>

-

:mmu .
: &
® AT

operating
environment

L
&
.

DEC-15-GFZA-D

PDP-15 FORTRAN IV
OPERATING ENVIRONMENT

For additional copies of this manual, order DEC-15-GFZA-D from Digital Equipment

Corporation, Program Library, Maynard Mass. 01754 Price $6.00

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

Ist Edition September 1971

Copyright © 1971 by Digital Equipment Corporation

The material in this manual is for informa-
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CHAPTER 1

ot —r] — cnmd] — w—

¢« o s s o e e .

WNDNDNDDNNNDN -~
O WN —

CHAPTER 2

W — W~

MNP RNRNNRNRONNNRNNNRNNNN
PR

UNVoUubhbhhrrbhwowwio =4

N —

CHAPTER 3

wWwwww
e e e o @
NDNNN -
W =

o x

WWWWwWWwww

e o s s » e @

B WWWNDNDN
N —

CHAPTER 4

4.1
4.2

CONTENTS

INTRODUCTION

Operating Procedures

Software Environments

DOS-15

ADVANCED Monitor Software System (ADSS)
PDP-15/30 Background/Foreground Monitor System
RSX-15 Real-Time Execution

BOSS-15

Hardware Environment

INPUT-OUTPUT PROCESSING

General Information

Device Assignment

Data Structures

Data Transmission

OTS IOPS Communication (FIOPS)
Sequential Input-Output

OTS Binary Coded Input/Output (BCDIO)
OTS Binary Input/Output (BINIO)

OTS Auxiliary Input/Output (AUXIO)
Direct Access 1/O

The DEFINE Routine

Formatted Input/Output (RBCDIO)
Unformatted Input/Output (RBINIO)
Initialization and Actual Data Transfer (RANCOM)
Data=Directed Input=-Output (DDIO)
Encode/Decode (EDCODE)

User Subroutines

Magnetic Tape Input=Output Routines
Directoried Subroutines

THE SCIENCE LIBRARY

Intrinsic Functions

External Functions

Square Root (SQRT, DSQRT)

Exponential (EXP, DEXP)

Natural and Common Logarithms (ALOG, ALOG10,
DLOG, DLOGI10)

Sine and Cosine (SIN, COS, DSIN, DCOS)
Arctangent (ATAN, DATAN, ATAN2, DATAN2)
Hyperbolic Tangent

Sub~Functions

Logarithm, Base 2 (.EE, .DE)

Polynominal Evaluator (.EC, .DC)

The Arithmetic Package

UTILITY ROUTINES

OTS Routines
Floating Point Processor Routines

Page

—r ol ot el —d ol md
1
NNNOONONON —

1
— et ONONOOUODAWWNN —

[}
N

—

MMNNNNNI})NNNNNNNM

—-I-I—I—l
G W W

2-15
2-15

N
1
—
o

oowclowoo
DO ON

3-9

3-10
3-10
3-11
3-11
3-14
3-14

4.3
4.4
CHAPTER 5
5.1
5.2
5.3

APPENDIX A

APPENDIX B
B.1
B.2
B.3
APPENDIX C

C.1
C.2
C.3

APPENDIX D

D.1
D.2

APPENDIX E

Figure No.

1-1

CONTENTS (Cont)

FORTRAN - Callable Utility Routines
RSX Library (.LIBRX BIN) Routines
FORTRAN-IV AND MACRO

Invoking MACRO Subprograms from FORTRAN
Invoking FORTRAN Subprograms from MACRO
Common Blocks

APPENDICES

LANGUAGE SUMMARY

ERROR MESSAGES

Compiler Error Messages

OTS Error Messages

OTS Error Messages in FPP Systems
PROGRAMMING EXAMPLES

MACRO-FORTRAN Linkages
IFLOW and IDZERO Examples
Input=Output Examples

SYSTEM LIBRARIES

.LIBR - Page Mode Non-FPP
.LIBRF - Page Mode FPP

PDP-15 FORTRAN FACILITIES

ILLUSTRATIONS

Title

Sample DOS~15 Session

TABLES

Title

Intrinsic Functions

External Functions

Sub-Functions

Arithmetic Package

FORTRAN-Callable Utility Routines

FORTRAN-Callable RSX Routines

Versions of the Extended Compiler

Versions of the OTS Libraries for the Extended Compiler
Compilers and Libraries for Extended FORTRAN Distributed
with PDP-9/15 Systems

Page

4-5
4-5

5-1
5-2
5-3

B-1
B-7
B-9

C-1
C-5
C-6

Page

1-4

Page

3-7
3-12
3-17
4-6
4-9
E-1
E-2
E-2

PREFACE

This manual describes the system software facilities which support the PDP-15 FORTRAN IV compilers
together with hardware features which affect the FORTRAN programmer. Included are discussions of
monitor features which are of interest to the FORTRAN programmer, the FORTRAN 1V Object Time
Sysfem] (OTS), and the Science Libraryz. All descriptions presented are based on the most compre-
hensive version of the FORTRAN compiler. Appendix E presents overall outlines and descriptions and
detailed data specifying the differences between the various compilers for all of the FORTRAN IV

versions offered.

A companion manual "PDP-15 FORTRAN 1V LANGUAGE MANUAL", order code DEC-15-GFWA-D,
describes the elements, syntax and use of the FORTRAN IV language as implemented for the PDP-15

computer.

]The Object Time System is a set of subroutines which are automatically invoked by certain FORTRAN
language elements. A FORTRAN input-output statement, for example is not compiled directly into
executable object code but becomes a call to the appropriate OTS input-oufput routine.

2The Science Library is a set of intrinsic functions, external functions, subfunctions, and subroufines
which the user may invoke explicitly in @ FORTRAN statement,

e,

CHAPTER 1
INTRODUCTION

A FORTRAN-IV program may be compiled and run in several different environments. The FORTRAN
programmer need not be concerned with the details of his environment since the FORTRAN Object-Time
System (OTS) will ensure that his statements invoke the appropriate computer instructions. For example,
an arithmetic statement such as A = A*B will appear the same in any FORTRAN-IV program. In the
object program it may be transformed to a subroutine call, an EAE instruction, or a floating point

instruction, depending on the hardware configuration on which the program is produced.

He will need to know procedures for compiling and loading his program and for using the peripheral
devices available to him. In addition, a number of software facilities may be of interest to a
FORTRAN programmer who requires maximum program efficiency or functions not performed by
FORTRAN statements. In this case, he may invoke FORTRAN=callable functions and subroutines from
the FORTRAN library or augment his progrom by linking to MACRO assembler programs and invoking
the OTS utility routines.*

In this chapter, we describe the basic procedures for using FORTRAN and the major facilities
available to a FORTRAN program. These facilities are described in greater detail in subsequent
chapters, and Appendix C contains a collection of illustrative programming examples. The main

discussion is based on the DOS~15 monitor, and differences for other environments are noted.

1.1 OPERATING PROCEDURES

The FORTRAN-IV compiler is a two-pass system program which produces relocatable object code.

This code is then linked with user-specified FORTRAN-compiled or MACRO-15 assembled routines

and with required OTS library routines. Program linkage may be accomplished via the linking

loader, LOAD, which loads the resulting program directly into core in absolute format. The user may,
alternatively, use one of the overlay linkage editors - CHAIN (DOS-15, ADSS, B/F, Basic I/O

Monitor) or TKB (RSX). These construct core images onto auxiliary storage.

*In all MACRO calling sequences given - when an address is required as an argument , it may be
expressed as +400000 to indicate indirection.

1-1

The FORTRAN-IV compiler is called by typing F4 after the monitor has issued a $. When FORTRAN

has been loaded, the version name is typed at the left margin as in:

F4X Vnn
A carriage return is issued and the character > at the left margin indicates that a command string is
expected with the FORTRAN source program on the appropriate input.
The command string has the form:

optionlist + filename
where the options are delimited by a left arrow and may optionally be separated by commas, and the
string is terminated by a carriage return or ALT MODE, A carriage return specifies that FORTRAN-1V

should be restarted after the current program has been compiled. ALT MODE returns control to the

monifor.

The option list may be blank or contain any of the following options:

Option* Meaning
o object listing
S symbol map
L source listing
B binary output
D output listing on DECtape unit 2
U write output on DECtape unit 1

Filename must be a legal FORTRAN symbol. The output listing always has the extension LST.

At the end of pass 1, the compiler types
END PASS1
to accomodate the repositioning of a paper-tape source file in the reader. When compiling from

paper tape, to initiate pass 2, the user types tP (control P). Otherwise, pass 2 is initiated auto-

matically.

*Refer to Appendix E for list of options applicable to each version of FORTRAN

1-2

The following error messages indicate that the command procedures cannot be carried out:

Message Meaning

? Bad command string - retype
IOPS 4 1/O device not ready - type CTRL R when ready
IOPS See PDP-15/20 User's Guide for IOPS error codes

Other diagnostics which may be printed at compile time are FORTRAN error messages (see Appendix B,
Section B.1). OTS errors are given at run time for those routines whose calls are generated by the

compiler (see Appendix B, Section B.2).

When the user program has been successfully compiled, it may be relocated and made absolute
(executable) via LOAD, CHAIN, or TKB (the RSX Task Builder).

The Linking Loader is called by typing LOAD or GLOAD (load-and-go) after a monitor~issued §.
The Linking Loader types

LOADER Vnn
>

and awaits a command string specifying programs to be loaded and output options. See the

PDP-15/20 User's Guide] for detailed instructions. Figure 1-1 shows the printout from a typical

DOS-15 session from source-program preparation to loading.

With CHAIN, the user generates a system of overlays - a resident main program which may include
resident subprograms, a resident blank COMMON storage area, and a set of subroutines which
overlay each other at the user's request. Subroutines are organized into units called LINKS which
may overlay each other. Several LINKS may overlay a larger LINK without overlaying each other.
A LINK is loaded into core when a subroutine within the LINK is called and it remains resident until
overlayed, A LINK's core image is not recorded or "swapped out" when it is overlayed, The same
image is brought into core each time a LINK is loaded. See the PDP-15 CHAIN and EXECUTE
manual for detailed instructions (DEC-15-YWZA-DN2).

]Order code DEC-15-MG2C-D

DOS-15 vee
ENTEK DATE (MM/DD/YY) - 6/8/71

$LOGIN DEM

$PIP

DOSPIP VIA

>N DK

>1C

DOS-15 V92
FEDIT

EDITOR V1@A
>0PEN IOTST
FILE IOTST SRC NOT FOUND.

INPUT

C

C TTY: «DAT 6
c

WRITE (65100)

100 FORMAT (1X,$IN:%E)
READ (65) K1sR2
WRITE (6,2¢¢)

ona FORMAT (1Xs, 'OUT:")
R3=P1 %x%R2
WRITE (6,) R3
STOP
END
EDIT
>CLOSE

EDITOR VI1RA
>tC

pOS-15 V@2
SF 4

F4X V15A

>B+«I0TST
END PASSt

DOS-15 vo2
A TT 6

SLOAD

Figure 1-1 Sample DOS-15 Session

(continued next page)

BLOADER Vi1A

>P«10TST

P I0TST 77535
P DDIO BT 75463
P «BE o6 15430
P W.EE nez2 75337
P «EF BrR4 15221
P +EC BB1 75155
P BCDIO p2& 71230
P .SS§ B95 71150
P STOP P83 71135
P SPMSG @04 71042
P «FLTB 904 708554
P FIOPS @16 67652
P DBLINT O5B 67246
P INTEAE P0& 67112
P DOUBLE 004 66727
P RELEAE #16 65576
P OTSER 999 65366
P .CB PB3 65346
t 513

IN:

11.253.0

OuT:

‘R3'= 1404 .9282

STOP aatolataly]

DOsS=-15 vo2
$

Figure 1-1 Semple DOS-15 Session (Cont)

TKB is similar to CHAIN. Its function is to record core images in a file in the format expected by
the RSX INSTALL MCR Function. The task name is used as the file name, and TSK is used as the
extension. TKB uses the same .DAT slots and accepts the same overlay descriptions as CHAIN.
It is called by typing "TKB" following the Monitor's $ request. When loaded, TKB types its name
and version number and makes the following requests:

LIST OPTIONS

NAME TASK

SPECIFY DEFAULT PRIORITY

DESCRIBE PARTITION

DESCRIBE SYSTEM COMMON BLOCKS

DEFINE RESIDENT CODE
DESCRIBE LINKS AND STRUCTURE

For further information, see RSX-15 Reference Manual (DEC-15-GRQA-D).

1.2 SOFTWARE ENVIRONMENTS

Each version of FORTRAN-IV has its own version of OTS and the Science Library so that routines may
utilize both hardware and software features. Each of the monitor systems under which FORTRAN

operates is summarized below.

1.2.1 DOS-15

DOS-15 is a single-user, interactive, disk-resident Operating System. It includes the DOS-15
Monitor, 1/O device handlers, and an integrated set of system programs including FORTRAN-IV,
Program editing, loading, and debugging facilities are provided as well as powerful file manipulation
capabilities. The DOS-15 disk file structure supports both direct and sequential access to disk files,
dynamic disk storage allocation, and file protection. The DOS-15 Monitor itself provides the
interface between the user and peripheral devices via Monitor calls and allows the user to load system
or user programs, for example, FORTRAN programs, via simple commands from the user terminal. The
reader is directed to the DOS-15 Software System User's Manual, DEC-15-MRDA-D, for more detailed

information.

1.2.2 ADVANCED Monitor Software System (ADSS)

The ADVANCED Monitor Software System is an integrated system of programs which includes the
ADVANCED Monitor, an Input-Output Processor (IOPS), and a set of system programs which prepare,
compile, assemble, debug, and operate user programs. The monitor itself serves as the interface
between FORTRAN and peripheral devices and between the user console and the system. Detailed
information on the components of ADSS may be obtained in the ADVANCED Monitor Software System
Manual , DEC=15-MR2B-D.

1.2.3 PDP-15/30 Background/Foreground Monitor System

The Background/Foreground Monitor (B/F) is an extension of the ADVANCED Monitor which permits
concurrent, time-shared use of the PDP-15/30. This is done through protected, foreground user
programs with a background of batch processing, through program development, or through low-priority
user programs. Details are available in the PDP-15/30/40 Background/Foreground Monitor Software
System manual (DEC-15-MR3A-D).

1-6

1.2.4 RSX =15 Real=~Time Execution

RSX-15 is a monitor system designed to handle real-time information in a multiprogramming environment.
RS§X-15 controls and supervises all operations within the system including any number of core- and disk=
resident programs (called tasks), The user can dynamically schedule tasks via simple time-directed
commands issued from the terminal or from within a task. RSX uses the ADVANCED Software Monitor
(1.2,2) and a Real~Time Monitor, System software includes the FORTRAN-IV compiler, the MACRO
Assembler, the TASK BUILDER, and numerous utility programs required to edit, compile, debug, and

run user programs. Details are available in the RSX~15 Real/Time Executive Reference Manual
(DEC-15-GRQA-D).

1.2.5 BOSS-15

BOSS-15 is a batch-processing monitor which is part of DOS-15; it, therefore, utilizes the DOS-15
system program and file structures. DOS-15 itself has a facility to batch commands from cards or
paper tape; BOSS-15, however, is a separate entity from DOS~15 batch, BOSS-15's command

language is batch~oriented, noniterative, easy to use, and highly flexible.

Some highlights of BOSS=15 are:

. Procedure driven command language
. Job timing for accounting purpose
Line editor

. Facility for user-defined commands

BOSS-15 provides the user with the ability to use any system program (with exception of some programs

that work only in an interactive environment) and the disk-file structure of DOS-15.

1.3 HARDWARE ENVIRONMENT

Systems with a Floating-Point Processor (FPP) have a special version of the FORTRAN -1V compiler and
OTS which utilizes hardware instructions rather than software calls. For example, RELEAE, the REAL
arithmetic package, is not included in FPP systems since REAL arithmetic expressions may be compiled

into computer instructions.

The FPP F4X System consists of the standard DOS-15 FORTRAN-IV compiler and Object-Time System
(OTS) interfaced (via conditional assembly, and additional routines) to the hardware PDP-15 FPP
(Floating-Point Processor). The interface applies to Single and Double Precision Floating-Point
Arithmetic and Extended Integer Arithmetic (double integers). Single integer arithmetic is still

handled by software.

Floating-Point (FPP) FORTRAN-IV is available in different forms for use in PDP-15 software systems
other than the DOS-15 system. See Appendix E for descriptions of the available types of FORTRAN-IV,

The following points should be noted with respect to the software modifications which accompany the

FPP software systems:

(1) The calling sequence for integer power involution (raising numbers to integer powers) has

been changed. The associated OTS routines will have to be updated throughout any
systems using F4X.

(2) All systems that support a bank mode will require a bank mode version of the F4X compiler
to go along with their respective OTS libraries in order to suppress generation of PDP-15
instructions (see Appendix D). Note that a bank mode version of the FPP F4X is not
needed because the FPP cannot be added to a PDP-9,

The FPP libraries (given in Appendix D) include the program .FPP which contains a special FPP
error-handling routine, and routines which handle communication between the hardware CPU AC

used by FORTRAN and the FPP accumulator.

All routines described in the science library and OTS utility programs are available in FPP versions

with the exception of RELEAE, DOUBLE and DBLINT which are no longer required.

CHAPTER 2
INPUT-OUTPUT PROCESSING

FORTRAN data~transmission statements automatically invoke a number of OTS subroutines which serve
as an interface between the user program and the Monitor. These routines may also be explicitly

referred to in a MACRO program,

The actual transmission of data between memory and a peripheral device is, in general , performed by
the FIOPS package, a set of routines which communicate directly with the Monitor. Other packages,

each associated with a particular type of data-transmission statement, perform three major functions:

a. Initialization,
b. Transmission of data to and from the FORTRAN line-buffer in the appropriate structure, and
c. Termination;
The packages are:
(1) BCDIO, processes formatted sequential READ or WRITE statements;
(2) BINIO, processes unformatted sequential READ or WRITE statements;
(3) AUXIO, processes auxiliary input-output statements;

(4) RBCDIO and RBINIO, processes formatted and unformatted direct-access READ and
WRITE statements;

(5) DDIO, manages data-directed input-output;
(6)° ENCODE, processes ENCODE and DECODE statements.

Also described in this chapter is a set of FORTRAN-callable subprograms which support OTS input-

output functions.

2.1 GENERAL INFORMATION
The three major 1/O functions:

a. To associate logical devices with physical devices,
b. To associate user data structures with device data structures, and

c. To perform actual transfer of data

are described in the following paragraphs.

2-1

2.1.1 Device Assignment

In all systems except RSX, device assignment is managed through the monitor Device Assignment
Table (.DAT) which associates logical device units to physical ones. .DAT has "slot" numbers which
correspond to the logical device numbers. Each slot, at run time, contains the physical device
number and a pointer to the appropriate device handler. Sixteen* entries in .DAT may be used for
user-program device assignment performed via monitor ASSIGN commands at run time. Default

assignments are defined during system generation.

2.1.2 Data Structures

Each peripheral device has an associated data structure which governs the manner in which data are
stored. There are basically two modes in which data may be stored externally - serially or directoried.
For a sequential file, either structure may be used. If it is serial, the physical sequence of records is
identical to the logical sequence. If it is directoried, the logical sequence is established by pointers
which link one record to another although their physical locations need not be in sequence. For a

direct-access file, only directoried devices may be used.

Serial devices used for FORTRAN Input-Output include magnetic tape and DECtape. Records are
transmitted directly from the user buffer to the device and an end-of-file is written after the last

record by a CALL CLOSE or ENDFILE n. A file is accessed simply by virtue of device assignment.

DECtape may also be used in a directoried mode. In this case, a directory containing file information
is maintained. Each entry contains a filename and extension and a pointer to the first block of the

file. Files stored in this way may be referenced in the OTS directoried subroutine calls.

Directoried FORTRAN input-output to a disk, using DOS-15 file structure, is a special case., This
structure is based on a hierarchy of directories with a Master File Directory (MFD) pointing to user
file directories (UFDs). User files are created sequentially but may be accessed either sequentially
or directly. Data blocks (4-008 words per block) which comprise a file are chained via a forward

link word (3778) and backward link word (3768) . Forward links are also stored in a retrieval
information block (RIB) for direct access. Files stored in this mode are accessed by name. This name
may be assigned by the user via directoried subroutines (e.g., SEEK and ENTER). If this is not done,
default names are used. A default name has the form .TMOmn OTS where mn is the logical device

number.

*This number is the standard size for DOS~15 but may be changed by system generation and assembly
parameters.

2.1.3 Data Transmission

Data is transmitted to and from the FORTRAN-IV 1/O buffer via the OTS FIOPS package. A single
I/0 buffer of 4008 words is used. The size of the buffer which is to be transmitted for a particular

device is set in accordance with information provided in an .INIT to the device used.

2.2 OTS IOPS COMMUNICATION (FIOPS)
The FIOPS package provides the necessary communication between OTS and Input-Output Processor.

Its two main functions are device assignment and the transfer of data to and from the FORTRAN
internal 1/0 buffer.

FIOPS maintains a status table with one~word entries for each file that is opened, A table entry is

as shown below.

1/O Flag For dir.
0=READ 0=SEQU. acc. only not Buffer size
1=WRITE 1 =DIR. ACC. 1=DELETE used (from .INIT)
0=NO
0 1 2 3 89 17

The routines of the FIOPS package and their functions are given below.

FIOPS Package
External Calls: OTSER

Errors: OTS ERROR 10 - illegal device number
Routine Function
.FC .DAT slot numbers are initialized by .FC. The
(initialize 1/O Device) first call to .FC for any device generates a
monitor ,INIT call which opens the file for 1/O
Call; and enters the buffer size and 1/O flag in the
LAC DEVICE (address of slot number) device status table. Subsequent calls to .FC

call .INIT only if the I/O flag has been changed

IMS* L FC or the file has been closed.

To set 1/O flag:

DZM* .FH (input)
LAC (1) (output)
DAC* .FH

(continued next page)

FIOPS Package (Cont)

Routine

Function

FQ
Call:

LAC (address of .DAT slot number (bits 9-17)
IOPS mode (bits 6-8)

Data are transferred between the 1/O buffer and
an I/O device. .FQ checks the monitor 1/O flag.
If it is zero, o .READ call is made; if it is one, a
.WRITE call is made. A call to .WAIT is made in

either case.

JMS* [FQ
.FP Sets all words in the device status table to zero.
Call: Called at the beginning of all FORTRAN main
’ programs to indicate that all devices are
JMS* (FP initialized,
JZR Initializes END or ERR exits. The AC is saved
Call: and restored to accomodate direct access. If one
) of the two exit addresses is not fo be specified, an
JMS* [ZR address of 0 should be passed.

.DSA END addr
.DSA ERR addr

.

JMS* FF (.FG)(.RF)(.RG)

Direct and sequential access BCD and BINIO
terminate routines reinitialize OTSER.

An integer function ~ IOERR (N) is available to the user and may be invoked at an ERR exit to

determine the 1/O error which has occured. The value of IOERR will be one of the following:

Value

OTS error number

2.3 SEQUENTIAL INPUT-OUTPUT

Error
Parity error
Checksum
Shortline
End-of-file
End-of-medium

Other errors (up to 77)

Sequential input-output operations access consecutive records of a file, beginning with the first

record and then record-by-record until the end of the file. A file which is accessed sequentially may

be stored serially (on magnetic tape or DECtape) or in directoried mode (on disk and DECtape). That

is, the physical sequence of records may or may not conform to the logical sequence.

2.3.1 OTS Binary Coded Input/Qutput (BCDIO)

The formatted READ and WRITE statements generate calls to routines in the BCDIO package. Input

and output operations are performed on a character-to-character basis under the control of @ FORMAT
statement. All BCDIO routines use FIOPS to perform transfer of data. BCDIO routines may also be
called directly by MACRO programs.

Each formatted record is an IOPS ASCII line with a two-word header pair. The first character after
the header is always a forms-control character. Record length, given in the header, is always in

terms of word-pairs. The last character in the last word—pair is always a carriage return,

BCDIO routines are described below.

BCDIO Package
External Cadlls: FIOPS, OTSER, REAL, RELNON or RELEAE

Errors: OTS 10 - illegal 1/O device number
OTS 11 - bad input data (IOPS mode incorrect)
OTS 12 - illegal format

Routine Function

FR (.FW) Inputs (outputs) a data item,
Call:

JMS* FR (.FW)

+DSA (address of .DAT slot number)

.DSA (address of first word of FORMAT
statement or array)*

.FE Inputs or outputs a data item using format decoder
Call: (.FD).
JMS* FE

.DSA (address of data item (first word))

.FA Inputs or outputs an entire array using format
Call: decoder (.FD).
JMS* [FA
.DSA (address of last word in array descriptor
block)

(continued next page)

*This word is 0 for data-directed I/O

BCDIO Package (Cont)

Routine Function
.FD Decodes format into four parameters:
Call: .D - decimal places
W - field width
S* ,FD '
I F .SF - scale factor
.S - mode
.FF Terminates the current logical record.
Call:
JMS* FF

As described in the language manual*, FORMAT statements may be entered or changed at run time,
at which point they are interpreted by BCDIO. In addition to providing the FORTRAN programmer
with greater flexibility, this feature permits the MACRO programmer to use the formatted I/O
capabilities of BCDIO. (See Appendix C for examples.)

2.3.2 OTS Binary Input/Output (BINIO)

The BINIO package processes unformatted READ and WRITE statements. Data transfer is on a word-
to -word basis. A logical record, the amount of data associated with a single READ or WRITE
statement, may consist of several physical records whose size (except for the last) is always the
standard IOPS 1/0 buffer size. Thus, when a WRITE statement is processed, each physical record
generated contains an ID word (word 3) in addition to the two required header words. This word
contains a record identification number. For the first record, this is zero. The last record is
indicated by setting bit 0 of the ID word to 1. Up fo 3777778 physical records may be generated

for a single logical record.

For example, if four physical records are generated, the four ID words would be:

000000
000001
000002
400003

I only one record is generated, its ID word will be 400000 signifying the first and last of a set.

An unformatted READ statement accepts logical records of the form described above until its 1/0 list
has been satisfied. If this occurs in the middle of a logical record, the remainder of the record is

ignored. That is, the next READ will access the beginning of the next logical record.

*DEC-15-GFWA-D

2-6

~

The routines of BINIO are described below.

BINIO

External Calls: FIOPS, OTSER

Errors: OTS 10 - illegal 1/O device number
OTS 11 - illegal input data (IOP mode)
Routine Function
.FS Initializes a device for binary input and reads
first record.
Call:
JMS* [FS
.DSA (address of .DAT slot)
.FX Initializes a device for binary output; initializes
line buffer.
Call:
JMS* FX
.DSA DEVICE
.FJ Transfers a data item to or from the line buffer
(all modes). Mode of item indicated by bits
Call:
1 = 2 of argument are:
JMS* FJ :
T ; s 00 = INTEGER
.DSA (address of item (first) word) 01 = REAL

10= DOUBLE PRECISION
11 = DOUBLE INTEGER

.FB Transfers an array.
Call:

JMS* FB

.DSA (address of last word in array descriptor
block)

.FG Terminates current logical record. For WRITE,
Call: packs the line buffer with zeroes as required and

atk sets bit 0 of the ID word.

JMS* FG

2.3.3 OTS Auxiliary Input/Output (AUXIO)

The AUXIO package processes the commands BACKSPACE, REWIND, and ENDFILE which have

different meanings for magnetic tape and disk. AUXIO routines issue . MTAPE monitor calls giving

.DAT slot and a code specifying the magnetic tape function desired:

Code

00
02
04

Magnetic Tape

Rewind to load point
Backspace record

Write end-of-file

Disk

Close file associated with .DAT slot.

Pointers resumed for previous ASCI! or binary line.
N.A,

For magnetic tape, these operations require only calls to sysiem macros. In order to simulate magnetic

tape fpncﬁons on disk, a file active table (.FLTB) must be referenced. This contains four-word

entries for every positive .DAT slot indicating whether the file is active (open for input or output)

or inactive. The routines of AUXIO and their serial and file-oriented functions are given below.

AUXIO

External Calls:

FIOPS, .FLTB

Errors: OTS 10 - illegal 1/O device
OTS 11 - illegal input data (IOPS mode incorrect)
Routine Magnetic Tape Disk

FT Repositions device at a point just prior to the Resumes pointer to
(BACKSPACE) first physical record associated with the current previous ASCII or
Call: logical record. binary line.

JMS* FT

.DSA (address of

.DAT slot)

.FU Repositions device at load point. Closes file. If no
(REWIND) file is open,
Call: nothing is done.

JMS* [FU

.DSA (address of

DAT slot)
FV Closes file. Writes an end-of-file mark on tape. | Closes file, zeroes
(ENDFILE) words 0-3 of the
Call associated .FLTB
att: entry.
JMS* [FV
.DSA DEVICE

On a REWIND to disk, the filename is saved; thus, subsequent sequential input-output operations will

open that file. On an ENDFILE, the filename is lost and subsequent operations will open a default file.

2-8

2.4 DIRECT ACCESS I/O

Direct access input-output files are referenced by name; records are retrieved or accessed by number.
The OTS routines which perform direct-access transmission of data are similar to their sequential

counterparts. Before they are invoked, however, the user must provide a detailed description of
his file.

2.4.1 The DEFINE Routine

The FORTRAN user establishes a direct-access file by calling the DEFINE routine which was described

in Part I, Chapter 6. The meanings of its arguments are iterated below for the call:

CALL DEFINE (D, S, N, F, V, M, A, L)

The parameters provided to OTS for performing direct-access functions are:

D - .DAT slot

S - record size
number of ASCII characters
or
number of binary words

N - number of records (53777778)
F - array reference to file name and extension - if 0, default name
V - associated variable - set to number of the last accessed record plus one

M - mode -0 = IOPS binary
non-0 = IOPS ASCII

A - file size adjustment indicator
0 = no adjustment
non-0 = adjust

L - deletion indicator
0 = no deletion
non=0 = delete temporary file

The DEFINE routine initializes a file for direct-access in one of four ways, depending on the
combination of parameters supplied.

a. Simple Initialization - If F specifies a file which already exists and no adjustment has
been indicated, DEFINE opens the file for direct access. The mode and record length
parameters must conform to the file's characteristics. The associated variable is set to 1.
The number of records N must be less than or equal to the actual number of records.

b. Named File Creation - If F specifies a file which does not exist on .DAT slot D, a file
is created according to the characteristics given in the calling arguments. If the mode
is ASCII, the data portion is filled with spaces (040g). If the mode is binary, all data
words are set to 0 and the ID word for each record o 4000008.

Default-Named File Creation - If F=0 in the DEFINE call, a file is created as above but
given a default name of the form .TMOab OTS (unless a file of that name already exists
on .DAT slot D) where ab specifies .DAT slot. If L=1, a bit is set in the FIOPS status
table signifying that the file is to be deleted after an ENDFILE or CALL CLOSE to the

. DAT slot.

File Size Adjustment - If a file F exists and A is not zero, N is used to adjust the number
of records in the file. This is done by creating a temporary file (. .TEMP OTS) on .DAT
slot D via .DAT slot -1 which is temporarily loaded with the .DAT slot D handler address
and UIC. The file is copied into it one record at a time up to the number N. If the file
is to be lengthened, null records are added. The adjusted file is then assigned a name
according to F. V is set to 1 if the file is reduced. If it is lengthened, it is set to the
old length plus one.

The algorithm used for determining the function of DEFINE from its arguments is illusirated in the

following flowchart.

DOES
DEFINE FILE
NAME ARGUMENT
=0
?

YES, DEFAULT NAME IS
INDICATED

NO, FiLE NAME IS
SPECIFIED

y

BUILD DEFAULT NAME
FROM .DAT SLOT
(.TMOab OTS})

IS

FILE OF INDI-

CATED NAME FOUND OF

INDICATED DEVICE

{VIA .FSTAT)
?

DOES
DEFINE ADJUST

AREA =0
?

YES

NO
CREATE
FILE
A [
INITIALIZE FILE FOR _ ADJUST S1ZE
RANDOM ACCESS d
OF FILE
VIA .RAND

‘ DONE ’

2-10

From user-supplied arguments, the DEFINE routine establishes o parameter table (PRMTB) which is

available to direct-access input-output routines.,

Each device which has a file open for direct-access will have an active four-word entry composed as

follows:
Word Bits Information
1 0 File active bit (1 if active - always set for ASCII files)
2-11 Number of blocks per record
12-17 .DAT slot number
2 0 mode - O if binary; 1 if ASCII
5-11 Word pairs per record
12-17 Records per block (0 for binary records larger than one physical block)
3 1-17 Records/file
4 3-17 Address of associated variable

.PRMTB will generally have four such entries but this number may be varied with an assembly

parameter,

DEFINE also initializes the file in FIOPS, setting the appropriate bits in the FIOPS status table.

2.4.2 Formatted Input/Output (RBCDIO)

Direct-access operations may be performed on any formatted data file conforming to DOS-15 file
structure and with a fixed record length. A direct-access WRITE will output formatted records which
have the same form as with sequential operations. The distinction is that the direct-access records are
transmitted into a series of records which already exist on the selected file. A single READ or WRITE
will access records on the 1/ device only as specified in the associated FORMAT statement. This
means that a long I/O list will not cause a new record to be accessed, regardless of the length of

the list, unless this access is indicated by the FORMAT statement. A carriage return is, as with
sequential 1/O, appended to each ASCII line. Any information from a previous WRITE mode to a record
which remains after the carriage return, is inaccessible. The FIOPS buffer and tables are used as

with sequential I/O. Data transfer, however, is performed using the .RTRAN system MACRO.

The RBCDIO routines described below correspond to the sequential 1/O routines of BCDIO. Control

is transferred to BCDIO for data transmission via the global entry points given.

RBCDIO

External Calls: FIOPS, BCDIO (.FE, .FA), OTSER, RANCOM

Errors: None

Routine Purpose
.RW (.RR) BCD direct-access WRITE (READ) sets the direct-
Call: access flag; sets mode switch to ASCII; initializes

JMS* RW (RF)

.DSA (address of .DAT slot)
.DSA (address FORMAT)

(AC holds integer record number)

direct-access READ/WRITE (.INRRW in RANCOM);
checks mode of existing record; initializes - .STEOR
and BFLOC in BCDIO for direct-access, line buffer,
and form at decoder; sets .HILIM in BCDIO. .RW
loads record number into .RCDNM and sets I/O

flag in FIOPS to write. .RR loads record number
info .RCDNM, sets 1/O flag to read.

.RF Terminates current logical record. Sets last record
Call: flag, reinitializes .ER in OTSER and, for WRITE,
.RTRAN out last record.
JMS* _RF

Entry points to BCDIO are:

RBCDIO Entry

.RE
.RA

2.4.3 Unformatted Input/Output (RBINIO)

BCDIO Routines

.FE
.FA

Unformatted direct-access I/O differs from formatted in two respects. If a binary record does not

totally fill the record into which it is written, the previous contents are still accessible. If a direct-

access WRITE requires more words than exist in each record, successive records are accessed and

written until the I/O list is exhausted. Records are linked by ID words as for sequential files.

The routines of RBINIO are described below. Direct-access entry points to BINIO follow.

RBINIO
External Calls: FIOPS, RANCOM, BINIO
Errors: None
Routine Function
.RS (.RX) Binary direct -access WRITE (READ) sets direct-
Call: access flag; sets mode switch to binary; initializes

JMS* RS (.RX)

.DSA (address of .DAT slof)
(AC holds integer record number)

direct READ/WRITE (.INRRW in RANCOM); checks
mode of existing record; initializes .BUFLC, .RDTV,
and .WRTV in BINIO for direct access; initializes
1/O buffer; loads record number info .RCDNM.

.RX sets I/O flag to WRITE; .RS sets it to READ.

(continued next page)

RBINIO (Cont)

Routine Function
.RG Terminates current logical record. Increments
Call: associated variable, reinitializes .ER in OTSER; if

WRITE, sets last record flag and outputs final records.
JMS* FG

2.4.4 Initialization and Actual Data Transfer (RANCOM)

RANCOM contains two major routines which are used by both RBCDIO and RBINIO. These routines

perform initialization and data transfer functions which are identical to those performed for ASCII and
Binary I/O.

RANCOM
External Calls: FIOPS, OTSER, DEFINE
Errors: OTS 10 - illegal 1/O device
OTS 24 - illegal record number
OTS 25 - mode discrepancy
OTS 11 - illegal input data (IOPS mode incorrect)
OTS 21 - undefined file
OTS 23 - size discrepancy
Routine Function
. INRRW Initializes a direct access READ or WRITE
Call:
JMS* _INRRW
(AC holds address of slot number.)
.RIO For I/O cleanup:
Call: Set up header pair and .RTRAN out block of data.
For end-of -=record routines:
JMS* .RIO Output (if WRITE) and set pointers fo new record.

2.5 Data-Directed Input-Output (DDIO)

The Data-Directed Input-Output package permits input or output of ASCII data without reference to a
FORMAT statement. On input, DDIO extracts individual data fields by scanning the line buffer for
terminators. It then determines the mode of the variable to which the item is to be transferred and
converts the item to that mode if necessary. Unlike the format decoder, DDIO does not reject an item
which is too large but simply assigns the maximum value which the variable can accomodate. On out-

put, DDIO has a set of default format parameters for each type of variable.

The same buffer is used for both data-directed and formatted 1/O, and the 1/O action for both takes

place between device and 1/O list variables or vice versa in both cases. Thus, DDIO uses the same I/O

initialization and termination routines as regular formatted 1/O (found within BCDIO for sequential

access and within RBCDIO for direct access). DDIO control routines are, however, unique due to the

special features described above.

The routines of DDIO are given below.

DDIO

External Calls:

BCDIO, .SS, OTSER, FIOPS, REAL, DBLINT

Errors: OTS 42 - bad input data*

Routine Function
.GA Outputs a data item in the 'NAME' = value form.
Call: Mode is obtained from bits 1-2 of the pointer word;

JMS* _GA / radix 50
name 1
name 2

.DSA address item

first 3 characters
last 3 characters

if the mode is O (integer-logical), bit 0 of the name
word indicates which (0 for integer, 1 for logical).

.GC Outputs an array element in '"NAME (I)' = value
Call: form. Also uses bits 1-2 for mode. .GC should
only be used when . SS has been used to calculate

JMS* ,GC / radix 50 the subscript address.

name 1

name 2

.DSA item
.GB Outputs an entire array in 'NAME(I)' = value form,
Call:

JMS* ,GB / radix 50

name 1

name 2

.DSA array description block
(word #4 address)

.GD
Call:

JMS* _GD
.DSA item

Inputs an item. Mode is in bits 1-2 of argument.

.GE

Call:
JMS* . GE
.DSA addr. of array discriptor block word 4

Inputs an array. Mode is in bits 1-2 of argument.

*For Teletype input - 'BAD INPUT DATA - RETYPE FROM INPUT WITH ERROR' is typed.

2-14

2.6 ENCODE/DECODE (EDCODE)

Encode and Decode perform memory~to-memory transfers and conversions using the apparatus established
for formatted input-output. That is, data is transferred from memory to the 1/O buffer to memory. Since
no peripheral device is involved, the initialization and termination mechanisms of EDCODE are unique

while the data transfer is the same as for BCDIO.

The routines of EDCODE are given below.

EDCODE
External Calls: OTSER, BCDIO
Errors: OTS 40 - illegal number of characters
OTS 41 - array exceeded
Routine Function
. GF Encode.
Call: -
JMS* | GF
.DSA number of characters
.DSA array
.DSA format
.GG . Decode.
Call:
JMS* GG
.DSA number of characters
.DSA array
.DSA format

2.7 USER SUBROUTINES

The subroutines given below are FORTRAN-callable subroutines which support input-output operations.

"2.7.1 Magnetic Tape Input-Output Routines™

Routine Call Function
EOCF CALL EOF(d,@n1 , @nz) Control is passed to ny if
Where: EOF was encountered on last

input operation; otherwise to n,
d = ,DAT slot (must be

assigned to tape)

nyn, = statement numbers

*Not supported with RSX. END, ERR exits can be used in place of EOF. (continued next page)

2-15

Routine Call Function

IOCHECK CALL IOCHECK (d,@n] ,@n2) Same

UNIT CALL UNIT (d,@n] ,@nz,@n3, Control is passed to:

@n4) ny - device not ready

n, - device ready, no
previous error

ny - EOF sensed

ny - parity or lost data
error

2.7.2 Directoried Subroutines

The directoried subroutines described below comprise a package named FILE. These routines interact

with the DOS-15 file-oriented data structure and with DECtape file structure.

FILE
External Calls: FIOPS, .DA
Errors: OTS 10 - illegal device number

OTS 13 =~ file not found (SEEK)
OTS 14 - directory full (ENTER)

Routine Call Purpose

SEEK CALL SEEK (n,A) Finds and opens a named input file.
Where:
n = device number

A = name of array containing the
9-character 5/7 ASCII file
name and extension

ENTER CALL ENTER (n,A) Creates and opens a named output file.
CLOSE CALL CLOSE (n) Terminates an input or output file
(required when SEEK or ENTER are
used).
FSTAT CALL FSTAT (n,A,l) Searches for named file.
Where:

I =0 if the file not found;
=1 if found and action complete

(continued next page)

2-16

Routine

Call

Purpose

RENAM

CALL RENAM (n,A,B,1)
Where:

A is an array contfaining exist-
ing name

B is an array containg a new
file name

1=0 if file not found; 1 if
found and action complete

Searches for named file and renames it.

DLETE

CALL DLETE (n,A,l)
Where:

A is an array containing exist-
ing file name

I =0 if file not found; 1 if
found and action complete

Searches for named file and deletes it.

2-17

CHAPTER 3
THE SCIENCE LIBRARY

The FORTRAN Science Library is a set of pre~defined subprograms which may be invoked by a
FORTRAN-IV subprogram reference. These include intrinsic functions, external functions, the
arithmetic-package functions, and external subroutines. Each of these may also be referenced by «a
MACRO program as may the sub-functions and OTS routines which are also part of the FORTRAN
library.

Descriptions of each type of subprogram are given in the following subsections. Information given for
these include errors, accuracy, size, and external calls (to other library subprograms). Each function
description also includes the MACRO calling sequence. Where there are two arguments, it is assumed
that the appropriate accumulator has been loaded (accumulators are described in Section 3.4). For
calling sequences which use the .DSA pseudo-operation fo define the symbolic address of arguments,

400000 must be added to the address field for indirect addressing.

FORTRAN library subprograms are called by FORTRAN programs in the manner described in the
Language Manual (DEC-15-GFWA-D). Subprograms called by MACRO programs must be declared
with a .GLOBL pseudo-operation as in:

Examples:
Standard System Floating Point (FPP) System

.TITLE .TITLE
.GLOBL SIN, .AH .GLOBL SIN
. FST = 713640
JMS* SIN .
JMP +2 /JUMP beyond argument JMS SIN
.DSA A /+400000 if indirect JMP +2
JMS* _AH /store in real format at .DSA A
.DSA X /X FST
" .DSA X
. X .DSA O
" .DSA O

X .DSAO
.DSAO

The number and type of arguments in the MACRO program must agree with those defined for the sub-

program. 3 -1

3.1 INTRINSIC FUNCTIONS
Table 3-1 contains a description of each of the intrinsic functions in the FORTRAN library.

An intrinsic function's type and arguments cannot be changed. It is referenced via an Arithmetic

statement, as in:

X = ABS (A)

(Table 3~1 appears on the following page.)

€-€

Table 3-1

Intrinsic Functions

Symbolic

Accuracy

Function Definition Name Mode Calling Sequence Errors (Bits) External Calls
.BB [=1**] ARG1 IN FLT.ACC N.A. INTEGER
JMS*.BB 15 if base =0
.DSA ADDR of ARG2 | and exp. <0
.BC R**I(or J) ARGI IN FLT. ACC N.A. REAL
.BC R=R**I JMS* SUBR None
.BL R=R**J .DSA ADDR of ARG2
.BD D**I(or J) ARG1 IN FLT. ACC None N.A. REAL
.BD D=D**] JMS* SUBR
.BM D=D**) .DSA ADDR of ARG2
ARGT IN FLT. ACC
.BE R=R**R 13 if base <0 | 26 .EE,.DF, REAL
.BF D=R**D JMS* SUBR 13 if base <0 | 26 .EE,.DF, DOUBLE
.BG D=D**R .DSA ADDR of ARG2 |14 if base <0 | 32 .DE, .DF, DOUBLE
.BH D=D**D 14 if base <0 | 32 .DE, .DF, DOUBLE
.BL I¥*), J** Jor I) ARG1 IN AC (and MQ)| None N.A. DBLINT
.BI I=[**]J JMS* SUBR
.BJ J=J**y .DSA ADDR of ARG2
.BK J=J%+1
Absolute | ARG | ABS R=ABS(R) None N.A .DA,REAL
Value IABS I=IABS(I) JMS* SUBR .DA
JABS DI=JABS(DI) JMP 42 .DA, DBLINT
DABS DP=DABS(DP) .DSA ADDR of ARG .DA, DOUBLE
Truncation Sign of ARG times largest AINT R=AINT(R) None N.A. .DA, REAL
integer < |ARG| INT I=INT(R) JMS* SUBR .DA, REAL
IDINT I=IDINT(DP) JMP .+2 .DA, REAL, DOUBLE
JINT DI=JINT(R) .DSA ADDR of ARG .DA, DOUBLE, DBLINT
JDINT DI=JDINT(DP) .DA, DOUBLE, DBLINT

*15 if base =0 and exp <0.

=€

Table 3-1 (Cont)

Intrinsic Functions

Function Definition Syr;\\l!:;onl‘;c Mode Calling Sequence Errors Azg;:;:)'ocy External Calls
Transfer of Sign of ARG2 SIGN R=SIGN(R,R) JMS* SUBR None N.A. .DA, REAL
Sign ISIGN I=ISIGN(, 1) JMP .13 .DA
DSIGN DP=DSIGN(DP,DP) .DSA ADDR of ARG1 .DA, DOUBLE
Sign of ARG1 JSIGN DI=JSIGN(DI,DI) .DSA ADDR of ARG2 .DA, DBLINT
Positive ARG1-MIN(ARG1,ARG2) DIM R=DIM(R,R) JMS*SUBR None N.A. .DA, REAL
Difference IDIM I=IDIM(1, 1) JMP .3 .DA, INTEGER
JDIM DI=JDIM(DI,DI) .DSA ADDR of ARG1 .DA,DBLINT
.DSA ADDR of ARG2
Conversion VMODE -~ ARG FLOAT R=FLOAT(I) s None N.A. .DA, REAL
IFIX I=IFIX(R) .DA, REAL
SNGL R=SNGL(D) .DA, DOUBLE
DBLE D=DBLE(R) .DA, REAL
JFIX DI=JFIX(R) JMS* SUBR .DA, DOUBLE, DBLINT
or JFIX(DP) JMP .+2 .DA,
ISNGL I=ISNGL(DI) .DSA ADDR of ARG .DA, DBLINT
IDBLE DI=JDBLE() .DA
JDFIX DI=JDFIX (DP) .DA, DOUBLE, DBLINT
FLOAT) R=FLOATJ(DI) .DA, DBLINT
DBLEJ DP=DBLEJ(DI) \ .DA,DBLINT
Remaindering | ARG1-[ARG1/ARG2]1ARG2 | AMOD R=AMOD(R,R) JMS* SUBR None N.A. .DA, REAL
Where: [A1/A2] is an in- MOD 1=MOD({,]) JMP .13 .DA, INTEGER
teger whose magnitude does | DMOD DP=DMOD(DP,DP) .DSA ADDR of ARG1 .DA, DOUBLE
not exceed the magnitude JMOD DI=JMOD(DI,DI) .DSA ADDR of ARG2 .DA, DBLINT
of A1/A2 and whose sign is
the same
)))

G-€

Table 3-1 (Cont)

Intrinsic Functions

Function Definition Smkﬂ'c Mode Calling Sequence Errors A?;?;‘;Cy External Calls
Maximum/ VAR = max or min value of | Integer None N.A. INTEGER, REAL
minimum value |arglist min/max

(IMNMX)

MAX0 I=MAXO0(I7,...In)

MINO I=MINO(I] SR 4

AMAX0 |R=AMAXO(I,...I,)

AMINO |R=AMINO(Iy,...1))

Real INTEGER, REAL
min/max

(RMNMX)

AMAXT1 R=AMAX1(Ry,...Rp) JMS*SUBR

AMINT [R=AMINI(Ry, .. .R,) IMP . in+1

MAX1 I=MAX1(R1,...Rp) < .DSA ADDR of ARG1

MIN1 IEMINTR;, .. .R))

.DSA ADDR of ARGn

Double~ DOUBLE
precision

(DMNMX)

DMAX1 DP=DMAX1(DPy,...DP)

DP=DMINT(DPy, .. .DP)

Double DBLINT
integer

(JMNMX)

JMAX0 |DI=JMAXO(DI;,...DI,)

JMINO DI=JMINO(DI] geais .Dln)

3.2 EXTERNAL FUNCTIONS

Table 3-2 describes the external functions of the FORTRAN library. An external function is a sub-

program which is executed whenever a reference to it appears within a FORTRAN expression and which

returns a single value.

A description of the algorithm applied in implementing each of these functions is given below.

3.2.1 Square Root (SQRT, DSQRT)
A first-guess approximation of the square root of the argument is obtained as follows:

If the exponent (EXP) of the argument is odd:

(EXP-1) (EXP-1)
P0 =.5 2 "+ARG 2
If EXP is even:
EXP EXP
Py=+5 (=3)iare (7°1)
Newton's iterative approximation, below, is then applied four times.

_1,. ARG
P =2+ 552)

3.2.2 Exponential (EXP, DEXP)

The following description also applies to the sub-functions .EF and .DF.

The function e~ is calculated as 2"'0“:’2E

(F)).
Then:

(xlong will have an integer portion (I) and fractional portion

& =(2h) ()
Where:

F_.s i\2

n = 6 for EXP and ,EF

n= 8 for DEXP and .DF

(continued page 3-7)

L-€

Table 3-2
External Functions

Function Definition Smlc:::c Mode Calling Sequence Errors A?gli::;cy External Calls
Square ARGI/2 SQRT R=SQRT(R) JMS*SUBR 5if ARG <0 26 .DA, .ER,REAL
root DSQRT DP=DSQRT(DP) JMP +2 6 if ARG <0 .DA, .ER,DOUBLE
.DSA ADDR of ARG
Exponen- | ARG EXP R=EXP(R) Same 13if ARG <0 26 .DA, .EF,.ER,REAL
tial & DEXP DP=DEXP(DP) 14 if ARG <0 34 .DA, .DF, .ER,DOUBLE
Natural Log ARG ALOG R=ALOG(R) Same Same 26 .DA, .EE,.ER,REAL
logarithm e DLOG DP=DLOG(DP) 32 .DA, .DE, .ER, DOUBLE
Common LogIOARG ALOGI0 | R=ALOGI10(R) Same Same Same Same
logarithm DLOG10 | DP=DLOG10(DP)
Sine Sin(ARG) SIN R=SIN(R) Same None 26 .DA,.EB,REAL
DSIN DP=DSIN(DP) 34 .DA, .DB,DOUBLE
Cosine cos(ARG) CcOoS R=COS(R) Same None 26 .DA, .EB,REAL
DCOS DP=DCOS(DP) 34 .DA, .DB,DOUBLE
Arc fon—] (ARG) | ATAN R=ATAN(R) Same None 26 .DA, .ED,REAL
tangent DATAN DP=DATAN(DP) 34 .DA, .DD,DOUBLE
1 JMS*SUBR
Arc tan ATAN2 R=ATAN2(R,R) JMP +3 None 26 Same
tangent (ARG1/ DATAN2 | DP=DATAN2 .DSA ADDR of ARG 34
XAY) ARG?2) (DP,DP) .DSA ADDR of ARG2
JMS*TANH
Hyper- tanh(ARG) | TANH R=TANH(R) JMP .+2 None 26 .DA, .EF ,REAL
bolic .DSA ADDR of ARG

tangent

The values of Ci are given below.

Value of i

O N OO0 O A W N = O

Value of Ci

1.0

0.34657359
0.06005663
0.00693801
0.00060113
0.00004167
0.00000241
0.00000119
0.00000518

3.2.3 Natural and Common Logarithms (ALOG, ALOG10, DLOG, DLOG10)

The exponent of the argument is saved as.the integral portion of the result plus one. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows:

Then:

Where:

n=2 (ALOG)
n= 3 (DLOG)

The values of C are given below:

ALOG and ALOG10

C] = 2.8853913

C3 = 0.96147063

C5 = 0.59897865

3-8

DLOG and DLOGI10

C] = 2.8853900

C3 =0.96180076
C5 = 0.57658434
C7 = 0.43425975

(continued next page)

The final computation is:
ALOG and DLOG: |ogeX = (|092X) (|oge2)

ALOGI10 and DLOG10: Iog]OX = (Iog2X) (IOQIO‘?)

3.2.4 Sine and Cosine (SIN, COS, DSIN, DCOS)
This description also applies to the sub-functions .EB and .DB.

The argument is multiplied by 2/« for conversion to quarter-circles. The two low-order bits of the
integral portion determine the quadrant of the argument and produce a modified value of the fractional

portion (Z) as follows.

= Low=Order Bits Quadrant Modified Value (Z)
00 I F
01 II 1-F
10 111 -F
11 v -(1-F)

The value of Z is then applied to the polynomial expression:

22|+'|

h
sin X =(3 C2i+'l)
i=0

n=4for SIN, COS, .EB
n= 6 for DSIN, DCOS, .DB

The values of C are as follows:

SIN, COS, .EB DSIN, DCOS, .DB
B C, =1.570796318 C, = 1.5707932680
C, = -0.645963711 C, = -0.6459640975
C, = 0079689677928 C, = 0.06969262601
C,, = -0.00467376557 C,, = -0.004681752998
C, = 0.00015148419 C, = 0.00016043839964

C] 17 -0.000003595184353

C] 37 0.000000054465285

(continued next page)

3-9

The argument for COS and DCOS is adjusted by adding n/2. The sin subfunction is then used to

compute the cosine according to the following relationship:

COS X =sin @2 +X)

3.2.5 Arctangent (ATAN, DATAN, ATAN2, DATAN2)

The following description also applies to the sub-functions .ED and .DD.

For arguments less than or equal to 1, Z = arg and:
2i+1

2i+1z)

n =7 for ATAN and ATAN2

n = 3 for DATAN and DATAN2

n
arctangent arg = (iZ:O C

For arguments greater than 1, Z = 1/arg and:
n -
arctangent arg =-12-'— -(igo C2i+122'+])
n = 8 for ATAN and ATAN2

n = 3 for DATAN and DATAN2

The values of C are given below.

ATAN and ATAN2 DATAN and DATAN2
C] = 0.9992150

C] = 0.9999993329

C3 = -0.3211819 C3 = -0.3332985605

C5 = 0.1462766 C5 = 0, 1994653599

C7 = -0,0389929 C7 = -0.1390853351
C9 = 0,0964200441
C” = -0.0559098861
C]3 =0.0218612288
C] 57 -0.0040540580

3.2.6 Hyperbolic Tangent

The hyperbolic tangent function is defined as:

2
tanh ‘X‘ = (1- —%——)
'l+e2 %1
e is calculated as 2x|°gze (xlogge will have an integral portion (I) and a fractional portion (F)).

(continued next page)
3-10

Then:

Where:

The values of C, are:
I

Value of i Value of Ci
0 1.0
1 0.34657359
2 0.06005663
3 0.00693801
4 0.00060113
5 0.00004167
6 0.00000241

3.3 SUB-FUNCTIONS

Table 3-3 describes the sub-functions which are included in the FORTRAN library. These functions
are referenced by intrinsic and external functions but are not directly accessible to the user via
FORTRAN. The sub-function .EB, for example, performs the computation of sine and is invoked by
the external function SIN. MACRO programs may reference sub-functions directly. Algorithms for

all sub-functions which have counterparts among external functions were given in the previous sub-
section. This leaves the two general sub-functions Logarithm, base 2 and polynomial evaluator. Their

algorithms are given below.

3.3.1 Logarithm, Base 2 (.EE, .DE)

The exponent of the argument is saved as the integer portion of the result plus one. The fractional
portion of the argument is considered to be a number between 1 and 2. Z is computed as follows:

_X-/2

Z_X+/§—

(continued page 3-14)

3-11

ZL-¢

Table 3-3

Sub~Functions

5 s ove Symbolic ; Accuracy| External
Function Definition Metos Mode Calling Sequence Errors (Bits) Calls
Sine Sin (ARG) .EB R=.EB(R) JMS#*SUBR None 19 .EC,REAL
Computation .DB | DP=.DB(DP) At entry floating 28 .DC,DOUBLE
accumulator contains ARG;
. at return contains result
Arc tangent l'cm-.I (ARG) .ED | R=.ED(R) Same None 26 Same
Computation .DD | DP=.DB(DP) 34
Logarithm longRG .EE R=.EE(R) Same 13, ARG <0 26 .ER,REAL
(base 2) .DE DP=_,DE(DP) 14, ARG <0 32 <ER,DOUBLE
Computation
Exponential ARG .EF R=.EF(R) Same None 26 REAL
Computation | © .DF | DP=DF(DP) 34 |DOUBLE
Polynomial VAR = JMS*SUBR None N.A. |REAL
Evaluation CAL PLIST DOUBLE
n .
2i+1 _
1§0C2;+1Z .EC | R=.EC(R),R, . R) :
.DC DP=.DC(DP2,DP , PLIST-N/ - number of terms
DP) +
**'h Cn/lqs’r term
VAR = Cn—'l/next to last
n
2i+1 *
i=0 2i+lz

C] /2nd term
C /1st term
g

(continued next page)

€1-¢

Table 3-3 (Cont
Sub-Functions

)

Function Definition Symbolic Mode Calling Sequence Errors Accuracy External
Name (Bits)
General Get N.A .DA N.A Calling Routine None N.A None
Argument SUBR CAL 0
JMS* DA
JMP ,+n+1

{address of ARG1)
(address of ARG2)

(address of ARGn)
Is Called By

JMS*SUBR
JMP +nt+1
.DSA ARG1
.DSA ARG2

Then:

1 2i+1
oo X =3 HZ ConZ)
n= 2 (.EE)
n=3 (.DE)
The values of C are:
.EE .DE
C] = 2.8853913 C., = 2.8853900
3 =0.96147063 C3 =0.96180076
C5 = 0.59897865 C5 = 0,57658434
C7 = 0.43425975

3.3.2 Polynominal Evaluator (.EC, .DC)

A polynomial is evaluated as:

B 2 2.,. .2
X=2Z(C,+Z°(C et Z°(C 25+ C)

0

3.4 THE ARITHMETIC PACKAGE

The arithmetic package contains the OTS arithmetic routines which are invoked by FORTRAN arith-
metic expressions. These routines may also be called directly by MACRO programs. Versions of
FORTRAN-IV designed for use with the Floating Point Processor (FPP) require only single integer

arithmetic routines. Double (extended) integer arithmetic will be handled by the hardware.

The three major routines of the arithmetic package are INTEAE, RELEAE, and DOUBLE. INTEAE
contains integer arithmetic routines; RELEAE, real and floating arithmetic; and DOUBLE, double-

precision arithmetic.

A description of these routines is given in Table 3-4, In the "calling sequence" column, reference

is made fo three accumulators - the A-register, the floating accumulator, and the held accumulator.
The A-register is the standard PDP-15 hardware accumulator. The floating and held accumulators are
software accumulators which are part of the RELEAE package. The held accumulator is used as tempo-
rary storage by some routines. Both consist of three consecutive PDP-15 words and have the format

shown below. (Negative mantissae are indicated by a change of sign.)

Held AC Labels Floating AC Labels

CEO1 AA Exponent (2's complement)
0 V4
CE0?2 AB Sign .oF High.—order
mantissa mantissa
0 1 17
CEO3 AC Low order mantissa
0 17

The format shown above is that used for double-precision numbers. Single-precision numbers must be

converted before and after use in the floating accumulator to the single-precision format:

Low-order Exponent
mantissa (2's complement)
0 89 17
Sign of High-order
mantissa mantissa
0 1 17

RELEAE routines check for underflow and overflow and set a flog (. QVUDF) in the REAL store routine

.AH as follows:

Flag Meaning Action
non-0 positive value overflow - an attempt to store £ largest representable real
a REAL constant whose binary value stored (DOS-15);

exponent is greater than 3778

negative value underflow ~ an attempt to store zero is stored
a REAL constant whose binary
exponent is less than -4008

zero default value value is stored

The user may test this flag under program control using the logical function IFLOW. Recoverable OTS

messages are also given (see Appendix B, Section B.2).

Division by zero is also checked and a flag .DZERO set to zero (default value is 777777) in the
general floating divide routine (.CI). The result of the division is the largest representable value.
An OTS error message is also given for this condition. The user may test .DZERO under program

control using the logical function IDZERO.

The flags .OVUDF and .DZERO can only be initialized by reloading the program, by a separate
user program, or by IFLOW or IDZERO. These functions are described below.

Routine IFLOW

Purpose Checks underflow and overflow
Call IORLV = IFLOW(I)

External Calls .DA

Errors None

The argument 1 indicates the check to be performed and values are returned as follows:

I Action Value
0 no check 0(.FALSE) flag unchanged
<0 underflow check -1(.TRUE) if underflow - flag set to 0;
else 0 (.FALSE) and flag unchanged
>0 overflow check -1(.TRUE) if overflow ~ flag set to zero;
else O (.FALSE)
Routine IDZERO
Purpose Checks for division by zero
Call IORLV = IDZERO (1)
External Calls .DA
Errors None

If I=0, no check is made, IORLV = O(.FALSE) and the flag is unchanged. If [0, a check is made.
If an attempt at division by zero was made, IORLV = -1(.TRUE) and the flag is reinitialized. Other-
wise the flag is unchanged and IORLV = O(.FALSE).

L1-€

INTEAE <

DOUBLE <

N

.

Table 3-4

Arithmetic Package®

Function Definition S{\lrr;l::ellc Mode Calling Sequence E)éi;elrlr;ol
Integer None
Arithmetic QRS] .

~Register ARG2

*Multipli ARG1*ARG2 .AD I=1*1 multiplicand multiplier

cation JMS*SUBR
*Division ARG1/ARG2 AE I=1/1 dividend divisor LAC ARG2
*Reverse ARG2/ARG1 AF I=1/1 divisor dividend

division
*Subtraction ARG1-ARG2 LAY I=I- minuend subtrahend
*Reverse ARG2-ARG1 AZ I=I- subtrahend minuvend

subtraction =
Double- REAL
Precision
Arithmetic ;:A\LRGA]C ARG2 ™
Load N.A AO DP=.AO(DP) address
Store N.A AP DP=.AP(DP) | value address
Add ARG 1+ARG2 AQ DP=DP+DP augend addend
Subtract ARG1-ARG2 JAR DP=DP-DP minuend subtrahend JMS#*SUBR
Reverse ARG2-ARG1 AU DP=DP-DP subtrahend minuend .DSA ARG2

subtract
Multiply ARGI1*ARG2 | .AS DP=DP*DP multiplicand multiplier
Divide ARG1/ARG2 | .AT DP=DP/DP dividend divisor
Reverse ARG2/ARG1 LAV DP=DP/DP divisor dividend

divide

*FPP versions require only Integer Arithmetic (INTEGE).

(continued next page)

8lL-€

RELEAE <

Arithmetic Package

Table 3-4 (Cont)

Function Definition Symbolic Mode Calling Sequence External
Name Calls
Real Arith-
metic (in-
ARG1 N
'Ifr{‘;;’es Flosst= FL.AC ARG?2
Load N.A AG R=.AG(R) address
Store N.A .AH R=. AH(R) value address
Add ARG 1+ARG2 LAl R=R+R augend addend
Subtract ARG1-ARG2 AJ R=R-R minuend subtrahend JMS*SUBR
Reverse ARG2-ARGI AM R=R-R subtrahend minuend .DSA ARG2
subtract
Multiply ARGT*ARG2 | .AK R=R*R multiplicand multiplier
Divide ARG1/ARG2 AL R=R/R dividend divisor
Reverse ARG2/ARG1 AN R=R/R divisor dividend
divide /
Floating
Arithmetic
A-Register FL.AC
Float R IARG AW R=. AW(I) integer F.P num JMS*SUBR
Fix I RARG JAX I=. AX(R) F.P num
Negate R RARG .BA R=.BA(R)
FL.AC HELD AC
Multiply ARGT*ARG2 | .CA R=R*R multiplicand multiplier
Add ARG1+ARG2 .CC R=R+R augend addend
Normalize N.A .CD R=.CD(R) value JMS*SUBR
Hold N.A .CF R=.CF(R) value
Sign Control (Note 1) .CG R=.CG(R) value value
Short get CALO SUBR ENTRY-EXIT
N.A .CB R=.CB(R
argument ® JMS*,CB
CALO STORAGE FOR ARG ADDR
(continued next page)
') }

6l-€

Table 3-4 (Cont)
Arithmetic Package

Function Definition SYS:;L'C Mode Calling Sequence E’g:;.ﬁal
Floating FL.AC HELD .AC
Arithmetic
(Cont)
Divide ARG1/ARG2 | .CI R=R/R divisor dividend JMS*SUBR **
*Round and N.A .CH =,CHR value CONSTI
sign CONST2
ARG1
AC,MQ ARG2
Load N.A JG J=.JG(J) address h
Store N.A JJH J=.JH\)) value address
Add ARG1+ARG?2 I J=J+J augend addend
Subtract ARG1-ARG?2 JJ J=J-J minuend subtrahend JMS*SUBR
Reverse ARG2-ARGI .JM J=J-J subtrahend minuend .DSA ARG2
subtract
INT Multiply ARGI*ARG2? | .JK J=J*J multiplicand multiplier
Divide ARG1/ARG2? | .JL J=J/J dividend divisor
Reverse ARG2/ARG1 .JN J=J/J divisor dividend
divide J
AC,MQ FL.AC
Float R<JARG JW R=.JW(J) Doub. Int. F.P.Number .CD,REAL
Fix J-RARG JX J=.JX(R) F.P.Number ¢~ JMS*SUBR REAL
Negate J<JARG JJA J=.JA(J)

*The sign of the result (exclusive OR of the sign bits of .AB and CEO02) is stored in .CE. The sign of .AB is saved in CE05.

**CONSTT and CONST2 are required for both EAE and NON-EAE operations, however, they are used only by the NON-EAE version of .ClI.
CONSTI1 indicates the number of bits to be generated (-34 for single precision, -44 for double precision). CONST2 is the least significant
quotient bit (400 for single precision, 1 for double precision).

CHAPTER 4
UTILITY ROUTINES

Two types of subprogram are described in this chapter ~ OTS routines, automatically invoked by
FORTRAN statements; and external subprograms which may be invoked via @ FORTRAN CALL statement.
Both types are accessible to MACRO programs.

4.1 OTS ROUTINES

OTS utility routines perform a number of functions specified by FORTRAN statements. These functions
of FORTRAN, like the input-output functions discussed previously, use OTS as an interface between

the user program and the monitor environment in which it will operate,

Each of these routines is described below.

Routine .SS
Purpose Calculates the address of an array element
Calling .GLOBL .SS
Sequence JMS* ,SS
.DSA ARRAY / addr wd. 4 - array descriptor block
LAC (K.) / subscript i
.SS o
LAC (Kk) / subscript k
DAC ALOC / return with element address in AC
External Calls None
Errors None

.SS references the array-descriptor block associated with the array whose element is to be located.

An array descriptor block is a four-word table with the contents depicted below.

Word 1

Word 2

Word 3

Word 4

Data

g mode

Size (in words)

0-2 3-4

17

0 - for one=dimensional array
Size of first dimension

0 - for one- and two-dimensional arrays
Size of the first two dimensions

Address of first word of array with mode in bits 1-2.

Size is determined by multiplying the dimensions of the array by the number of words (N) used for a
data item of the specified mode (M). Thus, an INTEGER array defined by DIMENSION (2,2,2) has

the size 8 in word 1, the size 2 in word 2, and the size 4 in word 3. A REAL array of the some

dimensions will have 16, 4, and 8 in these locations.

The values of M and N for the various data modes are:

Array Mode M
INTEGER, LOGICAL 00
DOUBLE INTEGER 11
REAL 01
DOUBLE PRECISION 10

|z

w NN

The address of an array element A(K] ,K2,K3) is calculated by .SS using the following formula:

addr = WD4 + (K.‘ -1) * N+ (Kz—l) * WD2 + (K3—l) * WD3

GOTO

Routine .GO
Purpose Computes index of computed GO TO
Calling LACV / index value in A-register
Sequence JMS* GO
-N / number of statement address
STMT(1)
STMT(2)
STMT(N)
External Calls OTSER
Errors OTS 7 - illegal index (<0)

STOP

PAUSE

SPMSG

OTSER

Recoverable errors are indicated when bit O of the error number is a 1. In this case, the AC and link

are restored to their original contents and control is returned to the calling program at the first loca-

Routine

L ST

Purpose Processes STOP statement (returns to monitor)

Calling LAC /octal number to be printed

Sequence JMS* ST

External Calls .SP

Errors None

Routine .PA

Purpose Processes PAUSE, Waits for tP and returns control
to user program

Calling LAC /octal number

Sequence JMS* PA

External Calls .SP

Errors None

Routine .SP

Purpose Prints octal number for PAUSE and STOP.
Zero assumed if none supplied.

Calling LAC /octal integer

Sequence JMS* [SP

.DSA (control return for PAUSE)
LAC (first character)

L/;\C (sixth character)

External Calls None

Errors None

Routine .ER

Purpose To print error messages on Teletype and take
action according to class of error

Calling JMS* [ER

Sequence .DSA (error number)

External Calls None

Errors None

tion following the error.

4-3

Unrecoverable errors are indicated when bit 0 of the error number is 0. Control is returned to the

monitor by means of an .EXIT function. In the case of an unrecoverable error in a FORMAT statement,

the current 5/7 ASCII word pair of the erroneous FORMAT is also printed. The calling sequence for
.ER for a FORMAT statement differs from other calls and is:

PARTWD

PARTWD

JMS* _ER
.DSA 12 / error number
LAC chars / current 5 characters
LAC chars

Routine .PB

Purpose Part word fetch result in AC or ACMQ

Calling JMS* _PB

Sequence . DSA address

External Calls None

Errors None

Routine .PC

Purpose Stores contents of AC or ACMQ

Calling JMS* |PC

Sequence . DSA address

External Calls None

Errors None

4.2 FLOATING POINT PROCESSOR ROUTINES

General
Inter-
face
Routine
.FPP

Routine AX

Purpose FPP version of software .AX

Routine AW

Purpose FPP version of software .AW

Routine JZA

Purpose Loads high order mantissa of FPP AC into the
regular AC

Routine .ZB

Purpose Initializes FPP error handling

Routine

Purpose Error handling

Extended Routine .ZC

Integer Purpose Converts integer in CPU AC fo extended integer in

(Double FPP AC

integer) Routine .ZD

nterface

Routines Purpose Converts extended integer in FPP AC to single
integer in CPU AC

4.3 FORTRAN - CALLABLE UTILITY ROUTINES

These routines are described in Table 4-1.

4.4 RSX LIBRARY (.LIBRX BIN) ROUTINES

A special set of routines is provided for use with the RSX-15 real-time monitor system. This library
includes, in addition to the subprograms described previously, the FORTRAN-callable external sub-

routines given in Table 4-2, The even variable values have the following meaning:

a. Positive values signal successful completion.
b. Zero indicates a request is still pending.
c. Negative values indicate rejection or unsuccessful completion.

-5 Illegal header word from device (data mode incorrect or data validity bits improperly
set) (DVH)

-6 Unimplemented or illegal function (DVH)
-7 lilegal data mode (DVH)
-10 File still open (DVH)
~11 File not open (DVH)
-12 DECtape error (DVH)
-13 File not found (DVH)
-14 Directory full (DVH)
-15 Medium full (DVH)
~16 Output word-pair-count or input-buffer-size error (DVH)
~23 Input word-pair-count error (DVH)

-24 LUN has been REASSIGNed while an ATTACH or DETACH request was in an I/O
request queue (DVH)

-101 Out of range Logical Unit Number (10.)

-102 Unassigned Logical Unit Number (IO.)

-103 Non-resident Device Handler (IO.)

-104 Control Table argument error (DVH)

-201 Task not in system (RQ., SC,. RN., SY., DA., EA., FX,. UF., CN.)

(continued page 4-15)

9=y

Table 4-1

F ORTRAN-Callable Utility Routines

ENTRY

External

Routine Name Purpose Calling Sequence Examples Calls Errors
Clock TIME* Records elapsed CALL TIME(IMIN,ISEC,IOFF) CALL TIME(IM,1S,10F) .DA None
Handling - time in minutes Where: IMIN = minutes A ' .TIMER
only one and seconds on ISEC = seconds
call may be 60-cycle IOFF =non-zero IOF z]
active .a’r machine to stop clock WRITE(4, 100)IM, IS
any pomfl [outputs time to execute Al
in a user's
program

TIMET0* Records elapsed CALL TIME10(IMIN, ISEC, See TIME .DA
time in minutes, ISEC10, IOFF) .TIMER None
seconds, and Where: IMIN = minutes
tenths of seconds ISEC = seconds
ISEC10 = tenths of
seconds
IOFF = non-zero
stops clock
Error ERRSET | Controls the CALL ERRSET(N)
Handling number of run- Where: N = integer giving

time arithmetic
errors output by
OTSER

number of times
message to be
output before
suppression, If
ERRSET is not
given, OTSER
assumes N = 2,
IfFNLO, no
messages output.

*Not supported with RSX. Other RSX supplied routines can be used for this purpose.

(continued next page)

Ly

Table 4-1 (Cont)

F ORTRAN-Callable Utility Routines

Routine

ENTRY
Name

Purpose

Calling Sequence

Examples

External

Calls

Errors

Adjustable

Dimensioning

ADJ1

To adjust one-
dimensional
array

DIMENSION B(1)
CALL ADJ1(B,A)
Where: B = array name
A= beginning
storage location
of B array element
(e.g., C(200)
which is the
beginning storage
location of B)
Note: The dimensions of A
must be sufficient to
hold all entries of
array B. A may be
a dummy argument in
a subroutine

DIMENSION A(300),B(1),C(1)

CALL ADJT (8,A(101))
CALL ADJ1 (C,A(201))

B and C may be referenced as
if they had been dimensioned
as (100) each

.DA

None

Adjustable
Dimensioning

(Cont)

ADJ2

To adjust a two-
dimensional
array

DIMENSION B(1,1)
CALL ADJ2(B,A,NR)
Where: A and B are as for
ADJ1
NR = the number of

rows fo appear
inB

DIMENSION A(300),8(1,1),
ca,nmn

CALL ADJ2(8,A(1), 10)
CALL ADJ2(C,A(101),20)

.

B and C may be referenced as
if they had been dimensioned
(10,10) and (20,10), respec-
tively

.DA
AD

None

(continued next page)

8-v

Table 4-1 (Cont)

FORTRAN-Callable Utility Routines

Routine E':l;l'rl:;(Purpose Calling Sequence Examples E)gj}:al Errors
Adjustable ADJ3 To adjust a three- | DIMENSION B(1,1,1) DIMENSION A(300),B(1,1), .DA None
Dimensioning dimensional array [CALL ADJ3(B,A,NR, NC) c(1,n .AD
(Cont) Where: A,B, and NR are CALL ADJ3(B,A(1),10,5)

as for ADJ2 CALL ADJ3(C,A(101),10,10)

NC = number of B and C may be referenced as
columns fo if they had been dimensioned
appear in (2,10,5) and (2.10,10),
array B respectively

Table 4-2
FORTRAN-Callable RSX Routines*

Routine

Purpose

Calling Sequence

Event Variables Returned

REQUEST

Requests task execution

CALL REQST(nHTSKNAM,IPI,IEV])
Where:

n = no. of characters in task name
TSKNAM = name of task (1 to 5 characters)
IP = task priority (1-512)

may be variable or constant
IEV = event variable

+1, -201, -202, -204, -777

SCHEDULE

Schedules task execu-
fion

CALL SCHED(nHTSKNAM,IT,IP[,IEV])
Where:

IT = name of 5-word integer array describing
schedule
IT(1) = schedule of hour (0-23)
IT(2) = schedule of minute (0-59)
IT(3) = schedule of second (0-59)
IT(4) = reschedule interval (up to one day)
IT(5) = reschedule units (1 = ticks,
2 = seconds, 3 = minutes, 4 = hours)

+1, -201, -203, and -777

RUN

Run task in delta time

CALL RUN(nHTSKNAM,IT,IP[,IEV])
Where:

IT = name of 4-word integer array
IT(1) = schedule delta time from now

(up to one day)
IT(2) = delta schedule units (1 = ticks,

2 = seconds, 3 = minutes, 4 = hours)
IT(3) = reschedule interval (up to one day)
IT(4) = reschedule units

+1, -201, ~203, and -777

*Square brackets indicate that the event variable is an optional argument.

(continued next page)

oL-¥

Table 4-2 (Cont)
FORTRAN-Callable RSX Routines*

Routine Purpose Calling Sequence Event Variables Returned
SYNC Execute task at a CALL SYNC(nHTSKNAM,IT,IP[,IEV]) +1, =201, -203, and -777
specified interval Where:
IT = name of 5-word integer array
IT(1) = synchronization units (1 = ticks,
IT(2) = schedule interval from synchroniza~
tion time (up to one day)
IT(4) = reschedule interval (up fo one day)
IT(5) = reschedule units (1 = ticks, ...)
CANCEL Cancel task execution CALL CANCEL(nHTSKNAMIL,IEV]) +1, -201, and =777
(no effect for an active .
task)
SUSPEND Suspend execution of CALL SUSPEND
task issuing this call.
Execution not permitted
until a RESUME call
RESUME Resume task execution CALL RESUME(nHTSKNAMIL,IEV) +1, -202, and -205
MARK Set an event variable CALL MARK(IT,IEV) ‘ +1, =203, and -777
in delta time :
Where:
IT = name of 2-word integer array
IT(1) = delta interval (up to one day)
IT(2) = delta units (1 = ticks, ...)
WAIT FOR Suspend task if CALL WAITER(IEV)
event variable = 0;
resume when non-zero

*Square brackets indicate that the event variable is an optional argument.

(continued next page)

Li-v

Table 4-2 (Cont)
FORTRAN-Callable RSX Routines*

ICTA = device control table (same as
for corresponding DSKAL)
IOA = disk offset address
NW = number of words (decimal) to transfer
ARRAY = name of array containing data to
be transferred

Routine Purpose Calling Sequence Event Variables Returned
WAIT Suspend execution of CALL WAIT
task until occurrence
of next significant event
EXIT Terminate task execution | CALL EXIT
DSKAL Allocate disk storage CALL DSKAL(ICTB, NWL,IEV]) +1, -6, -15, -101, -104, and -777
Where:
ICTB = control table (integer array
returned at end of operation)
ICTB(1) = amount actually allocated
ICTB(2) = physical disk unit number
ICTB(3) = absolute starting address of
the space allocation relative
to physical disk unit number
NW = desired storage (in words)
DSKDAL Deallocate disk storage CALL DSKDAL(ICTBL,1IEV]) +1, -6, -15, -101, ~104, and ~777
Where:
ICTB = control table (same address as
used in the corresponding DSKAL)
DSKPUT Put data on disk CALL DSKPUT(ICTA,IOA,NW,ARRAYL,IEV]) +1 and =N
Where: Where:

N = the contents of the disk status
register on error

*Square brackets indicate that the event variable is an optional argument.

(continued next page)

45 4

Table 4-2 (Cont)
FORTRAN-Callable RSX Routines®

Routine Purpose Calling Sequence Event Variables Returned
DSKGET Get data from disk CALL DSKGET(ICTA,IOA, NW,ARRAYL,IEV]) +1 and -N
ATTACH Attach I/O Handler task | CALL ATTACH(LUNIL,IEV]) +1, -6, -24, -101, -103, and -777
Where:
LUN = logical unit number
DETACH Detach I/O Handlertask | CALL DETACH(LUNI,IEVI] +1, -6, -101, -103, and -777
SEEK Seek open file for input | CALL SEEK(LUN,nHFLNAM, nHEXTL,IEV]) +1, -6, -10, -12, -13, -101, -102,
Wh -103, and -777
ere:
LUN = logical unit number
n = number of characters in file name or
extension
FLNAM = 1-5 character file name
EXT = 1-3 character extension
ENTER Open file for output CALL ENTER(LUN,nHFLNAM ,nHEXTL ,IEVI) +1. -6, -11, -12, -14, -101, -102,
-103, and -777
CLOSE Closes file CALL CLOSE(LUN,nHFLNAM ,nHEXTL ,IEV]) +1, -6, -11, -12, -13, -14, -101,
-102, -103
HINF Provides information CALL HINF(LUN,IEV) Single word containing the following
about the physical Handler information:
device and fhf: /0 Bit 0 - unused
Handler associated . i :
. . Bit 2 - input - set to 1 if data can be
with a particular .
Logical Unit Number tput
Bit 2 - output - set to 1 if data can be
(LUN)
output
Bit 3 - file-oriented ~ set to 1 if file-
oriented (SEEK and ENTER have
been used)

*Square brackets indicate that the event variable is an optional argument.

(continued next page)

e€l-v

Table 4-2 (Cont)

FORTRAN-Callable RSX Routines®

Routine

Purpose

Calling Sequence

Event Variables Returned

HINF(Cont)

Bits 4-11 - unit number
Bits 12~17 - device code (1 to 63
decimal devices). Codes
below are fixed for stan-
dard devices
1 - TTY (console, LT15, LT19)
2 - DK - RF15 fixed-head DECdisk
3 - DP - RPO2 disk pack
4 - DT - TC02D DECtape
5 - MT - TC59 MAGtape
6 - PR - PC15 paper-tape reader
7 - CD - CRO3B card reader
10 - PP - PC15 paper~tape punch
11 = LP -~ LP15 line printer
12 - VP ~ VP15 storage scope
13 = VT - VT15 display
Users should assign codes to their own
devices starting at 63 and working back

DISABLE

Disable task

CALL DISABL(nHTSKNAMI,IEV])

+1, -201, -210

ENABLE

Enable task

CALL ENABLE(nHTSKNAMI ,IEV])

+1, =201, -210

FIX

Fix task in core

CALL FIX(nHTSKNAMIL,IEVI)

+1, -201, -207

UNFIX

Unfix task in core

CALL UNFIX(nHTSKNAMI,IEV])

+1, =201, -207

DECLAR

Declares a signifi-
cant event

CALL DECLAR

TIME

Obtain time from
Executive

CALL TIME(ITIME)
Where:

ITIME = 3-word integer array
ITIME(T) = hours (0-23)
ITIME(2) = minutes (0-59)
ITIME(3) = seconds (0-59)

*Square brackets indicate that the event variable is an optical argument.

(continued next page)

1454

Table 4-2 (Cont)
FORTRAN-Callable RSX Routine*

Routine

Purpose

Calling Sequence

Event Variables Returned

DATE

Obtain time and date
from Executive

CALL DATE(IDATE)
Where:

IDATE = 6-word integer array
IDATE(T) = month (1-12)
IDATE(2) = day (1-31)
IDATE(3) = year (0-99)
IDATE(4) = hours (0-23)
IDATE(5) = minutes (0-59)
IDATE(6) = seconds (0-59)

*Square brackets indicate that the event variable is an optical argument.

-202 Task is active (RQ., FX.) or not active (RS.)
-203 CAL not Task issued (SC., RN., SY., MT.)
-204 Task is DISABLED (RQ., SC., RN., SY., FX.)
-205 Task not suspended (RS.)

-207 Task already FIXed (FX.) or not FIXed (UP.)
-210 Partition occupied (FX.)

-301 Line number rejected (CI., DI.)

~-302 Line is CONNECTed (CI.) or DI CONNECTed (DI.)
=777 Pool is empty

DVH - Device Handler

10. - 'QUEUE I/O' Directive

RQ. - 'REQUEST' Directive

SC. - 'SCHEDULE' Directive

RN. =~ 'RUN' Directive

SY. - 'SYNC' Directive

CN. - 'CANCEL' Directive

RS. - 'RESUME' Directive

CI. - 'CONNECT' Directive
DI. - 'DISCONNECT' Directive

FX. - 'FIXIN CORE' Directive
UF. - 'UNFIX' Directive

DA. - 'DISABLE' Directive

EA. - 'ENABLE' Directive

MT. - 'MARK' Directive

OTS routines which have been modified for RSX are:

FIOPS - modified to use the RSX I/O CAL'S. .FP, which initializes the I/O status table
has been converted to a dummy subroutine.
If a Negative Event Variable occurs as a result of a FIOPS issued I/O request, an
error message (OTS 20) is issued and the task is EXITed.
SPMSG - rewritten to include the task name. The message is output to LUN 4 in the follow-
ing format:
STOP - 000000 - TSKNAM
STOP - uses RSXEXIT CAL
PAUSE - SUSPENDs the issuing task. To continue, the RESUME MCR function is used.
OTSER - passes its name and an octal OTS error message number to SPMSG.

Additional routine used by RSX for bank/page mode determination is .BP.

4-15

Two additional OTS routines are given below:

Routine .FTSB
Purpose To convert two words from ,ASCII to , SIXBT
.ASCII Calling Sequence: SUBA 0
to JMS* _DAA / get call args
. SIXBT JMP ARGEND
gg:"e" FROM 0 / PTR to ASCII word-pair
ARGEND JMS* FTSB
.DSA FROM
.DSATO
TO BLO.CK 2 / two 6-bit words

.DAA is a routine which performs the argument list transfer function formerly performed by .DA. The

calling sequence has not been changed, but the transfer stops with the end of the shortest argument.

4-16

CHAPTER 5
FORTRAN-IV AND MACRO

In previous chapters, MACRO calling sequences have been given for OTS and Science Library Sub-
programs, This general form is used in @ MACRO program to call any FORTRAN external subroutine
or function. A FORTRAN program may also invoke MACRO subprograms. The method for each type

of linkage is given below.

5.1 INVOKING MACRO SUBPROGRAMS FROM FORTRAN

A FORTRAN program may invoke any MACRO program whose name is declared in a MACRO .GLOBL
statement. The MACRO subprogram must also include the same number of open registers as there are

arguments. These will serve as transfer vectors for arguments supplied in the FORTRAN CALL statement

or function reference. A FORTRAN-IV program and the MACRO subprogram it invokes are shown

below. More extensive examples are given in Appendix C.

FORTRAN MACRO
TITLE MIN
C TEST MACRO SUBR .GLOBL MIN, .DA
MIN O / entry/exit
C READ A NUMBER(A) JMS* DA / general get
/ argument
1 READ(1, 100)A / (OT9)
JMP +2+1 / jump around
100 FORMAT(E12.4) argument
registers
C NEGATE THE NUMBER
C AND PUTITIN B MIN1 .DSA O / ARGI1
MIN2 .DSA O / ARG2
CALL MIN(A,B) LAC* MIN1 / first word of A
DAC* MIN2 / store at B
C WRITE OUT NUMBER(B) ISZ MINI1 / point to second word
ISZ MIN2 / of Aand B
WRITE(2,100)B LAC* MINI / second word of A
TAD (400000) / sign bit=1
STOP DAC* MIN2 / store in second
/ word of B
END JMP* MIN / exit
.END

5-1

The FORTRAN statement CALL MIN(A,B) is expanded by the compiler to:

00013 JMS* MIN / to MACRO subprog
00014 JMP$ 00014
00015 .DSA A
00016 .DSAB
$00014 = 00017

When the FORTRAN-1V program is loaded, the addresses (plus relocation factor) of A and B are stored
in registers 15 and 16, respectively. When the MACRO program invokes .DA, these addresses are

stored in MINT and MIN2 and the values themselves are accessed by indirect reference.

Arguments are, as described above, transmitted by .DA using a single word. Bits 3-17 contain the
15-bit address of the first word. Bits 0-2 serve as flag. FORTRAN uses bit 0 to indicate that the word
specifying the argument contains the address of a word containing the address of the first word of the
argument. The MACRO argument word always contains the address of the first word of the argument.
For array name arguments (unsubscripted), the address of the fourth word of the array descriptor block

is given. .SS must be invoked to locate the element.

For external functions, the MACRO subprogram must return with a value in the AC (LOGICAL,
INTEGER), AC-MQ (DOUBLE INTEGER) or in the floating accumulator (REAL or DOUBLE PRECISION).

5.2 INVOKING FORTRAN SUBPROGRAMS FROM MACRO

The MACRO calling conventions for FORTRAN subprograms are: the name of the subprogram must be
declared as global; there must be a jump around the argument address; and the number and mode of

arguments in the call must agree with those of the subprogram. This form is shown below.

TITLE

.GLOBL SUBR

JMS* SUBR

JMP AN+ / jump around arguments ignored by .DA
.DSA ARGI / address of first argument - bit 0 set to 1
.DSA ARG2 / indicates indirect reference

.DSA ARGN

When the subprogram is compiled, a call is generated to .DA which performs the transmission of

arguments from MACRO. The beginning of a subroutine might be expanded as follows.

C TITLE SUBR
SUBROUTINE SUBR(A,B)

000000 CALO
000001 JMS* DA
000002 JMP $000002
000003 .DSA A
000004 .DSA B

$ 000002 = 000005

If a value is to be returned by the subroutine, it is most convenient to have this be one of the calling
arguments, An external function is called in the same manner as a subroutine but returns a value in

the AC (single integers), AC-MQ (double integers), or floating accumulator (real and double-precision).
To store the AC, the MACRO program uses a DAC instruction. Values from the floating accumulator
may be stored via the OTS routines .AH (real) and . AP (double-precision). For FPP systems, values

are returned in a hardware accumulator and stored with an FST instruction.

A number of examples of MACRO-FORTRAN linkage are given in Appendix C.

5.3 COMMON BLOCKS

FORTRAN COMMON blocks (and block-data subprograms) may be linked to MACRO programs. When
the MACRO program is loaded, global symbols are first sought in the user and system libraries. Any

remaining are matched, where possible, to COMMON block names. For example:

FORTRAN MACRO
INTEGER A,B,C .GLOBL NAME, .XX / .XX isname given to blank COMMON
COMMON/NAME/C / by the F4 Compiler
COMMON A,B DZM* XX / CLEAR A - NOTE INDIRECT REFERENCE
. ISz XX / BUMP COUNTER
‘ DZM* XX / CLEAR B
. DZM* NAME ./ CLEARC

Note that if the values are REAL (two words) or DOUBLE PRECISION (three words), the MACRO program
must account for the number of words when accessing specific variables. This cannot be done if programs
are loaded via CHAIN and EXECUTE.

APPENDIX A
LANGUAGE SUMMARY

Text
Statement Model Effect Reference
Arithmetic var = value value is assigned to 2.1
array (i) = value var or array (i)
ASSIGN ASSIGN n TO label Statement n is assigned 2.2
the symbol name label
BLOCK DATA BLOCK DATA Identifies subprogram 4.4
which enters data into
COMMON block at run time
CALL CALL subr(u.' sdpre .) Control is transferred to the 5.2.2
CALL subr B subroutine; a.,9,,...a_are
substituted for dirhmy variables
COMMON COMMON/ b, Nlist, /b, / vlist items are allocated to b 4.2,2
5 1 1772 e
: vllsi'2 VA blocks where they are shared
by other programs
CONTINUE CONTINUE Dummy statement used to 3.2.3
prevent illegal termination
of DO loops
DATA DATA vlist. /clist /,vlist2 / clist is assigned to its corre~ 4.3
clisi-2 Y .vlisfn }clisfn sponding vlist
DECODE DECODE(c,v,f,ERR=n) list Converts character data stored 6.3.4
in the array (v) into binary and
assigns them to variables in [ist
DIMENSION DIMENSION a. (1.),a,(.),... Storage is allocated for array 4.2.1
1177722 . . hts
a (1) (a) to the dimensions specified
nn by the subscript list (I) -
DO Statements following the DO 3.2

DO n i=m,,m,,m
DOn i=m],m2 3

DO n i=m],m2

2’3

are executed repeatedly for
values m, through m, in incre-
ments or decrements of m,

A-1

Statement

Model

Effect

Text
Reference

ENCODE

ENCODE(c,v,f,ERR=n)list

Converts binary data repre-
sented by variables in list
into characters according
to FORMAT specification
(f) or data-directed I/0O
rules and stores them in the
array (v)

6.3.4

EQUIVALENCE

EQUIVALENCE(l]),(12) jis a e
()

Elements of each list (I)
are assigned to the same
storage location

4.2.3

EXTERNAL

EXTERNAL ayrGyreesa

Defines subprograms
named a for use as argu-
ments of other subpro-
grams

4.1.3

FORMAT

n FORMAT(s] sSgres .sn)

FORMAT statement n estab-
lished as field-specification
reference

6.1

FUNCTION

m FUNCTION f(a] s8gse+.0

o,

Defines FUNCTION named
f with dummy arguments a
and optional mode speci-
fication m

5.1.2

GO TO

GO TOn

Control is unconditionally
transferred to statement n

3.1.1

GO TO(n.I,nz,. ..nk),i

Control is transferred
to the i statement in
the list of n's

3.1.2

GO TO label
GO TO label ,(n] ,n

2,...nk)

Control is transferred to the
location specified by label; the
list of n's may specify legally
ASSIGNable statement numbers

3.1.3

IF

IF(expr)n] MyiNy

IF (expr)s

Control is transferred to
statement number or ASSIGNed
label n,, n,, or ng if evaluated
expr is <0,”= 0, or >0 respec-
tively

Statement s is executed if expr
is .TRUE. (hon-zero), ignored
if .FALSE. (zero)

3.3.1

3.3.2

. IMPLICIT

IMPLICIT m_(1,),m (1), - .
mn(ln)

Declares mode (m) for variables
beginning with alphabetic char-
acters in list (1)

4.1.2

PAUSE

PAUSE
PAUSE n

Interrupts program execution;
if present, integer n is printed
on the console to distinguish
one PAUSE from another

3.4.1

Statement

Model

Effect

Text
Reference

PRINT

PRINT(d, f)list

The values of variables in
list are converted to ASCII
according to FORMAT
reference (f) and transferred
to external device (d)

6.3.2

PRINT(d)ist

The values of variables in
list are written in binary on
external device (d)

6.3.2

PRINT(d, list

The variable names in list
are written on external
device (d), each followed
by its value in the form
'A' = value

6.3.2

PRINT(d, f)

F ORMAT reference (f) is

written on external device

@

6.3.2

READ

READ(d, f)list

The values represented by
variables in list are read
from external device (d)
and converted according

to FORMAT reference (f)

6.3.2

READ(d)list

The binary values repre-
sented by variables in [ist
are read from external
device (d)

6.3.2

READ(d,)list

The values represented by
variables in list are read
from external device (d)

6.3.2

READ(d,f)

Values are read into FORMAT
reference (f)

6.3.2

READ(d)

A binary record is read from
external device (d) and
ignored

6.3.2

STOP

STOP
STOP n

Signifies the logical end of
a program and returns control
to the MONITOR after n is
printed; if present, n distin-
guishes one STOP from
another

3.4.2

SUBROUTINE

SUBROUTINE name
(c] ,02, .o .an)

SUBROUTINE name

Defines an external subroutine
named name; a's are dummy
arguments representing values
supplied by the calling program
or returned by the subroutine

5.2.1

A-3

Statement

Model

Effect

Text
Reference

TYPE

TYPE(d, f)list

The values of variables

in list are converted to
ASCII according to FORMAT
reference (f) and transferred
to external device (d)

6.3.2

TYPE(d)list

The values of variables in
list are written in binary on
external device (d)

6.3.2

TYPE(d,)list

The variable names in |ist are
written on external device (d),
each followed by its value in
the form 'A' = value

RA-EA- A

6.3.2

TYPE(d, f)

FORMAT reference (f) is
written on external device (d)

6.3.2

WRITE

WRITE(d, f)list

The values of variables in
list are converted to ASCII
according to FORMAT refer-
ence (f) and transferred to
external device (d)

6.3.2

WRITE(d)l st

The values of variables in
list are written in binary on
external device (d)

6.3.2

WRITE(d,)list

The variable names in list are
written on external device (d),
each followed by its value in
the form 'A' = value

6.3.2

WRITE(d, f)

FORMAT reference (f) is
written on external device (d)

6.3.2

APPENDIX B
ERROR MESSAGES

B.1 COMPILER ERROR MESSAGES

In the F4X version of FORTRAN, compiler error messages are printed in the form:

>mnA<

where:

mn is the error number
A is the alphabetic mnemonic

characterizing the error class.

In F41 and F4A versions, only the alphabetic character is printed, in the form:

>SAL

All error messages and the version(s) of FORTRAN to which they are applicable are given below.

Number Letter Meaning
Common , equivalence, data errors:
01 C No open parenthesis after variable name in DIMENSION
statement
02 Cc No slash after common block name
03 C Common block name previously defined
04 C Variable appears twice in COMMON
05 C EQUIVALENCE list does not begin with open parenthesis
06 C Only one variable in EQUIVALENCE class
07 C EQUIVALENCE distorts COMMON
08 C EQUIVALENCE extends COMMON down
09 C Inconsistent EQUIVALENCing
10 C EQUIVALENCE extends COMMON down
11 Cc Illegal delimiter in EQUIVALENCE list

(continued on next page)

Number Letter Meaning
Common, equivalence, data errors: (cont)
12 C Non-COMMON variables in BLOCK DATA
15 C Illegal repeat factor in DATA statement
16 Cc DATA statement stores in COMMON in non-BLOCK DATA
statement or in non-COMMON in BLOCK DATA statement
DO errors:
01 D Statement with unparenthesized = sign and comma not a DO
statement
04 D DO variable not followed by = sign
05 D DO variable not integer
06 D Initial value of DO variable not followed by comma
07 D Improper delimiter in DO statement
09 D Illegal terminating statement for DO loop
External symbol and entry-point errors:
01 E Variable in EXTERNAL statement not simple non-COMMON
variable
02 E ENTRY name non-unique
03 E ENTRY statement in main program
04 E No = sign following argument list in arithmetic statement
function
05 E No argument list in FUNCTION subprogram
06 E Subroutine list in CALL statement already defined as variable
08 E Function or array name used in expression without open
parenthesis
09 E Function or array name used in expression without open
parenthesis
Format errors:
01 F Bad delimiter after FORMAT number in I/O statement
02 F Missing field width, illegal character or unwanted repeat
factor
03 F Field width is O
04 F Period expected, not found
05 F Period found, not expected
06 F Decimal length missing (no "d" in "Fw.d")
07 F Unparenthesized comma

(continued on next page)

Number Letter Meaning
Format errors: (cont)
08 F Minus without number
09 F No P after negative number
10 F No number before P
12 F No number or 0 before H
13 F No number or 0 before X
15 F Too many left parentheses
Hollerith errors:
03 H Number preceding H not between 1 and 5
04 H Carriage return inside Hollerith field
05 H Number preceding H not an integer
06 H More than five characters inside quotes
07 H Carriage return inside quotes
Various illegal errors:
01 I Unidentifiable statement
02 I Misspelled statement
03 I Statement out of order
04 I Executable statement in BLOCK DATA subroutine
05 I Illegal character in 1/O statement, following unit number
06 I Illegal delimiter in ASSIGN statement
07 I Illegal delimiter in ASSIGN statement
08 I Illegal type in IMPLICIT statement
09 I Logical IF as target of logical IF
10 1 RETURN statement in main program
11 1 Semicolon in COMMON statement outside of BLOCK DATA
12 I Illegal delimiter in IMPLICIT statement
13 I Misspelled REAL or READ statement
14 I Misspelled END or ENDFILE statement
15 I Misspelled ENDFILE statement
16 I Statement function out of order or undimensioned array
17 I Typed FUNCTION statement out of order
18 I Illegal character in context
19 I Illegal logical or relational operator

(continued on next page)

Number Letter Meaning

Various illegal errors: (cont)

20 I Illegal letter in IMPLICIT statement

2] I Illegal letter range in IMPLICIT statement

22 I Illegal delimiter in letter section of IMPLICIT statement

23 I Illegal character in context

24 I Illegal comma in GOTO statement

26 I Illegal variable used in multiple RETURN statement
Pushdown list errors:

01 L DO nesting too deep

02 L Hlegal DO nesting

03 L. Subscript/function nesting too deep

04 L Backwards DO loop (also caused by some illegal 1/O lists).

Appears after END statement.

Overflow errors:

01 M EQUIVALENCE class list full

02 M Program size exceeds 8K

03 M Array length larger than 8K

04 M Element position in array larger than 8K (EQUIVALENCE,

DATA)

06 M Integer negative or larger than 131071

07 M Exponent of floating point number larger than 76

08 M Overflow accumulating constant = foo many digits

09 M Overflow accumulating constant - too many digits

10 M Overflow accumulating constant = too many digits
Statement number errors:

01 N Multiply defined statement number or compiler error

02 N Statement erroneously labeled

03 N Undefined statement number

04 N FORMAT statement without statement number

05 N Statement number expected, not found

07 N Statement number more than five digits

08 N Illegal statement number

(continued on next page)

Number Letter Meaning

Partword errors:

01 P Expected colon, found none

02 P Expected close bracket, found none

03 P Last bit number larger than 35

04 P First bit number larger than last bit number

05 P First and last bit numbers not simple integer constants
Subscripting errors:

01 S Illegal subscript delimiter in specification statements

02 S More than three subscripts specified

03 S Illegal delimiter in subroutine argument list

04 S Non-integer subscript

05 S Non-scalar subscript

06 S Integer scalar expected, not found

10 S Two operators in a row

11 S Close parenthesis following an operator

12 S Non-integer subscript

13 S Non-scalar subscript

14 S Two arguments in a row

15 S Digit or letter encountered after argument conversion

16 S Number of subscripts stated not equal to number declared
TcEle overflow errors:

01 » T ~ Arithmetic statement, computed GOTO list, or DATA state-

ment list too large

02 T Too many dummy variables in arithmetic statement function

03 T Symbol and constant tables overlap
Variable errors:

01 \'% Two modes specified for same variable name

02 \% Variable expected, not found

03 \'% Constant expected, not found

03 \ Array defined ftwice

05 \Y, Error: variable is EXTERNAL or argument (EQUIVALENCE,

DATA)
07 \' More than one dimension indicated for scalar variable

(continued on next page)

Number Letter Meaning
Variable errors: (cont)

08 \ First character after READ or WRITE not open parenthesis in
I/O statement

09 \% litegal constant in DATA statement

11 \ Variables outnumber constants in DATA statement

12 \ Constants outnumber variables in DATA statement

14 Y Illegal dummy variable (previously used as non-dummy variable)

16 v Logical operator has non-integer, non-logical arguments

17 A Illegal mixed mode expression

19 \ Logical operator has non~integer, non=logical arguments

21 \' Signed varidble left of equal sign

22 \% Illegal combination for exponentiation

25 Y «NOT. operator has non=integer, non-logical argument

27 A% Function in specification statement

28 A Two exponents in one constant

29 \ Illegal redefinition of a scalar as a function

30 \ No number after E or D in a constant

32 \% Non-integer record number in random access I/O

35 \' Illegal delimiter in I/O statement

36 \% Illegal syntax in READ, WRITE, ENCODE, or DECODE
statement

37 \Y END and ERR exists out of order in I/O statement

38 \% Constant and variable modes don't match in DATA statement

39 v ENCODE or DECODE not followed by open parenthesis

40 \% Illegal delimiter in ENCODE/DECODE statement

41 \Y Array expected as first argument of ENCODE/DECODE
statement

42 v Illegal delimiter in ENCODE/DECODE statement

Expression errors:

01 X Carriage return expected, not found

02 X Binary WRITE statement with no I/O list

03 X Illegal element in I/O list

04 X Illegal statement number list in computed or assigned GOTO

05 X Illegal delimiter in computed GOTO

07 X Illegal computed GOTO statement

(continued on next page)

Number Letter Meaning
Expression errors: (cont)
10 X Illegai delimiter in DATA statement
11 X No close parenthesis in IF statement
12 X Illegal delimiter in arithmetic IF statement
13 X Illegal delimiter in arithmetic IF statement
14 X Expression on left of equals sign in arithmetic statement
15 X Too many right parentheses
16 X Illegal open parenthesis (in specification statements)
17 X lllegal open parenthesis
19 X Too many right parentheses
20 X Illegal alphabetic in numeric constant
21 X Symbol contains more than six characters
22 X .TRUE., .FALSE., or .NOT. preceded by an argument
23 X Unparenthesized comma in arithmetic expression
24 X Unary minus in I/O list
26 X Illegal delimiter in 1/0O Iist
27 X Unterminated implied - DO loop in I/O list
28 X Illegal equals sign in I/O list
29 X Illegal partword operator
30 X Illegal arithmetic expression

B.2 OTS ERROR MESSAGES

Following is a list of OTS error messages. (R) indicates a recoverable error; (T) a terminal error.

Error Number Error Description Possible Source
05 R) Negative REAL square root argument SGRT
06 R) Negative DOUBLE PRECISION square root DSQRT
argument

07 R) Illegal index in computed GO TO .GO

10 (T) Illegal 1/O device number .FR, .FW, .FS, .FX,
DEFINE, RANCOM

1 m Bad input data - IOPS mode incorrect .FR, .FA, .FE, .FF, .FS,
RANCOM, RBINIO,
RBCDIO

(continued on next page)

Error Number

Error Description

Possible Source

12
13

14
15

20
21

22
direct 4 23
access

errors | 24
25
26

30
**31

*%32
*%33
*+34
**35
**36
***37
40

41
42
*%50
51

(T)
)

®)
R)

)
)
m
M
M
M
W
R)
R)

R)
®)
®)
®)
R)
R)
M

R)
™
M
M

Bad FORMAT

Negative or zero REAL logarithmic argument
(terminal)

Negative or zero DOUBLE PRECISION loga-
rithmic argument

Zero raised to a zero or negative power (zero
result is passed)

Fatal 1/O error (RSX only)
Undefined file

Illegal record size

Size discrepancy

Ilegal record number
Mode discrepancy

Too many open files
Single integer overflow*

Extended (double) integer overflow****

Single flt. overflow
Double fli. overf|4:>w‘r
Single flt. underflow
Double flt. underﬂowJr
Flt. divide check
Integer divide check

Illegal number of characters specified [legal:
0<c<625]

Array exceeded
Bad input data
FPP memory protect/non-existent memory

(READ to WRITE Illegal 1/O Direction Change
to Disk) without intervening CLOSE or REWIND

.FA, .FE, .FF
.BC, .BE, ALOG

.BD, .BF, .BG, .BH,
DLOG, DLOGI10

.BB, .BC, .BD, .BE, .BF,
.BG, .BH

FIOPS

RANCOM

DEFINE

RANCOM

DEFINE, RANCOM
RANCOM

DEFINE

RELEAE, .FPP

DBLINT, JFIX, JDFIX,
ISNGL

RELEAE

RELEAE

RELEAE
INTEAE
ENCODE

ENCODE
DD10

BCDIO, BINIO

*Only detected when fixing a floating point number.

**Also prints out PC with FPP system

***[f extended integer divide check, prints out PC with FPP system.
*#%%With software F4 system only detected when fixing a floating point number.
TNot detected by software system (only by FPP system).

B-8

B.3 OTS ERROR MESSAGES IN FPP SYSTEMS

In software systems, arithmetic errors resulting in the OTS error messages summarized above are de-
tected in the arithmetic package (RELEAE and INTEAE). In the hardware FPP systems, these errors
are detected by the hardware (with the exception of single integer divide check) and serviced by a

trap routine in the FPP routine .FPP.

Where applicable, on such error conditions, the result is patched for both software and hardware sys-

tems as summarized in the following table.

PATCHED VALUE***
Error
FPP Hardware System Software System
Single Floating Overflow + largest single floating value same
(.OTS 32)
Double Floating Overflow * largest single floating value not detected
(.OTS 33)
Single Floating Underflow zero same
(.OTS 34)
Double Floating Underflow zero not detected
(.OTS 35)
Floating Divide Check + largest single floating value same
(. OTS 36)
Integer Overflow limited detection*® same
(. OTS 30)
Double Integer Overflow none** limited detection®
(.OTS 31)
Integer Divide Check none same
(.OTS 37)

*When fixing a floating point number, integer and extended integer overflow is detected. In these
instances, plus or minus the largest integer for the data mode is patched as result.
**With the FPP system all extended integer overflow conditions are detected, but the results are

meaningless.
#**\Where "none" is specified, the result is meaningless unless otherwise indicated.

Further, when converting an extended integer, the magnitude of which is >2]7-1 , to a single
integer, no error is indicated and the high order digits are lost.

APPENDIX C
PROGRAMMING EXAMPLES

C.1 MACRO-FORTRAN Linkages
Example 1. A New Dimension Adjustment Routine

The present versions of the OTS routines ADJ1, ADJ2, and ADJ3 do not alter the size of the array

being adjusted. If only the array name of an adjusted array is given in a READ or WRITE argument list,
FORTRAN uses this size information; therefore, undesired results can occur. A new routine (ADJ) can
be loaded with a user program which completely handles all cases of dimension adjustment, although it

occupies 72 octal locations. (ADJ3 occupies 41 octal locations.) Consider the following programs:

c PRCGRAM 1
DIMENSION A(453,2)

Cc MAKE ARRAY A ACT LIKE IT
Cc WAS DIMENSIONED A (25354)
CALL ADJC(ASAC15151)525354)

C PROGRANM 2
DIMENSION A(3,2)

.

C ADJUST ARRAY A TO BE A (2,3)
CALL ADJ (A»A(151)525350)
C THE LAST ARGUMENT MUST BE @

c PROGRAM 3
DIMENSION A(2)

C ADJUST ARRAY A TC BE A(1)D
CALL ADJ(ALA(1)515P,50)
C THE LAST 2 ARGUMENTS MUST BE ZEKO
C THE NO. OF SUBSCRIPTS IS NOT ADJUSTABLE

(continued on next page)

/

«TITLE ADJ

/SUBROUTINE TO PERFORM DIMENSION ADJUSTMENT

/

/MACRO-15 CALLING SEQUENCE

NN NN NNNN

ADJ

ARRAY
Ki

K2
K3

LOGP

«GLOBL ADJ

JMS* ADJ

JMP .« +6

+DSA ARRAY /ADDKESS OF WD4

-DSA B /NEW WD4

-DSA Kl /ADDRESS OF NEW MAXIMUM 1ST SUBSCRIPT
«DSA K2 /ADDRESS OF NEW MAXIMUM 2ND SUBSCRIPT
«DSA K3 /ADDRESS OF NEW MAXIMUM 3RD SUBSCKIPT

+GLORL ADJs +DA,«AD

1%

JMS* .DA /GET ARGUMENTS

JMP ++5+1 /# OF ARGUMENTS = 5

5]

B

%

0

7

LAC (LACx* B ZINITIALIZE SUBSCRIPT POINTEK
DAC C

LAC B /SET NEW STARTING ADDRESS

DAC* ARRAY

LAW =3

DAC CTR# /MAXIMUM OF 3 SUBSCRIPTS

TAD ARRAY

DAC ARRAY /POINT TO FIRST WORD

DAC ARRAYP# /0F ARRAY DESCRIPTOR BLOCK
LAC* ARRAY /ARKAY TYPE IN BITS 3-4
AND (68029 /ZERO OUT ARKRAY SIZE
DAC* ARRAY /SAVE CLEAN ARRAY TYPE
RTL

RTL

RTL

TAD (1 /ADD 1 FOR # OF WOKDS

AND (3 /AND TREAT DOUBLE INTEGER

SNA /AS 2 WOkD PER ARRAY ELEMENT

LAC (2

1sz C /POINT TO NEXT SUBSCRIPT

JMS* «.AD /MULTIPLY INTEGERS
LAC* K1 /PROGKAM MODIFIED

SNA /1S SUBSCRIPT PRESENT
JMP D /RAN QUT OF SUBSCRIPTS
DAC SIZF# /UPDATE SIZE

ISZ CTR /ARE WE FINISHED?

SKP

JMP E /YES

ISZ ARRAYP /STORE INTQO ARRAY
DAC x ARRAYP /DESCRIPTOR BLOCK
JMP LOOP /OFFSET WORDS (2,3)

DZM* ARRAYP /ZERO THE KEST

I1SZ ARRAYP /0F THE OFFSET WORDS

(continued on next page)

1Sz CTR /ARE WE FINISHED
JMP LOCP /NO

E LAC SIZE /FINISHED
AND (17777 /PACK SIZE
XOR* ARRAY /ARKAY DESCKIPTCOR BLOCK

DAC* ARRAY
JMP* ADJ /RETURN
«END

Example 2. A Function to Read the AC Switches

It is very often desirable fo use the AC switches to alter the sequence of instructions executed in a
FORTRAN program. The following program can be used as a function in an arithmetic IF statement to

conditionally branch.

«TITLE ITOG
/
/SUBRROUTINE TO READ AC SWITCHES
/
/MACRO=~15 CALLING SEQUENCE

/ «GLOBL ITOG

/ JMS* ITOG

/ JVP . +2 /JUMP OVER ARGUMENT

/ «DSA (MASK /ADDRESS OF MASK
/

/RETURN WITH MASKED ACS IN AC

«GLOBL ITCG,.DA
ITCG 7 /INTEGEK FUNCTION

JMS* DA /GET ARGUMENTS

JMP . +1+41 /1 ARGUMENT
MASK 16} /MASK ADDRESS
LAS /LOAD AC FROM SWITCHES
AND* MASK /MASK AC
JMP* ITOG /RETUKN WITH MASKED AC SWITCHES
«END

Example 3. A Routine to Read an Array in Octal
A MACRO subroutine which reads octal information (REDAR) is as follows:

«TITLE REDAR
/
/SUBROUTINE TO READ ARRAY IN OCTAL
/
/MACRO~-15 CALLING SEQUENCE

/BLOCK WORD 4

/ «GLOBL REDAR

/ JMS* REDAR

/ JVP « 45

/ «DSA SLOT /ADDRESS OF SLOT #

/ «DSA FORMAT /ADDRESS OF FORMAT STATEMENT ADDKESS
/ «DSA DIGITS /ADDRESS # OF DIGITS

/ «DSA ARKRAY /ADDKESS OF AKKAY DESCKIPTOR

/

/

(continued on next page)

C-3

REDAR

SLOT
FORMAT
DIGITS
ARRAY

+GLOBL REDAR> ¢DAs sFRs «FEs «FF

14

JMS* «DA /GET ARGUMENTS

JMP e+4+]1 /#ARGUMENTS = 4

%]

a

2

?

LAC SLOT

DAC A

LAC* FORMAT

DAC B

JMS* oFR /FORMATTED WRITE

XX /ADDRESS DAT SLOT #

XX /ADDKESS OF FORMAT STATEMENT
LAW =3

TAD ARRAY

DAC SLCT /ADDKRESS OF ARRAY DESCRIPTOk BLOCK WOKD 1
LAC* SLCT /PICK UP PACKED SIZE OF AKRAY

AND 17777 /CLEAN OFF MODE #
SNA

JMP E /NO ELEMENTS IN ARRAY

chA

DAC SLOT

ISZ SLOT /COUNTER FOR # WORDS IN AKKRAY
LAC* DIGITS /#DIGITS IN EACH WORD
AND (7 /CLEAN ARGUMENT

SZA

SAD (7

JMP E /% OR 7 DIGITS ILLEGAL

CMA

TAD (1

DAC C /INITIALIZE LAW INSTRUCTION
ILLAC* ARRAY

DAC ARRAY /PCQINTER TO FIRST WORD OF ARRAY
XX /LAWK =-DIGITS

DAC DIGITS

CLA /ZINITIALIZE DIGIT PACK

DAC TEMP# /STOGRE DIGIT PACK
JMS* «FE /KEAD DIGIT

«DSA FORMAT /DIGIT READ INTO FOKMAT

LAC TEMP /LOAD DIGIT PACK

CLL

CTL /MULTIPLY BY &

RAL

TAD FORMAT /ADD DIGIT

I1SZ DIGITS /COUNT DIGITS

JVMP D /G0 BACK FOk MORE

DAC* ARKAY /STORE VALUE IN ARKAY ELEMENT

I1SZ ARRAY /POINT TC NEXT ARRAY WOKD
I1SZ SLOT /COUNT ARRAY WORDS

JMP C /KREAD ANOCTHER WORD
JMS* oFF /END OF READ

JMP * REDAK /EXIT
.END

Example 4. A FORTRAN Program Using the Foregoing Programs

This FORTRAN program uses the preceding three MACRO programs to read in an array from the
Teletype in octal and type it in decimal. The Teletype should be assigned to .DAT slot 4. Note
how the arguments are specified. Notice that EQUIVALENCE performs the array element calcu-

lation at compile time.

C FORTRAN PROGRAM TO READ AN ARBITRAKY INTEGEK AKKAY IN OCTAL
C AND WRITE IT IN DECIMAL
DIMENS ION J(2000)
C USE EQUIVALENCE TO GET J(1) WITHOUT USING .SS
EQUIVALENCE (J(1),K)
C I CONTAINS ADDKESS OF FOKRMAT
C STATEMENT + 1 TO MOVE OVER JMP INSTRUCTION
ASSIGN 1 TO I
I=1+1
FORMAT(6T151Xs61151X561151X561151X561151X561151X561151Ks
1611)
TO SIMULATE FORMATC(D65s1 X065 1 %5061 X50651X503651Xs0651X>
B6s1X:06)
WRITE SOMETHING TO SHOW INFORMATION NEEDED
WRITE(4,53)
FORMAT(/19H READ K1 K2 K3(314))
READ IN DIMENSION INFORMATION
READC4,4) Kl,K2,K3
FORMAT(314)
ADJUST ARRAY J TG THE PROFER SIZE
CALL ADJC(JsKsK1,K2,K3)
READ IN ARRAY IN OCTAL
CALL REDAR(451565J)
WRITE OUT ARRAY
WRITE(4,5,6) J
FORMAT(BIT)
WAIT FOR P
PAUSE
C IF APS17-? READ IN IDENTICAL ARRAY TYPE
IF C(ITOGC(1)) 255,2
END

—

(e N AR Ve NeoNe]

(¢ BT Ne) [N S

Qo

C.2 IFLOW AND IDZERO EXAMPLES

The following is a programming example of both the IFLOW and IDZERO functions.

Cc MAIN PROGRAM TO SHOW USE OF IFLOW AND IDZEKO
A={D %70
B=10.%*10
1 C=A*B
o] CALL SUBROUTINE TO CHECK FOR UNDEKRFLOW, OVEKFLOW
C AND DIVISION BY ZEKO.
CALL CHECK (1)
PAUSE 1
2 C=C1@ %% (=T@)I)*10 %% (-20)

CALL CHECK (1)

(continued on next page)

C-5

PAUSE 2

3 C=A/0.

CALL CHECK (1)

PAUSE 3

STOP

END
C SIIBROUTINE TO CHECK FOR UNDEKFLOW. OVERFLOW OR
c DIVISION BY ZERO IN FLOATING POINT ARITHMETIC.
c PASSING A NON-ZERO POSITIVE ARGUMENT WILL CHECK
C FOR ALL. A ZERO ARGUMENT KESULTS IN NO
c CHECKING .

SUBROUTINE CHECK (N)
LOGICAL IFLOW.,IDZERO
IF CIFLOW(N)) WRITE (1,12)
IF CIFLOWC(=N)) WRITE (1,11
IF (IDZERO(N)Y) WRITE (1,12)

19 FORMAT (/9H OVERFLOW)

11 FORMAT (/10H UNDERFLOW)

12 FORMAT (/13H DIV. BY ZERO)
RETURN
END

The result of running those programs is (with .DAT slot 1 assigned to the TTY):
OVERFLOW

PAUSE 900001
P
UNDERFLOW

PAUSE 700002
1P
DIV. BY ZERO

PAUSE 2An@73
P
STOP 000000

C.3 INPUT-OUTPUT EXAMPLES

The following is a program composed mainly of /O statements with no connected purpose. The pro-~
gram is presented fo illustrate the possible combinations of the different types of 1/O (sequential access,

direct access, data~directed, ENCODE/DECODE).

001
g2
003
po4
eas
pee
ee?7
a08

ooooon

PROGRAM EXAMPLE TO SHOW OBJECT CODE OQUTPUT FOR

VARIOUS TYPES OF I/0 STATEMENTS

IMPLICIT REAL (N)
DIMENSION RL1(2), RL2(3), ARR(22), NM1(2), NM2(2)
DATA NM1/5HNAMEL, 4HASRC/,NM2/5MNAME2, 4HASRC/

ep6@3 472131 542542
PR6@5 4n6472 2415¢9
PR613 472731 542544
20615 46472 241500

ae9
fio
neoae
epnnl
repa2
22023
neeed
o5
on006
eona7
oo
senoze’
o1t
pen1l
nga12
ean13
pen14
22015
20016
ean17
pRe2e
29021
#ee22
eee23
sonn1y
B12
oeR24
90025
gep2é
oen27
20030
P03l
per32
Pp033
o34
P0@35
213
@036
P0@37
nee4p
Qa4
o042
20043
Ppa4d
oz0as
?Q@46
P0n47
214
gpase

c
108

JMP

.DSA
+DS8A
.0SA
«0SA
ERY
.DSA
.DSA
L0SA

FORMAT (I5,610.3,2(E12,2))
$¢00ne
242226
526216
3esaps
63153¢
311212
530544
271445
124502

= pogyl

27a

JMP

oPSA
«DS5A
«DS8A
«DS5A
.D8A
«0SA
#«DSA
«DSA
«D5A
.DSA

FORMAT (1X,15,612,3,2(E12.2))
see@Ll
241433
726222
325312
732540
271465
431126
425426
207144
245224
weni{ra

s zap2d

JMS+
JMP

2DSA
+DSA
«DSA
«D8A
«08A
D84
.DSA
.DSA

JMSw
JMP

«DSA
+DSA
«D8A
«D8A
«DSA
«.DSA
+DSA
«DSA

JMSw

CALL DEFINE (2,192,5,2,JVB8,8,2,0)
DEFINE
2eN36
(egen2
(epp1dd
(ropoas
(ragzadn
JVB
(Copran
(cogean
(zegaan
cal.l DEFINE (4,600,10,2,JVA,5,0,8)
DEF INE
rease
(€ngadd4
(#2113
(¢ngai2
(e2a000
JVA
(RAaPys
(ennzee
(zagaap
CALL SEEK (5,NM1)
SEEK

205}
neese2
?o053
ais
016
217
@18
019
aons4
29055
egess
nens7
220
goese
2061
conee
PEe63
ceo64
2pe65
Peu6s
0en67
aen7ae
nee71
enp72
$Q0071
7aQ73
00074
pee7s
@aeze
a21
eeaz7
gaieae
2o121
pa1Q2
enr1a3
geina
2oinbd
ea106
éa1a7
ea11@
en111
59112
eo112
@22
023
024
22113
20114
20115
22s
0116
¢0i17
ee120
ee121
fey22
2123
70124
20125
aglae
np127
$pa126
ep13@

JMP ppe54
08A (rooRES
«USA 1702000 +NML
CALL ENTER (6,NM2)

c

C I) BINARY

C A) RIRECT ACCESS
c

JMS« EMTER

JMP pegee

«DSA (pegpros6
«DSA 10200@ +NM2
READ (24JVB) INT, RL2(3), RL1
LAC JVvB
JHMS¥ _RS
DSA (Grpog?2
JMSw _RJ
+DSA INT
«084 777776
TAD (eveoeed
TAD (r¥@@RE3
TAD RL2
DAC sezari
JM8» _RJ
= Q2R73
«DSA 3P2@73
JMSe _RB
DSA 1epar2 +RL1
JMSe _RG
WRITE (2'3) INT, RL2(3), RL1
LAC (222903
JMS+ _RX
«05A (repog2
JMS« RJ
«DSA INT
«DSA 777776
TAD (vep2@d
TAD (engoed
TAD RL2
DAC 300110
JMSw _RJ
s (¢R3142
.DSA sP@rg12
c
c R) SEQUENTIAL ACCESS
C
JMSw _RB
«08A (eepae +RLY
JMS» _RG
READ (1) INT, RL2(3), RL!
JHS+* _FS
«DSA (uranroy
JMSw FJ
+DSA INT
«DSA 777776
TAD (Vooeed
TAD (ropQ@3
TAD wL2
CAC sn@126
JMSw FJ
2 gA130 .
.DSA sP2130

#0131 JMS« _FB

20132 .DSA 10200@ +RL1{
PB133 JIMS* _FG

@26 WRITE (3) INT, RL2(3), RL1Q
00134 JMSw LFX

0e135 LUSA (eapr@d
20136 JMSw FJ

20137 ,DSA INT

P@142 LDSA 777776
90141 TAD (P@aARed
89142 TAD (P2D003
29143 TAD RL2

2R@1424 DAL s¢0144
02145 JMSe FJ

$0P144 = 00146

60146 ,DSA $¢2146

027 c
028 C II) Ascli

P29 c A) DIRECT ACCESS
232 c 1) FORMATTED
a3 o

PQ147 JMS+ _FB

@152 LDSA 1¢202¢ +RL1Y
BR151 JMS+ _FG
832 READ (4#JVA,1m8) INT, RL2(3), RL1
PB152 LAC Jva

Q@153 JMS+ _RR

P0154 LDSA (272p204
P2155 LDSA 170

o156 JMSe _RE

28157 LDSA INT

epi6e ,0SA 777776
20161 TAD (¢23R63
POL162 TAD (2ze2Rd
20163 TAD RLZ2

2Q164 DAC sra164
enis85 JMS« _RE

$020164 = NA166

f0166 LDSA 322166
Ap167 JMS+ _RA

0eL7e L,DSA 1E2p@g +RLY
0R171 JMS* _FRF
"33 WRITE (4'5,220) INT, RL2(3), RL1
eQ172 LAC (ezages
NR173 JMS+ _Ruw

@174 «D8A (2200224
PR175 .DSA 229

€2176 JMS+ _RE

PR177 LDSA INT

pa2ae ,DSA 777776
@201 TAD (02223
ce202 TAD (RZ20203
?e203 TAD RL2

rp2n4 DAC 50204
fQ2a5 JMS+ _RE

$QPRA204 = A2026

n@2s6 DSA sn22p6

w34 9
P35 c 2) DATA=DIRECTED
©3s c

20267 JMSw _RA
2p212 LDSA 1¢vgee +RL1

re211
n37
bp212
20213
en214
@215
¢p216
ae217
pea2a
naz221
@222
2@223
0224
@225
500224
@g226
naz27
ppa3e
@231
038
r@232
28233
naz234
2p235
29236
ra237
ep24a
2a241
en242
PQ243
P@a244
ap245
0R246
2247
e@252
$@0245
po251
@39
04n
041
242
egaese
7253
?2@254
23255
gazse
243
p@257
2a26¢
2@261
20262
ng2s63
na264
PQ2s6s
09266
en267
@272
20271
so00279
eg272
#0273
w274

JHSw*

LAC
JHMS
D54
.DSA
JMS ¥
«DSA
+SA
TAD
TAD
TAD
DAC
JMSw

<KF
READ (4'7,) INT, RL2(3), RL1Q

(-aene7
.RR
(vRpBe4
reARARR
iy

INT
777776
(argany
(eeannd
RL2
§6:0224
.GD

= pu226

+DSA
JMSw
«DSA
JMGw

LAC

JMS#
«DSA
+DSA
JMS#
«DSA
«D5A
+D8A
JMS»
o DSA
LAC

DAC

JMS#
«DSA
.D8A

$7@226
. GE
162e00 +RLY
RF

WRITE (448,) INT, RL2(3), RL}
(papaie
LR
(e2pe04
wenaed
LGA
35204
rONACE
INT
.58
RL2
(e2pr23
sen245
.GC
¢734177
PeZnnQa

= BRest

«DSA
c
c
c
c
JMSw
«DSA
+DSA
«DSA
JMS*

JMS*
«DSA
«DUSA
JMSw
«PDSA
«DSA
TAD
TAD
TAD
DAC
JMSw

5009251

BE) SEQUENTIAL ACCESS
1) FORMATTED

«GB

271176

PreEpae

100023 +RL1Y
READ (5,188) INT, RL2(3), RL1

.FR

(2e@m@3

. 100

.FE

INT

777776

(rna023

(ecaned

rl.2

$en270

.FE

= pr272

.084
JMSw
«DSA

$P0272
Fa
120@0@ +RL1

C-10

p@z75
844
ep276
veaz7
eedaw
20301
0e3az2
02323
P2304
20325
20396
28307
20310
$0034u7
29311
rad3ie
28313
pRa314
045
@318
Q316
2317
pa3zn
o321
PR322
0@a323
70324
ea325
00326
7327
2Q33¢
$¢@e3a?
28331
9332
29333
20334
046
#0335
ea336
¢p337
r@l4an
fe3ql
20342
Pp343
pe344
0345
2@l4b
rR347
PR35¢
sg@daz
w351
047
04g
049
pe352
29353
Pp3s4
250
20355
2@356
va3s7
Boa6w

JMSw

JMS e
«DSA
2DSA
JMS#
«DSA
s DSA
TAD
TAD
TAD
DaC
JMSw

.FF

WRITE (6,282) INT, RL2(3), RLi

FHd
(2AQQAE6
229
.FE

INT
777776
(e2pra3
(200003
RL2
$eA30?7
.FE

= 00311

2084
JMSw
.DSA
JMS

JMSw
«DSA
«DSA
+DSA
JMS»
+DSA
TAD
TAD
TAD
DAC
JMS*

500311
FA
120870 +RL 1

ENCODE (13,ARR,188) INT,

o GF
(02p042
160@0RZ +ARR
100
.FE

INT
777776
(02p203
(e2oe@3
RL2
501327
.FE

s AA3J

«DSA
JMSw
.DSA
JMS ¥

JMSw*
.DSA
.DSA
«LSA
JMS*
«DSA
«DSA
TAD
TAD
TAD
DAC
JMSw

$20331
oFA
1e2gep +RLY
LFF

DECODE (1@2,ARR,18@) INT,

BE
(ezon12
120002 +ARR
.10
.FE

INT
777776
(aep023d
(L2aP23
RL2
§AA347
FE

s AR351

.DSA
C
c
c
JMS*
«DSA
JMS»

JMSw
«D3A
2DSA
JMSw

£72351
2) DATA~DIRECTED
.Fa

127erg +RL1Y
FF

READ (5,) INT,RL2(3),

.FR
(22pnras
arza2?
.GD

C-11

RLY

RL2(3),

RL2(3),

RL1

RLI

PR361
08362
Za363
"R364
22365
PB36E
7367
$00366
Ca37a
70371
9372
2373
@51
20374
20375
RQ37¢€
ap3z7
204p0
294p1
eRan2
PRan3
PR4aa4
00425
20406
00487
PQ41e
22411
$AN4R6
Pp412
204143
P0414
20415
Ap4L6
00417
a52
P0422
20421
nR422
20423
Pe424
Boa2%
00426
Pp4a27
0043F
2P4a31
pp43z2
29433
Q434
¢P4a3s
20436
$802433
rQ437
nQ4d4p
rQa4y
rQaaz
20443
PR444
253
00pa45
PP4aAs
XYYV
29450

«DSA
2 DSA
TAD
TAD
TAD
DAC
JMSw

INT
777776
(Zapred
(rpa0e3
RL2
$C2IE6
.GD

= 22376

+DSA
JMS
«DSA
JMSw»

JMSw
«DSA
«DSA
JMSw
«DSA
«DSA
.DSA
JMSw
+DSA
LAC

DaC

JMS#
«D5A

2372

o GE

103002 +RL}
FF

" RRITE (6,) INT, RL2(3), RL1
JFu

(R2aBEs
PEPRRE

LA
p35204
ngAQnd

INT

.55
RL2

(2P@223
500476

. GC
n71177
aeanee

= 20412

.084
JMSw
«DS8A
«DSA
«DSA
JMSw

JMS»
+DSA
+0SA
.DSA
JMSw
«DSA
.DSA
«DSA
JMS
.DSA
LAC

DAC

JMS+
«DSA

3rpa12
LGB
271176
PR
122020 +RLY
«FF

DECNDE (15,ARR,) INT, RL2(3), RLY
.66
(reany?
1033203 +ARR
nurpead
LGA
235204
ARAQRY
INT
.58
rL2
(¢2pea3
$72433
WGC
271177
200p00

= Q0437

+DSA
JMS+
.DSA
«DSA
.DSA
JMS*

JMSw
+DSA
«DSA

$29437
LGB
271176
aRNRAD
172008 ¢RL1
FF

ENCODE (25,ARR,) INT, RL2(3), RL}
.GF
(228031
16092 +ARR
eeoer?

C-12

2@451
0452
20453
20454
Ap485
pa4s6
Pp4s57
20460
$pe4b7
2481
@54
Apd62
Pp463
2464
055
70465
2R466
856
eaas7
ro47o
a57
20471
pe472
858
80473
2474
259
Q475
20476
a6Q
eaaz7
easan
261
pa521
@592
rasad
?p504
RA5QE
79511
nesi2
va513
514
22515
Pa523
p524
pas525
ep326
ops527
2a577
pa6gn
Pa6al
epeae
pe6as
Ra6Q7
ea610
ee611
#2612
"p613
ea61L7
nR62¢
pa621
2p622

JMS
«DSA
.DSA
TAD
TAD
TAD
DAC
JMS#*

6D

INT
777776
(r2ees3
(PRp0e3
RL2
$00457
6D

3 (P48

«DS8A
c

JMSw
»08A
JMSw

JMEw
'DSA

JMSw»
.DSA

JMS#
«:0SA

JMS*
«0SA

JMSw
«0SA

JMSw
«DSA

CLA

JMPw
JMS
JMP

«BLK
+NSA
«DSA
2DSA
2DSA
«BLK
»DSA
+08A
«D5A
.DSA
LY
«DSA
«D8A
«DSA
«BLK
.DSA
+DSA
.D84A
«DSA
o BLK
+D5A
«DSA
.DSA
«DSA

202461

. BE
12802 +RL1
' F
ENDFILE
oFv
(ez2ge@y
ENDFILE
oFV
(¢apee2
ENDFILE
oFV
(e29223
ENDFILE
.FV
(¢2pnRd
ENDFILE
.FV
(220005
ENDFILE
.FV
(ecoeens
END

.ST
FP

Decae
e0agn4
p2apnd
000000
aeepaAd
1g2pe@ +RL1Y
ALDRRE
622906
wnanen
ApopeY
190000 +RL2
2eeg52
p22n50
onngen
Apr090
102000 +ARR
weggea
pzencd
LIl
progne
100008 +NM1
peennrd
p20p04
00000
PRAPAY
1R7a0% +NM2

C-13

20623 ,DSA DEFINE
08624 L.BLK weanel
?@625 LBLK anaany
#9626 ,0SA SEEK
@A627 L,DSA ENTER
20637 L.DSA RS
A3631 LBLK af2pel
Pa632 L,0DSA ,RY
20633 ,05A ,RB
?@634 ,DSA RS
20635 ,DSA ,RX
P@636 LDSA .FS
22637 L,DSA ,FJ
ea64¢ ,DSA ,FB
09641 ,DSA .FG
68642 ,DSA L FX
29643 ,DSA ,RR
@p644 ,0SA .RE
29645 ,DSA ,RA
PP646 ,DSA ,RF
¢P647 LDSA R
e@65¢ L,DSA ,GD
28651 L0SA ,GE
22652 LDSA .GA
0e653 LDSA ,SS
?e654 LDSA ,GC
@@65%5 ,0SA _GB
@2656 L,DSA ,FR
09657 ,DSA LFE
22667 ,DSA .Fa
22661 LDSA FF
09662 LDSA Fu
02663 .DSA ,GF
?0664 L,DSA GG
PB665 (DSA PV
?0666 L,DSA ,ST
20667 ,DSA FP
P@67¢ L DSA peOQAR2
n2671 L.DSA punydd
20672 L,DSA pR2Q0S5
02673 .DSA pCapeR
gee674 «08A neepp4
Me675 LDSA pE11da
2@676 ,LDSA meppl2
#2677 ,DSA peogné
pe7ae ,DSA PeBQAVY
00721 L,DSA pergny
08702 LDSA pgaan?
20703 ,0DSA uean1Q
®w784 ,DSA pesal?
22785 LDSA neoa3l

RL1 Pa505

RL2 2515

ARR 20527

NM1 22603

NM2 22613

.70 ooepn

.20 eaeil
» DEFINE 2623

Jve 00624

JVA 02625
v+ SEEK @626

C-14

*

* ¢ & % & % ¥ % T & 8 % F % % % ® RS EFE SRS RE R

pe627
Pa630
Pe63Y
pasan
eeead
r@634
Ga638
gR636
pRe37
2o64¢
ea64Y
pR6a2
PR643
pe6asa
PRe40
20646
LYY
RRESH
n2651
ea6%2
PB653
gRES4
pR6558
n2656
BA6S7
pa6ea
06661
pR6s2
ee66d
wa664
20665
¢nE66
PA6E7

C-15

APPENDIX D
SYSTEM LIBRARIES

D.1 .LIBR - Page Mode Non-FPP

LIBRARY FILE LISTING FOR ,LIBR PAGE 1
PROGRAM SCURCE PROGRAM ACTION
NAME EXTELSION 51%€
RBCDIOD A6 136
RBIMNIO il i) 113
RANCOM 79 Baa
DEF INE #11 1130
poID 12 2037
EDCODE ape 258
EOF 2eB RY]
UNIT 20y 66
JARS 3 15
JOFIX agy 13
JFIX a1 13
FLOATJ 71 13
JOBLE 261 i9
ISNGL nee 30
JSIGN 2¢3 23
JDIM Al 2]
JMOD ey 23
JMNMX A1P 123
ERRSEY PER 25
IDERR pee 42
FILE 2rg 376
TIME AEI 45
TIMELG ars 72
ADJ1 A 17
ADJ?2 2B 35
ADJ3 ane 41
ABS RE2 16
1ABS rCR 14
DARS ney 18
AINT ne2 15
INT A 13
IDINT P25 13
AMOD nea a7
MDD RE7 24
oMop A4 3
FLOAT 202 11
IFIX 2E2 19
SIGN 224 31
DSIGN 304 31
ISIGN 2va 20
DIM ne g 22
IDIM 2eo 15
SNGL a4 27
DBLE net i1
IMAMX nHP 147
RMNMY 2BP i29

LIBRARY FILE LISTING FOR ,LIBR PAGE 2

PROGRAM SOURCE PROGRAM ACTION
NAME EXTENSION SIZE
DMNMX pEP 176
.88 774 52
.8C /] 132
.80 nes 132
«BE nve 33
«BF aes 34
.BG nes 35
» BH 285 34
.81 223 120
SQRT pes 7%
SIN re3 13
Cos P ee
ATAN ey2 13
ATAN2 ee7 44
EXP we2 13
ALOG re2 22
ALOG1R ne2 29
TANH A4 47
.EB ped ing
.ED 25 67
.EE er2 74
«EF 24 118
«.EC ael 44
DSQRT nez 71
DSIN 821 13
pCos ogt 214
DATAN o2y 13
DATAN2 ne7 46
DEXP #el 13
DLOG 2e3 21
pLOGLG el 21
IDZERD ael 16
ISENSHK a1 3@
IFLOW net 22
20D pes 146
.08 pra 12¢
»DE 7oy 191
«OF oet 137
-Dc Zﬁ‘l 47
«DA PC6 36
BCDIO 233 3724
BINIO 215 363
AUXIO r1e 133
eSS ¢05 82
GATO re3 26
STQP 7e3 13

LIBRARY FILE LISTING FOR ,LIBR PAGE 3

PROGRAM SCURCE PROGRAM ACTION
NAME EXTENSTION SIZE

PAUSE 225 14

SPMSG ¢4 73

LFLTB pra 266

FIOFPS 717 735

PARTWD p3P 140

DBLINT 7P 377

INTEAE a7P 131

DOLBLE ng4d 223

RELFEAE 1P 1877

OTSER ne9 21

.CB rea P2 CLOSE

D-3

D.2 .LIBRF - Page Mode FPP

LIBRARY FILE LISTING FOR ,LIBRF PAGE 1

PROGRAM SOUFCE PROGRAM ACTION
NAME EXTENSION SIZE
RBCDIO 2es 13§
RBINIOQ ges 113
RANCOM res 5714
DEFINE #it 1132
DDIC Fi2 2n12
EDCODE z0ne 255
EQF 264 3a
UNIT art 66
JABS Fet 14
JDFIX Fot 12
JFIX Fel 12
FLOATJ Fei 12
JOBLE FG1 12
ISNGL FE¢2 13
JSIGN Fizd 16
JDIM FEl 17
JMQD Féi 17
JMNMYX FiP 190
ERRSET geo 25
I0EFR an2 A
FILE ne8 376
TIME Nne9 45
TIMELQ 708 72
ADJY 200 17
ADJ2 A¢a 38
ADJ3 pue 41
ABS Fuz 13
IABS 2¢e 14
DABS Fet 13
AINT Fe2 14
INT Fe2 12
IDINT Fas 12
AMOD F@3 23
MoD nea 24
DMOD F2d4 23
FLOATY 222 11
IFIX Fa2 12
SIGN Fo4 24
OSIGN Fia 24
ISIGN QG 28
DIM Fei 17
IDIM e 15
SNGL Fra 16
DBLE Fay 1@
IMNMX 75p 107
RMNMY FBP 115

LIBRARY FILE LISTING FOR LIBRF PAGE 2

PROGRAM SCURCE PROGRAM ACTION
NAME EXTENSION SI2E
DMMMY FBP 124
+BB au4 83
»,BC FEQ 1246
«BD FOg 126
«BE F26 32
»BF FZ5 3
«BG FUR 31
«BH F&s 31
«BI Fg3 113
SART FGa 73
SIN Fea 12
cos FEd 16
ATAN Fe2 12
ATAN2 Fe7z 38
Exp Feg 12
ALOG Fag 16
ALOQGLO Fiag 16
TANH Fid 46
«EB Fid 77
+ED Fes 56
«EE Fp2 72
«EF Fod 114
+EC FE1 43
DSART Fia7 70
DSIN Fel 12
DCOs Fiy 17
DATAN Fu 12
DATAN2 FG7 42
DEXP Fil 12
DLOCG Fe3 17
DLOGL® Fegl 17
IDZ2ERG 1) 16
ISENSH nJaN| 32
IFLGW 7y 22
.DD Fes 137
DB Fgd 115
.DE» FV:’ l.'ﬂﬂ
JOF FiEy 13g
.DC Fey 43
DA PRE 58
BCDIO F33 3634
BINID 215 363
ALIXIO 212 133
+ 35 a3 €2
GOTO 0e3 26
STOP ned 13

D-5

LIBRARY FILE LISTING FOR ,LIBRF PAGE 3

PROGKAM SCURCE PROGRAM ACTION
NAME EXTELSION SI1ZE

PAUSE ves 14

SPMSG 204 73

LFLTB 2¢4 266

FIOFS 17 738

PARTWD F3p 146

INTF AE n7pP 131

LFPF F12 497

OTSER 249 212

JL8 24 22 CLOSE

APPENDIX E
PDP-15 FORTRAN FACILITIES

The extended FORTRAN language described in this manual and in the companion manual (Operating
Environmental Manual DEC-15-GFZA-D) is available only on the systems described below. The
FORTRAN existing on other PDP-15 systems is described in a manual entitled "PDP-15 FORTRAN IV
Programmer's Reference Manual" (DEC-15-KFZB-D).

The following tables describe the existing versions of the extended compiler, the extended Object
Time System Libraries, ond the compiler-library pairs available for different systems. All versions of
the compiler are written in PDP-9 code, however, 'PDP-9 mode' versions produce only PDP~9 code as
output while 'PDP-15 mode' versions may produce PDP-15 instructions where suitable. Page and Bank
Mode libraries differ not only in the use of the PDP-15 versus PDP-9 code, but also in the values of
address masking constants used in a few of the routines. Note that the Floating Point Processor (FPP)

is supported only on the PDP=15, thus there is no PDP-9 mode version.

The library names used in the following tables are given for designational purposes within this appendix

only and do not necessarily reflect the names under which the libraries are distributed.

Table E-1
Versions of the Extended Compiler

Main 2 Approx.
Version Features Version System Size (8)
FAX All F4X Non=FPP, PDP-15 mode DOS-15 15406

F4X9 Non~FPP, PDP-9 mode DOS-15 15363
FPFAX FPP, PDP=15 mode DOS~15 15661
F4B All except F4B Non-FPP, PDP-15 mode, ADSS (V5B) 15251
direct-access I/O F4B9 Non-FPP, PDP-9 mode ADSS (V5B) 15226
FPF4B FPP, PDP-15 mode ADSS (V5B) 15522
FARX | All except FARX Non-FPP, PDP-15 mode RSX
direct-access I/O FPF4RX | FPP, PDP-15 mode RSX

Table E-2
Versions of the OTS Libraries for the Extended Compiler

System Contents Libraries Subsystem
DOS-15 (BOSS-15) | Contains all routines, assembled for DOS=15 .LBXP Non-FPP, Page
operation. .LBXB Non=FPP, Bank
.LBXPF | FPP, Page
.LBXBF | FPP, Bank
ADSS Contains all routines except direct-access .LBRP Non-FPP, Page
(DEFINE, RANCOM, RBINIO, RBCDIO) .LBRB Non=FPP, Bank
assembled for ADSS operation. .LBRPF | FPP, Page
.LBRBF | FPP, Bank
RSX Contains all routines except direct-access
(DEFINE, RANCOM, RBINIO, RBCDIO) LIBRX Non=FPP, Page/
and magtape subroutines (UNIT, EOF), as~ .LIBFX Bank
sembled for RSX operation and includes ' FPP, Page/Bank
added routines applicable fo RSX only.
Table E-3
Compilers and Libraries for Extended FORTRAN
Distributed with PDP-9/15 Systems
Syctem Non-FPP FPP
y Page Bank Page Bank
DOS-15 Compiler F4X FAX or FAX? FPF4X FPF4X
(BOSS-15 Library .LBXP .LBXB .LBXPF .LBXBF
ADSS V5B Compiler F4B F4B or F4B9 FPF4B FPF4B
Library .LBRP .LBRB .LBRPF .LBRBF
RSX Compiler FARX FARX FPF4RX FPF4RX
Library .LIBRX .LIBRX .LIBFX .LIBFX

INDEX

A C (cont)

A-register, 3-13 Command string format, 1-2
Accumulators, 3-13 Command string options, 1-2
Address calculation for array elements, 41 Command (BACKSPACE, ENDFILE, REWIND),
Adjustment of array dimension, C-1 2-7,2-8
ADVANCED Monitor Software COMMON Blogks , 5-3

System (ADSS), 1-6 storage area, 1-3
ALT MODE, 1-2 Compiler, 1-1
Arctangent (ATAN, DATAN, ATAN2Z, Control P (tP), 1-2

DATAN2), 3-9 Conversion, .ASCII to .SIXBT, 4-16
Arithmetic package functions, 3-1, 3-13 . . .
Cosine - see Sine and cosine

Arrays

data mode values, 4~2 b

dimension adjustment, C=1 .DAT see Device assignment

:i'z":e:i;ddress' 41 Data~directed Input/Output (DDIO), 2-13, 2-14

unsubscripted, 5-2 Data storage, external, 2-2
JASCII to .SIXBT conversion, 4-16 Data structures of peripheral devices, 2-2
ASSIGN command, 2-2 Data transfer
AUXIL (OTS Auxiliary Input/Output, 2-7 EDCODE (memory to memory) 2-15

FIOPS, 2-3
B RANCOM, 2-13
Background/Foreground Monitor System, 1-6 Data transmission, 2-1, 2-3
BACKSPACE command, 2-7, 2-8 DDIO data-directed input/output routines, 2-13,
2-14

Backward links, 2-2
Batch processing monitor (BOSS-15), 1-7
BCDIO (OTS Binary coded 1/0), 2-5, -6

global entry points, 2-12

DECODE routine, 2~15
DECtape, 2-2
DEFINE routine, 2=9, 2-11

routines, 2=5 parameter table, 2=11
BINIO (OTS binary input/output), 2-6, 2-7 Device assignment, 2-2
BOSS~15 batch processing monitor, 1-7 FIOPS, 2-3
Buffer size, OTS FIOPS package, 2-3 Device data structure 2-2
C Direct access to formatted file, 2-11
Carriage return, 1-2 \I}VEI?I%EI,ZQ-]]]]

CHAIN (overlay linker) 1-1, 1-3
CHAIN and EXECUTE loading, 5-3
Comma (,) usage, 1-2

Direct access input/output, 2-9
Directoried storage, 2-2

Directoried subroutines, 2-16
Command error messages, 1-3

INDEX (Cont)

Division by zero in RELEAE routine, 3-14 FIOPS (OTS IOPS communication, 2-1, 2-3
Dollar sign ($) usage, 1-2 routines, 2-3
DOS-15 status table, 2-3

FORTRAN directoried /O, 2-2 Flesting secumilaer, 313

operafting system, 1-6 Floating=point processor (FPP), 1-7, 1-8

sample session, 1-4, 1-5

DOUBLE function, 3~16

routines, 4-4
Format for single (double) precision numbers, 3-14

Double integers, 1-7 FORMAT statements, 2=5, 2-6

Double precision floating~point arithmetic, 17

errors, 4-4
Double precision number format, 3~14 READ, 2-5
g record length, 2-5
DQUBLE PRECISION values, 5-3 WRITE, 2-5
E Formatted input/output (RBCDIO), 2-11
EDCODE routines, 2-15 FORTRAN calldble utility routines, 4~5 through
4-8

ENCODE routine, 2~15

ENDFILE command , 2-7, 2-8 FORTRAN sequences called by MACRO, 5-2

Forward links, 2~2

FPP see Floating=point processor

Error messages

command, 1-3
FORTRAN Appendix B FPP F4X system, 1-7

OTS Appendix B Functions, 3-16, 3-17, 3-18
Errors, unrecoverable, 4-4

G
Examples
IFLOW and IDZERO, C-5 Global entry points BCDIO, 2-12
input/output, C-6 .GLOBL pseudo operation, 3-1
programming, C-1
H

EXIT function, 4-4

Exponential (EXP, DEXP), 3-5
Extended integer arithmetic, 1-7
External functions, 3-1, 3=5, 3-6

Hardware, 1-7, 1-8
Header pair, 2-5
Held accumulator, 3=13

External storage, 2-2 I
External subroutines, 3-1 ID word (BINIO), 2-6
IDZERO, logical function, 3-14

IFLOW and IDZERO, programming
examples, C-5

F

File access on serial devices, 2-2

FILE package, 2-16 Initialization and actual data transfer
Filename, 1-2 (RANCOM), 2-13

INDEX (Cont)

Input/output M
direct access, 2-9 MACRO-15, 1-1
examples, C-6 .
formatted (RBCDIO), 2-11 MACRO-FORTRAN linkages, C-1
sequential , 2-4 MACRO sequences called by FORTRAN, 5-1

f tted (RBINI - -
unformatted (RBINIO), 2-12, 2-13 Magnetic tape, 2-2
Input/output processing
data directed I/O (DDIO), 2-13
direct access, 2-9

input/output routines, 2-15
Magtape tape functions simulated on disk, 2-8

ENCODE/DECODE (EDCODE), 2-15 Master File Directory (MFD), 2-2
general , 2-1

OTS IOPS communication (FIOPS), 2-3 Memory fo memory transfers, 2-15
sequential , 2-4 MFD see Master File Directory

ti -
user subroutines, 2-15 Modes, giray,, 42

Input/output routines, Magtape, 2-15 Monitor confrol, 1=2

INSTALL MCR (RSX function), 1-5
INT function, 3-18

INTEAE function, 3-=16

. - Natural and common logarithms
INTEGER array glzs, 42 (ALOG, ALOG10, DLOG, DLOG10), 3-7

Number formats, single/double precision, 3-14

Multiprogramming environment, 1-7

N

Intrinsic functions, 3=1, 3-2

IOERR(N) integer function (FIOPS), 2-4
@)

Operating procedures, 1-1

OTS arithmetic routines, 3-13

OTS Auxiliary input/output (AUXIO), 2-7
OTS binary coded input/output (BCDIO), 2-5,

L
Language summary , Appendix A
Left arrow (+) usage, 1-2

Libraries, System, D-1

.LIBR, D=1 2-6
-LIBRF, D-4 OTS binary input/output (BINIO), 2-6, 2-7
Linkage OTS error messages, Appendix B
MACRO-FORTRAN, C-1 OTS IOPS communication (FIOPS)
program, 1-1 Buffer size, 2-3
Linking loader, 1-1, 1-3 Zi’::l??iéfe',?’z-s
LINKS, 1-3 OTS routines, 4~1 through 4-4, 4-15, 4-16
Links, backward/forward , 2-2 direct access, 2-9
Loading FORTRAN 1V, 1-2 floating point processor, 4-4, 4-5

FORTRAN callable utility, 4-5 through 4-8
Logarithm, Base 2 (.EE, .DE) subfunction, 3-10 RSX library, 4=9 through 4-14

Logarithms, natural and common Output listing, 1-2
(ALOG, ALOG10, DLOG, DLOGI10), 3-7 Overflow, 3-14
Logical function IDZERO, 3-14 Overlay linkage editors, 1-1

Logical record size unformatted statements, 2-6 Overlaying of LINKS, 1-3

I-3

INDEX (Cont)

P
Paper-tape source file, 1-2

PDP-15/30 Background/Foreground Monitor
System, 1=6

Polynomial evaluator (.EC, .DC)
subfunction, 3-13

Program linkage, 1-1
examples, C-1

Pseudo=operation, .GLOBL, 3-1

R

RANCOM (initialization and actual data
transfer), 2~13

RBCDIO, formatted input/output, 2-11
RBINIO, unformatted input/output, 2-12, 2-13
READ statement

formatted, 2-5
formatted direct access, 2=11
unformatted, 2-6

REAL array size, 4~2

REAL values, 5-3

Real-time execution, see RSX=15
Record identification number, 2-6
Record length, formatted records, 2-5

RELEAE, REAL arithmetic package, 1-7, 3-14,
3-17, 3-18

Relocation of program, 1-3

Restart FORTRAN 1V, 1-2

Retrieval information block (RIB), 2-2
REWIND command, 2-7, 2-8

RIB see Retrieval information block
Right angle bracket (>) usage, 1-2
Routines, MACRO-15, 1-1

Routines, OTS, 1-1, 4-1 through 4-4, 4-14,
4-16

floating point processor, 4-4, 4-5

FORTRAN callable utility, 4-5 through 4-8

RSX library (.LIBRX BIN), 4-5, 4-9
through 4~15

R (cont)
RSX=15 real-time execution, 1-7
RSX library (.LIBRX BIN) routines, 4-5,
4-9 through 4-15
S
Sample DOS-15 session, 1-4, 1-5
Science library , 3-1
Sequential file storage, 2-2
Sequential /O, 2-4
Serial file storage, 2-2
Sine and cosine (SIN, COS, DSIN, DCOS), 3-8
Single integer arithmetic, 1-7
Single precision number format, 3-14
Single precision floating point arithmetic, 1-7
Software environments

ADVANCED Monitor (ADSS), 1-6
BOSS-15, 1-7

DOS-15, 1-6

PDP-15/30 B/F Monitor, 1-6
RSX=15, 1-7

Square root (SQRT, DSQRT), 3-5

Statements

READ, 2-5, 2-6
WRITE, 2-5, 2-6

Storage, external, 2-2

directoried mode, 2-2
sequential files, 2-2
serial mode, 2-2

Subfunctions in FORTRAN library,

logarithm, base 2 (.EE, .DE), 3-10
polynomial evaluator (.EC, .DC), 3-13

Subprograms, science library, 3-1
System generation, 2~2
System libraries, D=1
T
TKB (task builder), 1-1, 1-5
filename, 1-5

Time sharing, 1-6

I-4

INDEX (Cont)

u
UFD see User File Directory Utility routines, 4-1 through 4-16
Underflow , 3-14 FORTRAN callable utility, 4=5, 4=9 through
Unformatted input/output (RBINIO), 2-12, 2-13 Fl:(}:,]i-4
Unformatted statements, 2=6 OTS, 4-1
READ, 2-6 RSX library (.LIBRX BIN), 4-5, 4-15
WRITE, 2-6 W
Unsubscripted array name arguments, 5-2 Word putrs, 25
User file directory (UFD), 2-2 WRITE statement
User subroutines, input/output formatted, 2-5
directoried subroutines, 2-16 formatted direct access, 2-11

magtape 1/O, 2-15 unformatted, 2-6
operations, 2=15

o,

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning Digital's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per-
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Program Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS

Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

——————————————— — FoldHere — - - -~ — — — - — = — = — — — — — —

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

)

)

W

)

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy. organization, usability and read-
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
Name: Organization:
Street: Department:

City: State: Zip or Country

——————————————— — FoldHere - - - - - = — = = — — — — — — — — — — —

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

ﬂ,b‘ e

