMMMMMM
SDECK EXTIN SRC
SLIST EXTIN SRC

page eject

/THIS IS A USEFUL WAY

/OF INSERTING OPERATING

/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES.

page eject

$SLIP L,S
*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' $

CHANGE 3%

FILE IN:15='EXTIN SRC $

AAAAAAAA

BBBBBBBB

cceececee

/THIS IS A USEFUL WAY

/OF INSERTING OPERATING

/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES,
CHANGE «6*

NSOV W N

VIii-5-21

*FILE IN:15='EXTIN SRC' $
8 DDDDDDDD
9 EEEEEEEE
10 FFFFFFFF
11 /THIS IS A USEFUL WAY
12 /OF INSERTING OPERATING
13 /INSTRUCTIONS INTO A LISTING WITHOUT
14 /HAVING TO TYPE THEM TWO OR MORE TIMES.
CHANGE -$
15 GGGGGGGG
16 HHHHHHHH
17 IIIIIIIT
18 JJJIIIII
19 KKKKKKKK
20 LLLLLLLL
21 MMMMMMMM

RRARXKAXXX S L, T P C OMPILETE *kkkkhhhks

$LIST TESTOU SRC
page eject

AAAAAAAA

BBBBBBBB

cccceeceece

/THIS IS A USEFUL WAY

/OF INSERTING OPERATING
/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES.
DDDDDDDD

EEEEEEEE

FFFFFFFF

/THIS IS A USEFUL WAY

/OF INSERTING OPERATING
/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES.
GGGGGGGG

HHHHHHHH

IITIIIIIX

JIJIIIIT

KKKKKKKK

LLLLLLLL

MMMMMMMM

page eject

$SLIP L,S
*FILE IN:17='TESTIN SRC' OUT:18='TESTOU SRC' §

VII-5-22

CHANGE

DELETE

(N] NV W

10
11
DELETE
**CHANGE **
DELETE
12
13
14

-.HHH' '2*
*FILE IN:15='EXTIN SRC'

AAAARAAAA
BBBBBBBB
ccccecececce
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG
HHHHHHHH

/THIS IS A USEFUL WAY

/OF INSERTING OPERATING

/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES.

IIIIIIII
-$

JJJIJIJIIIT
KKKKKKKK
LLLLLLLL
MMMMMMMM

AkKkAkRkAk*XX S [, T P COMPLETE *Fkkkkhkkk

SLIST TESTOU SRC

page eject

AAAAAAAA
BBBBBBEB
ccceececc
DDDDDDDD
EEEEEEEE
FFFFFFFF
GGGGGGGG

/THIS IS A USEFUL WAY
/OF INSERTING OPERATING

/INSTRUCTIONS INTO A LISTING WITHOUT
/HAVING TO TYPE THEM TWO OR MORE TIMES.

KKKKKKKK
LLLLLLLL
MMMMMMMM

VII-5-23

TKB

CHAPTER 6

TASK BUILDER AND BASIC TASK BUILDER: BUILDING A TASK FOR EXECUTION

The Task Builder is an interactive program used to build wuser and
system tasks from relocatable binary files. This program links the
user's binary files to library functions to create an executable task,
By responding to questions asked by the Task Builder, the user
supplies information on run priority, core partition, COMMON block
requirements, and other task operating characteristics.

The Task Builder is flexible, allowing the user to build a simple
one-program task with no overlays or very complex tasks made up of
multiple programs (some written in FORTRAN and some written in MACRO),
a resident portion, and multiple overlays and suboverlays. Tasks may
be built for a variety of execution modes with the following
characteristics:

l. Uses floating=-point hardware or not
2. Runs in BANK addressing mode or in PAGE mode

3. Runs in USER mode (protected) or EXEC mode (privileged)
4, If in USER mode, runs in XVM mode (wide addressing) or not

The user generates a system of overlays - a resident main program
which may include resident subprograms, a resident blank COMMON
storage area, and a set of subroutines which overlay each other at the
user's request. Subroutines are organized into units called LINKs
which may overlay each other. Several LINKs may overlay a larger LINK
without overlaying each other. A LINK is loaded into core when a
subroutine within the LINK is called and it remains resident until
overlayed. A LINK's core image is not recorded or "swapped out"™ when
it is overlayed. The same image is brought into core each time a LINK
is loaded.

For the user who wants to build a simple Task, the flexibility of the
Task Builder can be a nuisance. For that reason, a second version of
the Task Builder whose task name is BTK... (Basic Task Builder) is
provided. BTK... assumes answers to all the questions that the
standard Task Builder, TKB..., asks directly. Section 6.5 describes
BTK in more detail.

All disk-resident RSX tasks are built and incorporated in the system
in the same way. Throughout the process, the task name is usually
used as file name, but the extension changes., Tasks are assembled or
compiled from source code to produce relocatable binary (extension
BIN) files. The binary files (combined perhaps with other binary
files, typically library subprograms) are fed through the Task Builder
to produce a binary task file (extension TSK), which is one step
closer to the executable form than BIN files. Finally, TSK files are

VII-6-1

read by the FININS task or the INSTALL function task, which converts
the task file into absolute core-image form, stores it on the disk for
rapid loading and records its existence in the System Task List.

6.1 INVOKING THE TASK BUILDER

The Task Builder is invoked under TDV in the following way:

Form: TDV>TKBV

Control is passed to the Task Builder, which establishes dialogue with
the user by typing a gquestion and a prompting character (>), and
expecting a response. An example of user interaction with TKB appears
in Figure 6-1. In all cases, user responses are identified by their
placement after the prompting character. Each TKB question is
described in detail later in this chapter.

XVM/RSX V1B VII-6-2 September 1976

TOVETKR

TASK RUILDER XUM V1A003
LIST OFTIONS
FBRKR e NRM» NFF

NAME TABK

FETAs e

SFECIFY DEFAULT FRIORITY
DESCRIBE FARTITION

DEFINE RESIDENT CODE
=STATUS y CORE » UBERS » TABKS
DESCRIRE LINKS & GTRUCTURE

ALLOC. STRATEGY:!BOTTOM LR
ACTUAL FARTITION SIZEI032000
EFFECTIVE FARTITION SIZE:032000
VIRTUAL FARTITION SIZEIQ32000

STATUS GO0020-0007324
CORE QOO725-001003
USERS 001004001421
TASKS 001422001677

DATF .S SRGC 001700~-001737
SPYF.1 SRC 001740-001763
LA 015 001764002063
BCDIO 036 002064006121
STOF 008 006122-0046135
FIOFS 047 0046136-007058
DRLINT 007 007057-007455
INTEAE 009 007456-0074606
RELEAE 011 0074607-010705
OTSER 016 010706-011225
SFMSG 014 011226-011355
+CB 004 011356011377
+FF 000 011400-011401

MINIMUM EFFECTIVE FARTITION SIZE:(Q12000

CORE REQ'D
000000-011401

TOV:

Figure 6-1
Task Builder Session

An altmode is a null entry.

To terminate command input prematurely,

the user should type CTRL/Q followed by a carriage return in response

to any command output message.

XVM/RSX V1B

This causes the Task Builder to exit.

VII-6-3 September 1976

6.2 INPUT/OUTPUT

The following LUN assignments should be made before the Task Builder
is invoked under TDV:

LUN Assignment
10 System Library input
11 User Library input
12 Terminal input
13 Terminal output
17 Binary file input
18 Task file output

If an I/0 error occurs during Task Building, the following message:
TKB = I/0 ERROR LUN xXx yyyyyy

is produced on LUN=-13; xx represents the Logical Unit Number (decimal)
- and yyyyyy the octal Event Variable indicating the cause of the error.

6.3 COMPARISON WITH CHAIN AND EXECUTE DIALOGUE

The operations of the Task Builder under RSX are very similar to those
of the CHAIN and FEXECUTE programs which run under control of DOS.
Interaction with these programs iz described in detail in the CHAIN
XVM/EXECUTE XVM UTILITY MANUAL. WNote that all command lines logically
terminate with an ALTMODE character. Lines terminated by a carriage
return are continued on the next physical line; therefore, a logical
command line may consist of several physical lines,

User interaction with the Task Builder differs in some ways from the
descriptions in the manual. The following sections summarize those
components of the dialogue which remain the same as well as those
which differ significantly under RSX.

6.3.1 List Options
Any of the list, execution mode, and library options, shown in Table

6-1 may be specified. If more than one option is included, entries
must be separated by commas.

VII-6-4

Table 6-1

Task Builder List, Execution Mode, and Library Options

Option Action Default
BKR BANK-mode relocation PGR
(13-bit addressing)
BUFFS :n Reserve n decimal I/0 n=20
buffers of 422 octal words
each when calculating
effective partition size
EXM EXECutive mode (neither NRM
protection nor relocation)
FP Hardware Floating-Point See MFP option
Library (floating-point
hardware available)
GM Output global symbol and Output program names
file name in load maps in load maps
107! Allows task to issue IOT Don't allow task to
instructions. (Permitted issue IOT instruction
only for USER-mode unless task is any
tasks) EXEC-mode task
NFP Non-hardware Floating- In default, the FP/NFP
Point Library (no float- option is dynamically
ing point hardware determined by the
available) availability of floating-
point hardware
NM No load map Output load map
NRM USER-mode (protection NRM
' and relotation)
PAL Pause after outputting No pause after out-
each link putting each link
PAR Pause after outputting No pause after out-
resident code putting resident code
PGR Page-mode relocation PGR
(12-bit addressing)
1XvM hardware must exist on the installation if this option is to
be used.

VII-6-5

Table 6~1 (Cont.)

Task Builder List, Execution Mode, and Library Options

Option

Action

Default

RES/name, ... ,name/

SAC

SHR!

SL:
name

Force the COMMONs named

to be part of the resident
code and load them from
the top of the virtual
partition space down

Single allocation of
COMMON blocks.
Elements of labelled
COMMONs may be ref-
erenced by any co-
resident link

Some COMMON blocks

should be allocated memory
within Shared Addressing
Space. Request specifi-
cation of these COMMONs
later in dialogue, (per-
mitted only for USER-
mode tasks)

System Library name
(alternate user-specified
System Library name)

Output size in load maps

User Library name
(alternate User Library
name)

XVM mode or 17-bit
indirect addressing
mode, (permitted only
for USER-mode tasks)

Make only those COMMONSs
declared in the resident
code resident

Elements of labelled
COMMONs may not be
referenced by any co-
resident link

There will be no
COMMONs allocated

in Shared Addressing
Space

.LIBRX (non-floating-
point hardware) or
.LIBFX (floating-
point) ,depending on
choice of NFP or FP,
respectively

No size in load maps

.LIBR5

15-bit addressing

1Xvii hardware must
be used.

exist on the installation if this option

VII-6-6

is to

6.3.1.1 PAGE Mode - Bits 6-17 of a memory-reference instruction are
taken as an operand address, and bit 5 is used to select address
modification via the Index Register (XR). Thus 4K of core is directly
addressable.

6.3.1.2 BANK Mode - Bits 5=17 of a memory reference instruction are
taken as an operand address. Thus 8K of core is directly addressable,
but the Index Register cannot be used for address modification.

6.3.1.3 EXEC Mode - Tasks running in EXEC mode are not restricted in
the core they may reference or alter, or in the instructions which
they may execute. I/O Handler and MCR Function tasks must run in EXEC
mode. Hardware relocation is not used in this mode. Thus the 15-bit
addressing range limits EXEC-mode tasks to partitions below 32K. If a
machine does not have hardware relocation, all tasks must be run in
EXEC mode. EXEC-mode tasks are assumed to be debugged and
well-behaved. For this reason, the system performs practically no
checking on EXEC-mode tasks.

6.3.1.4 USER Mode - This is anonprivileged mode in which a task is
prohibited access or execution outside its partition. It may not
direct the system by means o I/0 Directives or System Directives to
alter any core partition but its own.

The only exceptions are:

1. USER-mode Tasks may transmit data to and receive data from
System COMMON Blocks by using the COMMON Communicator I/O
Handler task as an intermediary.

2. USER-mode Tasks may transmit data to and receive data from
System COMMON Blocks or partitions using XVM core sharing
hardware, the SHR option, and the SHARE directive.

3. USER-mode Tasks may access memory via the SPY and SPYSET
directives.

A USER-mode Task is also prohibited by the hardware from executing
such privileged instructions as HLT, IOT, OAS, or double XCT (unless
the IOT option was specified when the task was built).

Reasonable protection is provided, but this mode should .not ye
considered "idiot proof," because a USER-mode Task is not restricted in
issuing Directives which affect areas other than core. Such a Ta§k
may, for example, interfere with the scheduling of other Tasgs; it
may tie up I/0 devices by attaching them indefinitely: and it may
enter tight loops, making continued system requests that could exhaust
the Pool of Empty Nodes. ’

USER-mode Tasks are relocated to zero, and use hardware relocation and
upper-bound checking to effect memory protection. Unless XVM mode is
specified, 15-bit addressing range limits the size of such a task's
useful partition space to 32K. However, hardware relocation permits
positioning of partitions for USER-mode tasks anywhere in 128K.

VII-6-7

The protected/relocated mode is called “user” mode to emphasize the
fact that it 1is the normal mode; the mode recommended for tasks,
unless they must run unprotected. A task that is to run ~“protected”
is not protected from other tasks; rather, other tasks are protected
from it. Such protection is necessary when debugging a new task.

Most tasks under RSX can be aborted (i.e., forced to exit). In this
event, I/0 rundown is performed for the task. For example, if a task
should exit, leaving some device attached and several files open on
the disk, I/O Rundown is invoked. 1In effect, this detaches the device
and closes all of the files.

An advantage to building user-mode tasks is that their partitions can
be redefined without requiring that the tasks be rebuilt. All user
tasks that run under MULTIACCESS must be built in user mode to
preserve system integrity.

If XVM mode as well as user mode is specified for a task, that task
can indirectly access memory via 17-bit addressing. Such a task could
access up to 128K if such a partition were allowed in the system. In
practice, however, the maximum partition size is 114K*. Despite this
wide addressing capability, the executable code and initialized COMMON
blocks** of such a task cannot exceed 32K. Nevertheless, XVM mode is
highly useful if a task contains extensive code as well as large
uninitialized COMMON blocks. The ability to access such COMMON blocks
is the primary use of XVM mode. The XVM option depends on the
existence of XVM hardware. Users without an XVM or PDP-15 with an
XM-15 option should not attempt to build a task in XVM mode.

6.3.2 Name Tasks

The user specifies a one- to six-character task name identifying the
task to be built.

6.3.3 Specify Default Priority

The user specifies the default priority at which a task will run.
This 1is an optional parameter. It can be entered or changed when the
task is installed. If specified, the priority must be between 1
(highest priority) and decimal 512 (lowest priority). If not
specified, TKB assumes a default priority of 400.

*Since 128K is the maximum supported core size and must include space
for the Executive, I/0 handlers and MCR partition, the maximum
partition size is 114K.

**COMMON blocks are initialized by block data subprograms in FORTRAN
and by the .CBS/.CBC/.CBE pseudo-ops in MACRO.

XVM/RSX V1B VII-6-8 September 1976

6.3.4 Describe Partition

The user identifies the core partition in which the task will run,
using the form: :

Form: name [(size)] for a user-mode task
name [(base,size)] for an exec-mode task
Where: name identifies a partition that has already

been defined

base is the octal starting address of the
partition

size is the octal size of the partition

Example: DESCRIBE PARTITION
>P40.0

Typing an altmode causes the task being built to be relocated for the
partition currently in use by the user's copy of TKB. This feature is
available for convenience. Normally, the MULTIACCESS Monitor
dynamically selects the partition assignment of all user-mode tasks
executed under MULTIACCESS.

If the partition base and size are unspecified, the named partition is
presumed to exist in the current configuration. The Partition Block
Description List (PBDL) is scanned by the Task Builder for the named
partition and the existing values of base and size are used.
Alternately, if the partition does not exist in the current
configuration and the task 1is being built to run in user mode
_ (relocated), only the partition size need be specified; the base can
be omitted. Exec-mode tasks require both base and size
specifications.

The execution mode is not a characteristic of a given partition.
Consequently, the user can build tasks with different execution modes.
to run within the same partition. Partitions must be a multiple of
400 (octal) words in size. Partitions can be defined starting
immediately above the top of the Executive.

The size of the partition specified to TKB or the existing value of
the partition size is called the actual partition size. This value is
reduced by the buffer space, specified by the BUFFS option, to obtain
what 1is called the effective partition size. This is the space that
could be used by the task, assuming that it were able to address it.
For user-mode tasks, buffer space 1is always rounded to the next
highest increment of 400 (octal) words to permit effective use of the
memory-protection/relocation hardware. The virtual partition size is
that part of the effective partition size that the task can address.
Usually the effective partition size is equal to the virtual partition

XVM/RSX V1B VII~6-9 September 1976

only reason the effective partition size might exceed the virtual
partition size 1is if the effective partition size were greater than
the maximum virtual partition size for a task built with a particular
gset of options. The maximum virtual partition size for a task can be
determined from the following chart.

Options Specified Maximum Virtual Partition Size
EXM 32K
NRM (not XVM and not SHR) 32K
NRM, XVM (not SHR) 128K
NRM, SHR (not XVM) 24K
NRM, XVM, SHR 120K

The Task Builder allocates code and common &locks within the virtual
partition space with one exception. Shared common blocks are always
allocated memory within the shared address space (SAS) which is
immediately above the virxrtual partition space whenever the SHR option
is specified.

6.3.5 Describe System or Shared COMMON Blocks

If the task is being built in EXEC mode, the user will be asked to
specify System COMMON blocks. If the task is being built in USER-mode
and the SHR option was declared, the user will be asked to specify
Shared COMMON Blocks. The way in which such COMMON blocks are
indicated is quite similar but there are some differences between the
formats used to specify System or Shared COMMONs.

6.3.5.1 Describe System COMMON Blocks

Here the user identifies COMMON blocks which are referenced by the
task but may be common to all tasks in RSX. These System COMMON
Blocks are used for communication between tasks; however, a task may
also have its own internal COMMON blocks.

EXEC-mode tasks can indirectly access System COMMONs provided such
COMMONs lay within the first 32K of core. This is because EXEC-mode
tasks reside within the lower 32K of memory and run unprotected.
EXEC-mode tasks cannot indirectly access system COMMONs whichreside
above 32K.

Each such COMMON block is specified according to the following format:

VII-6-10

Form: name (base,size) [,ee.]

Where: name identifies a COMMON block which has been
defined in RSX at System Startup time

base is the octal starting address of the
COMMON block

size is the octal maximum size of the COMMON
block

Example: DESCRIBE SYSTEM COMMON BLOCKS
>FLAG(36400,400)

The user can enter as many as four COMMON block descriptions by
inserting commas between entries. Those COMMON blocks in the user
program which are not declared to the Task Builder to be System COMMON
Blocks are allocated within the task's virtual partition space and are
referenced only by that task. Blank COMMON has the name .XX.

6.3.5.2 Describe Shared COMMON Blocks

The user must identify those COMMON Blocks referenced by the task
which should be allocated memory within the task's Shared Address
Space. These COMMONs must be named and uninitialized. The physical
menory actually accessed when the task references a word in such a
COMMON will depend upon the state of the MM register at the time of
the access. The MM register will be set when the task issues the
SHARE directive. Once the SHARE directive has been issued with the
correct parameters, XVM hardware will map the task's accesses to
Shared Addressing Space (SAS) into other locations within physical
memory . Since a task's SAS is not part of the task's virtual
partition space, accesses to shared COMMONs prior to issuing the SHARE
directive will cause a memory protection violation, forcing the task
to be aborted.

SAS is divided into Internal Shared Address Space (ISAS) and External
Shared Address Space (ESAS). ISAS is always 400 octal words long and
its base is identical to the base of SAS. ESAS begins at the base of
SAS plus 400 octal words (i.e., at the end of ISAS). The length of
ESAS depends upon parameters given in the SHARE directive. For tasks
not built in XVM-mode, SAS starts at word 60000 octal relative to the
partition's base. SAS starts at word 360000 octal relative to the
partition's base for tasks built in XVM-mode.

When the task has issued the SHARE directive, accesses to ISAS will be
mapped into the first 400 octal words of the task's partition.

References to ESAS will be mapped into an area of physical memory
specified in the SHARE directive.

The use of the SHR option depends upon the existence of XVM hardware
and the SHARE directive, If the user does not have such hardware or
the NOXM assembly parameter was defined when the RSX executive was
assembled, no tasks .should be built in SHR mode. :

VII-6-11

Each Shared COMMON Block is specified according to one of the
following formats:

Form l: name (offset, size) [,...]
Form 2: name (size) [,...]
Form 3: name [,...]

In these formats, name identifies a COMMON Block declared by the task.
In Form 1, offset is added to the base of ESAS to obtain +the base
address of the COMMON named. The offset from ESAS can be negative but
cannot cause a shared COMMON to start outside of the task's SAS. For
example, it is possible to set the offset equal to =400 octal. This
would cause the base of the named COMMON to coincide with the base of
SAS. Offset and size should be specified as octal numbers, Size
specifies the length in words, of the shared COMMON Block. Note that
size also specifies the base address of the next shared COMMON
relative to the base of the current shared COMMON. The only exception
to this rule is that a specification made using Form 1 will override
all previous specifications. The value of size must be a positive
octal number and cannot direct TKB to allocate space for a shared
COMMON outside SAS. Form 3 is simply a short form for Form 2 with a
size of zero, (e.g., "COM," means "COM(0),"). The use of each of
these forms is apparent from the following example.

Shared COMMON Definition COMMON Base

COM1 (-400, 1000), SAS = ESAS - 400

CoM2 (100), SAS + 1000 = ESAS + 400
com3, SAS + 1100 = ESAS + 500
coM4, SAS + 1100 = ESAS + 500
CoM5 (0,200) , SAS + 400 = ESAS

COM6 (100) , SAS + 600 = ESAS + 200
CoM7 (2000, 0) SAS + 2400 = ESAS +2000

If forms 2 or 3 are used prior to form 1, the base of the first shared
COMMON named is made to coincide with the base of ESAS.

The user can enter as many shared COMMON Blocks as are declared in the
task by inserting commas between entries. All shared COMMONs must lay
within SAS. Those COMMON Blocks in the user's program which are not
declared to be shared are allocated within the task's virtual
partition wall and are referenced only by that task. Blank COMMON
cannot be shared.

VII-6-12

Since the Task Builder does not allocate space for shared COMMONS
within the task's virtual partition space, the actual size of any
shared COMMON is irrelevant. Hence, when calculating he size of a
shared COMMON to be printed in load maps, TKB assumes that its top
address coincides with the top of ESAS.

6.3.6 Define Resident Code

Here the user lists the names of files containing relocatable binary
units of routines to be resident throughout a run and the names of
library routines (flagged by library indicators (#)) to be resident
throughout a run. These names are listed in the following format:

Form: namel[,eeel

Where: name is the name of a file or of a library
routine (see above) to be resident throughout
a run

Example: DEFINE RESIDENT CODE

RSX transfers initial control to the entry point of the first resident
routine relocated, i.e., the first routine of the first file listed,
unless resident code consists exclusively of 1library routines. The
response to DEFINE RESIDENT CODE must be at least one name.

6.3.7 Describe Links and Structures

Here the user describes the overlay structure in terms of LINK names.
When a LINK is to consist of only one external component, the name of
the file containing the external component may be used as the LINK
name. However, when a LINK is to consist of more than one external
component, the LINK must be named and defined.

In the DOS system, the supervision of core overlays.is handled by a
system program called EXECUTE, which exists as a separate file from
the user's XCT file built by CHAIN. In XVM/RSX, the equivalent of
EXECUTE is a subroutine called EXU.1l3 (the number may vary). Whenever
the Task Builder constructs a file with overlays, it expects to find
EXU.13 in the system library, .LIBRX or .LIBFX. If the appropriate
library file is not present on LUN-10 when an overlay task is being

built, an error message will be printed during the expansion of the
resident code:

TKB-I/O ERROR LUN 10 13

Code 13 means that the file was not found.

VII-6-13

6.3.7.1 LINK Definitions - Each LINK definition requires one line of’
command input in the following format:

extfile[,...] [/] [intfile] [Iooo]
Form: name =
{[extfile] [,oool [/]intfile[,o.o]

Where: name is the name of the LINK

extfile is the name of an external LINK
component

intfile is the name of an internal LINK
component

Example: Define the LINK named ABC to consist of
external components SUBl and SUB2 and
internal components SUB3 and SUB4:

DESCRIBE LINKS & STRUCTURES

>ABC=SUB1,SUB2/SUB3,SUB4

A LINK definition is a list of the names of files which contain the
relocatable binary wunits that comprise the LINK components. The
individual file names listed are separated by commas (,); the two
types of LINK components which may be used (external and internal) are
separated within the definition by a slash (/). All external LINK
component names must be listed before (to the left of) the slash
separator; all internal LINK components must be listed after (to the
right of) the slash. External LINK components are accepted only from
files with names which match the external component name (i.e., GLOBAL
symbol definition).

Rules for defining a LINK:

l. A LINK may not be a component of another LINK.,

2. The names of the components of a LINK may not be used as LINK
names. When a LINK consists of only one component, the
component's file name may be used as the LINK name in the
overlay structure description, but not in a LINK definition;
i.e., it is not necessary to define a single component LINK
but, if defined, the LINK name cannot be the component name.

3. A file name used in the resident code description cannot be
used in a LINK definition.

4, A file name preceding a slash may be used only once.

5. A file name following a slash may be used in other LINK
definitions (following a slash).

VII-6-14

6.3.7.2 Overlay Structure Description - An overlay structure is
described using the names of defined LINKS, or the names of files
containing LINK components and the operators colon (:) and comma (,).

This description has the following basic format:

Form: overlaid: [...]Joverlaying[,...]

Where: overlaid is the name of the part of the
structure to be overlaid (a defined LINK
or a file containing a LINK component)

overlaying is the name of the part of the
structure to overlay overlaid (a defined
LINK or a file containing a LINK component)

Example: SUB2 overlays SUBl:
DESCRIBE LINKS & STRUCTURES
SUB1:SUB2

The following rules apply:

1.

2.

3.

4,

A line is an independent statement processed from 1left to
right,

A colon signifies "is overlayed by." Core mapping, but no
loading order, is implied.

A comma signifies "and." The following:

SUB1:SUB2
SUB2:SUB3,SUB4

indicates that SUBl is overlayed by (uses the same core as)
SUB2, SUB2 is overlayed by SUB3 and SUB4, but SUB3 and SUB4
do not overlay each other.

A colon operator may not be used in a line after a comma has
been used. This restriction prevents the following
ambiguity:

SUB2:SUB3,SUB4:SUBS
The above line is rejected because it is not clear whether

SUB5 overlays SUB3 or SUB4 or both. All four of the
following examples are acceptable:

SUB2:SUB3,SUB4 SUB5 uses the same core as

SUB4:SUB5 SUB4 but not the same core
as SUB3.

SUB2:SUB3,SUB4 SUBS5 uses the same core as

SUB3:SUB5 SUB3 but not the same core
as SUB4.,

VII-6-15

SUB2:SUB5:SUB3,SUB4 SUB5 uses the same core as
SUB3 and §SUB4. SUB3 and
SUB4 are loaded individu-
ally (if nonresident) as

called.
LINK=SUB3,SUB¢4 SUB5 uses the same core as
SUB2:LINK:SUB5 SUB3 and SUB4. Both SUB3
and SUB4 are loaded (if
nonresident) whenever

either is called.

5. A LINK name may appear only once preceding a colon and only
once following another colon.

6. If a LINK name is used twice, it must be used following a
colon before being used before another colon.

7. Several LINKs overlaying each other may be defined in one
statement, as in the following:

SUB1:SUB2:SUB3,SUB4 Core mapping, but no
loading order, is implied.
This is a short method of
defining the same overlay
structure as in the first
example, under rule 3.

Although rules 5 and 6 may appear restrictive, they do not 1limit the
user's description of an overlay structure, but do prevent multiple
description of the position of a LINK in an overlay structure. A LINK
may be both overlayed and overlaying, and it may not be possible or
convenient to describe both conditions by using the LINK name only
once, as follows:

SUB1:SUB2:SUB3 SUB2 is overlaying SUBlL and is overlayed
by SUB3.

Therefore, when a LINK is both overlaying and overlayed, its LINK name
may be used twice, but the LINK(s) overlayed by it must be described
before the LINK(s) by which it is overlayed, as follows:

SUB2:SUB3,SUB4 SUB3 overlays SUB2.
SUB3:SUB5 SUB3 is overlayed by SUBS5.
NOTE

The description of an overlay structure
only defines a desired core mapping;
i.e., stating that SUBl is overlayed by
SUB2 means that both are to be relocated
to the same core and cannot coreside,
but does not imply that SUBl must be
called before SUB2, There is no imposed
order in which routines must be called,
nor is there restriction of the routines
callable by any routine.

VII-6-16

6.3.8 Completion of Dialogue

After all of the previously described characteristics have been
supplied by the user and accepted by TKB, the program computes the
amount of core required by the task and prints it in the format:

°

XVM/RSX V1B VII-6~-17 September 1976

Form: start-end size

Wwhere: start is the octal starting address of the task
in the core partition identified above

end is the last filled octal location in this
partition

size is the octal size of the task

Example: CORE REQ'D
40000-46266 06267

TKB terminates interaction with the user by returning control to the
MULTIACCESS Monitor. When in control, the Monitor requests another
function by typing:

TDV>

6.4 CONVERSION TO XVM/RSX

XVM/RSX user interaction with the Task Builder differs from
interaction with previous versions of the Task Builder. All user
FORTRAN programs developed under previous versions of RSX must be
recompiled and rebuilt by the Task Builder to enable them to run under
XVM/RSX. Similarly,; assembly language programs should be reassembled
and rebuilt for XVM/RSX operation.

6.5 BTK: BASIC TASK BUILDER

BTK, the Basic Task Builder, closely resembles TKB, but requires
different input. BTK is useful for building simple tasks,
particularly for batch-processing. BTK is invoked in the following
way:

Form: BTK name[,name...]V
Where: name is the name of the task to be built
Example: TDV>BTK SCAN,SCSUB

BTK assumes the following options and conditions (refer to Table 6-1):

NRM

FP or NFP

PGR

priority of 400

TDV partition

The resident code that has been entered

BTK generates a load map. As an aid to the system, the batch handler

removes trailing spaces from card images passed to the MULTIACCESS
Monitor.

XVM/RSX V1B VII-6-18 September 1976

6.6 ERROR MESSAGES

Tables 6-=2 and 6-=3 1list possible error messages and their
implications. Messages regarding command string errors immediately
follow the erroneous logical line. The command is ignored and must be
retyped.

The > prompt follows the message if the error is recoverable. When
possible, the faulty character or name is output after the error
message. If the error is not recoverable, TKB exits to TDV after
typing the message.

Below is a sample sequence of miscellaneous recoverable errors:

VII-6-19

Table 6-2

Messages Produced by Recoverable TKB Errors

Error Message

Meaning

4+UNRECOGNIZABLE SYMBOL

+RES ROUTINE REQ'D

4+LINK NAME USED PRV
4+NAME LENGTH ERR

4IMPROPER BREAK CHAR

+INTERNAL NAME REPEATED IN LINE

+EXTERNAL NAME USED PRV

+COMPONENT NAME USED AS LINK NAME
4+LINK DEF WITHIN OVERLAY
DESCRIPTION

+COLON MUST FOLLOW FIRST
LINK NAME

4+MORE THAN ONE LINK OVERLAYED

4+NAME RIGHT OF COLON USED PRV

4NAME USED MORE THAN TWICE

4+NAME USED LEFT OF COLON TWICE

+LIB IND ON LINK NAME

+INTERNAL NAME USED PRV

4RES ROUTINE NAME USED AS LINK NAME

+NAME USED MORE THAN ONCE
INCONSISTENT OPTION

Unrecognizable symbol in
command string

No resident routine has been
declared

Name used previously
Legal name has 1-6 characters

Break character used incor-
rectly

Internal LINK component name
used more than once within
LINK

External LINK component name
used previously within overlay
system

Name of LINK component used a s
name of a LINK

LINK definition within overlay
description

Colon missing after first LINK
name

More than one LINK overlayed

LINK name used more than once
to right of colon

LINK name used more than twice

LINK name used more than once
to left of colon

Library indicator (#) on LINK
name

Internal name used before

Name of resident routine used
as LINK name

LINK name used more than once
The option specified is

incompatible with other
declared options.

VII-6-20

Table 6-2

Messages Produced by Recoverable TKB Errors

Error Message

Meaning

"IMPROPER PRIORITY
“"PARTITION STARTS ABOVE 32K
“PARTITION ENDS ABOVE 32K

“TOO MANY DEFINITIONS

"PARTITION NOT IN SYSTEM
"ILLEGAL SIZE

"LIB IND ON EXTERNAL NAME

"LIB IND ON INTERNAL NAME

“COMMON OUT OF SAS

The specified priority is out
of range (greater than 512)

The partition for an exec-mode
task starts above 32K

The partition for an exec-mode
task ends above 32K

The amount of table space in
free core is exceeded for user
information

The specified partition does
not exist in the system

The partition size is not a
multiple of 400 (octal) words

The user has incorrectly
applied the library indicator
to an external name

The user has incorrectly
applied the library indicator
to an internal name

The common block specified is
larger than the shared address
segment and cannot be
addressed

XVM/RSX V1B

VII-6-20.1

September 1976

Table 6-3

Messages ProduCedLby.Unrecovg;éble TKB Errors

Error Messages

TABLE OVERLAP

READ ERROR
ILLEGAL LOADER CODE

LABELED COMMON BLK SIZE ERR--

UNRESOLVED GLOBAL(S) :

ABS PROG

MISSING GLOBAL DEF

DUPLICATE GLOBAL DEF

TASK IS LARGER THAN PARTITION
TKB-PARTITION TOO SMALL .
TOO MANY BUFFERS SPECIFIED

CORE OVERFLOW

MODULE TOO LARGE--

Meaning
Patch table and symbol table
overlap occurred during
relocation of resident code

and links to the TSK file

An error occurred on the input
device

The input file contains
unrecognizable loader code

The labeled common block is
now declared larger than in a

previous declaration. The
block name follows the
message.

One or more global symbols are
unresolved during relocation
of the resident code and links
to the TSK file. The system
generates a list of all
unresolved globals.

.ABS programs are not allowed,

because they are not
relocatable

A global definition is
missing. The system lists it.
There is a duplicate global
definition. The system lists
it.

The task is too large for its

partition

The specified partition cannot
run the job

The described buffer space
exceeds the partition size

The executable code portion,
including initialized common
blocks of the overlay
structure defined by the user,
does not fit into available

core
The named module is larger
than 4K for page mode or 8K
for bank mode. The module

name follows the message.

XVM/RSX V1B

. VII=6-21

(antinued)

September 1976

Table 6-3 (Cont.)
Messages Produced by Unrecoverable TKB Errors

Error Messages

COMMON BLOCKS DECLARED RESIDENT

ABSOLUTE LOAD ADDRESS

GLOBAL SYMBOL TOO BIG--

ILLEGAL ATTEMPT TO INITIALIZE
COMMON BLOCK--

*** BLOCK DATA SUBROUTINE--

COMMON BLOCK TOO BIG--

Meaning

A resident module has been

specified with the same name

as a common block

A module has been read that

has an absolute: starting

address

The user has attempted to

reference an area beyond the

scope of the given symbol.

The symbol follows the

message.

The user has attempted to do

one of the following:

l. 1Initialize a common block
that is part of another
link

2. Initialize a common block
that has been declared
with the RES option

3. 1Initialize a shared common
block

4. 1Initialize a system common
block

A block data subroutine has

been encountered. The

subroutine name follows the
message.

The user has attempted to

allocate a common block larger
than 77777. The block name
follows the message.

XVM/RSX V1B

VII~6-22

September 1976

FIN
DEC
FOU
LIS
TYPE

CHAPTER 7

FILE INPUT, DECK, FILE OUTPUT, LIST AND TYPE

The FILE INPUT, DECK, FILE OUTPUT, FILE LIST and TYPE TDV Function
tasks transfer sequential-access files from one device to another.
The four tasks are built and invoked in identical fashion. They
differ only in their assignment of LUNs for I/0. They perform the
following operations:

FILE INPUT (FIN) transfers a sequential file from LUN-19 to
LUN-17

. DECK (DEC) transfers a sequential file from LUN-14 to LUN-17

. FILE OUTPUT (FOU) transfers a sequential file from LUN-17 to
LUN-19

. FILE LIST (LIS) transfers a sequential file from LUN-17 to
LUN-16; a line printer or some other printing device

. TYPE (TYPE) is identical to LIS, but outputs data to LUN-13
These function tasks can also be invoked in batch mode.

The most common use for these functions is for backup and restoration.
FOU is often used to backup a disk file on DECtape and sometimes on
magtape or paper tape. FIN is used to restore the copied file to
disk. LIS usually dumps a file from disk to the line printer. DEC is
usually used during batch operations to transfer a file from LUN-14
(normally assigned to the card reader) to LUN-17 (normally assigned to
a disk). It is possible to use FIN, DEC, FOU, LIS and TYPE for any
copy function, simply by reassigning LUNS.

XVM/RSX V1B VII-7-1 September 1976

7.1 INVOKING FIN, DEC, FOU, LIS AND TYPE

FIN, DEC, FOU, LIS and TYPE are invoked according to the same format:

FIN

DEC

Form: FOU [9] [option[,]...lname [ept]([,.,]V
LIS[T]

TYPE

Where: 9 preceding the first space character
signifies 9-track magtape operation. 1In
its absence, 7-track operation is assumed.

option is a one-character symbol: N or F. N
specifies no parity check; F allows form feeds
in the output (see the following paragraphs
for more information).

The option characters can be either
concatenated or separated by commas.

name is a string of one to six .SIXBT
characters and represents the input file.
At least one name must be supplied.

ext is a string of one to three .SIXBT
characters and identifies a file extension.
It is optional. SRC is the default.

Example: Copy a binary file from DECtape (LUN-1Y) to
disk (LUN-17):
TDV>FIN SCAN BIN

Make no parity check on the file NOCHEK SRC,
but perform parity checking on CHECK SRC
and CHECK2 SRC: _

TDV>FIN NNOCHEK,CHECK,CHECK2 SRC

Insert form feeds in the output for the files
FORMAT SRC, FORMT2 SRC, and FORMT3 SRC, but
not for NOFMT SRC:

TDV> LIS FFORMAT,FORMT2,NOFMT,FFORMT3

Perform parity checking, but not formatting, for
NOFMT SRC, NOFMT2 SRC and NOFMT3 SRC
(A is ignored as an illegal option letter):
TDV>LIS NOFMT,NOFMT2,ANOFMT3

The options N and F are entered by typing either or both option
letters followed by the file name, and so on. When the back-arrow
appears with no preceding option characters, it is assumed that these
options are not to be used. Because the characters space, comma and

XVM/RSX V1B VII-7-2 September 1976

back—-arrow are treated as delimiters in the command string, they
cannot be used in file names even though they are part of the .SIXBT
character set.

The N option suppresses the typeout of parity error messages (N stands
for "no parity check"). It is used to allow input of nonstandard
paper tapes by using the RSX paper tape reader handler task PR.....

The F option allows form feeds to be inserted in the output at
expected 1locations. The purpose 1is to format FORTRAN and MACRO
language source programs on the output listing device. The F option
has no effect on binary files. A form feed is inserted after every
line that contains an .EJECT optionally preceded by any number of
spaces and horizontal tabs. A form feed is inserted prior to every
line containing a .TITLE optionally preceded by any number of spaces
and horizontal tabs. Finally, a form feed is inserted after every 56
lines of text following the last form feed.

Files with extensions of BIN or TSK are transferred in IOPS binary
data mode. All others are transferred in IOPS ASCII mode. Image mode
files are not supported.

SDECK causes Batch to read all lines following it and preceding SEOF.
It resembles a FIN function task, because it performs transfers of
data, FORTRAN programs and so forth to disk. It can transfer anything
but a job file. The sequence below is legal:

$DECK namel, name2, name3
SEOF
SEOF

SEOF

7.2 INPUT/OUTPUT AND TASK BUILDING

The FILE INPUT, DEC, FILE OUTPUT, FILE LIST and TYPE TDV Function
tasks are assigned task names FIN..., DEC..., FOU..., LIS... and
TYP..., respectively, at task-building time. These tasks can be built
to run in either user mode (protected and relocated) or exec mode.
All of these tasks expect LUN-13 (recommended dedicated terminal) to
receive error messages and expect the following LUNs as file devices:

Task Input Recommendgd Output Recommendeq
Name LUN Input Device LUN Output Device
FIN... 19 DECtape 17 Disk

FOU... 17 Disk 19 DECtape
LIS... 17 Disk 16 Line printer
DEC... 14 Card reader 17 Disk

TYP... 17 Disk 13 Terminal

XVM/RSX V1B VII-7-3 ‘ September 1976

For all three Tasks, if the input device has a directory, a SEEK is
invoked to open a file for input. If not, an ATTACH is issued to
obtain exclusive control of the device. Similarly, if the output
device has a directory, ENTER opens a file for output; if not, an
ATTACH is issued. If several files are being transferred,
ATTACH-DETACH is done for each file, to allow a higher-priority Task
to use the device if necessary.

If the output device is a line printer or terminal, a page eject is
performed before each file is transferred. If the input device is a
terminal, a check is made for end-of-file by examining the first word
of the input line for CTRL/D followed by ALTMODE or carriage return.

7.3 MAGTAPE OPERATION

Since the software cannot determine dynamically whether a tape drive
is 9=track or 7-track, 7-track operation is assumed unless the user
specifies a 9 in the appropriate place in the command line.

The following FORMAT parameters are issued for the different data
modes:

Mode Parameters
9-track ASCII 9-track; 800 BPI; odd parity
9-track BINARY 9-track; 800 BPI; odd parity;

core~dump mode
7-track ASCII 7-track; 800 BPI; even parity
7=-track BINARY 7=-track; 800 BPI; odd parity

Data cannot be transferred from a 7-track drive to a 9-track drive, or
vice versa, without using the disk as an intermediary.

Whenever end-of-tape is encountered after a READ, WRITE, or WRITE
END=OF-FILE, the tape is dismounted (REWIND followed by a SPACE
FORWARD RECORD) and the following messages are printed (example is for
tape unit 3):

FIN-DISMOUNT MT3
FIN-THEN, "RESUME FIN..."

As soon as tape motion has stopped and the message printouts have
ended, the function (FIN... in this case) suspends itself, This
allows the operator to unload the tape manually and mount a
continuation tape at the load point if desired. When the new tape is
ready, the operator must resume the indicated Task. If no
continuation is desired, he must abort the file transfer function.

VII-7-4

7.4 ERROR MESSAGES

Table 7-) lists possible error messages and their implications.
messages are printed in the following format:

TDV>FIN string
FIN-message

TDV>

In the above example and in Table 7-1, FIN can be replaced by FOU
All messages are applicable to the three Tasks.

LIS.

Table 7-1

FILE INPUT, OUTPUT, and LIST Error Messages

Error Message

Meaning

System Action

FIN-LINE TOO LONG

FIN-SYNTAX ERROR

FIN~-HINF ERROR

FIN=-NOT INPUT DEV

FIN=NOT OUTPUT DEV

FIN-FILE NOT FOUND

Command string exceeds
permissible length
(75 characters)

Violation in command
string formation

Input or output device

Handler does not per=-
form HINF Directive;
possible that nothing
is assigned to the
input or output LUN

I/0 Handler assigned
to input LUN cannot
perform input; assign-
ments should be checked

I/0 Handler assigned
to output LUN cannot
perform output; assign-
ments should be checked

One of the specified
files cannot be found
in the file directory

Command ignored

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

Command ignored

Command ignored

Command ignored

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

VII-7-5

(Continued on next page)

All

or

Table 7-1 (Cont.)

FILE INPUT, OUTPUT, and LIST Error Messages

Error Message

Meaning

System Action

FIN-SEEK ERR

FIN=ATTACH ERR

FIN-ENTER ERR

FIN=-READ ERR

FIN=-PARITY ERR

FIN-CHECKSUM ERR

FIN-BUF OVERFLOW

Error (other than FILE
NOT FOUND) occurred
while SEEK Directive
was being processed

ATTACH Directive to the
input or output device
rejected (ATTACH is not
issued to a directoried
device) ; error might
occur in the unlikely
event that the input or

output LUN was reassigned

to another device before

completion of the transfer

Exrror occurred while
ENTER Directive was
being processed

Error (other than
PARITY, CHECKSUM, or
BUFFER OVERFLOW) oc-
curred while READ
Directive was being
processed

Parity error exists some-

where within the device

block (usually 256 words)
from which the last input

record was read

CHECKSUM error exists
in data record just read

Record larger than 68
words (including header)
encountered in input

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

Command ignored

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

File transfer continues
after printing error
message; file probably
contains altered data
as a result of this
error

File transfer continues
after printing error
message; file contains
altered data as a
result of this error

Only a partial record
is written; file trans-
fer continues after
printing error message

VII-7-6

(Continued on next page)

Table 7-1 (Cont.)

FILE INPUT, OUTPUT, and LIST Error Messages

Error Message

Meaning-

System Action

FIN-WRITE ERR

FIN-CLOSE INPUT
ERR

FIN-CLOSE OUTPUT
ERR

FIN-DETACH ERR

FIN-FILE STILL
OPEN

FIN-DISMOUNT MT3
FIN-THEN, "RESUME
FIN..."

FIN-WRITE EOF ERR

Exrror occurred while
WRITE Directive was
being processed

Error occurred while
CLOSE Directive on
input file was being
processed

Error occurred while
CLOSE Directive on
output file was being
processed

DETACH Directive issued
to the input or output
device was rejected
(DETACH is not issued
to a directoried device)

Some other Task is ref-
erencing the file in a

| manner that conflicts

with the current re-
quest

End-of-tape reached
during Magtape READ,
WRITE, or WREOF

Error occurred while
writing an end-of-file
mark on Magtape

Remainder of command
ignored; because some
files may have been
transferred,the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
transferred,the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

Remainder of command
ignored

Remainder of command
ignored; because some
files may have been
tranferred, the user
should request a
DIRECTORY LIST

Task is suspended until
resumed after a new
tape is mounted or
until aborted

Remainder of command
ignored; because some
files may have been
transferred, the user
should request a
DIRECTORY LIST

VII-7-7

DEL

CHAPTER 8

DELETE: DELETING A FILE FROM DISK

The DELETE FILE TDV Function Task is used to DELETE files from disk.
It can be invoked in batch mode.

8.1 INVOKING DELETE FILE

The user can invoke DELETE FILE by typing a command according to the
following format:

Form: DEL([ETE] name([ext][,name[ext]...ly

Where: name of file DELETEQd is a string of one to six
+SIXBT characters; if more than one name is
included, the entries must be separated by
commas

ext is a string of one to three ,SIXBT
characters and identifies a file extension;

SRC is the default extension

Examples: TDV>DELETE FILE

TDV>DEL F1,F2,F3

TDV>DEL F1,F2 003,F3 BIN,F4 SRC
TDV>

8.2 INPUT/OUTPUT AND TASK BUILDING

The DELETE FILE TDV Function Task is assigned Task name DEL... at
Task=-Building time. This Task can be built to run in either USER
(protected and relocated) or EXEC mode. It expects LUN=-13
(recommended dedicated terminal) to receive error messages and LUN=-17
(normally disk) as the file device.

8.3 ERROR MESSAGES

Table 8~1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>DEL

DEL-message
TDV>

VII-8-1

Table 8-1

DELETE FILE Error Messages

Error Message

Meaning

System Action

DEL-LINE TOO LONG

DEL-SYNTAX ERR

DEL-FILE NOT FOUND

DEL-DELETE ERR

DEL-FILE STILL OPEN

Command string exceeds
permissible length
(75 characters)

Violation in command
string formation

One of the specified
files cannot be found
in the file directory

DELETE Directive re-
jected; possible that:

l. no I/0 Handler as~
‘'signed to proper
LUN

2. I/O Handler does
not perform DELETE

3. disk hardware er-
ror occurred

Some other Task is
referencing the file
in a manner that con-
flicts with the cur-
rent request

Command ignored

Remainder of command
ignored; because some
files may have been
DELETEd, the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
DELETEd, the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
DELETEd, the user
should request a
DIRECTORY LIST

Remainder of command
ignored; because some
files may have been
DELETEd, the user
should request a
DIRECTORY LIST

VII-8-2

REN

CHAPTER 9

RENAME: RENAMING A FILE STORED ON DISK

The RENAME TDV Function Task is used to RENAME files stored on disk.
It can be invoked in batch mode.

9.1 INVOKING RENAME FILE

The user can invoke RENAME FILE by typing a command according to the
following format:

{new [newext]}

Form: REN[AME] old [oldext],\[new] newextfV

Where: old is a string of one to six «SIXBT
characters and represents the old name of
the file

oldext is a string of one to three (SIXBT
characters and identifies the o0ld file
extension; SRC is the default extension

new is a string of one to six +«SIXBT
characters and represents the new name of
the file; o0l1ld is the default

newext is a string of one to three ,SIXBT
characters and identifies the new file
extension; oldext or its default (SRC) is
the default

Examples: TDV>RENAME FILEl,FILE2
TDV>REN OLDFIL SRC,NEWFIL 003
TDV>REN OLDFIL 002, 003
TDV>REN OLDFIL BIN,NEWFIL
TDV>

Either a new name or a new extension is required.

VII-9-1

9.2 INPUT/OUTPUT AND TASK BUILDING

The RENAME FILE TDV Function Task is assigned Task name REN,.. at
Task-Building time. This Task can be built to run in either USER
(protected and relocated) or EXEC mode. It expects LUN-13
(recommended dedicated terminal) to receive error messages and LUN-17
(disk) as the file device.

9.3 ERROR MESSAGES

Table 9-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>REN string

REN-message
TDV>
Table 9-1
RENAME FILE Error Messages
Error Message Meaning A System Action
REN-LINE TOO LONG Command string exceeds Command ignored
permissible length (75
characters)
REN-SYNTAX ERR Violation in command Command ignored
string formation
REN-FILE NOT FOUND Specified file cannot Command ignored
be found in the file
directory
REN-CAN'T RENAME I/0 Handler does not Command ignored

perform RENAME (only
for disk Handlers)

REN-RENAME ERR Error occurred while Command ignored
file being opened or (there is a remote
closed; disk hardware chance that RENAME
error possible was performed if disk

error occurred while
rewriting UFD block)

REN-FILE STILL OPEN Some other Task is ref- Command ignored
erencing the file in a
manner that conflicts
with the current request

VII-9-2

CHAPTER 10

DIRECTORY LIST: LISTING FILES IN DISK DIRECTORY

The DIRECTORY LIST TDV Function Task is used to l@st all files in a
file directory on RF DECdisk, RK cartridge d%sk, or RP disk pack.
These may be either sequential or random-access files.

This Function Task can be invoked in batch mode.

10.1 INVOKING DIRECTORY LIST

The user can invoke DIRECTORY LIST by typing a command according to
the following format:

Form: DIR[ECTORY LIST] Rmn<UFD)> V

Where: m is F, K, or P and represents the type of
disk: RF DECdisk, RK cartridge disk, or RP
disk pack respectively

n represents the unit number of the disk

UFD is the name of the user file directory

Example: TDV> DIR RK2 <{ABC>
3027 USER BLOCKS
6361 FREE BLOCKS

FILE RND 426 20 3-AUG-71 1000 10
TASKO1 BIN 446 3 18-AUG-71
DIRECT 008 0 o 2-SEP-71*%

In the above example, the number of user blocks is the amount of
storage already allocated on the disk. The number of free blocks is

t@e amount of storage available to the user. Each of the next output
lines has the following components:

VII-10-1

» File name: One to six characters
« File Name Extension: One to three characters

. Starting Block Number: One= to six-character octal number (0
if sequential~-access file is truncated)

o File Size (Number of Blocks): One- to six-character octal
number (0 if sequential-access file is truncated)

« File Creation Date: In form day-month-year where day and year
have one or two decimal digits

. Truncation Mark: Asterisk if file is truncated. Truncation
usually indicates a file in the process of being created but
occasionally identifies one that was never -properly closed.
The latter might occur as the result of a disk hardware error.
*rruncation®" applies only to sequential-access files.

« Random=-Access Information: Two one- to six-character octal
numbers of accounting information are supplied if it is a
random~access file. If the file was created using the FORTRAN
CALL DEFINE statement, these numbers represent the number of
records in the file and the record size, respectively. If the
file was created using MACRO, the user determines the meaning
of these numbers.

Bit 0 in the second word is 0 to indicate a BINARY
(unformatted) file or 1 to indicate an ASCII (formatted) file.

10.2 INPUT/OUTPUT AND TASK-BUILDING

The DIRECTORY LIST TDV Function Task is assigned Task name DIR... at
Task~-Building time. This Task can be built to run in either USER
(protected and relocated) or EXEC mode, It expects LUN-13
(recommended dedicated terminal) to receive error messages, LUN-16 to
accept the file listing, and LUN-1l for the Multi-Disk Driver Task.

10.3 ERROR MESSAGES

Table 10~1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>DIR

DIR-message
TDV>

VII-10-2

Table 10-1

DIRECTORY LIST Error Messages

Error Message

Meaning

System Action

DIR-ATTACH ERR

DIR-NOT A LISTING

DEV

DIR-DISK ERR

DIR=-PRINTOUT ERROR

DIR-DETACH ERR

DIR-EMPTY

DIR-UFD DOES NOT EXIST

DIR=-TDV ERROR

DIR~-FORMAT ERROR

DIR-NON-EXISTENT DISK

DIR-DEVICE IS NOT A
DISK

ATTACH Directive to the
listing device re-
jected; possible that
nothing is assigned to
the listing LUN

HINF function indicates
that the device assigned
to the listing LUN is
not a listing device
(i.e., it cannot per-
form output or it has a
directory)

Attempt to read in a UFD
block failed; possible
disk hardware malfunction

WRITE to the listing de-
vice declared to be in
error; error does not
occur without drastic
cause (e.g., exhausting
Pool of Empty Nodes)

DETACH Directive to the
listing device declared
to be in error; error does
not occur unless operator
reassigns listing LUN in
midstream

No files in the file
directory

The UFD specified is not
listed in the disk's MFD
(Master File Directory)

DIR... could not read the
TDV command string

Format error detected in
command string

Disk specified in command
string is logically not
present

Device name typed was
not RF, RK, or RP

Command ignored

Command ignored

Printing of
DIRECTORY ceases

Printing of
DIRECTORY ceases

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

Command ignored

VII-10-3

CHAPTER 11

DECTAPE DIRECTORY: LISTING FILES IN DECTAPE DIRECTORY

The DECTAPE DIRECTORY LIST TDV Function Task is used to list all files
recorded in the file directory of a DECtape in standard format.

11.1 INVOKING DECTAPE DIRECTORY LIST

The user can invoke DECTAPE DIRECTORY LIST by typing a command
according to the following format:

Form: DTD [IRECTORY LIST] V

Example: TDV>DTD
DECTAPE UNIT 4
31-DEC=71
1004 FREE BLKS
3 USER FILES
10 SYSTEM BLKS

FILNAM EXT 1 15
TABLE BIN 2 23
DTD.1 SRC 3 24
TDV>

DTD prints out the following:

DECtape Unit Number

Today's Date: In form day-month-year where day and year have
one or two decimal digits

Free Blocks: Number of free blocks in the file directory in
octal format

User Files: Number of user files in the file directory in
octal format; this is equivalent to the number of files listed
below; system tapes consist of user files and system files;
both are listed, but system files are not included in the count
of user files

System Blocks: Number of system blocks in the file directory
in octal format; the minimum number of system blocks is 10
octal; system blocks include blocks occupied by the file
directory (blocks 71 through 100 octal) and system files (none
if tape initialized and written under RSX control)

VIi-11-1

Each of the next output lines has the following components:
. File name: One to six characters
. Pile Name Extension: One to three characters
« Starting Block Number: one- to six-character octal number

« File Size (Number of Blocks): One- to six-character octal
number (0 if system file, not user file)

11,2 INPUT/OUTPUT AND TASK BUILDING

The DECTAPE DIRECTORY LIST TDV Function Task is assigned Task name
DTD... at Task=-Building time, This Task can be built to run in either
USER (protected and relocated) or EXEC mode. It expects LUN-13
(recommended dedicated terminal) to receive error messages, LUN-=13 to
accept the file listings, and LUN=-19 for DECtape input.

11.3 ERROR MESSAGES

Table 1l-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>DTD

DTD-mes sage
TDV>

VII-11-2

DECTAPE

Table 11-1
DIRECTORY LIST Error Messages

Error Message

Meaning

System Action

DTD-ATTACH ERR

DTD-NOT A LISTING DEV

DTD=-NOT DECTAPE

DTD-DECTAPE ERR

DTD=-PRINTOUT ERR

DTD-DETACH ERR

ATTACH Directive rejected;
possible that proper 1I/0
Handler not assigned to
the input or listing LUNs

HINF function indicates that
the device assigned to the
listing LUN is not a listing
device (i.e., it cannot
perform output or it has a
directory)

Input LUN not assigned to
the DECtape Handler

Attempt to read in one of
the DECtape directory
blocks failed

WRITE to the listing de-
vice declared to be in
error; error does not oc-
cur without drastic cause
(e.g., exhausting Pool of
Empty Nodes)

DETACH Directive to the
listing device or to the
DECtape Handler declared
to be in error; error does
not occur unless operator
reassigns listing LUN in
midstream

Command ignored

Command ignored

Command ignored

Command ignored

Printing of
DIRECTORY ceases

Command ignored

VIiIi-1i1-3

CHAPTER 12

NEW DECTAPE DIRECTORY: WRITING NEW DECTAPE DIRECTORY

The NEW DECTAPE DIRECTORY TDV Function Task is used to write a new
file directory on DECtape in standard format.

12.1 INVOKING NEW DECTAPE DIRECTORY

The user can invoke NEW DECTAPE DIRECTORY by typing a command
according to the following format:

Form: NEW[DIRECTORY] v

Example: TDV>NEW
NEW DIRECTORY ON DECTAPE UNIT 4
TDV>

12,2 INPUT/OUTPUT AND TASK~-BUILDING

The NEW DIRECTORY TDV Function Task is assigned Task name NEW... at
Task=-Building time. This Task can be built to run in either USER
(protected and ‘relocated) or EXEC mode, It expects LUN=-13
{recommended dedicated terminal) to receive error and confirmation
messages and LUN-19 for DECtape output.

12.3 ERROR MESSAGES

Table 12-~1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>NEW

NEW-message
TDV>

VII-12-1

Table 12~1
NEW DIRECTORY Error Messages

Error Message Meaning System Action

NEW=-ATTACH ERR ATTACH Directive to the Command ignored
output device rejected;
possible that DECtape
I/0 Handler not assigned
to the output LUN

NEW=-NOT DECTAPE Output LUN not assigned Command ignored
to the DECtape I1/0
Handler

NEW-DECTAPE ERR | Attempt to write out one | No further action
of the DECtape directory
blocks failed

NEW=-DETACH ERR DETACH Directive to the Command ignored
listing device rejected;
error does not occur un-
less operator reassigns

listing LUN in midstream

VII-12-2

INS

CHAPTER 13

INSTALL: INSTALLING A TASK IN THE SYSTEM

The INSTALL TDV Function task (also an MCR function task) adds a task
to RSX previously built using the Task Builder. The Task Builder
creates a binary file as output. When the INSTALL TDV Function task
is 1invoked, the binary file 1is read from LUN-5 and recorded as an
absolute image on the disk. The existence of the task is recorded in
the System Task List.

This function task has been implemented for batch processing, not for
use under the MULTIACCESS Monitor. 1Its inclusion in the system (via
atypical system build procedures) is permitted only to maintain
compatibility with existing user batch streams.

13.1 INVOKING INSTALL

The user can invoke INSTALL by typing a command according to the
format:

Form: INS[TALL] name [p]V

Where: name of task to be INSTALLed is a string of one
to six .SIXBT characters

p is an integer in the decimal range 1 to 512,
specifying the task priority

Examples: Priority has been set during task building:
TDV>INSTALL SCAN :
TDV>

Priority was not set at task building time or
priority redefined here as 10:

TDV>INS SCAN 10

TDV>

The user can override a priority specified during task building by
indicating a priority in the INSTALL command line. 1If a priority has
not previously been specified during task-building, an INSTALL
priority is a required parameter. .

XVM/RSX V1B VII-13-1 September 1976

13.2 INPUT/OUTPUT AND TASK-BUILDING

The INMNSTALL Function Task is assigned task name INS... at
Task-Building time. This task must he built to run EXEC mode. It
expects LUN-13 (recommended dedicated terminal) to receive error
messages and LUN-5 for binary file input.

13.3 ERROR MESSAGES

Table 13-1 lists possible error messages and their implications. All
messages are printed in the following format:

TDV>INS

INS~-message
TDV>

VII-13-2

Table 13-1
INSTALL Error Messages

Error Message Meaning System Action
INS-SYNTAX ERROR Task name omitted or Command ignored
priority invalid
INS-TASK ALREADY IN Task to be INSTALLed has Command ignored
SYSTEM node in STL
INS=-PARTITION NOT IN Partition name specified Command ignored
SYSTEM at Task-Building time not
available
INS-TASK WOULD OVER~- Task to be INSTALLed too Command ignored
FLOW PARTITION large for available par-
tition
INS=-OUT OF POOL No nodes left in pool to Command ignored
create new STL entry
INS=-OUT OF DISK No room left on the disk Command Ignored
INS-INPUT CHECKSUM ERR | Error while performing Command ignored
checksum processing
INS-INPUT PAR ERR Error while performing Command ignored
parity checking
INS=-SYS COM BLK ERR INSTALL needs system common Command ignored
block not currently in
system
INS-READ ERR ON LUN-5 Error in reading binary Command ignored
file from LUN=-5
INS=-DISK ERR Error while performing Command ignored
disk get or allocate oper-
ation
INS-NO DEFAULT PRIORITY | Priority not specified in Command ignored
INSTALL command, and no
priority included at Task-
Building time
INS-FILE NOT FOUND ON Binary file not available Command ignored
LUN-5 for input from LUN=5
INS=-RELOCATION HARD- No relocation hardware Command ignored
WARE NOT AVA available on machine
INS-FLOATING POINT No floating=-point hardware Command ignored

HARDWARE NOT AVA

available on machine

VII-13-3

REQ

CHAPTER 14

REQUEST: REQUESTING TASK EXECUTION

The REQUEST TDV Function task (also an MCR function task) REQUESTs the
execution of a task at a specified software priority. Actual time of
execution depends on task priority and partition availability.

This function task has been implemented for batch processing, not for
use under the MULTIACCESS Monitor. 1Its inclusion in the system (via
atypical system build procedures) is permitted only to maintain
compatibility with existing user batch streams.

Tasks requested by this TDV function will not execute under control of
the MULTIACCESS Monitor.

14.1 INVOKING REQUEST

The user can invoke REQUEST by typing a command according to the
format:

Form: REQ[UEST] name [plV

Where: name of task REQUESTed is a string of one to
six .SIXBT characters

p is an integer in the decimal range 1 to 51,
specifying the task priority

Examples: Priority has been set during task building or
installation:

TDV>REQUEST SCAN

TDV>

Priority is redefined here at 50:
TDV>REQ SCAN 50
TDV>

The priority that has been specified during task building or
installation can be overridden when the task is REQUESTed. 1If a new
priority is not included in the command line, the task runs at the
previously specified default priority.

14.2 INPUT/OUTPUT AND TASK BUILDING

The REQUEST TDV Function task 1is assigned task name REQ... at
task-building time. This task can be built to run in either user mode
(protected and relocated) or exec mode. It expects LUN-13
(recommended dedicated terminal) to receive error messages.

XVM/RSX V1B VII-14-1 September 1976

14.3 ERROR MESSAGES

Table 14~1 lists possible error messages and their implications., All
messages are printed in the following format:
TDV>REQ
REQ-message
TDV>
Table 14-1
REQUEST Error Messages
Error Message Meaning System Action
REQ-SYNTAX ERR Task name omitted or Command ignored
priority invalid
REQ-TASK NOT IN SYSTEM STL node for REQUESTed Command ignored
Task cannot be found
REQ-TASK ALREADY REQUESTed Task is Command ignored
ACTIVE currently active
REQ-TASK DISABLED Task has been disabled Command ignored
and is unavailable
REQ-POOL EMPTY No nodes left in pool to Command ignored
create new CKQ entry
REQ-PART LOST Partition in which Task is Command ignored

to run has been lost

because of reconfiguration

VII-14-2

REM

CHAPTER 15

REMOVE: REMOVING A TASK FROM THE SYSTEM

The REMOVE TDV Function task (also an MCR function task) deletes an
inactive task from the system. If the wuser plans to alter and
reinstall a task, he must REMOVE it first.

This function task has been implemented for batch processing, not for
use under the MULTIACCESS Monitor. Monitor. 1Its inclusion in the
system (via atypical system build procedures) is permitted only to
maintain compatibility with existing user batch streams.

15.1 INVOKING REMOVE

The user can invoke REMOVE by typing a command according to the
format:

Form: REM([OVE] nameV
Where: name of task to be REMOVEd is a string of one
to six .SIXBT characters
Example: TDV>REMOVE SCAN
TDV>

15.2 INPUT/OUTPUT AND TASK BUILDING

The REMOVE TDV Function task 1is assigned task name REM... at
task-building time. This task must be built to run in exec mode. It
expects LUN-13 (recommended dedicated terminal) to receive error
messages.

15.3 ERROR MESSAGES

Table 15-~1 lists possible error messages and their implications. All
messages are printed in the format:

TDV>REM

REM-message
TDV>

XVM/RSX V1B VII-15-1 September 1976

Table 15-1
REMOVE Error Messages

Error Message Meaning System Action
REM-TASK ACTIVE Task to be REMOVEd is Command ignored
currently active
REM-SYNTAX ERR Task name omitted Command ignored
REM-TASK NOT IN SYSTEM STL node for task to be Commanda ignored
REMOVEd cannot be found

REM-DISK ERR Error while performing Command ijnored
disk GET operation

REM-ALLOCATE ERROR Error while performing Command ignored
disk ALLOCATE operation

REM-TASK HAS Disk space allocated to Command ignored

MULTIPLE STL this task cannot be

ENTRIES deallocated at this time

XVM/RSX V1B VII-15-2 September 1976

MNT

CHAPTER 16

MOUNT: LOGICALLY MOUNTING A DISK

The MNT TDV Functions task (also an MCR function task) specifies UFDs
for all LUNs assigned to the named disk where no UFD specification has
previously been made. For additional information, refer to the
documentation on the MNT MCR Function task in Part IV of this manual.

This function task is not recommended for use under the MULTIACCESS
Monitor. Its inclusion in the system (via atypical system build

procedures) is permitted only to maintain compatability with existing
user batch streams.

16.1 1INVOKING MOUNT

The user can invoke MOUNT by typing a command according to the format:

Form: MNT Rnm UFDV

Where: Rn is disk type: RF, RP or RK

m is a valid disk unit number

UFD is a valid three-~character user file
directory

Example: TDV>MNT RP3 ABN
TDV>

16.2 INPUT/OUTPUT AND TASK BUILDING

The MOUNT TDV Function task is assigned task name MNT... at
task-building time. This task must be built to run in exec mode. It
expects LUN~13 (recommended dedicated terminal) to receive error
messages.

16.3 ERROR MESSAGES

Table 16-1 lists possible error messages and their implications. All
messages are printed in the format:

TDV>MNT

MNT-message
TDV>

XVM/RSX V1B VII-1l6-1 ‘ September 1976

Table 16-1
MOUNT Error Messages

Error Message Meaning System Action
MNT=-ALLOCATION ERROR Error while performing Command ignored
disk ALLOCATE operation
MNT-DISK PUT ERROR Error while performing Command ignored
disk PUT operation
MNT-FORMAT ERROR Invalid device name, unit, Command ignored
or UIC
MNT=DISK HAS NO PDVL PDVL node for specified Command ignored
NODE disk cannot be found
MNT-DEVICE IS NOT A Device name does not cor- Command ignored
DISK respond to a disk in the
RSX system
MNT-ILLEGAL TO MOUNT Device name corresponds to Command ignored
THE SYSTEM DISK the system disk
MNT-DISK NOT DIS- Specified disk has not Command ignored
MOUNTED been dismounted since last
mount
MNT-DISK GET ERROR Error while performing Command ignored

disk GET operation

VIii-16-2

DSM

CHAPTER 17

DISMOUNT: LOGICALLY DISMOUNTING A DISK

The DSM TDV Function task (also an MCR function task) dismounts a user
disk and, therefore, disables all file-oriented I/0 addressed to the
disk. For additional information, refer to the documentation on the
DSM MCR Function task in Part IV of this manual.

This function task is not recommended for use under the MULTIACCESS
Monitor. Its inclusion in the system (via atypical system build
procedures) is permitted only to maintain compatability with existing
user batch streams.

17.1 INVOKING DISMOUNT

The user can invoke DISMOUNT by typing a command according to the
format:

Form: DSM RnmV

Where: Rn is disk type: RF, RP or RK
m is a valid disk unit number

Example: TDV>DSM RK6
DISK IS READY FOR DISMOUNTING
TDV>

17.2 INPUT/OUTPUT AND TASK BUILDING

The DISMOUNT TDV Function task 1is assigned task name DSM... at
task-building time. This task can be built to run in exec mode. It
expects LUN-13 (recommended dedicated terminal) to receive error
messages.

17.3 ERROR MESSAGES

Table 17-1 lists possible error messages and their implications. All
messages are printed in the format:

TDV>DSM

DSM-message
TDV>

XVM/RSX V1B VII-17-1 September 1976

Table 17-1
DISMOUNT Error Messages

Error Message Meaning System Action
DSM-FORMAT ERROR Invalid device name or Command ignored
unit
DSM-DISK HAS NO PDVL PDVL node for specified Command ignored
NODE disk cannot be found
| DSM=DEVICE IS NOT A Device name does not cor- Command ignored
DISK respond to a disk in the
RSX system
DSM=-ILLEGAL TO DIS- Device name corresponds to Command ignored
MOUNT THE SYSTEM the system disk
DEVICE
DSM-DEVICE NOT MOUNTED Disk to be dismounted is Command ignored
not currently mounted
DSM-DEVICE IS IN USE Specified disk is current- Command ignored
ly being used for I/0
DSM-MARK TIME FERROR Error encountered while Command ignored
marking time until all
open files are closed

VII-17-2

This page intentionally left blank.

XVM/RSX V1B VII-18-1 September 1976

This page intentionally left blank.

XVM/RSX V1B VIi-18-2 September 1976

CON

CHAPTER 19

CONSTRUCT: STORING A TASK ON A USER DISK

The CONSTRUCT TDV Function task (also an MCR function task) adds a
task to RSX previously built by the Task Builder. When CONSTRUCT is
invoked, the binary file is read from LUN-5. Unlike the INSTALL
function, however, the task core image is stored in a created file on
a disk, not simply in allocated space on the system disk. Because
space on the wuser disk is allocated by the disk file handler, a LUN
that specifies the disk on which the created file is to reside must
usually be included in the CONSTRUCT command. Unlike INSTALL,
CONSTRUCT does not affect the System Task List in any way.

19.1 INVOKING CONSTRUCT

The user can invoke CONSTRUCT by typing a command according to the
format:

Form: CON[STRUCT] name [LUN]V

Where: name of task to be CONSTRUCTed 1is a
string of one to six .SIXBT characters

LUN is an integer representing a logical
unit number currently associated with
a disk (the default value is decimal
14)

Example: TDV>CON SCAN 16
TDV>

19.2 INPUT/OUTPUT AND TASK BUILDING

The CONSTRUCT TDV Function task 1is assigned task name CON... at
task-building time. This task can be built to run in either user mode
(protected and relocated) or exec mode. It expects LUN-13
(recommended dedicated terminal) to receive error messages and LUN-5
to be assigned for binary file input.

XVM/RSX V1B VII-19-1 September 1976

19.3 ERROR MESSAGES

Table 19-1 lists possible error messages and their implications. all

messages are printed in the format:

TDV>CON
CON-message
TDV>
Table 19-1
CONSTRUCT Error Messages
Error Message Meaning System Action
CON-SYNTAX ERROR Task name or LUN omitted Command ignored
or invalid or out-of-range
LUN
CON-CREATE ERR Error while performing Command ignored
create operation
CON-READ ERR Error while performing Command ignored
READ operation
CON-DISK ERR Error while performing Command ignored
disk GET or ALLOCATE
operation
CON-FILE NOT FOUND Binary file not available Command ignored
on LUN-5
XVM/RSX V1B VII-19-2 September 1976

This page intentionally left blank.

XVM/RSX V1B VII-20-1 September 1976

This page intentionally left blank.

XVM/RSX V1B VII-20-2 September 1976

This page intentionally left blank.

XVM/RSX V1B VII-20-3 September 1976

This page intentionally left blank.

XVM/RSX V1B VII-20-4 September 1976

QUE

CHAPTER 21

QUEUE: QUEUING A BATCH JOB

The QUEUE TDV Function task (also an MCR function task) informs the
batch processor that a job 1is ready to be run, whether or not the
batch handler is in core. The user can specify the name of the job to
be queued, the LUN from which it comes and a series of job
characteristics, including:

® Maximum time that the job can run (in minutes)

® Class at which the job can run

® Memory use

® Use of sequencing (run in order of submission)

e Whether the job requires operator availability

e Whether QUEUE expects to find the job on the specified device
at this time

e Whether the job file should be deleted after the job runs
e Use of hold mode

e Whether the job is to be forced

21.1 INVOKING QUEUE

Job characteristics can be delimited in the command string by one or
more Sspaces, commas or both. The following examples show various
forms of delimited parameters. The user can invoke QUEUE by typing a
command according to the format:

XVM/RSX V1B ' VIiI-21-1 September 1976

Form: QUE [UE] [name] [LUN] [T=time] [C=class]
[M=memory] [SEQ] [OPR] [NCK] [DEL]
[HLD] [STK] [FRC]V

Where: name of task to be queued is a string of one
to six characters (first character must be
alphabetic). EXT smustT BE “JoB’

LIUN is an integer representing a logical unit
number currently in the system

time is an integer in the decimal range 1 to
1023, representiang the maximum number of
minutes that the job can run

class is an integer in the decimal range 0 to
7

memory is an integer in the decimal range 1
to 128, representing memory use (in K)

Examples: TDV>QUE COMPIL

TDV>QUE NAMX 15 SEQ C=2

TDV>QUE SCAN 5 T=C C=3 M=28 SEQ SPN
TDOV>QUE 14 NCK

All parameters of the QUEUE command are optional. In practice,
however, a name or LUN is often specified for one of the following
reasons:

1. The default LUN is LUN-17; wusually assigned to the disk.
- Specification of an explicit LUN is necessary to override
this default.

2. The name can be omitted if the LUN from which it comes is not
associated with a file-oriented device. 1In the example:

TDV>QUE 14

14 is associated with the <card reader and the command
requires no explicit name definition.

3. If the first character of a QUEUE command line is numeric, it
is assumed that the name has been omitted and the number
represents the LUN of a non-file-oriented device. The user
should ensure that names included in the command line begin
with an alphabetic character.

The HLD option causes QUEUE to gueue the job, but to leave it in the
hold mode until the operator releases it. The STK option causes QUEUE
to stack the job by copying it into a temporary file on disk and
queuing it. STK implies deletion after execution.

If the file is on DECtape or disk and if NCK and STK have not been
specified, QUEUE opens the file, reads the JOB record and outputs
errors, if necessary. If a memory size is specified and not enough
core 1is available to run, the job waits until the TDV partition is
large enough.

XVM-RSX V1B ViI-21-2 September 1976

Job information defaults are:

Parameter Default
T Time specified in the job file
C Zero
M Core available at the time the job is run (0)
SEQ No use of sequencing
OPR Job does not require operator availability
NCK Job is on the specified device at this time

DEL Preserve the job file after the run

HLD Run the job as soon as priority permits
STK Do not copy the job file to the disk
FRC Do not force

21.2 INPUT/OUTPUT AND TASK BUILDING

The QUEUE Function task is assigned task name QUE... at task building
time. This task can be built to run in either user mode (protected
and relocated) or exec mode. It uses LUN-13 to receive error
messages.

21.3 ERROR MESSAGES

Table 21-1 lists possible error messages and their implications. All
messages are printed in the format:

TDV>QUE

message
TDV>

XVM/RSX V1B VIIi-21-3 September 1976

Table 21-~1

QUEUE Error Messages

TRANSFER ERROR

Command transfer

Error Message Meaning System Action
FORMAT ERROR IN COMMAND One or more Command ignored
nonexistent options
in command line
ILLEGAL VALUE FOR ARGUMENT Illegal T,C,M, or U Command ignored
argument
CANNOT INPUT FROM Nothing to input Command ignored
DEVICE SPECIFIED from that LUN
NEED FILE NAME FOR File-oriented LUN Command ignored
THIS DEVICE
FILE NOT FOUND File cannot be found Command ignored
READ ERROR Error during READ Command ignored
operation
JOB RECORD MUST BE First line not JOB Command ignored
FIRST LINE record
INCORRECT JOB LINE Incorrect time limit Command ignored
FOLLOWS specification; not
three digits or not
in correct sequence
IMPOSSIBLE TO Exec or empty Command ignored
QUEUE JOB nodes unavailable
| ™DV coMMAND Error in TDV Command ignored

VII-21-4

0DT

CHAPTER 22

ODT: OCTAL DEBUGGING TECHNIQUE

The ODT TDV Function task allows users to debug tasks with an “octal
debugging technique" wunder XVM/RSX. It permits users to start and
stop tasks, examine and modify task registers and locations within the
task partition, set and remove breakpoints within the task, and
proceed with task execution after a breakpoint has been reached. OoDT |
allows the wuser to define symbols for program addresses so that
command parameter inputs can be given as either octal numbers or
previously defined symbols. Furthermore, ODT monitors task progress |
to ensure that the task does not permanently prevent other system
activities if it enters an infinite 1loop.

Because of the way that breakpoints are handled, the following
restrictions apply to tasks debugged using ODT:

1. Tasks must be built in user mode. If the user attempts to
debug an exec-mode task with ODT, the error message "EXEC
MODE" is printed and ODT is reinitialized. I

2. Tasks can have no overlays. If the user debugs a task with
overlays using ODT, he should use extreme caution so that no |
breakpoints are set within a link.

3. Tasks cannot modify virtual address 17 (autoincrement
register X17).

4. Tasks cannot modify virtual addresses 0 to 3.
5. Tasks cannot modify the instruction at a breakpoint.
The last four restrictions are not checked by ODT. If the wuser task |

violates these restrictions, system integrity is not compromised, but
the user task will probably fail to run correctly.

XVM/RSX V1B VII-22-1 September 1976 |

22.1 INVOKING ODT

The user can invoke ODT by typing a command according to the format:

Form: ODT name [LUN]V

Where: name of a CONSTRUCTed task
image is a string of
one to six .SIXBT characters

LUN is an integer representing the
logical unit number on which
the file resides (the default
value is decimal 14)

Example: TDV>ODT SCAN 16
TDV>

22.2 DEBUGGING WITH ODT
When ODT begins execution; it prints a header message and attempts to
fix the specified task 1in «core,. If the task can be fixed, ODT
requests additional commands by typing the prompter:

oDT>

If the task cannot be fixed in its partition for any reason, ODT
prints the message "FIX ERR” and exits.

In response to the ODT prompter, the user can enter any one of the
following commands:

Command Function

OPEN Opens a register or memory location

START Starts the task

EXIT Exits and aborts the task

DEFINE Defines a symbol

SET Sets a breakpoint

REMOVE Removes a breakpoint

CONTINUE Continues task execution after
reaching a breakpoint

RESTART Restarts the task at some location

RELOAD Reloads the task with symbols and
breakpoints

DUMP* Dumps the task partition into a
created file on disk

DECODE* Decodes the opened memory locations
or stops decoding the opened memory
locations

REGISTERS* Prints all registers when the task

has reached a breakpoint

Each of these commands 1is described in detail in the following
paragraphs.

* Legal only if ONEPLS was defined

XVM/RSX V1B VII-22-2 September 1976

22.2.1 OPEN 1

The OPEN command examines and optionally modifies the contents of task
registers or locations within the task partition. . The format of this
command is:

ODT>OPE[N] nnnnnn

where nnnnnn is an address relative to the base of the task partition. e
The nnnnnn specification can be a symbol or one of the following
registers: SAC, $MQ, $XR, SLR, SLINK or $X10 TO $Xlé6.

ODT prints the contents of the location or register and waits for a |
response. If a value (octal only) is then given as a response, that
value replaces the former contents. 1If only a terminator 1is typed,
ODT does not modify the current contents of the register or location. |
If the response is terminated with an altmode, a new command is
requested. If the response is terminated with a carriage return, the
next location is opened (unless a register was specified). If a
register was specified, a new command is always requested.

If a new value for the link is to be entered, only bit 17 of the octal |
word typed is relevant.

This command is legal any time, but registers can be opened only if
the task is at a breakpoint.

22.2.2 START]

The START command begins execution of the task being debugged. The
format of this command is:

ODT>STA[RT]

This command can be used only if the task has not already been
started.

22.2.3 EXIT [

The EXIT command terminates the debugging session for a particular
task. The format of this command is:

ODT>EXI([T]

The EXIT command causes the task to abort. This command is legal any
time.

XVM/RSX V1B VII-22-3 September 1976 |

1 22.2.4 DEFINE
The DEFINE command defines a symbol. Once a symbol has been defined,
it can replace program addresses indicated in octal notation in other
comnand string inputs. The format of this command is:
ODT>DEF [INE] xXxX=nnnnnn

where xxx is a one- to three~character symbol and nnnnnn is aay octal
number. After the first three characters of a symbol are input,
subsequent characters are ignored. Unlike other commands, nnnann for
this command cannot be a symbol.

This command is legal any time.

1 22.2.5 SET
The SET command enters a breakpoint into the task at some location
specified. When the executing task reaches a breakpoint, its progress
is stopped prior to the execution of the instruction at which the
breakpoint is SET. The format of this command is:
ODT>SET nnnnnn

e where nnnnnn is an address relative to the base of the task partition,
and can be a symbol.

This command is legal any time.

I 22.2.6 REMOVE

The REMOVE command removes a breakpoint from the task. It complements
the SET command. The format of this command is:

ODT>REM[OVE] nnnnnn

e where nnnnnn is an address relative to the base of the task partition,
and can be a symbol.

This command is legal any time.

B XVM/RSX V1B VII-22-4 September 1976

22.2.7 RESTART

The RESTART command causes the task to be started at the location
specified once that task has reached a breakpoint. The format of this
command is:

ODT>RES [TART] nnnnnn

where nnnnnn is an address relative to the base of the task partition,
and can be a symbol.

This command is legal only if the task is at a breakpoint.

22.2.8 RELOAD
The RELOAD command instructs ODT to reload the task image (i.e.,
refresh the task partition with a new copy of the task). Breakpoints
and symbols defined when this command is issued are retained, but the
contents of user-modified locations are 1lost. The format of this
command is:

ODT>REL[OAD]}

This command is legal any time.

22.2.9 CONTINUE

The CONTINUE command is wused to resume task execution once a
breakpoint has been reached. The format of this command is:

ODT>CON[TINUE]

This command is legal only if the task is at a breakpoint.

22.2.10 REGISTERS

The REGISTERS command is legal only if the assembly parameter ONEPLS
was defined. The format of this command is:

ODT>REG[ISTERS]
This command prints the contents of the AC, MQ, XR, LR and link.

This command is legal only if the task is at a breakpoint.

22.2.11 DECODE

The DECODE command sets a flag to tell the OPEN command whether it
should print the opcodes of opened 1locations as well as their
contents. The format of this command is:

ODT>DEC[ODE] string

XVM/RSX V1B VII-22-5 September 1976

Where string is either "ON" or "OFF"

If string is “ON”, the opcodes are decoded. If string is "OFF", the
opcodes are not decoded. (No opcode decoding is the default mode of
operation for the OPEN command.) The DECODE command is valid only if
ONEPLS was defined when ODT was assembled.

This command is legal any time.

22.2.12 DUMP

The DUMP command is used to write an image of the task partition into
an RSX-created file on disk. The file is named TSKNAM DMP, where
TSKNAM is the task name. The image of the task does not contain
breakpoints, but all breakpoints are restored when the dumping process
is complete. This command is valid only if ONEPLS was defined when
ODT was assembled. The format of this command is:

ODT>DUM[P]

This command is legal any time.

22.3 MONITORING TASK PROGRESS

whenever a task has been started, restarted or continued after a
breakpoint, ODT monitors its progress. TIf the task does not exit or
reach a breakpoint within several seconds, ODT prints the task ATL
status and asks the user whether the task should be aborted. If the
user types “NO", ODT resumes monitoring task progress. If the user
types "“YES", ODT reloads the task, aborting it in the process. 1If the
task exits while ODT is monitoring its progress, the message "TASK HAS
EXITED" is printed. The task is then reloaded.

22.4 AN EXAMPLE OF ODT USE

The following listing gives an example of a task to be debugged with
ODT. This program contains two errors that will be found and
subsequently corrected using ODT. The program consists of a main
section and a single subroutine. The function of the main section is
to simulate input data and call the subroutine. The subroutine, which
is presumably used in another program, is intended to count the bits
that are set in the accumulator on entry to the subroutine. It is
this subroutine that contains errors and can be debugged using ODT.

When the example program is task built, it is relocated so that
location 0 in the 1listing corresponds to the base address of the
partition for this task plus 20 (octal).

The example program is listed on the following page:

I XVM/RSX V1B VII-22-6 September 1976

g9TA XS¥/WAX

L-ZZ-IIA

9L6T Ioquaidas

irS

TN D

00000 R

00001

00002
00003
00004
Q000
00006
Q0007
00010
00011

00012

00013 [

00014
Q00LE
00016
00017
00020
00021

Q0022
00023
00024
00025
00026
00027
00030

00031
00051
00052

00053
00054
QO0ES
Q0056

SIZE

R

440000
Q00010

200053
060054

200085
100013
200086
LOOOQL3
777777
100013
Zu0000
100013
Q00004

Q00000
SGRG00
777756
040051
744000
641002
740010
740400
440052
440051
600021
200052
060010
620013

Q00000
Q00000
000000
000030
000010
&UA321
123456
Welokiyy

IED DDDIEDD D

>m =

=S5 > =

> =
*® ¥
—r

A Xl
A XL

NONN N NN

START

/
o/
/
/

THIG FROGRAM I8 INTENDED

WHICH COUNTS T

SURROUTINE.

AS GIVEN HERE

LAG
nACX

LA
JME
LAC
JMG
LAW
JMEG
- ClA
MG
Cal.

SURROUTINE ONE

STORE RESULTS

ONECNT 0

L.O0GE

/
BUFF

L.MQ
LAW
nac
ClL.L.
LACR
RAL.
SNL.
X
82
JHME
LACG
nAacHk
JMF

< BLOGCK

RITONT 0O
ONES 0

ENI

NO ERROR LINES

HE 1 RITS

THIS SUBROUTINE HAS

CRUFE -1
(X10

(4654321
ONECNT
(123454
ONECNT
-1
ONEGNT

ONECNT
(10

CNT e COUNT THE

Vify X10

P)
Py

BITCNT

ONES
RITONT
L.o0OF
ONES
X10
ONECNT

20

TO
IN

TEST THE SURROUT
THIE

Al ON ENTRY T

JUSED TF
AAUTOTNCRE

N

TE
EN

ZINITIALTZE Xl

ZUSE X10 A8 A RUFFER POINTER FOR
/BTORING RESUL

JGBET 18T LATA
/60 COUNT THE
ZGET 2ND DIATA
/G0 COUNT THE
ZGET 3R DATA
/G0 COUNT THE
AGET 4TH DATA
G0 COUNT THE
FEXLT

ONE BITS

BAVE THE DATA WORD

ZBET UR A RIT

RETRI
SEBHIF

ZDONE WITH WOR
/ND e CONTINU

AYES - STORE

ARETURN

NT IS T(
T

IN'T

INE CONECNT
0 THE

TWO ERRORS

3 N
REGISTER 1

0

TG,

WORD

ONE~ 8§

HE AC ON EN

TN Ma
COUNTER

L LINK
L DATA WORD
BITS AND TARULATE

o
A

ZRESULTE RUFFER

ZRIT COUNTER
JSONES COUNTER

.

REMENT
]

TRY »

ONE 78

The following terminal output shows how ODT can be used to debug the

subroutine in the example program:

TOV-0NT TEST

OIT V1E00O
ODT>UEF BUF=31
ODT:DEF RIT=%51
OOT:DEF ONE=S2
ODT>SET 24
ONT=SET 26
ODT=SET 30
ODT:SET 32
ODT>START

BRKET AT 000024

OonT=0FEN RUF
000031 000011
000052 11013550
000033 1600411
OLT>0FEN ONE
000072 1000011
ODnT=0FEN BIT
000071 1000000
OonT=CONT

BRKFT AT 000026

QnT>=0FEN BUF
000051 1000011
000052 1000022
000033 1600411
DOT=0FEN ONE
G00072 1000022
anT=RELOAD

OnT>0FEN 37
000037 1744000
ODT=START

BRKFT AT 000024

 ODT=OFEN BUF
000051 $000011
000052 1101550
000053 $600411
ODT>OFEN ONE
000072 3000011
ODT:=CONT
BRKFT AT 000026

OnT:=0FEN RBUF
000081 1000011
000032 1000011
000033 16004114
OnT>0FEN ONE
000072 1000011
OnT=CONT

BRKFT AT 000030

XVM/RSX V1B

e o oo

>

o

. oo e

e

$140072

> e o

+o +o e

<—Name program to be debugged.

Define symbols for 1later use
in command inputs.
Set breakpoints at all

subroutine return addresses,

<-Start execution of the task.
<A breakpoint has been reached at
location 4 (L1).

Open those locations that show
the results of the subroutine,.
The first result is correct.

Open subroutine temporary
variables to check them. They
are OK so far.
<«-Continue task execution.
<—A breakpoint has been reached at
location 6 (L2).
Check the results buffer and
subroutine temporary storage
locations. An error has been
found. The temporary storage
location OWES must be zeroed
before counting.
<-Reload the task into memory
keeping symbols and breakpoints.
<«—Change location 17 from a CLL to
a DZIM ONES.
<«—Start task execution.
«—The first breakpoint has been
reached.

Check results. They look OK.

<«—Continue task execution.
<«—The next breakpoint has been
reached.

Check results again. OK.

<—Continue.
<«—Another breakpoint has been
reached.

VII-22-8 September 1976

OnT>0FEN BUF Check results again. Another
000051 1000011 error has been found. The
000032 1000011 subroutine is counting cleared
000033 1000000 bits instead of set bits.

*e ss s

OLT>RELOAL <+Reload the task once again.
OLTOFEN 42 } Change location 22 from an SNL
000042 1740400 1741400 to an SZL instruction.
ODT>0FEN 37 <—Enter previous correction.

000037 1744000 1140072 ' .

OnT=START <-Start task execution and check
BRKFT AT 000024 the results at each breakpoint as
OnT>0FEN EUF they are reached. Use the same

000051 1000011
000052 $101550
000053 1600411
- 0DT=CONT
ERKFT AT 000026
OnT=0FEN RUF
0000351 1000011
000032 1000011
000033 14600411
ODT>CONT
ERKFT AT 000030
OonT>0FEN BUF
000051 1000011
000052 1000011
Q00033 1000022
000054 1101635
0000355 1204217

procedures as above.

-, o e s te e

‘e 45+ 20 e

OOT=CONT
ERKFT AT 000032 <«-The final breakpoint has been
OLT=0FEN BUF reached and the subroutine

000051 1000011
000032 1000011
000033 1000022
0000354 1000000
000055 1204217

output looks fine.

*s €3 40 o e

OQOT-0FEN $X10 <Examine autoincrement register
777770 1060054 ¢ 10 to be sure that it points to
OOT-EXIT , the correct location within the

data buffer. It does, so leave
TOV: ODT.

22.5 ERROR MESSAGES

Table 22-1 lists possible error messages and their implications.

XVM/RSX V1B VIIi-22-9 September 1976

Table 22-1
ODT Error Messages

Routines Generating

EXEC MODE*

READ ERR*

FORMAT ERR

FIX ERR¥*

TASK NOT IN STL*

WHAT?

ALREADY STARTED

REQUEST ERR*

Message Meaning Error Message

HINF ERR HINF error on LUN-14 DUMP

PUT ERR ODT is unable to write DUMP
the task image to disk

CREATE ERR ODT is unable to DUMP
CREATE a file on
LUN-14

ILLEGAL Registers cannot be OPEN
opened unless the task
is at a breakpoint

BRDPT AT XCT Illegal to have a SET, OPEN

breakpoint at XCT
instruction

Task is in exec mode

Terminal read error

Vviolation of command
syntax

ODT is unable to FIX
the task

Task specified is not
in the system**

Unrecognized command

Task was previously
started

ODT is unable to
REQUEST the task

ODT INITIALIZATION
ODT INITIALIZATION,
COMMAND DISPATCH,
OPEN, MONITOR
ROUTINE

ODT INITIALIZATION,
COMMAND DISPATCH,
RESTART, SET,
REMOVE, OPEN,
DECODE

ODT INITIALIZATION,

ODT INITIALIZATION

COMMAND DISPATCH

START

START

*Causes ODT to exit.

(Continued)

**This error should never appear unless the system list structure has

been corrupted.

XVM/RSX V1B

VII-22-10

September 1976

Table 22-=1 (Cont.)
ODT Exrror Messages

Message

Meaning

Routines Generating
Error Message

TABLE FULL

ALREADY DEFINED

NOT AT A BRKPT

NOT IN TABLE

ATTACH ERR*

TASK NOT IN ATL*

OUT OF BOUNDS

Breakpoint or symbol
table full

3reakpoint has already

been defined or set

Task is not at a
breakpoint

Breakpoint is not in
the table

ODT is unable to
ATTACH the terminal

Task is deleted from
ATL

Address is not within
the task partition
space

DEFINE, SET

SET

RESTART, CONTINUE,
REGISTERS
CONTINUE, REMOVE
ODT INITIALIZATION,]
COMMAND DISPATCH,
MONITOR

ODT INITIALIZATION, 1
CONTINUE

RESTART, SET,
REMOVE, OPEN

*Causes ODT to exit.

XVM/RSX V1B

VII-22-11

September 1976 1

STA

CHAPTER 23

STATUS: MULTIACCESS STATUS REPORT

The STATUS TDV Function task prints a status report of internal
MULTIACCESS information. This status information is intended for use
by the system manager and, in general, is not of interest to the TDV
user.

23.1 INVOKING STATUS

The user can invoke STATUS by typihé a command according to the
format:

Form: STA[TUS]V
Example: TDV>STA
. TDV>

23.2 INPUT/OUTPUT AND TASK BUILDING

The STATUS TDV Function task is assigned task name STA... at
task-building time. This task is written in FORTRAN and should be
built to run in user mode (protected and relocated). Output status
information is sent to LUN-16. : .

A sample STATUS report is listed below:

XVM/RSX V1B VII-23-1 September 1976

TIV=8TA
MULTIACCESS 8TATUS REFORT
1 ACTIVE USER{S)
TOTAL NUMBER OF USER(S) = 1
TOTAL NUMEBER OF JOR(E) = 15
MEAN WAIT TIME IS5

13- UL ~7é

Q.00 SECONDS/JOR

0813

HUURS

ACTIVE TERMINAL NUMBERS ARE: O
THERE ARE 198 (10 WORDG OF OYNAMIC
TASK BIZE HISTOGRAMM
OQOQOO-00LT7 77 { Lol JelsToTs AT K gy 3 2
QO0HQ00-0GF7777 0 DLOOOO-0L 1777 0 i
GLAQOO-Q1LG777 K1 QL&EOQO-OL 7377 0 4
QRA000-02I777 ¥] O24000-0RE5777] 0
G30000~031777 O QE2000-033777 4] o]
O3&L000~03F 777 0 Q40000-041777 O 4]
G44000-0A4BT777 Q GASQOO-0ATFTITF7 4] Q
Q52000053777 QO QB4000-0BGL777 4] GE&HEQQO-0ET T, Q
Q60000061777 O G&ER2000-0E3777 0 GEAQ0N O
QE6000-087777 O GZ0000-07 1777 Q s
QO74000~075777 Y] Q76000077777 & O
ThV
The status report presents important current information and
historical information compiled since TDV started running. Current

information includes:

Words of dynamic storage

Number of active users

Active terminal numbers

(this system management

fully documented in the TDV code listing)

Historical information includes:

concept is

e Total number of different users
e Total number of jobs handled
® Mean wait time per job
e Number of tasks that have been run in each of 33 size ranges,
each progressively increasing by 2000 (octal) words
XVM/RSX V1B VII-23-2

September 1976

ACI
ACD

CHAPTER 24

BATCH ACCOUNT FILE INITIALIZATION AND DISPLAY

Two TDV function tasks, ACI and ACD, control batch job accounting and
account summaries. The use of ACI and ACD is described in Part VIII
of this manual, Batch Processing.

24,1 ACI: INITIALIZE BATCH ACCOUNT FILE

ACI allows the system manager to initialize (clear to zero) the Batch
processor account file or create an account file if one does not exist.

24.2 ACD: DISPLAY BATCH ACCOUNT FILE

ACD allows the system manager to list the Batch Processor account file.

XVM/RSX V1B VII-24-1 September 1976

INDEX

Abbreviations for commands, 1-9 Date, 11-1
ACD, TDV Function task, 24-1 Debugging with ODT, 22-2
ACI, TDV Function task, 24-1 DECtape Directory List TDV,
Altmode, 1-8, 6-3, 6-9 Function task, 11-1
Assembler options, 3-2 error messages, 11-2, 11-3
Assembling a MACRO program, 3-1 Default priority of task, 6-8
"At" sign (@), 1-9 Delete character or line, 1-9
Auxiliary disk functions, 2-3 DELETE FILE error messages, 8-2
DELETE FILE, TDV Function
task, 8-1
Delimiters, 7-3
Backarrow (<), 1-9, 7-3 Devices, I/0, 1-6
Backslash (\), 1-9 Dialogue, TKB, 6-17
Bank-mode option, 6-7 DIRECTORY LIST, TDV Function
Basic Task Builder, 6-1, 6-18) task, 10-1
Batch account file, error messages, 10-2, 10-3
display, 24-2 Disk directory, 10-1
initialization, 24-2 Disk, task storage on, 19-1
Batch file editing, 5-1 Disk-to-disk editing, 4-3
Batch mode, 3-1 DISMOUNT, TDV Function task, 17-1
FORTRAN, 2-1 error messages, 17-1
MACRO Assembler, 3-1 Dismounting a disk (logically),
processing, 13-1, 14-1, 15-1 17-1
Block-mode editing, 4-1 Dismount tape, 7-4
Braces ({}), 1-10 ~$ command, 5-5
Breakpoints in a task, 22-1 DSM, TDV Function task, 17-1
Buffer and partition size, 4-3 Dump mode, 3-6
Building a task for execution,
6-1

Editor, 4-1
error messages, 4-3, 4-4

Carriage return, 1-8 Editing batch files, 5-1
CHAIN and EXECUTE programs, 6-4 Editing disk-to-disk, 4-3
Characters, upper/lower case, END-OF-FILE, 5-14
1-10 End-of-file, SLIP, 5-5
Comma character, 7-2 Error codes for *FILE routine,
Command abbreviations, 1-9 5-15
Command string terminators, 1-8 Error flags, MACRO Assembler, 3-7
Command syntax errors, SLIP, Error messages,
5-16 : CONSTRUCT, 19-2
Commands, MULTIACCESS Monitor, DECTAPE DIRECTORY LIST, 11-3
1-2.1 DELETE FILE, 8-1
COMMON blocks, 6-8, 6-10, 6-11 DIRECTORY LIST, 10-3
Compiler options, FORTRAN 1V, DISMOUNT, 17-2
2-2 EDITOR, 4-3, 4-4
Compiling a FORTRAN program, 2-1 FORTRAN, 2-5
CONSTRUCT TDV Function task, 19-1 INSTALL, 13-3
error messages, 19-2 MACRO Assembler, 3-9
Control-character facilities, 1-2.1 MOUNT, 16-2
Control records, SLIP, 5-4 NEW DIRECTORY, 12-2
Conventions for TDV command, 1-8 ODT, 22-10
Conversion to XVM/RSX, 6-18 oTs, 2-15, 2-17
CTRL/D, 3-6 QUEUE, 21-4
CTRL/Q, 6-3 ‘ REMOVE, 15-2
CTRL/T, 1-7 RENAME FILE, 9-2
CTRL/U, 1-9 REQUEST, 14-2

XVM/RSX V1B VII-Index-1 September 1976

INDEX (CONT.)

Error messages (cont.)
SLIP, 5-14
TDV, 7-5
TKB, 6-19
Errors,
SSLIP control record, 5-15
SLIP sequencing, 5-16
TKB recoverable, 6-20
Executive-mode option, 6-7
External links, 6-14
EXU.13, 6-13

File creation date, 10-2

*FILE errors, 5-14

File name and extension, 10-2

File name list, 6-13

*FILE records, 5-4

File size, 10-2

*FILE specification, SLIP, 5-3

File transfer, 7-3, 7-4

FIN, TDV Function task, 7-2

Floating-Point Processor (FPP),
2-1, 2-4

F option, 7-3

Form feeds, 7-3

FORTRAN error messages, 2-5

FORTRAN IV Compiler options,
2-2

FORTRAN line numbers, 5-10

FORTRAN, other versions, 2-3

FORTRAN program compilation,

FOU, TDV Function task, 7-2

FPP system OTS error messages,
2-17

Free blocks, 11-1

Function tasks, TDV, 1-2

Historical system information,
23-2

Image mode, 7-3
Index register (XR), 6-7
Initialize FORTRAN I/0 tables,
2-4
Input/output, 2-3
CONSTRUCT, 19-1
DECTAPE DIRECTORY LIST, TDV
Function task, 11-2
DELETE FILE, 8-1
DIRECTORY LIST, TDV Function
task, 10-2
DSM, 17-1

XVM/RSX V1B

VII-Index-2

Input/output (cont.)
EDITOR, 4-2
FORTRAN IV, 2-4
INSTALL, TDV Function task, 13-2
MACRO Assembler, 3-5, 3-6
MOUNT, 16-1
QUEUE, 21-3
REMOVE, 15-1
RENAME FILE, TDV Function task,

9-2
REQUEST, 14-1
SLIP, 5-14

STATUS, 23-1

Task Builder, 6-4

TDV function tasks, 7-3
INSERT, 5-6, 5-7
Insertion records, SLIP, 5-4
INSTALL, TDV Function task, 13-1

error messages, 13-1
Internal links, 6-14
Introduction, 1-1
Invoking,

CONSTRUCT, 19-1

DECTAPE DIRECTORY LIST, 11-1

DIRECTORY LIST, 10-1

DISMOUNT, 17-1

FIN, DEC, FOU, LIS and

TYPE, 7-2

FORTRAN IV Compiler, 2-1

INSTALL, 13-1

MACRO Assembler, 3-2

MOUNT, 16-1

NEW DECTAPE DIRECTORY

LIST, 12-1

oDT, 22-2

QUEUE, 21-1

REMOVE, 15-1

REQUEST, 14-1

SLIP, 5-2

STATUS, 23-1

Task Builder, 6-2

Text Editor, 4-1
I/0 devices, 1-6
IOPS ASCII mode, 7-3
I0PS binary data mode, 7-3

Library files, 6-13

Library routines, 6-13

Line~by-line mode editying, 4-1

Linkages, 3-1

LINK definitions, 6-14

Links and structures description,
6-13

LIS, TDV Function task, 7-2

List options, Task Builder, 6-4

Lower-case characters, 1-10

September 1976

INDEX (CONT.)

LUN assignments, Page eject, 7-4
Editor, 4-2 Page-mode option, 6-7
FORTRAN IV, 2-3 Parameter input,
MACRO Assembler, 3-5 MACRO assembler, 3-6
TDV function tasks, 1-4 Partition Block Description

List (PBDL), 6-9
Partition description, 6-9
Partition size, 4-3, 6-7, 6-8

MACRO Assembler 6-9 .
error flags, 3-7 Parity error message suppression,
error messages, 3-9 7-3
other versions, 3-6 _ PASS1l, PASS2, PASS3, 3-1

MACRO definitions file, 3-6 PAUSE statements, 2-4

MACRO program assembly, 3-1 - Pool of Empty Nodes, 6-7

Magtape operation, 7-4 Priority default, 6-8

Memory protection, 6-7 _ PUP (Peripheral Utility Program),

MNT, TDV Function task, 16-1 1-1

error messages, 16-1
Monitoring task prograss, ODT,

22-6 ; .
Mounting a disk logically, 16-1 QUEUE, TDV Function task, 21-1
Mount tape, 7-4 error messages, 21-3

MULTIACCESS, 1-1
control-character facilities,
1-2.1

- Random-access information, 10-2
Monitor commands, 1-2.1

Recoverable TKB errors, 6-20

REMOVE, TDV Function task, 15-1
error messages, 15-2

RENAME FILE, TDV Function

Name task option, 6-8 task, 9-1
NEW DECTAPE DIRECTORY, TDV error messages, 9-2
Function task, 12-1 REPLACE, 5-8
error messages, 12-2 - REPLACE WITH FILE, 5-9
N option, 7-3 REQUEST, TDV Function task, 14-1
No parity check, 7-3 error messages, 14-2

Resident code definition, 6-13
Resident TDV Dispatcher, 1-7
Rubout, 1-9 :
Object-Time System (OTS)
library routines, 2-1

onT, 22-1 SEARCH AND INSERT, 5-10, 5-11
commands, 22-2 SEARCH AND REPLACE, 5-12
error messages, 22-10 SEARCH AND REPLACE WITH FILE, 5-13
example, 22-6 Sequential files transfer, 7-1
monitoring task progress, 22-6 Shared address space (SAS), 6-10,
restrictions, 22-1 6-11

Opt@onal gharacters, 1-9 external (ESAS), 6-11

Opt}onal itmes, 1-10 internal (ISas), 6-11

Options, Shared COMMON block description,
Assembler, 3-2 6-10, 6-11
SLIP, 5-3 SIZE command, 4-3
$SLIP, 5-2 SLIP, 5-1

OTS error messages, 2-15

OTS error messages in FPP
systems, 2-17

OTS output, 2-4

Overlay structure description,
6-15

command syntax errors, 5-16
control records, 5-4
editing demonstration, 5-16
error messages, 5-14
options, 5-3

sequencing errors, 5-16

XVM/RSX V1B VII-Index-3 September 1976

INDEX (CONT.)

$SLIP control record errors, 5-13

$SLIP options, 5-2

Source programs, 3-1

Space, 1-10

Space character, 7-2 .

Square brackets ([]), 1-10

Starting block number, 10-2

STATUS, TDV Function task, 23-1

STOP Statements, 2~4

Structures description, 6-13

Symbol table, 3-1

System blocks, 11-1

System COMMON blocks description,
6-10

System library, 6-13

System status, 23-1

Table Initialization, 2-4
Task breakpoint, 22-1
TASK BUILDER, 6-1
input/output, 6-4
options, 6-5
Task building,
CONSTRUCT, 19-1
DELETE FILE, 8-1
DECTAPE DIRECTORY LIST, 11-2
DIRECTORY LIST, 10-2
DISMOUNT, 17-1
FILE INPUT, 7-3
INSTALL, 13-1
MOUNT, 1l6-1
NEW DECTAPE DIRECTORY, 12-1
QUEUE, 21-3
REMOVE, 15-1
RENAME FILE, 9-2
REQUEST, 14-1
STATUS, 23-1

XVM/RSX V1B

VII-Index-4

Task development (TDV), 1-1
Task name, 6-8
Task storage on disk, 19-1
TDV command conventions, 1-9
TDV error messages, 7-5
TDV function tasks, 1-2, 1-9
TDV/system communication, 1-8
(terminator), 1-10
Terminators, command string, 1-9
Text-editing source code, 4-1
Text Editor, other versions, 4-3
TKB errors, 6-19
recoverable, 6-20
unrecoverable, 6-21
Transferred files, 7-3
Truncation mark, 10-2
TYPE, TDV Function task, 7-1

UFD, 16-1

Unrecoverble TKB errors, 6-21
Upper-case characters, 1-10
User files, 11-1

User-mode option, 6-7

4

Virtual partition size, 6-10

XFRCMD system directive, 1-9

September 1976

	07_00
	07_01-01
	07_01-02.0
	07_01-02.1
	07_01-03
	07_01-04
	07_01-05
	07_01-06
	07_01-07
	07_01-08
	07_01-09
	07_01-10
	07_02-01
	07_02-02
	07_02-03
	07_02-04
	07_02-05
	07_02-06
	07_02-07
	07_02-08
	07_02-09
	07_02-10
	07_02-11
	07_02-12
	07_02-13
	07_02-14
	07_02-15
	07_02-16
	07_02-17
	07_03-01
	07_03-02
	07_03-03
	07_03-04
	07_03-05
	07_03-06
	07_03-07
	07_03-08
	07_03-09
	07_04-01
	07_04-02
	07_04-03
	07_04-04
	07_05-01
	07_05-02
	07_05-03
	07_05-04
	07_05-05
	07_05-06
	07_05-07
	07_05-08
	07_05-09
	07_05-10
	07_05-11
	07_05-12
	07_05-13
	07_05-14
	07_05-15
	07_05-16
	07_05-17
	07_05-18
	07_05-19
	07_05-20
	07_05-21
	07_05-22
	07_05-23
	07_06-01
	07_06-02
	07_06-03
	07_06-04
	07_06-05
	07_06-06
	07_06-07
	07_06-08
	07_06-09
	07_06-10
	07_06-11
	07_06-12
	07_06-13
	07_06-14
	07_06-15
	07_06-16
	07_06-17
	07_06-18
	07_06-19
	07_06-20.0
	07_06-20.1
	07_06-21
	07_06-22
	07_07-01
	07_07-02
	07_07-03
	07_07-04
	07_07-05
	07_07-06
	07_07-07
	07_08-01
	07_08-02
	07_09-01
	07_09-02
	07_10-01
	07_10-02
	07_10-03
	07_11-01
	07_11-02
	07_11-03
	07_12-01
	07_12-02
	07_13-01
	07_13-02
	07_13-03
	07_14-01
	07_14-02
	07_15-01
	07_15-02
	07_16-01
	07_16-02
	07_17-01
	07_17-02
	07_18-01
	07_18-02
	07_19-01
	07_19-02
	07_20-01
	07_20-02
	07_20-03
	07_20-04
	07_21-01
	07_21-02
	07_21-03
	07_21-04
	07_22-01
	07_22-02
	07_22-03
	07_22-04
	07_22-05
	07_22-06
	07_22-07
	07_22-08
	07_22-09
	07_22-10
	07_22-11
	07_23-01
	07_23-02
	07_24-01
	07_Index-01
	07_Index-02
	07_Index-03
	07_Index-04

