feSystem
g manual

P i

o .5'* i -

UC1S

unichannel-15 system
software manudal

DEC-15-XUCMA-A-D

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

First Printing, August 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The scftware described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1974 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAl0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

DOS-15 V3BZ®E Update Document

PREFACE

This manual describes the UNICHANNEL-15 (UCl5) Software System and its
primary component PIREX, the peripheral processor executive.

No attempt is made in this document to describe the various UCl5 hard-
ware instructions; those are explained in the UNICHANNEL-15 System
Maintenance Manual (DEC-15-HUCMA-B-D). However, examples of instruc-
tion sequences will be used when necessary to clarify programming con-
ventions or illustrate important aspects of the UNICHANNEL Software
System.

It is recommended that the reader have a thorough understanding of the
UC1l5 hardware components before attempting to proceed with this manual.
The user who plans to use the UCl5 Software System in conjunction with
some operating system on the PDP-15, and not modify it, should gain a
thorough understanding of Chapter 1 of this manual. Users who wish to
modify the UNICHANNEL-15 Software System should read the UNICHANNEL-15
System Maintenance Manual (DEC-15-HUCMA-B-D). In addition, a know-
ledge of PDP-11 and its assembly language is necessary before attempt-
ing UCl5 system modification.

- ’

A Glossary is included following the appenhdices, and should be used to
clarify terms not familiar to the reader. Program flow charts are
also included in this manual to aid the user in understanding the
logic flow.

The following documents also pertain to the UCl5 System:

MAC1ll Assembler Programmer's Reference Manual DEC-15-LMCMA-A-D

DOS User's Manual DEC-15-ODUMA-B-D

DOS System Manual DEC-15-ODFFA-B-D

UNICHANNEL-15 System Maintenance Manual DEC=-15-HUCMA=-B-D

Instruction List for the PDP-15

PDP-15/76 Systems Reference Manual DEC-15-XSRMA-A-D

DOS-15 V3Bf@@ Update Document DEC-15-OD3BA-A-D

iii J=-3

CONTENTS

Page
CHAPTER 1 INTRODUCTION
1.1 UNICHANNEL-15 SOFTWARE COMPONENTS 1-1
1.1.1 PIREX 1-1
1.1.2 SPOL11 1-1
1.1.3 MAC1l1 1-2
1.1.4 ABSL11 1-2
l1.1.5 System Software Modification 1-2
1.2 UNICHANNEL-15 HARDWARE SYSTEM 1-2
1.2.1 Common Memory 1-4
1.2.2 Interrupt Link . 1-4
1.2.3 Peripheral Processor Hardware 1-5
CHAPTER 2 LOADING AND EXECUTION
2.1 INTRODUCTION 2-1
2.2 LOADING THE SYSTEM 2-1
2.2.1 ABSL11 2-1
2.,2.2 Loading ABSL1l1l, PIREX, and DOS-15 2=-2
2.3 UNICHANNEL SOFTWARE RECONFIGURATION 2-4
2.3.1 MAC11 2-4
2.3.2 PIREX 2-5
2.3.3 SPOL11l 2-5
2.3.4 PDP-15 UNICHANNEL Handlers 2-7
2.3.5 SPOOLER Size Constraints 2-7
2.4 PERIPHERAL OPERATION 2-7
2.4.1 Disk Cartridge 2-7
2.4.2 Plotter 2-8
2.4.3 Card Reader 2-8
2.5 ERROR HANDLING 2-8
2.5.1 Disk Cartridge Errors 2-8
2.5.2 Card Reader Errors 2-9
2.6 SYSTEM CRASHES 2-9
2.7 UNICHANNEL RELATED SOFTWARE COMPONENTS 2-10
2.7.1 UC1l5 Components , 2-10
2.,7.2 DOS-15 Components 2-10
2.7.3 RSX-PLUS III Components 2-11
CHAPTER 3 SYSTEM DESIGN AND THEORY OF OPERATION - PIREX

PIREX~--PERIPHERAL EXECUTIVE
.1 PIREX-An Overview
.2 PIREX Components
3 Device Drivers
.4 Software Routines in Background Mode
.5
.6

Unsupported Tasks
Power Fail Routine

wwwulowww
bW w

3.2 PIREX - SIMPLIFIED THEORY OF OPERATION 3-4
3.2.1 NUL Task 3-4
3.2.2 Clock Task 3-4

Request Processing
Task Structure
Task Control Block - TCB
1 APTI Trap Address and Level
2 Function Code
3 Task Code Number
4 Request Event Variable

WWwWWwwwww
e o o o o o o
NN
e & o o o & o
[S NS S, BE IV, -)

SYSTEM TABLES AND LISTS

Active Task List (ATL)

ATL Nodes

ATL Nodes Pointer (ATLNP)

Task Request List (TRL)

TRL Listheads (LISTHD)

Clock Request Table (CLTABL)
Device Error Status Table (DEVST)
LEVEL Table

Task Starting Address (TEVADD)
Transfer Vector Table (SEND1l)
System Interrupt Vectors
Internal Tables Accessible to All Tasks

S

HRYO~IAUIDWNE -

o

DETAILED THEORY OF OPERATION-PIREX
Request Procedure

Directive Handling

Logic Flow

Operating Sequence

Software Interrupt

Task Completion

Lo WLOWWwWWwwuwwwwwww

e o o o o o 0
AWK

STOP TASKS

SOFTWARE DIRECTIVE PROCESSING
Disconnect Task Directive
Connect Task Directive

Core Status Report Directive
Error Status Report Directive
Spooler Status Report Directive

Wwwwww w WWwwwww WWWWwWwwwwwwwww

A OO (8]
* e o o o
Ui W+

CHAPTER TASK DEVELOPMENT

4
4.1 INTRODUCTION

PRIORITY LEVEL DETERMINATION
1 Device Priorities
2 Background Task Priorities

4.3 TCB FORMAT AND LOCATION
4.4 TASK CODE NUMBER DETERMINATION

5 UPDATING LISTS AND TABLES
5.1 Temporary Task Installation - Existing
Spare Entry
4.5.2 - Permanent Task Installation - Existing
Spare Entry
5.3 Temporary Task - New Entry
5.4 Permanent Task Installation - New Entry

vi

o
o
Vo]
o®

[coBEN N W)\ W N6, 5)

4.6 CONSTRUCTING DEVICE HANDLERS 4-5
4.6.1 Constructing a DOS UNICHANNEL Device Handler 4-5
4.6.1.1 Initialization 4-13
4.6.1.2 Request Transmission 4-13
4.6.1.3 Interrupt Section 4-14
4.6.1.4 +READ and .WRITE Requests 4-15
4,6.1.5 .CLOSE Function 4-15
4.6.2 PDP-11 Requesting Task 4-15
4.6,.3 UNICHANNEL Device Handlers for RSX-PLUS III 4-16
4,6.3.1 Definition of Constants 4~16
4,6.3.2 Initialization 4-16
4,6.3.3 Requests 4-32
4,6.3.4 ABORT Requests 4-32
4,6.3.5 Interrupts 4-32
4,6.3.6 READ and WRITE Requests 4-~32
4,7 BUILDING A PIREX DEVICE DRIVER 4-33
4,7.1 General Layout 4-34
4,7.2 Task Program Code 4-34
4,7.2.1 Code Sections 4-38
4.7.2.2 Task Entry - Initialization 4-38
4,7.2.3 Interrupt Processing 4-38
4.7.2.4 Exit Techniques 4-39
4,7.3 Timed Wakeup 4-41
4,7.4 Assembly and Testing 4-41
4.7.4.1 Assembly and Loading 4-41
4.7.4.2 Testing 4-42
CHAPTER 5 SPOOLER DESIGN AND THEORY OF OPERATION
5.1 INTRODUCTION 5-1
5.2 OVERVIEW 5-1
5.2.1 SPOOLER 5=-1
5.2.2 UNICHANNEL-15 Spooler 5-1
5.3 SPOOLER DESIGN 5=2
5.4 SPOOLER COMPONENTS 5=2
5.4.1 Request Dispatcher 5-2
5.4.2 Directive Processing Routines 5=3
5.4.3 Task Call Service Routines 5-3
5.4.4 Device Interrupt Dispatcher 5=-3
5.4.5 Device Interrupt Service Routines 5=3
5.4.6 Utility Routines 5-3
5.4.7 Buffers, TABLE, BITMAP, TCBs 5-4
5.5 THEORY OF OPERATION 5-5
5.5.1 SPOOLER Startup 5-5
5.5.2 LP SPOOLING 5-26
5.5.3 LP Despooling 5-28
5.5.4 SPOOLER Shutdown 5=31
CHAPTER 6 SPOOLER TASK DEVELOPMENT

6.1 INTRODUCTION 6-1
6.1.1 Call Service Routine 6-2
6.1.2 Interrupt Service Routine 6-3
6.1.3 Code to Handle the Disk Read/Write

Operations 6-3

vii

W00 oUW

WO

(o)) W2 Wer W)W e W e) We W W e
[] L] L[] L] [] [] [] L] L] L[]
HHEHRHEHBRER
[] L] L] . L] [] L] L] L] L]

[=)}
.
N

APPENDIX A
APPENDIX B
B.1l
B.2
B.3
B.4
B.5
B.6
APPENDIX C
APPENDIX D
GLOSSARY

INDEX

Routine to Setup TCB and Issue Request

TCB

Initialization in the BEGIN Routine

Cleanup in the END Routine

Updating the Request Dispatcher
Updating the Device Interrupt Dispatcher

Updating TABLE

Updating the Central Address TABLE

Update DEVCNT and DEVSPP
Updating the FINDBK Routine

ASSEMBLING THE SPOOLER
ABBREVIATIONS

CURRENTLY IMPLEMENTED TCBs
STOP TASK (ST)

SOFTWARE DIRECTIVE TASK (SD)
DISK DRIVER TASK (RK)

LINE PRINTER DRIVER TASK (LP)
CARD READER DRIVER TASK (CD)
PLOTTER DRIVER TASK (XY)

UC15 RELATED ERROR MESSAGES

UNICHANNEL-15 OPTION

viii

el
]
Q
o

? %, T ?\O\QCh?\Q(hO\O\m
H 0 oI bW

w
i
N

B-3
B=-3
B-5
B-7
B-9
c-1
D-1
GLOSSARY-1

INDEX-1

Number

e
RO

w
1
HWNHFWN - [+)) Ul w N W

w(fw

w W
1

GiU'IUlL:‘Irhhdhw

Number

1-1
2-1

FIGURES

UNICHANNEL-15 Hardware System

Memory Map of a UNICHANNEL System

UNICHANNEL System

Basic Flow Chart of PDP-15/11 Request
Processing

Task Format

Detailed Flow Chart of PDP-15/PDP-11 Request
Processing

Scan of Active Task List (ATL)

Context Switch or Save General Purpose
Registers RO-R5

Send Hardware Interrupt to PDP-15/Software
Interrupt to PDP-11

Dequeue Node From Task's Deque

PDP-15 LP1ll DOS Handler

PDP-15 CR11l RSX-PLUS III Handler

UNICHANNEL LP Driver

UNICHANNEL Spooler Components

Task Call Service Routine

Device Interrupt Servicing Logic (For LP)

SPOOLER Schematic

TABLES

Common Memory Sizes
ABSL1l Starting Addresses

ix

Page

1-3
1-4
1-5

3-2
3-5

3-10
3-19

3-20

3-22
3-23
4-6
4-17
4-35
5-6
5=-25
5-29
6-1

Page

1-3
2=2

DOS-15 V3BF@PF Update Document

CHAPTER 1

INTRODUCTION

1.1 UNICHANNEL-15 SOFTWARE COMPONENTS

The UNICHANNEL-15 Software System consists of the following four
components:

1. PIREX
2. SPOL11
3. MACl1
4. ABSL11

l.lfl PIREX

PIREX (peripheral executive), a component of the UNICHANNEL-15 (UC15)
Software System, is described in Chapters 3 and 4 of this manual.
PIREX is a multiprogramming peripheral processor executive executed by
the PDP-11, It is designed to accept any number of requests from pro-
grams on the PDP-15 or PDP-11 and process them on a priority basis
while processing other tasks concurrently (e.g., spooling other I/0
requests). PIREX services all input/output requests from the PDP-15
in parallel on a controlled priority basis. Requests to busy routines
(tasks) are automatically entered (queued) onto a waiting list and
processed whenever the task in reference is free. 1In a background
environment, PIREX is also capable of supporting up to four priority-
driven software tasks initiated by the PDP-15 or the PDP-11l.

1.1.2 SPOL1l

Spooling is a method by which data to and from slow peripherals is
buffered on a high performance RK05 disk. Spooling allows the PDP-15
to access and output data at high speed, freeing more of its time to
do computation. Programs that do a great deal of 1I/0, especially
printing and plotting, are not required to be core resident to complete
the entire job. This frees the computer to quickly advance to more
jobs, dramatically increasing the throughput of the entire system.

DOS-15 V3B@PP Update Document
The SPOL1l1l task permits simultaneous spooling of line printer and
plotter output, and card reader input. The capacity of the spooler is
user-defined with a possible maximum of over 1,000,000 characters
allowed.

1.1.3 MACI1l1

MACll is a special version of the standard MACRO-11 assembler available
on the traditional PDP-11 computer system. This program is executed

as a task under the PIREX Executive. It is used to conditionally-
assemble various components of the UNICHANNEL Software System. Since
this assembler is a subset of MACRO-11l, programs assembled under
MACRO-11l, will not necessarily assemble under MAC1ll. In addition,

. programs written and assembled under MACll will not necessarily operate
correctly on other PDP-11 systems. MACll produces assembly listings
and absolute binary paper tapes as outputs. Detailed information con-
cerning MACll can be found in the MACll Assembler Programmers Reference
Manual.

1.1.4 ABSL11

ABSL1l is a PDP~15 Hardware Read In Mode paper tape program used

to bootstrap-load the UNICHANNEL peripheral processor with absolute
binary paper tapes. While primarily designed to load the PIREX exec-
utive into the PDP-11 memory, ABSL1l may be used to load any absolute
program into the PDP-11 and optionally start it. Additional informa-
tion on ABSL1l may be found in Chapter 2 of this manual.

1.1.5 System Software Modification

The complete UCl5 Software System may be modified or expanded by the
user when running under the DOS-15, BOSS-15, or RSX-PLUS III program-
ming systems. A common editor, called EDIT, allows source changes to
the PDP-15 or PDP-11 software. MACRO-15, the PDP-15 MACRO Assembler,
and MACll, a PDP-11 MACRO Assembler allow new object code to be gen-
erated. Both the MACRO-15 and MACll assemblers are powerful MACRO
assemblers that facilitate easy code generation and source readability.

1.2 UNICHANNEL-15 HARDWARE SYSTEM

The UCl5 hardware (see Figure 1-1) consists of a PDP-11 minicomputer
used as an intelligent peripheral controller for the larger PDP-15
main computer. The PDP-15 functions as the master processor by initi-
ating and defining tasks while the PDP-11 peripheral processor func-
tions as a slave in carrying out these tasks. In order to effectively
operate, with a minimum of interference with the master processor, the
peripheral processor uses its own local memory of between 4,096 and
12,288 16-bit words. Since peripheral control requires only a frac-
tion of the peripheral processor resources, the remainder of the
processor's resources can be used for parallel processing of back-
ground tasks.

DOS-15 Vv3B@F@ Update Document

PDP-15 1/0 BUS

UP TO 128K
CARTRIDGE CORE MEMORY
DISK
PDP-15
UNIBUS 5 MEMORY BUS | °0° 12
INTERRUPT
D e
PDP- | PDP-
CORE MEMORY COMPUﬁ%%
UP TO 12K
Figure 1-1

UNICHANNEL-15 Hardware System

1.2.1 Common Memory

Common memory is that memory directly accessable to both the master
processor - the PDP-15, and the peripheral processor - the PDP-11,

common memory occupies the upper portion of the PDP-11 address space
and at the same time the lower portion of the PDP-15 address space.

The UCl5 System allows any Non-Processor Request device on the UNIBUS
to access PDP-15 memory so that data can be transferred between I/O
devices and common memory.

Thus

The use of common memory allows ease of data transfer between PDP-15

memory and secondary storage (disk, magnetic tape, etc.).
peripheral processor can access a maximum of 28K of memory.

The PDP-11

shows the amount of Common memory accessible to a PDP-1l processor
with a given amount of Local memory.

1

NOT supported under DOS-15 V3Bﬂﬂﬂ;

Table 1-1

Common Memory Sizes

Table 1-1

PDP-11 LOCAL

COMMON MEMORY

MEMORY SIZE SIZE
4K! . 24K
8K 20K

12K 16K

DOS-15 V3B@@F Update Document

The UNIBUS can address the combined PDP-15/PDP-11 memory, which can

extend to a maximum of 124K. For instance, the RK05 and its disk con-
troller can transfer information to or from a location outside of the
common memory region. Figure 1-2 outlines a typical memory map of the

128K
\
18 BIT
NOT ACCESSIBLE BY UNIBUS MEMORY
128K 116-124K
r %Ef;/’
UNIBUS DEVICE__| /
ADDRESSES > ///////
124K /‘22 112-12¢K

18 BIT
MEMORY
ACCESSIBLE BY
UNIBUS NPR > MEMORY ACCESSIBLE BY

PDP-15 AND PDP-15 I/0

DEVICES
(‘ 28K 16-24K
ACCESSIBLE BY__..J J
PDP-11 4-12K g
" "w 6
LOCAL PDP-11 - :‘IEMﬁ;g NOT ACCESSIBLE BY PDP-15
MEMORY OR PDP-15 I/0
Figure 1-2

Memory Map of a UNICHANNEL System

PDP-15 and PDP-11, illustrating the common shared memory address space
and the PDP-11 local memory.

1.2.2 Interrupt Link

The PDP-15 and the peripheral processor communicate with each other
through device interfaces. When the PDP-15 initiates a new task, it
interrupts the peripheral processor with a message. The message is
designated as a Task Control Block Pointer (TCBP) and points to a
table (Task Control Block) in common memory where the task is defined.
The peripheral processor performs the task and can signify its comple-
tion by sending an optional interrupt back to the PDP-15.

1.2.3 Peripheral Processor Hardware

The UCl5 System in its standard configuration consists of the follow-
ing equipment (Figure 1-3):

JP 7D 128K OF I8 BIT
MEMORY

1
UNIBUS - 18 15 MEMORY BUS ,

! 1
| !

FPP-15
| 1
! |
'l up To 12K OF PDPI Lfﬂiﬁ}¢::> i [PDP_I5 COMPUTER
1| 16 BIT “LocAL" |
! I
| !
! |
[
|

N

PDP-I I
PERIPHERALS

PDP-I5 1/0 BUS

PDPI5
PERIPHERALS

cPy

DRIS-C CcPU 170
MEMORY
DRII-C PROCESSOR

Figure 1-3
UNICHANNEL System
PDP-11 Peripheral Processor
DR15-C Device Interface

Two DR11-C Device Interfaces

MX15-B Memory Bus Multiplexer
® 8096 Words of 16-Bit Local Memory

The PDP-11, which functions as the peripheral processor, can itself
only process l6-bit words but controls peripherals that can process
18-bit words to provide compatibility with the PDP-15. The DR15-C
and the two DR11-C Device Interfaces provide the communication facil-
ity between the PDP-15 and the PDP-11. The PDP-15 can interrupt the
PDP-11 and send a data word (TCBP) to the PDP-11; this interrupts the
PDP-11 at priority level 7 (the highest priority level) and causes a
trap thru location 310g. The PDP-11, serving as a peripheral proces-
sor, can interrupt the PDP-15 to indicate an error condition or job
completion at any one of 128 API vector locations at any one of four
API priorities.l

(1) This applies to systems with the API option - systems without API
can use four skip instructions, corresponding to the four hardware
priority levels, to determine the nature of the interrupt.

The MX15-B Memory Bus Multiplexer functions as a memory bus switch to
allow either the PDP-15 or the PDP-11 to communicate with the common
memory. The MX15-B also provides the PDP-11 with the capability of
performing byte instructions which reference PDP-15 memory.

DOS-15 V3B@@P Update Document

CHAPTER 2

LOADING AND EXECUTION

2.1 INTRODUCTION

This chapter explains how to get the DEC-supplied UNICHANNEL-15 Soft-
ware System up and running, how to tailor the system to a specific
configuration, and how to maintain the system at a high level of per-
formance. 1In addition, a list of the UCl5 software components used in
the various PDP-15 monitor systems is included.

2.2 LOADING THE SYSTEMl’2

The UCl5 system is activated by using ABSL1l to load the PIREX execu-
tive into the PDP-11 UNICHANNEL local memory. DOS-15 is then boot-
strapped from the RK05 cartridge and the system is ready to:

1. Continue running under DOS-15
2. Begin execution of B0SS-15

3. Begin execution of RSX-PLUS III

2.2.1 ABSL1l

ABSL1l is a PDP-15 absolute binary paper tape program which is read
into the PDP-15 at location 17700g via the Hardware Read In mode (HRM)
on the PDP-15. It is used to load PDP-11 absolute binary paper tape
on to the PDP-11. This self starting program is written in MACRO-15
and octal. (The PDP-11 code is written in octal and assembled with
MACRO-15.) When ABSL1l is first loaded, PDP-15 halts and waits for
the user to start the PDP-11. The starting address for a PDP-11 de-
pends upon the size of its local memory. Table 2-1 lists the avail-
able options.

(lj Refer to the DOS SGEN Manual for the details of how to use DOSSAV l
to initially place a DOS System on the RKO5 and prepare it for use.

(2) If the RK Disk is not going to be the system disk (e.g., Fhe RP
or RF disks would be the system disk), see Appendix D for details of
the proper installation procedure.

DOS-15 V3B@@@Z Update Document

Table 2-1
ABSL11 Starting Addresses

Local Memory Size ABSL1l Starting Address?
4000 words 60000g
8000 words 100000g
12000 words 120000¢g

When the PDP-11 is running, the user can place a PDP-11 absolute tape
(in this case PIREX) in the PDP-15 High Speed Reader and depress the
CONTINUE switch on the PDP-15. This reads the tape into the lower

8Kl of the PDP-15 in identical relative positions as if it were loaded
into the PDP-11's own local memory. When the tape is completely
loaded, the PDP-15 signals the PDP-11 to relocate the program into the
PDP-11's local memory and optionally start it, if a transfer address
was specified on the tape (as on the PIREX tape). If not, the PDP-11
halts and waits for a manual start by the user. The PDP-15 halts once
the tape has been loaded. The relocation of PDP-11 absolute programs
into memory is done by copying the entire lower 8Kl of the PDP-15 into
the lower 8K addressing space of the PDP-11 (or the entire 4K, or, the
entire 12K depending on local memory size) on a word by word transfer.
This relocation, therefore, results in the entire PDP-11 memory being
altered with all previous information overlaid.

If the first paper tape does not have a start address, additional tapes
can be loaded by depressing the PDP-11 CONTINUE switch once and depress-
ing the PDP-15 CONTINUE switch twice. Warning - the maximum PDP-11
program address that can be loaded by ABSL1ll is the amount of PDP-11
local memory, which is a maximum of 12K for UNICHANNEL systems.

Checksum errors are detected by the PDP-15 and result in a halt with

all 1's in the AC register. The checksum error may be ignored by
depressing the CONTINUE switch on the PDP-15.

2.2.2 Loading ABSL1l, PIREX, and DOS-15

The following is a step-by-step description of how ABSL1l, PIREX, and
DOS-15 are loaded.

1. Place the ABSL1l paper tape into the PDP-15 Paper Tape Reader.
The Paper Tape Reader ON/OFF switch must be in the ON position.

2. Verify that the RKO05 Disk Cartridge is loaded into drive and:
a. The LOAD/RUN switch is in the RUN position.

b. The write ENABLE/PROTECT switch is in the ENABLE
position.

(1) This value depends upon the actual local memory size - 4K, 8K
or 1l2K.

I (2) This is the PDP-11 console address.

J-10 2-2

10.

11.

12.

13.

14,

15.

le.

DOS-15 V3B@@P@ Update Document

Press the HALT switch on the PDP-11 UNICHANNEL console.

On the PDP-15 console, set the address register switches to
1778@ (octal), then press STOP and RESET simultaneously.

On the PDP-15 console, press READ IN. The ABSL1l paper tape
should read in.

When the Paper Tape Reader stops, observe the PDP-15 accumu-
lator (AC) using the proper setting of the rotary register
selector and register select switch on the PDP-15 console.

a. If the AC is 0, proceed to step 7.

b. If the AC is not 0, retry starting at step 1. (If this
fails consistently, you have either a bad ABSL1l paper
tape or a hardware problem.)

On the PDP-11 UNICHANNEL console, load the starting address
for the PDP-11 portion of ABSL1l into the switch registers:

a. For a 4K local memory UNICHANNEL use 60000g
b. For an 8K local memory UNICHANNEL use 100000g

c. For a 12K local memory UNICHANNEL use 1200008

Then press the PDP~11 LOAD-ADR switch
On the PDP-11 UNICHANNEL console, raise the HALT/ENABLE

switch to the ENABLE position and then press the START
switch. The PDP-11 RUN light should now be lit.

Remove the ABSL1l paper tape from the reader and place the
PIREX paper tape into it.

On the PDP-15 console, press the CONTINUE switch. PIREX
paper tape should read in.

Remove the PIREX paper tape and verify that the bit 0 and RUN
lights on the PDP-11 UNICHANNEL console are lit. This is an
indication that PIREX is running.

Load RK Bootstrap tape (hardware read in mode tape) into the
Paper Tape Reader.

Set Address Switches on the PDP-15 Console to

a. 776378 for a 32K or more PDP-15
b. 576378 for a 24K or 28K PDP-15 .
c. 376378 for a 16K or 20K PDP-15

On the PDP-15 Console, press simultaneously STOP and RESET,

On the PDP-15 Console, press the READ IN switch. The RK
Bootstrap tape should read in.

DOS-15 should announce itself. If not, check that the console
terminal is powered up, is ONLINE and not out of paper.

Also check that the correct disk cartridge was loaded into
drive O.

DOS-15 V3B@g@P Update Document
2.3 UNICHANNEL SOFTWARE RECONFIGURATION

The initial UC15 system supplied to the user may require modification
to be effectively used., This system is configured as follows:

l. An 8K local memory MACll assembler
2. A PIREX Executive with RK and LP drivers

3. A SPOLll spooler for LP only

2.3.1 MAC1l1

If your system does not have 8K local memory on the UNICHANNEL, you

must first tailor the MACll assembler into a version compatible with
your local memory size. The procedure to perform this under DOS-15

follows:

1. Assemble MACIMG XXX present under the PER UIC using
MACRO-15 and one of the following assembly parameters.

a. LM4K = 0 For a 4K local memory UNICHANNEL
b. No parameter For an 8K local memory UNICHANNEL
c. IMI2K = 0 For a 12K local memory UNICHANNEL

This will produce the binary file MACIMG BIN

2. Load one of the following MACll paper tapes into the Paper
Tape Reader:

a. DEC-15-ODUFA-A-PB For a 4K local memory UNICHANNEL

b. DEC-15-ODUEA-A-PB For an 8K local memory UNICHANNEL

¢. DEC-15-ODUTA-A-PB For a 12K local memory UNICHANNEL
3. 1Issue the DOS-15 API OFF command (if you have API).

4. Issue the DOS-15 $GLOAD) command, then type > =«—MACIMG

5. The paper tape should read in. When it stops a "DONE"
message should be printed on the console terminal; at this
point, the PDP-11 part of MACll is installed on disk.

6. Assemble the MACINT XXX under the PER UIC using the following
assembly parameters:

a. IM4K =0 For a 4K local memory UNICHANNEL
b. No parameter For an 8K local memory UNICHANNEL
c. LM12K = 0 For a 12K local memory UNICHANNEL

7. LOGIN under the MICLOG and assign DAT.-10 to the PER UIC.

$A RK <PER> -10)

J-12 2-4

8.

9.

DOsS-15 V3B@@P Update Document
Using PATCH do the following:

$PATCH)

>MAC11

> READ MACINT }
>EXIT)
This installs the PDP-15 portion of MACll onto the disk.

A new MAC1ll will now be available for use.

2.3.2 PIREX

The PIREX Executive should be configured to contain device drivers
for only those peripherals actually present in the user's configura-

tion.

The DOS Assembly Parameters Document DEC-15-ODAPA-A-D describes

the various assembly options available to the customer. The following
procedure should be followed to produce a tailored version of PIREX.

1.

()

Under the PER UIC, use EDIT to add or remove the various
assembly parameters for PIREX. (Parameters for programs
assembled by MACll must be included in the main source file.)

Assign DAT-12 to the listing device. (The absolute binary
output device will always be paper tape.)

Run MACll and assemble PIREX XXXlz
$MAC11)

>BL—~=—PIREX XXX

Where:

"B" causes the absolute binary paper tape to be punched
"L" causes the optional listing to be printed on DAT-12.

Load the new paper tape using the instructions in Section
2.2.2 of this chapter.

2.3.3 SPOL11?

The UNICHANNEL Spooler should be configured to provide spooling only
for those devices present on the user's configuration. The spooler
supplied with the system is configured to provide Line Printer spooling.
If the user does not possess a UNICHANNEL Line Printer (LP11/LS11l/
ILV1l), or the user wishes to spool other UNICHANNEL devices, this
spooler should not be used. The procedure for producing a spooler
tailored to the user's configuration follows.

(1)
(2)

XXX represents the latest version number, i.e., PIREX 118.
This procedure applies only to DOS-15 V3A@@@. See the DOS-15
V3B@@@ Update Document DEC-15-OD3BA-A-D for details of how to
install the spooler on a DOS:}%SV3Bﬂﬂ¢ system.

J-13

10.

11.

DOS-15 V3B@FP Update Document

Under the PER UIC use EDIT to add or delete the following
assembly parameters in SPOLl11 XXX:

a. $LP = 40000 for Line Printer Spooling
b. $CD = 20000 for Card Reader Spooling
c. $PL = 10000 for Plotter Spooling

Assign DAT-12 to the listing device.
Assemble SPOL1l under MAC1l with both the B and L switches.
$MAc11)

> BL =—SPOL11 XXX @

From the listing locate the definition of SPOLSZ and copy
down the value.

Run PIP and type:
$ PIP)

>L TT—=— RK (L))

This will produce a symbolic listing. Using this listing,
locate the column headed FB (first block) and find the first
block of SPOOL.

Under the PER UIC assemble the SPOL15 XXX program with
MACRO-15 using as assembly parameters:

a. SPOLSZ = the value determined in 4 above.
b. FB = the value determined in 5 above.

Under the PER UIC assemble the SPLIMG XXX program with
MACRO-15 using the assembly parameter:

a. SPOLSZ = the value determined in 4 above.
For API systems issue the DOS-15 command API OFF.
Place the SPOLl1ll absolute binary paper tape in the reader.
Issue the DOS-15 command GLOAD and type:
$ GLOAD)

>--— SPLIMG

The SPOLll paper tape will be read in and a "DONE" message
will be typed on the console terminal when completed.

Next MICLOG and assign DAT-10 to the PER UIC

$ A RK <PER> -10)

DOS-15 V3B@g# Update Document
13. Run PATCH and type:
$ PATCH)
> SPOOL)

> READ SPOL15)

>EXIT)

This will append the PDP-15 portion of the spooler to the
previously loaded PDP-11 portion.

2.3.4 PDP-15 UNICHANNEL Handlers

PDP-15 UCl5 Handlers that are not to be spooled must be assembled with
the NOSPL = 0 assembly parameter. Those handlers that are to be
spooled must be assembled without this parameter defined. The initial
RKO5 system supplied by DEC contains handler binaries under the< IOS >
UFD that were assembled as follows:

1. LPA. waé assembled to allow spooling

2. CDB. was assembled with NOSPL = 0 to not allow spooling.

3. XYA. was assembled with NOSPL = 0 to not allow spooling.
Any alteration of the mix of spooled devices requires reassembly of
the handler sources. (Location under the <PER> UFD. See the DOS

Assembly Parameter Manual, for additional assembly parameter options.)

The resulting binaries must be renamed (see Section 2.7.2) and trans-—
ferred to the <I0S> UFD.

2.3.5 SPOOLER Size Constraints

The following should be considered an absolute constraint on the num-
ber of devices spoolable on the UC15 system.

1. A 4K local memory system can have no spooled devices

2. An 8K local memory system can have up to 2 spooled devices

3. A 12K local memory system can have up to 4 spooled devices
(DEC only provides spooler modules for 3 devices. Additional

spooled device modules must be added by the user. Refer to
chapters 5 and 6 for information on how to do this).

2.4 PERIPHERAL OPERATION

2.4.1 Disk Cartridge

On the front of the disk cartridge unit there are two (optionally a
third, ON/OFF) toggle switches, RUN/LOAD, and WRITE/PROT. To load
the disk, press ON (if present) and LOAD. Pull the door open. Pick

DOS-15 V3B@g@g@ Update Document

up the cartridge by the molded hand-grip, metal side down, horizontal,
and slide gently into the path between the wire guides. Shut the
door. Put the LOAD/RUN switch into the RUN position. In about 10
seconds, the two lights, RDY and ON CYL will come on, indicating

that the cartridge is ready. To unload the disk, place the toggle
switch on LOAD. Wait for about 30 seconds until the LOAD light is

on. At this time, the drive will release the cartridge with a
noticeable 'clunk', only then open the door and pull the cartridge
out,

WARNING

Do not turn off the drive while unloading
(if drive has an OFF-ON toggle).

2.4.2 Plotter

Unlike the XY311l, the XY1ll does not have an offline switch. In order
to be able to indicate the XY11 plotter off-line condition, provision
is made in the software through the PDP-11 console switches. By set-
ting bit '2' of the console data/address switches in the up/on posi-
tion ('l' state) the plotter can be put in the off-line mode. This is
made possible by the plotter device driver task in PIREX, which moni-
tors this bit before initiating each plotter I/0 requests. Once

the plotter problem condition (e.g., out of paper) has been corrected,
plotting will continue automatically when bit '2' of the console
switches is reset to zero (down position).

The user is provided with the capability of halting the output on the
plotter at the end of current file in the spooled mode. This is done
through bit '3' of the PDP-11 console switches. By setting bit '3' of
the console data/address switches in the up/on position ('l' state)
output on the plotter can be halted at the end of current file. The
plotter driver task in PIREX provides this facility by monitoring this
bit before initiating each plotter I/0 requests. After performing the
necessary operations on the plotter, output can be resumed by setting
bit '3' of the console switch in the down/off position ('0' state).

2‘4t3 Card Reader

For the purposes of spooling, a card with ALT MODE, ALT MODE in col-
umns 1 and 2 is used as an end-of-deck card. The handler throws away
such cards, continuing on to the next card, so that the PDP-15 pro-
gram using the handler never sees this card. This card is used to
force data from a partially filled internal spooler buffer onto the
disk where it can be despooled to the PDP-15.

2.4.4 Line Printer

Output to the Line Printer can be halted at the end of current file in
the spooled mode. This is done through bit 'l' of the PDP-11 console
switches. By setting bit 'l' of the console data/address switches in
the up/on position ('l' state), outputs on the line printer can be
halted at the end of current file. The Line Printer driver task in
PIREX provides this facility by monitoring this bit before indicating
completion of .CLOSE I/0O request processing. After performing the
necessary operations on the line printer, output can be resumed by
setting bit '1l' of the console switch in the down/off position ('0Q’
state).

J-16 2-8

: _. DOs-15 V3B@@F Update Document
2.5 ERROR HANDLING

Within the PIREX system, the device drivers on the PDP-11 side handle
errors by placing error condition indicators in a table in PIREX. On
the PDP-15 side, a "poller" (part of the resident monitor of the
operating system) periodically searches the table to see if any error
messages are to be printed. In almost all cases the recovery is auto-
matic when the error condition is rectified. See Appendix C for a
list of UCl1l5 related error messages.

2.5.1 Disk Cartridge Errors

Disk cartridges must be positioned properly during loadipg operations.
Improper positioning of the cartridge can result in a drive not ready
condition,

This condition can be eliminated in most instances by unloading the
' cartridge, repositioning it properly and reloading the cartridge.

The above operations should be repeated a few times before reporting
the problem to your field service representative. Do not force the
cartridge into or from position during the loading or unloading
operation.

2.5.2 Card Reader Errors

The system divides card reader errors into two groups: hardware and
software. A hardware error is a hardware read error (pick check, card
jam, etc.) or an illegal punch combination. A software error is a
supply error (hopper empty, stacker full) or an off-line condition.

For all hardware errors, the card causing the error will be on the top
of the output stack. With most hardware errors, the card reader will
stop, and a requisite light (i.e., pick check) will light on the
reader. Remove the card, repair or replace it, and put it on the

front of the input stack. Press the RESET button. The driver receives
an interrupt when the device becomes ready again and will restart
automatically.

For software errors, the card in the output hopper has already been
read. It is merely necessary to fix the supply error and press the
RESET button. Note that the card reader can be stopped by pressing
the OFF-LINE button. To restart, press the RESET button.

Illegal punch combination (IOPSUC CDU 72) and card column lost (IOPSUC
CDU 74) are exceptions to all other errors because in these cases
alone, the card reader will stop, remain on line, and no diagnostic
light will be lit. The card causing the error will be in the top of
the output hopper. (Mangled cards may cause an illegal punch combina-
tion error.) Press the OFF-LINE button, repair or replace the faulty
card, put it on the front of the input stack, and press the RESET
button to restart.

2.6 SYSTEM CRASHES

During program development under PIREX on the PDP-11, system crashes
may occur, Such crashes may not be apparent because PIREX keeps

both the RUN light and bit 0 lit as if no problem existed. PIREX will
then either not respond at all or return illegal event variable values.
Under these circumstances, reload PIREX and reboot the operating sys-
tem on the PDP-15.

2-9 J-17

DOS-15 V3B@@gP Update Document

2.7 UNICHANNEL RELATED SOFTWARE COMPONENTS

2.7.1 7UCl5 Components

NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME
PIREX Executive PIREX XXX PIREX paper tape
SPOOLER SPOL11 XXX SPOQL **%*

PDP-11 Absolute Loader ABSL11 XXX * ABSL11l paper tape
MACll Assembler Special DOS-11 Tape** MAC1ll **=*

2.7.2 DOS-15 Components

NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME
PDP-15 SPOOLER SPOL15 XXX SPOOL ***
Component
SPOOLER Disk Area SPLGEN XXX SPLGEN BIN****%
Allocation
SPOOLER Image SPLIMG XXX SPLOAD BIN*****
Loader
PDP-15 MACl1l MACINT XXX MACll #**%*
Component
MACRO Image Loader MACIMG XXX MACIMG BIN
DOS Resident Monitor RESMON XXX RESMON *#***
DOS Non-Resident Monitor DOSNRM XXX DOS15 ***%*
* ABSL1l requires a special assembler, that is not available as a

supported product. Assembly of ABSL1l with the standard DOS-15 MACRO
Assembler produces a paper tape with a load address of 17724.

* % The MACll source is a PDP-11 tape that must be assembled and
linked under DOS-11l. :

%¥ SPOL11 and MACll are combinations of PDP-15 and PDP-11 code
segments.

**** These routines are versions of standard DOS-15 source files -
created using special assembly parameters - see the DOS Monitor
User's Manual.

% DOS-15 V3BZJZZ components.

DOS-15 V3Bgdg Update Document

NOMENCLATURE

SOURCE FILE NAME

BINARY FILE NAME

PDP-15 LP11/LS11/LV11l
Line Printer Handler

PDP-15 XY11/XY31l1l Plotter
Handler

PDP-15 CR11l Card
Reader Handler

LPU. XXX

XYU. XXX

CD.DOS XXX

LPA. BIN

XYA. BIN

CDB. BIN **%%

**** These routines are versions of standard D0OS-15 source files -

created using special assembly characters - see the DOS Monitor

User's Manual.

2.7.3 RSX-PLUS III Components

NOMENCLATURE SOURCE FILE NAME TASK NAME
Fixed-Head Disk File Handler RFRES RK
Disk File Handler Overlay RFOPEN RK
Disk File Handler Overlay RFCLOS RK
Disk File Handler Overlay RFREAD RK
Disk File Handler Overlay RFDLET RK
Disk File Handler Overlay RFCREA RK
Line Printer Handler LP.30 P
Card Reader Handler CD Ch
UNICHANNEL Poller POLLER POLLER
Spooler SPOOL ... SPO
Executive RSX.P1

and
RSX.P2
These items are usually on DECTAPE or magnetic tape.
2-11 J-19

CHAPTER 3

SYSTEM DESIGN AND THEORY OF OPERATION--PIREX

This chapter describes the design and theory of operation of the
UNICHANNEL-15 Peripheral Processor Executive. Knowledge of this
information is necessary to successfully modify the UNICHANNEL-15
Software System. Chapter 4 will discuss techniques for modification
of the PIREX system. ’ '

3.1 PIREX--PERIPHERAL EXECUTIVE

PIREX is a multiprogramming peripheral processor executive designed
to provide device driver support to operating systems on the PDP-15
main-processor. PIREX is designed to be as independent cf the par-
ticular PDP-15 operating system as possible, executing in conjunction
with DOS-15, BOSS-15, or RSX-PLUS III. The PIREX Software System is
designed to maximize flexibility and expandability and to minimize
system overhead and complexity. To accomplish this, special software
and hardware features are designed into the system.

3.1.1 PIREX-An Overview

PIREX is loaded from the PDP-15 high-speed reader into the PDP-11
local memory and automatically started. Once running, PIREX is
capable of accepting multiple requests and directives from the PDP-15
or PDP-11 and processing them on a controlled-priority basis. Task
requests are automatically queued (see Figure 3-1) and processed when-
ever the task in reference is free. When a particular device or
routine completes the processing of a request, status information
(e.g., parity or checksum errors, transfer OK, etc.) is passed back

to the caller.

At the completion of a PDP-15 request, an optional hardware interrupt
is initiated in the PDP-15 on any one of 128 possible API trap loca-
tions and at any one of 4 hardware API levels if requested. Since
the software completely determines which interrupt vector and level
to use when completing PDP-15 requests, the routines initiating the
interrupts could actually be software routines used to simulate
hardware conditions or just software tasks. If the request is issued
from the PDP-11, the user may request an optional software interrupt
after completion of the current request.

PDP-15-+PTREX
REQUEST

MASREQ. ..

SLAREQ

SAVE R@-R5 ON entry

CURRENT STACK;

PDP-11-PIREX
REQUEST

UPDATE ENTRIES
IN ATL NODE

MASREQ

.. .SLAREQ

BUMP PC SAVED

| IN STACK TO

RETURN ADDRESS

entry t

SWITCH TO
SYSTEM STACK

GET TCBP AND
RELOCATE IT.
GET TASK CODE

| TAKE REFERENCED

TASK AS SPOOLER

TASK CURRENT-

LY BUSY
?

BUILD ATL NODE

TELL PDP-15
ERROR TCB

QUEUE REQUEST
IN TASKS TRL

ESTABLISH TASK
STACK WITH
START ADDRESS
& PRIORITY

v

Y

Y

Figure 3-1

3-2

EXIT TO
ATL SCANNER

Basic Flow Chart of PDP-15/11 Request Processing

DOS~15 V3B@PF Update Document
3.1.2 PIREX Components

The PIREX executive consists of modules that provide support for
multiple I/0 oriented tasks operating asynchronously with each other.
In addition, support is provided for other background tasks such as
MACll. The services provided to tasks operating under PIREX include:

® Context switching - transferring control of the PDP-11
Central Processing Unit (CPU) from one task to another.

® Interprocessor communication - receiving requests for
service from, and, sending results to the PDP-15 main
processor.

® Intraprocessor communication - receiving requests for
service from, and, sending results to tasks operating on
the PDP-11 peripheral processor.

® Scheduling - determining which task is to execute next.

® Request Queuing - stacking requests for a busy task until
it is able to process them.

® Timing - providing a timed wake-up service for requesting
tasks.

® Error Reporting - providing a list of current device and
task errors to the PDP-15 executive, on demand.

® Directive Processing - providing the PDP-15 monitor with
specific services such as: notification of available
memory space, connecting, disconnecting or stopping tasks
and returning the status of certain tasks.

These services are provided to both device driver tasks and back-
ground tasks.

3.1.3 Device Drivers

Device Drivers are tasks that typically perform rudimentary device
functions such as read, write, search, process, interrupt, etc. They
can, however, be complete handlers, performing complex operations
such as character generation and directory searching. PIREX provides
each driver with requests for I/0 actions and returns the results of
the actions to the caller. Associated drivers are provided for the
RKO5 Disk Cartridge, the LP11/LS11/LV11 Line Printer, the CR1l1l Card
Reader, and the XY1l Plotter.

3.1.4 Software Routines in Background Mode

The following are run as background tasks--executing only when I/0O
driver tasks are idle:

1. SPOL1ll -- an input/output spooling processor

2. MACll -- A MACRO assembler for the PDP-11

3-3 J-21

DOS-15 V3B@@F Update Document

3.1.5 Unsupported Tasks

All tasks supplied with the PIREX software system are fully supported
by Digital Equipment Corp. except the DECtape Driver task (DT) and
LV1ll Plotter tasks. The DT task has not been completely tested, but
is included in the system for illustrative purposes and for anyone
who may desire to develop DECtape capability on the PDP-11. The LV11l
task is designed to allow .TRAN operations to the LV11l when used as a
plotter (instead of as a printer). This task was developed for the
demonstration of vector scan plotting techniques. The task is unsup-
ported because the vector scan routines are not currently available
from DEC.

3.1l.6 Power Fail Routine

A power fail section is present in PIREX. It is, however, not
supported by DEC and currently only saves the general registers and
does not attempt to handle I/0 in progress. This routine could be
expanded by the user into a complete power fail handler.

3.2 PIREX - SIMPLIFIED THEORY OF OPERATION
3.2.1 NUL Task

When the PIREX Software System is running, it is normally executing
the NUL Task (a PDP-11 WAIT instruction). The NUL Task is executed
whenever there are no other runnable tasks or while all other tasks
are in the WAIT state waiting for previously initiated I/O. The NUL
Task entry is a permanent element in the Active Task List. The Active
Task List is a priority ordered list of tasks that is used to schedule
the next task to be executed. The NUL task occupies the last position
in the Active Task List (ATL).

3.2.2 Clock Task

One other permanent entry in the ATL is the Clock Task. The Clock
Task is entered once every 16.6 milliseconds (for 60 hz machines).

Its primary function is to provide other tasks with a wake up service.
A typical use of the Clock Task would be to wake up the Line Printer
Task every two seconds to check the Line Printer status for a change
from OFF LINE to ON LINE. The Clock Task operates at the highest
priority on the ATL.

J-22 3-4

3.2.3 Request Processing

When the PDP-15 issues a request to the PDP-11 to be carried out by
PIREX, it does so by interrupting the PDP-11 at level 7 (the highest
PDP-11 priority level) and simultaneously passing it the address of a
Task Control Block (TCB) through the interrupt link. This address is
called the Task Control Block Pointer (TCBP). A PDP-11 task can
issue requests to other tasks via the IREQ macro. The IREQ macro
simulates the PDP-15 request process and results in a TCBP being
passed to PIREX. The contents of the Task Control Block completely
describe the request (task addressed, function, optional interrupt
return address and level, status words, etc.). The TCB will reside
in the 'Common' Memory if the request is issued from the PDP-15 or in
the 'Common' or 'Local' Memory if the request is issued from the
PDP-11.

The flow chart in Fiqure 3-1 illustrates the basic processing of
requests to PIREX from the PDP-15 or the PDP-11. Note that error
conditions are passed back to either central processor in the TCB or
via an error table to the PDP-15 monitor poller along with status
information necessary for control and monitoring of a request,

Usually the request is to a device on the PDP-11 but other types are
allowed. ’ .

3.2.4 Task Structure

A task is a PDP-11 software routine capable of being requested by the
PDP-15 or PDP-11 through the PIREX software system. The task may be
a device driver, a directive processor, or just a software routine
used to carry out a specified function. A task must have the format
shown in Figure 3-2, TASK FORMAT.

*kkk LOWER CORE

* *
task stack area vt
L] [}
* *
kk k%
control register * %
* %k %%k
busy/idle switch * %
* *
kkk%k
* *
task program * %
code [} '
* *
* %*

*kkk HIGHER CORE

Figure 3-2
Task Format

This structure consists of four sections; two are variable in size
and two are fixed.

The "task program code" size is variable and contains the program-
ming code necessary to carry out the task function.

The "busy/idle switch" consists of two words and is used by PIREX to
determine if a task is busy or idle. The TCBP of the current request
is stored in this section when the task is busy. This also enables

a task to easily access the TCB.

The "control register" is either a dummy address (an address which
points to an unused software variable) or the address of a device
control register if the task is an I/0 driver. This word is used
only by the STOP TASKS (ST) task when shutting down I/O operations.

The "stack area" begins immediately below the control register and
builds dynamically downwards. The purpose of the stack is to allow
each task free use of a private space for temporary storage of data
while it is executing and all its active registers during times when
other higher priority tasks are being run. The stack area must be
large enough to store the maximum number of temporary variables used
at any one time plus one context register save. A context save
requires 8 words of stack area plus an additional 3 words if the
PDP-11 has an Extended Arithmetic Element (EAE). The stack size is
fixed and determined at PIREX assembly time.

3.2.5 Task Control Block - TCB

Tasks, in PIREX, receive requests for action and return the results
of their action in bundles of information called Task Control Blocks
{(TCB). The general format of a TCB consists of three words followed
by task-specific optional words. The following information must be
present in all TCBs since PIREX will honor requests in this format
only.

15) 8 7 0
TCB: API TRAP ADDRESS API LEVEL WORD O
FUNCTION CODE TASK CODE NUMBER WORD 1
REV: REQUEST EVENT VARIABLE WORD 2
OPTIONAL WORDS WORD 3-N

3.2.5.1 API Trap Address and Level - The API trap address is a PDP-15
API trap vector and has a value between 0 and 177g when a hardware
interrupt on the PDP-15 is required. Location 0 cCorresponds to
location 0 in the PDP-15, The "API" level is the priority level at
which the interrupt will occur in the PDP-15 and has a value between
0 and 3 when a hardware interrupt on the PDP-15 is required. A 0
signifies API level 0, a 1 for level 1, etc. The API trap address
and level are used by tasks in the PDP-1l1 when informing the PDP-15
that the requested operation is complete (e.g., a disk block trans-—
ferred or line printed). If the PDP-15 master computer doesn't have
API or if API is not enabled, the PDP-1l issues an interrupt that
when received is polled by the PDP-15 using 4 UCl5 skips (one per
level) on the traditional skip chain.

3-6

3.2.5.2 Function Code - The Function Code determines whether hard-
ware interrupts on the PDP-15 or software interrupts on the PDP-11
are to be used at the completion of the request. If the code has a
value of 0, a hardware interrupt is generated on the PDP-15 at the
completion of the request; if a 1, an interrupt is not made. If the
Function Code is a 3, a software interrupt is issued by PIREX. The

* task routine or program using this facility sets up the trap address
in the SEND1l table in PIREX prior to issuing the request to the task.
The task or route should return to PIREX after interrupt processing
through an "RTS PC" instruction. All registers are available for use
by tasks.

3.2.5.3 Task Code Number - The Task Code Number (TCN) is a positive
(1—1778)l or a negative (200-377g) 7-bit number plus a sign bit that
informs PIREX which task is being referenced. The mnemonic TCN as
used in this manual refers to the 7-bit portion of the Task Code
Number. Tasks are addressed by a numeric value rather than by name.
Tasks with positive code numbers are spooled tasks and tasks with
negative code numbers are unspooled tasks. When the SPOOLER (see
Chapter 5) is enabled and running, requests to spooled tasks are
routed to the SPOOLER. When the SPOOLER is disabled, requests to
spooled tasks are routed directly to device drivers.

Task Code Numbers are currently assigned as follows:
2

CODE® TN TASK

-13 -1 CL task (Clock) Driver task3
200 0 ST task (Stop Task) Software task
201 1 SD task (Software Directive) Directive task
202 2 RK task (Cartridge Disk) Dfiver task
203 3 DT task (DECTAPE) Driver task

4 4 LP task (Line Printer) Driver task

5 5 CD task (Card Reader) Driver task

6 6 PL task (Plotter) Driver task
207 7 SP task (Spooler) Background task
210 10 LV task (Printer/Plotter) Driver task
211/11 11 Currently not used - -
212/12 12 Currently not used -
213/13 13 Temporary Task Entry Temporary task

(1) A task code of 0 indicates the STOP TASKS DIRECTIVE - See
Section 3.5

(2) The code column corresponds to the typical task code in the TCB
(3) The minus 1 is represented internally as 377

PIREX is currently capable of handling these 13 tasks. Tasks 11-13
are spare task codes available for customer use.l

3.2.5.4 Request Event Variable - The REQUEST EVENT VARIABLE,
commonly called REV, is initially cleared by PIREX (set to zero) when
the TCB request is first received and later set to a value "n" (by
the associated task) at the completion of the request. The values

of "n" are:

0 = request pending or not yet completed
1 = request successfully completed
-200 = (mod 216-1) nonexistent task referenced
-300 = (mod 216-1) illegal API level given (illegal values
are changed to level 3 and processed)
-400 = (mod 216-1) illegal directive code given
~500 = (mod 2'°-1) no free core inthe PDP-11 local memory
-600 = (mod 216-1) ATL node for this TCN missing
=777 = (mod 216—1) request node was not available from the

POOL (i.e., the node POOL was empty, and the referenced
task was currently busy or the task did not have an
ATL node in the Active Task List)

When an address is passed in a TCB as data, the receiver of the

address must relocate it to correspond to the addressing structure

in its memory space. For example, a PDP-15 address passed to the

PDP-11 must first be multiplied by two to convert word to byte

addressing and then the local memory size (LMS) of the PDP-11 must

be added. For example,

PDP-11 address = (PDP-15 address *2) + LMS on PDP-11

The reverse is true for a PDP-11 address received by the PDP-15, For
example,

PDP~-15 address = (PDP-11l address - LMS)/2

3.3 SYSTEM TABLES AND LISTS

The PIREX system uses various tables, lists, and deques to control
events within the system.

(1) See Section 4.4 for further information.

3-8

3.3.1 Active Tast List (ATL)
The selection of a task for execution by PIREX is accomplished by
first scanning a priority-ordered linked list of all active tasks in
the system called the Active Task List (ATL). An active task is one
which satisfies one or more of the following conditions:

1. 1is currently executing

2. has a new request pending in its deque

3. 1is in a wait state, or

4, has been interrupted by a higher priority task

A task is inactive if there is no ATL node for it. A task can be in
any one of the following states:

CODE STATE ACTIVITY
0 run ~active
2 wait active
4 exit inactive

When a runnable task is found, the stack area and general purpose
registers belonging to that task are restored and program control is
transferred to it through an RTI instruction. Program execution
normally begins at the first location of the task diagram code (see
Figure 3-2) or at the point where the task was previously interrupted
by a higher priority task, or in special cases at any desired loca-
tion in the task using the 'PC' setting on the stack as in the RK
task's error retry program logic. When a task is interrupted by
other tasks, its general purpose registers are saved on its own stack.
Control is returned to the interrupted task by restoring its stack
pointer and then its active registers.

The ATL is rescanned when:
l. a new request is issued to a task
2. a previous request is completed
3. at the end of a clock interrupt
4, a task goes into a wait state

A task is said to be in a "wait" state when its ATL node exists and
it is not runnable.

3.3.1.1 ATL Nodes - The Active Task List is a linked list containing
4 word entries called nodes.

PDP-15 TO

MA|
SREQ PIREX REQUES

SLAREQ ...

UPDATE ENTRIES
IN ATL NODE

SLAREQ

SAVE R@-R5 ON

CURRENT STACK; | entry | BUMP PC SAVED
. }—— gl ON STACK TO

PDP-11-+PIREX
REQUEST

RETRY ADDRESS

MASREQ
entry
READ TCBP FROM
INTERRUPT LINK jaf——]
& RELOCATE TCB

SWITCH TO
SYSTEM STACK

GET TCBP AND
RELOCATE IT.
GET TASK CODE

SPOOLED
TASK

SPOOLER

RUNNING
?

TAKE REFERENCED
TASK AS SPOOLER

Figure 3-3
Detailed Flow Chart of PDP-15/PDP-11 Request Processing

3-10

[onext page

CALLTK ...

CODE SPEC-
IFIED IN TCB
LEGAL?

...next
page

LVL783 ... SET EVENT VARIABLE
IN CALLERS TCB TO
'-2d#"', INDICATING
THAT AN ILLEGAL

TASK (NON-EXISTENT
ONE) WAS SPECIFIED

LVL724

SEND INTERRUPT BACK
(IF REQUESTED) IN-
FORMING THAT THE
REQUEST COULD NOT
BE PROCESSED

!

I

\ Rescan the ATL
from the top.

See Figure 3-4.

Figure 3-3 (Cont.)
Detailed Flow Chart of PDP-15/PDP-11 Request Processing

3-11

USE TCBP TO SET
TASK'S IDLE/BUSY
REGISTER TO BUSY
AND CLEAR THE EV
IN CALLERS TCB.

AN ACTIVE
TASK LIST NODE
ALREADY EXIST
FOR THIS

GET A NODE FROM
POOL AND MOVE

IT TO THE REF-
ERENCED TASKS
DEQUE SAVE THE
18 BIT TCBP IN
THE NODE SO TASK
WILL HAVE IT

WHEN NEEDED.
SET CALLERS EV
LVL725 | 10 -777 (woRD
16) INDICATING
THAT THE SYSTEM
[IS TEMPORARILY
OUT OF NODES IN
THE POOL.
SCAN THE ATL
FOR AN ENTRY
(PRIORITY WISE)
FOR THIS NODE
AS.El Rescan the
~./ ATL from
top. See
Figure 3-4.

REMOVE NODE FROM
POOL AND PUT IN

Y

FILL IN TASK
PRIORITY TASK
CODE NUMEER,
AND TASK STACK
POINTER IN ATL

NODE

—

SET TASK PRIORITY
AND TASK START
ADDRESS IN TASK'S
STACK AREA TO BE
USED WHEN TASK
IS EXECUTED

Figure 3-3 (Cont.)
Detailed Flow Chart of PDP-15/PDP-1ll Request Processing

3-12

An ATL node has the following structure:

WORD 1 - Forward pointer to next node

WORD 2 - Backward pointer to previous node

WORD 3 - Stack pointer of task

WORD 4 (15[14]13f12f11f10]9 [8]7]6]|5[a]3[2[2]0]

- ~

Task Priority.____J

Spooling Indicator
0 = spooled
1 = not spooled

Task Code Number (TCN}

TASK STATUS (States defined in 3.3.1)

The ATL is referenced by a 2-word listhead. The listhead contains
backward and forward links pointing to the first and last nodes in
the list. The ATL is a priority-ordered list.

3.3.1.2 ATL Node Pointer (ATLNP) - Each task has a pointer to its
Active Task List Node (see Section 3.3.1.1) stored in the ATLNP
table. This table is in TCN order. An entry is 0 if the task is
inactive.

The format of an ATLNP entry is:

0 ; NAME task-code-numberl

These entries are filled dynamically by PIREX with actual pointers.
3.3.2 Task Request List (TRL)

The Task Request Lists are doubly-linked, deque=-structured lists of
pending TCBs. If when a request arrives, the target task is busy,

PIREX places the TCB pointer (TCBP) onto the busy task's deque for
later processing. This deque is the Task Request List.

(1) The "NAME task-code-number" is a comment

A TRL node has the following structure:
WORD 1 - Forward pointer to next node.

WORD 2 - Backward pointer to previous node.

WORD 3 - [15]14]13{12]1110]9 | 8|7f6[5]4]3]2[1]0]

N— —

Request Identifier—J

0 = PDP-15 request
1l = PDP-11 request

Most significant bits of the TCBP (PDP-15) bits 0 and 1

WORD 4 - 16 least significant bits of TCBP (PDP-15 bits 2-17)

Each TRL is referenced by a two-word listhead. The listhead contains
backward and forward links pointing to the last and first nodes of a
given task's TRL. The TRL is built on a first come first serve basis.

3.3.3 TRL Listheads (LISTHD)
Each task has its own Task Request List, (TRL). Each LISTHD entry is
a double-linked listhead used to point to a task's TRL. The LISTHD
is a TCN ordered list.
The format for an entry is:

LISTHEAD XX
where:

1. LISTHEAD is a system macro

2. XX is a two character task mnemonic (i.e., LP for Line
Printer Task).

3.3.4 Clock Request Table (CLTABL)

The Clock Table (CLTABL) contains entries for one timing (wake up)
request from each task. The format of a CLTABLE entry is:

xxl.cL = .
sWORD 1 ; Time Word

.WORD 1 ; Address Word

(1) XX represents the task mnemonic (e.g., RK.CL)

Where the first word is remaining time before wakeup and the second
word is the address for a JSR PC, XXX instruction. The JSR occurs at
clock interrupt level (6). The user must do an RTS PC to return
control to the clock routine. Time is measured in line frequency
ticks: 16.6 milliseconds/tick for 60 Hertz Systems. A task may cancel
a timing request by clearing the time word. A request for a wakeup

is made by:

1. Placing the address of the routine to be called into
word 2 - then

2. Placing the time delay (measured in 1/60 sec. increments)
into the time word.

The above sequence must be exactly followed. See Chapter 4 for
further details on the use of wakeup calls. CLTABL is a TCN ordered
list.

3.3.5 Device Error Status Table (DEVST)

The DEVST table is used to store error status codes for delayed
transfer to the PDP-15 monitor. The PDP-15 monitor contains a routine
called the "Poller" which periodically requests error status codes
from PIREX using a "get errors" software directive. This method of
error transmission is useful for delayed error messages—--such as

those recognized on spooled devices. The specific PDP-15 I/O handler
may no longer be present in the PDP-15's memory--thus the Request
Event Variable (REV) method of returning error status would be useless.
The "Poller" requests the entire DEVST table and reports those events
on the system console terminal. A "Get Errors" directive clears the
DEVST table upon completion. The reporting task may, for instance,
correct the error condition before the "Get Error" directive is
issued. When this happens, the task could simply clear its message
from the DEVST table and thus eliminate a spurious message. DEVST

is a TCN ordered table. The format of a DEVST entry is as follows:

WORD 1 - TASK (MNEMONIC IN SIXBIT/RADS50 RIGHT JUSTIFIED)

WORD 2 - SPARE (except for RK task where bad disk block is
present)

WORD 3 - ERROR CODE: SPOOLER ERROR CODE (HIGH BYTE)

TASK ERROR CODE (LOW BYTE)

3.3.6 LEVEL Table

The LEVEL table (task priority level) is used by the R.SAVE context
switch routine to determine the priority level of the task about to
begin execution. All interrupt vectors must specify a priority 7
entry into their respective interrupt routines. Upon entry, R.SAVE
should be called to save the interrupt task state and return control
to the interrupt processing routine at the proper priority--found in
the LEVEL table. The LEVEL table is a TCN ordered task.

The LEVEL table entry format is:

.BYTE task priority *40

3.3.7 Task Starting Address (TEVADD)
The TEVADD Table contains the starting address of all defined tasks.
The system currently has room for 13g tasks of which three are tempo-
rary entries used for tasks CONNECTED to and DISCONNECTED from PIREX.
MACll is such a temporary task and uses the table entries of the
currently unused highest task code. All PIREX systems must have at
least one highest unused task entry to allow use of MACll. The
TEVADD table is TCN ordered.
The format of a TEVADD table entry is:

.WORD START ; task name
where START is either:

1. The starting address of the task, or,

2. 0 indicating that this entry is currently unoccupied.

where "Task name" is a comment.

3.3.8 Transfer Vector Table (SEND1l1l)

The SEND1l table is used to store transfer vectors for use when
issuing IREQ macro calls. The entry is the address at which the
requesting routine receives control back from PIREX. This table is
TCN ordered.

The format of a SEND1ll entry is:
0 ; task-name task-code-number

where "task name task-code-number" is a comment.

3.3.9 System Interrupt Vectors

The device interrupt vector-pairs consist of interrupt routine address
and priority level. The priority level of "all" devices should be
Level-7 "only". This is to permit PIREX to do a context switch before
processing the interrupt.

3.3.10 1Internal Tables Accessible to All Tasks

All tasks in the PIREX system can easily access internal routines and
tables through the use of the system registers. These registers begin
at absolute location 1002, in the PDP-11 and contain either pointers
to internal tables and listheads or entry points to commonly used
subroutines. The following list summarizes these registers.

DOS~15 V3Bg@¥ Update Document

LOCATION MNEMONIC DESCRIPTION

01002 SEND11 INT. RETURN ADD. (ON 11) ON END
OF I/0

01004 CURTSK: 000000 CURRENT TASK RUNNING

01006 POL.LH ADDRESS OF POOL LISTHEAD

01010 LISTHD ADDRESS OF TASK LISTHEADS

0lo01l2 R.SAVE ENTRY POINT TO REGISTER SAVE

01014 R.REST ENTRY POINT TO REGISTER RESTORE

0l0le AS.El ENTRY POINT TO ATL RESCAN

01020 MOVEN ENTRY POINT TO NODE MOVER

01022 DEQU ENTRY POINT TO DEQUEUE

01024 SEND15 ENTRY POINT TO SEND INTERRUPT

01026 EMPTY ENTRY POINT TO EMPTY A DEQUE

01030 ATLNP ATL NODE POINTER TABLE

01032 RATLN ' ENTRY POINT TO RETURN ATL NODE

01034 SPOLSW SPOOLER SWITCHES ADDRESS

01036 RTURN REUTURN INST. ADD. FOR PIC CODE

01040 NBRTEV: NTEV CURRENT NBR OF TASKS

01042 PWRDWN : RTURN ENTRY POINT TO PWR FAIL DOWN

01044 PWRUP: RTURN ENTRY POINT TO PWR FAIL UP

01046 SPOLSW: 000000 SPOOLER SWITCHES

0lo050 DEVST DEVICE ERROR STATUS TABLE

01052 CLTABL TABLE, A TIME-ADDR PAIR FOR EACH
TASK

01054 DEQU1 ENTRY TO ~SET TASK IN WAIT STATE-
ROUTINE

01056 CEXIT ENTRY TO -SET TASK IN RUN STATE-
ROUTINE

01060 TEVADD TABLE OF TASK START ADDRESSES

01062 DEVARE: -WORD DEVTYP PIREX DEVICES SWITCH

01064 DEVSPL: .WORD 0 DEVICES SPOOLED SWITCH

01066 CTLCNT: .WORD 0 PDP-15 CTL C RUNNING COUNTER

01067 SPUNIT: .WORD 0 DEVICE CURRENTLY BEING SPOOLED TO

~e ~e

These registers are accessed as absolute memory locations by various
permanent and temporary tasks. NO CHANGE in the location or order of
this table is permitted. New system registers may be added to the end
of this table. T

3.4 DETAILED THEORY OF OPERATION-PIREX

3.4.1 Request Procedure

The UC1l5 system allows the PDP-15 to initiate requests to the PDP-11 by
interrupting at the highest PDP-11 hardware level and simultaneously
passing to it an 18-bit Task Control Block address. Only the first 16
bits are used because PIREX does not support an external memory option
on the PDP-11. Requests from the PDP-15 or PDP-11 could be for:

(1) Memory management hardware support is not a feature of PIREX.

3-17 J-23

DOS-15 V3Bg@P Update Document

l. a directive=~handing routine
2. a data transfer to or from a device driver task on the PDP-11
3. a background software routine (task)
3.4.2 Directive Handlingl
Directive handling consists of such functions as:
1. Connecting and disconnecting tasks from the PIREX system

2. Reporting core status on the PDP-11 local memory to the
calling routine

3. Stopping I/0 on a particular device or all devices

4, Reporting UNIBUS device status to the calling routine

5. Stopping any or all tasks currently running2

6. Reporting spooler status to the caller
3.4.3 Logic Flow
The flow charts in Figures 3-3, 3-4, and 3-5 illustrate in detail the
program logic flow when a request from the PDP-15 or PDP-1l1 is made to
PIREX. Note that PIREX is capable of servicing requests in parallel
on a priority basis.

3.4.4 Operating Sequence

PIREX is usually running the NUL task waiting for something to do.
When a request is issued from the PDP-15 or PDP-11, PIREX immediately:

l. saves the general-purpose registers onto the stack belonging
tc the current task running

2, saves the stack pointer in the ATL nodes
3. sets the task in a RUN state
4, switches to the system stack (refer to Figure 3-5)

All of the preceding is done at level 7 (protected). The system stack
is used when switching between tasks or rescanning the ATL.

In the case of a PDP~15 request, the TCBP (Task Control Block Pointer)
register is now immediately read by the PDP~1ll allowing additional
requests to be made. PIREX corrects the TCBP by an amount equal to
the PDP-11 local memory when a request comes from the PDP-15. The
TCBP is present in R4 and R5 when the IREQ macro is issued by a
PDP-11 routine and the PDP-11 is able to address the TCB directly and
retrieve information from it. The task code number is then obtained
from the caller TCB and used to determine which task or directive
that is being referenced.

(1) See Section 3.6 for additional information.
(2) See Section 3.5 for additional information.

J-24 3-18

AS.SCN

AS.El

BEGIN SCAN OF
ATL STARTING AT
THE ATL LISTHEAD

ADVANCE SEARCH
TO NEXT NODE

REMOVE THE TASK
STATUS (TS) FROM
NODE AND USE IT
TO DISPATCH TO
THE APPROPRIATE
PROCESSING
ROUTINE

TS=¢$
AS.TE

A RUNNABLE TASK
HAS BEEN FOUND,
SAVE SYSTEM
STACK POINTER,
AND SWITCH TO
NEW TASK'S STACK

v

RESTORE ALL SYSTEM
REGISTERS R@-R7

GO TO TASK

TS=2

Y

TASK IS IN A
WAIT STATE,
BY-PASS IT.

AS.SCN

Figure 3-4

TS=4
AS.STP

TASK MUST BE
STOPPED. RETURN
TO ATL NODE TO
POOL. (KEEP LINK
TO NEXT NODE.)

AS.E2

Scan of Active Task List (ATL)

3-19

R.SAVE

SAVE R1-R5 (R@

SAVED ON CALL)

AND AC,MQ,SC IF
EAE OPTION

!

GET TASK CODE
(TCN) AND BUMP
R@ TO RETURN
ADDRESS

!

SAVE CURRENT
TASK'S 'SP' IN
ATL NODE

MOV R@,PC

SET 'SP' FROM
INTERRUPTING
TASKS ATL NODE

Y

SET TASK IN
RUN STATE

v

LOWER PRIORITY
LEVEL OF TASK

Figure 3-5
Context Switch or Save General Purpose Registers RO-R5.

A check is made to determine if the called task is a spooled task or
not. If bit 7 = 0, it is a spooled task and if bit 7 = 1, it is an
unspooled task. If the called task is a spooled task and if the SPOOLER
is enabled, the request is processed by the SPOOLER. If the SPOOLER is
not enabled, a check is made to determine if the task in reference is
currently active and busy with a previous request. If so, the request
is queued to the task's deque (TRL) on a first come, first serve basis.
If the task in reference is currently inactive, an ATL node is built
containing the appropriate entries, the address of the ATL node is set
in the ATLNP table and the task's priority in the LEVEL table. In
either case, the ATL is rescanned and the highest priority task is
selected for execution (see Figure 3.4).

UCl5 peripherals, controlled by PIREX, use a minimal driver to carry out
requested functions and report the results back to the calling task

via the TCB. When a driver finishes a request (whether an error
occurred or not), it informs the requestor by placing the results (status
and error register) in the TCB associated with that request and sends

an optional hardware or software interrupt back to the requestor.

The request event variable (REV) is set prior to sending an interrupt
to the PDP-15/PDP-11 and may be used by the PDP-15 or PDP-11 to deter-
mine if a request has been processed. This method is used during times
when interrupts are not enabled or desired (as during the bootstrapping
operation on the PDP-15). The hardware interrupt to the PDP-15 (see
Figure 3-6) is optional and can be made at any of the PDP-15 API hard-
ware levels and trap addresses. The API level and trap address are
specified in the TCB associated with each request to allow complete
flexibility in interrupt control.

3.4.5 Software Interrupt

A software interrupt return for the PDP-11 tasks is optional. This
feature is available only if a hardware interrupt return to the PDP-15
is not required. To generate a software interrupt, the task using the
request has to set the trap address before issuing the request. Each
task running under PIREX has an entry in the SEND1ll Transfer Vector
Table. PIREX traps to this location on completion of a request by
executing a JSR PC, SENDll (Task Code *2). The task issuing the
request specifies its task code in the TCB. All registers are free
to be used when the control is transferred. Control is returned to
PIREX through an RTS PC instruction.

3.4.6 Task Completion

When the PDP~-15 has been notified (via interrupt) that its request has
been completed, the task completing the request under PIREX becomes
idle and calls DEQU (see Figure 3=7) to determine if any additional
requests are pending. If no requests are pending, control is trans-
ferred to the ATL scanner (after saving the stack pointer and setting
the current task in a wait state in its ATL node). If additional
requests exist, the next request in the task's TRL is processed as

if it were just received.

GET API LEVEL SET REV IN TCB

N LEGAL
?

SET REV TO ¥

'-300' AND

ASSUME LEVEL LOWER TO TASK

3 PRIORITY LEVEL
GET API TRAP CALL @SEND11
ADDRESS FROM (TASK CODE *2)
TCB

'

SET REV IN TCB

'

ISSUE
INTERRUPT

RETURN

Figure 3-6
Send Hardware Interrupt to PDP-15/Software Interrupt to PDP-11l.

3-22

SET TASK'S
| BUSY/IDLE SWITCH
WITH NEW TCBP

Y

ZERO TCBP IN NODE
AND RETURN NODE

Y

SET TASK PRIORITY

EXIT TO TASK

Figure 3-7

RAISE TO LEVEL 7

'

SAVE CURRENT
TASK'S 'SP' IN
ATL NODE

!

SET CURRENT TASK
IN WAIT STATE

v

SWITCH TO SYSTEM
STACK

Dequeue Node From Task's Deque.

...See Figure
3-4.

3.5 STOP TASKS

The STOP

TASKS Task is used to stop tasks and/or I/O currently underway

for either all tasks or for a particular task. STOP TASKS can cancel
all requests or only PDP-15 requests for the indicated task(s). There

are four

1,

2.

2.
3.

4.

5.

The

possibilities:

Stop all tasks unconditionally and cancel all pending PDP-15
requests '

Stop a given task unconditionally and cancel all pending PDP-15
requests to that task

Cancel all PDP-15 requests to all tasks - this has no effect
on PDP-11 requests

Cancel all PDP-15 requests to a given task - this has no
effect on PDP-11 requests

process of stopping a task includes (1 or 2 above):

Removal of all appropriate PDP-15 request nodes in the
task(s) TRL(s)

Zero the Busy Idle Switch for the task(s)
Clear the I/O device register(s) for the task(s)

Set the tasks status in the ATL to EXIT (for a temporary
task) or WAIT (for a permanent task).

Indicate completion by setting the REV of the STOP TASKS
requestor. (An interrupt return is not allowed.)

Stop Tasks TCB has the following format:

15 0
TCB: 0 Word O
[Tew | 200 Wword 1
REV: REV Word 2
bit 15 = 1 cancel PDP-15 requests and the
current pending request unconditionally.
bit 15 = 0 cancel PDP-15 requests
TCN = 0 cancel all Tasks

TCN # 0 cancel Task TCN only

REV Return Event Variable

STOP TASKS is typically used by the PDP-15 operating system to quiet
all interaction between the PDP-15 and the PDP-1ll.

3.6 SOFTWARE DIRECTIVE PROCESSING

The software directive task provides two main capabilities. These are:

l.

2.

The capability to connect and disconnect temporary tasks to
PIREX (such as MACRO-11).

The capability to obtain various PIREX status information.

3-24

DOS-15 V3B@@F Update Document

These capabilities are provided via five software directives, which are
described later in this section.

The general format for software directive task control blocks is as
follows:

;15 8{7 ﬂ: »
H ATA H ALV ' werd @
:llllll':lllllll:
' FCN ' 29 v word 1
:|l|l|llllllllll;
H REV v word 2
:l'll!ll%'llllll:
H OPR ' 1 word 3
:l!llllll :
H Contents Depend '
y Upan Y
e £
! Directive v word n
f__t t V. v vy ¥ % B T T 8 T ® T O
ATA PDP-15 API interrupt vector address
ALV PDP-15 API interrupt priority level. Must be 0, 1, 2, or 3
(unless FCN = 3).
FCN Function to perform upon completion of this software directive
request. Valid values are:
000 Interrupt the PDP-15 at address ATA, priority ALV.
001 Do nothing (except set REV).
003 Cause a software interrupt to the PDP-11 task whose
task code number is in ALV.
REV Request Event Variable. Initially zero, set to a non-zero

value to indicate completion of the software directive request.
The meaning of the various return values is described below.

OPR Indicates the exact operation (directive) to be performed. Must
be one of the following values:

0 Disconnect Task

1 Connect Task

2 Core Status Report

3 Error Status Report
4 Spooler Status Report
5 MOVE

3-25 J-25

DOS-15 V3B@@@ Update Document

Returned REV values

1 Successful completion

-300 Invalid ALV value. The request may or may not have
been performed - see individual directive descriptions.
The PDP-15 will be interrupted at level 3.

-400 Invalid OPR (directive/operation code) value.

Other See individual directive descriptions.

The following sections contain detailed descriptions of the individual
software directives, their task control block (TCB) formats, and the
REV values they may return.

3.6.1 Disconnect Task Directive

The disconnect task software directive instructs PIREX to delete a
task from the active task list. Request should not be issued to a
task after it has been disconnected. An attempt to issue a request
to a disconnected task will result in a returned REV value of -200,
implying that a non-existent task was referenced. The format of the
task control block for the disconnect task software directive is as
follows:

:15 8:7 2,
T

' ATA H ALV i word ¢

: LB S N N B | : LI S SN N B I) :

H FCN ' 291 7 word 1

; vt v v ' v 5 vy |)) _1 1 :

4 REV 1 word 2

'l | I B B N R N | : L S N A T :

: gp : TCN ! word 3

: LI SN N S S S DN N N N N) 't 'I

H REL 7 word 4

;] y_r vov v vy oy v 1 | . :

H First Address i word 5

: LN I I | LI S I B N O A | :

H unused v word 6

; LI I I N T R A I] | I .] ;

' Length 7 word 7

L} \]
TCN The task code number of the task to be disconnected.
REL 000000 if the task resides in PDP-15 memory

100000 if the task resides in PDP-11 memory

First PbP-11 byte address of the first location in memory
Address occupied by this task (the lowest address of the task

stack area). Only meaningful if the task resides in
PDP-11 memory - if the task resides in PDP-15 memory
this word is ignored.

Length Total size (in bytes) of this task, including stack
area, control register, busy/idle switch, and program
code. Only meaningful if the task resides in PDP-11
memory -- if the task resides in PDP-15 memory this word
is ignored.

J-26 3-26

The disconnect task software directive verifies that the task to be
disconnected is on the active task list. If present on the list, the
task is disconnected - the active task list node is returned to the
pool, the task's entry in the TEVADD table is cleared, and the task's
task request list is cleared. If the task resides in PDP-11 memory,
an attempt is made to free the memory space occupied by the task = if
the first free local memory address is the address immediately
following the storage area occupied by the task (as determined from
the first address and length arguments), the task's first address
becomes the new first free local memory address.

RESTRICTIONS:

1. 1If a task does not have an active task list node, it cannot
be disconnected. Therefore, once a task has been connected,
it cannot be disconnected until after a request has been
issued to it.

2. All requests which are on the task request list of a task
which is disconnected are forgotten. Such requests will
never complete; their request event variables (REVs) will
never be set to a non-zero value.

3. PDP-11 local memory resident tasks should only be discon-
nected if they are the last (highest address) task in local
memory. If PDP-11 local memory resident tasks other than
the last are disconnected first, the memory space occupied
by these tasks will not be released. This will result in
holes (of unusable memory) in the PDP-1l's local memory.

4. Tasks should be disconnected in reverse sequential order by
task code number. A task should not be disconnected if there
are any connected tasks with higher task code numbers.

5. The high order bit of the task code number (TCN) must be
clear.

Returned REV values:
1 Task successfully disconnected

2 Task successfully disconnected, but the (PDP-11 local)
memory occupied by this task could not be released.

-300 Invalid ALV value, the task may or may not have been
disconnected, its memory may or may not have been released.

-600 Task to be disconnected is not on the active task list (i.e.,
node not present)

3.6.2 Connect Task Directive

The connect task software directive instructs PIREX to add a new task
to the system. Once a task has been connected to PIREX, the PDP-15
and/or other tasks may issue requests (task control blocks) to it.
The format of the task control block for the connect task software
directive is as follows:

T
(&)
0
~
=

1 \
T 1]
H ATA ' ALV ' word ¢
: 1 vy v t _® 1 _: 11 v ' v & t :
! FCN ' 281 ' word 1
: 1 L) y ¥ 8§ 1 ¥ v t v v v 1 1 ¢t ;
! REV ! word 2
: 1} | B I N N A : g7 _ v 3 v v % :
H gg1 H TCN 1 word 3
: T ¢ v % v 0 ¥ v 9§ v v v v 3 % :
' REL 1 word 4
: y_F_ ¥ % v % ¥ ¥ v v v v U ¥ U :
4 unused v word 5
: § L9 0 v % & v ¥ _V VU | B B :
' Entry Point y word 6
: 1 . f v v ¥ v ® % ¥ v OV VY :
H Length vy word 7
: 1 v vt t 1 : T 11 1 1 1 1 :
' unused ' Priority ' word 18
"t] | | y_ 7 ¥ ¥ ¥ ° % v 8 v ¥ U
TCN The new task's task code number (TCN)
REL 000000 if the new task resides in PDP-15 memory.
100000 if the new task resides in PDP-11 memory.
Entry Address of the new task's entry point - i.e., the
Point first location of the task's program code. This

address is a PDP-11 byte address if the new task
resides in PDP-11 memory, a PDP-15 word address if the
new task resides in PDP-15 memory.

Length Total size (in bytes) of the memory space occupied by
this task, including stack area, control register, busy/
idle switch, and program code. Only meaningful if the
task resides in PDP-11 memory -~ if the task resides in
PDP-15 memory this is ignored.

Priority The task's priority *408.
The connect task directive enters the new task start address
(appropriately relocated if the new task resides in PDP-15 memory)
into the TEVADD table. The directive does not actually create an
active task list node for the new task; this occurs only when the
first request is issued to the new task. The directive clears the
new task's busy/idle switch (sets the task in idle state) and empties
the new task's task request list. The new task priority is placed in
the LEVEL table., If the new task resides in PDP-11 memory, PIREX
updates its memory usage information by adding the size of the new
task to the first free local memory address.

DOS-15 V3B@@@ Update Document

RESTRICTIONS:

1.

Returned
1

-300

The task code number must not be in use (correspond to any
currently connected or permanently installed task) at the
time this directive is issued.

The task code number must have been provided for when PIREX
was assembled. As distributed by DEC, PIREX provides for
task code numbers 08 through 138 inclusive.

The high order bit of the task code number must be clear.

If the task resides in PDP-11 memory, the first address it
occupies must be the first free local memory address, as
returned by the core status report software directive.

If the task resides in PDP-15 memory, it must reside
entirely within the area addressable by the PDP-11l's 28K
addressing range.

Tasks should be connected in sequential order by task code
numbers. Temporary tasks (tasks which will subsequently be
disconnected) should always be connected to a task code
number one higher than that obtained via the core status
report software directive.

REV values:

Task successfully connected

Invalid ALV value. Task has been connected.

3.6.3 Core Status Report Directive

The core

status report software directive returns information regard-

ing PDP-11 local memory and task code number usage in PIREX. The
format of the task control block for the core status report software
directive is as follows:

:15 8:7 ﬂ:
! ATA ! ALV ' word g
: L U B N N S A : | N I B N I A :
H FCN H 201 1 word 1
: j_ _ v v v v v v ¥ P ® v U 1 1 :
' REV v word 2
: | DU B B N N _: 1t 1 v v 1 1 :
' gg : TCN ! word 3
: ¥y v ¥ v ¥ Y Y Y ON T YOV OER O :
' Local Memory Size 1 word 4
: v v v v v v ® % ¥ ¥V %O 0 3 ¥ :
4 First Free Address 1 word 5
:_L 1 s v v 9 v ¥ T ¥ U ¥V ¥ ¥ :
4 unused v word 6
: Pt v v v ¥ 9 ¥ OV 0 9 N T Tt :
4 y word 7
1 1

Number of Free Words
1

LI SR AN U N DN SN NN NN N N A

3-29 J-27

TCN

Local Mem-
ory Size

First Free
Address

Number of
Free Words

RESTRICTIONS:

DOS-15 V3Bg@@ Update Document

Set to the highest currently connected task code
number in PIREX.

The amount of local memory in the PDP-11 UNICHANNEL.

Set to the PDP-11 byte address of the first free
(unoccupied) address in local memory.

Set to the number of unused words in PDP-11 local
memory. Equal to ((Local memory size in bytes) -
(First free address))/2.

l. The core status report software directive has no restrictions.

However,

the restrictions (especially those regarding order

of use of memory and task code numbers) on the connect and
disconnect software directives must be adhered to in order to
have valid information returned by core status report.

Returned REV values:

1 Successful completion
-300 Invalid ALV value. No information returned.
-500 No free PDP-11 memory. No information returned.

3.6.4 Error Status Report Directive

The error status report software directive returns information regard-
ing device and/or spooler errors which have occurred since the last
time this directive was issued. The format of the task control block
for the error status software directive is as follows:

:15 8:7 ﬂ:
H ATA ' ALV i word g
: 1] [N N | : 1 v v o v o3 1 :
! FCN ! 281 v word 1
: ¥yt ¢t v v © v o8 ¥ ¥ % b W ¥ 3 :
4 REV v word 2
; LI B N R R : | NN N B N N A) :
' j2J'4 7 unused 7 word 3
: Py 1 v v v v v ¥ ¥ ¥ r o ¥ :
4 Returned vy word 4
I Y
E
Yy, rror .
H Information .1 word n
_r v v v v v v T v 1 ¥ ¥ P ¥o® 1
3-30

DOS-15 V3B@gP Update

Document

The error status report software directive copies error status informa-
tion from the DEVST table onto the requestor's task control block,

then clears the DEVST table to store new error information.
information returned consists of a series of three word blocks,

per PIREX task. As distributed by DEC,

The error
one
eleven such blocks will be

returned - one for each permanent task (excluding the clock task)

plus two more for spare or temporary tasks.

returned may change, however,
(especially permanent tasks) in PIREX.

The number of these blocks

if users alter the number of tasks

The format of each of these

three word information blocks is as follows:

'
y_ v v v v @ v v v v v ¥

15 8,7 g,
! Task Name v word #
: +._ 1 3 _r 95 % v v ® v % ¥ v ¥ % :
H unused--zero T word 1
: 11 5 ¥ % ¥ 8 B v Y YV U U T 1 :
H SPLERR ' DEVERR v word 2
] 1

Task Name

A three character (.SIXBT) mnemonic for the task to

which the error information applies.

Device error code for
task

DEVERR

SPLERR

device associated with this

Spooler error-code for this task.

The mnemonics for the tasks and the order in which the blocks for the

various tasks appear are as follows:

RK (Cartridge) disk driver

MNEMONIC TASKS
EST "Stop Task" task
ESD Software directive task
DKU
DTU DECTAPE driver
LPU Line Printer driver
CDU Card reader driver
GRU XY (Plotter) driver
ESP Spooler
LVU

LV11l printer/plotter driver
spare--no mnemonic

spare--no mnemonic

DOS-15 V3Bg@gP Update Document

RESTRICTIONS: none

Returned REV values:

1 Successful completion

=300 Invalid ALV value. Information has been returned.

3.6.5 Spooler Status Report Directive

The spooler status report software directive returns information
regarding spooler status and devices present in PIREX. The format
of the task control block for the spooler status report software
directive is as follows:

W15 8,7 ,
1) 1 1)
' ATA H ALV v word
: y_ 1 1t v 1 1 : 1 1t 1t :
: FCN ! 291 ' word
: §_ ¥ . ¥ v ¥ B v 3 5 0 10 1 :
H REV ! word
: r_ v v v r v % : 11 v v 1 :
' gga ! unused ' word
: 1 1 v 1 ¥ 1 1 10 1 1 :
, SPOLSW ' word
: Py 1 v v v v v 8 ¥ f 1t 1 :
' DEVARE 1 word
: v v v v ¥ v Y V. Y Tt ¥V 9 :
: DEVSPL 1 word
' v v v 1 1 1 1 1 | I B A) :
f SPUNIT ' word
L]

SPOLSW, SPUNIT, DEVARE, and DEVSPL are four locations (within PIREX)
in which information is kept concerning spooler status and which de-
vices have been assembled into PIREX. The spooler status report
software directive merely copies the contents of SPOLSW, SPUNIT,
DEVARE, and DEVSPL into the task control block. Three of these
words consist of a number of one-bit flags. If the bit is set (1)
the corresponding condition is asserted: the device driver is
present, spoolable, or busy: the activity is enabled. Tf the bit
is clear (0) the opposite condition applies: the device driver is
absent, non-spoolable, or idle, the activity is disabled. The ex-
act format of these three words is as follows:

15 8,7 . ﬂ:
)]
SPOLSW: 1 v unused : H
AL 55 55 1 A A A A A A N & 5 T
‘! LP busy
CD busy
XY busy

despooling enabled

spooling enabled

both spooling and despooling enabled
spooler connected to PIREX

DOS~-15 V3B@@F Update Document
|15 8|7 gl
1 1

A
DEVARE: ! H unused '
SR :

1.1 v v t v 1 1

XY driver present
CD driver present
LP driver present
RK driver present

15 8,7 7,

1 1] 1
DEVSPL: ! ' '
s ARSI unused %

IXY spoolable
CD spoolable
LP spoolable
unused

SPUNIT is the RK unit onto which the spooler is currently (or was pre-
viously) spooling data.
RESTRICTIONS:

1. DEVSPL and SPOLSW contain zero until after the first request
has been issued to the spooler.

Returned REV value:
1 Successful completion

-300 Invalid ALV value. Information has been returned.

3.6.6 PIREX MOVE Directive

The PIREX MOVE directive moves information from one place in the PDP-11's
address space to another place in its address space. (The address space
is composed of both Local-1ll and Common Memory.) The format of the task
control block for the PIREX MOVE directive is as follows:

15 8 7 g
1 1]
' ATA ' ALV ! werd @
:]] 1 1 1 1 [} : L]] 1 1]] 1 :
' FLN ' 2091 ' word 1
:] 1] 1 1) !]] L 1 1 L L 1] L) :
' REV : word 2
: 1 1] 1] 1 1 : 1 1 1 1 1 1 1 :
' 285 ' ! word 3
: 1 1] 1 I 1 1]] 1 1 1) 1]] l’
! FROM LOCATION ' word 4
: 1 1 1 [}] 1] 1] 1 1] 1]] T :
! TO LOCATION ' word 5
:] 1]]] ! 1]] 1 L} 1 1] 1] 1] :
! WORDS TO MOVE ! word 6
L} 1 1 1 1 1] 1 1] 1 1 [} 1] 1 1 L.)

From Location PDP-11 byte address of beginning of information to be

moved.
To Location PDP-11 byte address of a new starting location for
information.
Words To Move The number of words to move.

NOTE 1. This directive commonly is used to transfer information
between common and local memory

3-33 J-31

CHAPTER 4

TASK DEVELOPMENT

4.1 INTRODUCTION

This chapter discusses in detail the procedure for developing a task
and for installing it into the PIREX software system. The development
of tasks in the UCl5 system normally begins by the determination of
the function to be performed by the task. Once the basic function of
the task has been determined and designed, the user can integrate it
into the UCl5 system. The following summary describes the steps nec-
essary to accomplish this:

1. Determine the priority level at which the task will execute.
2 Design one or more appropriate TCB formats
3. Assign a Task Ccde Number tc the task

4. Enter appropriate information into the various PIREX lists
and tables.

5. Design and code the requesting program. This is the program
which issues requests to the task.

6. Design and code the task.
7. .Assemble all programs and test.

The remaining sections describe these steps in detail.

4.2 PRIORITY LEVEL DETERMINATION

The selection of a priority level for a newly developed task must be
based upon its function. If the task is a device driver, a device
priority should be selected. If the task is a data manipulation rou-
tine, a background priority should be chosen.

4,2,1 Device Priorities
The device priorities are 7 (highest) through 4 (lowest)

) Priority 7 must be reserved for certain PIREX routines and
should not be used as a task priority. (Certain short
instructions sequences require priority level 7 protection
but a general use of priority 7 must be avoided.)

@ Priority 6 should be used only if interaction with the CRI11l
Card Reader can be avoided. If the CR1l is in use, excessive
IOPSUC CDU 74 errors (card column lost) will occur if this
level is used by another task executing in parallel.

® Priorities 4 and 5 can be used in an unrestricted manner.

There are three types of priorities to consider when selecting the
priority of a device driver.

1. The actual device hardware priority N

2. The priority stored in the trap vector for the device (its
new PS) must be priority 7 to allow an uninterrupted context
switch. '

3. The priority at which the task will execute after the context
switch (R.SAVE). This should be N (the above constraints
must be considered before deciding that it will be N). This
priority is set in the LEVEL table (see Section 3.3.6).

4.2.2 Background Task Priorities

The standard UCl5 PDP-11/05 computer does not differentiate between
the software priorities 0 through 3. All software priorities are
interruptable by any device operating at any device priority. These
software priorities, while treated by the hardware as the same, are
not treated by PIREX as identical. The background task's position in
the Active Task List (the list to schedule the next task to run) is
based upon its priority (as indicated in the LEVEL Table). Thus a
priority 2 task is always selected for execution before a priority 1
task.

It should always be remembered that the ATL is built dynamically and
is composed of only active tasks. Thus a task's actual ability to
execute depends both on its priority and on what other tasks of equal

or greater priority are actually available to execute (active). Tasks
of the same priority are run on a first come-first serve basis.

4.3 TCB FORMAT AND LOCATION

The design of new Task Control Blocks (TCBs) must be governed by sev-
eral constraints:

1. Certain "fixed" items of information must be present.

2. There may be a size constraint depending upon source of the
TCB.

3. TCBs issued by the PDP-15 have a location constraint.

The firsﬁuthree TCB words have a fixed format (see Section 3.2.5).
The remainder of the TCB should be as follows:

1. Control words should be allocated to fixed pre-defined loca-
tions.

2. Data words should be blocked into the location following the
control words.

3. The TCB size should be kept constant for ease of core allo-
cation.

Location and size constraints are interrelated:

1. If the TCB is for a task executing under PIREX in PDP-11
Local Memory, there is no location constraint. The TCB size
must be kept small enough so that the TCB does not overflow
into common memory.

2. If the TCB is for a PDP-11 task executing in Common Memory,
it must be positioned so that it is:

a. present entirely in Common memory (not PDP-15 Local
Memory, and

b. not overlaying any of the PDP-15 monitor resident code.

These constraints actually apply to any PDP-11 Code or data
located beyond PDP-11 Local Memory.

3. If the TCB is for an RSX-PLUS III routine, it must be located
in a task partition or common area that is within the Common
Memory.

4. Since the specification of absolute core location is difficult
in DOS-15, the TCB placement problem is somewhat more complex.
The standard DOS-15 system has seven TCBs assembled into the
resident monitor. These include TCBs for RK Disk, XY1ll Plot-
ter, CR11l Card Reader and LP11/LV11/LS1l Printer. In addi-
tion there are three spare TCBs of various sizes. The user
developing his own UNICHANNEL handler should take advantage
of these spare TCBs. .SCOM + 100 (location 200g in PDP-15
memory) points to a table of pointers to each of these TCBs.
The user should select the one closest to his size requirement.
(See the DOS Systems Manual, DEC=-15~ODFFA-B-D).

4.4 TASK CODE NUMBER DETERMINATION

Task code numbers are composed of two fields. Bits 6 through 0 are
used to contain the actual task code number. This is the number used
when searching tables and lists ordered by TCN. In the DEC-supplied
system, these numbers range from 0 through 13g. Bit 7 is used in TCBs
to determine if the task is spooled. If bit 7 = 1, the task is not
spooled. If bit 7 = 0, the TCBs for the task are routed to the spooler
if the spooler is enabled. (There must then be a spooler module pre-
pared to handle TCBs for that particular task (see Chapter 5)).

Task codes 11, 12, and 13 are spare task codes in the DEC-supplied
system. They are used in increasing order. The highest task code

position must not be used for a permanent task because MACll requires
this slot for its use as a temporary task (a task that is connected
and disconnected at run time.)

4.5 UPDATING LISTS AND TABLES

The installation of a new task requires placing entries into the vari-
ous tables and lists. There are two cases:

1. the installation of a new task into a current spare task
entry

2. the installation of a new task into a new entry (by expanding
the tables) .

For each of these two cases there are two types of task entries:
1. permanent tasks
2. temporary tasks

A permanent task is one that is assembled into the PIREX binary. Its
actual starting address and priority level are known.

A temporary task is one that is dynamically connected to and discon-
nected from PIREX. Its starting address is dependent upon its place-
ment in memory. (Temporary tasks must be written in Position Inde-
pendent Code — see MACll Assembler Programmers Reference Manual DEC-
15-1LMCMA-A-D) .

Chapter 3 describes the format of each table entry. -

4.5.1 Temporary Task Installation — Existing Spare Entry

To install a Temporary Task into an Existing unused Task Entry, TCN
l1g, 1l2g, or 13g, simply use the CONNECT and DISCONNECT directives.
No new table space and no new table entries are required.

4.5.2 Permanent Task Installation — Existing Spare Entry

To install a Permanent Task into an Existing unused Task Entry, TCN 11
or 12 perform the following:

1. Update the LEVEL table entry for that TCN with the task's
priority (see Section 3.3.6).

2. Update the TEVADD Table entry for that TCN with the task's
starting address (see Section 3.3.7).

4.5.3 Temporary Task — New Entry

To install a Temporary Task into a new Temporary Task Entry (i.e., to
expand the table to accommodate a new Temporary Task) perform the
following:

1. Add an entry to the ATLNP Table (see Section 3.3.1.2).
2. Add an entry to the LISTHD Table (see Section 3.3.3).

3. Add an entry to the LEVEL Table (use".BYTE 0" as the priority
value since this is a Temporary Task Entry and the actual
task priority will be filled in by the connect directive).

4. Add an entry to the DEVST Table (see Section 3.3.5).1

5. Add an entry to the CLTABL (see Section 3.3.4).

6. Add an entry to the TEVADD Table (use ".WORD 0" as the entry,
since this is a Temporary Task entry that will be filled in
by the CONNECT directive).

7. Add an entry in the SEND1ll Table (see Section 3.3.8).

4.5.4 Permanent Task Installation — New Entry

For a new Permanent Task, repeat the procedure in paragraph 4.5.3, for
a new Temporary Task, with the following changes:

1. Step 3 is changed to: Place the task's priority in the new
LEVEL Table entry (See Section 3.3.6).

2. Step 6 is changed to: Place the task's starting address in
the new TEVADD entry (see Section 3.3.7).

4.6 CONSTRUCTING DEVICE HANDLERS

This section describes how to construct device handlers for DOS-15 and
RSX-PLUS III. Additional information on construction of a PDP-11
requesting task is provided.

4.6.1 Constructing a DOS UNICHANNEL Device Handler

The following description of how to construct a handler for the D0OS-15
monitor does not discuss those topics related to all DOS-15 handlers
both traditional and UNICHANNEL. General issues pertaining to all
DOS-15 device handlers can be found in the DOS Systems Manual (DEC-15-
ODFFA-B-D). The DOS-15 V3A000 UNICHANNEL Line Printer handler is usea
as a descriptive example (see Figure 4-1). Several constants should
be defined in a UNICHANNEL handler source file before the executable
code (see Figure 4-1, lines 49-54, 72-75). These constants include:

(1) PIREX transfers, upon request, the entire DEVST Table to the
PDP-15 monitor. The DOS resident monitor can accommodate a maximum of
5 additional DEVST entries beyond the current 13g. Expansion beyond
20g entries would require reassembly of the D0S-15 resident monitor.

4-5

LPU,

20200
[-LIT 3%
eape2

20083

20004
eeees
Q0006
eopay
edole
evply
00012
66613
20014
22013
[-L.L3Y]
oRa1y
00020
20021
00022
29023
00024
002028

00026
aea27
n0030
[.I-T-:}
n0p32
2900833
a0ed4
noLB3s

28036
agad7

DVDVDDOVDXTODHDODODDIDOD

n DD VDDV DO

220

ok0en2
0ApasE

706141
728001
708706

706144

enntep
229n23
440200
440000
200137
@namaq

22m072

0000804

R4p527
24n532
440532

600536

2205830
440530
See622
340623
[ZL1FE)
740040
sani1ng
74iem
62an24
440532
600125
600454
6en125
Soan24
6en127
600474
760008
6800790

620038
P4pS555
22p026
2405568
200624
B4an26
209825
80ana2

24a555
220626

»

»

>

D00

D> VDOV DVD»VrDDVDD

VJPODVDOD

LtPutt EDIT @20 NOV, 29, 73

7COPYRTGHT 1972, 73 DIGITAL EQUIPMENT CORP,, “AYNARD, MASS,
/3.M, WOLFBERG (S, ROOT)

/LBU.-=1APS LINE PRINTER MANDLEK FOR LP11 LINE PRINTER
JCALLING SEQUENCE:

/ cAL + ,DAT SLOT (9=17)
/ FUNCTION
/ N ARGS, WHERE N IS a FUNCTION OF "FUNCTION"

NORMAL RETURN
/BIT% 12413 OF ,5C0M+4 INDICATE PRINTER,

’ ABs UNDEFINED,
’ a1® 89 COLUMNS,
/ 188 129 COLUMNS,

119 {32 COLUMNS,
IASSEMHLV PARAMETERS:

/ NOFFal INHIBITS AUTOMATIC END OF PAGE FORM FEED

/ FFENT CAN BE DEFINED AS NUMBER OF LINES PER PAGE IF NOFF UNDEF,
/ REFINE FFCNT IN |JOCTAL}}

/ IF FFCNT AND NOFF BOTH UNDEF,, 58 LINES PER PAGE IS DEFAULT,

/ NOSP{_ PRODUCES A VERSION THAT CaNT BE SPOOLED EVEN IF

/ LP SPOOLING IS ENABLED,.

4

APILVvL =2 /UC15 P APT PRIORITY

APISLTa5¢ /UC15 LP APT TRAP VECTOR

/

LSSFeaPI| VL*20+706101 sUC15 (P SKIP

S10Aw7726p01 /SKIP ON DATA ACCEPTED 8Y THE POP11
LIORs706006 /CLEAR "DONE" FLAG AND LDAD REG FOR

/ THE PDP11,
/CLEAR FLAG

CAPI=API VL #20+706104
/

.SCOMs10p
MEDRY

10xe187

SETu1s?

EXERRSs ,8COM+37
00Ssy

/

JUSED TO SET SWITCHES TO NON=ZERQ.

.IFUND FFCNT
FURHS-72
L ENDC
.IFDEF FFCNT
FURHS-FFcNT
END
IFUNO NOSPL
uEVCﬂD-l
“ENDC
.IFOEF NOSPL
DEVCUD-?aA
;ENDC
.GLOBL LPA,

:TITLE CAL ENTRANCE

/CODE FOR LP DRIVER IN PIREX

/SAME DRIVER, DISABLE SPOOLING

LPa, DAC LPCALP /SAVE CAL POINTER,
BAC LPARGP /AND ARGUMENT POINTER,.
10X LPARGP /POINTS TO WORD 2 = FUNCTION CODE.
/
/ FIRST TIME THRU GO CaL INIT, CODE IN LBF
/
NEW INP INIT /FIRST TIME THRU DO SETUP CAL
/ /AND SET=UP TCB AND BUFFER, OVERWRITE
/ 7JUMP WITH NO=OP
/
LACe LPARGP
10X LPARGP /PQINTS TO WORD 3 ~ BUFFER ADDRESS,
AND (17777 /STRIP OFF UNIT NUMBER,
TAD (JMP [TABLe} /DISPATCH TO PROCESS FUNCTION,
pAC ol
XX
LTaABL NP LPIN /1 = JINIT
SKkP /2 - .FSTAT-.“ENAM..DLETE = IGNORE
JIMP LPERQS /3 « ,SEEK « ERROR
10X LPARGP /4 = ENTER = IGNORE
INP LPNEXT /S = JCLEAR = IGNORE
JMP LPCLOS /6 = JCLOSE
IMP LPNEXT 77 = JMTAPE « IGNQRE.
JMP LPERDS /1@ = ,READ = ERROR,
IMP LPWRIT /11 = (WRITE
P LPWAIT 712 = WAIT OR ,WAITR
LPERRS LAN /ILLEGAL HANDLER FUNCTION,

]
JMP SETERR
LTITLE INTERRUPT SERVICE

/
/LPU, INTERRUPT SERVICE
LPINT gwp LPPIC /PIC ENTRY, JUMP TO COOE
nAC LPAC /SAVE INTERRUPTED AC
LAC LPINT /GET INTERRUPTED PC
DAC LPOUT /SAVE FOR COMMON EXIT
LAC (JMP LPPIC /RESTORE PIC ENTRY
nAC LPINT
LAC (NOP 7WE DON'T NEED ION IN COMMUN EXIT
JMP LPICM /JOIN COMMON CODE
’
LPPIc nag LPAC /PIC CODE, SAV &C
LACe L] /GET INTERRUPTED PC

Figure 4-1
PDP-15 LP1ll DOS Handler

4-6

121 #0043 R 2405556 R nag LPOUT /SAVE

122 00241 R 2006827 R LAC CI0N /NEED INTERRUPT ON INST. IN COMMON CODE
123 20042 R p4ons52 R LPlem nal LPISW

124 20043 R 706144 A cAPI /CLEAR FLAG, NOW IN COMMON CODE

125 20044 R 220542 R LACw LPEV JEVENT VARIABLE FROM PIREX

126 00045 R 742010 A RTL /POP=11 (MINUS) BIT TO OUR AC@

127 00046 R 743120 A SPALIRTR /+ 15 0K

128 20047 R 600055 R IMP LPIERR /ERROR, GO LOOK

129 20050 R 149533 R LPIRTY n2M LPUND /CLEAR UNDERWAY FLAG

130 20051 R 234555 R LPIRTY LaC LPAC /RESTORE AC

131 88052 R 740740 A LPISW wLT /10N OR NOP

132 20853 R 703344 A DBR

133 20054 R 629556 R JMPe LPOUT

134 ’

135 /

136 20055 R 509630 R LPIERR aND (177777 /KEEP REAL 16 BITS FROM PDP=11

137 22056 R 54p63) R SAD (177221 sCODE FROM QUT OF NODES IN PIREX

138 00057 R 600062 R IMP RETRY /JUST TRY AGAIN, LEAVING LPUND SET
138 20060 R 3406832 R TAD (6000022 /MAKE = NUMBER FOR 10PS

140 @ee6i{ R 600270 R IMP SETERR /TREAT AS REGULAR IOPS ERROR

141 / /NOTE THAT THIS SHOULDN'T HAPPER,

142 /

143 /

144 90062 R 209537 R RETRY LAC LPTCB /TCB ADDRESS

145 20063 R 180542 R . NZMe LPEV /CLEAR EVENT VARIABLE

146 00064 R 706001 A sIgA

2065 R 6200684 R M =1 /

::; :a:as R 7u3:06 A fzon /THIS SENDS THE TCB ADDR, TO THE PDP~i1}
149 20287 R 680251 R IMP LPIRTL /EXIT FROM INTERRUPT

150 . /

154 /

152 LTITLE ERROR ROUTINE

153 /

154 22070 R 04mn77 R SETERR nAC ERRNUM

155 20071 R 740070 4 ERLOOP NOP . /'JMP LPTRY' IF IOPS 4 ERROR.
156 20072 R 208R77 R LAC ERRNUM .

187 - 29073 R 12m833 R EROUT M8+ (EXERRS

158 22074 R 620271 R JMP ERLOOP

159 80075 R 777777 A LAW =1

162 00076 R 142025 A LSIXBT 1LPU!)
164 22077 R Q2AP0Q A ERRNUM /HOLDS ERROR NUMBER FOR REPEAT,
162 JTITLE L IMIT FUNCTION

163 ’

164 JeINTT

165 /’

166 20108 R 44p532 R LPIN 10X LPARGP

167 #9101 R 200544 R LAC BUFSIZ /36(18) FOR 82 COLS; 56(14) FOR 132 COLS.
168 20182 R @6p532 R NAC* LPARGP /RETURN TO USER,

169 AA103 R 440532 R 10X LPARGP /NOW POINTS TO RETURN,

170 #2104 R 22m531 R LAC PAGSIZ /LF COUNTER

174 V3105 R P4p532 R NAC PAGECNT

172 22126 R 220527 R LACe LPCALP /DOES INTT INWIBIT AUTQ FORMS FEED
173 20107 R 598634 R AND (4090 /THIS IS INHWIBIT AIT

174 84119 R 34p535 R TAD FFFF /FFFF ASSEMALED AS NOP FOR NOFF, 1SZ IF NOT
175 #0111 R 54n535 R SAD FFFF /SKIP IF INIT IMHWIBITS FF

176 23112 R 741000 A SKP /INIT DOESN'T INMIBIT, USE ASSEYBLEN VALUE
177 22113 R 200625 R LAC (NOP JINIT INWIBITS IT, USE NOP

178 82114 R p4p534 R nAC FFSW /THIS SWITCH XCT'ED BY FORMS CONTROL
179 ’) /SECTION IN PUTCH SUBROUTINE

180 03115 R 190443 R IMS RESETL /RESET TAB AND LINE WIDTH CUGUNTERS
181 2116 R 13m512 R JIMS LPINCK /CHECK LP BUSY

182 98117 R 14n551 R nZM cop /SAY A FF DCCURRED

183 A0128 R 750032 4 cLALIAC /COUNT OF ONE BYTE FOR HEADER

184 70121 R 26p540 R nACe LPBUF /HEADER

185 03122 R 723013 4 AAC 13 /FORM FEED

186 er123 R p6ps4y R nNACw LPBUFD /FOR AUFFER

187 .IFUND NOFF /00 ONLY IF NOFF NOT DEFINED

188 20124 R 120517 R NS LPSET /THIS SENDS REG, TO POPe1j

189 LENDC

190 /

191 /NORMAL AL EXIT

192 /

193 80125 R 783344 A LPNEXT pBR

194 00126 R 62mr532 R IMP# LPARGP
195 WTITLE .WRITE FUNCTION

196 / .

197 JeNRITE

198 /
199 29127 R 189512 R LPWRIT JMS _PrOCK /PRINTER 3USY?
200 20130 R 22p8527 R LAC# LPCALP /GET THE OATA MODE FROM THE USER CAL,
201 28131 R 500635 R AND (1088 /MAKE SKP=NOP IN MIX
202 20132 R 240636 R XOR (SKP
203 29133 R N4p554 R DAC MIX
204 03134 R 220530 R LACH LPARGP JUSER BUFFER ADDRESS,
205 PO135 R 44@532 R I1CX LPARGP /NOW POINTS TQ WORD COUNT
206 80136 R 240552 R nAC TCHAR /SAVE POINTER TO BUFFER HEADER
207 BO137 R 7230082 A iAC 2 /MAKE X12 POINT TO DATA NDT WEADER
208 20149 R 240587 R nAC x12 /GETTER POINTER
209 /
210 / SEY-UP LIMIT OF INPUT BUFFER SIZE TO PREVENT DATA OVERRUN
gll / FOR BNTH I0PS ASCII AND IMAGE ASCII

12 /
213 Q0141 R 777000 A LA 17880 /GET PAIR COUNY FROM LEFT HALF
214 20142 R 52p5%0 R AND# TCHAR
215 90143 R 742a30 4 SWHA /8RING TO RIGHT, PAIR COUNT INCLUDES HEADER
216 ’ /PAIR COUNT, WE ISZ BEFORE LOOP SO THAT!S

Figure 4-1
PDP-15 LP11l DOS Handler (cont.)

4-7

217 / /0K, I0PS NOW SET XCPT CMAllAC

218 90144 R 409384 R XCT MIX /SKIP IF ASCII, NOT IF IMAGE
219 20145 R 751001 A SKPICLALICMA /IMAGE =3 IN AC, SKIP, ={ BECAUSE WF ISZ FIRST
220 00146 R 741031 A SKPICMALIAC /10PS COMPLEMENTED TO CORRECT VALUE
221 02147 R 38533 R TADe LPARGP /IMAGE ADD IN TOTAL wWORD COUNT, INCL
222 / . /TWD WORDS FOR HEADER, WE 187 BEFORE LOOP,.
223 22150 R 240543 ® naC TEMPY /INTO CONTROLLER, BOTHM MODES
224 20151 R 44832 R 182 LPARGP /MOVE ARG POINTER TO EXIT
228 0m152 R 200541 R LAC LPBUFD /POINTER TO DATA PORTION 0F RUFFER
228 70153 R 04p560 R JAC PUTP /LOAD TO CHARACTER PUTTER POINTER
227 90154 R 224333 R LAC GETIN /INIT, CHAR GETTER
228 29155 R 249332 R nAC GETSW
229 08156 R 200431 R LAC PUTIN /INIT CHAR PUTTER
23¢ 20157 R 040427 R DAC PUTSH
23 20162 R 750009 A cLA /INIT QUTPUT BUFFER HEADER
232 22161 R 400554 R XCT MIX /70 @ IF IOPS, 4@?3 FOR IMAGE
233 90162 R 290637 R LAC (400
234 pA163 R 06n540 R NACw LPBUF
2358 22164 R 750001 A CLACHA /COUNT OF | BLANK AS DEFUALT
236 / /FOR ZERD LENGTH IOPS LINE
237 22165 R 06541 R NACw LPBUFD /IN FIRST DATA CHAR
238 /
239 / MATN | DOP TO TRANSFER CHAR'S TO HANDLER AUFFER
240 /
241 28166 R 100320 R MAIN RLES GETCH JCHARACTER GETTER, LEAVES 1T IN aC
242 20167 R 741200 A SNA /SKIP UNLESS NULL CHAR
243 20173 R 60p166 R RL1d MAIN /NULL, 1GNORE
244 20171 R 54n6408 R SAD (177 /1GNORE RUB=DUT
2458 p@172 R 600166 R IMP MAIN /MAIN
246 @0173 R N40559 R naC TCHAR /SAVE CHAR THROUGH TESTING
247 20174 R 723740 A AAC 42 /SEPARATE 'TEXT' CHAR'S FRUM CONTWOL CHAR'S
248 90175 R 741300 A SNAISPA /SKIP ON REGULAR CHARS
249 20176 R 624235 R JIMP MSPEC /60 DO SPECIALS
25e 0177 R S4psag R SAD (135 /ALT MODF
251 00202 R 63A3A2 R TIMP UCLP@3 /END OF LINE ON aLT MOOE
252 /
253 J THE LOGIC AT PUTCH TO DO FORMS CNNTROL DOESN'T Du IMPLIEN
254 7 LINF FEEDS, I.E, THOSE LINES HAVING NO LEADING CONTROL CHAR,
g:S /7 wE MUST FAKE IT OUT BY PLACING A LINE FEED ON SUCH LINES]

[} . /
257 20201 R 24a547 R LAC FIRST /D0 ONLY IF FIRST CHAR OF LINE IS REGULAR
258 90202 R 740102 A SMA /5K1P IF FIRST CHAR
259 24203 R 600228 R JIMP o3 JNOT FIRST CHAR, JUST CONTINUE
260 90204 R 2006842 R LAC (12 /HERE IS LINE FEED
261 02205 R 190368 R M8 PUTCH /AND CALL TO DO FDRMS CONTROL
262 7
263 90206 R 750030 A rLALTAC /SET FLAG SAYING A REAL CHAR SINCE & FF
264 20287 R 240551 R nac copP
265 /
2066 03212 R 200552 R LAC BLANKC /00 WE HAVE PENDING BLANKS/TABS T0 SEND
287 7 .
288 / NOTF RLANKC HAS MINUS COUNT OF CONSECTIVE BLANKS/TABS
:gg / SINCE PDPail CONTROLLER PRINTS ONLY BLANKS

Y]

27 P0211 R 744100 A SMACLL /8KIP IF ANY COLLECTED, To PUT UUT REFORE
272 ’ /REAL CHAR'S
273 #0212 R 604p223 R JIMP MAINC /NONE, PENOING, GO PUT OQUT THE CHAR
274 20213 R 344643 R TAD (zee 7TOUGH, TF MORE THAN 127 COLLECTED, MUST
278 / /PUT OUT TWQ COUNTS
27¢ @0214 R 750100 A SMAICLA /SKIP IF NEED TWO COUNTS
277 70215 R 6ap22% R JMP MAIND /NO, JUST PUY ouT COLLECTED CUUNT
278 20216 R 34p643 R TAD (200 /TWO COUNTS, HERE IS FIRST
279 20217 R 100366 R IMS PUTCH
280 - 00222 R 200643 R LaC (200 /SET UP YO D0 SECOND
281 0221 R 34p3%52 R MAINR TAD BLANKE /COMMON CODE, LAST COUNT FOR EITHER CASE
282 80222 R 120386 R JMS PUTCH
283 20223 R 14p352 R MAINC nZM BLANKC /#CLEAR OUT BLANK COUNTER
284 oM224 R 230532 R LAC TCHAR /GET BACK ORIGINAL CHAR
288 20225 R 100366 R IMS PUTCH /T0 OUTPUT BUFFER
288 20226 R 44a553 R MAINK 182 TABC /INCREMENT TAB COUNTER
257 88227 R 83g232 R KL MAINE /NOT OVERFLOW, €O CHECK L INE COUNTER
288 @ae230 R 777770 A LAW =12 /RESET TAB COUNTER
289 00231 R 049553 R nAC TABC
290 00232 R 44p546 R MAINE 1£.14 MAXC /HAVE WE RUN OUT OF LINE
294 89233 R 60p166 R ’ P MAIN /NO
292 20234 R 809302 R IMP UCLPB3 /YES, GO FINISH UP, WITH END OF LINE
293 /
2904 / SPECIAL CHARACTERS
208 /
296 20235 R 73p201 A MSPEC SZAJCLAICMA /SKIP IF IT IS A BLANK
297 00236 R 600242 R IMP MSPEC2 /NOPE, CHECK FOR OTHER THINGS
298 23237 R 340552 R TAD BLANKC /ADD ONE TO BLANK CAUNTER (IS MINUS COUNTER)
209 20249 R QA49852 R nac BLANKC
308 P3241 R 60p228 R JIMP MAINK /JOIN LINE AND TAB CONTROL SECTION
3gt 20242 R 2045502 R MEPEC2 [AC TCHAR /GET BACK ORIGINAL CHAR
302 00243 R 540644 R SAD (11 718 IT A TAB
33 28244 R 600266 R JIMP MTAB /YUP, GO DD IT
J04 @243 R 840645 R SAD (15 /CARRIAGE RETURN
308 30246 R 600382 R JMP UCLPBI /END OF LINE ON CARRIAGE RETURN
3e6 02247 R 540848 R SAD (20 /FORTRAN OTS OVERPRINT, 00 AS CR
307 29259 R 600283 R JMP MCR
Jo8 22251 R S4p647 R SAD (14 /FORM FEED
309 202852 R 690256 R NP MSPEC3 /JUST PUT IT OUT, FOR NOw
k21] 20253 R S5406%2 R sAD (21 /FORTRAN DOUBLE SPACE
311 00254 R 602823 R IMP MSPEC4 /00 AS TWO 12'S

Figure 4-1
PDP-15 LP11l DOS Handler (cont.)

4-8

»

312 90255 R 209642 R uSPEES | AC (12 /O0EFAULT ON UNRECOGNIZED CONTROL CHAR, IS LINE FEED
313 20256 R 10p356 R MSPECY gMS PUTCH /PLACE IN BUFFER

314 #0257 R 600166 R JIMP MAIN /G0 DO NEXT

318 202602 R 20p642 R MSPEC4 | AC 12 /FIRST OF TWO 12'S FOR THE 21

316 92261 R 10@366 R M8 PUTCH

317 02262 R 6020255 R IMP MSPECS /GO DO THE SECOND 112

318 #2263 R 100443 R MCR MS RESETL /NEw LINE, RESET VARIOUS GUYS

319 20264 R 200645 R 1.AC €15 /CARRIAGE RETURN

320 002265 R 600256 R IMP MSPEC3 /PUT CHAR AND LOOP

32t 90266 R 200553 R MTaB LAC TABC _/GET REMAINING COUNT FOR TAB

322 #0267 R 340552 R TAD BLANKC /AND ADD TO CUMULATIVE BLANK COUNT
323 29272 R 240552 R nAC BLANKC

324 23271 R 209553 R LAC TABC /AND TO LINE CHECKER

325 P@272 R 740031 A eMALTAC .

328 7@273 R 34a%46 R TAD MAXE

327 80274 R D4p546 R naC MAXC R

328 #0275 R 7401070 A SMA /SKIP IF SOME |INE LEFT

329 20276 R 602302 R AMP UCLP@3 /NONE LEFT, FINISH UP LINE

330 80277 R 777770 4 LAW 12

333 20302 R n4p553 R nAC TABC /RESET TAB COUNTER

332 29321 R 60M166 R 1IMP MAIN /NEXT CHAR

333 ’

334 20302 R 200645 R uCLPe3 L AC €15 /CARRIAGE RETURN

335 2383 R 4pa554 R xCT MIX /PLACE IN BUFFER ONLY ON IMAGE!!}
338 20304 R 100386 R JIMS PUTCH

337 00305 R 1Pnadl R M8 RESETL

338 P2386 R 44351 R uCLPea 182 coP /A BLANK LINE IS STILL A REAL CHAR SINCE FF
339 . 80307 R 22n540 R LAC¥ LPBUF /ZERO CHAR COUNT??

340 90310 R 500651 R AND 377 /COUNT ONLY IN LOW 8 BITS

341 00311 R 7402AQ A SZA /8K1P IF ZERO COUNT

342 20312 R 60p316 R JMP UCLP@5 /NON=ZERO, JUST GO D0 REGULAR

343 08313 R 400554 R XCT MIX /IMAGE OR IOPS

344 22314 R 692125 R JMP LPNEXT /IMAGE DO NOTHING

345 20315 R 46p54p R 187+ LPBUF /IOPS MAKE FAKE 1 COUNT

346 / /WE ARE DOING A BLANK LINE, AND @
347 / /COUNT MAKES SPOOLER VERY ILL

348 90316 R 100517 R uCLPaS M$S LPSET /SEND BUFFER TO POP=-11

349 20317 R 60p125 R IMP LPNEXT /CAL EXIT

350 /

351 / CLHARACTER UNPACKING ROUTINE

352 /

353 /

354 / THIS ROUTINE 'OWNS' THE M@

355 /

3ss Vi

357 / CHARAEGTERS ARE OBTAINED FROM X12 POINTER, EACH CHAR

358 / I8 RETURNED RIGHT JUSTIFIED IN THE AC

359 / TEMP1 HAS A MINUS COUNT OF THE WORDS TO BE OBTAINED

360 / FROM THE INPUT POINTER X12

361 /

362 20320 R p2nany A GETCH 2

363 22321 R 4Ap5%4 R xcT MIX /SKIP IF IT IS ASCIT

364 00322 R 74107Q A SKP

365 20323 R 629332 R RLIEY GETSW /GETSW IS POINTER TO CORRECT ACTIUN ON ONTHE
366 / /CORRECT ONE OF THE FIVE POSSIBLE CHAR!'S
367 /

368 / NOW DO IMAGE MOOE

369 /

370 22324 R 44ap543 R 182 TEMPY

371 00325 R 741002 A SKP /SKP ON NOT THRU YET

372 22326 R 6Mp306 R 1MP UCLPB4 /DONE

373 ®2327 R 220557 R LACw X12

374 20332 R 4405%7 R 182 X12

s 0331 R 606333 R IMP GETCM /FINISH UP IN COMMON

376 4

377 22332°R 2PnAG2 A GETSW g /POINTER TO CORRECT ACTION, INIT'ED FROM GETIN
378 / /FILLED BY JMS GETSW AFTER EACH CHAR
379 202333 R 501640 R GETCM AND (177 /COMMON FINISH UP, STRIP XTRA BITS
380 28334 R 629320 R IMPe GETCH /0UT

381 /

382 22335 R 20m337 R GETIN GETY /JINIT GETSW TO POINT TO FIRST CHAR ACTION
383 / ’

384 / INDTVIDUAL CHARACTER ACTION

385 / .

386 22336 R 1A@332 R GETQ IMS GETSW /AFTER 5TH CHAR, POINT BACK TO FIRST
387 /

388 28337 R 440543 R GETY 182 TEMPY /0UT OF PAIRS?

389 22340 R 620343 R IMP . *3 /CONTINUE IF OK

390 20341 R 10m443 R IMS RESETL /END OF LINE RESET SONE STUFF

391 8U342 R 604306 R JMP UCLP24

392 20343 R 220857 R LAC# xi2 /FIRST WORD OF PAIR

393 B0344 R 440557 R 182 x12

394 PA345 R 652000 A LM /INTO MG FOR SHIFTING

395 20348 R 54p8a7 A LLS b

396 0347 R 129332 R M8 GETSW /DONE, LEAVE POINTER FOR SECOND CHAR
397 0350 R 64607 A GET2 LLS 7 /SECOND CHAR .

o8 20351 R 19m332 R RLE] GETSNW /LEAVING POINTER FOR THIRD

399 90352 R 640604 A GET3 LLS 4 /THE WALF=AND=HALF CHAR

400 29353 R 040332 R DAC GETSW /VERY TEMPORARY

401 20354 R 220857 R LACe X12 /CANTT END IN MIDDLE OF PAIR

492 20355 R 440557 R 182 X12

403 22356 R 652000 A LME /SECOND WORD TO SHIFTER

424 22357 R 200332 R LAC GETSW /BRING BACK FIRST

423 20360 R 64p603 A LLS 3 /COMPLETE CHAR

426 P0363 R 100332 R M8 GETSW /LEAVING POINTER TO FOURTH ACTION
427 20362 R 640607 A GET4 LLS 7

Figure 4-1
PDP-15 LPll DOS Handler (cont.)

4-9

484
455
456
457
458
459
460
48t
482
463
464
485
466
467
488
469
470
471
472
473
a7
475
470
477

7e
479
480
481
482
483
484
485
488
487
488
489
492
491
492
493
494
495
498
497
498
499
see
501
502

90383 R 100332
20364 R S4n8027
B03Y63 R 602338

PR366
20367
pad’e
20371
po372
00373
00374
20375
80378
20377

p042e
20401
a2402
20423
20404
20425
po4Rs
28487
20419
e0aly
p0412
00413
ea4ld4
aB415
00416
00417
e0420
00421
20422
20423
08424
20425
#0428
20427
p0430

20431

08432
22433
20434

82435
20436
00437
00449
20441
00442

E-EERM)
00444
20445
20446
o2447
00430
20451
00452
20453

20454
20455
08456
00437
23460
208461
20462
00463

00464

E VDD DDD DD DODIDDDIJODLODNIDD DOV DD DDODID

DDODTD X o o0 X

ace200
Soessy
S40642
6004020
340647
609415
449547
740000
460540
620427

200551
740200
600412
220541
5406847
620366
2006453
400554
620366
680374
200642
400534
680422
200831
040332
149581
200647
602376
400354
60n374
440847
600378
620366

" a2pnea

620366
200433

100427
[LELLT)
100427

746030
740029
28ps80e
[.LLELT]
440562
600432

G%688e
777777
240547
777770
240333
2005458
Q40548
140552
62P443

100512
14055}
440478
62a474
750030
[LILET]
290652
[LTLTH

100817

o» D

DO BUDOD >

D> VDT DD DDDDDTVDITDODIDOOrD

DTVHO »

DV DD >

VDDV >T> >

HD®>» VU D

o

RLEH GETSHW /LEAYING FO2 5
LLS 7
JIMP GETGQ /BACK TO TOP FOR POINTER 70 1

CHMARACTER PUTTER FOR PDP=1!}

TWO CHAR'S PER WORD FORMAT, FIRST CHAR IS RIGHT JUSTIFIED, SECOND
18 PLACED IMMEDIATELY ABOVE FIRST, LEAVING TOP Tw0 BITS NF WORD

OF PUTIN INTO IT, ROUTINE COUNTS THE OUTPUT CHARS 'IN LBF

THIS

ROUTINE ALSO HANDLES FORM FEED PAGE CONTROL

THE PnPetly ASSUMES LINES MAVE A LF IN BEGINNING AND CR AT END
80 THYIS ROUTINE REMOVES ANY LEADING LF,

uTew

pUTY
puUTZ

/
puUTLF

PUTW

PUTFF

PUTLPR

PUTSW

/
PUTIN

/
puUTO
PUTY

y
pUT2

/

/

/
/+CLOSE
’
LPcLos

.

/
/
/
/
/
/
/
/ UNUSEn, CHAR IS DELEVERD TO US IN AC, INIT PUTSW BY DAC'ING CONTENTS
/
/
/
/
/
/
/
»

[

AND (377 /STRIP TO EIGMT BITS

SAD (42 /SPECIAL CASE w»1, LINE FEED

JMP PUTLF /G0 pO 1IT

SAD (14 /SPECIAL CASE w2, FORM FEED

JMP PUTFF /G0 DO IT

182 FIRST /BUMP FIRST TIME THRU SWTICH

NOP /IN CASE SKIPS, WE DON'T NEED IT HERE
182 LPBUF /COUNT AN QUTPUT CHaR

IMPe PUTSW /OISPATCH TO FIRST OR SECOND CHAR ACTION
LAC cop /HAS A REAL CHAR OCCURRED SINCE FF?
3ZA /SKIP IF NO RE&L CHAR

JMP PUTHW /G0 DO REGULAR

LACH LPBUFD /IF WE ALREADY HAVE A FF

SAD (14 /IN BUFFER OUT, DON'T NEED 4 CR

JMPe PUTCH 3

LAC ($1-] #LEAD WITH CR, SO PDP=11 DOESN'T PUT ON AUTOMATIC LF
xCcT MNIX /BUT DO NOTHING FOR IMAGE MODE

JHMPe PUTCH

JMP PUTY /60 REAJOIN

LAC 12 /GET BACK LINE FEED

XCT " FFSW ® /187 OR NOP FOR COUNT OF FF PER PABE
JMP PUTLFR /NO FORM FEED NOW

LAC PAGSIZ /FORM FEED, RESET PAGE COUNTER

naC PAGECNT

nZM corP /FLAG SAYING FF OCCURRED,

LAC (14 /FORM FEED CODE

MP PUTZ /G0 COUNT CHAR, AND PLACE 1IT

xcT MIX /SKIP ON I0PS ASCII

JMP PUTY 7IMAGE, ACTUALLY PLACE LF

152 FIRST /ASCII, IS IT FIRST THRU?

JMP pUT2 /NOT FIRST, DO LF

JIMPs PUTCH /FIRST TIME, JUST RETURN
] JINIT'ED AS PUT1, FILLED LATER BY JuS PUTSW
JMPe PUTCH #00NE, RETURN

PUTY /START AT FIRST CHMAR

JMS PUTSW /LEAYVE POINTER FOR FIRST AFTER SECOND

NACe PUTP /FIRST CHARACTER ACTION, PLACE RIGWT JUSTIFIED
RLE] PUTSW /LEAVING POINTER FOR SECOND

eLLiSWHA /PUT CHAR IN RIGHT PLACE

RAR

XORe PUTP /PUT HALVES TOGETHER

DACe PUTP /BOTH IN BUFFER

182 PUTP /MOVE POINTER

JMP PUTE /GO TELL PUTSW THAT PUTY IS NEXT

OUTINE TO RESET LINE AND TAB COUNTRS

- a
LANW -l /3ET FIRST CHAR OF L INE REMEMBERER
DAL FIRST
LAW =10 /8ET TAB COUNTR
DAC TABC
LAC LINLIM /SEY UP MAX PER LINE COUNTER
DAC MAXC
nIM BLANKC /RESET SPACE AND TAR COUNTER

JHPe RESETL

LTITLE .CLOSE FUNCTION

JMS LPIOCK /CHECK 1/0 UNDERWAY,

n:; cg: /SAY A FF OCCURRED

1 LPCLSN /777777 IN AC IF HAVEN'T BEEN THRU s

IMP LPCLON /DONE, CLOSE cooe.
eLALTAC /SPOOLER REQUIRES FF,CR AS CLOSE

DACe LPBUF /JUST GIVE FF TO DRIVER, HOMEVER

LAC (6414 /THIS IS FF,CR IN POP=tl

nACw LPBUFD /FIRST DATA WORD POINTER
/THIS MEANS ALWKAYS A FF ON CLOSE}!!
RLE] LPSET /SEND BUFFER TO POP=11

Figure 4-1

PDP-15 LPll DOS Handler (cont.)

4-10

583 Be4ATS R 12 k3 R s RESETL /RESET THE WORLD
504 80466 R 703344 A LPCALX DBR
525 22467 R 62p%27 R IMPse LPCALP /HANG ON CAL,
1.1] 20470 R 777777 A LPCLSW 777777 /=1 = _CLOSE NOT DONE,
507 00471 R 777777 & LPCLON AW i
Sg8 00472 R 042472 R naC LPCLSW JINITIALIZE .CLOSE INDICATOR
se9 29473 R 690125 R RLld LPNEXT /EXIT,
510 JTITLE ,WAIT FUNCTION
511 /
512 7sWATT OR LWAITR
813 ’
514 00474 R 22p527 R LPWATT LACw LPCALP
515 20475 R 502633 R AND t1000
516 00476 R 741200 A SNA /BIT 8 = { FOR ,WAITR
517 20477 R 60@S12 R IMP LPWATY /«WAIT = GO HANG ON CAL,
518 20522 R 20A653 R LAC (700080 JLINK, ETC,
319 809501 R 58p527 R AND LPCALP
520 70502 R 040527 R nac LPCALP
521 20503 R 224539 R LAC* LPARGP /15=BIT RUSY ADDRESS.
522 00504 R 3500654 R AND 77777
523 2250% R 24p527 R XOR LPCALP
524 20506 R 040527 R nAC LPCALP
525 20507 R 440533 R 10X LPARGP
526 22310 R 1PAS12 R LPWATY gM$§ LPIOCK /CHECK I/0 UNDERWAY,
527 @0511 R 6ap125 R JIMP LPNEXT /0K = RETURN,
528 /
529 /CHECK FOR I/0 UNDERWAY
530 /
531 /LPUND @ WHEN FREE, NONQ WHEN BUSY
532 /
533 90512 R P9ANA2 A LPIoex o
534 00513 R 209533 R LAC LPUND /8 3 NO ACTIVITY,
535 00514 R 741200 A SNA
538 90515 R 628512 R JHMPe LPIOCK /NO I/0 UNDERWAY,
537 20516 R 600466 R IMP LPCALX /HANG ON CAL TIL NOT BUSY,
538 / .
539 / SETUP AND OUTPUT TO PRINTER.
%40 /
S41 20517 R 20ana@ A LPSET)
S42 83520 R 209337 R LAC LPTCB /SEND TCB POINTER TO POP=1i
543 20521 R 160542 R nIMe LPEV /CLEAR THE EVENT VARIABLE
544 00522 R 7096091 A SI0A /MAKE SURE ITS ABLE TO GET IT
545 20523 R 60p8322 R JMP o1 /NOTE THAT YHIS 18 PROTECTED SINCE
546 / THE LIOR WILL BE ISSUED DIRECTLY
547 : / AFTER THE SIDA (FREE INSTRUCTION),
S48 02524 R 706008 A LIOR
549 90525 R 04p533 R 0AC LPUND /SET 1/0 BUSY FLAG,
LET] 20526 R 620517 R JMPs LPSET
gg: STITLE INITIALIZATION CODE AND TEMPORARIES
2 /
553 00527 R 00AeRd A LPCALP @ /POINTER TO CAL ADOR
554 29539 R 200000 A LPARGP 9 /POINTER ARGUMENTS OF CAL
858 22531 R 777708 A PAGSIZ FORMS /ASSEMBLED LINES PER PAGE
556 00832 R 777726 A PAGCNT <FORMS /COUNT THE LINES HERE
557 Qes33 R 777772 A LPunp o8 #QOFREE ; +%BUSY . «aERROR
558 / /COUNTS UP TO INITAL @ BELOW
559 /
560 LIFUND NOFF
561 08534 R 449532 R FFSW 182 PAGCNT /ACTION FOR FORMS CONTROL, NEMORY
562 00535 R 449532 R FFFF 182 PAGCNT /FFSW LOADED INTO HERE
563 " ENDC
564 .IFDEF NOFF
565 FFSW NOP /ACTION FOR FORMS, MEMORY
366 FFFF NOP /FF3W LOADED INTO HERE
867 . “ENDC
568 20536 R 209625 R INIT LAC (NOP /WRITE OVER JUMP TO HERE
369 28537 R 240003 R LPTce naC NEW /PREVENT RE=ENTRY
570 29540 R 220653 R LPBUF [ACe (.3COMe4 /GT PRINTER LINE WIDTH
571 08541 R 7420820 A LPBUFD RTR
872 00542 R 740022 A LPEY RAR /MOVE TO '6' POSITION
573 20343 R 500658 R TEMPY AND (] /STRIP GARBAGE, LITERAL 6
574 80544 R 741200 A BUFSIZ SNA .
375 0543 R 340698 R LINLIM TAD 8 /TREAT @ (UNDEFINED) AS 132 COLUAN{??!
876 92546 R 342613 R MAXC TAD LBFTP /POINTER TO CONSTANTS
877 20547 R Q40813 R FIRST nAC LBFTP
578 20539 R 220613 R TCHAR L ACe LBFTP /LINE WIDTH
579 28551 R 24p545 R cop DAC LINLIM
580 . @9552 R 440613 R BLANKC 182 LBFTP
sey - 20553 R 220613 R TABC LACe LBFTP /BUFFER SIZE
582 20554 R 049544 R MIX nAC BUFS1Z
383 /
584 / NOW SET UP POINTERS TO BUFFER AND TCB LOC'S
585 /
588 A0555 R 220643 R LPAC LA (,SCOM#1P9 /POINTER TO TABLE OF POINTERS
Ss7 00556 R 740030 A LPour TAC /OUR POINTER IN TABLE +1
s88 20557 R 040543 R xi2 DAC TEMPY
589 20560 R 22a543 R PUTP LACw TEMPY /POINTER TO TCB
390 20561 R Q4p537 R nAC LPTCB
594 P0562 R 04p543 R nAC TEMPY /POINTER TO FILL LOCATIONS
592 22563 R 723002 A AAC 2 /MAKE POINTER TO EVENT VARIABLE
593 80564 R 040542 R NAC LPEV
594 00565 R 723002 A AAC 2 /MAKE POINTER TO TCB POINTER
595 20568 R 048553 R DAC TABC /TO BUFFER ADDR
596 28567 R 723005 A AAC 5 /MAKE POINTER TO FIRST DATA WORD
597 22570 R 0409541 R DAC LPBUFD
598 /
599 / MAKE TCB
6eo /
601 20571 R 200657 R LAC (APISLT«4@8+APILVL /BUILD THE API RETURN
602 20572 R 262543 R DAC# TEMP{. /STORE IN TCB

Figure 4-1
PDP-15 LP1ll DOS Handler (cont.)

4-11

603
604
65
(L.}
6p7
608
(1]
610
611
612
613
614
615
616
617
618
619
820

622
623
624
628
626
627
628

00573 R 440543
pO574 R 200669
2A573 R 062543
BR576 R 4409543
80577 R 16n543
PO6EY R 440533
90601 R 600576
20602 R 200543
28603 R 280353
20604 R 040540
206085 R 120443
20608 R 000056
20607 R 20An16
92613 R 706141
22611 R 00pn26
20612 R 640003
03613 R Q0612
00614 R 777662
20615 R 00@n44
02616 R 777612
20617 R gooub4
ee620 R 777574
80621 R oeen’0
20MAN0

00622 R 217777
80623 R 600011
90624 R 6800368
20625 R 740000
226268 R 2e@cap
20627 R 700042
22630 R 177777
89631 R 177001
20632 R 600000
20633 R 209137
20634 R 004000
20635 R Q01000
20636 R 741000
22637 R 208400
20540 R 200177
00641 R 20@135
00642 R Q0012
00843 R 000209
00644 R 00Q01Y
02645 R P00P1S
80648 R 000020
20647 R 200014
00632 R 200021
065% R 298377
20852 R 208414
00853 R 708002
00634 R 0877777
2655 R 000104
PR656 R 200ARG
0557 R Q27002
20660 R P0pPOR4
slZesenesy

DDO>er>»VVDVVOODDIOD

I R ET I RSS2 TS 2 N B RN E B B R N B R R R D]

1514 TEMPY
LAC (DEVCOD
DACw TEMPY
MKTCR 182 TEMPY
nIMs TEMPL
182 LPUND
IMP MKTCB
LAC TEMPY
NACw TABC
nAC LPBUF
JIMS RESETL
cAL APISLT
16
LSSF
LPINT
JIMP NEW
/
DEC
LBFTP !
«80
36
=120
52
=132
[}
LEND
L
oL
L
oL
vl
oL
L{8
ol
L
oL
L[S
»L
oL
L
.l
ol
oL
oL
L
sl
oL
ol
el
L
L
wi
vl
wL
L
oL
L

NO ERROR | INES

/INCRMT, PQINTER TO TCS
/PIREX CODE FOR LP NRIVER
/STORE IN TCB

/1ERQ THRU FIRST BUFFER LOC

/DONE YET ? = IF NOT THEN LDOP

/THIS POINTS TO BUFFER

/T0 LOCATION IN TCB THAT NEEDS

/AND A POINTER FOR US

/RESET LINE AND TAB COUNTRS

/1SSUE SETUP CAL TO ESTARLISH INTERRUPTS

/ DONE

/POINTER TO SIZE TABLE

Figure 4-1
PDP-15 LP1ll DOS Handler (cont.)

4-12

APILVL

APISLT
DEVICE

SKIP

SIOA
LIOR

CAPI

DEVCOD

4.6.1.1

The API level at which PIREX should interrupt the PDP-15;
this is used in TCBs and in the definitign of CAPI. APILVL
should indicate API level 0, 1, 2, or 3.

The API slot to which PIREX should issue interrupts; used in
TCBs and in the CONNECT/DISCONNECT software directives.

In this case LSSF, one of the four possible UC15 skips. This
skip is determined by which API ievel is chosen.

SKIP = APILVL*20 + 706101

The skip is used in the standard setup interrupts CAL (Fig-
ure 4-1, lines 614-618))

Skip if PDP-11 can accept a TCBP mnemonic; (706001).
Issue TCBP mnemonic; (706006).

Clear interrupt flag mnemonic; set to APILVL * 20 + 706104,
used in interrupt service routine.

The device code as defined in PIREX: wused in TCBs

NOTE: The conditional use of the spooled bit (PDP-11 bit 7)
(Figure 4-1, lines 71-76).

Initialization - The CAL entry of a DOS-15 handler must have

a once only section of code that:

1.

4.6.1.2

Sets up a pointer to one of the reserved TCB areas in the
DOS-15 monitor. This is done by locating a pointer to the
TCB area in the table pointed to by .SCOM + 100 (Figure 4-1,
lines 586, 590)

Computes pointers to the various locations within this TCB
area, such as the event variable (Figure 4-1, lines 591-597).

Constructs the constant fields within the TCB such as the
API RETURN and device code (Figure 4-1, lines 601-609).

Sets up a pointer to the data area in the TCB, which will be
used as a buffer (Figure 4-1, lines 610-612).

Request Transmission - When issuing requests to a task from a

PDP-15 program, the requesting program (e.g., a PDP-15 I/0O handler)
issues the following sequence of instructions.

DZM EV /CLEAR EV IN TCB

LAC (TCB /ADDRESS OF TCB IN AC

SI0A /MAKE SURE PDP-11 CAN ACCEPT REQUEST
JMP .-1 /WAIT FOR IT IF NOT

(1) Level 0 may be used, but is not recommended because it could hang
the PDP-15 system if the interrupt occured at the wrong time.

4-13

LIOR /ISSUE REQUEST TO THE PbP—ll. THIS CAUSES A LEVEL
/7 INTERRUPT TO THE PDP-11 and CONTROL TRANSFERRED
/TO THE LEVEL 7 HANDLER IN PIREX.

The instruction sequence which issues requests to tasks from the PDP-15
should have an identical format as shown above. These five instruc-
tions are ordered in a way which:

1. Clears the event variable (EV) before issuing the request.
2. Allows an interruptible sequence while waiting for the PDP-11.

3. Allows a non-interruptible sequence once the SIOA instruction
skips and the LIOR is issued.

This occurs because the PDP-15 always allows a non-interruptible
instruction following an IOT (in this case the SIOA). The SIOA and
JMP .-1 sequence is interruptible immediately following the execution
of JMP .-1.

The LPSET routine is used by the line printer handler to perform the
request transmission and thus send data to the line printer (or line
printer spooler) task (see Figure 4-1, lines 541-550).

4.6.1.3 Interrupt Section — Result Reception - After receipt of a
request to PIREX, the PDP-11 will use the contents of the TCB to
schedule the referenced task.

Meanwhile, the requesting program can either:

1. Give up control and wait for an interrupt from the PDP-11 as
in the DOS-15 line printer handler case or

2. Test the EV until it goes non-zero. i.e.,
LAC EV
SNA
JMP .-2

to determine completion of the request. The EV is automati-
cally set to a non-zero value by the referenced task when the
request has been completed.l

Interrupts generated by the PDP-11 for the PDP-15 are serviced by the
PDP-15 in a fashion identical to regular PDP-15 interrupts. As in a
non-API environment, a SAPI N (N =0, 1, 2, or 3 depending on what API
level would have been used if the PDP-15 had API) instruction tests
for the flag associated with the request. In an API environment, the
appropriate API trap address must be set up before the interrupt
occurs. When program control is transferred to the interrupt service
routine, a CAPI N instruction must be issued to clear the hardware
flag associated with the request.

(1) When interrupt returns are used, the EV is set to non-zero just
prior to the issuing of the interrupt.

4-14

After clearing this flag, the event variable should be tested to detect
an error condition (negative event variable). See Figure 4-1, lines
124-128).

If an error has occurred, the event variable should be tested for a
possible PIREX out-of-node condition (PIREX ran out of space to store
the request). If the error was an out-of-node error CR (EV = 177001)
a retry of the request should be attempted (See Figure 4-1, lines 144-
149) .

If the error was not an out-of-node error, an error message should be
sent to the user. The error code should be composed of the event vari-
able and a handler mnemonic such as LPU (Figure 4-1, lines 136~139,
160) .

4.6.1.4 .READ and .WRITE Requésts ~ Actual input and output is accom-
plished by using typical DOS-15 handler code with the following excep-
tions:

1. The TCB is used as the data bufferl

2. The actual I/0 is done by calls to the TCB transmission
routine. In the example this is a call to LPSET (Figure 4-1,
line 348)

4.6.1.5 .CLOSE Function - If PIREX provides spooling services for the
device, there is a need to inform the device's spooler module that the
current job has completed so that the spooler is forced to process any
existing partially-filled buffers. The writer must insure that both
the DOS-15 handler and the PIREX spooler module agree upon a conven-
tion to indicate this end-of-file. In the example, a form feed car-
riage return (6414) acts as an end-of-file (Figure 4-1, lines 497-502).

4.6.2 PDP-11 Requesting Task

Tasks such as MACll may execute under control of the PIREX executive
in a background mode. Considerations such as TCB structure and event
variable checking are similar to those of the DOS-15 handler.

When the requesting program is a PDP-11 task, it must issue the initi-
ate request macro (IREQ) in lieu of the 5 instruction sequence shown
for the PDP-15. (See Section 4.6.2). If the task being requested has
a higher priority than the current one issuing the request, it will
execute immediately; otherwise, control will return to the first in-
struction following the IREQ macro. IREQ is defined as follows:

.MACRO IREQ TCBP
MOV TCBP,R5

MOV #100000,R4

(1) Depending on Driver task design the TCB need not be used as a data
buffer for NPR devices.

4-15

I0T
.BYTE 2,0
. ENDM

The #100000 in R4 is used by PIREX to identify a PDP-1l1 request.
A TCBP is a TCB pointer.

4.6.3 UNICHANNEL Device Handlers for RSX-PLUS III

The following description of how to write a UNICHANNEL device handler
for RSX PLUS III does not discuss those topics pertaining to all

RSX I/O handlers, see the chapter on Advanced Task Construction in.
the RSX-PLUS III Operating System Reference Manual (DEC-15-IROMA-A-D).

4.6.3.1 Definition of Constants - Several constants are defined in
a UNICHANNEL handler's source file before any executable code (see
Figure 4-2, lines 66-79). These constants include:

APISLT The API slot to which PIREX issues interrupts; this is
used in TCBs and the CONNECT /DISCONNECT software
directives.

APILVL The API level at which PIREX interrupts the PDP-15;
this is used in the TCB and in definition of CAPI.
APILVL should indicate API level 1, 2, or 3.

DEVICE UNICHANNEL device skip equated to APILVL*20+706101.

SKIP

SIOA Mnemonic for "skip of PDP-11 can accept a TCBP";
706001.

LIOR Mnemonic for "Issue TCBP"; 706006.

CAPI Clear interrupt flag mnemonic; set this to APILVL
*204+706104. It is used in the interrupt service
routine.

DEVCOD The device code as defined in PIREX; this is used in
TCBs.

4.6.3.2 Initialization - The handler initialization is located
immediately following these definitions (see Figure 4-2, lines 262-320).
During handler initialization, the PIREX device driver status must

be cleared and the event variable checked to see if the driver is
functioning (see Figure 4-2, lines 287-304). Since it is not obvious
to RSX whether or not the driver is operational, a message should be
printed before the handler exits if the driver is not running under

PIREX.

Al
>
«
™

OCONRD D R -

th..., 727

ngae55
npoapel
708121
T0RR0Y
706006
06124

nRAAnsS

»r BB >

C0.eee CR{5/UCIS £ARD READER EDIT #0280

NANNNSNSNNNNNNANNNNNNANSNNNSSN AN,

+TITLE

CDesss CR15/UC1S CARD READER EDIT w228

FIRST PRINTING, FEBRUARY 1974

THE INFORMATYON IN THIS DOCUMENT IS SUBJECT TO
CHANGE WITHONT NOTICE AND SHOULD NOT BE CONSTRUED
AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION,
DIGITAL EGUIPMENT CORPORATION ASSUMES NO RESPON=
SIBILITY FOR ANY ERRORS THAT MAY APPEAR IN THIS

DOCUMENT,

THE SOFTWARE DESCRIBED IN THIS DOCUMENT IS FUR=
NISHED TO THF PURCHASER UNDER A LICENSE FOR USE ON
A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH
INCLUSION OF DTGITAL'S COPYRIGHT NOTICE) ONLY FOR

USE IN SUCH SYSTEM,
VIDED IN WRITING BY DIGITAL,

EXCEPT AS MAY OTHERWISE BE PRO=

DIGITAL EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY
FOR THE USE 0R RELIABILITY OF ITS SOFTWARE ON EQUIP-
MENT THAT IS NOT SUPPLIED BY DIGITVAL.

CUPYRIGHT (C

JEJECT

/

/EDIT 8023
/EDIT =019
JEDIT #p18
JEDLT #017
/eDIT ®me16
/ED1T #215
/eDIT &¢13
JEOIT #14

JCOPYRIGHT 1973,

/

1974, BY DIGITAL EQUIPMENT CORPORATION

2/2/74
SCR
SCR
SCR
SCR

SCR

CLEANUP

Ck15 FRROR HANDLING} RRN SWITCH}
FIX COON MANDLING CR15 VERSION
CLEANUP,
MORE uwC15 CoOt

SCR START Tn PuT IN UC1S CODE
1=18=72
626273
DIGITAL EQUIPMENT CORP,, MAYNARD, MASS,
IC oy KEMP ==we W, A, DESIMONE, ===~ G, M, COLE

LBUTH] DEVICES

/CR1S CARD REANER CONTROL HWANDLER TASK, THIS CONTROL WILL
/SUPPORT S$ORBAN AND DOCUMATION READERS,
CkiS CODF 1S QBTAINED

NANNNNANNNNANNNSN NSNS

/
/

WITH NO ASSEMBLY PPARAMETERS

TC GBTAIN UCY5 CODE DEFINE UC15e@,
ACDITIONAL UC15 PARAMETERS:
DEFINE NOSPL2@ TO DISABLE SPOOLTING FOR CARD READER, FOR INSTANCE

1IF SPOOLER PACKAGF DOESN'T HAVE CARD READER ASSEMBLED IN FOR SPACE REASONS,

AN EQUATE Fom APILVL IS NECESSARY TO SET uP
10T'S FOR CORRECT PRIORITY LEVEL TO CLEAR PIREX REGUEST,
PRESENTLY LEVEL 1 IS THE CARD READER ASSIGNMENT,

w A R

N

v
I

N

S

1 1
. H

IN ORDER FOR THE UC1S HANDLER TO FUNCTION PROPERLY, THE
PDP11 MUST RF ABLE TO ACCESS OUR INTERNAL BUFFER
ANE TCB'S. THIS MEANS THAT THEIR ADDRESS MUST BE LESS THAN

28K TO THE POP11,

THUS,

IF THE PNP=11 LOCAL MEMORY IS 8K,

THIS HANDLER MUST RESIDE BELOW 2¢K IN POP15 CORE!l THIS
IS EQUIVALENT TO 500@@ 0CTAL, SIMILARLY , IF THE LOCAL
PDP=11 MEMORY IS 12K, THE HANDLER MUST RESIDE BELOW

am@a» OCTAL,

« IFDEF

APISLT=55
APILVL=Y

CRSISAPILVL»20+47061901
S10AS706081
LIOR=7060An6
CAPIZAPILVL*20+706184

/

ucis

+IFUND NOSPL

DEVCODSS

LENDC

. IFDEF NOSPL
DEVCOC =275

LENDC
+ENDC

/
/JEDIT 14 ADDS ASSEMBLY PARAMETER ERRLUN TO SPECIFY LOGICAL UNIT

FOR AL| ERROR MESSAGES,

THE IS SET 1O 3 IF USED INTERACTIVELY

MOST OF THE TIME OR TO 1@@ WHEN USED WITH PHASE
11T BATCH, LUN 1P@ IS DEFINED TO BE THE BAYCH OPERATOR DEVICE,

/
’
/
/
« IFUND
ERRLUNZ100
«ENDC

ERRLUN

/THIS IS AN 10PS ASCII ONLY HANDLER TASK,

/1T CAN BE ASSFMBLED TO READ @29 OR @326 IBM KEYPUNCHED CARDS,
/DEFINE DEC@A26 TO READ @26 PUNCHED CARDS,

/JOECR26 UNDEFINED TO READ @29 PUNCHED CARDS,

/

SN wN N

THE FOLLOWING QUEUE 1,0 DIRECTIVES ARE IMPLEMENTED

ce8

360a

Figure 4-2

HANDLER INFORMATION (HINF)

PDP-15 CR11 RSX-PLUS III Handler

4-17

99 / EVA
100 / LUN
101 /
102 / FOR HINF THE FOLLOWING INFORMATION IS RETURNED IN THE EV
193 ’
104 / BIT o UNUSED
105 / BIT 1 = 1 INPUT DEVICE
106 / BIT 28 NOT OuTPUT DEVICE
107 ’ BIT 3 s @ NOT FILE=ORIENTED
108 7 BITS 4=i1 UNIT NUMBER 'ZERO!
199 / BITS 12=17 DEVICE CODE = 7 CAKRD READER
110 ’
111 /
112 / cPR 2400 ATTACH CARD READER
113 / EvaA
114 / LUN
115 /
116 / cee 2500 DETACH CARD READER
117 / Eva
118 / LUN
119 /
12¢ / ceB 2609 READ CARD
121 /o Eva
122 4 (2) LuM
123 /™) “ODE
124 /(4) BUFF
125 /7 (5 SIZE
126 /
127 /1F A REQUEST RANNOT BE QUEUED, THE FOLLNWING EVENT VARIABLE
128 /YALUES ARE RETURNEDS
129 /
130 / -1@) - INDICAYED LUN DCES NOT EXITS,
131 / -1@2 we INDICATED LUN IS NOT ASSIGNED T0 PHYSICAL DEVICE,
132 / =103 «o HANDLER TASK IS NOT CORE RESIDENT,
igi / =777 =« NODE FNR REQUEST QUEUE NOT AVAILABLE,
’
135 /
136 /1F THE QUEUED 1/0 REQUEST LANNDT BE SUCCESSFULLY DEQUEUED,
:g: /THE FOLLOWING EVENT VARIABLE VALUES ARE RETURNED:
/
139 ’ =7 == ILLEGAL DATA MDDE,
140 / =6 == UNIMPLEMENTED FUNCTION,
141 / =24 =« LUN REASSIGNEN WHILE ATTACH/DETACH REGUEST IN GUEUE,
142 / 3% =e QUT OF PARTITION TRANSFER (NORMAL MODE),
143 / =203 =a CAL WOT TASK ISSUED,
144 ’
148 ’
148 <EJECT
147 ’
148 / wwieww CONSTANTS »wwew
149 /
150 nanp12 A X12m12 /AUTN=INDEXREG, 12
151 An8013 A X13s13 /AUTO=INDEXREG, 13
182 fpm oy A Risiay /RE=ENTRANT REG, 1
153 sam1e2 A R2m=102 /RE=ENTRANT REG, 2
154 nARIOS A R3=103 /RE=ENTRANT REG, 3
155 nODINE A Ras1@4 /RE=ENTRANT REG, 4
156 nam§a7 A NADD®1A7 /NODE ADDITION ROUTINE ENTRY POINT
157 agmI23 A SNAMBY23 /NAME SCAN ROUTINE ENTRY POINT
158 fapm240 A POOLs240 /LISTHEAD FOR POOL OF EMPTY NODES
159 npn282 A POVL=232 /LISTHEAD FOR PHYSICAL DEVICE LIST
16¢ nAn328 A ALADS328 /ATTACH LUN & DEVICE ENTRY POINT
161 "AN33I2 A DLAD®332 /DETACH LUN & DEVICE ENTRY POINT
162 "AN3I7 A DQRG=337 /DE=QUEUE REQUEST ENTRY POINT
163 nAP3I42 A VAIXS342 /VERIFY AND ADJUST I/0 PARAMS,
164 nAr3AS A 10CDu345 /0ECREMENT TRANSFERS PENDING COUNT,
165 ann3ky A DMTQE36Y /DE-QUEUE 1/0 REQUEST (FOR ABORTING),
166 mpoap 0 A D,T6s10 /POSITION OF TRIGER EVENT VARIABLE IN PDVL NODE
187 . 7 .
168 «IFUND UC1S
169 /
17¢ CwC=22 /WC NCH ADDRESS,
171 CCA=23 4CA NCH ADDRESS,
172 7
173 /PSUEDO=-INSTR, FOR WF,8W SUBR,
174 ’
17% WFOFFa8NA /WAITFOR CR15 NOT READY,
176 WFONESZA /WAITFOR CR1S READY,
177 ’
178 /
179 /CONDITIONS FOR LOAD READER CONDITION 10T (CRLC),
18e I
181 CCi=2e /CLEAR STATUS,DISABLE INTERRUPT AND DATA CHANNEL,
182 cces=27 /CLEAR STATUS,START READ,ENABLE INTERRUPT AND DATA CHANNEL,
183 CC3s2¢6 /CLEAR STATUS,ENABLE INTERRUPT,ENABLE DATA CHANNEL,
184 CCasag /ENABLE INTERRS, DISABLES DCH
188 /
186 / eveswv IOT INSTRUCTIONS wwewnw
187 /
188 CRPC2706724 /CLEAR STATUS EXCEPYT CARD DONE, (ALSO DISABLES INTERR,)
189 CRLCE7R6704 /LOAD READER CONDITIONS,
19¢ CRRS®7M6732 /READ STATUS INTOD AC,
191 ’
192 JENDC
193 /
154 TA%522 A «INHB?25522 /INHIBIT INTERRUPTS,
z:s 785521 A +ENBE7D552Y /ENABLE INTERRUPTS,
196 ’
197 JEJECT

Figure 4-2
PDP-15 CR11l RSX~-PLUS III Handler (cont.)

4-18

198 /====CR15 STATUS AND AC BIT ASSIGNMENTS,
/

199

200 /STATUS REGISTER BIT ASSIGNMENTS:

2@ /

202 / BIT TRANSLATION

203 /

204 / 17 COLUMN READY

205 / 16 END NF CARD

206 / 15 DATA CHANNEL OVERFLOW

207 / 14 DATA CHANNEL ENABLED

208 / 14 READY TO READ

205 / 12 ON LINE

2ie ’ 11 END OF FILE

211 / 10 BUSY

212 / na TROUBLE (= IOR OF BITS 4 = 8)

213 / f8 DATA MISSED

214 / az HOCPER EMPTY/STACKER FULL

215 / @6 PICK ERROR

216 / a5 MOTION ERROR

217 / N4 PHOTN ERROR

218 / A3=y0 UNUSED

219 ’

220 /AC BIT ASSIGNMENTS FOR LOAD CONDITION FUNCTION (CRLC)

221 /

222 / BIT FUNCTION

223 /

224 / i7 STAKRT READ

225 / 16 DATA CHANNEL ENABLE

226 / 15 INTERRUPT ENABLE

227 / 14 OFFSEY CARD

228 / 13 CLEAR STATUS REGISTER

229 /

230 / STATUS REGISTER BITS CONNECTED TO FLAG AND INTERRUPT REQUEST:
23 / R

232 / 17 DATA READYC(ONLY IF DATA CHANNEL NOT ENABLED)
233 / 16 CARD DONE

234 / 15 DATA CHANNEL OVERFLOW

235 / 29 ERROR CONDITION

236 /

237 . /MACRG DEFINITYONS?

238 /

239 /CP MACRO FQR CARD COLUMN YO ASCII TRANSLATION TABLE 826/829 CONDITIONALIZATION
240 /

241 +IFDEF DEC@26

242 «DEFIN CP,C26,C29

243 2607777+1

244 . ENDM

245 <ENDC

246 +IFUND DECB26

247 LOEFIN CP,C26,C29

248 C29¢7777+1

249 «ENDM

250 +ENDC

251 /

252 ’

253 +EJECT

284 /

255 /

256 / wwxwsxx BANDLER INITIALIZATION exwew (ONCE ONLY CODE)

257 /

258 /STARTY /STORAGE FOR AC IN INTERR, SERVICE,
259 /1BUF /T0P OF INTERNAL BUFFER,

260 /

261 /

262 aganm ° SAn646 R START LAC (PDVL) /SCAN POVL FOR THIS DEVICE'S NODE
263 opAAt B mERE4/ R 1BUF DACH (R1)

264 20002 P 2an658 R LAC (HNAM)

265 2000Y B A6AE51 R DACe (R2)

266 2pmnd B 120652 R JMSe (SNAM) /R, R2, R6, XR, & AC ARE ALTERED
267 /NODE FOUND?

268 20005 B 202653 K CAL (10} /N0 == EXIT

269 ARMAR B NEA567 K 0aC POVNA /YES =« PDVL NODE ADDRESS IN AC,
27¢ annaT B 723P1E A AAC 0,76 /SAVE NODE ADDRESS AND

271 AROIA B D4O5TO R DAC PDVTA /TRIGGER EVENT VARIABLE ADORESS
272 aneyy © Apn577 R CaL cces /CONNECT INTERRUPT LINE

273 Aqn12 @ 297561 R LAC EV /CONNECT OK?

274 APALY R T411P2 A SPA

275 mamy4 B ARMER3 R caL [$T.] /NO == EXIT

270 . NAMI% B 2PR654 R {LaC (T6) /YES == SET TEV ADDRESS

277 anBI&E P 262570 R DACe POVTA

278 APR17 ° SARESS R AND (72p90) /DETERMINE 'XR=ADJ!

279 2009 P Fsop3l A TCA

28¢ aAR2y @ #47563 R Dac XADJ

281 /

282 «IFUND UC1S

283 LAC (CC1y /CLEAR STATUS, DISABLE INTER, AND DCH,
284 CRLC /LOAD FUNCTION,

285 JENDC

28p +IFDEF UC1S

287 AQa55 © 1AnE25 R Jmus CLEAR /CLEAR OUT PIREX DEVICE, wAIT FOR COMPLETE
288 ANM2T © 20n613 R LaAC EViiK /FIND OUT IF 0K

289 A0MoA R TAP01A A RTL /PNDPL{{ SIGN BIT TO QOURS

2% NAMPS § T4m{NQ A SMA /SKIP IF TROUBLE

291 aamok © EaonS7 R JMP WFTGR /NOT, GO WAIT FOR WORK

292 aAnA27 ° 7pnpl4 R CAL MSINIT /PRINT PIREX HAS NO CD MESSAGE

293 anexm D APAPRZ W CaL WFMS /WAIT FOR MESSAGE COMPLETION

294 A0axy B ApaERY K CAL (19 JEXLY

29% ’

296 Aaa3s 9 AnAp2C A WEMS 28

297 AAe3% © ~Pe561 k EV

Figure 4-2
PDP-15 CR1l1l RSX~-PLUS III Handler (cont.)

4-19

208 ARARL D POTAF A MSINIT 270a
299 ApARE D ApABR] kK v
ane apAta @ AANIAN & FRRL!IM
any A@AR? © AAnpPRZ A 2
3n? Apman B AOAPAL W TNTTMS
LK) aApAgY B NDAPA? A INTTMS AN4RUZ) ANPARPT LASCTIT "wew NO CD IN PIREX"€{S3>
nangs © mampmY A
apo4T & 281045 &
20maq O 220234 4
AAM4LR D ATRPIQ A
ANAMAR B 42100 A
APMAY © 44K3I46 A
apmss o A5M222 A
2008y D 12133 A
NANSD D AARACE A
324 +ENDC
s anPrSY B AA*pS7 R JmpP WFTGR /wAlY FOR TRIGGER
36 . . / .
3e7 ARAS4 © NINANEG A HNAM +SIXBT tCDeses: /HANDLER TASK NAME
ApASS £ ApAAtS A
3ne /
309 ., IFUND UC15
e /
311 .BLOCK - 121+START=,
312 /
313 «ENDC
314 . /
315 +IFDEF ULC1S
316 ’/ M
317 aarRE © 777775 A +BLOCK S53+START=,
318 . 4
31 +ENDC
a2e 7 exwsx END OF INITIALIZATION CODE wewew
32y /
322 /exevexs» THE ABOVE CODE IS OVERLAYED BY THE INTERNAL BUFFER ¢wswwe
323 A R R A R e R A S A LA L AR AL L il sl A
324 /
32% / UC15 INTERRLPT=CAL INTERACTION WILL BE DIFFERENT
326 7 KEEP INITYAL PART SEPAKATE
327 /
328 «IFUND UCLS
329 /
33e WFTGR Cal WFTCPB /wAlT FOR TEV TO BE SET
/
g:; / sewew THE TASK HAS BEEN TRIGGERED == PICK A REQUEST FROM QUELE
3 /
:33 o™ T6 /CLEAR TRIGGER
338 PG LAC POVNA /DEQUE A REQUEST
h 3.1 OAC» (R1)
37 RLELS (DORR) /R, R2, R4, R5, R6, XR & AC ARE ALTERED
a8 /wAS A REQUEST FOUND?
339 JmP WFTGR /NO w= WAIT FOR TRIGGER
340 4
341 <ENDC
342 /
343 +IFDEF UC1S
344 7 UCYS CODE
345 /
346 4 THE GENERAL IDEA IS THAT ALL WAITS ARE DONE THRU
347 7 THE TRIGGER, WE FIGURE OUT MERE WHMO SET THE TRIGGER, THIS
348 /7 ALLOWKS US To GET OUT OF HUNG DEVICE, SINCE WE WAIT HERE,
349 / AND CAN SEE AN ABORT COMING THRU,
3Se /
35y anas? © apn873 R WFTGR Cat WFTCPB /WAIT FOR EVENT VARIABLE TG
352 naase 0 200562 R PG LaC 76 /FIND OUT WHG IS CALLING
353 M0AEY ® 140562 K ozM 16 /RESET
354 . ANOE> & 742019 A RTL /ABORT BIT 70 SIGN BIT
385 Apasy P 751130 A SPAICLALIAC /SKIP 1IF NOY ABORT, t IN AC,
386 aRass B AQMATL W Jup POL /G0 DO ABORT IN REGULAR WAY, THE HANGING
387 / /READ IS REMEMBERED IN RRN|
358 ANAER B S405%54 R SAD CDON /HAS A CARD BEEN DECLARED DONE BY INTERRUPT
359 anagR o Apn177 R Jnp GOTCRD /YEAH, GO TRANSLATE IT
360 ANOKY P K4nan7 R SAD POST ZARE WE WATTING FOR INTERRUPY
k1.1 2aa7a D KpanS7 R Jup WFTGR ZYFES,. AND TT HMASNIT HAPPENED YET, SINCE
362 / /COON NOT SET, WAIT ON THIS CAL REQ, TO BE
383 / /DONE AFTER THE INTERRUPTY HAPPENS, IF ABORT
384 ’ /COMES IN THE MEANTIME, HE IS PUT AT HEAD
kLE] / /0F DEQUE NF WAITING REG,'S SO WE DO WIm,
366 /
367 npe7y B 20058/ R PGt LAC PDVNA /TRY YO DEQUE AFYER NPERATION BEFORE WAITING
3se opm72 R m@&nAa7 R DACy (R1 /IN CASE WAITING FOR INTERRUPY HAS WELD OFF
369 a7y B 127656 R JuSw (DARG /h REQUEST,
e manza 9 Kampp%7 K JuP WFTGR JOION'T FIND ONE, GO WAIT
a7y / ’
are +ENDC
373 /
374 RLLYABULY LELT I nac AN /YES == SAVE ADDRESS OF REQUEST NODE
375 mAM?A O 1ANBAZ K TaD XADJ /SETUP XR TU ACCESS NODE
3aze 20M77 R 721902 A Pax
377 /
aza 7 wiwaw T/0 HEQUEST NODE FORMAT #wene
379 /
38w / (@) FORWARD LINK
381 / {1) BACKwWARD LINK
382 4 (2) STL PryR,
383 / (3) PART, BLK PTR, (v IF EXM TSK),
384 7 (4) TASX PRIOQRITY
388 / (5) 170 FCN CODE IN BITS 9«17 AND LUN JN BITS Q=8
1.1 ; {%5) == EVENT VARIABLE ADDRESS
kLY / (7) CT8 PYR,
3R8 / (1) ExTRa

Figure 4-2
PDP-15 CR11l RSX-PLUS III Handler (cont.)

4-20

38y / (11} ExTka

Su /

391 Aani1mm 0 2{ApRd A LaC 5,X% /FETCH I/0 FCN CODF

392 amype B SPARKT K AND (777)

393 Ax1p2 © RANERL K SAD (r24) /ATTACH REQUEST?

394 anipx B Rar1o# K JMP ATTACH /YES == ATTACH TO TASK

395 apima D S4°6K1 K SaDn (2253 /NO == DETACH REQUEST?

396 anin% © Kpay2) kK JMP DETACH /YES == DETACH FROM TASK

397 AANIPR D SARER2 K Sal (a26) /NO == READ REQUST?

aoR Amypy © Apnial kK JmpP READ JYES == READ CARD

399 Aan11a R S40RRY R SAL (»36) /NO == HANDLER INFO,?

ane #a41y 5 RKam 36 R JHP HINF /YES == RETURW INFD IN EV

any AR112 B S4*E6%7 R SaD 777y /NO <= EXIT (DEASSIGNED) REGUEST?
402 BATI% P AAMARL K JMP DAEX /YES == DEATTACH & EXIT

4083 M114 B %AN664 K 3aD (179 /ABORT REQUEST?

4ana an(18 B ApASR2 R JmpP CDABRT . /YES,

495 Ap11& b 777772 A EVMb LAW -6 /ND == UNIMPLEMENTED FUNCTION == SET
406 AMt117 o Spm424 R JMP SEV JEVENT VARIABLE TO =6 .

407 /

498 / ATTACH TO A TASK

499 /

41¢ apyPm @ 2pn567 R ATTACR LAC POVNA FATTACH LUN & DEVICE

411 an{o1 © A67647 R DAC» (R1)

a12 AR122 o 20m5.84 R LaC N

413 amiox o akNESY R DAC+ (R2)

414 An124 © 127665 R JMS CALAD) /R3, R4, R5, R6, X1@, X11, XR & AC ARE ALTERED
415 /WAS LUN ATTACHED?

416 A 2% O KDP4D8 R JMP StV /NO ~= SET REQUESTOR!'S EV TO =24

417 apyok D &AMAP3 R JMP REQOCMP /YES REQUEST COMPLETED

418 /

419 / DETACH FROM TaSK

4208 /

421 amyp7 B 2aPS5&7 R DETACH LAC PDVNA /DETACH LUN. & DEVICE

422 AR138 B AE6A647 K DACe (R1)

423 AA43Y B 2PN564 R LAC RN

424 an93> B MERES1 R OAC+ (R2)

428 faAYI3T D 1276K6 R JMS* (DLAD) /R3, R4, RS, R6, X1@, X11, XR & AC ARE ALTERED
426 /WAS LUN ATTACHED

427 an134 P 6AnAaR4 K JIMP SEV /NO =~ SET REQUESTOR'S EV TO ~24
428 fAII% B ARAE2I R JMP REQCMP /YES == REQUEST COMPLETED

4a2s /

43¢ JEJECT

43} /

432 / RETURN HWANDLER INFORMATION

433 /

434 20138 © 20n667 R RINF LAC (200007)

435 f0137 © AAR424 R JImp SEV

436 /

437 /READ CARD

438 /)

439 ap14a ® 777776 A READ LAw -2 /CHK, FOR 10PS ASCII DATA MODE,

44p A1 41 P V500R7 A TAD 7.%

441 NA142 R 747208 A SZ4 /10PS ASCII?

442 GR14% R AAM466 R JIMP EVM7 /NO, RETURN =5 EV,

443 Q144 R 21PAR2 A LAC 2, /SAVE STL NODE PTR, FOR TASK IDENTIF,
444 AN 4R © M4R856 R Dac STLA /SAVE VALID STL PTR,

445 fAN148 D 217A10 A LAC 19.X% /YES, VAL/ADJ, HEADER ADDRESS

446 "n14Y B ME067Q K DACe (RY) /HEADER ADDRESS,

a4y an15m o 210011 A LAC 11,X /wORD COUNT

448 AN18| 0 ORPE7L R DACe (R4) .

449 ?R152 P 747031 A TCA /SETUP COUNYER SINCE

459 ANEEY B 723002 A AAC +2 /OFFSET FOR CR APPENDAGE,

a51 ANIKA P n4AKEE R DAC COWDCT /VAJX ALTERS THE XR,

452 ApI8sE © MANKT4 R DAC TCWC /SAVE IN CASE RETRY,

453 AR158 © OPASKE R LAC RN /REG, NODE ADDRESS,

454 An157 o m4m571 R DAC RRN /SAVE READ REQ, NODE ADDR, FOR ABORT,
455 - aMYRe 0 AEMES] K DAC» (R2)

456 AR{&y © 120672 R JMSe (VAJX) /VALZADJ, (ALTERS XR,AC,R3,RS5)

457 AR B APNER2 R JrP EvM3a /RETS, HERE IF ERROR (I/0 PARAM, OUT
458 /OF PARTITION,

459 AR1E63 © 220670 K LLAC+ (RY) /ADJUSTED HEADER ADDRESS =1 TO X12 TEMP,
46p nn1Es R 723777 A AAC -1

46 ap16% o nar572 R . DAC Tx12

462 ARYAKR B T23PR2 A AaC +*2 /TEXT ADDRESS=1 TO x13 TEMP,

463 A%167 & 74P573 K DAC TX13 /

464 ARITA P 147565 R nz™ CDRVAL /INIT, vALID, BITS,

46% <IFUND UC15

460 LAC CDON /HAS CARD DONE FLAG COME UP SINCE
467 SNA /LAST CARD READ?

468 CAL WFCRCD /NO, WAITFOR CARD DONE,

469 ozm™ CDOON /YES, CLEAR CARD DONE FLAG,

AT RETRY LAC (1BUF=1) /SET INTERN, BUFF ADDR=1 TO DCH CaA,
471 OACe (ccay

472 NZMe (CwC) /PREVENTS DOUBLE INTERRUPTS ON ERRORS|!!!
471 LAC TCWC /RESTURE REQ, WC,

a4 DAC cowocT

278 oM Evl /REINIT Ev, RETRY FROM ERROR,

a7k CRRS /READ STATUS IN OROER T CHECK FOR READER READY
477 AND (69 /AND ON=L1NE,

s . SAD (623 /STATUS B1TS 12, 13 SET?

473 5KP /YES, ON«LINE AND READY FOR READ,
4dy JupP ERR] /NO, NOT READY, TYPE MSG1 AND wAlT FOR READY,
49 Lac (cc2) /CONDITION CODE 2 == READ CARD,

a8¢ CRLL /LOAD CONDITIONS,

::: , CaL WFCRCB /WAIT FOR INTERRUPT,

485 /

486 /

::; ;2:2?0:53U"P”M FOLLOWING WAITFOR, EXAMINE EV AND TAKE THE FOLLOWING

Figure 4-2
PDP-15 CR1l1l RSX-PLUS III Handler (cont.)

4-21

489
ase
491
492
493
46¢
49%
435
av7
49¢
49y
sae
ELE
sez
523
S04
508
526
Se7
508
509
510
511
St2
513
514
5138
516
517
518
519
520
521

522
523
524
52%
526
527

528
329
530
531

532
333
534

538

53¢

537

338

338
S54p

S4y

542

543
544
545

546
547

S48

549
550
531

552
533
554
553
556
557
558
559
S6e
561

562
583
564
565
566
567
568
569
579
571

572
573
574
579
876
577
578
579
580
581
582
583
584
505
586

/

/1F EV BIT 9 & p (TROUBLE BIT), NO ERRORS, TRANSLATE CARD PUNCIES
/T0 ASCI1 AND PASS TO USER AS 5/7 PACKED ASCII,

/1F BIT 9 = |

fTROUBLE 81T),
/DESCENDING NUMERICAL ORDER,

ERROR BITS A6 TO M4 ARE CHECKED IN
THE FOLLOWING ERROR MESSAGES FOR THE

/GIVEN ERROR CANDITIONS ARE OUTPUT!

/

/OATA MISSED 0O PHOTO ERROR =
/PICK OR MOTION ERROR =

tewe CD DATA MISSED/PHOTO ERRGR'
'esr CD PICK ERROR'

/HNPPER EMPTY AR STACKER FULL = IGNORED, CAUGHT ON SUBSEG,
/HEAD AS A REANER NOT READY CONDITION,
/IN ALL CASES WHERE A MESSAGE 1S TYPED, THIS WANDLER TASK MARKS TIME

JUNTIL THE ERROR I8 REMEOIED,

/

ERR4
ERRJ
ERR2
ERR}

TRANS

7
/ NOw BRING BACK RN FROM RRN,
/

CORMS

comML2

CoML4

CODPTR
COGALTY
/

EOF

/

/COME HERE ON MATCH FOUND

Lac

DAC
SWHA
SMALRAR
JMP
SZLIRAR
Jup
SZLIRAR
JMP
SZIL|RAR
JMP
SZLIRAR

IMP

JmMP

1s2
Is2
Is2
LACe
Jus
JNS

LAC
nac
JuP

«EJECT
LAC
DAC»
LAC
OAC»

LAC
DAC
LaC
nac
LAK
OAC
Law
DaAC
LACH
SAD
JMP
SAD
JMP
LAC
DaC
LAC
DAC
ADD
DacC
LAC»
AND
SZAICLL
ADD

TADs
SNAJCLS
SHP

54D

JuP
SNL
LI
LAC
DAC
LAC
CLLIRaR
JHP
Law
L1

LAC
JMP

/
COCFND LACe

CMA|CLL
TAD
CMa

Evi
ST

TRANS
ERR4
TRANS
ERR3

ERRY
ERR4

ERRPY
ERRPT
ERRPT
ERRPT
TIYOUT
wF ,SW
WFON
CERRPT+1)
ERRPT
RETRY

TX12
(x12)
TX13
(x13)

RRN

RN
(IBUF)
ICA
=28
cocoLe
=5
CORSCT
ICA
CORALT
COGALT
(77277
EQF
COTABL
COTPTR
COTLNY
COTLEN
COYPTR
COCPTR
CDCPTR
7777

CD7700
ICa
COCFND
CDTLEN
ILLCP
CODPTR
COCPTR
CDTPTR
CDTLEN
ComML4
4000
CoCcPUT

(1085
REQCMA

COCPTR

COTARLe®Y

AT THIS POINT, THE CARD 1S REREAD,

/EV SET AT INTERR, LEVEL TO CONTENTS OF
/STATUS, SAVE TEMP,

/SWAP HALVES FOR TROUUBLE BIT CHECK,

/1F NEG,,TROUBLE,

/NO TROUBLE, GO TRANSLATE,

/DATA MISSED?

/YES,)

/ND, HOPPER EMPTY/STACK, FulLL?

/YES, IGNORE, WHEN NEXT CRD, READ CAUGHT AS NOT READY,
/PICK ERROR?

/YES,

/MOTION ERROR?

/YES,

/NO, MUST BE PHOTO ERROR,

/ERRMSG, BUFFER ADDR, TO AC,
/TYPE MESSAAE,

/WAITFOR READER READY,
JREINIT, ERRPT,

/READ ANOTHER CARD,

/SET AUTO INDEX REG,

IN CASE RN DESTROYED IN MEANTIME

/TOP OF INTERNAL BUFFER
/PTR TO BUFFER

/CARD COL COUNT

/GETY

7ALT MODE (12,1,8 PUNCH)?
/YES == TERMINATE BUFFER

/NG == I8 17 AN EOF?

IYES,

/NO == TRANSLATE TO ASCII
/GET TOP OF TABLE AND SET PTR
/SET TABLE LENGTH

JCURRENT LENGTH/2

/CURRENT TABLE TOP + LENGTH/2

/GEY CURRENTY ITEM

/ADD IN REST OF 2'S COMPLEMENT WORD
/CURRENY COLUMN

/MATCH FQUND?

/YES

/CURRENT TABLE LENGTH =q?

/THIS MEANS AN UNKNDWN CARD PUNCH
/60 DUTPUT 'TLLEGAL CARD PUNCH!,
/L%@ JUMP UP, Ls1 JUMP DOWN TABLE

/SET TABLE TOP TO LOWER HALF

/UPDATE TABLE LENGTH

/ALY MODE

/SET HDR WDI TO EOF
/REQUEST COMPLETE

/GET CURRENT ENTRY
/GEN, LEFTMOST BIT
/ADD 4nnoROR

Figure 4-2
PDP-15 CR1ll RSX-PLUS III Handler (cont.)

4-22

587 X0R COTABL+1 /RESTORE SIXTH BIT

s8s RAR

589 COCPUT DOAC CORWDJ /PUT IN TDOP 0OF 3 WORD SHIFT BLOCK
590 COCLAR LAW -7

591 Dac CDR7CT

592 COCPL1 LAC CORWD3 /CDEWD3,CORWD2 & CDRWODY SHIFT AS A UNIT USING
593 /THE LINK YO PASS BITS FROM WORD TO WORD
594 RAL

595 0AC CDRWD3

596 LAC CDRwD2

597 RAL

598 DaC CDRuWD2

599 LAC CORWD1Y

628 RAL

6my DAC CDR#WD1

622 152 CDR7CT

603 Jmp CDCPLY

-1.X] Is2Z ICA /POINT TO NEXT CARD COL

605 Is2 CDR5CT /HAVE WE PROCESSED 5 WORDS?

606 Jmp comL2 /NO GET ANOTHER ONE

a7 LAC CowDCT /YES == UPDATE WORD COUNT AND
608 TAC (2 /CHECK TO SEE IF WE MAVE OVERFLOWED THE
606 DaAC COWDCT /USER'S BUFFFR

6ie SMi

6114 Jmp CDVER2 /YES == WE HAVE OVERFLOWED

612 LacC CDRWD2 /NQ == INSERT 5/7 WORDS IN USER'S BUFFER
613 CLL}RAL

614 DacC CORWD2

615 LAC CORWD!

616 RAL

617 DaC+ x13 /STORE FIRSY WORD

518 LAC CDRWD2

619 ' DACw X133 /STORE SECOND WORD

620 Isz cocoLc

621 IMP CORMS

622 /

623 «ENDC

624 4

62% +IFDEF UC15

626 /

627 / IN THE CASE OF THE UNICHANNEL. WE RECIEVE A 42(19) WORD

628 / BUFFER, THE FIRST WORD IS A BYTE COUNT (NOW ALWAYS 8R(10)).
629 / NOTE THAT AN EOF CARD WAS A BYTE COUNTY OF 1}}

630 / SPOOLER DOES CHECKSUM CALCULATION, NOT US,

631 / THE SECOND 1S A CHECKSUM S0 ENTIRE BUFFER 4DDS TO @

632 /Ll NsuMODULN 2416 THAT IS#w#]|], THEN ARE 40(1@) WORDS

633 / OF 'COMPRESSED COLUMN', (SEE CR=11 DRIVER MANUAL), EACH

634 / WORD HAS Twp EXTRANEOUS BITS AT LEFT, THE |SECOND CHAR}

6358 / OF THE PAIR, AND FINALLY THE FIRST CHAR OF PAIR AT RIGHTMOST
636 / OF WORD, THF POP=11 HAS ALREADY CHECKED FOR VALID PUNCH

637 / COMBINATIONS (64 VALID CARD ASCII, PLUS 12=1-8 FOR ALTMODE),
638 /

639 ARY7Y P 750038 A RETRY CLAlIAc /SET VARIABLE SAYBING WE'RE WAITING FOR
640 AN172 P K4P4BT7 R DAC POST /INTERRUPT

641 22173 o 147554 R 0zZM COON /AND SAY WE HAVEN'T GOTTEN IT YEY

642 n3174 ® 262614 R LacC TCBP /ADOR OF TABLE TELLING PDP=1! TO READ CARD
643 2217% ® 107616 R PLE colu /ROUTINE TO SEND REQUEST TO PDPei}

644 fA17R R KRORST R JMP WFTGR /WAIT FOR COMPLETION INTERRUPT

645 . /

646 / COME BACK HERE WHEN CARD 1S READ

547 /

648 20177 & 207571 R GOTCRD LAC /RN /RESTORE RN NODE

849 aANPOR O R4NS64 R 0aAC RN

650 AAOAY B 14M4RT R nzm POST /CLEAR INTERRUPT FLAGS

654 ano02 147554 R DZM CDON /BEST YO CLEAR POST FIRST]

652 ANPAT B 2AK60S K LAC EV1t JEVENT VARIABLE FROM PDP=11

653 fPoR4 R 745010 A RTL /PDP=11 SIGN BIT TO OUR SIGN BIT

654 2020% D T74%120 A SPAJCLL!RAR /8KIP IF OK, START CLEARING HIGH BITS

655 79208 © AamE36 R JupP CDUCEC /G0 CHECK WHICH KIND OF PIREX ERROR

656 "@IA? R 22M673 R LAC» (IBUF+2 /GET FIRST CHARACTER PAIR (2 WORD HOR)
657 ago1m R %54M674 R SAD (1046811 /SPOOLER USES AN ALT=ALT CARD AS AN END
658 / ’ /0F DECK CARD, WE SHOULD IGNORE IT!}

659 ”921t P AARy71 R JnNP RETRY /71T WAS ONE, JUST READ THE NEXT CARD

66e ans12 » SAA675 R AND (340 /712,11,3 PUNCHES IN FIRST COLM,sEQOF

6681 fN24% R Y4n676 R TAD (445 /1F IT IS ONE, MAKE A 1005

662 aps14a B S4mE77 R SAD (1e0s /WELL, IF SO GO LACE 1885 AS HEADER

663 apo1% P AAN420 R JInpP REGCMA /EOF CARD, JUSTY SEY HEADER,

664 ano1” B 200572 R TRANS LAC ™12 /SETUP X12,Xx13 FOR USER BUFFER

665 oM21Y B KEATNY R DAC+ (x12 /MANIPULATIONS,X12 HEADER POINTER

666 *po2m B 2pa573 K LaC TX13 /X13 DATA POINTER

687 %21 B AEA7AL R DAC» (x$3

668 /

669 70222 R 292673 R LAC (IBUF+2 /DATA STARTS AT BUFFe+2

670 29290% & 744010 A CLLIRAL /TOP 17 BITS ANDRESS, LAST IS RIGHT=LEFT FLOP
671 n@%24 R mgnand R DaC CDIPTR /TD GET INCOMING CHAR!'S

672 ARVOK R 777660 A LAW =120 /8@ CHAR'S e
673 AQ22K O Ag0K6N K Dac COCOLC /NOTE WE USE COUNTERS DIFERENT ALSO

674 nn927 ® opm331 R PKINT LAC PAK] /INIT 5/7 PACKER TO EXPECT

67% an23m @ mgn327 R nac PAKSW /18T CHAR OF A BUNCH OF FIVE

676 ansNy R 20”566 R LAC COWDCT /WE USE AS COUNT OF PAIRS, NOT WNRDS

677 ANDI2 R 74420 A CLLIRAR /80 DIVIDE bY TwO

678 AN2IN © 24056 K 0AC cowDCT

679 A0234 B SAR4RY K CORML2 LAC COIPTR /WATCH IT, TOP 17 BITS ADDR, LOwW BIT LEFT
114 AND3I8 B 440405 w 1s2 COIPTR /RIGHT FLIP~FLOP. AND!! POINTER POINTS TO
681 / /NEXT CHAR, NOT LAST ONE RETREIVED,

6R2 AROIE D 744023 A CLLIRAR JFLIP=FLOP TO LINK, ADDR AC

683 AB537 B MAMARE R DaC coTy /HOLD POINTER IN TEMPORARY

684 anv4m © 220400 R LACe cDTY /GET CHARACYER PAIR

685 fA%41 R 741410 A SZLIRAL /THESE THREE GET CORRECT CHAR

68¢ ARO42 B 743032 A SWHAlSKP /TO LOW ORDER 8 BITS OF WORD

687 AR24% D 740020 A RAR

Figure 4-2
PDP-15 CR11l RSX-PLUS III Handler (cont.)

4-23

686
689
69¢
694
692
693
694
698
696
697
698
699
7ae
7oy
702
703
704
705
706
a7
708
709
71e
711
712
713
714
718
716

717

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
73
734
738
738
737
736
73%
74e
744
742
743
744
748
746
747
748
749
759
751
782
753
754
758
756
757
758
759
760
78
762
763
764
765
766
767
768
769
77@
773
772
773
774
7758
778
777
778
779
780
781
782
783
784
788
788
787

20244

LLTYL]
LLEYY]
(LIT}]
LLIIL}
a028y
LLITY]
naassy
LYITY]
LLITY]
LLITY

LU LA

Ll 1LY
LELLT]
AADRD
LTILEY
LI ELY]
LT
nasKa
LLET 3
f"ADT™
an271
an272

anory
nas7a
nao7s
anr7R
an277
LIRTY]
LTETY]
LIIT T
[LETE]
LLLATY]
LRV L]
LTLTY]
LLETH]
LLLTL]
LLLTE]
aany >
LTETR]
LIV
[TETL]
LTEIL]
LLEY
29320
naN2y
L1LYT]

o DUV OTCTOORSTD

00000 00D0DTU

U0 0D 0D UVUVVIOVUYVIVIVUDIOVIUDVDO

Ll LY LK)

LYTFLI]
40404
apn28Q2
anpn?03
740200
777778
40400
"amand
LELY LT
147406

T4%pPQ

spn7rd
742002
147705
LY LYl
277406
740400
745030
179323
44P 584
Ap0234
LY AN

024r06]
nE2a83
nE4065
LLLT -1}
a70071
"7o043
100047
r75na2
LLLIJ.14
1212124
12%126
127134
131132
138054
245137
nyRR77
m5%¢12
113114
11%116
117120
121122
nd104d
ns2e51
»73134

» TITIDPGPPDIRX

XX XTT®P®» TGP X

BE E PR EEE R TR RN RD D

AR B APAPRA A

anNp4 D RPpATFES R
ARRL® R 744007 A

NN TNRNN N R NN NNN

AND 1377 /STRIP OTHER CHARACTER
/AT THIS POINT HAVE CLOMNS 12,11,0,9,8,1=7
/WHERF 17 COOFN IN THREE RITS

DAC coTy /noL0
SAD CDALT /ALY MODE SPECIAL CASE, NO REMAP
Jup COGALT /REJOIN AS SPECIAL CASE
AND (2w 71F NINE PUNCH, PEC1AL CASE, REMAP TN 8,1 PUNCH
$ZA /COMBO FOR DUR TRANSLATE, SKIP IF NOT NINE
LAw -7 /ADDED YO '8' GIVES '8' AND '1!
TAD coTL JREMAPPED,
DAC coTy /SAVE, NOW TO MOVE BNTTOM FOUR BITS LEFT ONE
AND [$%4 /POSITION (9 POSITION NOW VACATED])
TAO coT1 /THIS DOES TT, LEAVING LOW ORDER BIT 2ERO
’ /NOW COLUMNS 12,11,@,8,1-7,2ERO BIT|
SKPICLL /RIDF YOUR MWEAD, CLL FOR COMING RTR,SKIP
/ /OVER ALTeMODE RE=ENTRY
CDGALY LAC (240 /INDEX TO ALT MOOE
RTR JRIGHT=LEFT TO LINK, INDEX 10 AC-
TAD (COTABL /TABLE ADDR
DAC coTY
LAC» coTY /GET PAIR FROM TRANSLATE TABLE
SNL /JHERE @ 1S LEFT, IN NORMAL SENSE
SwHA
RLE) PAKS? /5/7/ PACKER (IT STRIPS XTRA BITS)
182 cocoLc /€972
Jmp CORML2 /NO
JIMP COCLNS /YES

LNASENL N

TRANSLATE TaBLE 4 GROUPS OF 16 CHAR'S, TwO PER WORD, 8 WORD
SPACE BETWEEN LAST TWO GROUPS, IN WHICH WE PUT OTHER STUFF
CONDITINNALY2ED FNR 026=-829 OF COURSE, LEFT HAND CHAR IS FIRST,

«IFUND DECB26

COTABL P40@61 /BLANK, 1=PUNCH

262063 /2=PUNCH,3=PUNCH
064065 /4,5

066067 /6,7

n70871 /%, 9(CRDERED AS B8¢1)
N72043 /8=2,8~3

100047 /Q=4,8=5

A75042 /%=6,8=7

60857 /8,0e1

123124 /0-2,0=3

125126 /9=4,0=5

127130 /0=6,08=7

131132 /0-8,0~9(ORDERED AS @e8e1)
135054 /QeB8e2,0=8=3

B45137 /0wB8=4,0-8<>

276877 /0e8e6,0=8x7

255112 /11,11=}

113114 /11=2,11=3

115116 /1i=4,11=3

117120 /11=6,11=7

121122 /11=8,11=9(0RDERED AS 11+8=1)
041044 /11=B=2,11-8+]3
252051 /11e8e4,11-8-5
2873134 /11-8-6,11=8=7

+ENDC

«IFDEF DEC@28

COTABL 0B40064

262083
264265
066087
a7ee’y -
137078
180138
047134
a6e57
123124
125126
127130
131132
0730854
250042
N43045
nss112
113114
115116
117120
121122
n72044
952133
n76046
LENDC

NOW THE 8 LNC. BREAK IN THE TABLE

THE 5/7 PACKER, A LITTLE TRICKY PAKSW KEEPS A PC WHICH
TREMEMBERS! WHICH CHMARGCTER OF 5 WE ARE AT, TO INIT PACKER,
SEE TWO LINFS OF CODE AT PAKINT, NORMAL 'FLUSW' OQUT WOULD
BE TO SEND NUL CHAR'S UNTIL PAKSWsPAKI, IN THIS

HANDLER, PASY HISTORY SAYS WE TRUNCATE ALWAYS AT A WORD
PAIR BOUNDARY, EVEN FOR SHORT BUFFERS, 1 AM AFRAID TO
CHANGE THIS, EVEN THOUGH I DON'T LIKE 1T,

AKD? a /CALL WITH CHAR IN AC, (DESTROYED)

/PUSHES CHAR'S THRU X13, EARLY END CHECK
/IN CDWDCT,

AND (177 /STIP XTRA

CiL /FOR ALL ROTATES AND SWAPS|

Figure 4-2

PDP-15 CR11l RSX-PLUS III Handler (cont.)

4-24

788
789
790
793
792
783
794
795
796
797
798
799
LT
8l
802
8A3
804
895
11,3
8ny
828
829
8le
811
812
813
B8l4e
815
816
817
818
819
82¢
821
822
823
824
825
826
827
828
82¢
839
831
832
833
834
835
836
837
838
839
840
84y
842
843
844
845
846
847
848
849
-1.7]
851
8s2
853
854
8355
856
857
858
859
860
861
862
863
864
a65
868
867
865
869
87@
871
872
873
874
87%
876
877
87se
879
8Ro
-1L3]
882
883
884
88s
586
887

LLEPY]
apl27
LEREL]
AANIY
ani3ys

0333
LURERY]
amias
2R3 L
LERE b4
LERY L]
LERT L]
2342

2AN4N

LUEYY)

anvas
AANLR
LUAY b4
LI R1-1

22351
LURLES
ANIEY
AnIS4a
[LEYT1]

Ll RE1]
LI ALY
20367
LI AL
ARNE2
LLRTR]
fAREA
LLR11.]
OANER
LRI b4
AR3IT0

”R379
aAN72
LLEVA]
"n374
LIk 4]

APRT A
Li-kY N4
LI RL I
anamt
aB4n>
2% 403

AN4N 4
Ll P

LLYLY]
agapy

angyo
amdyy
LY IR
LIFTR)
LTIV
7415
LIV R
2nay7
LIV
0p421
LEFTT
*R4a23
LEEYY)
R4S

D DDVUVODUDUD sonuo

L)

DV OVOUT

R

OO0 UYUUUVOODOUULUTDOD

’22327
TannaQ
&2m323
mpm345
ARORFA

246101
172103
1pa1ns
1ARiR7
[REIRRY
LR BI04
n7ARSH
"53136

175np2

100327

745012
742030
nan332
1a0327

742010
742010
240332
LY LERYA
10m357

742028
747208
nan327
LT LLLE]
247332
260013
sar327
740020
soan707
»4am332
109327

742038
740020
247332
240332
180327

440566
741210
LT LY}
24n332
260013
Apr344

npm214
apnpnd

L LT 1)
apnEAR

202710
n6npr13
2en56v
723022
744000
c40711
140585
723002
260012
777777
n4m571
750038
1pma2t
spapk0

»TTWE T

>B > b>P b

TxTe»)

VOB P»PT P DL ™ EEr S I

TP OD»T TBOD » P

>

R B R R R R

JMPw
PAKSW HLT

IMPe
PAKI PAKST
PAKT a

PAKSW

PAKS7?

/10 WHATEVER ACTION THIS CHAR, NEEDS,
/POINTER TO ACTINS FOR CHARACTER
/THATIS ALL, OUT

/INIT PAKSW FOR FIRST CHAR,
/TEMPORARY FOR PARTIAL WORDS

/
/ KEST OF TRANSLATE TABLE

/
« IFUND
246171
1821¥3
104105
176107
11?11
133056
n74p50
253136
LENDC
« IFDEF
a5310¢
182193
104195
106127
118111
n77@856
751135
n74041
ENDC
175000

NOW REST OF

AKG JMS

NTOTN NN

PAKST RTL
SWHA
DaC
Jus

RTL
RTL
XOR
DAC
BLE]

RTR
RAR
DAC
AND
XOR
DACs
LAC
RAR
AND
nac
FLE

SwHA
RAR
XOR
DaC
JuS

1sZ
SKP[RAL
JMP
XOR
DACe
JmP

/

CDALT 211

COIPTRk @

/

/

coTy »

POST]
LENDC

DEC@25

/712,12=)
/12=2,12=3
/12-4,12=5

/12=6,

12«7

/12-8,12-9 (CRDERED AS 12=8-1)
/12-822,12-8=3
/12-8+4,12-8-5
/12-8<6,12-8=7

DEC@26
/ALT MODE, FOR BOTH PUNCH SETS,

5/7 PACKER

PAKSW /5TH CHAR WRAP BACK TO 1ST, JMS TO PAKSW
/LEAVES ADDR OF ACTION FOR 18T,!,
/1ST CHARACTER ACTION, MOVE TO LEFT OF WORD

PAKT /HOLD AS PARTIALLY ASSEMBLED WORD

PAKSH /LEAVE POINTER TO 2ND CHAR
/2ND CHAR ACTION

PAKT /MARGE WITH FIRST

PAKT /WALIT FOR PART OF 3RD TQ FILL WORD

PAKSW /LEAVE POINTER YO THIRD
/3RD, TWD PARTS, FIRST IS TOP 4 BITS
/RIGHT JUSTIFIED 1ST WORD OF PAIR

PAKSW /VERY=TEMPORARY IN HERE

€17 /IAP OTHER BITS

PAKT /COMPLETE 1ST WORD OF PAIR

13 /PLACE IN USER BUFFER

PAKSW /GET BACK THIRD CHAR (LINK STILL OK}!})
/2ND JOB, LOW THREE BITS OF CHAR TOP OF

(790223 /2NU WORD OF PAIR

PAKT /WHEW), HOLD THAT IN PARTIAL WORD

PAKSW /LEAVE POINTER FOR FOURTH
/4TH, SNUG UP TO 3 BITS ON TOP

PAKT /TOGETHER

PAKT

PAKSW /LEAVE POINTER FOR 5TH

COWDCT /OVERFLOW SHORY BUFFER?
/NO, RAL LEAVE XTRA BIT OF PAIR ON RIGHT

CDVER2 /UH=0H, GO CORRECY

PAKT /COMPLETE 2ND WORD OF PAIR

X13 /PLACE

PAKG /G0 PLACE PAKSW FOR FIRST CHAR OF FIVE

/POINTER TO INPUT DATA IN INPUT BUFFER

/FRMAT, LOW BIT RIGHT=LEFT FLIPFLOP

/TOP 47 BITS ADDRESS

/TEMPORARY FOR TRANSLATION

/@ WHEN NOT WAITING FOR INTERRUPT, 1 WHEN YES,

/ THE BUFFER WAS BEEN REMAPPED -= STORE A !CR' IN THE TRAILER
/ WURD AND SET UP THE HEADER WORD

/

CDCLOS LaAC
DAC+
LAC
AAC
CLL
ALS
TAD
AAC

REQCMA DAC»

REDCO» (AW
DaC

REQCMP CLA}Iar

SEV Jms
L1

(64002
X13
cocoLc
22

11
CORvVaAL
2

x12
-1
RRN

SEVRN
PG

/SET 'CR' IN USER BUFFER
/CDCOLC IS NEGATIVE

/ROTATE INTO PLACE
/SHIFT INTO POSITION
/ADD IN BUFFER OVERFLOW IF ANY (BITS 12 & 13 s1)

/SET HEADER WORD ONE
/SET RRN, SAYING NO MORE READ QUTSTANDING

/SuB, TO SET Ev, RETURN NODE
/G0 LOOK FOR MORE WORK

ROUTINE IS CALLED WITH VALE FOR EvV IN AC

Figure 4-2
PDP-15 CR1l1 RSX-PLUS III Handler (cont.)

4-25

1.1
889
890
891
892
B9y
894
895
896
897
898
80y
gap
971
9n2
9Ny
9na
997y
one
9e7
Sas
9ng
g10
911
912
913
914
918
916
917
918
919
voe
921
922
923
924
925
926
927
928
92y
930
931
932
933
934
935
936
937
938
93g
94y
941
94z
943
9aa
94y
EEL
947
Ydn
949
98y
951
952
953
954
955
956
957
958
959
96¢
964
GE2
963
564
98
968

967

968
969
97w
971
972
973
§74
97%
976
977
978
S7¢%
9Ay
981
982
983
984
98%
FLH]
987

LT
anNed?
apsym
LEYRY]
LY R
LET R R
"0434
LEPRL
LLYEY]
047
20440
AN44
LYY
2N44%
ARASA
LLFPLS
NP4k
Maa?
20450
LLPLY]

LIYLY
anany
LLYLY]
LY
AR
"rasy

rAaEM
LLYTY}
LEFLY)
LY LR

C 90D O0O0VDUIJUVIUODUVY YUUUVOODO

ApmRAPR
720004
o2prSA4
LLLLLY
147883
721000
210900
741200
apnaad
147563
721p00
730000
LT
207711
TRREMA4
ELLY 4L
LLLLY 4
12712
199713
LELY T

777776
16n701
agn7mL
o2n714
2an5RY
LI RN]

777771}
fRprasd
777757
spmapa

TXTXTTPIPP BLEN PRCDEP>

LTI TXTTP

T» X

THE NODE ADNR, IS IN RN

NOSET

~~ N

/o ererw
/
CDVER?

;
EVM7
Evm3a
/

’
Apvmé

/

/
/
/ EV IS SET, SIGNIFICANT EVENT DECLARED, 10CD ODOE, NODE RETURNED,
/
s

[

PaL /SAVE AC VALUE
LAl RN /NODE ADDR

DACw (R2 /SYSTEM ARGUMENT HOLDER
TAD XADJ /ADJUST FOR PREESENY PAGE
PAX /FOR XR ADDRESSING

LAC 6,% JEVENT VARIABLE ADDRESS
SNA /8X1P IF REALLY ONE

JMP NNSET /NGBPE, 80 DON'T SET

TAD XADJ /MODIFY IT FOR ADDRESSING
PAX

PLA /BRING RACK SETTING VALUE
nac a,x /THERE 1T GOES!

LAC (4n17@® /DECLARE A SIGNIFICANT EVENT
1S4

LaC tPOOL /GIVE NODE TO POOL

DACe (R1 /SYSTEM ARGUMENT REG

JMSe (1ocn /DECREMENT 10 COUNT

JMSw (NADD /GIVE BACK NODE

InMPe SEVRN /THAT/S IV

BUFFER OVERFLOW

Law -2 /BACKUP USER BIFFER PTR

TaDw tx13)

DACx (x13)

LaC (om) /SET OVERFLOW BITS FOR USE BY CDCLOS
DaC CORVAL

qup COCLAS

Lau -7 JILLEGAL DATA MODE,

Jup SEV

Law -30 /170 PARAM, DUT NF PARTITION,

JMP SEV

. IFUND UL1S

LAw =8 /ILLEGAL FUNCTION,
JMP SAEV /SET ABORT EV,

/0N ILLEGAL CARD PiUNCh, WATIT FOR KEANER NOT READY FOLLOWED 8Y

/HEADER

/
ILLCP

EN NN NSNS SN NNN

L1

WE ,SWa

Pv1

READY SEWUENCE BEFOWRE READING ANOTHER CARD,

LAaC (ERRMG2) /1YPE 'ILLEGAL CARD PUNCH',

IMS TTYOUY

RLE] WF.SwW /WAIT FOR REAUER NOT READY,
WFOFF /PSUEUN INSTR, FOR wF,Sw,

Jms WF o S5wW /WAIT FOR READER READY,
WFON /PSUEUN INSTR, FOR wF,Sw,

BLIJ RETRY /READ ANOTHER CARUL,

SUBK. TG wAlT FUR REALER NOT READY OR READY FOR READ

PER PSUEND INSTR. IN CALLING SEQUENCE, AFTER MARK TIME REGS,,
THE TRYG, EV, IS LHECKED FOR AN ABORT REA, IN THE QUEUE,

I+ TASk REQ, READ IS TG BE ABURTED, THE SuBw, DUESN'T

RETURN NORMALLY,RUT EVENTUALLY JUMPS 10 COABRT,

CALLINR SERUENCF?

Jms wE Su
PSUEN, INSTk, (WFOFF OR wFON)
SuBK, RETURN ,IF NO INTERVENING ABORT FOR THIS TASK,

”

LACs wF,Sd /GET PSUEDD INSTR,

nac PVt

1s2 Wk, S /BUMP EXIT,

CRRS /READ fARD READER STaTuS,

anD (29) /CHECK FOR READER READY FOR READ,

XX /SNA DR SZA, (READER READY IF NON=ZERO
InPs WF o Sw JEXIT,

caL MTCPR /MARK TIME FNR WAIT,

caL WFECH /WALT FOR MARK TIME INTERVAL,

nzm EV

LaC 76 JCHECK FOR ABORT REuW, IN QUEUE,

RTL

SMa /ABORT REW,.?

JuP WE SWA /CHECK AGAIN,

ozM 16 /YES. OFEGUEUE ABURT RERQ,

LAC PDVNA /PDVL NDDE ANPOR,

DaCx (rR1)

JIMSe (0QRA) /DEGUEUE ABRT, REG, R1,R2,R4,R5,R6,XR,AC
NOP /ALTERED, ASSUME ABRT, REQ, IN RUEUE,
DaC RN /SAVE ABORT REQ, NODE ADDR,

TAD xaDJ /SET XR.

PAX

LAC 64X /GET ARRT, REQ, EV,

DaAC ARE

LAC S, X JCHECK FNR ZFRO LUN,

AND (777a00) /BITS fi=8

SZA

JnP AEVME /ERRNR, NON=ZERO LUN,

LAC 2,X /GEY STL, NUDE PTK, AND CHECK AGAINSY
SAD STLA /READ REQ, STL NODE PTR, SAME?

Jup COARN /YES, ABORT READ REQ, AND CLEAN UP,

Figure 4-2

PDP-15 CR11 RSX-PLUS III Handler (cont.)

4-26

9R8
989
99¢
991
992
993
994
993
996
997
998
999y
leap
1eey
1aa2
1843
1604
1275
1606
1007
l1eme
106y
19te
1vit
1212
113
1012
1v1d
10186
1417
1018
1p19
1920
1221
1022
1023
1224
1725
1026
1027
1028
1029
1830
1034
1032
1033
1234
103%
103¢
1837
1834
1039
1rép
1e4]
1na2
1043
1944
1045
1n4e
1247
1048
tedy
10%5¢
1251
1052
1053
105¢
105%
115¢
1057
1056
1059
106p
1861
1062
1063
1e6sa
1065
14686

1067

1768
1069
107¢
1871
1072
1873
1674
1075%
1076
1077
1078
1879
1280
1081
1082
1083
1084
1088
1086

LIELY]
Ba65
LI
aNasy
2470
amazy

ApA72
n473
AMaza

L1-X¥ad
AN4TA
ARQ477
LLLT 1
AREpy

1502
ELLT-A
ansp 4
LELTL
ansp K
ANKH 7
LELIT)
A051 ¢
LI LT3

Ll LT
aAN%y 4
no%ys
LI L3N]
AN%1y
LLLT 1]
ne%oy
apson
LIL A
LI ¥
ANSO®
LLLVT
LlL1-}
A%
R8I
ansas
LIL R Y

AA%34

LT LIL

D 000U UVUUDDITVOOOU

200754
a6n647
202564
67651
129712
120713

120625
447577
"pn577

44957¢
705522
16057
TR5521
Ll Ld L]

777004
simped
747200
fP116
bLLELY
nenEal
opn5s64
nERES]1
120745

2PrNEd
T4AR5RI
721600
217002
S42556
751po]
cgrand
247571
7a17m)
RA%423
~APES]
2@n7m4
LLLIY Y
127212
127713
75701
man57 L

108625

LI LY k]

TR DT X

T x

Texe»X

TXTTTTTP DB

POVNA /NO, CLEAN)P QUEUE OF TASK TO Bt ABRTED,

/ALSD RETR, ABRT, REG, NODE TG POOL AND
/VECR, TRANSF, PEND, CNT, ABRT, REQ, NODE
/4DLR, TO R2,

/EMPTY REQ. GUEUE OF ALL I/0

/REG,'S MADE BY TASK BEING ABORTED,
/R1,R2,R3,R5,R6,X1K,¥X11,X12,XR,AC ALTERED,
/SEY ABRT, REQ, EV TO i,

/ABURT REOQ, EV,

/OELLARE SIGNIF, EVENT,
/RETRN, ABRT, REQ, NODE TO POOL,

/DELR, TRANSF, PEND, CNT,
/RETRN, NUDE TO PUOL,
/CHECK AGAIN,

/SET CARD DONE FLAG,

/PROCEED WITH ABORT,

/RETURN REQUEST NODE TO PONL

/DECREMENT TRANSF, PENDING COUNT

/CONDITION CODE | == CLEAR CONTROL,

/UISCONNELT

CLEAR /CLEAR DEVICE , WAIT FOR COMPLETION

/MAKE CONNECT A DISCONNECT (RURP)
/DISCONNECT

/POINT TN ASSIGN INHIBIT FLAG
/INRISBIT INTERRUPTS,

///7ERO IT

///ENABLE INTERRUPTS,

J/7EXIT

LaC
DACe (R1)
LAC RN
DACS (R2)
IMSe (UMTR)
LAC (1
SAEV PaL
LAC ARE
TAD XARJ
PAX
PLA
VAC a,x
LAC (4n1am0)
154
LAaC RN
DACs (%2)
LAC (POUL)
DaCe (R1)
JhS»* rrocn)
RLETY (NADD)Y
JIMP WF ,SWA
COAKRD CLAtTar
caC Coon
Jmp CDABRT
/
L.eNDC
JEJELT
/
/ EXIT REQUEST (FROM TASK “,,, REA")
’
DAEX LaAC (POOL)
DAC+ (R1)
LAC RN
DACe (R2)
RLET (Iocn)
IMSe (NADD)
+IFUND UC15
LacC (cc1)
CRrLC
caL DCPB
<ENDC
+IFDEF UuC1H
Jns
Is2 CCPB
CaL cCcPB
+ENDC
182 PDOVTA
T
DZMw PDVTA
+ENB
CaL nm
/

/
/ABURT REQUEST

/
CDOABRT LaAw

17vea /MASK Ty KEEP HALF WORD TO CHECK ABORT VALIDITY

AND 5,% /HAS 10 Bt ZEROD Tu BE 0K
SZa /7580 SKIP IF 0x
JImpP EVM6 /ERROR RETURNED IF NOT
LAC POVNA /MT THE DEQUE FOR THE ABOWRTED TASK
OACe (R1
LaC RN /ABORT NODE
NaCw (rR2 :
JMSe (OMTQ /THIS ROUYINE DDES ALL WORK
/
/ NOw WAS THIS ABORT FOR AN OUTSTANDING wEAD?
/
LAC RN /2+¢RkN IS STL NODF ADNR
Tan xang /USE &S IDEMTIFIEN
Pax
LaC 2,X
SAD STLA /SAME ADDR FNR LAST READ DNNE
SKPICLAICMA /5KIP IF SAME, SET upP -1
Jmp REACMP /NOPE, wE'RE DONE, GO GIVE BACK NODE ETC.
YOR RKN /NASTY, MAKES @ IF NO READ NOw! IN PROGRESS
SNAICMS /SKIP IF READ IN PROGRESS, RECREATE ITS NODE ADOR|
JmP REQCMP /NOPF, JUST COMPLETE
DAC+ (k2 /GIVE BACK NOOE AND TOCD FNk SUSPENDED READ
LAC tPoOOL
DACw (R1
JMSe (rocn
JMS# {NADD
CL&!CMa /SET READ NOT HWERE SWITCH
nac RRN
+1FUND UC1S
LaC (cct /CLEAR DEVICE
CrLC
»ENDC
«1FDEF UC15
Jus CLEAR /AND CLEAR FOR UNICHANNEL
+ENDC
JMP REQCMP /DONE
/
/
/
’
+EJECT

Figure 4-2

PDP-15 CR11l RSX-PLUS III Handler (cont.)

4-27

Apa38 0 NErOAR A
a0R37 B TRT762 A
aps4n 0 nacpad R

LLLYY)
anSe>
LEEY R
LLLYY]
LLLYL]
LLLY L]

LLLFY
ARKEA
LI L1-1]
285>
LLLLA]

TAK124
PILYLL
741200
LLLL1 3t
24P554
nan562

2pn711
Tes5n4
200
703344
&£om536

VT >O>

ER -

/
/ INTERRUPT SERVICE ROUTINE

/
INY 4
084
DAC START /SAVE AC
+IFUNO UC13
CRRS /READ STATUS INTO AC,
0AC Evi /SAYE FOR TASK LEVEL PROCESSING,
ANOD t2) /CARD DONE? BIT 16,
SNA
JMP INTY /NO, DON'T CLEAR CARD OONE,
DAC COON JPLACE 2 INTO CDON TO SAY DONE
LAC ({2} fYE3, CLEAR CARD DONE, LEAVE
CRLC /INTERR, AND DCH ENABLED,
INTY CRPC /CLEAR ALL BUT CARD DONE,
LAC (ccay /ENABLE INTERRS, DISABLE DCH
CRLC /NEEDED SINCE CRPC DISABLES INTERRS,
+ENDC
/
.IFDEF UC1S
CaPl /CLEAR FLAG FHOM POP=11
LAC POST /ARt WE WANTING AN INTERRUPT
SNA /SKIP 1F YES/USE VALUE YO SET
JnP INTAC /NO DO NOTHING
DaC COON /AS FLAG TO DISTINGUISH CARD DONE FROM CAL
DAC 16 JAND SET TG TO WAKE UP CAL LEVEL
LENDC
LAC (401909) /DECLARE SIGNIF, EVENT,
IsA
INTAC LAC START /RESTORE AC,
D8R
IMPe INT
JEJECTY

/
<IFUND UC1S
/SUBR, TO OUTPNT ERROR MESSAGES VIA ERRLUN. AC SHOULD CONTAIN
JANCRESS OF ERROR MESSAGE RUFFER,
/

TrYOUT @
oac TECPR4 /SET CPB BUFFER ADDRESS,
caL TE /YYPE ERROR MESSAGE,
CAL WFECH /wAITFOR EV,

JMPe TTYOUT
/
JERROK MESSAGE BUFFERS AND TABLE QF PTRS,:

/

ERRPT el
ERRMGY
ERRMG2
ERRNG3
ERRMG4
ERRMGS

RRMG] ERRMG2-ERRMG1+19AR/242

[}

LASCII 'wee CD READER NOT READY'<i5>
ERRMG? ERRMGIERRMG2#1000/242

1]

LASCIT tawe CD ILLEGAL PUNCH'<€i5>
ERAMGI ERRMGA«ERRMGIe1RN@/2+2

[}

ASCII t'#es CD PICK ERROR'<15>
ERRPGE ERRMGS-ERRMGA1800/2+2

a
LASCIT tewe CD DATA MISSED/PHOTO ERRORT<15>
ERRMGSS,
JEJECT
/ wwesw CARD COL TO ASCIY TRANSLATION TABLE wwwae

l4

JEACH TABLE ENTRY REPRESENTS VALID ASCII CARD PUNCHES WITH
/THE FOLLOWING FORMATE

/

/B17$ @ = 5 SIXBIT ASCII CHARACTER,

/BITS 6 = 17 CARD PUNCHES WITH THE FOLLOWING MAPPING1

/

/BIT & s ZONE (2

/bIT 7 = ZONE 11

/BITS 8 = 17 = IONES 8 = 9,

JTHE ASSEMBLER BUILDS THE TWOS COMPLEMENT OF BITS 6-17 VIA THE
47777041 OPERATION, THE TABLE IS ORDERED ACCORDING TO INCREASING
JMAGNITUDE OF CARD PUNCHES(CONSIDERED AS 12 BIY RIGHT JUSTIFIED
JINTEGER VALUES).

JEXAMPLES ASCTI 'S' HAS FOLLOWING TABLE REPRESENTATION:I

/

’ 71080107777+1

/

JWHERE PAR1 INDICATES ZONE ¥ PUNCHED AND 71 IS SIXBIT ASCII '97,
/

/GRAPHIC CHARACTERS FOR @28 PUNCHES ARE IN PARENTHESES BELOW:

/
COYABL COTABLe+t

dpapen /BLANK
7100010777744 /9
780002677771 /8
ATANOS07777 41 ’7
CP 340mpr6,420086 /")
660010067777 +1 ’6

Figure 4-2

PDP-15 CR11l RSX-PLUS III Handler (cont.)

4-28

1187
1188
1189
119¢
1191
1192
1193
1194
119%
1196
1197
1198
1199
1200
1201
1202
1203
1204
1225
1206
12087
12e8
1209
1210
1214
1212
1213
1214
1215
1216
1217
1218
1216
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
123e
1231
1232
1233
1234
1239
1236
1237
1238
1239
1240
124}
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1263
1262
1263
1264
1265
1266
1267
1268
1269
127¢
1274
1272
1273
1274
127%
1276
1277
1278
127y
1280
1281
1282
1283
1284
1285
1286

ANK54 & APAAR] A
AAKSE D ANPRPA A
ARKKL D AARARE A
ap%sSy p ARACRR A
2Q%ER @ AANARE A
AAB6Y R mAnARR A
fASEY R TACRD A
ANKEY D PANAPD A
ANSKY P apaaRs A
ANKES R ~CANARE A
ANKKR D APOPOY A

ANKET P ARCPAN A
ARK7m B Apren@ A
ap%yy © ¥77777 A

COTLNY
CDRALY

/

/ avvww

/

CDON
TST
STLA
ARE
¢pcoLc
Ev

TG
XADJ
RN
CORVAL
COWDCT
/

/

/ SAVE
/

ICaA
COR7CT
CORSCT
COTPTR
COTLEN
co77oe
CDCPTR
CDRwWD3J
CDRWD2
CORWDY
Evi

/

/
PUVNA
PDVTA
RKN

CP 470m12,759012
65382067777 +1
CP 360m22,4700822
640040067777+
MRARA247777 +1
63P10067777+1
CP 750102,432192
62020067777+
CP 37m002,720202
61040067777 +1
60100067777+
32102167777+
3110@267777+1
3I21004867777+1
CP 451p06,771006
27101067777+
CP 431012,761212
26102067777+1
CP 421m22,371022
25104067777+1
CP 501ma2,451042
241100677771
54110267777+
23120007777 +1
cP 7317202,351202
571400677771
55209007777 +1
2220R167777+1
21200207777+1
20200467777+
CP 462n26,342006
1720106777741
CP 762m12,732812
162082067777+1
CP 332m22,512022
15204067777 +1
52204207777+1
14219067777 +1

44210267777+1
1322006777741

CP 722502,412282
12242067777+

CP S34pen, 464090
11402167777+
10400267777 +1
P74004067777+1

CP 414006,364006
264012067777+

CP 744m12,5340812
W54¢¥2067777+1

CP 354p22,504022
M4434Rr07777+1

CP 514042,744042
234120077771
56410267777+1
P2420067777+1

CP 774202,334202
?14480067777 ¢
«=1=CDTABL/2
4402

<ENDC

<EJECT

/3 (')
/5

/e (A)
/4

/e

/3

/%8 (3)
/2

/% (9)
/1

/e

/2

Al

,x

/7 (%)
/W

/> (4)
/v
/RIGHT ARROW (")
/0

/% (0
Al

70

/S
/1083
2

/-

/R

/0

/P

/0 (3]
/0

/i (>)
IN

/)
m

YAl

/L

/%
/K
/)
/7d
/8 (+)
/1
/H
/6
/e (1)
/F
/¢ (<)
43

/0 (?)

INTERNAL VARIABLES w#wewe

PN DD D~

/CARD DONE FLAG,

/TEMP STORAGE FOR STATUS,

/STL NODE, ADOR,

/ABORT REG, EV,

/CARD COL COUNT USED IN TRANSLATING CARDS

/INTERNAL EVENT VARIABLE

/TRIGGER EVENT VARIABLE

Q /XR ADJUST CONSTANT TO SUBTRACT PAGE BITS

2

[
]

+IFUND UCIS

SOME RnOM FOR UC

7uQap

99 IINIS IS

-
m
z
o
o

a
777777

/ADDRESS OF THE REQUEST NODE PICKED FROM AUEUE
/BUFFER OVERFLOW FLAG WORD
/wORD COUNY CHECK WORD SET FROM I/0 REQUEST

15, THESE AKE NOT NEEDED

/INTERNAL BUFFER CURRENT ADDRESS POINTER
/SEVEN COUNTER USED BY THE 5/7 ASCII PACKING ROUTINE
/COUNTER FOR 5/7 ASCII PACKING

/POINTER TO TRANSLATION TABLE

/TRANSLATION TABLE LENGTH

/USED IN CARD TRANSLATION

/POINTER TO CURRENT INTEM IN TRANSLATION TABLE
12

// THREE WORD SHIFT REG, FOR 5/7 ASCII PACKING
/77

/CARD READER Ev,

/PHYSICAL OEVICE NODE AODRESS

/ADDRESS OF ADDRESS 0OF TEV IN PHY DEV NODE
/READ BEING PROC. FLAG, =1 IF NOT BEING
/PROCESSED, READ REQ, NODE ADDRESS IF BEING
/PROCESSED,

Figure 4-2
PDP-15 CR11l RSX-PLUS III Handler (cont.)

4-29

1287 AAKTO O APAPNR A TX12 [/TEMP, FOR 11?2 STDR,

12886 ANSTTL O ApopRY 4 Tx{3 a /TEMP, FOR Xx13 3TUR,
1289 AART4 © nosaRe A TOWe [4 /TEMP, FOR kEG, WL,
129¢ /
1291 <EJECT
1202 7
1293 / wwewe CAL PARAMETER BLOCKS weewne
1294 /
129% /
1296 ANR7IN @ anrp2d A WFTYCPB 20 /WAIT FOR TRIGGER CPB
1297 AARY& D apmSK2 R 6
129y /
1299 Aa%77 R f@nall A ccPe 11 /CONNECT CPB
13m¢ ANRER © 2n56] R Ev
1301 namay R 200015 A 15 /LINENUMBER
1302 22802 R AAa336 R INT /ENTRY ADDRESS OF INTERRUPT SERVICE ROUTINE
1303 /
1304 +IFUND UC15
1305 /
1308 / UCI5 SAVE SPACE BY LEAVING OUT SOME CAL'S
1307 /
1308 /
1349 /
131 WFECE 20 /WAIT FOR EV CPB
1311 Ey
1312 /
1313 DCPB 12 /DISCONNECT CPB
1314 [} /EV AODRESS
1319 15 ZINTERRUPT LINE NUMBER
1316 INT /CURRENT INTERRUPT TRANSFER ADDRESS
1317 /
1318 TE 2700 /WRITE TO ERRLUN,
1319 Ev
1320 ERRLUN /WRITE OUY YHE ERROR MESSAG TO THE DESIRED
1321 /TELETYPE
1322 2
1323 TECPBa XX
1324 /
132% MTCPB 13 /MARK TIME REQ,
1326 EV
1327 12 /12 UNITS,
1328 1 JUNIT (TICK),
1329 /
1330 WFCRCB 2@ /WAIRFAGR CR INTERRS,
1331 Evy
1332 /
1333 WFCRCD 2@ /WALT FOR CARD DONE FLAG TO BE SET,
1334 COON
1338 /
1336 «ENCC
1337 /
1338 7
1339 +IFDEF uC1S
1349 /
1344 7/ 170 INFORMATION , ROUTINES , ETC, FOR UCLS
1342 /
1343 / TCB (TASK CONTROL BLOCK) TELLING POP=11 TO SEND US A CARD
1344 7
1345 ADANY B M2K401 A TCe APISLT«400+APILVL /TELL PDPe1li WHERE TO COME BACK
1346 nGARA R PEMRRS A 0EVCOD /PIREX CODE FOR COJTHE 208 BIT SAY$
1347 / /wE ARE NOT TO BE SPOOLED,
1348 LULL LI (LT T.1- Y Evit] /EVENT VARIABLE FROM PDP1Y T0 US
1349 QKR P APOQRA A] /DUMMY, HIGH PORTION OF $8 BIT
1350 / /ADRESS, NOT PRESENTLY USED
1351 ARREPT B ARPAG] R IBUF /POINTER 7O BUFFER TGO PUT CARD IN
1352 RP610 © AQARRRY A 1] /JUNIT #3 FOR FUTURE GENERATIONS,
1383 /
::;; / TCB TO TELL PDP11 TO CLEAR OuT CARD READER DEVICE
/
1356 Rkt R PARARE A TCBK] /THIS WORKS, SEE PIREX FOR INFO,
1357 fN812 o PAZE0R A DEVCOD2177+4n@+200
1358 2A8{N P ARNARL A Eviik 1] JEVENT VARIABLE FOR CLEAR OPERTAION
1359 /
1360 ¢ POINTERS To veca, rvoay
1361 7
1362 ANB14 © COCENI R TCBP 7CB
1363 NR1% P 2AR61L R TCBKP TCBK
1364 /
13685
13:5 / CDIU IS THE SUBROUTINE TO SEND A TCB TO THE POP=11
13 /
N:B / CAL WITH THE ADRESS OF THE TCB IN THE AC
1369 /
137a DAKIA B AANPAR A [4:241] L]
1371 ARRL7 B 147605 R ozm Eviy /CLEAR ONE COMING FROM POP=11l
1372 &0 B 147613 R oz™ Eviik /AND THE OTHER ONE, IN CASE IT USED
1373 anR2y R TaReRl A $I0a /SKIP IF PDP=11 CAN TAKE REGQUEST
1374 apk2o © RANE2] R JMP o1
1375 AGA2N 0 7RRANRE A LIOR JTELL IT TO DO TCB WHOSE ADDRESS IN AC
1376 AAk24 P A20616 R JMPw colu /THAT'S ALL THERE 1§ TO IT,
1377 /
1378 /
1379 / CLEAR CLEARS SWITCHES, AND CD IN PIREX, WAITS FOR COMPLETE
1380 /
1383 AnAIR B ARANGY A CLEAR 4]
1382 NOR2A/ 0 1 404R7 R oz™ POST
1383 K27 © 147554 R Dz™ CDON
1384 ANAZN © 2anEI5 R LAC TCBKP /TCB FOR CLEAR
1388 ARAI| £ IRAE16 R PLE] €olu
1386 "PA32 D AgnRY4 R caL WFCLFR /wAIT FOR CLEAROUY

Figure 4-2
PDP~15 CR11l RSX-PLUS III Handler {(cont.)

4-30

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
139y
1ane
1404
1402
1423
1404
1485
1406
1any

api3y B KHnkS5
ARRBIL R MPAP2D
ANRAR © 2PME13
PRAKNE B TAAP2Q
ANKI? B 340716
ANRA B 42717
ApkaY B Rp0171
ONR4D B IPMAPE
ANRYY O 777777
AAK4a D m4ANGT]
ARRAS D Rpeaphy
oRANEAY

PPRAE B AQM252
RAK4TY P AQAIR]
PARSA P "A*NS4
AN&XY © APAIR2
ANRED © ANP123
ANKSY & CAnQID
20654 » PEr562
MNAKSE A7AR0R
ANKER B AAMIAT
0657 » 200777
ANKEM B ARAADA
LLET TR T
ANRES R PARR26
ARKEY B ApoR36
NRREL © onep7
AARES o 2AMI2S
ANKES n 7EAII2
ANKET 0 2p0an’
2087M o AAALPI
An871 B PAPIN4
ank72 b AP3L2
nR&7Y R ApopA3
AQK74 © 124691
0AA78 D Apn3aY
?0K76 @ 20Ma45
PRR7Y & mE1ARS
AATRA R AAPPR12
fRTprs © cspaptd
anTe? 8 ~pe377
20753 P ARANDD
a97r4 2 ME0240
ARA72% B ARA273
arTAE 0 ppmy77
20707 © 7RReMR
Q717 R MAEARAN
28719 » ap1@R@
20712 & rPaa3aed
ARTI B AAm4A7
23714 © MPOR6Y
APT1% B 2an3IE]
APTIR B KpMaRQ
70717 ® 777001
SI17E=zqar720

JMP CLEAR

/
WFCLER 20
Eviix

/ CDUCEC EXAMINES NEGATIVE EVENT VARIABLES FROM PIREX

/
CDUCECL CLLIRAR

/CLEAR OTHER TOP BIT

TAD (602307 /SIGN EXTEND TO PDP=15 WORD
SaD (777001 /THIS ONLY 'LEGAL' VALUE AT PRESENT
JMP RETRY /THAT SAYS PIREX 1S OUT OF NODES,
/ /WE SHOULD TRY AGAIN TO GtT ONE
JMS SEVRN /OTHERS, RETURN NEG VARIABLE AS Ev,
/ /THIS IS SLIGHMTLY FLAKEY, BUT WE
/ /REALLY SHOULD NEVER GET HERE}?!7?
Law -1 /SAY NO MORE READ OUTSTANDING
Dac RRN
ImP L] /BACK YO LODK FOR MORE wOWK
/
’
<ENDC
«END START

NO ERRCR LINES

Figure 4-2
PDP-15 CR11l RSX-PLUS III Handler (cont.)

4-31

4.6.3.3 Requests - Following handler initialization, requests can be
processed. Note that the request de-queuing algorithm (see Figure 4-2
lines 351-406) is executed whenever Q-I/O places a request node in the
list associated with the handler's PDVL node or whenever an interrupt
for the device has occurred on the PDP-15. The latter condition
implies that the handler's interrupt service routine (Figure 4-2, lines
1090-1119) will set the trigger event variable on each interrupt.

4.6.3.4 ABORT Requests - Because of the nature of the UNICHANNEL
configuration, ABORT requests should be handled on a high priority
basis. Hence, whenever the trigger event variable is set, the handler
should first check to see if an ABORT request has been issued.

(Figure 4-2, lines 352-356). This condition can be tested using the
following algorithm:

LAC TG /GET THE TRIGGER EVENT VARIABLE INTO THE AC
RTL /MOVE THE ABORT BIT INTO BIT ZERO OF THE AC
SPA /SKIP IF ABORT BIT IS NOT SET
JMP PICK /ABORT REQUEST-DEQUEUE AND PROCESS IT

. /NOT AN ABORT REQUEST--CHECK OTHER

. /REASONS FOR HAVING TRIGGER EVENT VARIABLE SET.

4.6.3.5 Interrupts - If the trigger event variable was not set due to
an ABORT request, either PIREX has issued an interrupt or a new
request for I/0 is pending. Before checking for new requests, the
handler should see if an interrupt occurred (see Figure 4-2, lines
358-361). If it did, the handler should check to see if an interrupt
was requested. Unrequested interrupts should be ignored but the
handler should finish processing the outstanding I/0O request if the
interrupt indicates that I/O is now complete.

If the trigger event variable was not set due to an interrupt and no
I/0 is being processed by PIREX, the handler can pick off the new
I/0 request and begin processing it (see Figure 4-2, lines 367-406).

On ABORT requests, the handler should determine if I/0 is in progress
on the PDP-11 for the task being aborted (see Figure 4-2, lines -
1057-1066). If so, the handler should issue a "clear device directive"
to PIREX to stop the I/O in progress (see Figure 4-2, lines 1072-1079).
The "clear device directive” must also be issued whenever a DISCONNECT

and EXIT request from the MCR function REASSIGN is processed (see
Figure 4-2, line 1032).

4.6.3.6 READ and WRITE Requests - READ and WRITE request processing
usually involves the following procedures:

1. Checking the range of the issuing task's TCB and buffer.

2. Making data conform to PDP-11 standards for WRITE requests
and PDP-15 standards for READ requests.

3. Sending a TCB directive to PIREX.

4-32

4. Waiting for PIREX to complete the operation initiated by
sending the TCB directive.

5. Checking the event variable sent back to the handler by
PIREX.

6. Setting data into the issuing task's request buffer for READ.

7. Sending an event variable to the task which initiated the
request for I/O.

The following is a brief outline of the procedure used by the UNI-
CHANNEL Card Reader handler when it processes a read request.
(Refer to Figure 4-2).

1. Dequeue the I/O request node (lines 351-406)

2. Check the range of the task TCB and buffer (lines 439-464).
3. Clear the TCB event variable (line 1371)

4. Clear the "I/O Done" flag (line 641)

5. Set the "Interrupt Expected" flag (lines 639-640)

6. Issue the READ TCB to the Card Reader Driver in PIREX
(lines 1373-1375)

7. Wait for the Trigger Event Variable (line 351)

8. When the Card Reader Driver has completed the request, the
Card Reader handler interrupt service routine sets the
Trigger Event Variable and the "I/O Done" flag (lines 112-113).

9. The handler then checks the Event Variable sent back by
PIREX (lines 652-655).

10. Convert the data to PDP-15 card format and transfer it to the
task's buffer (lines 664-878)

11. Set the task's Event Variable (lines 879-880).
12. wWait for the next request {(line 351).

Note that in order for a UNICHANNEL handler to function properly, the
PDP-11 must be able to access the handler's internal buffers and
TCBs. Hence, all locations within these TCBs and buffers must be
within the common memory accessible to the ppP-11.1 Also, note that
the RSX POLLER task should be modified to interrogate PIREX concern-
ing the status of the new device.

4.7 BUILDING A PIREX DEVICE DRIVER

A device driver is a software routine that performs rudimentary I/O
functions. PIREX device drivers typically operate in conjunction
with more complex PDP-15 handlers. While a rudimentary device driver
is typical, a PIREX task can be as complex as a full handler. The

(1) Depending on Driver task design the buffers for an NPR device
may not have to be in common memory.

PIREX XY driver is a good example of a very complex driver. The

PIREX line printer driver, a typical rudimentary driver, will be used
to examine the construction of a device driver.

4.7.1 General Layout
The general layout of a driver task (see Figure 4-3) consists of:
1. A stack area which will be used when the task is executing

2. The address of a device control register. This is used
to stop the device during STOP I/0 requests. Dummy addresses
are used for tasks which are not device drivers.

3. A 2-word busy/idle switch used to store the caller's 18-bit
TCBP. When the busy/idle switch is zero, the routine is
not busy.

4. The task request setup/processing section

5. The task interrupt processor section, if the task is a device
driver.

The task request setup/processing section obtains the parameters

from the TCB and uses them to set up the referenced device or process
the request. Entry into this section is made from the ATL scanner
or DEQU with the current task stack area active at the priority level
associated with that task. All general purpose registers are avail-
able for use by the current task at this time. The TCBP is stored

in the busy/idle switch preceding the request section and signifying
that the task is busy. Once some operation is underway or completed,
the task returns to the ATL scanner by issuing the 'SEXIT' macro in-
struction (refer to Section 4.7.2.4).

If the task is a device driver, the interrupt gection is cgllgd at
the completion of an I/O request. All device interrupt priority
vectors specify priority 7. This is dqne to save the general-purpose
registers on the current task stack pointer and lower the system to
the priority level of this task.

Control is transferred to the driver, which then checkg for errors,
tores status information into the TCB, clears the device busy

switch (the driver becomes idle when the busy §witch is cleared) and
sends an optional interrupt (via SEND1l5, see Figure 3-6) to the system
informing it that the request has been procegsed. The driver thgn
transfers control to the routine DEQU (see Figure 3—7) to determine

if more regquests are in its TRL. If not, contrql is transfer;ed to
the ATL scanner, after saving the task stack pointer and setting the
task status to the wait state in the ATL node.

4.7.2 Task Program Code

The task program code is necessary to carry out the task's function.

4-34

PIREX,116 MACROe11 V1A PAGE 29
LINE PRINTER DRIVER FOR LP11/15

1 .SBTTL LINE PRINTER DRIVER FOR LP11/15
5 +EVEN
6 i
7 177514 LPCSRa177514
8 177516 LPBUF=177516
] 020006 LPSAsS
10 Qeeni2 LPIOT=12
11 000014 LPSTAT=14
12 @91254 LPESTa P_EST+4 JADDR N PIREX ERROR TABLE FOR NQOT READY
13 991252 L PUNNS P.EST4#2 $ADDR FOR UNIT # (FOR NOW @)
14 0e@PA4a | PTCODs4 JLINE PRINTER TASK CODE
15 i
16 H
1?7)
t: : MAKE THE PDP=15 DN AL_ THE WORK, THE PDP=11 SIMPLY GET S A COUNT
20 7 OF CHARACTERS TO PRINT OUT. WE TREAT THE CONTROL CHARACTERS
21 § 12,185, AND 14 ONLY, A MINUS CHARACTER IS CONVERTED INTO MINUS
22 J THAT NUMBER OF SPACES. NOTE ALL REAL ASCII CHAR'S HAVE A ZERO LEADING BIT!
23 3 EACH LIMNE MAS AN TMPLTED CARRIAGE RETURN THAT IS ADDED BY THE DRIVER
24 3 RATHER THAN SENT BY THE POP=15
2% i
26 7 NOTE, IF HEADER WORD oF BUFFER HAS 420 BIT SET, 1T IS
27 7 IMAGE MODE, AND WE NIEFTHER BUT ON LF OR CRI!
28 5
29 [
3)} CALL TO ROUTINE HAS sDNHRESS OF TCB IN HANDLER BUSY (IDLE) REGISTER
31 H
32 26316 +BLOCK Ba+EAESTK*4)
33 08416 177514 WORD LPCSA JADDRESS OF LPCSR CONTROL STATUS
34 3 REGISTER USED TO RESET DEVICE
35 i ON STOP 1,0 OPERATIONS,
36 26420 208000 JHORD @ ;TCB POINTER (EXTENDED BITS)
37 26422 200000 JWORD @ ;TCB POINTER (LOWER 16 BITS), THIS
38 1 WORD IS USED AS THE IDLE/BUSY
39 I SWITCH FOR THE DEVICE DRIVER,
40 [} :
41 06424 LP:
42 08424 0R5037 . CLR eSLP.CL JCLEAR OUT ANY PENDING TIMER REQUESTS FUR US,
081350
43 p6430 ¢16700 MQY LP=2,R0 JSETUP R@ TO POINT TO TCB
77766
44 06434 éQ;,sg CLR LPSTAT (Rg) $CLEAR STATUS FLAG IN TCB
ooppl4
45 g6440 012231 MoV LPSA+2(R9) ,RY JGET BUFFER START ADDRESS
dveeln
46 36444 aaggsg ST LPSACRA) JDON'T RELOCATE ADDRESS IF RIT 15
vogen6
47 26452 128423 BMl 13 i IS ON,
48 76452 VB63AY ASL R sRELOGCATE ADDRESS (WORD TO BYTE POINTER)
49 06454 066791 ADD MEMSTZ,R{ 70+ 11'S OWN LDCAL MEMQRY)
171360
50 06460 112132 183 Mave (R1)+,R2
51 26462 0427082 RIC #177400,R2 JCLEAR OUT TOP OF REGISTER
177400
52 26466 112767 MQVB #15, PFOL jDEFAULT, ASCII, HERE IS <CPR>
002015
000464
53 p6474 122121 28¢ CMPB (RiJe, (RY)+ JRizZR1+2
54 96476 11272} MOVB #12,(R1)s ;DEFAULT, PRECEED LINE WITH LINE FEED
4ope12
55 06502 132761 8178 #1,=3(21) 7402 BIT SET IN WEADER IF IMAGE
900001
177775
56 96510 201403 BEG 33 iNOT IMAGE, CHECK FORMS CONTROL
57 26512 105867 CLRB LPEDL $IMAGE, DON'T FORCE CR AFTER MESSAGE
000442 ’
58 96516 020410 B8R 43 FALLOW ALL FORMS CONTROL
59 26529 5%27i‘ 3s: cMPA %14, (R1) JFIRST CHAR FORM FEED?
0014
60 06524 281405 BEO 4% . JYES, DON'T aDD LINE FEED TO LINE
61 06526 122711 CcMPB #15, (R1) $FIRST CHAR CARRIAGE RETURN
200013
62 26532 201422 BEG 4s JYES, DON'T ADD LINE FEED TO LINE
63 A6534 203301 DEC R $MOVE POINTER BACK TO LINE FEED
64 06536 235202 INC R2 JCOUNT ADDITION OF LF TO BUFFER
65 06540 010267 453 MOV R2,LPBTCT 13AVE COUNT
0ag410
66 06544 212167 Mov R1,LPBIFF $SAVE POINTER
20p402
67 26550 105067 CLRB LPTaAR
20p402
68 96554 :25737 TSTR eNLPBUF JHISTORY SAYS THIS HERE
7516 .
69 26568 952737 BIS #100,8#LPCSR JENABLE INTERRUPTS TO LP GOING
0d@100) :
177514
70 96566 SEXIT WAITST FEXIT IN A WAIT STATE AND RESCAN
06566 900004 107
06579 200 LBYTE Q/WAITST
265374 902
71] THE ATL NOW,
72 '
73]
Figure 4-3

IUNICHANNEL LP Driver
4-35

PIREX.316 MACRO=11 ViA PAGE 3n
LINE PRINTER DRIVER FOR LP11/15
1

y LP INTERRUPT ENTRANCE
2 !
3 eo6s72 LPINT:
4 006572 042737 BIC #100,08LPCSR FOISABLE LP INTERRUPT
0dpe100
177514
5 passep vd4pb? JSR RO,R,SAVE © JSAVE REGISTERS
173154
8 PR6604 R3poR4 Il 1TASK CODE
7 2066R6 216700 MOV LP=2,R0 JGET TCB POINTER
177610
8 006612 9215@a7 RER LPxr 7IGNORE IF ITS ALREADY BEEN STOPPED BY
[} 1 A STOP 1/0 REGUEST,
10 26614 035737 TST sM_PCSR JCHECK FOR ERROR
177514
1{ 26620 100454 BMI LPERR JYES
12 06622 095037 CLR ohLP CL JCLEAR QUT ANY PENDING TIMER REQUEST FOR US,
221352
13 26626 LPLOP:)
14 06625 1057?7 7378 eRLPCSR 11S PRINTER CURRENTLY GOING?
77514
15 06632 100043 aPL LPSTIL FYES: FORGET CHAR FOR NOW
16 06634 33578: TST8 LPTaR JIN TAB EXPANSION TO SPACES?
831
17 26649 10042} BMI 43 1YES
18 26642 005387 DEC LPBeTCT 3DECR CHAR COUNT
0dplas
19 26646 1020424 aMl 53 IWENT TO <1, MAKE CR TD FINISH LINE
20 p665g xz57;7 TST8 sLPBUFF $MINUS BYTE IS TAB EXPANSION COUNT
000276
21 86654 100406 - BMI (1] 118 ONE, GO SET UP
22 26656 117737 MOve #LPBUFF, p#LPBUF }STICK CHAR INTO LINE PRINTER BUFFER
220279
177516
23 06664 2052687 INC LPBUFF - IMOVE POINTER TO NEXT CHAR
009262
24 06670 002756 BR LPLOP 760 DO NEXT
28 !
26 P6672 117787 8¢ MOVR #LPBUFF, PTaB JSET UP TAB COUNT (MINUS, A LA 15)
200254
229256
27 a67pa 235267 INC LPBUFF
000246
20 96704 (835267 asi INCB LPTan JCOUNT A SPACE FOR THIS TaB
00@246
29 06710 112737 MOVB #40, 8% PRUF $SPACE TO LINE PRINTER
0op04n
177516
30 25716 2Q743 RR LPLeP ;G0 DO NEXT
31 86720 105767 53: TSTR LPEOL ;IMAGE OR AsCII
@234
32 06724 821403 BEG 78 s IMAGE, DON'T FORCE <CR>
33 06726 118737 MOVB LPEOL, % PBUF FASCII, HERE 1S <CARRIAGE RETURN>
@Pa226
177516
34 p6734 005260 758 INC LPSTAT(RD) 7SET REV TO GOOD COMPLETION
LL.LT3¥]
35 06740 000417 BR LPXIT
36] '
37 06742 ©52737 (PSTIL: BIS #120,04LPCSR JENABLE INTERRUPT Om LP
080100
177514 .
38 26750 vAe4lt ar LPyrTy FRESTORE RE=R3 AND RETURN
39 1
42 067352 212737 LPERR: MOV WLPCHK, 04LP.CL+2;ADDR FOR TIMER REQ,
07064
201352
41 06768 212737 MoV #170,08Lp,CL 7TWO SECONDS IN TICKS (GCTAL)
[TL-304]
©o135¢
42 06766 112737 MOVB 4,04, PEST FERRCR CODE {, NOT REANY TO TABLE
2000084
001254
43 06774 00Q167 LPXITyt JMP pEQUY 7SCHEDULE NEXT TaSk
. 174270 .
44 !
48 07000 105037 LPXIT! CLRS SHLPEST 1INDICATE SUCCESSFULL OPERATION
001254
46 7004 032787 BIS #340,p8 TINHIBIT INT,
800340
170764
Figure 4-3

UNICHANNEL LP Driver ({cont.)

>
1

36

PIREX,.i16

MACRO=11 V14

PAGE 3me

LINE PRINTER DRIVER FOR LP11/15

47
48
49
se
51
52
53
S4
53
56

71

72

73
74

e7p12
87816
@7e22

07026
07026

@7e32
87e32
27040
P7244
07050
e7es54
7060

27264

27070
p7872

e70e78
27109

07104
e711@

27116
er7124

07132
27134

87142
07144

7150

e7152
07154
27156
27160
27161

eesa37
177514
012704
LLLL-L}
e16700
177374

004767
174300

052767
0dp340
170736
eas5067
177356

085067

177350
0127083
006424
Q12701
epy4de
820167
174122

005767
177332
001427
205737
177514
109422
e12702
eagaie
216201
001140
012767
086424
177274
04276;
o2ge!

02p006
012764
086376
vdge0d
806202
1168267
o124
177252
%0402
012710
e0p17e
o2p207

edpeeg
Jepee0
¢opoe0n
.11]
1]}

LPXT:

v = e ~e =y

PCHK?

781
1833

H
LPBUFF
LPBTICT:
LPTAB:
LPEOL:S
LPXTRs
J

H

CLR
MOV
Hov
CALL
ISR

BIS

CLR
CLR
MoV
MOV

JMP

8T

BEQ
TSY

BMI
MOV

MOV

MoV

BIC

MOV

ASR
MOVB

BR
MOV

RTS

+HORD
+WORD
«WORD
+BYTE
+BYTE

LENDC

e¥LPCSR FSHUT LP INT, ENABLE

#1,R1 JTELL CALLER DONE

LP=2,R0 1GET TCBP

SEND15 $TELL CALLER DONE

PC,SENNIS

%340,P8 JINHIBIT INTERRUPTS

LP=2 $CLEAR BUSY(IDLE) FLAG

LP=a

#LP,R3 JDEQUEUE ANOTHER REQUEST IF ANY
#LP,LH,RY [} IN THIS DRIVERS DEOUE,
pEou

SUBROUTINE TO FIELD CLOCK COUNT=DOWN

LP=2 $HAVE WE BEEN DISABLED

108 11F YES, EXIT, LEAVING CLOCK DISABLED
ORLPCSR JERROR FIXED

78 JMINUSENO,RESTART 2 SEC, TIMEOUT
#LPTCOD*2,R2 $SCAN ATL FOR OUR NODE

‘ATLNP(R2) 4R1

#LP, L Pel2 JRESTART AT BEGINNING OF REQ,

#17,4,TS(R1) JR1 POINTS TO OUR NODE, MAKE RUNNABLE
#LP=26,A,SP(RL) 3SET UP STACK POINTER

R2 JMAKE BYTE ADDRESSING
LEVEL (R2y,LP=18 FSET UP PS

103
#170, (RO) JRO POINTS TQ TIMER ENTRY
pC JRETURNS TO cLOCK
) JBUFFER POINTER
s JBYTE COUNT
e $TAB LOCATION
2 7@ IF IMAGE, 15 IF ASCII
] $MAKE EVEN
Figure 4-3

UNICHANNEL LP Driver (cont.)

4-37

4.7.2.1 Code Sections - The program code section of a device driver
is composedjpﬁ three or four of the following subsections (refer to
Figure 4-3). .

1. Equates, device locations, etc. (Page 29, lines 7-14).

2. Initialization and I/O request section (Page 29, lines 1-73);
used to set up and initiate a device operation.

3. Interrupt section, used to respond to the completion of a
device operation and to check for errors (Page 30, lines 1-59).

4. An optional clock wake-up section; used to check the correc-
tion on an error condition and either retry the offending
operation or set another wake-up call (Page 30, lines 60-86).

4.7.2.2 Task Entry--Initialization - When the task is initially
called, the user stack area is reset. Execution normally begins at
the first location of the program code. At this point, all general
purpose registers are available for use by the task. If the task is
interrupted by a higher priority task before completing the request,
execution will resume at the point of interruption when program
control is returned. Various steps in device driver (Figure 4-3)
initialization include:l

1. Clearing out any pending timer requests (if the task uses
wakeup services). (Page 29, line 42).

2. Setting up a pointer to the data buffer and relocating the
pointer value if it comes from the PDP-15 (Page 29, lines
43-49).

3. Various device dependent operations (Page 29, lines 50-68).
4. Start up the device (Page 29, line 69).

5. Exit in a WAIT state (Page 29, line 70) until reawakened by
an interrupt (see Section 4.7.2.4).

4.7.2.3 Interrupt Processing - An interrupt transfers control to the
device driver interrupt section at priority 7. Interrupt processing
(Figure 4-3) is composed of the following steps:

1. Disable the device interrupt (Page 30, line 4)

2. Save the interrupted task registers switch stacks and drop
down to the task's actual priority ‘as specified in the LEVEL
table. This is all accomplished by a JSR RO, R.SAVE (Page
30, lines 5 and 6).

N

3. Test the task busy idle switch to see if the request has been
cancelled (Page 30, lines 7 and 8). If it was cancelled,
use the normal DEQU exit without sending a completion message
to the caller (see Section 4.7.2.4).

(1) Page number refers to the page number at the top of the PIREX
listing.

DOS-15 V3B@g@F Update Document
4. Perform task interrupt processing and error checking
(Page 30, lines 10-36).

5. If a correctable error is detected, set the error code in
the DEVST table. This error code should indicate a correct-
able error. The DEQUl return should be used in conjunction
with a clock wake up call to allow automatic retry of the
operation (Page 30, lines 40-43). See Section 4.7.2.4 for
information on DEQUl and Section 4.7.3 for information on
the timed wake-up.

6. If a fatal error occurs, the event variable should be set to
indicate this eror.

7. If the operation was successfully completed, use the normal
exit procedure described in Section 4.7.2.4 (Page 30, lines
45-57).

4.7.2.4 Exit Techniques - When a task has finished execution, it can
exit by issuing the SEXIT macro (exit and change state of task to
llsll) .

.MACRO SEXIT s
I0T

.BYTE 0,s
.ENDM

The SEXIT macro allows a task to change status to state "s" after
exiting. A task state of "0" indicates the task is runnable, a
state of "2" indicates a wait state, and a state of "4" indicates a
stop state with removal of the ATL node. Task states must always

be an even number since they are used to compute a word index in the
PDP-11.

There are actually three modes in which a task may exit. 1In the first
mode, used on completion of a request, before a task exits. it must:

1. Zero the busy/idle switch.

2. Set the caller's Event'Variable to indicate the nature of
task completion and send an optional interrupt to the
PDP-15 or the PDP-11.

3. Dequeue a request from its deque and process it if found;
otherwise exit.

Before a task can begin the three previously mentioned steps, it must
be executing at level 7 (the highest priority level in the PDP-11).
As an example, assuming a task name is "XR" (the first executable
instruction of every task has the task name as its label), then the
following program code would accomplish the three necessary steps:

BIS #340, @#PS;INHIBIT INTERRUPTS

MOV #?,R1 ;SET CALLER'S EV TO ? (APPROPRIATE VALUE)

DOS-15 V3Bggg Update Document

CALL SEND15 ; AND SEND CALLER

AN OPTIONAL INTERRUPT

~s

TELLING THE REQUESTOR THAT THE

~

REQUEST HAS BEEN PROCESSED.

~e

(A COMPLETE LIST OF EVENT)

~

VARIABLE SETTINGS MAY BE

~e

FOUND IN SECTION 3.2.5.4

~

BIS #340, @#PS;INHIBIT INTERRUPTS,

CLR XR-2 ;CLEAR THE BUSY/IDLE SWITCH ("XR" is the tag
associated with the first executable
instruction in the task program code.)

CLR XR-4

MOV #XR,R3 ;DEQUEUE ANOTHER REQUEST IF ANY

MOV #XR,LH,R1

JMP DEQU ; EXISTS IN THIS TASK'S DEQUE

IF A REQUEST EXISTS, NO RETURN

~e

.IS MADE FROM ROUTINE DEQU

; AND THE REQUEST IS AUTOMATICALLY
; REMOVED AND PROCESSED AS IF IT

; WERE JUST RECEIVED WHEN THE

; TASK WAS IDLE.

This first method is used in the interrupt section upon successful
completion of a request. The second method is one where the task
exits from the initialization section (Figure 4-3, Page 30, lines
46-57) in a wait state using the SEXIT macro, and an interrupt
routine or other task will complete the previously mentioned three
steps at a later time. A device driver is typically exited in this
way (Figure 4-3, Page 30, line 75). The initial section of the
device driver is used to set up the device controller and begin the
I/0 operation. The task will then exit in a wait state until the I/O
is complete, the interrupt section is called, the device is shut down,
and the previously mentioned three steps are done informing the
requestor that the I/O operation has been completed.

The third method of exiting is one used either when a recoverable error
is detected in the interrupt section of a driver and the intention is to
exit and wait for an error recovery or when another I/0 request is issued
in the interrupt section and another interrupt is expected. This exit
through DEQU1 does not cause the dequeuing of pending requests but simply
places the task in a WAIT state. This method assumes that an R.SAVE has
been performed upon entry to the interrupt process routine. The required
code to use this exit is:

JMP DEQU1

No registers are preserved by this exit. Control is returned to the
interrupt section upon occurrence of an interrupt or via the clock
routine wakeup, to a location chosen by the clock set up section.
(Figure 4-3, Page 30, line 43).

4.7.3 Timed Wakeup

In the design of a device driver it is useful to include features that
eliminate operator intervention whenever possible.

For instance, in the example of the PIREX Line Printer Task, an OFF
Line condition is handled by retrying the printing every two seconds
until successful. This is accomplished by using the wakeup feature of
the Clock Task. This is done by simply placing the return address

and the time delay into the Clock Table "CLTABL" (See Section 3.3.4)
Figure 4-3, Page 30, lines 40-41) and the exits using the DEQU1 type
exit.

When the wakeup call occurs, the clock wakeup subsection specified
by the return address will be invoked. In this subsection:

1. Test the task IDLE/BUSY switch to see if the task has been
shut down. If shut down, a RTS PC return to the Clock Task
is in order. (Page 30, lines 64-65, 77)

2. Determine if the error has been corrected. If not, reset
the timer and RTS PC to the Clock Task. (Page 30, lines
66-67, 76-77).

3. If the error has been corrected, reprocess the original TCB
request and return to the Clock Task. (Page 30, lines 68-75).
This will cause PIREX to retry the TCB. '

4.7.4 Assembly and Testing

4.7.4.1 Assembly and Loading - New PIREX device dirver should be
assembled as a part of the PIREX monitor. Background tasks may be
assembled separately.

In the background task case, the user should construct a PDP-15 pro-
gram to load the background task binary into PDP-15 memory. The
PDP-15 program must then issue a CONNECT Directive (Section)
To start the task, if the task is to execute in PDP-11 ‘iocal memory,
two additional steps are required:

1. Issue a local memory size directive to determine if there
is enough local memory to accomodate the new task.

2. 1Issue a CONNECT directive (assuming there was enough room
in local memory for the task).

3. After issuing the CONNECT directive, use the initial portion
of the PDP-11 code to move the remainder of the task into
the local memory starting at the first free location.

4.7.4.2 Testing - Since the typical UNICHANNEL system does not have

a terminal device attached to the PDP-11 processor, the only debugging
facility present is the console indicators on the PDP-11l. An
additional aid is the UDMPll paper tape provided with all UC1l5 DOS-15
systems. This program provides a destructive dumping facility that
recovers the entire state of the PDP-11 LOCAL memory and dumps it into
the LP11/LS11/LV11 Printer. (Note: The UDMPll program is an
unsupported package that can only be used on systems with a printer
device on the PDP-11 UNICHANNEL Processor). For tasks executing in
the common memory, the traditionalf Q-DUMP feature of the D0OS-15
monitor should be used.

4-42

DOS-15 V3B@FgZ Update Document

CHAPTER 5

SPOOLER DESIGN AND THEORY OF OPERATION

5.1 INTRODUCTION

This chapter discusses the design concepts of the UNICHANNEL-15
SPOOLER software and its theory of operation. This information is
provided to enable the user to understand the SPOOLER software in
order to add new SPOOLED tasks or to modify existing software. The
actual modification process is described in Chapter 6. Flowcharts are
provided whenever it is necessary.

5.2 OVERVIEW

5.2.1 SPOOLER

The word 'spool' and 'spooling' originated in the textile industry.
During thread manufacture, the threads are wound on small spools by
first storing them on large spindles and then transferring them onto
small spools. This entire process is called spooling. In the com-
puting industry, the term spooling is used to describe the process of
collecting and storing data on a large high-speed medium and con-
trolling the flow of this data to slow speed devices. The "SPOOLER"
is a distinct piece of software that controls the entire spooling
operations. Spooling permits data flow between a data source and a
data sink to proceed at independent rates. This feature gives the
user greater computing power and faster turn-around time because of
better system resource utilization under an integrated operating
system.

5.2.2 UNICHANNEL-15 Spooler

In the UNICHANNEL-15 system, spooling is achieved by using the dual
processing capability of the system. The two processors, PDP-15 and
PDP-11, operate in the Master and Slave mode respectively. The Slave
processor (PDP-11) controls the entire spooling operation. Data to

be spooled is supplied by either the master processor (PDP-15), or by
tasks running under PIREX. Spooled data is stored on a disk cartridge.
The Line Printer, Card Reader, and the Incremental Plotter, all being
UNIBUS devices, are supported by the UNICHANNEL-15 spooler.

5-1 J-35

DOS-15 V3B@gPP Update Document
5.3 SPOOLER DESIGN

The UNICHANNEL-15 SPOOLER is based on a simple design. Spooling

of data is done through the RK05 disk. A contiguous portion of
disk is allocated via SPLGEN for this purpose by the operating
system on the PDP-15. The starting block number and the size in
terms of number of blocks is conveyed to the SPOOLER when it is
issued the 'BEGIN' directive. The SPOOLER allocates and deallo-
cates this space on the disk through a BITMAP it maintains. The
spooling and despooling operations of every task are performed
through a central "TABLE", in which every spooled task has a slot.
Against each slot there are several entries used to keep track of
the data during spooling and despooling. Provisions are made

in the SPOOLER to permit spooling of data regardless of the number of
blocks occupied in the spool space and the number of buffers in the
SPOOLER provided despooling operations are going on. This prevents
system lockout. All the data blocks on the disk belonging to a
spooled task are linked together by forward pointers stored in the
last word (377g) of each data block. The end of data in a block is
indicated by a zero word. Records are assumed to be less than 3748
words in size. The last block in a spooled file has a pointer to
the previous file's last block in word 'l'g or a -1 if there is no
active previous file, if the last spooled %ile has not yet been
despooled. Also the last block in a spooled file contains an end of
file indicator in word '376g' of the data block. Sections 5.3 and 5.4
describe the static layout of the spooler. The dynamic layout is
described in Section 5.5.

5.4 SPOOLER COMPONENTS
The following are the major components of the SPOOLER software:
1. request dispatcher
2. directive processing routine
3. task call service routine
4. device interrupt dispatcher
5. device interrupt service routine
6. utility routines
7. buffers, TABLE, BITMAP, TCBs

A brief description of each of the above components follows.

5.4.1 Request Dispatcher

This routine dispatches (routes) all requests made by the SPOOLER and
requests to the spooled tasks. This is done by using the TCN in word
'1' of the TCB. The dispatcher transfers control to the appropriate
directive processing routines, in the case of spooler requests and

to the task call service routine, in the case of requests to spooled
tasks.

J-36 5-2

5.4.2 Directive Processing Routines

These routines process directives issued to the SPOOLER to control
spooling operations. The basic operations are "BEGIN" spooling and
"END" spooling. These routines may initialize switches, TABLE, BIT-
MAP, pointers, buffers, set up TCB, start tasks, stop tasks, ... etc.

5.4.3 Task Call Service Routines

A task call service routine processes requests addressed to tasks
running under PIREX. It spools data onto disk in case of output tasks,
and for input tasks it despools the data from disk. Output tasks buf-
fer data from several requests into blocks and transfer the blocks to
disk when full. Input tasks read into core, data blocks stored on
disk, and unpack the data into the requestor's buffer. Task Call
Service Routines update the TABLE, pointers, and switches, and use the
utility routines present in the SPOOLER to write or read a block onto
or from the disk, get or give a buffer, get or give a TCB, etc. (Refer
to Figure 5-2.)

5.4.4 Device Interrupt Dispatcher

All interrupts from devices interacting with the SPOOLER are dispatched
by this routine to the appropriate service routines. This is done by
using the TCN of the requestor for that task request present in word
'138' of the TCB.

5.4.5 Device Interrupt Service Routines

These routines handle completion of I/0 requests from devices. They
supplement the driver routines present in PIREX as in the device
handlers. Besides the disk interrupt service routine, each spooled
task has its own interrupt service routine. The disk interrupt ser-
vice routine is made up of the "read interrupt processor" and the
"write interrupt processor." These are in turn made up of routines
handling read/write operation for each specific spooled task. The
interrupt service routine of a spooled task controls the despooling
operation for output tasks and the spooling operation for input tasks.
These operations are driven by the table entries which determine the
end of the operation. Device interrupt service routines update the
TABLE, pointers, switches and use the utility routines to write or
read a block onto or from the disk, get or give a buffer, get or give
a TCB, etc.

5.4.6 Utility Routines
Each SPOL1l utility routine performs a specific function. They are:

FINDBK Find a free block on disk and set its bit in the
BITMAP Table (protected).l

(1) Protected routines are those run at priority level 7.

FREEBK Free the block indicated and reset its bit in the
BITMAP Table.

GETBUF Get an unused buffer from the buffer pool(profected).l
GIVBUF Give the used buffer back to the buffer pool.

GETRKT Get a disk TCB from the Disk TCB pool.

GIVRKT Give back the TCB to the Disk TCB pool.

GETBLK Read a block from disk.

PUTBLK Put a block on disk.

GETPUT Get or put a block on disk.

RESTRQ Reissue a delayed request.

DEQREQ Tell requestor that a request is done and dequeue

the next request, if any.

5.4.7 Buffers, TABLE, BITMAP, TCBs

Buffers The SPOOLER maintains a pool of buffers in a doubly
linked list for general use. Buffers are used to
pack data into blocks to be written onto disk (by out-
put -task call service routines) and to unpack data
from data blocks read from disk into requestor buffers
(by input task call service routines).

TABLE The entire spooling and despooling operation of all
tasks is controlled by entries in this table. Every
spooled task has the following entries:

WORD 0: DEV device mnemonic (set by the BEGIN
routine)

WORD 1: CBN current despooling block number (set
by the despooler).

WORD 2: CRP current record pointer (set by the
despooler).

WORD 3: NBN next despooling block number (set by
the despooler).

WORD 4: LSB last spooled block number (set by the
spooler).

WORD 5: LFB last spooled file block number (set by
the spooler).

(1) Protected routines are those run at priority level 7.

DOS-15 V3B@@P Update Document

BITMAP A record of availability of disk spooling space is
maintained in the BITMAP. Corresponding to each disk
block reserved for spooling is a bit which is 'ON'
if the block is in use and 'OFF' if free.

TCBs Buffered blocks of data are read from disk and
written onto disk using TCBs. Output spooled tasks
despool data to devices using TCBs and input spooled
task spool data from devices using TCBs.

5.5 THEORY OF OPERATION

This section will describe in detail the flow of control in the
SPOOLER among the above components. To illustrate this process, the
spooling and despooling operations of the Line Printer will be dis-
cussed. The routines in the SPOOLER listing (Figure 5-~1) are broken
up into logic boxes and referenced by line numbers.

5.5.1 SPOOLER Startup

Spooling under an operating system on the PDP-15 is accomplished as
follows. The SPOOLER task should be added to PIREX, by reading

it into local memory and connecting it at run time via SPOOL
(SPOL15). As supplied by DEC, the SPOOLER is a separate binary
program from PIREX. A special PDP-15 program referred to as

the system/SPOOLER interface (SPOL15) is responsible for loading
the SPOOLER into PDP-11 local memory and then issuing reguests

to PIREX to connect the SPOOLER and then begin its operation.

Subsequently when PIREX schedules the SPOOLER task to run, the "BEGIN"
request is processed. On gaining control, the 'request dispatcher’
transfers control to the 'BEGIN' routine. The first time the SPOOLER
processes a directive it also executes a once only section of code,
which builds a central address table. This table contains addresses
of frequently addressed locations in the SPOOLER and is necessary
since the SPOOLER is coded in Position Independent Code (PIC) and
thus can be loaded anywhere in the PDP-1l memory. SPOOLER is coded
in PIC to permit additional tasks to be added to PIREX without neces-
sitating SPOOLER changes. The BEGIN routine performs the following;
general startup operations and the specific line printer startup
operations (Refer to Figure 5-1):

GENERAL OPERATIONS - BEGIN DIRECTIVE:
Set up the SOFTWARE page 7, lines 9-12
INTERRUPT trap address in
the -PIREX SEND1l1 table
Save the SPOOLER start address line 13
in the "disconnect SPOOLER"
TCB

Initialize the FINDBK routine lines 15, 38
switches and pointers.

5-5 J-37

DOS-15 V3B@@@ Update Document

SPOL11,125 MACRO=11 v3A0028 Pa
ASSEMBLY PARAMETERS GE 3
[]
.

CARD READER» AND Xy PLOTTER, RESPECTIVELY

12 '

13 200000 DEVSPPao

14 099009 DEVCNT=a

15 «IFOF SLP
16 922004 DEVCNT=DEVCNTe!

17 040000 DEVSPPaDEVSPPiSLP
18 LENDC

1
Figure 5-1
UNICHANNEL Spooler Components

1
This listing is of the V3A@g@@ version of SPOL1ll. V3B@gg@ SPOL11
contains several differences. Refer to the D0S-15 V3B@gg@ Update

Document for a description of the significant new features.

J-38

SNOn R B 04D

L2
il

.

3
14

15

LRI

8e246
322352

pA2E2

geze2

2c223
2E25:

22262

32263

"~
L e e e A RESERAN G ®

32820 sPEEGe,

©27142
222223
42332
eis73¢
171772
¥i2767
142202
177762

013767
421246
232192
235787
€arare
2¢1226
€12737
vE2S28
g31264

ei27ay’

9e273y
177574

Ot e

€63128
d23222

12275
$42234
2e2272
Ch143)

¢25722
122722
627236
422842
22.e7

MaCROwy
$2AVIHER

DL

SPST1

198

2281

VIAE23

+SBYTL

3LOZK
4250
WLLT
+4CRD
Moy

MoV

MOV

187

BNE
M3V

AQR
MQV
AQD

ADR
<ay
ALl
Mav
400
et
BNE
NOV
AGO
430
M2V
CHP
BNE

CMPB

BEO

ST
114]

PAGE &

NOTE
The A assembly errors contained
in this figure are warning
messages, and, do not indicate
actual errors in this example.

SPOOLER NISPATCHER

ByeEAESTKeS

DuM

2

e

3P5T=2,Ra JGET TCP ADDRESS IN RB

#182022,8P8Ted JPAKE 11!8 REG, TO PREVENT GETTING KILLED
JTHIS I8 TO PREVENT STACK BLOW UP THRO!
JCTL 1C'S FROM PDPw=i5
ONCTLET,SsDCTSY JSAVE CURRENT CTL fCI COUNT FOR LATER CLEANUP
ONCEFL JHAS THIS COGE ALREADY BEEN DONE?
238 JYES «= DON'T GO IT AGAIN
#DEVSPP, OMDEVSPL JSET UP DEVICE SPOQLED WORD

523!6.91 JINITALIZE ADDRESSES (PIC COOE)
pC,RY
#5P3EGe, ,RY

LORTYBL,R2

pC,R2

x4DKTBLe" R2

¥®ADTCNT R3

Rgasz)e $CALCULATE ADDRESSES

R

163 . pLOOP UNTIL ALL FINISHED
BUFLAD,R2 1SEY UP BUFFERS

Ris(R2)w JSET UP POINTERS GOING BACKWARDS THRU @
al,n2

={R2),R2

R2,BUFLAD JHEAD OF BUFFER?

153 INO == TRY AGAIN

#SPCOD+230,TCODE (RY) 1SPOOLER REQUEST?

b 23]

»C,RY

#015P e, ,RL 3 GEY OEVICE DISPATCH TABLE IN Ry
’2

&LPCOD, TEODE(RD) JLP REGUEST?

123

tk2) e

#CDC6D, TCODE (RB) INO, CD REQUEST?

128

(R2%e

#PLCOD, TEODE(RY) JNO, PL REQUEST?

223

Figure 5-1

UNICHANNEL Spooler Components (Cont.)

$P0L LY
SPOOLER JISPATCHER

ad
L]
46
&7
48

2324
galza4

22332
22334

22342
@ale

eel4dd
223:5¢

223338

22362
22364
22368

e237e
e2372
22374
28378
20422
20432
peidd
28408

gidla

.!2

3

2{372}
22127%9
252721

[Z-PELE

$1e71t
42277

24787
232732

21872
PIPYESY
c3an22
tidrz
cd2pds

‘042722

177743
2cpie
45221
8Zeitt

92323228
177734
322338
17277354
177734
177734
177734
832710

224304

MACROw({ V3A228 PAGE G

)
JUNRECOSNISED TASK REGUEST REPORT,

|
ERRDRI

MOV
ADD
L]
CaLL
JSR
MV
ACD
MQVB
31C
ADD

ACD
JHP

SUDEVST,RY
HEPCADWIe204,RY
#1C2877,1R1)
DECREG
PC,CEGRED

aC,RY
#2I37%e, ,RY
Flctoe(ney,R2
ui7774%,52
Rl,R2

(R2),RY
tR1)

JSPCOLER REGUEST JGET SPOOLER DISPTACH
ITABLE IN #3

;jGET FUN, CODE

JA0D FUN, CCDE TO Ry
JBUILD DISPATCH JuMP X
JBRANCH TO APPROPRIATE ROUTINE

' -
J8POOLER DIRECTIVE DISPATCH TABLE

0I5Pa1

1
1CEvice
plseyl

SEGIN
ERROR
END
ERROR
ERROR
ERRAOR
ERROR
COAOPR

RZOUEST
LPCALL

«01sPQ
«07I5p0
«DI5FQ
«0Isrn
«01sPp
«D13P2
«DI8PQ
=015P0

-DISPATCH TABLE
«013py

JBEGINS CODEs0Q

JERRORS CODEs2

JEND? CCCEwg

;ERRORS CCOEnS

JERRORt CODEw1Q

JERRORY CODSei2

JERRDRY CODEwi4 .
JCONTINUE HALTED OPERATION t CODEasié

JLPt LINE PRINTER

Figure 5-1
UNICHANNEL Spooler Components (Cont.)

5-8

$POL1L,. 125 MACRO={§ V34838 PAGE 7
BEGIN DIRECTIVE

1 .SBTTL BEGIN DIRECTIVE
2 !
3 JTHIS ROUTINE STARTS ALL SPOOLING OPERATIONS, SWITCHES, CONTROL REGISTERS
4 JETC, ARE SET ., THE BUFFER POOL, TCB POINTERS, BITMAP, TABLE ETC, ARE
8 PSET UPIBITMAP & TABLE ARE SAVED ON DISK(FOR BACKUP OPERATIONS), EACH
[] JINDIVIDUAL SPOOLED TASK IS THEN INITIALIZED & STARTED UP IF NECESSARY
’ !
[}]
0 00R416 813731 BEGINI MOV PC,RY JGET ADORESS OF DEVINT IN R{
10 08420 062704 ADD #0EVINT=' R}
202716
11 90424 213702 MOV SWSEND11,R2
eete02
12 00432 210162 MOV R1,8PCODe2(R2) JSET SEND11 ADDRESS IN PIREX
o0paie
13 00434 216067 MOV 14(RA), TEBDSA+TCBDIS
[TV
012240
14 7 INITIALIZE ALL SWITCHES
13 00442 042767 MOV #l,CTPTR
200081
001742
16 13ET CONTROL REGS,
17 28452 2ip701 MoV »C,Ry 1GET ADD, OF DUM IN R
10 20482 8627014 ADD #DUMa, ,RT
177470
19 00436 PUSH RY JSAVE ON STack
20456 210146 MOV Ri, = (8P)
20 o046 Po? «(R1) y SET SPOOLER CONTROL REG,!!
po46e 212641 MOV (8P)e,=(R1)
21 J8ETUP BUFFER POOL
22 JINITIALIZE RK TcB® POINTERS
23 pe462 D1670y MoV RKCAD,RY JGET RKTCBP ADD, IN R{
) LITTRNE
24 po4BE g1p702 MOV sl,R2 JGET TCBRO1 ADD, IN R2
25 pe4’e 062702 © ADD #TCB8Tw, R2
011474
26 00474 212703 MOV #TCBET,RY JSETUP TCBCT TCB!S
d0p0is
27 sefee 919281 281 MOV R2, (R1)e JSET TCBRK! POINTER
28 pese2 9682702 ADD #38,R2 }BUMP R2 TO TCBRK2
[ITTEN]
29 20506 905303 DEC R3
32 28510 221373 BNE 28
34 JINITIALIZE BITMAP
-32 ee512 PUSH NBK (RO JGET SIZE OF SPOOLER AREA NUMBER
20512 016046 MOV NBK (RB) ,« (SP)
[ITTIY]
33 paB516 296218 ASR 39 JCOMPUTE SIZE OF BIT MAP
34 0820 206216 ASR 3e) JSIZEaNUMBK/8+2
35 20822 8068216 ASR ($ 1]
36 0%24 242716 BIC wi, (8P JGET EVEN NUMBER
ecepot
37 eende 162716 sus 42, (sp)
[ITI.1]
38 epS34 21687687 MOV BTMPAD,CWOPTR JRESET CWOPTR
010034
291692
39 eese2 :::z:: MOV BTMPAD,R{ 1(BROL12, TEMP FIX)
40 Q0546 262601 ADD (3P)e, R JADD OFFSET TO END
41 009530 :}01:; mov Ri,BTMPED JSET UP BTMPED
11 :
42 00554 g:::g: . MoV $TBKNA,R{ 1GET ADORESS OF STBKNM=4 IS Ri
43 pos6e :;e:g: MQv SBN(RB), ¢R1)+ JSET STARTING LOCK #
[]
44 QpS564 21602 MOV NBK(R@), tR1)e SET NUMBER OF BLOCKS
200012
Figure 5-1

UNICHANNEL Spooler Components (Cont.)

5-9

sPOL1Y,.125°
BEGIN DIRECTIVE

43
48
'h4
48
49
s
81

52
83

84
1]
-]
57

s8
59
(1]
(1}
62
63

64

74
[1]
96

97

20579
L
0576
eeces
sese2
08684

[.L.LIY)
00612

[LIS
09622
pe624
[LI1])

[I.LhT

[.ILL]]

02648
208852
80654
00854

(ILLY]
08664

geé7e
20672
206876

eje1e
21014

e1e2e
giees

100 1832

1832

104
122 1836
103 (042

104 1048
183 1030

108 108%4

107

912702
[LIRLT)
019103
osse23
[L.LET.H]
001378

016704
ie012
210503
912702
R0ee4d
212723
177777
d08302
201374
012741
142081
12764
0930464

MACRO=11 Y3ABE® PAGE 7e

ogeeid

912704
142461
920030

105760
80peQ?
edse07

012746
dde002

004767
090602

0847687
000634
ees72e

208037
geie4e
892737
17¢g000
021048

105087
003347
12767
saedR
903342
013782
221010
082702
oRpe22

0e47E?
¢2ee’es

011187
210678
210167
204056
022124
Biloy87
da4052
188087
Ba34043

MOV #BTMPSZ, N2
MOV R, RY
431 cLR (RY)e
oEC (1]
BNE 43
JINITIALIZE TABLE
NOY TABLAD,R{
MOV R1,R3
MOV #TABLSZ,R2
38t MOV =1, (R
DEC r2
BNE £1)
MoV P, (R1Y
MoV #C01,CDTEOP (RY)
Mov #LT1,PLTROF(RY)

JSAVE BITMAP & TABLE 7

878

BNE
PUSH
MoV

CALL
JSR

CALL
JSR

7 (R®)

18

wNRITEF
WNRITEF,a(SP)

SAREBM
PC,SAREBM

SARETS
PC,8ARETS

e

Ts7
13ET SPOOLER SWITCHES

131 CLR
818

NSPOL SH

JGET BIT MAP 8IZE IN R2

1GET ADDRESS OF TABLE IN R{,R3,Ry

JGET TABLE SIZE IN R2

1SET LP1(DED) IN TABLE
JSET CDY (DED) IN TABLE

JSET PLY (DED) IN TABLE

JPLAIN BEGIN OR BEGIN AFTER RESTORE
JSAVE DISK FUNC,

JSAVE BIT Map

JSAVE TABLE

JCLEAN STACK
JRESET SPOOLER SWITCHES

#BEGSW,043POLSW ySET SPOOLER ENABLED AND RUNNING

!

7ALL SPOOLED TASK® HAVE vO BE INITIALISED, OPERATIONS LIKE SETTING
18 RESETTING SWITCHES, SETTING UP POINTERS, BUFFERS, STARTING UP
JTASK ETC, HAVE TO BE DONE AS INDICATED FOR EACH TASK

1GET ADORESS OF LISTHD IN R2
JCLEAR LP DEQUES TASK CODEs4

ySET NBNsCBN FOR START UpP

.
L 1For sLp

PINITIALIZE LP SPOOLER,/DESPOOLER TASK
CLRB LPONCE
MoV #1008, LPONCESY
MOV ONLISTHD, R2
ADD #LPCODe4, R2
CALL ENpPTD
JSR PC.!&!TD
MoV OR{,NBNSTABLE
MOV Ri,Lrcacy
cHp (R1)e, (R])®
MoV Ri,LPHDCP
cLRB LPBNS
ENRE

Figure 5-1
UNICHANNEL Spooler Components (Cont.)

5-10

8POL18,. 125 MACRO=11 V3AQ28 PAGE 7+
BEGIN DIRECTIVE

.
L)

121 JALL OONE DEGUE NEXT RFQUEST
122 1130 CALL pEaren
1130 204767 JSR PC,DEOREQ
280242
123 $
124 JEMPTY TASK DEQUE
125 1134 EMPTD1
126 1134 +INH JINWIBIT INTERRUPTS
1134 PUSH ohps
1134 813746 MoV PLIITYET Y
177778
1140 052737 . 34] #LVLY, #HpS
200340
177778)
127 1146 212704 MOV H#EMPTY R JEMPTY TASKS DEQUE
0091028
128 1152 004734 JSR pC,e(R1)e
129 1154 «ENA JENABLE INTERRUPTS
1184 pOP slps
1154 012637 MOV (803 s, oup3
177776
130 160 CALL rINDBK
1160 004767 JSR PC,FINDBK
280554
131 1164 Q1p146 MoV Ri,=(3P)
132 1166 CALL cETBUF
1168 224767 JSR pC,GETBUP
901520
133 1172 roP (RY) .
1172 012614 MOV (8P) e, (R{)
134 1474 200207 RETURN
138 +JSBTTL END
Figure 5-1

UNICHANNEL Spooler Components (Cont.)

5-11

SPOL11,12%

MACRO=1{ y3AGE8 PagEL 9

;
JTHIS ROUTINE SHUTS DOWN ALL SPOOLING OPERATIONS, THE TIMER REQUEST
113 CANCELLED, SOPTWARE INTERRUPTS ARE IGNORED AND THE 3POL11 TASK
118 DISCONNECTED FROM PIREX

END
1
2
3
4
5 !
L] ['
7 201176 213791 ENDI MOV
291052
8 201202 205067 CLR
176734
9 001206 225637 CLR
Q01064
18 21212 085861 CLR
200034
11 21216 252737 818
e09340
1777768
12 21224 01370} MOV
091060
13 .1rF0F
14 21230 016102 MoV
[ITT2Y]
15 01234 CALL
21234 0347687 JSR
000072
16 «ENDC
25 1250 2030937 CLR
831048
26 231264 21270¢ NOV
201038
27 21270 913792 MoV
e2i002
20 P1274 011162 MoV
LTI
29 21300 012701 mov
09001
30 21304 912702 MoV
001024
31 81310 004732 JSR
32 91312 ADR
P1312 die7es MOV
91314 262708 ADD
011334
33 p1328 IREQ
81320 212704 MOV
10g008
p1324 220004 107
ai3a2e T .BYTE
81327 gep
.34 o]
35 01330 095762 STPTSK; TST
] 177774
I8 FIITA 10eele BPL
37 21338 214203 NOv
38 pi340 122713 cNPB
LITTTH
39 21344 001024 BNE
40 21348 203012 CLR
41 91350 005042 cLr
42 01352 008072 CLR
177778
43 21358 000207 131 RETURN
4l]
48 []

SWCLTABL,R] JNULL SPOOLER TIMER REQUEST
SPETes JENABLE STOP ALL 1/0
SPDEVSPL JCLEAR DEVICED SPOOLED SWITCH
SPCODe4(RY)

#LVLY ,p0pS JINMIBIT INT,

ONTEVAND,RY sFIND THE ENTRY ADDRESS

P

LPCOD»2(R1),R2 PFIND TASK ADDRESS

sTPTSK ISTOP THE TaSK

pC,8TPTAK .

onSPOL SH JRESET SPOOLER Sw

#RTURN,R{ JGET RETURN ‘INST, ADD IN Rl
OWSEND11,R2

tR1),8PCoD*2(R2) »SHUT OFF SENDI1
#1,R4 JTELL SPOL15S DONE
#SEND1S,R2
pC,0(R2)4
TCaptS,. Ry JSET FA
pC,ns
#Tca018=" ,R5

3SEND REQUEST
siopepr,Rd
1.0

=4(R2) PDP=1y REQUEST?

13 INO =~ IGNORE

«(R2),03 JYES == TEST FOR SPOLLER REGUEST?

#3pcOD, A3

18

oR2

«(R2))STOP TASK (CLEAR TCB ADR

o=2(R2) JSTOP DEVICE FROM INTERRUPTING
Figure 5-1

UNICHANNEL Spooler Components (Cont.)

N A G R e e

—~ 0
-1 0y
- e

Py
[y
—<.

t 201832
9 ezys32

12

38

38
19
42
41
42
43
44

21838

21342
21%42

21546

2155¢

21834
[33-1-1-1

21552
21562

@1583
2187e
21371
21372

£1574
1324]

12
R

e1a7e:
88278y
83r32p
2823494

alerzy
832724
837272
2483422

©ia58y
42zals
21ates
23325y
€02924

$i2724
13222323
c2z024
231
[1-1]
2aaze7

2lg2:28
Q22222

]

.38
o IF

3 MiLROwt: v34003 PAGE 16
GUTIKES

TTL UTILITY ROUTINES
OoF sCo

1SET Up TCB TO RZAD 4 CARD FROM €O
3CALLING SEQUENCE? MOY BUFAD,R3

}

i
STUPCTYy MOV

ADD

8R
«EN
oIF

cALL sTUPCY
PC,RY $GET ADORESS OF TCBCD IN Ry

#TCBCD=,,R{

sTucom JENTER COMMON ROUTNINE
ot
OF SLp

H
PSET UP TCH TO WRITE & LINE QN Lp
JCALLING SEQUENCE? MOY BUFAD,RS

i

]
STUPLT: MoV

caLl STUPLY

PC,RY JGET ADDRESS OF TCBLP IN R{ & RS
A00 &TCBLPw,,RY
Ba sTucan
JENDC
JIFDF 8P
H
J3ET UP TCB TO WRITE & LINE ON P
ICALLING SEGUENCES MOV BUFAD,RS
i cALL STUPPT
' i ’
STUPPTS MoV AC,RY 1GET ADDRESS OF TC8PL IN Ry & RS
ADD 4TCBRLe,,RY
JENDC
STUCOMI- MOV R, 18¢(R1Y
MoV Ri,RE
CLR 4(R1) JRESET REV
IREQ 1SEND
MgV #100a00,R4
107
«BYTE 1,2
RETURN
]
ISET UP DISK TCR 7O READ & BLOCK WITH NO INTERRUPTS 3 RETURN ADDRESS
H CALLING SEQUENCE: ADR BUFF,R4
! : ADR »oCBN,R3
7 ADR TCBDKe,R2
1 CALL sTuppY
]
STUPDTS wOV R2,RS FSAVE TCBP IN RS
tMP (R2)e, (R2)# 1BUMP TO REV
Figure 5-1

UNICHANNEL Spooler Components (Cont.)

SPCLLLRlEd HACROw:t y3LEOD PALE 17,
FIND A FREE BLOCK Co DISK

77 [
? JTHE FOLLOWING PIECE OF cODE CHECKS TO SEE IF THE CURRENT BLOCK To 8E
79 JALLCCATED TO THE CURRENT SPODLING TASK EQUALS THE CBN OF THWIS
22 JOISPOALING TASKJIF THIS IS TRUE, THEN THE 1SPOOLER 18 DECLARED FLOODED!
81 ITHIS AAPPENS GNLY ON A WRAP ARDUNO(ENTIRE SPCOLER AREA 13 TREATED AS A
2 JRING BUFFER)WHEN 3POOLING ORERATIONS ARE WAY AMEAD OF DESPOOLING OPERATIONS
83)
34 1
85 JevassNOTEI AS NEW TASKS ARE ADDED NEW CODE MAS TQ BE ADDEDseswe
88 Jevevrenese SIMILAR TO THE CODE FOR EXISTING TASKSwevessvsoneore
87 [} .
86 22116 116222 HOovB 2(R2),R2 JGET CURRENT TABK CODZ
vazeeR
83 92122 t227%2 [£314:) NLPCCD,R2 ILP?
eszoa4
22 22126 w34y BEQ 218
9! 22:32 122722 CHPB #C0CODe202,R2 JNO, CO?
032288
P2 22134 241411 BED 223
93 22136 122722 cMP8 xPLCOD,R2 IND, PL?
cdza
#4 22142 221712 BNE 263)
5% 22144 ¢1e722 KOV TABPLC,.R2 1YES
233038
$8 22152 232428 LE] 303
$7 2219 sle722 2184 Moy TABPCB,R2
'ELFEE]
93 22158 €%2¢32 BR 303
972 H
122 2138 8167232 228 MoV TABCOC,.R2
925224
¢34 2:18a e3¢
192 2184 ¢22112 CHP Ri, (R2)
123 2165 d3142} BEC [1]
124 2178 2651
123 JRETURN WITH BLOCK # ON STACK
135 2179 342227 RETURN
ie7 1
122 JESRRY NG BLOCK FKEE?Y SETUP YO HALT CURRENT OPERATION
129 2172 234 . PCP L JGEY RETURN ADDRESS
2172 12822 A0V t3P)e,32
113 217 PUSH NP ; JAET UP BTACKX FOR RESTART
2174 213748 MOV 2978, (3P)
177778
$1y 2232 PUSH Re 1SAVE PC
200 213248 43V R2,=(85)
Li2 @292 PUSH . RD
2222 2148 Moy R ,=(SP)
143 Teed PUSH Rl
2206 $lp148 MOV Riy=(8P)
114 2228 PUSH R
2208 cig246 MGV R ;e (3P)
115 2242 PUBH RY

Figure 5-1
UNICHANNEL Spooler Components (Cont.)

SPOL11,12%
TASK SOFTWARE INTERRUPT DISPATCHER

1

2
3
4
5
]
7
8

]
108

11
12

13
14

15
16

17
18
19

29
21

22
23
24
25
26
27
28

2083242

203246
a325e

93256
23260

23266
23270

a3z276
23300

03304

283350

03314
23314

022760
0opeal
020004
ga1022
122760
eep202
00@p02
201417
122760
@80204
2200202
021406
1227680
090298
020002
o404
809187
eg2072

2@p167
000646

000167
002126

82e207

MACROe=11 V3AQ@0

PAGE 22

) .
1SEND1IS IN PIREX TRANSFERS CONTROL TO DEVINT BY A "CALL #SEND11(=CODe2)"

11F REQUESTED IN TCB,

THIS IS DONE BY A CODE OF '3! IN BYTE«d

10F TCB, SPOOLER SETS THF ADDRESS OF DEVINT IN SENDi1l WHEN STARTED

!
'

!
DEVINT: CMP

BNE
cMPB

BEQ
cMPB

BEG
CHPB

BEG
JMP

!
381 JMP

RETURN

.SBTTL

#1,4(R0) 16000 COMPLETION??
5$ ’ JBRANCH IF NO
#RKCOD+200, TCODE (RB) JRK REG,?
RKINT

#LPCOD+208, TCODE (RV) 1LP REQ?
F1]

#Cocops2a2, TCODE(RA) JC0 REQ?
38

PLINT

LPINT

eDINT

RK INTERRUPT SERVICE

Figure 5-1

UNICHANNEL Spooler Components (Cont.)

SPOL11,125 MACROe1)] v3AQ@8 PAGE 23,
RK INTERRUPT SERVICE
L

41 +1FDF SLP
42]
43 JREAD REQUEST WAS MADE FOR LP, .
44 D3S42 2167093 1033 MoV TABLAD,R3 JCBNs_FB?
085032
45 93546 0280963 4,14 6(R®),LFR(R3)
[TLT] 1]
200012
46 23534 0012023 BNE 133
47 83556 912763 Mov #*1,LFR(R3) JYES, SET LFBs={
172777
vopge12
48 03564 1381
49 23564 103067 CLRB LPBMD
280574
850 93370 103367 DECB LPBUFS JDECREMENT LPBUFS
209571
54 03574 122767 cHPB #1,LPONCE JLPONCEw1?
2900801
) 209361
82 03602 081133 BNE DONE JBRANCH IF NOD
53 03804 016702 MOV LPCZaD,R2 $YES, START UP LP
205044
34 03618 1181 CaLL 123
23510 204767 JSR rC,128
829032
53 93614 103207 INCB LPONCE $SET ONCE ONLY COMPLETE SW,
000543
56 035620 032737 BIT #4000, #4SPOLSH SHUT DOWN?
24g0ee
201046
87 93626 P@3524 BEO DONE
S8 23630 911285 MOV oR2,R3 1SAVE BUFAD ON STACK
59 03632 CALL sTUPLY JNO SET LP TCB
03632 004767 JSR pC,8TUPLT
175762
60 03638 932737 BIS #i,0n08P0 W JSET LP BUSY $W
oepe0!l
201048
61 23644 909512 BR DONE JEXIT
82 +ENDC
83]
84 JSECTIONS 12 USED FOR LP AND PL
(1] ’
1] ?
87 3846 016063 1238 MOV 6(RBY,CBN(R3) 3SET CBN IN TABLE
209006
280002
68 23654 PUSH 12¢(RM) $SAVE FA ON STACK
23634 viep4s MOV 12(R8) ,=(3P)
900012
69 23660 911622 MOV o3P, (R2)% 1SET LPCBIP
70 03662 812712 MoV né, (R2) 1SET LPWDIP
odpped
71 03666 381612 ADD o3P, tR2) JCOMPUTE LPWDIP
72 93670 062716 ADD #Tupt, €Sp) JBUMP TO LINK A NBN
289776
73 33572 3133833 HOY #{S5PV,NANI{R3) JSET WNBN IN TABLE
[TIT1T
74 23700 012763 MoV #4,CRP (R3) $SET CRP IN TABLE
LI
200084
75 23706 298207 RETURN

Figure 5-1
UNICHANNEL Spooler Components (Cont.)

SPOL11,.125
RK INTERRUPT SERVICE

18
28

21
22

23
24
23
28
27
29
30

31
32

33
34

33

36

37
38

p4i4n

p4144
241486

24152

p4169

04164
04166
aat7e
@a172
04174
04174

ga200
24200
04204
04204
04210
04210
04212
p4212

24216
04216

04222
24222

04226
04232

216791
084512
185911
@16708
004446
0168065
2apes
odp010
2167023
024422
185713
201341
185223
103213

004767
176512

012746
Q20004

212746
eee0ed

vie148

816546
220006

204767
176728

024787
176420
062706
[.LIL}Y]
eep717

MACRO=11 V3A220 PAGE 24

.
.
.

JIFOF SLp
JWRITE REQUEST MADE FOR P
4133 MOV LPBMSA,RY
CLR8 tR1)
MOV TABLAD,RS
MOV 6(R®)Y,LSR(R5)
MOV LPONAD,R3
TSTB (R3)
BNE DONE
INCB (R3) =
INCB (RY)
Call GETBUF
JSR PC,GETRUF
PUSH 4LPCOD
MOV #LPCOD,~(SP)
LENDC
4451 PUSH #READF
MOV #READF,~ (SP)
PUSH Rl
MOV R1,=(8P)
PUSH NEN(RS)
MOV NBN(RS),«(SP)
CALL GETRKT
JSR PC,GETRKY
CALL GETPUT
JSR PC,GETPUT
ADD i@, SP
BR NONE

JRESET LPBMSA

$SET LSB IN TABLE

$GET ADD OF LPBMS IN R3

JFIRST TIME THROUGH??

JYES, SET Sw,
3SET LPBMD
1GET A BUFFER

$JSETUP FOR GETPUT SAVE DEV CODE

1SAVE DISK FUN,

JSAVE BUFFER ADD

3SAVE BLOCK #

JGET A RK TCR

3GET BLOCK

JCLEAN STACK

JCHECK REV & EXIT

Figure 5-1

UNICHANNEL Spooler Components (Cont.)

SPOL1L,.128
LP INTERRUPT SERVICE

TN -

6 204362
7 204363
& 204364
9 294365

10
1
12

20
27
-1
29
30
31
32

33

34
38
36
y’
38
39
40
41

42
43
a4

46

48
49

se
31
52
33
L]

24366
04370
04372

24374
24400

24406

04412
[TERY

p4420
04422
P4424
p4426
24430
04430

04434

CYTTY)
Pd4da
24446
04450

04454
24436
24456

24462
Aa464

04472
04472
04472

04478

24300
04500

24586
04514
04516
24522
045324
24532
24536

0454p
24542

21670y
2284262
0852737
20240
177776
022744
172777
0081014
e18723
024166
105023
185023
105223
011323

824787
178380
042737
LLI.I'1}}
021046
809207
005714
001040
016704
004200
211403

224767
178332
105244
1057684
177777
Q21423

g84787
175222
eep772

018787
085226
025229
212767
200004
005214
oie703
0627023
177684
011304
216487
007768
oesze0
2187902
0241t
011322
211312
262742
2dpen4

MACRO={1 v34@02 PAGE 26

J
JTHIS ROUTINE HANOLES COMPLETION OF 1/0 SOFTWARE INTERRUPT FROM THE
JORIVER TASK IN PIREX, IT DESPOOLS THE SPOOLED DATA ONTO THE LP.

!

LPDUMIs
LPONCE1
LPBMD?

LPBUFS)
LPCBIP)
LPHDIPS
LPOBIP;

'
'

LPINTI

’
LPINTS

1182

LI
181

1582

108

«IFOF sLP
JBYTE @ JUNUSED

«BYTE] JONCE ONLY Sw

.BYTE @ JBLOCK IN MOTION 8W

.BYTE @ JEMPTY BUFFER COUNT

] $CURRENT BUFFER POINTER

? JCURRENT WORD POINTER

] JNEXT BUFFER POINTER

ENDC

<IFNDF §LP

MOV #RDEVST, R}

MOVS #10PS?77, PSPER(RY) IREPORY TASK NOT SUPPORTED
RETURN

+ENDC

.IFOF SLP

MOV TABCRT,R{

34 #LVLS,08pS PINHIBIT DISK INTERRUPTS

({14 #*1,(R1) 1ANY MORE To DO?%

BNE 13

MOV LPONAD,R3 1GET C(LPCBIP) IN RJ

CLRB (R3)e JRESET SW,'s

CLRB tRI)e 1BUMP TO LPBUFS

INCB R3)e JRELEASE BUFF,

MoV (R3),R3

CALL Glveur 3GIVE BACK BUFFER

JSR PC,61VBUF

BIC #l,0u8P0 SW JNO, SET LP IDLE SW

RETURN

TsTY tRY) JYES, BLOCK IN MOTION?

BNE 33

MOy LPCPaD,R4 18K=124 YES, GET ADD OF LLPCPADBIP IN R2
MOV (R4),R3 JRELEASE BUFFER

CALL GIveyrF

JSR PC,GIVRUF

INCB = (R4)

TST8 «1(R4) 7BLOCK READ IN?

BEQ 43

CALL WAITBK

JSR PC,WAITBK

BR 103

MOV TABLE+NBN, TABLE+CBN JSET CBNsNBN

MoV w4, TABLELCRP 18ET CRP

MoV PC,R3 JGEY LPOBIP ADD. IN R3

ADD #LPORIP= ,R3

MOV (R3),R4 JGET C(LPOBIP) IN R3 & BUMP TO TwpD1
MoV THD1(R4),TABLE+NBN 1SET LP.NBN

MOV LPCPAD,R2 IGEY ADD, OF LLPCPADBIP IN K2
MOV (R3), (R2y+ iSEY LPCBIP

MoV (R3), (R2) 78ET LPWDIP

ADD %4, (R2)

Figure 5-1
UNICHANNEL Spooler Components (Cont.)

5-18

SPOL11.125
INTERRUPT SERVICE

LP
56
57
58
59
6@
63

82
83

64
63

86
a7

70
7

72
73

74
75
78
77

78
79

ee
81

82
83
84
L]
86

87

90
91
92
93
94
95
96
97

98
99

p4546
245350

24554
24560
24564
p4579

p4872
04574

24602
24604

04612
24614

24622
04624

24630
4632

24040
24642
04642

04646
04650

04654
24660

24664
24666

p4672
04674
04674
p4700
04702
24704
Q4704
04710

p4ria
p4v746

04722
e4726
04732
Q4734
24736
Q4742
24744
04746

04752
84754

100 4760
181 4762
102 4764
193 4766

200412
016702
ea4p64
217246
2dpede
062718
020003
042746
177401
26161}
282612
2932737
240000
paio4s
001714
232737
2egeon!
281048
001710
032737
ilpeee
001046
001704
0a8772
[LIILL]
021024
026164

177776
e2c004
201003

084787
eaop24p
009662
016704
2083732
262704
0dpe@2
122714
oegeat
0041271
105764
177777
12811}

084767
220146
2006863

[2S¥].1L]

204787
174712
0167014
003748
011204
217246
20p0c0R
062716
229023
042716
177484
282604
@ie702
062702
177427
0es714
2214y?
822714
177777
01414
122712
229004
201230
105742
8021226
82618614
177776
200004

st

1481

'
1381

BR
MoV

MOV
ADD
BIC
ADD

ADD
BIT

BEOD
BIY

BEQ
BIT

BEO
TST

BNE
CMP

BNE
CALL
JSR

BR
Mov

ADD
cMPB

BNE
T8T8B

BNE
CALL
JSR

MOV
CALL
JSR

MOV

MOV
MOV

ADD
BIC

ADD
MOV
ADD

TSY
BEG
CMP

BEQ
CMPB

BNE
8T8
BNE
CMP

MACRO=11 V34200 FPAGE 264

53
LPCwWAD,R2

#(R2),=(8P)
#5, (SP)
wi?7401, (SP)
(8P, (R1)

(5P)+, (R2)
w4000, #4SPOLSW

28
w1,0NS8PO 8K

23
#il0020,0u4SPCOLSH

28
e (R2)

133 .
=2(R1),4(R1)

143
123
pC,128

118
LPONAD,R4

w2,R4
%1, (R4

158
«1(R4)

158
98
pC,9s8

153

oR2,R8
sTUPLT
pC,STUPLT

TABCRT,R{

(R2),R4
o (R2),=(8P)

%3, (8P)
#177401, SP)

(SPY+,R4
PC,R2
#LPBUFS=.,R2

(R4)
8s
#~1, (R4}

(.2
41, (R2)

ses

=(R2)

303
=2(R1),4(R})

§SEND WRITE REQ IF NOT SHUT DOWN
JGET ADD OF LPWDIP IN R2

JEVEN BYTE COUNT

1BUMP CRP
$BUMP LPWDIP
$SHUT DOWN?

1SHUT LP?

$SHUT DESPOOLER

JFIRST RECORD A .CLOSE?

“3ANY MORE DaTA?

INO, SET TABLE ENTRIES
JRESET SWITCHES & EXIT
$8K=124 GET _PBUFS ADRRESS
18K=124

13K=124 ONE FREE BUFFER?

18K=124
jSKe124 YES, BLOCK IN MOTION?

18K=124

78K=124 NO. GET NEXT BLOCK

J8K=124 RELEASE BUFFER & WAIT FOR BLOCK TO COME IIN
JNO, SAVE BUFF ADD ON STACK

$JSET UP TCB TO UNTI A LINE

JCHECK FOR BUFFER EMPTY
$GET BYTE COUNT

JEVEN BYTE COUNT

j1BUMP R4 TO POINT TO PT WORD OF NEXT
JNO, GET ADD OF LPBUFS IN R2

JLAST RECORD?

jLPBUFS=Y

sYES, BLOCK IN NEXT?

JNO, MORE To DOE (CBNsLSB)

Figure 5-1
UNICHANNTL Spooler Components (Cont.)

5-18

$POLLL, 129
LP INTERRUPT SERVICE
104 4774
105 4776

106
107
188
189

A778

5ee2

(22X T2 TN

118

117

5004

Se12
5014
S016

35022
$224
5026
5230
S503¢

senwne A

118
119

5834

hdheed 4

120

124
122
123
124

5040
5049

5044

ovwed A

128
126
127
128
129
139
131

132
133

134
135

136
137

Sp46
3046
L11-T]
seSe
s852
ses2

5058
Se6o
1LY
Se6e
Sp62
S064

Se7e
5872

5078

5100
S108

5104

seewwe A

138
139

140
14
142
143

5106
5112

Si2¢

01822

2047687
2den4d
02e6817

026161
177778
230004
001412
[I.LI-E8
122712
LLLLI3
Bdi024
188742
ed1002

0d4767
eden12

2801687
177402

824767
o2p042
020773

2le146
210248

084767
175634
8lo104

212602

oL262y
210487
177302
185212
012793
20pa04
e1p102

0047867
283200
gep207

012711
1?7777
012761
i77777
222006
eep2e7

!

!
J1BUFFER
st

$NO MORE BLOCKS

781

!
JGET NEXT BLOCK

1231

BEQ
CaLL
JSR

MACROey1 V3ARO® PAGE 26,

583
99
PC,98

508

18K~124 GET NEXT BLOCK

JSKe124 EXIT

EMPTY) TEST IF MQRE BLOCK TO DO?

CMP

BEO
CLR
CMPB

BNE
1878
BNE
CALL
JSR

JMP

CALL
JSR

BR

PUSH
MOV
PUSH
MoV
CALL
JSR

MOV
POP
MOV
POP
MoV
MOV

INCB
MOV

MOV

CALL
JSR

RETURN

MoV
MoV

RETURN
+ENDC

«SBTTL LP CcaLL SERVICE

=2(R1),4¢R1)

78
Ry
w1, (R2)

83
= (R2)
83

-1
PC,98

[1:}]
T0 po

123
PC, 128

as

Rl
R1,=(SP)
Re
R2,=(8P)
cETRUF
PC,GETRUF

Ry,R4

Re
(SPY+,R2
Rl
(SPYs,R1
R4,LPORIP

tR2)
wLPCOD,R3

Ri,R2

GETBLK
PC,GETALK

#=1{,0RY

#=1,06(R1)

IMORE T0 DO? (CEN®LSB)

15K=124 SET CRPsg
JLPBUFS=1?

JBLOCK IN TRANSIT?
JSKei24
$8K=124 GET NEXT BLOCK

}SKe125

JSET TABLE ENTRIES

JYES, GET BUFFER & READ NEXT BLOCK

}SAVE BUFAD IN R4

18ET LPOBIP

1SET (LPBMS Sw
JGET DEV,CODE IN R3I, FOR GETBLK

JGET LP.CRP ADD. IN R2
JGET BLOCK FROM DISK

1SKei24

18ET CRPuey
JSET LFBs=)

Figure 5-1
UNICHANNEL Spooler Components (Cont.)

5-20

SPOL11,125
LP CaLL SERVICE

BEa AN

6 pe5122
7 pges123
8 005124
S opS126

10
11

22
23

24
28

27
28

31
32
34
38
36
37
38
39
49
41
a2

43
a4

95130

23132
25134

05142
05144
25144
@5148
25150
3152

85156
25180

28164
3166

as172

85176
85200
5202
pS5202
pS204
95206
03210

85214
05216
25216

p5222
5222
83224
85224

23232
95232

25240
25240
05242

05246
23259
85252
25254
p5236
05260

05264
23266
25279
05274

25302
[.L31.1

MACROs{1 Y3AP@2 PaGE 27

}

JTHIS ROUTINE SERVICES CALLS TO QUTPUT DATA ONTO THE LP, IT SPOOLS THE

JOATA SENT BY THE CALLFR ONTO THE DISK,

!

J1FOF SLP
@209 LPDUMCI BYTE o JUNUSED
908 _PBMS? ,BYTE 0 PBLOCK IN MOTION SW
200000 LPCBCPI @ JCURRENT BUFFER POINTER
020002 LPWDCP: o JCURRENT WORD POINTER
00pe®@ LPOBCPt @ JNEXT BUFF POINTER (DUMMY)
LENDC
)
!
LIFNDF SLP
LPCALLS MOV SHDEVST,R1
MOVB #477, L PSPER(RY)Y
CALL DEGREQ
JENDC
+IFOF SLP
024141 LPCALL: CMP «(R1),=(RY) 3POINT R{ TO LPWOCP
232737 BIT W20000,84SPOLSW 3SHUT SPOOLER?
220000
201048
021433 BE® 1]
PUSH Rl 1SAVE R1, NO
21146 MoV Rl,=(SP)
011164 MOV (R1),RY $GET CONTENTS OF LPWOCP IN R{,R4
010104 MQV Ri,R4
016003 MoV 18 (RO ,R3 JGET CALLER BUF, ADD, IN R3
200010
206303 ASL R3 JRELOCATE ADD.
2637023 ADD O¥MEMSTZ ,R3
[LI.I.E]
1113082 Move ¢R3),R2 $GET BYTE COUNTY FROM BUFFER IN R2
262792 ADD #5,R2 1ADD HWD BYTE COUNT ¢ EVEN BYTE COUNT
820005
042702 BIC #477481,R2
1774014
26g201 . ADD R2,R1 }BUMP LPWOCP BY THE SIZE OF NEXT RECD,
811605 MOV (SP),RS 1GET LPWDCP ADD. IN R4
PUSH =(R5) $POINT TO LPCBCP & SAVE CONT, OF LPCBCP ON STACK
214546 MOV «(R5Y, = (8P)
006202 ASR rR2 JCONVERT TO WORD COUNT
1626014 syB (SPYe,RY JCOMPUTE SPACE REM,
B22701 cHP w770,R1 J1SPACE LEFT?
20a77e
222462 8LT 48
caLL cOPBUF JCOPY CALLER BUFFER
004767 JSR PC,COPRUF
009336
POP R4 1TEMP SAVE R1 IN R2
812604 MOV (SPY+,R4
CALL 69 JCHECK FOR ,CLOSE
004787 JSR PC,68
000270
200408 BR 8s INO
' -
0127680 108¢ MoV #=6002,4(R0) 1SPOOLER SHUT DOWN, REPORT
177200
sogRade
PUSH R FOUMMY
010146 MOV Ri,=(SP)
009187 JMP 0EQRD
174142
JLAST RECORD WAS NOT A ,¢LOSE
005741 833 78T «(R1) JPOINT R1 LPCBCP
019102 MOV Ri,R2 7SAVE IN R2
pasray TST (R1)e JBUMP RY LPWDCP
11101 MOV tR1),RY JGET CURRENY WORD ADD, IN RY
161204 suB (R2),R1 7GET REMAINNING # OF WORDS
022701 CMP #772sRY 1SPACE LEFT?
B2p77a
0083034 BGT F1}
@lorey 981 MoV PC,RY JGET ADD, OF LPWDCP IN R}
062791 ADD WLPWDEP=" ,RY
1776368
205071 CLR o (R1) $NO, PUT BUFFER ON DISK
[LIT.LT]
CALL FINDBK JGET DISK BLOCK #
084787 JSR PC,FINDBK
174434

Figure 5-1
UNICHANNEL Spooler Components (Cont.)

sSPOL1L,.125 MACRO={y V34802 PAGE 27,
LP CALL SERvICE

59 05304 PUSH Rl JSAVE BLOCK & ON STACK
25304 210146 MOV Rl,=(8P)
80 ns3e6 a;;7az MOV LPcBCP,R2 1GET C(LPCBIP) IN R2
177612
61 25312 211662 MoV (SP),TWD{ (R2) 1SAVE BLOCK # IN TWDl
22a778
62 05316 212703 MoV #LPCOD,R3 1GET LP.DEV CODE IN R3
200004
63 95322 016701 MOV LPBMSA,RY JSET LPBMSA
203330
64 35326 105211 INCB (R1)
65 05332 CALL PUTBLK JPUT BUFF, ON DISK
05330 0047687 JSR PC,PUTALK
pe2772
66 03334 0168704 MoV LPCBAD,R4 JGEY ADD, OF LLPCBADBCP IN R3&R4
003276
67 @5340 381 CALL GETBUF 3GET A NEW BUF
05340 0847687 JSR PC,GETAUF
173346
68 05344 210124 MOV R1,(RA)+)SET LPCBCPsBUFAD
69 25346 POP (R1) .)SET BLOCK # IN HWD@ OF NEW BUFF,
B5346 212611 MOV (SP)+, (R1)
70 23352 86270¢ ADD w4,R1 $BUMP R2 TO WORD 2 OF BUF
200004
71 05354 Qip114 MOV Ri, (R4) 18ET LPWDCP
72 95358 ast CALL DEQRFO JDEQUE REGUEST & EXIT IN WAIT STATE
05336 224767 JSR PC,DEQREQ
174014
73 p5362 431 POP Rl jRESTORE ADD, OF CURRENT WORD IN RY
25362 212601 MOV tSPY+,RY
74 8364 PUSH R3 71SAVE R3,R2
25364 210348 MOV R3,=(8P)
75 25366 PUSH R2
85366 Plo248 MoV R2,=(8P)
76 95370 803071 CLR e(RYY 7JSET BUFF, END SW
20pnoa
77 05374 CALL FINDRK JGEY DISK BLOCK #
P5374 084767 JSR PC,FINDBK
174340
78 p5400 PUSH R)SAVE BLOCK #
05400 210148 MOV Ri,=(8P)
79 95402 CALL GETBUF JGET A BUFF,
25402 204767 JSR PC,GETRUF
175304
80 p3406 211611 Mav €SPy, (RYY)SET BLOCK » IN HWDR OF NEW BUFF,
81 05410 216704 MoV LPCBAD,R4 JGET ADD, OF LLPCBADBCP IN R4
023222
82 05414 PUSH (R4)
05414 2114468 MoV (R4),=(Sp)
83 8416 PUSH (R4})SAVE CONT, OF LPCBCP
25416 0114486 L1:17 (R4),-18p)
84 05420 062716 ADD #TWD1, (SP) $BUMP TO TWD1
2ep778
85 QS424 316636 MOV 4(SP),8(sP)* JSET LINK IN OLD BUFF,
200004
86 085430 dipt24 MOV R, (R4Y»)SET LPCBCP & BUMP TO LPWOCP
87 05432 862704 ADD #é,Ry JPOINT TO WORD 2 IN BUFF,
02p004
88 05436 PUSH R4 - JSAVE LPWDCP ADD, ON STACK
28436 210448 MOV R4, = (8P)
89 05440 OiQ114 MOV R1, (R4 7SET LPWOCP
90 p544z Gipiae MOV Ri R4 JGET CONT, GF LPWDCP
91 05444 316602 MOV 6(8P),R2 JRESTORE R3,R2
o2p0ees
P2 035450 0186083 MoV 18(8P),Ry
020010
93 05454 CALL cOPBUF JCOPY CALLER BUFFER
25454 004767 JSR PC,COPRUF
200120
94 08460 POP Ré JSAVE LPWDCP ADD, IN R4
05460 212604 MOV tSPY+,R4
95 05482 POP R2 JCONT, OF LPCBCP ON STACK TOP?27
23462 012602 MOV (SP)s,R2
96 05464 212703 MOV #LPCOD,R3 JGET DEV.CODE IN R3, FOR PUTBLK
000084
97 95470 862708 ADD #6,8p JCLEAN STACK
220006
98 05474 RPUSH Ré 1SAVE RS

Figure 5-1
UNICHANNDL Spooler Components (Cont.)

5-22

SPOL11,425 MACRO=11 y3AB8Q PaAGE 27,
LP CALL SERVICE

05474 210448 MoV R4,=(8P)
99 95476 Bi6701 MOV LPBM8A,R{ JSET LPBMSA
823154
180 5502 10521} INCB (R1)
181 5504 CALL PUTBLK JPUT BUFF. ON DISK
5504 004767 JSR PC,PUTALK
0@2616
182 5519 POP R4 JTEMP SAVE Ry
5510 212634 MOV (SPY+,R4
103 5312 CALL as JCHECK FOR _CLOSE
5512 004767 JSR PC,68
200002
104 5516 @oaryy BR 28
105 5520 21p4ay 631 MOV R4,RY 1SAVE R4
106 5522 211124 MOV tR1),R4 JGET C(LPWDCP) IN R4
187 5524 222784 CMP #LPCLOS,«2(R4) FF4CR??
006414
177778
108 5532 201021 BNE 78
189 5534 @ip104 MOV RY,R4 JRESTORE R4
1@ 5536 ADR TABLE+LFA,R2 JGET LP,LFB ADD, IN R2
8536 212702 MOV PC,R2
5540 062702 ADD #TABLESLFB=,,R2
2043176 A
114 5344 0187014 MOV LPEBAD,R{
2R3066
112 5550 PUSH tR2) $1SAVE OLD LFB
5550 211246 MOV (R2),=tSp)
113 5552 Q17112 MOV e(R1), (R2) JSET LFB IN TABLE
LLILL]]
114 5556 231101 MOV tRLY,RY
115 5560 POP 2(R1Y JSET OLD LFB IN BUFFER
5560 012661 MOV (SP)+,2(R1)
220002
116 5564 012764 MoV #=1,TWNO(RL) 1SET EOF CODE IN BUFFER
177777
28774
117 5572 @35728 TST (SP)+ JRETURN TO 9 (NOT SUB RETURN)
118 5574 000634 BR 93
wkkwwd A .
119 S576 2ap287 733 RETURN
120 !
121 <ENDC
122 LIFDF sLPisch
123 5868 012324 COPRUF: MQV (R3)+, (R4)+ JCOPY CALLER BUFFER
124 5602 eas53@2 DEC R2
125 5604 201375 BNE cOPBUF
126 5606 21p47s MOV R4,02 (8P}
009002
127 5612 0080207 RETURN
128 !
129 <ENDC
130 «SBTTL PL INTFRRUPT SERVICE

Figure 5-1
UNICHANNEL Spooler Components (Cont.)

$POL11,125 MACRO=11 V34000 PAGE 33
ADDRESS TABLE

{ .S8TTL ADDRESS TABLE
2 '

3 ea7i7e ADRTBL?

4 0071708 V03824 RKCAD! ,WORD RKTCBP

5 JIFOF SLP

8 027172 PR4145 LPONADS ,WORD LPONCE

? «ENDC

8 PB7174 010324 TABPLAI ,WORD TABLE+PLTEOF
9 JIFDF SPL

18 PLONADS . WORD PLONCE

11 <ENDC

12 @7176 07322 BTMPADI WORD BTMPST

{3 87200 2073168 STBKNA3 ,WORD STBKNM

14 87202 ¥10274 TABLAD: ,WORD TABLE

15 7204 019276 TABPCBI WORD TABLECBN

16 7206 210328 TABPLC: ,WORD TABLE+PLTEOFCBN
17 87218 6109312 TABCOCt ,WORD TABLE+CDTEQF4CBN
18 @7212 Oip4@4 TCBKiAD WORD TLBDK{

19 L1FOF 8GD

20 @7214 005434 COCPAD:I ,WORD cODCBIP

21 87216 P260@2 COCBADI ,WORD cDcsep

22 ENDC

23 LIFOF SLP

24 27220 804706 LPCBAD: ,WORD LPCBCP

2% 87222 204132 LPCWADI ,WORD L PwDIP

26 «ENDC

27 «1FDF sPL

28 PLCBADS ,WORD pLcace
29 PLWDADY ,WORD PLUDTP
30 +ENDC

31 07224 210432 TCBKIA: ,WORD TCBDKI

32 87226 282322 ENOBAD1 ,WORD ENDBSMW

33 87230 911116 BUFLADT ,WORD BUFLHD

34 JIFDF SLP

35 prad2 LPCPADY

36 07232 024150 LPCZAD1 WORD LPCBIP

37 07234 024785 _PBMSAI ,WORD PBMS

38 LENDC

30 P7236 21931@ TABCDT: WORD TABLE#CDTEOF
42 87240 210328 TABCRT: ,WORD TABLECRp

41 ©7242 612330 TABPDT: ,WORD TABLEPLTEOFCRP

42 J1FOF sPL

43 PLCIADs ,WORD pLcpp
'Y PLOTADE WORD PLOBIP
45 PLBMSAY WORD PLBMS
a8 +ENDC

47 +1FOF sCo

48 07244 205431 COBMSAT ,WORD cDBMS

49 07246 285442 COINTA3 LWORD COINT

50 +ENDC

81 87250 010314 TABDCT: .WORD TABLE4CDTEOF4CRP
82 97252 026@10 COCAADS ,WORD cOCALL

53 @7254 @146 3PSTAD: .WORD 3PST

: «IFDF sCD

55 97256 2063068 CDOBAD: ,WORD cDosce

S8 07260 888746 RESTAD! ,WORD RESTRO

87 27282 0@s87?7 COONAD: ,WORD COONCE

se +ENDC

59 07264 2020080 ONCEFLI LWORD []

69 177741 ADTCNTsADRTBL=,/2

[} !

82)

83 JSBTTL slTmMam 2 TABLF

1) !

85 n7268 BITMAPI ,BLOCK 14 JSPOOLER ID INFO
66 27316 200002 STBKNM1I ,WORD [3SPOOLER AREA FBN
67 97320 ddqemR «WORD] $SPOOLER AREA SIZE
68 @7322 BTMPSTH! ,BLOCK 360 JSTART OF BIT MAP
89 00p360 BRTMPSZs,wBTMPET/2

78 10262 202080 BTMPEDI @ JPOINTER TO END OF BIT MAP
74 '

72 10264 +BLOCK 4 JHWD!S

73 18274 TABLET ,BLOCK 44 J3 DEVICES » 14(8) WORDS EACH
7; 209044 TABLSZw,=TABLE/2

7 !

76 § TABLE ENTRIES ARE A8 FpoLLOWS FOR EACH TASK1

7?7] DEVCOD/CBN/CRP/NBN/LSB/LFB

78 ' 8/2/4/6/18/42

79 '

Figure 5-1
UNICHANNEL Spocler Components (Cont.)

OUTPUT TASK

SPACE LEFT IN BUFFER
FOR CALLER'S DATA?

COPY CALLER'S DATA INTO BUFFER
AND UPDATE BUFFER POINTERS

v

ECF?

Y N

BUFFER FULL?I
: Y
N

SET EOB SWITCH
SET EOF SWITCH
SET LFB IN TABLE

!

CALL FINDBK FOR
AN UNUSED DISK BLOCK

Y

~ SAVE DISK BLOCK #

Y

CALL PUTBLK TO WRITE
OLD BUFFER TO THE DISK

Y

CALL GETBUF FOR AN
UNUSED CORE BUFFER

|

SET NEXT BLOCK # IN
OLD BUFFER. SET BLOCK
IN NEW BUFFER

SET EOB FLAG (FOR DESPOOLER)
IN BUFFER

Y

CALL FINDBK FOR AN
UNUSED DISK BLOCK

Y

SAVE DISK BLOCK #

Y

CALL GETBUF FOR AN
UNUSED CORE BUFFER

!

SET NEXT BLOCK # IN OLD
BUFFER. SET BLOCK # IN
NEW BUFFER

!

UPDATE POINTER TO BEGINNING
OF NEW BUFFER

1

CALL PUTBLK TO WRITE OLD
BUFFER TO THE DISK

y

Figure 5-2
Task Call Service Routine

Set the SPOOLER task control lines 17-20

registers

Setup the disk TCB pointer lines 23-30
table

Setup and initialize BITMAP lines 32-49
Initialize and setup TABLE lines 51-59
Save BITMAP and TABLE on disk lines 61-66
Set the SPOOLER switches lines 68,69

LINE PRINTER OPERATIONS:

Initialize the LP call service lines 96, 97, 103-106
routine switches and pointers

Clear all pending LP task re- lines 98-100
quests in PIREX get a free
block on disk, get a buffer.

Set the NBN entry in TABLE. line 102
Process the next SPOOLER line 122
request

5.5.2 LP SPOOLING

All requests issued to spooled tasks (TCN = 0-177) after a 'BEGIN'
directive to the SPOOLER, are processed by the SPOOLER. This is
effected by PIREX. When the LP handler in the PDP-15 issues a request
to the LP driver task in PIREX, the SPOOLER processes this request.
The 'request dispatcher' transfers control to the 'LP call service
routine' and the following operations are performed (Refer to

Figure 5-1):

Get the current word pointer page 27, line 20

address
Check if spooling operations are lines 21, 22

disabled and, if disabled, exit
Point to the current word lines 24, 25

Get the caller's buffer address lines 26-28
and relocate that address

Get the byte count of the lines 29-31
current record, add the header

word byte count, and make the

byte count even

Move ahead the current word line 32
pointer by the size of the
current record

Compute the space remaining in line 33-36
the current buffer

Is the buffer full? lines 37-38

Copy the caller's buffer lines 39, 123-127
Check for a .CLOSE record lines 41, 105-108
The record is not a .CLOSE; one lines 42, 48-54

more record can fit. Process
the next request

The record is a .CLOSE record; lines 109, 110, 112
save the o0ld Last File Block
(LFB) in TABLE

Set the new LFB in TABLE line 113

Set the 0ld LFB in Header word 2 lines 114, 115
of the buffer

Set an end of file indicator in line 116

the buffer

Go to line 55

The buffer is full. Set an indi- lines 55-57
cator to this effect in the

buffer

Get a free block on disk (FINDBK) line 58

Set a pointer to the next block lines 59-61
in trailer word 1

Set the "write block in motion" lines 63, 64
switch

Put the buffer on disk (PUTBLK) lines 62, 65
Get another buffer (GETBUF) line 67

Set the "current buffer" pointer lines 66, 68

for the new buffer

Set the block number in the line 69
current buffer

Set the current word pointer to lines 70, 71
word 2 in the buffer

Process the next request line 72

As disk blocks are written on the disk the Last Spooled Block (LSB)
entries in TABLE are updated when the completion of I/O interrupt
is processed by the 'disk interrupt service routine' in the
SPOOLER (RKINT).

5.5.3 LP Despooling

When the LP device is idle and the first spooled data block is written
onto the disk the despooling operations are started in the RKINT
routine as follows (Refer to Figure 5-1 and 5-3).

WRITE PROCESSOR:

Reset the "write block in Page 24, lines 20, 21
motion" switch

Set the LSB in TABLE lines 22, 23

LPONCE = 0, first time lines 24-27

through set LPONCE = 1

Set the "read block in line 28

motion” switch

Get a buffer (GETBUF) line 29

Get a disk TCB (GETRKT) line 35

Read a block from disk lines 32-34, 36, 37
(GETPUT)

Return the disk TCB and line 38

then EXIT

READ PROCESSOR:

Is the block read = LFB? page 23, lines 44-46
Yes, set LFB = 1 line 47

Reset the "read block in line 49

motion" switch

Decrement the LP free buffer line 50

count

LPONCE = 1, first time lines 51-54

through, start up LP

Set Current Block Number line 67
(CBN) in TABLE

Set the current despooling lines 68, 69
buffer pointer

Set the current despooling lines 70, 71
word pointer

Set the Next Block Number lines 72, 73
{NBN) in TABLE

Set Current Record Pointer line 74
(CRP) in TABLE

5-28

INT

| WHAT FunCTION?]

READ WRITE

| WHAT TASK? | WHAT TASK?
P CD CD, Lp
XY *XY
CLEAR BLOCK IN UPDATE LSB
MOTION SWITCH IN TABLE

DECREMENT FREE |TASK IDLE?I
BUFFER SWITCH
Y N

ONCE ONLY
FIRST READ? SWITCH SET?

Y N Y
SET SWITCH

UPDATE CBN, CRP, CBN
IN TABLE

SET BLOCK IN
MOTION SWITCH

[OUTPUT TASK? |

GO TO DONE|-{START UP TASK]|

GO TO DONE

. Figure 5-3
Device Interrupt Servicing Logic (For LP)

Set LPONCE = 2

LP despooling is not shut
down; send the LP write
request

Set the LP busy switch

Return the disk TCB and then
EXIT

Once despooling operations are started the

data to be despooled.

line 55

lines

56-59

line 61

'LP interrupt service
routine' continues the despooling operations until there is no more

The following operations are performed here (Refer to Figure 5-1): -

Protect against a disk
interrupt

There's nothing more to do; reset
LPONCE

Reset LPBMD and increment the
free buffer count

Return the buffer (GIVBUF)

Set the LP idle switch and
return

There's more to do; a block is
in motion

Release the buffer (GIVBUF)
Increment the free buffer count
Wait for a block to be read in
Set CBN - NBN in TABLE

Set CRP in TABLE

Set NBN in TABLE

Set the current despooling buffer
and word pointer

Shut down? Shut LP? Shut
despooler?

Current record in buffer is a
.CLOSE record, check if more
blocks to do

There are no more blocks reset

TABLE entries, switches and
then exit

5-30

page 26, line 24

lines

lines

lines

lines

lines

lines

25-28

29, 30

31, 32
33, 34

35, 36

37-39

line 40

lines

41-44

line 46

line 47

lines

lines

lines

lines

lines

48-51

52-55

63-68

69-71

73, 76, 120-122

One free buffer and no block lines 75-80
in motion

Get next block line 81

Release buffer and wait to lines 82, 37-44
come in

The first record is not a .CLOSE; lines 85-86

send an LP write request

Point to the first word of the lines 88-92
next record

There are more records left and lines 95-100
one free buffer

There is no read block in motion lines 101-104
and more blocks to do

Get next block lines 105, 125-136

Return from interrupt call

5.5.4 SPOOLER Shutdown

All spooling operations can be terminated by issuing the 'END' direc-
tive to the SPOOLER. The following operations are performed (Refer
to Figure 5-1):

Reset the spooler timer request page 9, line 10
in PIREX

Set the PDP-15's request indicator line 8
in the busy/idle switch

Clear the 'device spooled' switch line 9

Inhibit interrupts line 11

Stop the LP task lines 15, 35-43
Reset the spooler switch line 25

Shut off software interrupts lines 26-28
Tell the caller that the 'END' lines 29-30

is completed

Send a request to disconnect lines 32, 33
the SPOOLER task

CHAPTER 6

SPOOLER TASK DEVELOPMENT

6.1 INTRODUCTION

This chapter discusses in detail the procedure for developing a
spooled task, and, for integrating it into the SPOOLER software. The
development of a spooled taskl in the UC1l5 system begins with the de-
velopment and installation of the task under the PIREX system, if not
already present (see Chapters 4 and 5).

Ornice this has been done, the following summary describes the steps
necessary to integrate it into the SPOOLER software:

1. Design and code the call service routine. (Refer to Figure
6-1.)

2. Design and code the interrupt service routine. (Refer to
Figure 6-1.)

DEVICE HANDLER TASK/DEVICE DRIVER
ON PDP-15 ~t———p| SPOOLER |yl ON PDP-11
CALL side INTERRUPT side

Figure 6-1
SPOOLER Schematic

NOTE

The logical structure of the 'task call
service routine' and the 'task interrupt
service routine' depends upon whether the
task is an input or an output task. The
'task call service routine' is the de-
spooler for an input task and it is the
spooler for an output task. The 'task
interrupt service routine' is the spooler
for input tasks and it is the despooler
for output tasks.

lrhere is no program logic or coding connections between the device
driver tasks under PIREX and the spooler task. All communication to
the device driver is through the TCB only.

6-1

3. Add code in the RKINT routine to handle the disk read or
write operaticns for this task.

4. Code a routine to setup TCB and issue request.
5. Adé a TCB for this task.

6. Add code to the BEGIN directive processing routine to
initialize, and, (if necessary) startup this task.

7. Add code to the END directive processing routine to clear
up this task.

8. Add code to the 'request dispatcher' to dispatch calls to
this routine.

9. 2add code to the 'device interrupt dispatcher' to dispatch
interrupts from this device.

10. Increase the size of TABLE by 6 words if not sufficient.

11. Add entries of frequently addressed tags to the central
address table.

12. Update DEVCNT and DEVSPP to ensure sufficient buffers and
TCBs.

13. Update FINDBK routine.

The remaining sections describe the above steps in more detail. The
Line Printer spooler task is used as a descriptive example.

6.1.1 Call Service Routine

This is the routine that normally processes calls from the handler
on the PDP-15. For an output task this routine spools data onto the
disk as indicated in Section 5.3.3. The operations performed by
this routine are discussed in detail in Section 5.4.2.

Normally, data from records are copied into a buffer until it is full.
As soon as a buffer is full, it is written onto the disk with a
pointer to the next block; and then a new buffer is obtained. This
process is continued until a special record that indicates the end

of the file is received. PFor the Line Printer, this is a record with
form feed and carriage return characters only. On receipt of this
record, the call service rcutine copies this record into the current
buffer and writes it out; regardless of whether the buffer is full

or not. This is done to ensure complete processing of a distinct
logical entity, a file. The call service routine sets only the LFB
entry in the TABLE. It uses the utility routines GETBUF, FINDBK,
PUTBLK, and DEQREQ.

6.1.2 1Interrupt Service Routine

Completion of I/O interrupts from the device driver in PIREX is
processed by this routine. For an output task, this routine
despools the data onto the device as indicated in Section 5.3.5.
The operations performed by this routine are discussed in detail in
Section 5.4.3.

The interrupt service routine for the Line Printer despools data
from the buffer onto the device by issuing requests to the task
running under PIREX. This routine, like other despooling routines
in the SPOOLER, is double buffered to increase throughput. Pro-
vision is made in the routine to wait for a block to be read into
core during heavy disk utilization. This is done using the "block
in motion" switch.

6.1.3 Code to Handle the Disk Read/Write Operations

All spooled tasks must perform certain functions on completion of a
read/write block disk operation, as, Section 5.5.3 describes in
detail.

On completion of a read disk block request the TABLE entries must be
updated and the Line Printer started up if idle. If the Line
Printer is busy, control is transferred to the "DONE" section of
code where the disk TCR is returned to the pool and control is
relinquished.

On completion of a "write block on disk" request, the buffer is returned
and the LSB entry in TABLE is updated. If the Line Printer is idle, a
request is issued for the Line Printer task to read in the next de-
spocling block. This is done by supplying the NBNl entry in TABLE for
the Line Printer. If the Line Printer is not busy or after issuing

the read request as in read, control is transferred to the 'DONE'
section of code.

6.1.4 Routine to Setup TCB and Issue Request

These operations are performed at several places in the SPOOLER. To
optimize code this subroutine performs the TCB setup and request
issuing functions.

The Line Printer routine performs the following operations (Figure
5-1) at tag STUPLT:

Get the address of the LP TCB page 16, lines 18-~19
Go to setup common line 20

Set the buffer address specified line 31

in the TCB

(1) See Section 5.4.7.

Reset the REV in the TCB lires 32-33

Issue the request : line 34
Return control line 35
6.1.5 TCB

The format of the TCB used by spooler tasks is almost identical to
the format of TCBs for tasks running under PIREX, except for the
disk TCB which has an extra word. The extra word is used to store
the TCN of the task for which the I/0 transfer was requested.
Another difference is that the TCN present in word 'l' of all TCBs
in the SPOOLER has the unspooled bit set, i.e., TCN' = 200g + TCN
(0-177g). This is to prevent the request from being queued to the
SPOOLER. Also, word '0' of all TCBs contains the SPOOLER task code
instead of the API information. This is to permit PIREX to transfer
control to the 'device interrupt dispatcher' in the SPOOLER on receipt
of an I/0 completion interrupt from a SPOOLER request.

6.1.6 Initialization in the BEGIN Routine

All SPOOLER tasks have to be initialized before starting of spooling
operations. The initialization normally consists of setting the
pointers, switches and variables to the right value, obtaining
buffers, block number on disk, etc. Section 5.5.1 explains these
operations for the Line Printer in more detail.

6.1.7 Cleanup in the END Routine

All SPOOLER tasks have to be cleaned up before termination of spool-
ing operations. The cleanup for the Line Printer consists of stop-
ping the LP driver task in PIREX and clearing all pending

requests in the task's TRL.

6.1.8 Updating the Request Dispatcher

The request dispatcher in the SPOOLER contains code to check the TCN
of the current request being processed and to transfer control to
the appropriate routine. For the Line Printer (Figure 5-1) this is
done at:

Page 6, lines 34-36, 72

6.1.9 Updating the Device Interrupt Dispatcher

The SPOOLER is informed of completion of I/0 requests through the
PIREX Software Interrupt facility. PIREX calls the device interrupt
dispatcher, which determines the task that issued the request and
transfers control to the tasks interrupt service routine.

For the Line Printer this is done at:

Page 22, lines 12, 13, 19

6.1.10 Updating TABLE

The TABLE contains the complete record of the data being spooled and
despooled. Each task has a 6 word entry in this TABLE. TABLE size
must be increased (change the 'BLOCK XXX' statement at page 33,

line 73) based upon the number of tasks in the SPOOLER. Currently
there is sufficient space in the TABLE for 3 additional tasks.

6.1.11 Updating the Central Address TABLE

Code optimization in a PIC program is done by maintaining a table of
addresses for frequently used tags. This table contains the unre-
located addresses of tags at assembly time. These are converted to
absolute addresses (by adding the SPOOLER first address) by the once
only section of code in the SPOOLER (Figure 5-1, page 6, lines 12-26).

For the Line Printer fFigure 5-1) the following tags are present in
this table:

LPONCE page 33, line 6

TABPCB line 15
LPCBCP line 24
LPWDIP line 25
LPCBIP line 36
LPBMS line 37

6.1.12 Update DEVCNT and DEVSPP

To facilitate automatic updating (increase or decrease) of buffers
and disk TCBs in the SPOOLER based upon the number of tasks in it,
a conditional parameter exists for each task.

DEVCNT and DEVSPP are modified for the Line Printer (Figure 5-1) at:

Page 3, line 13-14

Tasks are assembled into the SPOOLER by defining the conditional
parameters of the form:

$XX = ZZZz00
where
XX = mnemonic of the task (LP for Line Printer)

a bit configuration (0400 for LP - there is a bit for each
task)

22727

6.1.13 Updating the FINDBK Routine

Code is present in this routine to prevent allocation of the disk
block that is currently being despooled. This is necessary to
insure proper operation of the spooler because despooling operations
are halted when CBN = LSB. For the line printer task (Figure 5-1)
this is done at:

page 17, lines 89, 90, 97, 98

6.2 ASSEMBLING THE SPOOLER
To assemble the SPOOLER with the required task in it, it may be
necessary to edit the SPOL1l XXX source file to supply the appropri-

ate assembly parameter. To assemble the SPOOLER with the Card
Reader task also insert the line:

$CD = 20000 after the sub-title conditional assembly parameters.
(For Plotter insert: $PL = 10000)

An assembly of the above source (Figure 5-1) will produce a SPOOLER
with Line Printer and Card Reader tasks.

API
ATL
CAF

CAPIn

CBN
CIOD
CRP

DOS-15

LFB
LIOR
LSB
PC

PIC

RDRS
REV
RSX-15

SAPIn

SIOA

APPENDIX A

ABBREVIATIONS

Automatic Priority Interrupt
Active Task List
Clear All Flags

Clear APIn flag in DR15-C (CAPIO = 706104,
CAPI1 = 706124, CAPI2 = 706144, CAPI3 = 706164)

Current Block Numbers

Clear Input/Output done (706002)
Current Record Pointer

PDP-15 Disk Operating System

Event Variable

Last File Block

Load Input/Output Register (706006)
Last Spooled Block

Program Counter

Position Independent Code (can be loaded any-
where in memory) '

Read Status Register (706112)
Request Event Variable
PDP-15 Real Time System Executive

Skip on APIn flag in DR11-C (SAPIO = 706101,
SAPI1 = 706121, SAPI2 = 706141, SAPI3 = 706161)

Skip on Input/Output data Accepted (706001)

TCB Task Control Block

TCBP Task Control Block Pointer
TRL Task Request List
Ucls UNICHANNEL-15

APPENDIX B

CURRENTLY IMPLEMENTED TCBs

The general format for all task control blocks is as follows:

:15 8:7 2,
L]
' ATA H ALV \ word @
: LN S N DS N A : : LI I T N A :
' FCN H:=H TCN 7 word 1
: 1 1 1 1 1 1 1 1 A 1] 1 T L]] 1 :
' REV : word 2
: L BN SN IS DU SN BN TN NN DU NN NN N | ’ 1 :
H Other data v word 3
4 : J
ticular
/ par L /
E ! word n
1

to this task
| 2 | | D B A BN N I A A 1

ATA PDP-15 API interrupt vector address

ALV PDP-15 API interrupt priority level. Must be 0, 1, 2,
or 3 (unless FCN = 3).

FCN Function to perform upon completion of this request.
Valid values are:

000 Interrupt PDP-15 at location ATA, priority ALV.
001 Do nothing (except set REV)

003 Cause software interrupt to the PDP-11 task whose
task code number is in ALV.

S 0 if this request may be spooled.
1 if :this request may not be spooled.

TCN Task code number of the task which is to process this
request

REV Request Event Variable. Initially zero, set to a non-
zero value to indicate completion of the request.
The meaning of the various return values is described
below.

Returned REV value:
1 successful (normal) completion.

-200 Non-existent task. The task code number (TCN) does not
correspond to any task currently in the PIREX system.

-300 Illegal ALV value. The request may or may not have been
performed - see individual request descriptions. The
PDP-15 is interrupted at API level 3.

=777 Node Pool empty. PIREX is temporarily out of nodes, and
therefore is unable to insert this request into the
appropriate list. Reissue the request after a brief
delay.

Other The meanings of other returned REV values are given with
the descriptions of the task control blocks to which they

apply.

In the sections that follow, many of the task control block diagrams
show S and TCN combined into a single 8-bit quantity. This is done

to indicate that the particular task may never be spooled, and thus

S is always 1.

B.1 STOP TASK (ST)

This task provides the capability to stop one or all tasks in PIREX.
Stopping a task may immediately abort processing of the request the
task is currently processing, and also any PDP-15 originated requests
on the task request list. The format of the task control block for the
stop task is as follows (note that this is a non-standard task

control block):

:15 8,7 ﬂ:
' unuse ' word g
[| N] 1 1 1 I 1 1 1 | 1 1] 1 1 1 v
[} L L]
A} TCN ' 289 v word 1
: |] 1 1 1] 1 1 1] 1 1] i] 1 1] 1] 1 1] : .
H REV { word 2
% §_ v " ¥ ¥ % ¥ ¥ 9§ v v o9 0t ¥
TCN If zero, this is a stop all tasks directive.
A If set unconditionally, abort the current request for this

(or all) task(s). If clear, allow the request currently
being processed by this (or each) task to complete if and
only if the request originated from the PDP-11. Only
PDP-15 requests on the task request list will be aborted
regardless of the setting of this bit.

All requests which are aborted via this reguest will never complete;
the request event variables (REVs) of such requests will never be
set to a non-zero value. A permanent task which is stopped via this
request will be placed in the wait state; a temporary task will be
placed in the stopped state.

Returned REV values:
1 Successful completion

-600 Task to be stopped is not connected to PIREX.
Only applicable when TCN # O.

B.2 SOFTWARE DIRECTIVE TASK (SD)

Descriptions of the software directives, including details of their
task control block formats, are given in Section 3.6, Software
Directive Processing. The general task control block format for all
software directives is as follows:

15 8,7 72,
] LD 1
' ATA H ALV 1 word #
: 11 ¥ 1 1 1t 1 : 1 1 1 v ¥ v 1 :
' FCN ! 291 v word 1
: st v v Y v v v ' ' ¥ OB W _ T 1 :
H REV v word 2
: P vt 5 v v @ _: Yy vt v 1 ¥ 1 :
! OPR ' y word 3
: 1 _r 1. 1 1 1t 1 ;
! Contents depend ' word 4
; upon ;
4 directive ' word n
T_ b 't v ®t 1 v ® r ¥ 1 1 i 1 ® 1
OPR Indicate the exact operation (directive) to be performed.

For details see Section 3.6.
Returned REV values:
1 Successful completion
-400 Invalid OPR (directive/operation code) values.

Other See individual directive description in Section 3.6,

B.3 DISK DRIVER TASK (RK)

The disk driver task provides the capability of using the RKO05 cart-
ridge disk system. Task control blocks directed to this task have
the following format:

'15 8|7 gl
1} L]
' ATA ' ALV ' word #
; L B B N R B) 1l y 1 v v 1 1 1 :
' FCN ' 2092 { word 1
: 1 1) 1 1 1 1 | I N B | B | 1 :
H REV 1 word 2
: L] 1 | I | | I | I] 11 L S .) L :
H Block Number v word 3
: 1 | B vy _ 1 1 i_ v 1 1_¥ 1 1 l‘:
! REL + MSMA ! word 4
: L [} 1.1 1 s 1 11 | . L | . :
H LSMA v word 5
: 1 1 P v 1 1 v ¥ ¥ L | 1 1 1 1 :
! Word Count i word €
: 11 v 1 : 11 : | N N N N R | :
! unused | Unit! Function 1 word 7
: gy 9 v ¢ v v ¥ ' v 3 1 v 1 :
H RKCS 1 word 14
; y vt v v v ¥ v ¥ fr ' v @ ¥ 1 :
H RKER v word 11
: v vt 1. v % 8 v 1 ¥ O 8 0 ? :
! RKDS y word 12
1 A 1 1] |] 1] [1]] 1 | .) L}
ATA Usually 047,
ALV Usually 000
REV Set to 1 upon completion regardless of errors.
Block Number Disk block number to transfer
REL 000000 if request comes from PDP-15

100000 if request comes from PDP-11l

MSMA Core address at which to begin transfer - most
significant bits

LSMA Core address at which to begin transfer - least
significant bits.

Word Count Two's complement of the number of words to
transfer

Unit Disk drive (unit) number on which to perform

the operation.

Function Operation to be performed.

Valid values are:

002 Write

004 Read

006 Write check
012 Read Check
016 Write lock

For detailed descriptions of the functions, see the RK1ll-E
Disk Drive Controller Manual (DEC-11-HRKDA-B-D).

RKCS Upon completion of the operation, these three
RKER words are loaded from the corresponding disk
RKDS controller registers. See the RK1l1l-E Disk

Drive Controller Manual (DEC-11-HRKA-B-D) tor
a description of their meaning.

If the request originates from the PDP~11, LSMA is the l16-bit PDP-11
byte address at which the transfer is to begin. If the request
originates from the PDP-15, MSMA and LSMA together are the 17-bit
PDP-15 word address at which the transfer is to begin. Upon comple-
tion of the transfer, REV is always set to 1, regardless of whether or
not the transfer succeeded. RKCS, RKER, and RKDS must be examined

to determine whether the transfer succeeded or an error occurred.

Returned REV Values:
1 Request complete. Request may or may not have succeeded.

-300 Illegal ALV value. Request complete.

B.4 LINE PRINTER DRIVER TASK (LP)

The task control block format is as follows:

:15 8,7 ¢:
! ATA ! ALV i word ¢
:4LJ | I N A : : §£__r 1 1 t :
H FCN o gaa ! word 1
: P vt v 3 9 8 ¥V v v T N5 _F 10 :
' REV 1 word 2
: v v *t v v f* ¥ ¥ v ¥ ' v 8 I :
4 REL + word 3
: y_ ¥ t % 1t ¢ " v ¥ P ' Y YTV ;
H Buffer Address 7y word 4
; Ly t v ¢t ¢t v v v 9 v 5 VvV ¥ 1 :
H unused ! word 5
: 1y v 3t _ 0 0 0 vV U VO T 9 _t ® :
H Status Flag t word 6
1 L

Yt v v v v v v v v ¢ v 1 1V

ATA Usually 056g

ALV Usually 002
S Usually 0 (indicating spooled operation)
REL 000000 If request originates from PDP-15

100000 If request originates from PDP-1l

Buffer Address PDP-11 byte address, if request is from PDP-1ll
PDP~15 word address, if request is from PDP-15

Status Flag Unused if request is spooled.
Cleared to zero at beginning of request proces-
sing and set to 000001 at completion if request
is not spooled.

The buffer address argument refers to a line buffer of the following-
format:

>
wm
[00)
~
=

'
1 ¥ 1
4 Mode H Count v word #
:lll'll'_:lll!ll':
' LF H unused y word 1
:'l![lll'lllll!':
} ! word 2
D b4
{ ata y,
' ' word n
v v ¢ 9 v v v § B VO YV Y ! 8% 1t
Count The number of bytes of data in the buffer.
Excludes the four byte header.
Mode Indicates transfer mode. Legal values are:
0 IOPS ASCII
1 Image
LF May be altered by the driver.
Data One line of output for the line printer.

The data sent to the line printer driver is a series of independent
bytes. If a byte is positive, it represents a 7-bit ASCII character.
If a byte is negative, it represents some number of spaces, the
number of spaces being equal to the absolute value of the byte. If

a line is in image mode, only the characters represented by the data
bytes are output. If a line is in IOPS ASCII mode, a line feed is
output before the beginning of the line unless the first character

of the line is a carriage return or form feed. A carriage return is
always output at the end of lines in IOPS ASCII mode. A line contain-
ing just the characters carriage return followed by form feed causes
no output in either mode, but rather represents a .CLOSE (end of file)

operation.,

Line printer errors are not reported via returned REV values. The
only line printer error which can occur is for the printer to go off
line (become not ready). The line printer driver reports this by
placing the value 4 in the device error byte of its entry in the

DEVST table (see Section 3.6.4 on the Error Status Report Directive).
When the printer comes back on line the driver clears the device error
byte and outputs the line. Upon completion the REV is set to 1.

Returned REV Values:

1 Successful completion

-300 Illegal ALV value. Action may or may not
have been taken.

-600 Spooler shut down. No action has been taken.

B.5 CARD READER DRIVER TASK (CD)

The task control block format is as follows:

'15 8|7 ﬂl
T ¥ L]
' ATA ' ALV ' word g
: et _t ® v T 1 : : ' v 1 1 1 :
' FCN 'S gas y word 1
: v 1 11 1 $_ v v ¢ 0 0 0 ' 0 'l
' REV y word 2
: y_v_ ¢ v v v ® 0 v v vV VOV :
' unused 7 word 3
: g0 ¥ 5 8 7T v 9 % % 9 0 v v 1 :
H Buffer Address 7y word 4
v % % v % v v v v v v Vv v 't ¢

ATA Usually 0558

ALV Usually 001

S Usually 0 (Indicating spooled operation)

Buffer Address PDP-11 byte address, if request is from PDP-11
PDP-15 word address, if request is from PDP-15

The buffer address argument refers to a card buffer of the following
format:

15 8,7 g,
v]
H Byte Count ' word #
: 1! L D | | U S N T N | B . :
H Checksum v word 1
: y _§ ¥y 9 v ¢ § % v v v % ¢ 0 9 :
: ' word 2
; Data ;
H ' word n
1 L

Byte Count Always 8010

Checksum Word checksum of the buffer (including -the byte
count)
Data 80lO bytes (40lo words) of data

The card data is not in ASCII. Each card column occupies one byte
in the following format:

e = = =}
*
e =
*

e = = =
*

Le = = =)
*
-
R by

*
1l

— bits -2 Contents of rows 1-7 encoded as follows:
#99 no punches in rows 1-7
#91 row 1 punched
#1¢ row 2 punched
#11 row 3 punched
10 row 4 punched
141 row 5 punched
11§ row 6 punched
111 row 7 punched
bit 3 Indicates row 8 punched
bit 4 Indicates row 9 punched
bit 5 Indicates zone @ punched
bit 6 Indicates zone 11 punched
bit 7 Indicates zone 12 punched

NOTE

All combinations of punches which cannot
be specified in this manner are illegal.

Any errors that occur are not reported by returned REV values.
Instead the IOPSUC numeric error code is placed in the device error
byte of the card reader's entry in the DEVST table (see Section
3.6.4, Error Status Report Directive). When the error condition is
remedied, the driver clears the device error byte and the read opera-
tion continues. Ultimately the read completes and REV is set to 1.

Returned REV Values:
1 successful completion

=300 Illegal ALV values. Action may or may
not have been taken.

=700 Spooler shut down. (Despooling not enabled)
No action taken.

DOS-15 V3B@g@ Update Document
B.6 PLOTTER DRIVER TASK (XY)

The task control block format is as follows:

|15 8|7 gl
)) 1
' ATA H ALV v word g
: | N B I N B : : $_ v v 31 v 1 :
' FCN 1St gge 1 word 1
: v 1t ¥ v v v 1 L 1 rr 1 :
H REV v word 2
: | S iy 1 & v ¥ v 1 1 Pt 0 ;
H REL v word 3
: 10 ¢t t_ v ¥ . ¥ o1 L B A] :
' Buffer Address v word 4
__1 | L S N N B | 1]) it V1 1
ATA Usually 0658
ALV Usually 003
S Usually 0 (indicating spooled operation)
REL 000000 If request is from PDP-15

100000 If request is from PDP-11

Buffer Address PDP-11 byte address, if request is from PDP-11
PDP-15 word address, if request is from PDP-15.

The buffer address argument refers to a data buffer of the following
format:

|15 8|7 gl
) L]
' Mode H Count 1 word £
: 1 1 r_ ' v v 1t 3 1 i v v 1 1 :
' unused ' word 1
: L -] 1 P 1 1 1 1_1)] 11 :
, ' word 2
; Data 5
' y word n
1 v v v 1 1 | I N . L | ! | I B 1
Count The number of bytes of data in the buffer.

Excludes the four byte header.
Mode Indicates the function to perform and/or the

mode in which the data should be interpreted.
Valid modes are:

B-9 J-39

DIS-15 V3B@PP Update Document
1 Line mode

2 Character mode

3 Initialize

4 Pen select(l)

377 End of file

Line mode data takes the following form. Each line is represented by
a pair of data words. The first word is the incremental change in the
X coordinate from the beginning to the end of the line, the second
word the change in the Y coordinate. If this is to be an invisible
line - i.e., it is to be drawn with the pen raised - 1000008 should
be added to the first word (change in X).

Character mode data is a series of ASCII characters to be drawn, one
character per byte. Initialize requires 8 words of data which

specify the character size and orientation for character mode plotting.
The pen select operation(l) takes two words of data. The first is the
pen number for the XY31ll plotter (1, 2, or 3). The contents of this
word are destroyed by the pen select operation. The second word must
be zero. An end of file merely raises the pen. (It also forces the

XY data through the spooler buffers if spooling is enabled.)

Returned REV Values:

1 Successful completion
-300 Illegal ALV value. Action may or may not have been
taken.
-600 Spooler shut down. - No action taken.

(1) This is used only by the XY¥31l1l plotter.

J-40 ‘ B-10

DOS-15 V3B@@@ Update Document

APPENDIX C

UCl5 RELATED ERROR MESSAGES

I0PSUC YYY XXXX

Where YYY denotes one of the following:

EST Stop all 1/0 Task
ESD Software Driver "
RKU Disk Cartridge "
DTU DECTAPE "
LPU Line Printer "
CDU Card Reader "
PLU Plotter "
ESP Spooler "
EMA MAC11 "

XXXX denotes one of the following:

- 3 - ILLEGAL INTERRUPT TO DRIVER
4 - DEVICE NOT READY
12 - DEVICE FAILURE

15 - SPOOLER FULL WARNING MESSAGE
20 - SPOOLER DISK FAILURE - SPOOLING DISABLED

45 - GREATER THAN 80 COLUMNS IN
CARD

55 - NO SPOOLER BUFFERS AVAILABLE

72 - ILLEGAL PUNCH COMBINATION

c-1 J-41

DOS-15 V3B@@P Update Document

74 - TIMING ERROR - CARD COLUMN

75

76

77

400

LOST - RETRY CARD
HARDWARE BUSY - DRIVER NOT

HARDWARE ERROR BETWEEN
CARDS

UNRECOGNIZED TASK REQUEST -
DEVICE NOT PRESENT

SPOOLER EMPTY - PDR-15 INPUT
REQUEST PENDING

Additional IOPS error messages:

J-42

Error Code

25
27
200

300

400

500

600

777

XY plotter - value too large for plotting.
XY plotter - mode incorrect.
Non-existent task referenced.

Illegal API level given (illegal values
are changed to level 3 and processed).

Illegal directive code given.

No free core in the PDP-11 local
memory.

ALT node for this TCN missing.

Request node was not available from the
POOL; i.e., the POOL was empty and the
referenced task was currently busy or the
task did not have an ATL node in the
Active Task List.

DOS-15 V3B@P@F Update Document

APPENDIX D

UNICHANNEL-15 OPTION

NOTE

The following applies ONLY to the con-
struction of a D0OS-15 V3AF@P UNICHANNEL
option system. This is required as a
prerequisite to the construction of a
DOS-15 V3B@@P option system. See the
DOS~-15 V3B@g@@ Update Document DEC-15-
OD3BA-A-D for information on DOS-15
V3B@@F option system construction.

WARNING
When using SGEN with the UC1l5 option

DO NOT reply yes to the "UCl5 CONFIG?"
question.

The UC15 OPTION system is designed to allow users with multiple types
of disk devices to use the RF or RP disk as a systems device in con-
junction with the UC15. The DOS-15 Vnn UCl5 OPTION tape DEC-15-
ODUCA-A-UC! must be used.

- The following example sequence shows the installation of the
UNICHANNEL software on an RP system. The installation on a RF disk
system would be similar, as would the use of magtape instead of
DECTAPE.

1. Load and start the DOSSAV paper tape. Restore the two
DECTAPES onto the disk pack.

DOSSAV V3A000

INPUT DEVICE? DT

UNIT #? 0

OUTPUT DEVICE? DP

UNIT #2? 0

DATE CREATED: 08-AUG-74
TAPE DONE. MOUNT ANOTHER
%OSSAV V3A000

INPUT DEVICE?

2. Load and start the supplied RPBOOT tape.

(1) If the system has magtape, use magtape DEC-15-ODUCA-A-MC9 or
DEC-15-0ODUCA-A-MC7.

D-1 J=-43

DOS-15 V3B@gF Update Document

3. Assemble the RPBOOT XXX source with the assembly parameter
UC15 = 0 with paper tape binary output. This special
bootstrap is to be used whenever the PDP-11 monitor PIREX
is running, and only then.

4. MICLOG SYS
5. Mount the UC1l5 OPTIONS tape on DTO or MTOl

6. Patch the special RESMON, DOSNRM, DOSBCD, and SGNBLK, located
on the UCL5 OPTIONS tape onto the system.

sa L_,{ﬁ"T”} . -10)
SPATCH)

PATCH Vnn)
>RESMON)

>READRESMON;
>READ DOSBCD}

>READ SGNBLK RPA)(for RF use 'SGNBLK RFA')

>DOS15 p

READR 16077 DOSNRM p

EXIT) NOTE

The PDP-15 will halt on this EXIT.
7. Load ABSL1l XXX paper tape (see Section 2.2.2).

8. Load and start the supplied PIREX XXX PDP-11 MONITOR paper
tape (see Section 2.2.2).

9. Reload the DOS System using the special RPBOOT tape pro-
duced in step 3. This tape will be used for all future
boots while the UCl5 option is being used.

10. MICLOG SYS
11. Run SGEN to install MACll as a systems program.
H. ADD SYS PROG? (N) Y_
PROG NAME[] MAC1l
OF BLOCKSI[] 40
OVERLAY NAME[]

BUFFS[0] 2

(1) For magtape use the MTA handler.

J-44 D-2

DAT SLOTS:

>-11, =12
>

12. Run PATCH to place proper values in SGNBLK for MACl1l. The
values typed by the system after the slash are current disk
contents, and may not match the example typout given. Type
the values after the >'s, i.e., 1, 17625, and 17500. Follow
the typins with ALT-MODES.

DOS-15 V3A000

SPATCH J

PATCH V3A000

>MACL1 p

>FA)

>00237/001250>1

>ps }
00240/016331>17625

>sa J
00241/001415>17500

>EXIT)

13. LOGIN PER

14. PIP the MAC1ll components from DTO or MTO to disk.

DOS-15 V3A000
SPIP

DOSPIP V3A000

>T DP ,-—DT(Q0 MACIMG 006 ,MACINT 014

>1¢

15. Assemble MACIMG and MACINT. {(See Section 2.3.1 for more
details.)

The PDP-11 Peripheral Processor may have varying amounts of local
memory. The default value is 8K, which requires no assembly param-
eters. For 12K define LM12K = 0, for 4K define LM4K = 0.

DOS-15 V3A000

SMACRO

BMACRO-15 V3A000

>BP-=-MACIMG 006

LM12K=0
1D EOT
END OF PASS 1
SIZE=00422 NO ERROR LINES
BMACRO-15 V3A000

>BP--MACINT 014

LM12K=0
1D EOT

END OF PASS 1

SIZE=17617 NO ERROR LINES
BMACRO-15 V3A000

1C
DOS-15 V3A000

The system area on disk for MACll requires a PDP-15 core image,
and a PDP-11 core image.

16. Load the PDP-11 image from paper tape by running the binary
MACIMG. (See Section 2.3.1 for exact details of proper
tape selection.) If the system has API - issue a

DOS API OFF command first.
DOS-15 V3A000

$GLOAD
BLOADER V3A000
>-=-MACIMG
DONE
DOS-15 V3A000
17. MICLOG SYS

18. Patch MACINT, the PDP-15 portion of MACll, into the system

in the normal manner N

DOS-15 V3A000

$A DP <PER> =10

SPATCH

PATCH V3A000

>MAC11

>READ MACINT

>EXIT

DOS-15 V3A000
19. LOGIN’ PER

20. PIP the PIREX source onto the disk for editing.

DOS-15 V3A000
$SPIP
DOSPIP V3A000

>T DP -«—DTQ PIREX XXX

<
21. See Section 2.3.2 for the details of reconfiguring PIREX
into a version specific to your exact configuration. Do
this reconfiguration now.

22. PIP the sources for the UNICHANNEL handlers from DTO0 or MTO
onto disk.

DOS-15 V3A000
SPIP
DOSPIP V3A000

>T DP ,-—DTQ LPU. 020,XYU. 032

Tc
DOC-15 V3A000
Note that the card reader source CD.DOS is already on <PER>.

23. Assemble the sources to binaries. Note that the card
reader source requires the assembly parameter UCl5 = C.

$SMACRO
BMACRO-15 V3A000

>Be<LPU. 020

END OF PASS 1

SIZE=00657 NC ERROR LINES

24,

25.

26.°

27.

BMACRO-15 V3A000
>B=-XYU. 032

END OF PASS 1
SIZE=01150 NO ERROR LINES
BMACRO-15 V3A000

>BP-=-CD.DOS 031

UC15=0
D EOT
END OF PASS 1

SIZE=00613 NO ERROR LINES

BMACRO-15 V3A000

1c

DOS-15 V3A000
MICLOG SYS
PIP the handler binaries to DP <IOS> . Note especially the
name changes. The sources are called XXU for designating
UNICHANNEL sources. The handlers, however, must be named

XYA, CDB, LPA.

>T DP <IOS> XYA, BIN=-DP <PER > XYU., BIN

>T DP <IOS> LPA. BIN=DP <PER> LPU. BIN

>T DP <IOS> CDB. BIN=---DP <PER> CD.DOS BIN

Transfer the three RK handlers from the UCl5 OPTIONS tape
to the <I0OS> UIC.

>T DP <IOS> , , « DTO RKA. BIN,RKB. BIN,RKC. BIN

It is now necessary to run SGEN to install new SKIP IOTS
(all four devwi cos\ and new handler names (RB¥ and XY) in

“eVa

-~
[¥8
-
-
ot

v
Qailh i 1ANGLeY names (R ant aid

system.

B ALTER I/O DEVICES OR HANDLERS? (N) Y

DELETE DISCARDED HANDLERS? (Y) Y

TO BE KEPT

PR?($) §

LP? ($) ¥

LPA? (Y)

NEW HANDLERS:

>

LPSF=706501? (Y) Y
NEW SKIPS:
>LPSK=706141

>

cp? ($) Y

CDB? (Y)

NEW HANDLERS?

>

CRSI=706701? (Y) Y
CRSD=706721? (Y) X
NEW SKIPS:
>CRSF=706121

>

C. ADD NEW DEVICE? (N) Y
DEVICE CODE[] RK
NEW HANDLERS:

>RKA

>RKB

>RKC

>

NEW SKIPS:
>RKSF=706101

>

C. ADD NEW DEVICE? (N) Y

DEVICE CODE[] XY

NEW HANDLERS:

>XYA_

>

NEW SKIPS:
XYSF=706161

>

28. Halt both machines.
29. Load ABSL1l.

30. Load in the new PIREX tape (specific to your machine).
3l. Bootstrap DOS with the modified RPBOOT.

The system is ready to use UNICHANNEL peripherals.

It should now be DOSSAVed. This system will operate only
with the UNICHANNEL-15 peripheral processor. If PIREX is
not executing, this system will not function.

GLOSSARY

Active Task

An Active Task is one which:
1. is currently executing
2. has a new request pending in its queue
3. is in a wait state

4. has been interrupted by a higher priority task.

Active Task List

A priority-ordered linked list of Active Tasks used for scheduling
tables. The ATL is a queue consisting of one node for each Active
Task in the system.

Busy/Idle Switch

A two-word storage area used to save TCBP's when processing a request.
Every task has a two-word Busy/Idle Switch. If the two words are zero,
the task is currently not busy and is able to accept and process a new
request. Bit 15 of the first word is used by the system to determine
if the TCB came from a PDP-15 or PDP-11 request. If zero, the request
came from the PDP-15, otherwise it came from the PDP-11.

Call Side

All spoolers have a 'call side' where a set of data is passed by the
caller to the spooler (for output spooled devices/tasks) or data is
passed by the spooler to the caller (for input spooled devices/tasks).
This is done only when a request is made to the spooler.

GLOSSARY-1

Context Save

The storing of all active registers, including the program counter
(PC) and program status (PS), on the current task's stack. These
saves are done when higher priority tasks interrupt lower priority
ones and by device driver interrupt routines to allow them free use of
the general purpose registers.

Context Switching

The process of saving the active registers belonging to the current
task executing (a context save), determining a new task to execute,
and finally restoring the registers belonging to it.

Deque

Deque, pronounced deck, is a double-ended queue consisting of a list-
head and list elements, circularly linked by both forward and backward
pointers. Deques (linked lists) are used, instead of tables, to store
TCB pointers and ATL information. The list elements (commonly called
nodes) are initially obtained from a pool of empty nodes called the
POOL. Nodes consist of listhead and 2 words of data used to store the
caller's TCB pointer or ATL information. When a node is needed, it is
removed from the POOL and queued to the referenced task deque of the
ATL. When a node is no longer needed, it is zeroed and returned to
the POOL.

Dequeue

Remove a node from a queue.

Directive

A task which performs some specific operation under PIREX, e.g., con-
necting and disconnecting tasks.

Driver

A task which controls a hardware device. Drivers usually consist of
necessary program only rudimentary operations (e.g., read, write or
search) . The more complex operations such as file manipulations and
syntax checking are usually performed by handlers.

Event Variable
A word or variable used to determine the status of a request. The

Event variable is set to indicate successful completion, rejection,
status, or a request still pending condition.

GLOSSARY-2

Interrupt Side

All spoolers have an 'Interrupt Side' where data is passed by the
spooler to the device/tasks (for output spooled device/tasks) or data
is passed from the device/tasks to the spooler (for input spooler

devices/tasks). This occurs whenever output of data is complete or
input data is ready.

Linked List

A deque consisting of nodes and listhead used to store system informa-
tion. An empty list consists of only a listhead.

Listhead
A two-word core block with forward and backward pointers pointing to

the next and previous list node or to itself if empty. The listhead
is a reference point in a circularly-linked list.

Local Memory

Core memory only addressable by the PDP-11. This is ordinary 1l6-bit
PDP-11 core memory.

Node Manipulation

The process of transferring nodes from one deque structure to another.

Nodes

The list elements of a deque. All nodes consist of listhead, followed
by 2 words of data (list elements).

Nul Task

The Nul Task is a task which runs when no other task can. It consists
of only PDP-11 WAIT and BR Instruction to increase UNIBUS operations.

Permanent Task

A task in PIREX is said to be a permanent task if it is assembled into
PIREX, has space in all PIREX system tables and has a fixed task code
number.

GLOSSARY-3

POOL
A linked list of empty four-word nodes for use in any deque in the sys-

tem. The POOL is generated at assembly time and currently has 20
decimal nodes available.

Pop

To remove an Item (word) from the current task's stack.

Push

To put an item (word) onto the current task stack.

Queue

To enter into a waiting list. Queues in PIREX consist only of deque
structures.

Scheduling
The process of determining which task will be executed next. The

operation is based on a priority ordered list of active tasks in the
system (ATL).

Shared Memory

Core memory addressable by both the PDP-15 and PDP-11. The shared
memory is ordinary 18-bit PDP-15 memory.

Spare Task

A task that runs under PIREX is said to be a temporary task if it is
not assembled into PIREX, has space in all PIREX system tables, does
not have a fixed task code number and its start address is not fixed.

The core occupied by the temporary tasks is not freed unless the tasks
are disconnected in the order in which they were connected.

SPOLSW

This is a register in PIREX which contains the spooler control and
status switches as indicated below.

GLOSSARY-4

BITS 0-7 Device busy Idle switch
'0' if idle and 'l' busy

BIT O LP
1 CD
2 PL

3-7 UNUSED

BITS 8-15 Spooler State/Function switches
'0' if disabled and 'l' if enabled

BIT 12 DESPOOLER
13 SPOOLER
14 SPOOLING
15=1 SPOL1l1 PROGRAM CONNECTED TO PIREX
=0 SPOL11l PROGRAM NOT CONNECTED TO PIREX

Task

A PDP-11 software routine capable of being requested by the PDP-15 or
PDP-11 through the PIREX software system. The task may be a device
driver, a Directive, or just a software routine used to carry out a
specified function. A task must have the format shown in Figure 2-1.

Task Code Number

All tasks in the PIREX system are differentiated by a numbering system
rather than by name. Task Code Numbers are used in TCBs and are cur-
rently assigned as follows:

CODE
-1 CL task
200 ST task
201 SD task
202 RK Driver task
203 DT Driver task
4 LP Driver task
5 CD Driver task
6 PL Driver task
7 SPOOLER task
11 currently not used
12 currently not used
13 currently not used

GLOSSARY-5

TCB - Task Control Block

A set of contiguous memory locations (minimum of three) which contain
all necessary information for a task to complete its request. The
contents of the TCB must be defined prior to the request by the
requesting program (e.g., a PDP-15 program).

A pointer to the TCB (called a TCBP) is then passed to the PDP-11 via
the LIOR instruction in the PDP-15 or the IREQ macro in the PDP-11 to
actually initiate the request.

TCBP - Task Control Block Pointer
A pointer to a TCB. This pointer is passed to the PDP-1ll either via

‘the LIOR instruction in the PDP-15 or the IREQ macro in the PDP-11
when initiating a request to PIREX.

GLOSSARY-6

ABORT requests, 4-32

ABSL1l, 1-1, 2-1

ABSL11 loading, 2-2

ABSL1l paper tape, 1-2, 2-1
ABSL1l starting addresses, 2-2
Absolute tape, 2-2

Active task, Glossary-1
Active task list, Glossary-1l
Active Task List ATL, 3-9
Address, API trap, 3-6
Address, restart, 2-1

Address (TEVADD), task starting, 3-16

API trap address, 3-6
Assembling spocler, 6-6

ATL nodes, 3-9

ATL node pointer (ATLNP), 3-13

Background task/priorities, 4-2
Begin routine, 6-4

BITMAP, 5-5

Busy/Idle switch, Glossary-1l

Call service routine, 6-2
Call side, Glossary-1
Card reader, 2-8
Card reader driver task (CD), B-7
Card reader errors, 2-9
Central address table, 6-5
Checksum error, 2-2
Clock request table (CLTABL), 3-14
.CLOSE function, 4-15
Code number, task, 3-7
Common memory, 1-3
Components

DOS~-15, 2-10

PIREX, 3-3

RSX-PLUS III, 2-11

spooler, 5-2

ucls, 2-10
Connect task directive, 3-27
Context save, Glossary-2
Context switching, Glossary-2
Control block - TCB, task, 3-6
Core status report directive, 3-29

Deque, Glossary-2
Dequeue, Glossary-2
Design, spooler, 5-1, 5-2
Despooling, 5-28
DEVCNT, 6-5
Device
drivers, 3-3
error status table (DEVST), 3-15
handler, DOS UNICHANNEL, 4-5
handlers, 4-5
interrupt dispatcher, 5-3

INDEX

Device (cont.)
interrupt service routines, 5-3
priorities, 4-2
DEVSPP, 6-5
DEVST table, B-8
Directive, Glossary-2
core status report, 3-29
error status report, 3-30
handling, 3-18
processing routines, 5-3
spooler status report, 3-31
Disconnect task directive, 3-26
Disk
cartridge errors, 2-8
driver task (RK), B-3
Dispatcher, device interrupt, 5-3
DOS
UNICHANNEL device handler, 4-5
DOS-15, 2-1
components, 2-10
loading, 2-2
Dossav, 2-1
Driver assembly, 4-41
Driver, Glossary=-2

EDIT, 1-2, 2-5
End routine, 6-4
Error

handling, 2-8

status report, directive, 3-30
Errors

card reader, 2-9

disk cartridge, 2-8
Event variable, Glossary-2
Execution, 2-1

Format TCB, 6-4

FINDBK routine, 6-6
Function, .CLOSE, 4-15
Function code, 3-7

Handlers
device, 4-5
PDP-15 UNICHANNEL, 2-7
Handling, error, 2-8
Hardware, peripheral processor, 1-5
Hardware Read In mode, 2-1
Hardware system, UNICHANNEL-15,
1-2, 1-3

Illegal punch combination, 2-9
Installation
permanent task, 4-4, 4-5
temporary task, 4-4
Internal tables, 3-16

Index-1

Interrupt, 4-14, 4-32
link, 1-4
service routine, 6-3
side, Glossary-3

Level table, 3-15

Line printer driver task (LP), B-5

Linked list, Glossary-3
List, active task, Glossary-l
Listhead, Glossary-3
Listheads (LISTHD), TRL, 3~14
Loading, 2-1

ABSL1l, 2-2

DOS-15, 2-2

PIREX, 2=2

Local memory, 1-3, 2-1, Glossary-3

LP despocoling, 5-28
LP spooling, 5-26

MACll, 1-1, 2-4, 3-3
MACll assembler, 1-2
MACRO-15, 1-2, 2-1
Memory,

common, 1-3

local, 1-3, 2-1

MX15-B memory bus multiplexer, 1-6

Nodes, Glossary-3
Node manipulation, Glossary-3
NUL task, Glossary-3

Operating sequence, 3-18

PDP-11, 1-5

code, 2-1

requesting task, 4-15
PDP~15 UNICHANNEL handlers, 2-7
Peripheral operation, 2-7

card reader, 2-7

disk cartridge, 2-7

plotter, 2-7

Peripheral processor hardware, 1-5

Permanent task, Glossary-3

Permanent task installation, 4-4, 4-5

PER UIC, 2=5
PIREX, l-l' 2-5, 3=-1
components, 3-3
device driver, building, 4-33
loading, 2-2
Plotter, 2-8
Plotter driver task (XY), B-9
Pointer (ATLNP), ATL node, 3-13
Priorities
background task, 4-2
device, 4-2
Processing request, 3-5

Processor
read, 5-28
write, 5-28

Read processor, 5-28
«READ requests, 4-32
Read/Write operations, 6-3
Reconfiguration, UNICHANNEL
software, 2-4
Request
dispatcher, 5-2
event variable, 3-8
procedure, 3-17
processing, 3-5
transmission, 4-13
ABORT, 4-32
JREAD, 4-32
+READ and .WRITE, 4-32
Restart address, 2-1
Restarting, 2-2
Result reception, 4-14
Routine
begin, 6-4
call service, 6-2
end, 6-4
FINDBK, 6-6
interrupt service, 6-3
device interrupt service, 5-3
directive processing, 5-3
task call service, 5-3
utility, 5-3
RSX-PLUS III components, 2-11
RSX-PLUS III, UNICHANNEL device
handlers, 4-16

Save, context, Glossary-2
Shutdown, spooler, 5-31
Side
call, Glossary-1l
interrupt, Glossary-3
Size constraints, SPOOLER, 2-7
Software directive task, 3-24
Software directive task (SD), B-3
Software interrupt, 3-21
spOL1ll, 1-1, 2-5
Spooler, 5-1, 6-1
assembling, 6-6
begin directive, 5-5
components, 5-2
design, 5-2, 6-1
shutdown, 5-31
size constraints, 2-7
startup, 5-5
status report directive, 3-31
UNICHANNEL-15, 5-1
Spooling, 1-1
Spooling, LP, 5-26
Starting addresses, ABSL1ll, 2-2
Startup, spooler, 5-5

Index=-2

STOP task (ST), 3-24, B-2 . UNICHANNEL-15, hardware system, 1-2

Structure, task, 3-5 1-3 .

Switch, Busy/Idle, Glossary-1l UNICHANNEL software reconfiguration,
Switching, context, Glossary-2 2-4

System crashes, 2-9 UNICHANNEIL~-15 software system, 1l-1,
System interrupt vectors, 3-16 2-1

UNICHANNEL-15 spooler, 5-1
Unsupported tasks, 3-4
Table, 5-4 Updating table, 6-5
central address, 6-5 Utility routines, 5-3
clock request (CLTABL), 3-14
device error status (DEVST), 3-15

DEVST, B-8 Write processor, 5-28
internal, 3-16 .WRITE requests, 4-32
level, 3-15

transfer vector (SEND1ll), 3-16
updating, 6-5
Tape, absolute, 2-2
Task
card reader driver (CD), B-7
disk driver (RK), B-3
line printer driver (LP), B-5
plotter driver (XY), B-9
Task call service routines, 5-3
Task code number, 3-7, 4-3,
Glossary-5
Task completion, 3-21

Task control block, 1-4, 3-6
TCBs, 3-6, 4-2
pointer, 1-4
Task directive
connect, 3-27
disconnect, 3-26
software, 3-24
software (SD), B-3
Task, PDP-11 requesting, 4-15
Task, STOP, 3-24
TASK, STOP (ST), B-2
Task structure, 3-5
Task Request List (TRL), 3-13
Task starting address (TEVADD), 3-16
TCB, 5-5, 6-4
TCB and issue request, 6-3
TCB format, 6-4
TCB - Task Control Block, Glossary-6
TCBP - Task Control Block Pointer,
Glossary-6
Temporary task installation, 4-4
Testing, 4-41
Timed wakeup, 4-41
Transfer vector table (SEND1l), 3-16
TRL listheads (LISTHD), 3-14

UCl5 components, 2-10

UNIBUS, 1-3, 1-4

UNICHANNEL device handlers for
RSX-PLUS III, 4-16

UNICHANNEL-15 (UCl5), 1-1

Index-3

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy

Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. 1In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-

change center for user-written programs and technical application in-

formation. A catalog of existing programs is available. The society

publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the

society and membership application forms, write to:

DECUS DECUS

Digital Equipment Corporation Digital Equipment Corporation
146 Main Street International (Europe)
Maynard, Massachusetts 01754 P.0. Box 340

1211 Geneva 26
Switzerland

UNICHANNEL-15
SYSTEM SOFTWARE
MANUAL
DEC-15-XUCMA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be repcrted on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggesticns for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

' Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltiall

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	Glossary-1
	Glossary-2
	Glossary-3
	Glossary-4
	Glossary-5
	Glossary-6
	Index-1
	Index-2
	Index-3
	Index-4
	Index-7
	replyA
	replyB

