

PDP-lS/30AND PDP-lS/40

BACKGROUrJD/FOREGROUND r10N nOR

SOFTWARE SYSTEM

PROGRM1r~ERS REFERErJCE r1ANUAL

To obtain additional copies of this manual, order number DEC-15·-MR3A-D

from the Program Library, Digital Equipment Corporation, Maynard,

Massachusetts, 01754. Price $6.50

Printed December, 1970
Second Printing, April, 1972

Copyright (£) 1970, 1971, 1972 Digital Equipment Corporation

The material in this manual is intended for

information purposes and is subject to change

without notice.

The following are trademarks of Digital

Equipment Corporation, Maynard, Massachusetts

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

CONTENTS

SECTION 1 BACKGROUND/FOREGROUND MONITOR

1.1
1.2
1. 2.1
1. 2.2
1. 2.3
1. 2.4
1. 2.5
1. 2.6
1. 2.7
1.3

Introduction
Background/Foreground Monitor Functions

Scheduling of Processing Time
Protection of Foreground Core and I/O
Sharing of Multi-User Device Handlers
Use of Sottware priority Levels
Use of Real-Time Clock
Communication Between Background and Foreground Jobs
Use of CPU Registers

Hardware Requirements and Options

Page

1-1
1-1
1-2
1-3
1-4
1-4
1-4
1-4
1-5
1-5

SECTION 2 BFKM15 - NON-RESIDENT BACKGROUND/FOREGROUND MONITOR

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.5.11
2.5.12
2.6
2.7
2.8
2.9

Introduction
Location and When Called
Initial Operation
Information Commands

The LOG Command (L)
The REQUEST Command (R)
The DIRECT Command (D)
The INUSE Command (I)

Allocation Commands
The ASSIGN Command (A)
The FILES Command (F)
The FCORE Command
The FCONTROL Command
The BCONTROL Command
The NEWDIR Command (N)
The SHARE Command (S)
The NOSHARE Command
The 7CHAN Command (7)
The 9CHAN Command (9)
The MPOFF Command
The MPON Command (M)

Program Load Commands
Final Operation
Control Characters
Summary of Commands

SECTION 3 CONTROL CHARACTERS

3.1
3.2
3.3
3.4
3.5
3.6

Purpose
Control Teletype
Teletype Handler
CTRL C (tC)
CTRL S (tS)
CTRL T (tT)

i

2-1
2-1
2-2
2-3
2-4
2-4
2-5
2-5
2-5
2-6
2-7
2-8
2-9
2-9
2-10
2-11
2-11
2-11
2-12
2-12
2-12
2-13
2-13
2-13
2-14

3-1
3-1
3-2
3-2
3-3
3-3

3.7 CTRL P (tP)
3.7.1 NORMAL CTRL P
3.7.2 No Change
3.7.3 REAL-TIME CTRL P
3.8 CTRL R (tR)
3.9 CTRL 0 (to)
3.10 CTRL U (@)
3.11 RUBOUT ('\)
3.12 CTRL D (tD)

SECTION 4 LOADERS

4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.4
4.5
4.5.1
4.5.2
4.6
4.7

Introduction
Foreground Linking Loader

Option Characters and Their Meanings
Use of + Terminator
Sequence of Operation

Background System Loader
Background Linking Loader
Loading XCT Files

EXECUTE in the Foreground
EXECUTE in the Background

Error Conditions
System Memory Maps

SECTION 5 EXAMPLES OF BACKGROUND/FOREGROUND OPERATIONS

5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3

Introduction
Startup Procedures

Loading Master B/F Monitor System
System Generation

Examples
IDLE Loaded as the Foreground Job
Single-user FOCAL Loaded (Foreground)
Two-user FOCAL Loaded (Foreground)

Page

3-3
3-4
3-5
3-5
3-5
3-5
3-6
3-7
3-7

4-1
4-1
4-2
4-2
4-2
4-3
4-5
4-6
4-6
4-7
4-8
4-9

5-1
5-1
5-1
5-3
5-3
5-3
5-4
5-4

SECTION 6 BACKGROUND FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Introduction
.REALR
.REALW
. IDLE
.IDLEC
.TIMER
.RLXIT
Mainstream Real-Time Subroutines
API Software Levels -- Programming Note

ii

6-1
6-1
6-2
6-3
6-4
6-4
6-5
6-5
6-5

SECTION 7 WRITING DEVICE HANDLERS FOR THE PDP-IS
BACKGROUND/FOREGROUND MONITOR SYSTEM

7.1
7.2
7.3
7.3.1
7.3.2
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.8
7.9
7.9.1
7.9.2
7.10
7.11
7.11.1
7.11.2
7.11. 3
7.12
7.12.1
7.12.2
7.13
7.13.1
7.13.2
7.14

Introduction
I/O Service Routine
I/O Device Handler

Types of Device Handlers
General Structure of Device Handlers

Reentrallcy Protection
Device Handler's CAL Processor

Arguments of the CAL
. SETUP
Initiating I/O

Device Handler's Interrupt Processor
Error processing
Stop I/O Routines
Recovery From I/O Device Not Ready Condition

CTRL R Mechanism
.INIT Consideration

The .INIT Function
Sequential Multi-user Device Handler

Transition from Single-user Handler
Peculiarities
Use of the .WAITR Function

External I/O Buffers
Calling for a Buffer
Releasing a Buffer

PDP-9/PDP-lS Compatibility
Page Mode
Bank Mode

Device Handler Listing

SECTION 8 SYSTEM GENERATION

8.1
8.1.1
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.4.1
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.4
8.5

Introduction
BFSGEN, Generation and Update Features

BFSGEN Device Requirements
DECtape Masters
Loading BFSGEN

System Generation Procedures
Section A Initialization
Section B System Selection & Read-in
Section C System Parameters
Section D Existing I/O Devices

Expendable (Deletable) Devices
Section E Additional I/O Devices
Section F PI Skip Chain
Section G . IOTAB
Section H .DAT Slots
Section I Re-write System Information

Post-Generation Procedures
Error Detection

APPENDICES

I
II
III
IV

.SCOM Registers
Errors
Teletype Hardware Characteristics
Monitor System Tables

iii

Pctge

7-1
7-1
7-5
7-6
7-7
7-7
7-8
7-8
7-14
7-15
7-15
7-20
7-21
7-23
7-23
7-21
7-27
7-28
7-28
7-29
7-29
7-29
7-30
7-31
7-31
7-31
7-31
7-31

8-1
8-1
8-1
8-1
8-2
8-3
8-3
8-4
8-5
8-6
8-9
8-11
8-13
8-13
8-15
8-16
8-16
8-19

I-I
II-I

III-l
IV-l

SECTION 1

BACKGROUND/FOREGROUND MONITOR

i.l INTRODUCTION

In the preparation of this manual, it was assumed that the reader is familiar

with the PDP-lS ADVANCED Monitor Software System as described in DEC-lS-MR2A-D.

A complete description of the Background/Foreground Monitor System is given in

this manual; however, where redundancy occurs, the reader has been referenced to

the ADVANCED Monitor manual.

1.2 BACKGROUND/FOREGROUND MONITOR FUNCTIONS

The Background/Foreground Monitor is designed to control processing and I/O

operations in a real-time or time-shared environment. It is, essentially, an

extension of the ADVANCED Monitor and allows for time-shared use of a PDP-IS

by a protected, priority, user FOREGROUND program I and an unprotected system or

user BACKGROUND program.

The Background/Foreground Monitor greatly expands the capabilities of PDP-lS/20

ADVANCED Software and makes optimum use of all available hardware. It permits

recovery of the free time (or dead time) that occurs between input/output

operations, thus promoting 100% utilization of central processor time.

FOREGROUND programs are defined as the hiqher-priority, debugged user programs l

that interface with the real-time environment. They normally operate under

Program Interrupt (PI) or Automatic Priority Interrupt (API) control, and are

memory protected. At load time they have top priority in selection of core

memory and I/O devices, and at execution time they have priority (according to

the assigned priority levels) over processing time. Depending upon system

requirements, the user's Foreground program could be an Executive capable of

handling many real-time programs or subprograms at four levels of priority.

BACKGROUND processing is essentially the same as the processing normally

accomplished under control of the ADVANCED Monitor. That is, it could be an

assembly, compilation, debugging run, production run, editing task, etc.

Background programs may use any facilities (for example, core, I/O and processing

time) that are available and not simultaneously required by the Foreground job.

Under certain circumstances, I/O devices may be shared by both the Foreground
and the Background jobs.

lIt may be feasible in the future to provide system programs which will operate
in the FOREGROUND.

1-1

The Background/Foreground Monitor system is externally a keyboard-oriented

system; that is, Foreground and Background requests for systems information,

core, I/O devices, programs to be run, etc., are made via the Teletyp~keyboards.

At run time, the Monitor internally controls scheduling and processing of I/O

requests, while protecting the two resident users.

The Background/Foreground Monitor performs the following functions as it controls

the time-shared use of the PDP-IS central processor by two co-resident programs:

a. Schedules processing time.

b. Protects the Foreground job's core and I/O devices.

c. Provides for the sharing of multi-user device handlers, such as

DECtape, by both Foreground and Background jobs.

d. Allows convenient use of API software levels by Foreground jobs.

e. Provides for convenient and shared use of the system Real Time

Clock.

f. Allows communication between the Background and Foreground jobs

via core-to-core transfers or by the shared use of bulk storage

devices.

g. Allows concurrent use of the CPU's active registers, such as the

AC and Index Register.

1.2.1 Scheduling of Processing Time

At run time, the Foreground job retains control except when it is I/O bound;

that is, when completion of an I/O request must occur before it can proceed

any further. In the following example, if the .WAIT is reached before the input

requested by the .READ has been completed, control is transferred to a lower

priority Foreground segment or to the Background job until the input for the

Foreground job is completed.

.READ 3, ~, LNBUF, 48 /READ TO .DAT SLOT 3

.WAIT 3 /WAIT ON .DAT SLOT 3

Since multi-user device handlers can be shared by Foreground and Background

programs, there is a mechanism by which a Foreground I/O request may cause a

Background I/O operation to be stopped immediately so that the Foreground

operation can be honored. On completion of the Foreground I/O, the Background

I/O is resumed with no adverse effects on the Background job.

The Foreground program can also indicate that it is I/O bound by means of the

ITeletype is a registered trademark of the Teletype Corporation.

1-2

.IDLE or .IDLEC command (Sections6.4 and 6.5). This is useful when the

Foreground job is waiting for real-time input from anyone of a number of

input devices. Consider the following example (see Section 6.2 for description

of real-time read .REALR command) .

. REALR 1, ~,LNBUFl, 32, CTRLl, Nl

.REALR 2, 2,LNBUF2, 42, CTRL2, N2

.REALR 3, 3,LNBUF3, 36, CTRL3, N3

/REAL
/TIME
/READS

. IDLE

If .IDLE is reached before any of the input requests have been satisfied, control

is transferred to a lower priority Foreground segment or to the Background job.

The lower priority job retains control until one of the Foreground input requests

is satisfied. Control is then returned to the Foreground job by executing the

subroutine at the specified completion address (CTRLl, CTRL2, CTRL3) and at the

priority level specified by Nl, N2, N3 which may be:

Value of N Level

o
4

5

6

7

Mainstreanl (lowest level)

Current level (level of .REALR)

Software level 5

Software level 6

Software level 7

NOTE

If real-time reads (.REALR), real-time writes (.REALW),
or interval timer (.TIMER) requests are employed in
the Background, N may be set to 0, 4, 5, 6, or 7, but
is converted to ~ since the Background job can run only
on the mainstream level. This allows the value of N to
be preset in cases where a Background program is to be
subsequently run in the Foreground.

1.2.2 Protection of Foreground Core and I/O

The Foreground job's core is protected by the Memory Protection Option (Type

KM15). The Background job runs with memory protect enabled; the Foreground job

runs with memory protect disabled.

Protection of the Foreground job's I/O devices is accomplished via the haraware

by the Memory Protect Option (which prohibits lOT and Halt instructions in the

B~ckground area) and by the software since the Monitor screens all I/O requests

made via I/O macros. Also, the Monitor and the Background Loaders prevent the

Background job from requesting I/O which would conflict with that of the Fore­

ground job (for example, they would not honor a Background request for a paper

1-3

I

tape handler being used by the Foreground job).

1.2.3 Sharing of Multi-User Device Handlers

The Background/Foreground Monitor permits sharing of multi-user device handlers

(such as DECtape, Magnetic Tape and Disk) between Background and Foreground jobs.

Using these multi-user handlers, n files can be open simultaneously, where n

equals the number of .DAT slots associated with the particular bulk storage

device. Some multi-unit handlers require external data buffers (assigned at

load time), one for each open file. These buffers are acquired from and

released to a pool by the handler as needed.

When this count is not accurate (when the .DAT slots are not used simultaneously),

the keyboard command FILES (Section 2.5.2) can be used to specify the actual

number of files simultaneously open. Both the Foreground and Background jobs

can indicate their file requirements by means of the FILES keyboard command.

The multi-user handlers are capable of stacking one Background I/O request.

This provision is made to exactly simulate program operation as it would occur

under ADVANCED or I/O Monitor (i.e., single user) control. Thus, control is

returned to the Background job to allow non-I/O related processing when the

handler is preoccupied with an I/O request from the Foreground job. For

example, if the Foreground job has requested DECtape I/O with a • READ, and is

waiting for its completion on a .WAIT, control is returned to the Background job.

If the Background job then requests DEC tape I/O with a • READ, the handler will

stack the request and return control to the Background job following the . READ.

The Background job can then continue with non-I/O related processing as though

rhe .READ were being honored.

1.2.4 Use of Software Priority Levels

The Background/Foreground Monitor allows convenient use of software priority

levels of the API by the Foreground job. The Background job is permitted to use

only the mainstream level.

1.2.5 Use of Real-Time Clock

The Background/Foreground Monitor provides for convenient and shared use of

the system real-time clock. It will effectively handle many intervals at the

same time; thus, the real-time clock can be used simultaneously by both Back­

ground and Foreground jobs.

1.2.6 Communication Between Background and Foreground Jobs

The Background/Foreground Monitor allows communication between Background and

1-4

Foreground jobs via core-to-core transfers. This is accomplished by means of a

special "Core I/O device" handler within lOPS. Complementing I/O requests are

required for a core-to-core transfer to be effected; for example, a Foreground

.READ (.REALR) from core must be matched with a Background .WRITE (.REALW) to

core.

Two possible uses of this feature are:

a. The Background job could be related to the Foreground job and,
as a result of its processing, pass on information that would
affect Foreground processing, or vice-versa.

b. The Background job could be a future Foreground job and the
current Foreground job, being its predecessor, could pass on
real-time data to create a true test environment.

Communication between two jobs can also be done by storing and retrieving data on

shared bulk storage devices.

1.2.7 Use of CPU Registers

Whenever control passes from one API software level to another, or to Foreground

mainstream or to Background, the following CPU registers are saved and restored.

XR

LR

MQ

AIX

L

PC

The Step Counter

ground job. The

Index Register 1

Limit Register 1

Multiplier-Quotient Register

The Autoincrement Registers --­

The Link

?
e

The Program Counter (including bits to indicate the
state of memory protect and page/bank mode)

ccumulator are saved and restored only for the Back­

job, because it runs with memory protect disabled,

can save the contents of the Step Counter in the two free (non-interruptible)

instructions following a Normalize instruction by saving the AC (DAC) and then

loading the AC with the SC (LACS). The AC is not saved for any level of the

Foreground job because a level can give up control only by issuing a Monitor

call (CAL) (either .IDLE, .WAIT, or an implied .WAIT). The contents of the AC

are not saved and r1estored by the CAL handler. In addition to these hardware

registers, .SCOM+l,+2,+3,+4, and +l~ are swapped whenever control changes from

Foreground to Background or vice versa.

1.3 HARDWARE REQUIREMENTS AND OPTIONS

The following PDP-1S System hardware confiqurations are required to run the

In the bank mode system, the XE and LR registers are not saved and restored; all other registers
are handled as stated.

1-5

Background/Foreground Monitor Software System.

PDP-1S/30 DEC tape System

PDP-1S CPU with a minimum of
16K core memory

KElS (EAE)

KSR3S Console Teletype l

PClS (High Speed Reader/Punch)

KA1S (API)

KW1S (Real Time Clock)

KM1S (Memory Protect)

TC~2D2or TC1S (DECtape Control)

3 TUSS (DECtape Transports)
or

2 TUS6 (Dual-DECtape Transports)
as a minimum

An LTlS or an LTl9 2 Teletype Control
unit with at least one additional
KSR33 or KSR3S Teletype

PDP-1S/40 DECdisk System

PDP-1S CPU with a minimum
of 24K of core

KElS (EAE)

KSR3S Console Teletype l

PC1S (High Speed Reader/Punch)

KAlS (API)

KW1S (Real Time Clock)

KM1S (Memory Protect)

TC~2D2or TC1S (DECtape Control)

2 TUSS (DECtape Transports)
or

1 TUS6 (Dual-DECtape Transport)
as a minimum

An LTlS or an LTl9 2Teletype Control
Unit with at least one additional
KSR33 or KSR3S Teletype

RFlS (DECdisk control)

2 RS~~ (Disk platters) minimum;
4 maX1mum at present.

lThe basic system Teletype is normally assigned to the Background environment.
One Teletype of the external Teletype system must be reserved for the Foreground
job; additional Teletypes may be assigned to either Background or Foreground
functions.

Model 37 Teletypes are not supported. ~odels 33 or 35 ASR are supported only to
the extent that they operate as KSR's;, their paper tape input and output
facility cannot be used. Detailed information concerning Teletype units is
given in Appendix III.

2The TC02D DECtape control and the LT19 Teletype Control require the DW1S.

1-6

In addition to the 15/30 and 15/40 configurations shown, the following

PDP-9 configurations may also be used when running the bank mode system.

PDP-9 DEC tape System

PDP-9 with a minimum of 16K core
memory

Real Time Clock

KX09A (Memory Protect)

KE09 (EAE)

2KSR 33/35 (Teletypes)

PC02 (high speed paper tape
reader/punch)

KF09A (API)

TC02 (DECtape control)

3 TU55 (DECtape transports)

or

2 TU56 (Dual-DECtape transports)

LT19A (Teletype control)

PDP-9 DECdisk or RB~9 Disk System

PDP-9 with minimum of 24K core
memory

Real Time Clock

KX09A (Memory Protect)

KE09 (EAE)

2KSR 33/35 (Teletypes)

PC02 (high speed paper tape
reader/punch)

KF09A (API)

TC02 (DECtape control)

2 TU55 (DECtape transports)

or

1 TU56 (Dual-DECtape transport)

LT19A (Teletype control)
RFOq lnF,Cdisk control) and
~~U9 !DF.rdisk plotterl or
KJ::HJ9 Cl~sk d.IlU contro.l

1-7

The following options currently supported by software may be added to improve

system performance (as noted):

Options

Additional 8192-word Core Memorr
Modules, Type MM15-A plus MK15A
(to a maximum of 32,768 words)

Additional DECtape Transports,
Type TU56, or IBM-compatible
Magnetic Tape Transports, Type
TU20A or TU20B and Tape Control
Type TC59D

~~i~~a;;cC~ine Printer, Type

200 CPM Card Reader, Type CR03B

Additional Teletype Line Units,
Type LT19E~ and Teletypes, Type
KSR33, KSR35 or equivalent
(standard system is configured
to handle up to 6 Teletype units
including the console unit. The
system may be expanded to handle up
up to 17 units including the
console unit).

Effect

Increases the maximum size of
both Background and Foreground
programs that can be handled
by the system.

Allows greater bulk storage
capability, simultaneous use
of storage media by more programs.
Since only one file may be open
at a time on IBM-compatible mag­
netic tape transports, more than
two Type TU20A or TU20B transports
may be desirable for some applica­
tions

Provides greater listing capabilities.

Provides another form of data
input to the machine.

Provides additional control
terminals useful for multi­
user programs.

MM09 Band C core memory modules on the PDP-9.

2 Two line printers supported on the PDP-9 are designated T 647
and LPJl9. ype

3 LTl9B on the PDP-9.

1-8

SECTION 2

BFKM1S - NON-RESIDENT BACKGROUND/FOREGROUND MONITOR

2.1 INTRODUCTION

The non-resident portion of the Background/Foreground Monitor, entitled BFKM15,

is identical in nature to the Keyboard listening section of the ADVANCED Monitor.

BFKM1S reads and interprets commands typed by the user at either the Background

control Teletype or the Foreground control Teletype.

There are three kinds of commands which the user may type:

a. Requests for information, such as a directory listing of unit ~

of the system device;

b. Allocation parameters, such as free core required, number of open

files, and I/O devices to be used;

c. Requests to load a system or user program.

2.2 LOCATION AND WHEN CALLED

BFKM1S is loaded from register 12000 of the highest core bank to the top of

memory and is transparent to the user since it is always overlayed.

When the Background/Foreground system is loaded or reloaded to start a new Fore­

ground job, the Resident Monitor is first loaded into lower core from unit ~

of the system device, either by use of the paper tape bootstrap or by typing

CTRL C1 at the Foreground control Teletype. The Resident Monitor then brings

the Non-resident Monitor into the top of memory. When operating in the Fore­

ground, BFKM15 runs with memory protect disabled.

After the Foreground user program has been loaded and has started to run, the

Non-resident Monitor is reloaded with memory protect enabled, to converse with

the user at the Background control Teletype. BFKM15 is also reloaded whenever

the Background job exits or the user types CTRL C at the Background control

Teletype.

In both the Foreground and the Background, after the user has given a command

to load a program, the Non-resident Monitor brings the System Loader into

memory from the system device, overlaying the Non-resident Monitor.

lRefer to Section 3.4 for a discussion of CTRL C.

2-1

2.3 INITIAL OPERATION

When BFKMl5 is started for the Foreground job, it must perform some initialization

of which the following is of interest:

a. Set the contents of .SCOM+25 to the initial size of free core
to be allotted to the Foreground job, in addition to the space
required by the Foreground user programs. The initial value
of .SCOM+25 is set during system generation. This value must
take into consideration the initial size of free core to be
allotted to the Foreground job plus the space required by the
Foreground user program. The user may change free core
allotted by issuing the FCORE command, described in Section 2.5.3.

b. BFKMl5 checks the entire Foreground Device Assignment Table
(.DATF) to see if any of those .DAT slots request the Teletype
handler and the unit number currently assigned to the Background
control Teletype. If so, those slots are changed to the Fore­
ground control Teletype and a message is output as in the follow­
ing example.

EXAMPLE 1: The Foreground control Teletype is TTl, the Background
control Teletype is TT~, and the initial contents of
.OATF slots I and 3 refer to TTA~. .DATF slots I and
3 will be changed to refer to TTAI and the following
message will be printed on the Foreground control Teletype:

FGO .OATS CHANGED TO TTAI:

I 3

FKMl5 V3A1

$

The Non-resident Monitor identifies itself to the Fore­
ground user by printing FKMl5 V3A and types $ whenever
it is ready to accept a command.

When BFKMl5 is started for the Background job, it performs initialization, of

which the following is of interest:

a. It builds the initial configuration of the Background .DAT table
(.OATB). Any .OATB slots which request a single user version of
a device handler (for example, OTF) will be changed to
the multi-user handler (DTA in this case) if it is already in
core for the Foreground job or if it is the resident system device
handler.

b. BFKM15 will check all Background .OAT slots to make certain that
they do not conflict with Foreground I/O. The Resident Monitor
contains, for this purpose, a table (.IOIN) which lists all I/O
handlers and unit numbers in use. The following occurs:

(1) If a handler for this I/O device is not already in core, the
Background .OAT slot is left untouched.

FKMl5 is the page mode monitor printout. F9/15 is the bank mode monitor
printout. Bank mode users should substitute the correct monitor printout
in further references.

2-2

(2) If a single user handler for this device is already in
core for use by the Foreground job, by definition the
Background job may not use this device. Therefore the
Background .OAT slot is cleared (set to zero).

(3) If the multi-user handler for this device is in core, but
the device unit number in question is not assigned to the
Foreground job, Background is allowed to share that

handler. unit ~ of the system device may always be
used by the Background job.

(4) If the Backgrou~d .OAT slot requests a multi-user handler
and unit number already assigned to the Foreground,
normally this is illegal and that .OAT slot will be
cleared. However, some users may wish to allow both jobs
to access the same unit. Normally, this is permitted
only for bulk storage devices (OECtape, Disk, etc.)
provided that the Foreground user typed the command
SHARE, explained in Section 2.S.7.

If the initial Background .OAT table was altered by clearing .OAT slots for the

reasons given above, a message will be output to the Teletype as in the following

example.

EXAMPLE 2: The Foreground job is running and has been assigned
device handlers and unit numbers OTAl, OTA2, TTAl,
TTA2, and PPA (paper tape punch handler - not
shareable). The initial Background .OAT table contains
conflicting requests as follows:

.OAT SLOT

-IS
-4

3
7

CONTENTS

OTAI
OTA2
TTA2
PPA~

The following will be printed on the Background control
Teletype when BFKMlS is first loaded:

BGO .OATS CLEARED BECAUSE OF FGO I/O:

-IS -4 3 7

FCONTROL TTAI

FGO OEV-UNITS:

TTA2
OTAI
OTA2
PPA~

BKMlS V3A 1

$

BKMlS is the page mode monitor printout. B9/1S is the bank mode monitor
printout. Bank mode users should substitute the correct monitor printout
in further references.

2-3

FCONTROL indicates which unit is the Foreground control
Teletype. The remainder of the message indicates what
I/O is being used by the Foreground job. The Monitor
identifies itself to the Background job user as BKMlS V3A
and signals that it is ready to accept a command by
printing $.

2.4 INFORMATION COMMANDS

The following information commands exist in Background/Foreground:

COMMAND USE

LOG To print a comment

REQUEST To examine .DAT slots

DIRECT To obtain a directory listing

INUSE To list information about core and I/O
in use by the Foreground.

2.4.1 The LOG Command (L)

This command is legal in both Foreground and Background and may be abbreviated

by the single letter L. It is used to record comments on the Teletype. Unlike

all other commands, LOG is terminated only by the character ALTMODE, so that

multiple comment lines may be typed.

EXAMPLE 3:

$LOG THIS LIN~
AS WELL AS THIS ON~
AND THIS ONE ARE IGNORED (ALTMODE)

$

2.4.2 The REQUEST Command (R)

This command is legal in both Foreground and Background and may be abbreviated

by the single letter R. It is used to examine the contents of all or part of

the user's .DAT table. The Foreground user may examine only the Foreground

.DAT table and th~ Background user, only the Background .DAT table.

FORM 1: R)

This requests a printout of the entire .DAT table. No example is given since

R is essentially the same request as in the ADVANCED Monitor System.

2-4

FORM 2: Ra.,..USER)

This requests a printout of the contents of all the positive numbered .DAT

slots. The result, again, is the same as in the ADVANCED Monitor System.

FORM 3: RJ<YZ)

Here, XYZ stands for the name of a system program; e.g., MACRO, PIP, F4, LOAD,

etc. The names given must be identical to those used to load the programs.

The information printed, as in the ADVANCED Monitor System, is those .DAT slots

used by the given system program. Since, at present, the only system program

load commands allowed in the Foreground are LOAD, GLOAD, PIP and EXECUTE, only

these four may be used in Foreground REQUEST commands.

2-4A

FORM 4: ~.DATuj, k, 1, ... , r, s)

Here, j, k, 1, etc., are .DAT slot numbers.

EXAMPLE 4:

TTAl DTA2 NONE LPA~

$

2.4.3 The DIRECT Command (D)

This command is legal in both Foreground and Background and may be abbreviated

as D. The format is:

where n = a unit number (~ through 7) on the system device. Directory listings

have been altered in BFKM15 to print the number of free blocks before the file

names. The Background user may not request directory listings of any units

owned by the Foreground job unless the Foreground user typed the SHARE command

(see below) .

2.4.4 The INUSE Command (I)

This command is legal only in the Background and may be abbreviated by the

single letter I. It causes the Monitor to print the first free core location

above the Foreground job, the Foreground control Teletype unit number, and

any other I/O used by Foreground.

EXAMPLE 5:

$1)

1ST REG ABOVE FGD

FCONTROL = TTA2

FGD DEV-UNITS:

$

DTAl
LPA~

2.5 ALLOCATION COMMANDS

323~1

The following commands assign parameters, controls, and conditions:

2-5

I

COMMAND

ASSIGN

FILES

FCORE

FCONTROL

BCONTROL

NEWDIR

SHARE

NOS HARE

7 CHAN

9 CHAN

MPOFF

MPON

PURPOSE

To assign I/O handlers to .DAT slots

To specify handler file capacity

To set up Foreground free core

To select Foreground control Teletype

To select Background control Teletype

To write a new file directory

To allow jobs to share same I/O units

To nullify effect of SHARE

To specify 7-channel MAGtape operation

To specify 9-channel MAGtape operation

To let Background access all of core

To nullify effect of MPOFF

2.5.1 The ASSIGN Command (A)

This command is legal in both Foreground and Background and may be abbreviated

by the single letter A. Its format and function are, with a few exceptions,

identical to the same command in the ADVANCED Monitor System.

The format is:

where

AuPDLNum, n, ... , p/ ..• /DDLNum, n, ..• , p)

DD stands for the two letter device name; e.g., DT for DECtape,
PP for paper tape punch, etc.

L represents the third letter of a device handler name and is
optional. If not given, the third letter is assumed to be A;
e.g., DTI = DTAI. The "A" version of a handler is the multi­
user, shareable handler, provided that one exists. PPA, for
example, is not a multi-user handler.

N is the unit number to go with the device handler and is also
optional. If the unit number is missing, N is assumed to be ~,
e.g., DTA = DTA~., Therefore, DT = DT~ = DTA = DTA~. The
letters m, n, •.. , p stand for .DAT slot numbers. The slash (/)
separates handlers.

To clear out a .DAT slot, assign NONE to it. If any error is detected in the

command, none of the assignments will be made.

The Foreground and Background users may make assignments only to their

respective .DAT tables. Foreground may not assign TTA~ if, for example, that

is the Background control Teletype. Since DTA is permanently in core with the

Resident Monitor (assuming that DECtape is the system device) DTE, DTF, etc.,

when assigned, will automatically be changed to DTA. This applies as well to

handler assignments made in the Background whenever the multi-user version of

the handler is in core for Foreground use.

2-6

Background .DAT slot assignments are tested to ensure that they do not conflict

with Foreground I/O, as explained in section 2.3. Whenever the Monitor detects

such a conflict, it will print the message:

OTHER JOB'S DEV-UNIT

To ensure that no conflict can occur when assigning the core-to-core handler,

COA., the unit number is preset to ~ for Foreground and 1 for Background. The

core-to-core handler disregards the unit number anyway.

2.5.2 The FILES Command (F)

This command is legal in both Foreground and Background and may be abbreviated

as F. The purpose of this command is to save core space by limiting the number

of I/O buffers assigned to multi-user device handlers. -
The format of the FILES command is:

where: DD stands for the multi-user handler or device name (e.g., DTA or DT).

N stands for an octal file count.

EXAMPLE 6: Assume that the Foreground user programs are being loaded
into core by the Foreground Linking Loader and that these
programs use .DAT slots 1 through l~. (.IODEV 1, 2, 3, ... ,
l~). Further, assume that all l~ slots were assigned to
DECtape, DTAn (the unit numbers are unimportant to this
discussion).

Most multi-user handlers, DTA being one of them, require
that I/O buffers be assigned to them externally. This is
done by the various loaders. In this example, the Fore­
ground Linking Loader, seeing that no FILES command was
given for the handler DTA, must assume that the user wants
l~ files open simultaneously. This will require l~ buffers,
each 6~~ octal words in size.

The FILES command is used to tell the loaders to assign a
given number of buffers for a particular multi-user handler
based on the maximum number of files that the user programs
will have open simultaneously. Each multi-user handler
has a maximum open file capacity; for example, DTA may have
up to 2~ octal. If l~ I/O buffers are assigned for DTA in
the Foreground, then only up to l~ may be assigned for
Background. The FILES command issued in the Foreground
specifies only Foreground I/O buffers. Thus, to limit the
number of I/O buffers assigned to the Background, the
FILES command, for the same multi-user device, must also be
issued in the Background.

At load-time, I/O buffers are set aside in core by the Loaders. The buffers are
recorded in a table within the Resident Monitor, .BFTAB, but are not flagged for

the exclusive use of particular device handlers. At run-time, each multi-user
2-7

handler which needs a buffer must request a buffer from the Monitor. The handler

must also release the buffer to the pool when it. is no longer needed.

The resident buffer 1 , permanently assembled into the Resident Monitor, is always

available to the Background job. In the event that the Bac~ground job were to

.IODEV only one .DAT slot which is linked to a multi-user handler that requires

external buffers, (DTA. for example) the user could save 6~~ registers by

typing:

that is, assign one less buffer than is needed.

In the FILES command, the pseudo-device .• is recognized. The size of the

external buffer for this pseudo-device is l~~ octal. Some functions in multi­

user handlers may require a smaller buffer size than others. If the user were

only to use such function types, he could type, for example, $FILESuPTu? and

$FILESu"ur. In DTA., .TRAN and .MTAPE commands only require the smaller buffer.

2.5.3 The FCORE Command

This command is legal only in the Foreground and may not be abbreviated.

The format of the FCORE command is:

where N is the amount (in octal) of free core requested for the Foreground job.

As in the ADVANCED Monitor System, unused (free) core is defined by the

address pointers in the registers .SCOM+2 and .SCOM+3, the lowest and the

highest free core location, respectively. Since both the Foreground and the

Background jobs have their own separate free core areas, the values in .SCOM+2

and .SCOM+3 are changed appropriately whenever control passes from one job to

the other.

The FCORE command allows the Foreground user to specify how much free core his

program will need, in addition to that required to load his program. The default

value for FCORE is specified during system generation. It is possible for all

of core to be assigned to Foreground. This means, however, that there will be

no room for Background to run, which is perfectly legal. If this is the case,

the message:

SORRY, NO ROOM FOR BGD

IThe resident buffer (6~~8words) is assumed to be large enough to be used by
any multi-user handler which might be used by the loaders.

2-8

is printed on the control Teletype.

2.5.4 The FCONTROL Command

This command is legal only in the Foreground and may not be abbreviated. It is

used to transfer control from the control Teletype to some other Teletype unit.

The format of the FCONTROL command is:

where: N is the number (octal) of any Teletype on the system.

If N is already the Foreground control Teletype, the command is ignored. If N

is the current Background control Teletype, the two Teletypes are swapped but

no message will be printed to this effect. Changing the Background control

Teletype may affect Foreground .DAT slots and an appropriate message will be

printed on the Foreground control Teletype. This is fully explained in the next

section on the BCONTROL command.

When FCONTROL changes the Foreground control Teletype, the following action

takes place:

a. The following message is printed on the old control unit:

CONTROL RELINQUISHED

b. The system is reloaded from the system device.

c. The Monitor prints

FKM15 V3A
$

on the new Foreground control unit and is ready to accept
commands there.

2.5.5 The BCONTROL Command

This command is legal both in the Foreground and in the Background and may not

be abbreviated. It is used to transfer control from the Background control Tele­

type to some other Teletype unit.

The format of the BCONTROL command is:

BCONTROLuN)

where N is the number (octal) of any Teletype on the system. This command is

2-9

illegal and is ignored if

a. N is the Foreground control Teletype

b. N has been .IODEVed by a Foreground user program

c. N is already the Background control Teletype

If the Background control Teletype is changed by either a BCONTROL or FCONTROL

command in the Foreground, all Foreground .DAT slots which now refer to the new

Background control unit will be changed to the Foreground control unit to avoid

I/O conflict. Should that situation occur, the following example shows what

would be printed on the Foreground control unit:

FGD .DATS CHANGED TO TTAI

-6 2 7 IfJ

If BCONTROL is issued in the Background, the following action takes place:

a. The following message is printed on the old control unit:

CONTROL RELINQUISHED

b. 1C is printed on the new unit

c. The Non-resident Monitor (BFKM15) is reloaded for Background
from the system device

d. The Monitor prints

BKM15 V3A
$

on the new Background control Teletype and is ready to
accept commands there.

2.5.6 The NEWDIR Command (N)

This command is legal in both Foreground and Background and may be abbreviated

by the single letter N. Just as in the ADVANCED Monitor System, this command

allows the user to write a new file directory on some unit of the system device ..

However, space will not be reserved for a tQ (CTRL Q) area.

The format of the NEWDIR command is:

NJII)

where M is some unit number (octal) on the system device. Unit fJ may not be

used. The Background may not write a new file directory on a unit that belongs

to the Foreground unless the Foreground has issued the SHARE command (see below) •

2-10

2.5.7. The SHARE Command (S)

This command is legal only in the Foreground and may be abbreviated by the single

letter S. Its purpose is to allow the Background job to assign and to use the

same units of any I/O devices that belong to the Foreground job, provided that

they are unit-shareable devices 1 (DECtape, Disk, MAGtape, etc.) and that the

device handlers are the multi-user versions. The user must be careful when

allowing this condition to occur. The "tape" could be fouled if both jobs were

to try to use the same unit for output at the same time.

The SHARE command also removes the restriction that the Foreground user program

may not use unit ~ on ~he system device. Normally, this unit is reserved for the

Background.

The format for this command is:

SHARE)

2.5.8 The NOSHARE Command

This command is legal both in Foreground and in Background and may not be

abbreviated. It nullifies the effect of any previous SHARE command; i.e., does

not allow the Background to share device units with the Foreground.

When NOSHARE is issued in the Background, it may cause some Background .DAT slot

to be cleared. A message, as in Example 2, will be printed to that effect.

The command format is:

NOS HARE)

2.5.9 The 7CHAN Command (7)

This command is legal only in the Foreground and may be abbreviated by the

single character 7. The effect of this command is to clear bit 6 in .SCOM+4 to

inform the Magtape device handlers that the default assumption is 7-channel

operation.

The format of the 7CHAN Command is:

7 CHAN)

iNormally, only mass storage devices are unit-shareable.

2-11

2.5.10 The 9CHAN Command (9)

This command is legal only in the Foreground and may be abbreviated by the single

character 9. It sets bit 6 in .SCOM+4 to inform the Magtape device handlers that

the default assumption is 9-channel operation.

The format of the 9CHAN command is:

9CHAN)

2.5.11 The MPOFF Command

This command is legal only in the Foreground and may not be abbreviated.

The format is:

MPOFF)

Under normal circumstances, the Background job operates in user mode (memory

protect enabled) with the memory protect boundary register set from the contents

of .SCOM+32. The MPOFF Command does not disable memory protect for Background;

it causes the contents of the boundary register to be set to zero, independent

of .SCOM+32.

The effect this has is to allow the Background job to reference, modify, and

transfer to any location in core memory. Any attempt to do so via a system

macro call (CAL sequence, such as .WAITR) will not result in a terminal error,

.ERR ~36. Normally, the Monitor's CAL handler would validate Background argu­

ments by comparison with .SCOM+31 or .SCOM+32, as appropriate.

Since the Background still runs with memory protect on, lOT instructions,

non-existent memory references, double XCT instructions, HLT, and OAS will

trap to the Monitor. OAS l is executed by the Monitor whether or not the MPOFF

command was issued. lOT instructions are executed by the Monitor for the Back­

ground job (this includes lOT's that cause a skip) when MPOFF is in effect.

The reader is cautioned to avoid the use of instructions, such as CAF, EBA,

DBA, ISA, which could play havoc with the system if executed in the Background.

The MPOFF facility was provided to allow a limited amount of Foreground debugging

by using DDT in the Background (strictly for examination and modification--no

breakpoints) .

2.5.12 The MPON Command (M)

This command is legral in both Foreground and Background and may be abbreviated by

the letter M.

lOAS must not be microcoded with any skip instruction.

2-12

The format is:

MPON)

The MPON command nullifies the effect of MPOFF, thereby protecting the Foreground

job from the Background job in the normal manner.

2.6 PROGRAM LOAD COMMANDS

In the Foreground, only four load commands are legal: LOAD), GLOAD), PIP), and

EXECUTE L..I XXx). EXECUTE may be abbreviated by the single letter E. LOAD and

GLOAD have the same meaning and effect as in the ADVANCED Monitor System.

The following program load commands exist in the Background:

PATCH)
CHAIN)
F4)
F4A)
EDIT)
PIP)
EXECUTEuXXX)
MACRO)
DTCOPY)

2.7 FINAL OPERATION

MAC ROA)
LOAD)
GLOAD)
DDT)
DDT~S)
DUMP)
UPDATE)
BFSGEN~
SRCCOM)

After BFKM1S has received a program load command from either the Foreground or the

Background, it will bring the System Loader (.SYSLD) into the top of core over­

laying BFKM1S. In the Foreground, .SYSLD is actually the Foreground Linking

Loader. In the Background, .SYSLD loads Background System Programs, including

the Background Linking Loader.

2.8 CONTROL CHARACTERS

While control is in BFKM1S, the user may type CTRL P to terminate execution of

the current command and to restart. Restart in this manner does not nullify the

effect of previously executed commands; e.g., will not reset the .DAT table to

its initial configuration. To reload the Monitor for the current job, the user

may type CTRL C. 1

lRefer to section 3.4 for a discussion of CTRL C.

2-13

2.9 SUMMARY OF COMMANDS

LEGAL IN ABBREVIATION COMMAND EXAMPLE

F B A ASSIGNu DTAl 2, 3/TT1u 1 , 4/DT -4)

F B BCONTROLu.2)

B BFSGEN)

B CHAIN)
F 7 7 CHAN)
F 9 9 CHAN)

B DDT)
B DD'fNS)

F B D DIRECT ~)
B DTCOPY)
B DUMP)

B EDIT)
F B E EXECUTE...){Xx)

B F4)
B F4A)

F FCONTROL~l)

F FCORE..}4~1J
F B F FILES~T..}J
F B GLOAD)

B I INUSE)
F B LOAD) .

F B L LOGu (ALTMODE)
B MACRO)
B MACROA)

F MPOFF)
F B M MPON)

F B N NEWDIRuS)
F B NOSHARE)

B PATCH)
F B PIP)
F B R REQUEST~XX) or REQUESTuPSER) or

REQUESTu.DAT j,k,~ or REQUEST)

F S SHARE)
B SRCCO~Y
B UPDATR)

2-14

SECTION 3

CONTROL CHARACTERS

3.1 PURPOSE

Control characters are single characters, typed by the user at a Teletype, which

request special action by the Monitor. Except for the character, RUBOUT, all

control characters are formed by holding down the control key, CTRL, while

striking the appropriate letter key.

The characters CTRL U a.nd RUB OUT are used as "erase" characters during Teletype

input or output. CTRL C, CTRL P, CTRL S, and CTRL T are used to interrupt the

operation of the current program and to transfer control elsewhere. CTRL R

is used to restart I/O after a not-ready condition has been detected for some

device. CTRL Q stops the current job and dumps memory onto a specified area of

some unit of the system device. CTRL D effects an end-of-file condition during

Teletype input.

3.2 CONTROL TELETYPE

In the Background/Foreground System, which may accommodate up to 17 (decimal)

Teletype units 1 , two Teletypes are designated as control Teletypes (one for

Background and one for Foreground). Initially, it is assumed that unit ~ (the

console Teletype) is the control Teletype for Background and unit 1 is the con­

trol unit for Foreground 2 •

Control Teletypes differ from the other units in two ways:

a. They are used to converse with the Non-resident Monitor and

system programs in order to set up parameters and conditions

for a job and to initiate the loading and execution of programs.

b. Certain control functions are honored only at control Teletypes;

i.e., they are ignored if they are typed on the other Teletype

units (see Section 3.4 and following).

IThe system as shipped to customers will handle a maximum of 6 Teletypes. Expan­
sion requires a simple reassembly of the code for the Resident Monitor.

2The initial control Teletypes are specified during system generation.

3-1

3.3 TELETYPE HANDLER

The multi-user Teletype handler (TTA) which is imbedded in the Resident Monitor

makes special tests for control characters when it receives typed input. Normally,

when no .READ request has been issued to a Teletype, characters received from

that unit are ignored unless they are control characters. A description of the

action taken in each case is given in the following paragraphs.

3.4 CTRL C (1(:)

This character is ignored unless typed at a control Teletype. It is echoed to

the teleprinter as tC.

If a Background job is not in core and the user types CTRL C at the Foreground

control Teletype, tc is echoed to it and the Resident Monitor is reloaded by

the resident bootstrap.

If a Background job is in core when CTRL C is typed on the Foreground control

Teletype, tB is echoed to it to indicate that a Background job exists, a "bell"

is sent to the Background control Teletype, and a flag is set indicating that

CTRL C has been typed in the Foreground. What happens thereafter depends on

which job is the "confirmer", a parameter set by the System Generator. Once

CTRL C has been entered on the Foreground control Teletype, the Foreground job is

terminated.

When Foreground is the "confirmer", the second time CTRL C is typed on the

Foreground control Teletype tc is echoed to it and the Resident Monitor is

reloaded.

When Background is the "confirmer", CTRL C typed on the Foreground control

Teletype causes ~ to be printed on the Foreground control Teletype and a "bell"

to be sent to the Background control Teletype. Thus Foreground cannot abort

Background. When CTRL C is typed on the Background control Teletype, 1(: is

echoed to it and then the Resident Monitor is reloaded by the resident bootstrap.

In the normal case where Foreground is running and CTRL C is typed on the Back­

ground control Teletype but not on the Foreground control Teletype, the Fore­

ground job is not affected. The Background job is aborted and the Non-resident

Monitor is reloaded to start up a new Background job.

The "confirmer" flag is .SCOM+I-"4.

-" = Foreground.

I (nonzero) = Background.

3-2

3.5 CTRL S (tS)

CTRL S is recognized only at a control Teletype and, specifically, only after

the Monitor has printed ~. This is the result of loading a user program by

giving the command $LOAD (instead of $GLOAD) to the Non-resident Monitor. Both

commands bring in the Linking Loader to load user programs. $GLOAD means

LOAD-AND-GO. $LOAD means load the user programs, signal the user that this has

been done (by printing ~), and then wait for the go-ahead signal (when the

user types CTRL S).

This feature allows the user to set up I/O devices before starting his program.

When CTRL S is typed by the user and is accepted by the Monitor, ts is echoed

back to the teleprinter.

3.6 CTRL T (tT)

This character is recognized only at the Background control Teletype when the

user has called in the system program DDT. When CTRL T is typed and accepted,

it is echoed to the teleprinter as tT.

CTRL T provides a means of interrupting the execution of a user program and

transferring control to DDT. When CTRL T is typed, the Monitor saves the

status of the Link, page/bank mode, and memory protect along with the interrupted

PC in .SCOM+7 so that DDT will be able to return control to the user program at

the point at which it was interrupted. The contents of the AC at the time of

interruption is returned in the AC and saved by DDT.

3.7 CTRL P (tP)

CTRL P is the interrupt and restart character available to user and system

programs. When it is typed on some Teletype and is accepted by the Monitor, tp

is echoed to the teleprinter on that unit.

In the Background/Foreground system there are two types of CTRL P functions:

1. NORMAL CTRL P and

2. REAL TIME CTRL P.

The two CTRL P functions are described, individually, in paragraphs 3.7.1 and

3.7.3.

Setting a CTRL P restart address (ADDR) is accomplished by issuing the I/O

MACRO .INIT to any .DAT slot linked to the Teletype handler.

3-3

The format of the .INIT macro is:

.INIT A,M,P+ADDR

which is expanded by the MACRO assembler into the following machine code:

where A

LOC
LOC+l
LOC+2
LOC+3

a .DAT slot number (octal radix)

~ Input
M transfer mode

1 Output

ADDR a IS-bit address (octal) of a restart point in the program
or of the entry point of a closed real-time subroutine.

P priority code Normal CTRL P

Mainstream (REAL-TIME)

No change to CTRL P
Priority level of the .INIT
API level S
API level 6
API level 7

Background requests to an API level (4~~~~~ - 7~~~~~) will be converted to

Mainstream since Background programs cannot use the API software levels.

3.7.1 NORMAL CTRL P

A .INIT to set up a NORMAL CTRL P (priority code ~) may be done only to a

control Teletype. NORMAL CTRL P was so named because the action taken when the

user types CTRL P is nearly the same as in the ADVANCED Monitor System.

When a control Telet.ype has been set up for a NORMAL CTRL P and that character

is typed by the user, the Teletype handler will abort all Teletype I/O for

that job (Background or Foreground). The Monitor will, when control is at

Mainstream, save the status of the Link, page/bank mode, and memory protect

with the interrupted PC in .SCOM+IO (whose contents are swapped in and out for

Background and Foreground), return the interrupted AC to the AC, and transfer

control to the restart address ADDR as specified by the last .INIT.

NOTE

When the Monitor processes a CTRL T or a NORMAL CTRL P, it
kills any pending mainstream real-time routines to be run
by zeroing the contents of .SCOM+57 (Foreground) or .SCOM+61
(Background). The user's program (if NORMAL CTRL p) or the
user (if CTRL T) must zero the entry points of all his main­
stream real-time routines. CTRL P and CTRL T do not affect
API level real-time requests.

3-4

If the restart address ADDR = ~, CTRL P to the given Teletype will be disabled;

i.e., ignored if typed (except if P = 3~~~~~).

3.7.2 No Change

If .INIT for a given Teletype unit contains the priority code 3~~~~~, the CTRL P

restart address for that unit is not changed. DDT uses this so that it can .INIT

to abort a .READ to the Teletype without altering the CTRL P address set up by the

user's program.

3.7.3 REAL-TIME CTRL P

A .INIT to set up a REAL-TIME CTRL P may be done to any Teletype unit. When so

set up and the user types CTRL P, I/O to that Teletype is aborted. Control

eventually goes to a closed real-time subroutine, ADDR, at the priority level

defined by P, in the same manner as for a .REALR, .REALW, or .TIMER request.

If the restart address ADDR = ~, CTRL P to the given Teletype will be disabled,

i.e., ignored if typed.

REAL-TIME CTRL P is useful for multi-user programs, for instance multi-user

FOCAL, where each Teletype has the ability to interrupt and restart.

3.8 CTRL R (tR)

In the Background/Foreground system, I/O device handlers which detect a not-ready

condition will request the Monitor to print a message on the appropriate control

Teletype. The line printer handler message, for instance, would be:

LP~ NOT READY

The unit number has no significance for the line printer. Some single-unit

handlers, such as the card reader handler, use the unit number designation to

indicate the cause of the not-ready condition. After the message has been

printed, the user should ready the device and then type CTRL R, which is

echoed as tR. I/O for that device is then resumed.

While the Monitor is waiting for the user to type CTRL R, the user's program

continues execution provided that it is not hung up waiting for completion of

I/O from the not-ready device. The Monitor can handle one not-ready condition

per job. Should a second not-ready request occur while another is being

processed, job execution will be aborted with a .ERR ~~4 terminal error.

3.9 CTRL Q (to)

CTRL Q may be typed at any time, but it is ignored if it is not issued at a

control Teletype.

3-5

The purpose of typing CTRL Q is to stop program execution and to dump all of

core memory onto a specified area of some unit on the system device. The dump

starts with block l~l octal on the given unit and overlays any data that may

have existed in that area on the output device. A 16K system will dump l~~

octal blocks (1~1-2~~); a 24K system, 14~ octal blocks (l~l - 24~); a 32K

system, 2~~ octal blocks (l~l - 3~~).

To ensure that CTRL Q will not overlay useful data, the user must employ the

system r-rogram PIP to write a new file directory on that unit, using the (S)

switch to reserve space for CTRL Q. For example:

>NwXX\..4,...l.(S))

where XX is the device name and u the unit number. Note that the size of the

CTRL Q area reserved is based on the amount of core existing in the system in

whlch the new directory is written. The area reserved on a DECtape in a 16K

system is not sufficient to do a protected CTRL Q in a 24K or 32K system.

When the Monitor accepts CTI~ Q, it first terminates execution of the job

(Foreground if Foreground CTRL Q, Background if Background CTRL Q). This

involves calling all device h-ndlers tied to that job to stop I/O, clearing all

Monltor queues of entries for that job and disabling all control characters for

that job except CTRL C.

The Monitor then prints tQ on the appropriate control Teletype and reads one

character. The user must then type the number of the unit on which the dump

is to occur. Unit zero may not be used. If the SHARE command is not in effect,

a dump may not be done to a unit which belongs to the other job. If the

Monitor rejects the typed character, it prints tQ again and waits for another

character.

When the unit number is accepted, the dump takes place; then the Monitor is

automatically reloaded. A Background CTRL Q does not affect Foreground. A Fore­

ground CTRL Q, on the other hand, aborts the Background job. It is not possible

to load and restart a core dump in Background/Foreground.

'3.10 CTRL U (@)

CTRL U may be typed at any Teletype unit. If a .READ or .REALR was issued to

some Teletype and the user decides he wants to "erase" everything he has

typed for that read request, he may type CTRL U, which will be echoed to the

teleprinter as @. The .READ or .REALR will still be in effect and he may then

retype the input.

vJhile output to a Teletype is being done as a result of a . WRITE or . REALW,

3-6

the user may type CTRL U to terminate the write. In this case nothing is echoed

to the teleprinter.

3.11 RUB OUT (')

This character is recognized only while the user is typing input to satisfy a

.READ or .REALR request. When .typed, RUBOUT deletes the last input character.

For example, if the user has typed ABC and then RUBOUT, the ~ will be "erased".

If he now types another RUBOUT, the B will be 'erased". Every time a character is

so removed, the character ~ is echoed to the teleprinter.

3.12 CTRL D (tD)

The character CTRL D is recognized at all Teletypes and is echoed back as tD.

When typing input, CTRL D effects an end-of-file condition by terminating the

.READ or .REALR request and storing the end-of-file, ~~1~~5, in the input line

buffer header. Since the word pair count returned is a 1, any characters

typed prior to the CTRL D for the same read request will be lost.

3-7

SECTION 4

LOADERS

4.1 INTRODUCTION

There are three program Loaders in the Background/Foreground system. On the

system file directory they are listed as .SYSLD SYS1, BFLOAD BIN 2 and

EXECUT BIN 2 •

. SYSLD is an absolute system program that functions as two loaders: when it is

called in for Foreground loading, it is the Foreground Linking Loader; when it

is called in for Background loading, it is the Background System Program

Loader. BFLOAD is the Background Linking Loader.

EXECUTE operates in both Foreground and Background as a loader of overlay programs

(XCT files) built by the CHAIN system program. A description of CHAIN and

EXECUTE is given in the utility manual.

4.2 FOREGROUND LINKING LOADER

Link loading of the Foreground job is initiated by typing GLOAD (Load-and-Go)

or LOAD (Load-and-Pause) to the Monitor at the Foreground control Teletype.

The Foreground Link Loader (.SYSLD) is then brought into the top of memory,

overlaying the Non-resident Monitor. The following message will then be

printed:

FGLOAD V2A
>

The> signals the user that he may now type in his command string.

The command string format is the same as for the Linking Loader in the ADVANCED

Monitor System:

>options+mainprog, others, ... ALTMODE

lOperates in bank mode.

20perates in page mode; operates in bank mode only when running in bank mode.

4-1

I

4.2.1 Option Cha-acters and their Meanings

Character

P

C

G

Meaning

Print program names and their assigned relocation
factors

Print common block names and their assigned
locations

Print global symbol names and their definitions

4.2.2 Use of + Terminator

Prior to the terminator + all characters except option characters are ignored.

Carriage return pLeceding the + starts a continuation line headed by>. ALTMODE

preceding the + restarts the Loader; therefore, ~o loading is done unless the

character + appears in the command string.

If no option characters precede t.he ~-, the default assumption is that no memory

map is to be prinLed.

After the +, type the program names (main program first - no extensions)

separated by comma or carriage return. Terminate the command string with

ALTMODE. Before the terminating ALTMODE has been typed, the Loader may be re­

started by typing CTRL P. All files named in the command string may contain I

or more program units, and all program units will be loaded in each file named.

4.2.3 Sequence of Operation

Once the command string has been accepted, the Loader will perform the following

sequence of operations:

a. Load to end of file all user programs! specified in the command

string, from .DATF -4. These programs are loaded from the bottom

of core up, starting at the top of the Resident Monitor. Calls to

external library routines via .GLOBL, common block definitions, and

.IODEV requests are saved in the Loader's symbol table, built from

the bott0ill of the Loader down. Programs containing executable code

(wh~ch excludes BLOCKDATA subprograms) are relocated such that

they do not overlap core page boundaries in the page mode system or

core bank boundaries in the bank mode system.

1 These programs will operate in page mode and must not execute the EBA
instruction which would change operation to bank mode. All programs
in the bank mode system operate in bank mode only. Avoid BBA lnstructions
in the bank mode system. Although EBA instructions have no effect on the
PDP-IS, they are equivalent to a LEM (leave extend mode) on the PDF-9.
LEM has disas:6rous results during a background/foreground system run.

4-2

b. If a library search is necessary and the contents of .DATF -S is

non-zero, the Loader will seek the user library, .LIBRS BIN, via

that .DAT slot, and will load all requested library routines l

which it finds. I/O device handlers must not be in the user

library.

c. If a library search is still necessary for non-I/O routines,

the Loader will search the system arithmetic libraryl,

.F4LIB BIN, via .DATF -7 in the same manner as above.

I/O device handlers must not be in .F4LIB.

d. If any I/O handlers l must be loaded, the Loader searches

through the system I/O Library, .IOLIB BIN, via .DATF -7.

After this has been done, program loading has terminated.

e. At this point, all undefined common blocks are defined and

assigned core space. Common blocks are allowed to overlap

page boundaries.

f. If there are still some undefined global symbols, they will

be matched with common block names and, if a match is found,

defined as the base address of the matching common block.

g. For all multi-user device handlers in use for the user's

programs, external I/O buffers are assigned core space (if

necessary) and recorded in .BFTAB within the Resident Monitor.

The number of such buffers depends on the $FILES counts given

by the user to the non-resident Monitor or, if no counts

given, the number of .IODEV'ed .DAT slots calling those

handlers. I/O buffers are allowed to overlap core boundaries.

h. The amount of free core assigned to the Foreground job

(contents of .SCOM+2S) is added to the current size of

assigned Foreground core to determine the upper limit of the

Foreground job. Pointers to the first and last registers in

Foreground free core are then stored in .SCOM+2 and .SCOM+3,

respectively.

i. The Loader now exits to the Resident Monitor. The Resident

Monitor prints tS and waits for the user to type CTRL S, if

the Loader is called by the LOAD command. Control then is

given to the start address of the user's main program, which

was stored in .SCOM+6 by the Loader.

4.3 BACKGROUND SYSTEM LOADER

Loading of all system programs is done by the System Loader (.SYSLD), which

~These p:ogram~ will operate in page mode and must not execute the EBA
~nstruct~on wh~ch would change operation to bank mode. All programs in the
bank mode system operate in bank mode only.

4-3

also performs link loading for the Foreground. Initiation of the loading cycle

is done when the user, in the Background, types a request to the Non-resident

Monitor to load a system program; e.g., $PIP, $EDIT, etc.

The Non-resident Monitor puts a code number in .SCOM+5 to tell the System Loader

which program to load. The System Loader is then loaded into upper core overlaying

the Non-resident Monitor. When loading a Background program other than the

Linking Loader or EXECUTE, .SYSLD contains a SYSBLK which lists the .DAT slots

used by each system program and information about the load address, start

address, size and initial block number on the system device for each system

program. SYSBLK exists as block 4~ on the system device and is also used by

PATCH.

To load a system program in the Background, .SYSLD performs the following

operations:

a. For each .DAT slot (with non-zero contents) required by a system

program, it determines which device handlers 1 are needed; and, if

a library search is necessary, it brings in the handlers from the

file .IOLIB BIN on the system device through .DATB -7. They are

loaded starting immediately above the top of the Foreground job.

b. I/O buffers are then assigned core space immediately above the

handlers as in the description in paragraph 4.2.3g. The hardware

memory protect bound is set above the handlers and buffers.

c. If the load command was $LOAD, $GLOAD, $DDT, or $DDTNS, the

Background Link Loader (BFLOAD) 1, a relocatable file, is loaded

starting just above the new hardware protect bound.

d. For all other system programs (excluding EXECUTE) 1, .SYSLD builds

a short routine just above the hardware protect bound to bring in

the program 2 overlaying the System Loader.

e. Finally, .SYSLD exits to the Resident Monitor 2,which establishes

the new hardware protect bound and then passes control to the

system program via the address stored by .SYSLD in .SCOM+5.

The Loader allows the loading of absolute .LOC programs prior to loading any

relocatable files. This permits the user to load programs which may overlay

parts of the Resident Monitor. Mixing of absolute and relocatable .LOC's in

the same program file is not allowed and will be flagged as an error. The

I loperate(s) in page mode; operates in bank mode only when using bank mode system.

20perates in bank mode.

4-4

Loader ensures that the relocatable programs do not overlay any of the absolute

programs.

The Foreground Linking Loader is also responsible for loading the system program

Plp l in the Foreground. The Foreground version of PIP exists in the system as

the relocatable file PIP BIN. It is loaded by typing PIP as a command to the

Non-resident Monitor2.

4.4 BACKGROUND LINKING LOADER

Lxternally, the Background Linking Loader (BFLOAD) looks nearly the same to the

user as the Foreground Linking Loader. When it has been loaded, it prints the

following message on the Background control Teletype:

BGLOAD V2A
>

The command string processing is identical with that of the Foreground Linking

Loader (see 4.2).

If the Load command was $DDT or $DDTNS, the system program DDTl (a relocatable

file) has already been loaded into the top of core via .DATB -1, prior to

reading in the command string.

Once the command string has been accepted, the Loader will perform the following

sequence of operations:

a. Load to end of file all user programs l specified in the command

string from .DATB -4. These programs are loaded from the top

of core down. Calls to external library routines via .GLOBL,

common block definitions, and .IODEV requests are saved in the

Loader's symbol table, built from the top of the Loader upwards

in core. Programs containing executable code (which excludes

BLOCKDATA subprograms) are relocated such that they do not overlap

page boundaries.

b. Same action as described in 4.2.3b, using .DATB -5.

c. Same action as described in 4.2.3c, using .DATB -7.

d. If any I/O handlers must be loaded, the Loader searches through

.IOLIB BIN via .DATB -7. The handlers are relocated to run in

lower core, that is, as if they were being loaded upwards in

lOperate(s) in page mode; operates in bank mode only when using bank mode system. I
20perates in bank mode.

4-5

I

core, st~~~ing just above the Foreground job. They may, however,

be loader ~bove the Loader if the Loader is in the way.

e. Same act_·., as described in 4.2 e, f, g. Common blocks are

assigned space in upper corej I/O buffers, in lower core.

f. The hardware memory protect bound is established above the I/O

handlers and buffers. Common blocks may go below the hardware

protect bound.

g. If DDT was loaded and a symbol table was requested (not

$DDTNS), the symbol table is compacted to delete entries

not needed by DDT. The Loader determines where the symbol

table should be movedj and, along with the I/O handlers which

were loac",d into upper core, builds a special .EXIT list which

tells the Resident Monitor where to block transfer each segment.

The DDT symbol table may be loaded below the hardware protect

bound.

h. The Loadrr then exits to the Resident Monitor, which performs

the block transfers, sets the new hardware memory protect bound,

and transfers control to DDT (via .SCOM+S) or to the user

program (via .SCOM+6), pausing to print ~ and waitinq for the

user to type CTRL S if the Load command was $LOAD.

4.5 LOADING XCT FILES

XCT files are overlay programs i built by the system program CHAIN and run by
1

the system program EXECUTE. Loading of an XCT file in either the Foreground

or the Background is initiated by typing E...,.xXX or EXECUTEuXXX to the Monitor

{where XXX is the file name without the extension XCTI.

The Non-resident Monitor, BFKM15, stores the filename (.SIXB'I' format) in

.SCOM+l,7, 11" and 111 for the Foreground, or .SCOM+112, 113, and 114 for the

Background. If EXECUTE's .DAT slot requests the resident system device

handler 2 , the Monitor stores "XCS" as the extension. If EXECUTE's handler is

different from the resident handler, the Monitor stores the extension "XCT".

The System Loader is then called in, overlaying the Non-resident Monitor in

upper core.

4.5.1 EXECUTE in the Foreground

The following operations are carried out when EXECUTE is used in the Foreground:

1 These programs will operate in page mode and must not execute the EBA instruc­
tion which would change operation to bank mode. All program5 in bank mode
system operate in bank mode only.

2 Runs in bank mode, unlike most I/O handlersj in the bank mode system, all I/O
handlers run in bank mode only.

4-6

a.

b.

EXECUTE'S handler, if different from the resident handler, is

loaded immediately above the Monitor.

The System Loader, which must open the XCT file, checks the

extension. If "XCS", meaning EXECUTE's handler is the

resident handler, the file is loaded via .DAT -7. If "XCT",

it is loaded via .DAT -4. The extension is then set to "XCT".

c. The XCT file is read and checked that it was indeed built to be run

in the Foreground of a PDP-IS in page mode. In the bank mode system,

The XCT file is checked to ensure that it was built to run in bank mode.

d. The upper and lower core limits of the overlay structure are

saved and a check is made that it does not overlay the

Resident Monitor.

e. The .IODEV bit map in the XCT file is decoded. The loading

bound is set immediately above the area of core to be

occupied by the overlay structure and then all I/O handlers

required by the XCT file are loaded. Also, another copy of

EXECUTE's handler is loaded (the first copy will be overlayed).

f. EXECUTE is loaded.

g. Same action as described in 4.3.4g and h.

h. The Loader exits to the Resident Monitor. The Monitor gives

control to EXECUTE, whose start address is stored in .SCOM+6

by the Loader.

4.S.2 EXECUTE in the Background

The following operations are carried out when EXECUTE is used in the Background:

a. EXECUTE's handler, if different from the resident handler, is

loaded irrmediately above the Foreground job.

b. Same action as described in 4.S.lb.

c. The XCT file is read and checked that it was built to be run in the

Background of a PDP-IS in page mode. In the bank mode system, the

XCT file is checked to ensure that it was built to run in the bank

mode.

d. The lower core limit of the overlay structure is saved and,

when EXECUTE has been loaded, a test is made to ensure that

they do not overlap.

e. The .IODEV bit map in the XCT file is decoded and then any

I/O handlers needed by the file are loaded.

4-7

I

I

f.

g.

Same action as described in 4.3.4g.

The hardware memory protect bound is set above the I/O buffers

and EXECUTE is loaded starting above this bound.

h. Same action as described in 4.3e.

4.6 ERROR CONDITIONS

The number of differe~t error messages in the Loaders has been ex­

panded in Background/Foreground. These are tabulated in Appendix II.

The error number is passed on to the Resident Monitor by a special

error .EXIT macro (CAL sequence). Loader errors are non-recoverable

After the error message is printed, the Monitor will automatically be

reloaded to start another job.

4-8

4.7 SYSTEM MEMORY MAPS

Memory Map A

16K

8K -----------

o

The System Bootstrap is loaded at the top of

core via the paper tape reader in HRM format.

4-9

.SCOM +

.SCOM +

Memory Map B

~~-L-L-L~+--System Bootstrap

8K ---------

o

(--Resident Monitor includ­
ing the multi-unit
Teletype handler and
the system device handler,
(DTA. or DKA.)

The System Bootstrap automatically loads the

Resident Monitor from the system device into lower

core.

4-10

Memory Map C

• SCaM--~)16K

.scaM +

.scaM +

SK

o

~Non-resident Monitor

~Resident Monitor

The Resident Monitor loads the Non-resident Monitor

(via the resident system device handler) into upper

core, overlaying the System Bootstrap. within

itself the Resident Monitor contains a simpler copy

of the bootstrap which is used whenever the Resident

Monitor is to be reloaded. The bootstrap restart

address is location IllS"

4-11

Memory Map D

~ __ ~Foreground Linking
Loader (. SY SLD)

.SCOM + ~3----~r~~~~~

.SCOM +

.SCOM +

o

l+-____ Resident Monitor

To load a user FOREGROUND program, the Non-resident

Monitor brings in the Foreground Linking Loader

(.SYSLD), overlaying itself.

4-12

• SCaM --~

.SCOM +

.SCOM +

.SCOM +

.SCOM +

Foreground
Job 8

o

Memory Map E

t-'-~~"--"--"--I

~Foreground Linking Loader
(. SYSLD)

~Loader's I/O Handlers

+---Loader's Symbol Table

k-:1'T"7""':"""l"I~-rd ~ Hardware pro tect bound
iI-'......,....,.~....x.:::::::. Software protect bound

Foreground free core
+---User's I/O Handlers and

I/O Buffers
Foreground user programs

+-_____ and library routines

~Resident Monitor

The Foreground Linking Loader first brings in any additional

I/O handlers required for loading. Then it loads the user

program(s), library routines, user I/O handlers and I/O

buffers, and allocates Foreground free core. The software

memory protect bound is established just above the Foreground

job. The hardware memory protect bound, because it can be set

only in increments of 256 decimal, will leave some unused space

between it and the Foreground job. The software protect bound

allows this space to be used for dynamic data storage by the

Background job. On the PDP-9 the memory protect bound can only be

set at 1024 (10) word intervals, so the bank mode system sets

the bound at 1024 word increments, not 256, even on a PDP-IS.

For a description of loading of Foreground XCT files, see Memory

Map L.

4-13

I

Memory Map F

. SCOM --~)l6K

.SCOM + rF Hardware protect bound

.SCOM +

.SCOM + Software protect bound

.SCOM + 25

.SCOM + 31

8K E'oreground job

Monitor

o

When the FOREGROUND job becomes I/O bound. control is trans­

ferred to the BACKGROUND job. The Resident MC:1itor loads the Non­

resident Monitor (via the resident system device handler) into

upper core. It then gives control to the Keyboard Listener

(within the Non-resident Monitor) to await a BACKGROUN:J keyboard

command. Memory protect is enabled while the Backgro~~d job is

runni .1g.

4-14

Memory Map G

.SCOM----~

.SCOM + 3 ____ ~~~~~~

.SCOM +

.SCOM +

.SCOM +

.SCOM +

.SCOM +

Background System
~----Loade~ (.SYSLD)

~ ____ Hardware protect bound
~Software protect bound

Foreground Job

~ ____ Resident Monitor

When a BACKGROUND keyboard command requests loading

of a system or user program, the Non-resident Monitor

brings in the System Loader, overlaying itself. Note

that the BACKGROUND System Loader and the FOREGROUND

Linking Loader are physically the same program, except

that SYSBLK is also read i.nto core when the BACKGROUND

system program to be loaded is other than the Linking

Loader or Execute.

4-15

Memory Map H

• SCOM)16K

.SCOM + 3

.SCOM +

.SCOM +

.SCOM +

.SCOM +

.SCOM +

o

Background
+----System Program

J~aCkgrOUnd Free Core

___ Hardware Protect Bound

10:-.,..,.-=-...,...,....,...-1 +--Software Protect Bound
I-"--""-",,:¥-"":;"""';:""f"'"--Background I/O Buffers

~r-7--;l>--7-?--t

:r---:::::::::: ::: Handler'

If the BACKGROUND request is for a system program, the

System Loader loads the system program I/O handlers up

from the top of the FOREGROUND job, allocates I/O buffer

space, and loads the system program at the top of core

(overlaying the System Loader). Control is returned to

the Resident Monitor, which sets the memory protect bound

above the buffer space and gives control to the system

program.

4-16

.SCOM i-----+16K

.SCOM + 3 j

.SCOM + 2

Memory Map I

~ Background Sys tern
Loader (. SYSLD)

4--- Background Linking Loader

. SCOM + 312~~ -'--'--I-.L-'-..Lj ~ Hardware Protect Bound
• SCOM + ~Link Loader I s I/O Handlers
.SCOM + 25 Software Protect Bound
.SCOM + 31

Foreground Job

o

If the BACKGROUND program is a user prograffi l , the

System Loader loads the Linking Loader I/O handlers

up from the top of the FOREGROUND job and loads the

Linking Loader such that the memory protect bound

can be set just below it.

lUser programs may be loaded along with the system
program DDT.

4-17

.SCOM ~ 16K

.SCOM + 3 J -

Memory Map J

~ Background user Programs and
Library. Routines

4--- Background User I/O
Handlers

. SCOM + 2 _____ -+} g~~;:;:~~ +-- Loader I s Symbol Table

4---Background Linking Loader

.SCOM + 32 Bound

.SCOM +

~5 J .SCOM +

.SCOM + 31

------.,.) ~~~~~
BK

Bound

Job

~Resident Monitor

o
The BACKGROUND Linking Loader overlays the System Loader

by loading user programs down from the top of core. User

I/O handlers, presuming that they cannot fit in core

between the FOREGROUND job and the bottom of the Loader,

are loaded into upper core but relocated to run just above

the FOREGROUND job so that the memory protect bound can

be set above them. Common blocks and I/O buffers are not

shown in this memory map.

.SCOM--~

.SCOM +

• SCaM +
.SCOM +
.SCOM +

.SCOM +

.SCOM +

Memory Map K

~ Background User Programs
and Dibrary routines

Background Free core

~~~---Hardware Protect Bound 

Protect Bound 

__ ~~~~~~~~~----Background User I/O handlers 

Foreground ,Job 

~----Resident Monitor 

The .EXIT from the Linking Loader causes the user program 

I/O handlers to be block transferred to their running 

position, the memory protect bound to be set just above 

the I/O buffer space, and control given to the user program. 

If DDT was also loaded, it resides at the top of core, above 

the user programs. Its symbol table, built by the Loader, 

is block transferred by the Monitor to start at the soft­

ware protect bound. 

IIf DDT is loaded, .SCOM + 1 will be set to point at the start 
of the DDT symbol table. 

4-19 



Memory Map L 

.ScOM--------~ 

table 

.SCOM + 32----~~ ________ ~Hardware protect bound 

.SCOM + 25 and 31~ ~Software protect bound 

.SCOM + 3----____ ; 

. SCOM + 2----4IOOro~~m 
~~~~~~+----EXECUTE ;-iI/O Handlers + I/O buffers 
~ __ ~~~~ including 2nd copy of

Foreground. ____ _
Job

8

o

EXECUTE in the Foreground:

EXECUTE's handler

Core occupied by
Overlay structure

1st copy of EXECUTE's
I/O handler

~---RResident Monitor

The System Loader first loads EXECUTE's I/O handler (if not

the resident handler) in order to read the XCT file. The

core limits of the overlay structure are read from the file

as well as the request for I/O from its .IODEV bit map.

The requested handlers, including a second copy of EXECUTE's

handler, are loaded above the core area to be occupied by

the overlay structure. Then I/O buffers are created, if

necessary, and EXECUTE is loaded above them. Finally,

Foreground free core, the software protect bound, and the

hardware protect bound are established.

4-20

Memory Map M

· SCaM -----~

Core occupied by
Overlay structur

.SCOM + 3

.SCOM + 2

· scm, + 32

· SCaM + 31

.SCOM + 25

o

EXECUTE in the Background:

~----System Loader

~----Loader's symbol table

~----Free core

~---.EXECUTE

bound

Bound

Background I/O handlers
and I/O buffers

Foreground job

~ ___ Resident Monitor

The System Loader loads EXECUTE's I/O handler (if not in

core) in order to read the XCT file. The core limits of

the overlay structure and the I/O requests in the .IODEV

bit map are read from the XCT file. The user's I/O

handlers and I/O buffers are then loaded above EXECUTE's

handler, and the hardware protect bound is established

above them. EXECUTE is loaded above the bound and Back­

ground free core is set up from the top of EXECUTE to the

bottom of the overlay area.

4-21

SECTION 5

EXAMPLES OF BACKGROUND/FOREGROUND OPERATIONS

5.1 INTRODUCTION

The initial system startup procedure and three examples of operating within the

Background/Foreground environment are described in this Section. The procedure

and examples are intended to get the programmer "on the air" and to demonstrate

loading programs in the Foreground.

5.2 STARTUP PROCEDURES

During ini~ial system startup, the user normally loads the master system suppliea

(on DECtape) and utilizing system program BFSGEN generates a "working system".

The user may run using the master system, but it is usually more desirable to

generate a working system which is optimized to meet the user's needs and

particular equipment configuration.

5.2.1 Loading Master B/F Monitor System

The master system for both the DECtape and DECdisk B/F systems is supplied on

DECtape. To load the master system into a PDP-IS/3D (DECtape system):

1. Mount the master DEC tape onto a transport (TU-55 or -56) and set
its unit number to that of the system device; that is, ~ on a
TU-56, 8 on a TU-55.

2. Load the paper tape Bootstrap; B/F V3A uses the multi-core bootstrap.

3. Set the console address switches as follows:

If you have a -

16K system
24K system
32K system

Set Switches to -

37637
57637
77637

4. Check to ensure that the MEMORY PROTECT/RELOCATE switch is in the

PROTECT position. This switch is located at the rear of the

memory protect cabinet. P-mode and R-mode indicator lights are

mounted on a panel located at the top front of the cabinet. 7.1~

PDP-9 does not have a MEMORY PROTECT/RELOCATE switch. A PDP-9 equip­

ped with the memory protect feature will always be in the protect

position.

5. Press and release, in sequence, the console STOP, RESET, and READIN

switches.

5-1

I

When loaded, the Monitor identifies itself and indicates its readiness ey out­

putting the following message on the Foreground control Teletype (normally unit 1) :

To load

1.

FKM15 V3A
$

the master system

Mount the master

into a PDP-15/40 DECdisk

disk system DECtape onto

unit number to that of the system device1

8 on a TU-55.

system:

a transport and set its

that is, {I on a TU-56;

2. Load the RFSAV paper tape (supplied with the system) into the paper

tape reader.

3. Set the console address switches to l772{1.

4. Set the DECdisk WRITE LOCKOUT switches for disk unit {I to the WRITE

ENABLE position.

5. Press and release, in sequence, the console STOP, RESET, and READIN

switches. When loaded, the RFSAV program outputs the following

message:

RFSAV V2A

SET: ACS{I= {I DECTAPE TO DISK (LOAD)
ACS{I= 1 DISK TO DECTAPE (SAVE)
ACS15-l7= UNITi{l,1,2,3,4,5,6,7

6. Set all console AC switches to the {I position.

7. Press and release the console CONTINUE switch. This action causes

the disk system contained by the DECtape on unit {I to be copied onto

disk unit {I.

8. Set the DECdisk WRITE LOCKOUT switches to the WRITE DISABLE position.

9. Load the disk multicore bootstrap, RF15BT, into the paper tape reader.

10. Set the console address switches as follows:

If ::t0u Have a - Set Switches to -

16K system 37637

24K system 57637

32K system 77637

5-2

11. Press and release, in sequence, the console STOP, RESET, and READIN

switches. When loaded, the Monitor identifies itself and

indicates its readiness by outputting the following message on the

Foreground control Teletype:

FKM15 V3A
$

5.2.2 System Generation

A step-by-step procedure for the generation of a working system from a master

system is given in Section 8 of this manual.

5.3 EXAMPLES

Three example procedures are described in paragraphs 5.3.1, 5.3.2, and 5.3.3.

These procedures are used to demonstrate the loading of IDLE, single-user FOCAL,

and two-user FOCAL in the Foreground.

The following conventions are used for the examples given:

1. All user inputs are underlined.

2. Readiness to accept commands is indicated by the symbol $ for the Monitor

and the symbols > and * for system programs.

3. The entry of an ALTMODE character is indicated by the symbol <!>.

5.3.1 IDLE Loaded as the Foreground Job

An Idle job is loaded in the Foreground to allow immediate use of the Background.

Refer to section 6.4 for a discussion of the .IDLE system macro.

FKM15 V3A
$A DTA~

or $A DKA~

$GLOAD

FGLOAD V2A
>+-IDLE @

-4
-4

(DECtape) /The program "IDLE" is on unit

(DECdisk) /~ of the system device.

/The Loader is in core.
/Load "IDLE BIN".

When IDLE is loaded, no indication is given on the Foreground control Teletype.

Control passes to the Background and the Non-resident Monitor is then loaded into

core. The Monitor identifies itself on the Background control Teletype as:

BKMl5 V3A
$

/The Monitor is now ready to
/accept Background commands.

5-3

I

I

5.3.2 Single-user FOCAL Loaded (Foreground)

The following illustrates a step-by-step procedure to load single-user FOCAL in

the Foreground:

or

FKM15 V3A
$A DTJl -4
SA DK/8 -4
$A OTt 3,5
$A DT3 7,1J1
$FCORE 14/8/8
"fGLOAD

FGLOAD V~2
>+-FOCAL _
FOCAL v9
*

(DECtape)
(DECdisk)

/FOCAL is on unit Jl of
/the system device.
/Library input-output to FOCAL.
/User's data input-output.
/Free core for FOCAL buffer.
/Call loader to LOAD-and-Go.

/Loader is in core.
/Load FOCAL.
/FOCAL is in core and is ready to
/accept commands.
/User can begin to run FOCAL commands.

5.3.3 Two-user FOCAL Loaded (Foreground)

or

FKM15 V3A
$A DTJI
$A DK/8
SA TTl
$A DTI
$A TT2
SA DT2
~FCORE

GLOAD

-4
-4

FGLOAD V2h
>+FOCAL2 ':dY
FOCAL V9A
*

(DECtape)
(DECdisk)

/FOCAL is on unit Jl of
/the system device.
/Teletype for User #1.
/Library input-output for User #1.
/Teletype for User #2.
/Library input-output for User #2.
/Assign 14JlJl (octal) locations
/for each user.
/Call Loader to LOAD-and-Go.

/Loader is in core.
/Load two-user FOCAL'
/FOCAL is in core and will identify
/itself on each user's Teletype.
/User can begin to run FOCAL programs.

NOTE

Two-user FOCAL is not available on
the bank mode B/F V3B system.

5-4

SECTION 6

BACKGROUND/FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)

6.1 INTRODUCTION

The system MACROS unique to the Background/Foreground Monitor are listed and

described briefly in Table 6-1. The Monitor Macros listed below are available

in addition to those provided in the PDP-ls/2~ Monitor System for use in

programs that are to be run in the Background/Foreground environment. Detailed

descriptions of the macros are given in the remainder of this Section.

The .INIT macro has been altered for Background/Foreground to handle the CTRL P

restart address in a manner different from the Advanced Monitor. Refer to

Section 3 for an explanation.

Name

.REALR

.REALW

.IDLE

.IDLEC

.TIMER

.RLXIT

6.2 .REALR

FORM:

VARIABLES:

ISee Section 3.7.

TABLE 6-1

Background/Foreground System Macros

Purpose

Real-time transfer of data from I/O device to line
buffer (real-time READ).

Real-time transfer of data from line buffer to I/O
device (real-time WRITE).

Allows Foreground job to indicate that control can
be given to lower levels of the Foreground job or to
the Backqround job until completion of any Foreground
real-time transfer or clock interval.

Allows Foreground Mainstream to give control to
Background job with Foreground continuing after the
.IDLEC on completion of any Foreground real-time
transfer or clock interval.

Calls and uses real-time clock and allows priority
level to be established.

Accomplishes the exit from all real-time subroutines
that were entered via .REALR, .REALW, .TlMER, or
real-time CTRL p1requests.

.REALR A, M, L, W, ADDR, P

A = .DAT slot number (octal radix)

{

~ = IOPS binary
1 = Image binary

M2= Data Mode 2 = lOPS ASCII
3 = Image Alphanumeric
4 = Dump Mode

L ls-bit buffer address (octal radix)

2Data modes 5, 6, and 7 are passed to all I/O handlers.

6-1

EXPANSION:

W = Line buffer word count (decimal radix) ,
including the two-word header

ADDW= IS-bit address of closed subroutine that
is given control when the request made by
the .REALR is completed.

P API priority level at which to go to ADDR

LOC
LOC+l
LOC+2

LOC+3

LOC+4

P Prioritl Level

~ Mainstream
4 Level of .REALR
S API software level
6 API software level
7 API software level

CAL+I~~~~+M6_8+A9_17
l~
L

S
6
7

.DEC /Decimal Radix
-W
.OCT /Octal Radix
ADDR+P,0_2

DESCRIPTION: The .REALR command is used to transfer the next
line of data from the device assigned to .DAT slot A to the line
buffer in the user's program. In this operation, M defines the
mode of the data to be transferred, L is the address of the line
buffer (including the two-word header), and ADDR is the address
of a closed subroutine which should be constructed as shown in
the following example.

EXAMPLE 1: STRUCTURE OF A REAL-TIME SUBROUTINE

ADDR

6.3 .REALW

FORM:

VARIABLES:

DAC SAVEAC

LAC SAVEAC

/Entry point

/SAVE AC and all other
/live registers used.
/Any system Macro may be
/issued at this point.

/Restore AC and all other
/registers saved.

.RLXIT ADDR /Return to interrupted
/point via Monitor CAL.

.REALW A, M, L, W, ADDR, P

A = .DAT slot number (octal radix)

IThe subroutine specified by a .REALR, .REALW, .TIMER, or real-time CTRL P
should not be used at more than one priority level. The subroutine is
entered via a JMS and normally cannot be protected against re-entry.

6-2

EXPANSION:

Ml= Data Mode {
~ = lOPS binary
I = Image binary
2 = lOPS ASCII
3 = Image Alphanumeric
4 = Dump Mode

L 15-bit Line buffer address (octal radix) .

W Line buffer word count (decimal radix),
including the two-word header

ADDR2= 15-bit address of closed subroutine that is
given control when the request made by the
.REALW is completed.

P API priority level at which to go to ADDR

LOC
LOC+I
LOC+2

LOC+3

LOC+4

P

~
4
5
6
7

L
.DEC
-W
.OCT
ADDR+P~_2

Priority Level

Mainstream
Level of .REALW
API software level 5
API software level 6
API software level 7

/Decimal Radix

/Octal Radix

DESCRIPTION: The .REALW command is used to transfer the next line
of data from the line buffer in the user's program to the device
assigned to .DAT slot A. In this operation, M defines the mode of
the data to be transferred, L is the address of the line buffer, W
is the count of the number of words in the line buffer (including
the two-word header), and ADDR is the address of a closed subroutine
which should be constructed as shown in EXAMPLE I above.

6.4 .IDLE

FORM:

EXPANSION:

• IDLE

LOC
LOC+I

CAL
17

DESCRIPTION: The Foreground job in a Background/Foreground environ­
ment can indicate that it wishes to relinquish control to lower levels
of the Foreground job or to the Background job by executing this
command. This is useful when the Foreground job is waiting for the
completion of real-time I/O from anyone of a number of I/O requests
that it has initiated or for completion of .TIMER requests.

The .IDLE is the logical end of the current level's processing;

IData modes 5, 6, and 7 are passed to all I/O handlers.

2The subroutine specified by a .REALR, .REALW, .TlMER, or real-time CTRL P
should not be used at more than one priority level. The subroutine is
entered via a JMS and normally cannot be protected against re-entry.

6-3

that is, control never returns to LOC+2. If the .IDLE is issued at
a Foreground API software level, it effects a debreak (DBR) from
that level so that pending real-time routines at that level will not
be executed until the level is requested again. If the .IDLE is
issued at Foreground Mainstream, control goes to the Background job.
If the .IDLE is issued at Background Mainstream, control is returned
to the .IDLE CAL.

6.5 .IDLEC

FORM:

EXPANSION:

.IDLEC

LOC
LOC+l

CAL+l~~~
17

DESCRIPTION: .IDLEC is identical to .IDLE except when issued at
the Foreground Mainstream level. In this case, control goes to the
Background job, and LOC+2 is saved as the Foreground Mainstream
return pointer. The next time control returns to Foreground (at
any priority level), Foreground Mainstream processing will resume at
LOC+2 when Mainstream becomes the highest active Foreground level.

6.6 . TIMER

FORM: .TIMER N, ADDR, P

VARIABLES: N1 = Number of clock increments (decimal radix)

EXPANSION:

ADDR2= IS-bit address of closed real-time subroutine
to handle interrupt at end of interval

P = API priority level at which to go to ADDR

LOC
LOC+l
LOC+2

LOC+3

P Prioritl Level

~ Mainstream
4 Level of . TIMER
5 API software level
6 API software level
7 API software level

CAL 3

14
ADDR+P~_2
.DEC /Decimal Radix
-N

5
6
7

DESCRIPTION: .TIMER is used to set the real-time clock to N increments
and to start it. Each clock increment represents 1/60 second for 60
Hz systems and 1/50 second for 50 Hz systems. When the Monitor services
the clock interrupt, it passes control to location ADDR+l with the
priority level set to P. The coding at ADDR should be in closed sub­
routine form, as in EXAMPLE 1.

ITO transfer control to subroutine ADDR at priority level P immediately, N
should be set equal to zero.

2The subroutine specified should not be used at more than one priority level.
The subroutine is entered via a JMS and normally cannot be protected against
re-entry.

3 When bit 8 of CAL is set to 1, an abort .TIMER is effected. All intervals
having the same address and priority level (LOC+2) will be aborted.

6-4

6.7 .RLXIT

FORM:

VARIABLES:

EXPANSION:

.RLXIT ADDR

ADDR = 12-bit 1 entry point address of the
real-time subroutine from which an exit
is to be made.

LOC
LOC+I

C~

2~
ADDR

DESCRIPTION: .RLXIT is used to exit from all real-time subroutines
that were entered via .RE~R, .RE~W, .TlMER, or real-time CTRL P
requests. The instruction just preceding the .RLXIT call should
restore the AC with the value of the AC on entrance to this sub­
routine. .RLXIT will restore the link from bit ~ and page/bank mode
from bit I of the contents of ADDR .

. RLXIT protects against re-entrance to Background or Foreground Main­
stream real-time subroutines. When the contents of ADDR is non-zero,
the subroutine is assumed active; .RLXIT sets the contents of ADDR
to ~, thus making it available again. Note: Real-time subroutines
should initially have their entry point register set to ~; and
restart procedures, entered via CTRL P or after CTRL T, should reset
all entry points to ~.

6.8 MAINSTREAM RE~-TlME SUBROUTINES

Mainstream real-time subroutines in the Foreground are not equivalent to those

in the Background due to the manner in which I/O busy situations are handled.

If the Background becomes I/O busy, the Monitor "sits on" the Background CAL

instruction (while Background is in control) until it can be processed.

Therefore, Background Mainstream real-time routines can be executed despite

the fact that Background Mainstream is I/O busy. If Foreground Mainstream is

I/O busy, Foreground Mainstream real-time routines cannot be executed until the

busy situation is terminated. This is due to the fact that control is given to

the Background whenever Foreground Mainstream becomes I/O busy. The device

handler responsible for the busy situation is remembered in the Foreground Main­

stream busy flag. Mainstream real-time routines cannot then be run because

they too could become busy.

This situation can be avoided either by using .REALR or .REALW in conjunction

with .IDLE or .IDLEC, or by using .WAITR to prevent Foreground Mainstream from

becoming I/O bound.

6.9 API SOFTWARE LEVELS -- PROGRAMMING NOTE

On configurations that have API, elements of the Foreground job may run at four

IThe Resident Monitor, which operates in bank addressing mode, uses .RLXIT
with a 13-bit entry point address. In the bank mode system, all addresses
have 13-bit values.

6-5

,

priority levels (levels 5, 6, and 7 of the API and Mainstream). It is important

to understand that as Foreground becomes rio busy at a given level, the Monitor

drops to the Foreground's next highest active level.

The lower level may be dependent upon the completion of the I/O that caused the

higher level to become busy. The following coding method is incorrect because

the lower level will receive control as a result of the I/O ~ being done.

Level 5 Subroutine

.READ n,2,BUFFER,52

.WAIT n

When the Monitor processes the .READ and encounters the unsatisfied .WAIT, it

recognizes this as an I/O busy situation on level 5 and drops control to the

next lower active level. Suppose at level 7 there is a user subroutine dependent

upon the contents of BUFFER.

Level 7 Subroutine

.WRITE x,2,BUFFER,52

In the above case, the .WRITE will be executed independent of whether the level

5 I/O call to fill BUFFER has been completed.

Two proper coding methods would be:

(1) to perform the .WRITE within the levelS subroutine after

the .WAIT ni

(2) to use a .REALR at levelS which would specify the level 7

subroutine to be called upon completion of the .REALR.

This would eliminate the need for .WAIT n in the levelS

subroutine.

6-6

7.1 INTRODUCTION

SECTION 7

WRITING DEVICE HANDLERS FOR THE PDP-IS

BACKGROUND/FOREGROUND MONITOR SYSTEM

WARNING:

I/O device handlers and service routines
written according to this section will
operate on a PDP-IS in page mode or, with
the modifications noted, on a PDP-9 or
PDP-IS in bank mode. For further infor­
mation, read section 7.13.

The reader is assumed to be acquainted with the concept of an I/O device handler

from experience using the Keyboard Monitor system. I/O handlers are a con­

venience because they interface to user programs by accepting-a small set of

standard commands (Monitor calls), e.g., .READ and .WRITE. Within reason,

programs can be written to function without regard to specific I/O devices.

They refer to logical devices (.DAT slots) and the assignment of real devices

is made at program load time. Device handlers, because they interface with the

Monitor, must conform to certain established conventions (which differ from

those in the Keyboard Monitor environment) and are more difficult to write and

to understand than stand-alone I/O service routines.

An I/O service routine 1 , unlike a device handler, is coded into the user program

or is loaded as a user subprogram. It interfaces directly with the user program

and does not use system macros (.READ, etc.), does not use .DAT slots, and is

not loaded from the system's I/O library. Such a routine cannot normally2

operate in the Background because it employs lOT instructions.

7.2 I/O SERVICE ROUTINE

The coding of an I/O service routine is most easily explained by example. Con­

sider a device which consists of two pushbuttons. Each sets a hardware flag

which can be tested by skip lOT, and either flag being set requests a hardware

interrupt. The device has the following lOT instructions:

lThe term I/O service routine is used in this section to distinguish a simple,
direct interface user I/O routine from a standard, full-blown I/O device handler.

2Re fer to the MPOFF command in Section 2.5.12.

7-1

,

PBSFI /Skip if button I flag is set.

PBCF1 /Clear button 1 flag.

PBSF2 /Skip if button 2 flag is set.

PBCF2 /Clear Button 2 flag.

If the device were connected to the API assume that it would interrupt at API

level 3 and via API channel 2~ (Register 6~). If the device were connected to

the PIC it would interrupt at API level 3 2 and via Register ~ (as all PI devices

do) .

At system generation time one would have to add this as a new device to the

system. The following illustrates the conversation with the System Generator

(read Section 8):

API CASE:

MORE I/O? Y
DEVICE NAME > PB)
NUMBER OF INTERRUPTS SETUP > 1)
API ? Y
SKIP lOT > fij6~1)
API CHNL > 2

PI CASE:

MORE I/O ? Y
DEVICE NAME-> ~
NUMBER OF INTERRUPTS SETUP > 3l
API ? N
SKIP ICYT >
MNEMONIC >
SKIP lOT >
MNEMONIC

In the API case, note that both device flags interrupt via the same API channel;

hence, only one .SETUP call is needed.

Since PB is added as a new device, the System Generator assumes the existence

of a "PBA" handler. To be safe, change the handler to "PBW" so that this non­

existent handler is not inadvertently assigned to some .DAT slot .

. TITLE FOREGROUND JOB

/THE PUSHBUTTON SERVICE ROUTINE COULD BE A SEPARATELY LOADED SUBPROGRAM;
/HOWEVER, HERE IT IS SHOWN AS IN-LINE CODE WITHIN A LARGER PROGRAM.
/IN THE NORMAL MODE OF SYSTEM OPERATION THIS CODE IS ILLEGAL IN THE
/BACKGROUND BECAUSE IT USES lOT INSTRUCTIONS~. SINCE THE MONITOR HAS NO

2
True only of the PDP-IS.
See Section 2.5.12.

7-2

/CONNECTION TO THIS SERVICE ROUTINE, THERE IS NO WAY TO GUARANTEE THAT THIS
/DEVICE HAS STOPPED I/O BEFORE RELOADING THE MONITOR 1 , E.G., FOLLOWING CTRL C.

BEGIN • /THIS IS MAIN PROGRAM CODE AND
/NEED HAVE NOTHING TO DO WITH
/THE "PB" SERVICE ROUTINE.

/"PB" (PUSHBUTTON) SERVICE ROUTINE. THE FOLLOWING IS ONCE-ONLY
/INITIALIZATION CODE. THESE LOCATIONS MAY BE USED LATER ON FOR TEMPORARY
/STORAGE (AS SHOWN).

AC~
. SETUP
TEMP 1
REALTP

LAC *
DAC
LAC *
DAC

(. SCOM+55
. SETUP
(• SCOM+51
REALTP

/ADDRESS OF THE MONITOR'S
/.SETUP ROUTINE .
/ADDRESS OF THE MONITOR'S
/REALTP ROUTINE.

/RAISE TO API LEVEL 4 FROM THE MAINSTREAM LEVEL. THE MONITOR'S .SETUP
/ROUTINE IS. CALLED FROM THE CAL LEVEL AND IS NOT REENTRANT CODE.

ACl
AC2

LAC
ISA

/CALL THE MONITOR'S .SETUP ROUTINE TO LINK HARDWARE INTERRUPTS FROM
/THE DEVICE TO THE SERVICE ROUTINE NOW THAT IT IS IN CORE2. AT SYSTEM
/GENERATION TIME, IT IS ASSUMED, BFSGEN RESERVED API CHANNEL 2~

/(REGISTER 6~) FOR THIS DEVICE BY PLACING THERE A "JMS* (ERROR"
/INSTRUCTION AND ASSOCIATING IT WITH THE SKIP lOT "PBSF1". THE .SETUP
/ROUTINE WILL CHANGE THE INSTRUCTION TO "JMS* (PBINT".

JMS* • SETUP
PBSFl
PBINT

/CALL .SETUP WITH 2 ARGUMENTS:
/THE SKIP lOT AND THE ADDRESS
/OF THE INTERRUPT SERVICE ROUTINE.

/IF THIS DEVICE IS ON PI, A SECOND .SETUP CALL IS NECESSARY BECAUSE
/THERE WILL BE TWO SKIP lOT'S IN THE SKIP CHAIN. FOR PI DEVICES,
/THE ENTRY INSTRUCTIONS ARE "JMP* (PBINT".

JMS*
PBSF2
PBINT

. SETUP /CALL .SETUP WITH 2 ARGUMENTS:
/SKIP lOT AND THE ADDRESS
/OF THE INTERRUPT SERVICE ROUTINE.

/DEBREAK FROM LEVEL 4 BACK TO MAINSTREAM.

DBK

/END OF ONCE-ONLY CODE.

/MAIN PROGRAM PROCESSING MAY NOW CONTINUE UNTIL IT IS INTERRUPTED BY ONE
/OF THE PUSHBUTTON FLAGS.

/THE FOLLOWING IS THE INTERRUPT SERVICE ROUTINE FOR THE PUSHBUTTONS. IT
/IS ENTERED AT API LEVEL 3.

/IN THE CASE WHERE THIS DEVICE IS ON API, THIS ROUTINE IS ENTERED VIA A
/JMS INSTRUCTION. THE STATE OF THE PROGRAM INTERRUPT CONTROL (ION OR IOF)
/WILL NOT BE ALTERED.

ISee Section 7.8.
2See Section 8.3.4, Note 3.

7-3

PBINT ~
DBAl

/LINK + PAGE/BANK + MEM.PROT. + PC.
/ENTER PAGE MODE.

DAC AC~ /SAVE THE ACCUMULATOR.

/IF, INSTEAD, THE DEVICE IS CONNECTED TO THE PIC, THE ROUTINE IS ENTERED
/BY A JMP INSTRUCTION AND THE FOLLOWING CODE SHOULD BE SUBSTITUTED FOR
/THE ABOVE. THE PIC IS OFF (IOF).

PBINT DBA /ENTER PAGE MODE.
DAC ACI' /SAVE THE ACCUMULATOR.
LAC* (I' /SAVE THE INTERRUPT POINT:
DAC PC /LINK + PAGE/BANK + MEM.PROT. + PC.
DZM* (I' /NECESSARY ON THE PDP-9; GOOD
ION 2 /PRACTICE ON THE PDP-IS.

/FROM HERE ON, THE CODE IS COMMON TO BOTH API AND PIC DEVICES.

PBSFI /SKIP IF BUTTON 1 FLAG SET.
JMP PB2 /NO. MUST BE BUTTON 2.
PBCFl /CLEAR BUTTON 1 FLAG.

/BUTTON 1 IS INTERPRETED TO MEAN: REQUEST REAL-TIME SUBROUTINE "SUBRl"
/AT API SOFTWARE PRIORITY LEVEL 5.

LAC (SUBRl+S~~~~~
JMP RUN. IT

/BUTTON 2 MEANS: REQUEST "SUBR2" AT API LEVEL 6.

PB2 PBCF2
LAC

/CLEAR BUTTON 2 FLAG.

/CALL THE MONITOR'S REALTP SUBROUTINE TO PLACE THE REAL-TIME REQUEST IN
/THE API QUEUE. AS SOON AS THE API LEVEL AT WHICH THE SUBROUTINE IS TO RUN
/BECOMES THE HIGHEST ACTIVE LEVEL, THAT SUBROUTINE WILL BE CALLED.

RUN. IT DAC TEMPI
LAC * (. SCOM+l~2 /RAISE TO API LEVEL I' OR LEVEL 1. 3

ISA
LAC TEMPI /SUBR+API LEVEL CODE.
JMS* REALTP4
DBK /TO LEVEL 3.

/NOW THAT THE PUSHBUTTON HAS BEEN SERVICED AND A SPECIFIC ACTIVITY
/(SUBRl OR SUBR2) HAS BEEN SCHEDULED, EXIT FROM THE HARDWARE LEVEL TO
/THE API LEVEL 4 INTERRUPT HANDLER IN THE MONITOR. LEVEL 4 IS THE SYSTEM
/DISPATCHER WHICH DECIDES WHAT IS TO BE RUN NEXT BASED UPON CONDITIONS SET
/BY HARDWARE INTERRUPT ROUTINES.

1 Omit DBA instructions in background /foreground bank mode.

2 The ION instruction may precede the clearing of the device flags on the
PDP-IS so long as operation continues at API level 3. On a PDP-9, however,
the ION must come after the flags have been cleared; otherwise, an immediate
interrupt would occur, unless the ION was executed after a raise to API level 3.

3Refer to section 7.4 which explains why .SCOM+102 is used to protect common
Monitor routines from reentrancy.

4rf the highest Monitor API level is defined to be level one, according to
the contents of .SCOM+102, then REALTP must not be called at API level zero.
This statement holds true for all Monitor routines called at the highest
Monitor level.

7-4

LAC
ISA
LAC
DBR

/REQUEST AN API INTERRUPT
/AT SOFTWARE LEVEL 4.
/RESTORE THE ACCUMULATOR.
/OEBREAK AND RESTORE FROM LEVEL 3.

/IF THE DEVICE IS ON API, THE INTERRUPTED PC IS STORED IN "PBINT".

JMP* PBINT

/IF THE DEVICE IS ON THE PIC, THE INTERRUPTED PC IS STORED IN "PC".

JMP* PC

/WHICHEVER JMP* IS USED, IT MUST IMMEDIATELY FOLLOW THE DBR. ONCE THE
/OBR HAS BEEN EXECUTED, THERE MUST BE NO POSSIBILITY OF INTERRUPTING BEFORE
/THE JMP* IS DONE. ALL DECISION MAKING MUST THEREFORE PRECEDE THE DBR.

/END OF PUSHBUTTON SERVICE ROUTINE.

/API LEVEL 5 REAL-TIME SUBROUTINE -- DOES SOMETHING AS A RESULT OF BUTTON 1
/HAVING BEEN PRESSED.

SUBRI ~
DAC

LAC
. RLXIT

ACI

ACl
SUBRI

/API LEVEL 6 REAL-TIME SUBROUTINE -- DOES SOMETHING AS A RESULT OF
/BUTTON 2 HAVING BEEN PRESSED.

SUBR2 ~
DAC

LAC
. RLXIT

AC2

AC2
SUBR2

This is a very simple I/O service routine. It does not perform data manipUla­

tion and does not issue any lOT's that could cause further interrupts.

7.3 I/O DEVICE HANDLER

A device handler written to operate in the Background/Foreground Monitor

environment must conform to the rules outlined in the remainder of this

7-5

,

section. Handl ~ differ from I/O service routines in the following ways:

1. They L . .;.",.<:<.<:ace to user programs via Monitor calls, e.g., . READ.

2. Because they are referenced by .DAT slot number, they can be

used bv device independent Psograms.

3. Except for TTA. and the resident system device handler, all

handlers are part of the system's I/O library.

4. Handlers can be used by the Background job when there is no

conflict with Foreground needs.

5. I/O handlers all have STOPIO routines which allow the Monitor

to shut down I/O in an orderly fashion. This is absolutely

necessary when a handler is to be used by the Background .job.

7.3.1 Types of Device Handlers

There are three types of I/O device handlers that can operate within the

Background/Foreground Monitor System:

1. Single user -- This handler can be used by either the Foreground

job or the Background job but not both during the same core load;

that is, it is dedicated to one job and the Monitor System will

not permit the other job to be connected to it.

2. Sequential Multi-user -- This handler can be connected to both

the For~ground and the Background job and both can utilize

it on a sequential first-come-first-served basis.

3. Multi-user -- This handler can be connected to both the Foreground

and the Background jobs with the Foreground job having priority

on usaqo. If the Background job is using the handler and Fore­

ground requires it, the Background I/O will be deferred until

the Foreground I/O has been completed.

This section is primarily devoted to describing the development of single-user

handlers. Thereafter, the transition to a sequential multi-user handler is

described.

I/O handler type 3 (Multi-user) is not described because it is unlikely that

a customer will need to write one and because the description would overly

complicate this section of the manual. Should the need to write such a

handler arise, it is recommended that a listing be obtained of the Multi-user

DEC tape (DTA.) or Disk (DKA.) handler to be used as a guide.

All device handlers, except for TTA. and the resident system device handler,

are loaded to run in page mode and therefore may use indexed instructions.

Where they do so, however, they must save and restore the Index Register (and

7-6

Limit Register, if used). All device handlers in the bank mode system run only

in bank mode; no indexed instructions are allowed in the bank mode system.

7.3.2 General Structure of Device Handlers

User program commands to device handlers are initiated by CAL instructions,

which trap to absolute location 2~ octal in the Monitor. The CAL handler in

the Monitor, operating at API level 4, transfers control to the CAL processing

section of the device handler at level 4.

All devices which perform I/O should be interrupt drivenl, i.e., should rely

on a hardware interrupt condition to signal I/O completion. Without an interrupt,

the device would have to be polled after elapsed clock intervals (which is pos­

sible for slow devices) or tested continuously (which defeats the purpose of a

real-time system). Handlers which perform I/O will, in general, have an

interrupt service routine which operates at the API level of the hardware.

For some devices, all I/O must be solicited. For example, no interrupt from the

papertape punch can occur until the handler, PPA., has initiated I/O as a result

of some Monitor call. This fact allows the CAL and interrupt portions of PPA.

to share common storage registers and common code.

Some devices, such as Teletype, generate unsolicited interrupts which can occur

while the Teletype handler is processing a CAL command. Therefore, the CAL and

interrupt portions of TTA. cannot use common code and common registers except

where the CAL code raises to API level 3 (the hardware level for Teletypes) to

prevent Teletype interrupts.

Besides CAL and interrupt processors, a handler must have subroutines for stop­

ping I/O. The STOPIO code is called at Mainstream (all API levels inactive) but

is guaranteed not to be called while CAL processing is in progress.

7.4 REENTRANCY PROTECTION

There are common routines in the Monitor which are called by all device handlers.

Since these routines cannot be reentered 2 , all calling programs must raise to

the highest commonly used API level in order to avoid being interrupted. Normally,

API level ~ is the highest commonly used level; and the instructions to raise to

level ~ would be:

LAC (4~~2~~
ISA

1 The core-to-core handler, COA., is an example of a handler which is not interrupt
driven; and therefore all its processing is done at the CAL level (API level 4).

2 Interrupted, entered at a higher API level, and then resumed at the lower level.

7-7

I

However, some Monitor routines which operate at this highest commonly used level

may take nearly 2~~ microseconds to complete. Some devices may require faster

service than this allows; hence, it is desirable to reserve API level ~ for

them. The highest commonly used Monitor level would be defined to be API level

1, and devices on level ~ would only have to compete with one another. They

could not, however, use common Monitor routines1due to the problem of reentrancy.

Such routines would best be I/O service routines rather than I/O device handlers.

The highest commonly used API level (~ or 1) is established during system gen­

eration and the value 4~~2~~ (for level ~) or 4~~10~ (for level 1) is placed

in .SCOM+102. The instructions that must be executed to protect against

reentrancy are:

LAC*
ISA

(.SCOM+l~2

For devices which operate at the highest commonly used API level, a raise has

no effect. Therefore, a check for this case must be made so that the corres­

ponding debreak (DBK) instruction is not executed. Where a DBR (debreak and

restore) instruction would have been used, an RES (restore) should be executed

instead. The PDP-9 does not have an RES instruction as does the PDP-lSi however,

there has never yet been a need for a user to replace a DBR with an RES.

As a side issue to reentrancy protection, the reader is cautioned not to share

subroutines within a handler at the CAL and interrupt levels unless CAL's and

interrupts cannot coincide.

7.5 DEVICE HANDLER'S CAL PROCESSOR

7.5.1 Arguments of the CAL

The first 37 (octal) words of an I/O handler must have the format described in

the following pages. The CAL handler in the Monitor has been implemented to do

as much of the function processing as possible. In giving control to the I/O

handler, the CAL handler will have set up registers in the I/O handler with all

pertinent information (arguments) of the CAL in the most accessible state, and

will then transfer control to the appropriate function processor via the JMP

table in the I/O handler which begins at word 208 relative to the first location

in the handler. Since CAL is not a reentrant process, CAL instructions should

not be executed while at the CAL level or at a hardware interrupt level:

ISuch as, REALTP and IOBUSY.

2 As a special case, the Monitor allows the MAGtape handler to do so.

7-8

WORD ~: JMS SWAP

The SWAP subroutine is in the device handler. The JMS instruction will be

simulated from within the Monitor so that the SWAP routine will return to the

Monitor and not to WORDI of the handler. The SWAP subroutine must execute

WORDS which restores the state of the program interruptI and DBK from level ~

or 1 of the API. The presence of this routine becomes functionally necessary

for type 3 (Multi-user) handlers to accomplish swapping from Background to

Foreground usage. The I/O device independence of the system requires that all

handlers look alike to the outside world (namely, the Monitor's CAL handler).

WORD 1:

WORD 2:

For both busy registers:

~ = Not Busy

Non-~ = Busy

/Foreground Busy Register 2

/Background Busy Register 2

(the CAL handler in the Monitor places
the current .DAT slot number here
full 18 bit value if negative.)

When the Monitor's CAL handler receives an I/O call, it checks the validity of

the .DAT slot number for this job (Foreground or Background), checking for its

existence, whether or not a device has been assigned to it, and if the appro­

priate handler was loaded.

The CAL handler then checks the appropriate busy register 3 and proceeds as

follows:

1. If the flag indicates that the handler is already busy, the job

becomes I/O bound at this level. Foreground can become I/O

bound at 4 levels, which means it gives up control to lower levels

or to the Background until the I/O operation is completed.

2. If the flag indicates not busy, it is set to busy' and the CAL

handler processes the function and passes the request on to the

device handler.

IThis is a vestige from PDP-~ code.

2 Must be assembled with contents =~. The Teletype handler is a special case.

3 The Teletype handler is an exception.

4Actually, there is also a test on the CLOSE flag (Word 3 or 4) which is des­
cribed on the next few pages. As a result, the function might not be passed
on to the handler.

7-9

Note that .WAIT's and .WAITR's are completely processed by the CAL handler and
1

are not passed on to the I/O handler .

If the corresponding busy register indicates busy:

1. For .WAIT in the Foreground, control is given to a lower Foreground

level or to the Background. The .WAIT command is not reexecutedj

instead, the WAIT condition is recorded for the specific Foreground

level in a .SCOM register. When the I/O completes, the device

handler will call the IOBUSY routine in the Monitor, which will clear

the WAIT condition and prepare to resume processing at that level

following the .WAIT.

2. For .WAIT in the Background, since there is no further processing

that can be done, control is returned to the .WAIT.

3. For .WAITR in either the Background or Foreground, control goes to

the address specified in LOC+2 (which must be above the hardware

memory protect bound if in the Background) 2.

If the corresponding busy register indicates not busy, the WAIT condition has

been satisfied and control is returned to LOC+2 (if .WAIT) or LOC+3 (if .WAITR).

WORD 3:

WORD 4:

For both .CLOSE registers:

/Foreground .CLOSE register 3 •

/Background .CLOSE register 3 •

~ = .CLOSE or .OPER not in progress

Non-~ = .CLOSE or .OPER in progress

.CLOSE and .OPER functions have a built-in WAIT condition. When the .CLOSE or

.OPER is first executed, the busy register and .CLOSE register for the appro­

priate job contain zero. The CAL handler in the Monitor sets the return PC so

that the function will be reexecuted. The busy register is set with the .DAT

slot number and the .CLOSE register is set non-~ (-1).

At completion of the .CLOSE or .OPER function, the device handler must clear

only the appropriate busy register. When the function is reexecuted with the

busy register cleared but the .CLOSE register set, the contents minus 1 of the

.CLOSE register are returned in the AC to the calling program following

the .CLOSE or .OPER command and the handler's .CLOSE flag is cleared by the

IThe Teletype handler is an exception.
2
The CAL handler validates Background arguments in Monitor calls. The test

based on the setting of the hardware memory protect bound uses the contents
of .SCOM+32, which is not set to zero by the $MPOFF command.

3Mus t be assembled with contents = S.

7-10

Monitor. The handler is not entered a second time. The contents minus 1 of the

.CLOSE register are returned in the AC specifically for .OPER functions (.FSTAT,

.RENAM, .DLETE). Device handlers that utilize this capability should set the

appropriate .CLOSE register (WORD 3 if Foreground; WORD 4 if Background) as

follows:

1 = File not present

INFORMATION +1 = File is present (where INFORMATION is the
device block number, which must not = -1)

Either ~ or INFORMATION is returned in the AC.

WORD 5: ION

WORD 6:

WORD 7: 1

/The CAL handler will store an ION
/instruction here. This is vesti­
/gial code from the PDP-9.

/The CAL handler will also store an
/ION here.

/Return Pointer. The CAL handler
/places the address of the Monitor's
/CALXIT routine in this register.

Words l~ through 17 are the BACKUP DATA REGISTERS. The CAL handler sets up

these registers prior to entering the device handler. For multi-user handlers,

a set of backup registers must be available to queue one Background I/O re­

quest when the handler is processing a Foreground request. The handler's SWAP

routine is called to swap the contents of the backup registers with that of

the live registers (elsewhere in the handler). For single user handlers, the

SWAP routine does not perform a swap since the backup registers are the live

registers.

WORD 10: JMP FUNC

WORD 11:

WORD 12:

/After checking the validity of
/function and subfunction codes, the
/CAL handler places a JMP to the
/appropriate entry in the function
/JMP table (words 2~-32) of the I/O
/handler in this register.

/The CAL handler sets this register
Ito indicate which job executed
/this CAL:
/
/

~ Foreground
1 = Background

/.DAT slot number (IS-bits if
/negative). The CAL handler sets
/this register.

lIf it is guaranteed that the device cannot cause an interrupt while processing
is at the CAL level, then the handler's CAL and interrupt processors can use
common exit code as described in 7.6. If so, the interrupt service routine
must store a DBR instruction in WORD6 and the interrupted PC (with Link,
Page/Bank Mode and Memory Protect bits) in WORD7.

7-11

WORD 13: IUnit number for multi-unit devices
lin bits ~-2 with bits 3-17 contain­
ling the address of the CAL. The CAL
Ihandler sets this register.

The CAL handler makes a general check for validity on:

a. File type

b. Data Mode

c. MAGtape subfunction code

d. Transfer directions

e. .OPER subfunction code

f. Addresses

g. Word counts

and will pass on what appears to be legitimate values. Each handler must then

make its own validity determination with respect to the device it controls. For

example, the CAL handler will always accept data modes ~ through 7; however,

the device handler may only accept a subset of these.

The contents of words WORD 14 through WORD 17 vary with the function being

processed. Adjacent to what will appear in each of these words are the limits

on the values that will be-accepted and passed on by the CAL handler.

WORD 14:

WORD 15:

.INIT

. READ

.REALR

.WRITE

· REALW

.MTAPE

.TRAN

.OPER

.INIT 2

• READ 1

.REALR 1

.WRITEI

· REALWI

File type ~ input
1 output

Data mode ~ lOPS binary
1 Image binary
2 lOPS ASCII
3 Image ALPHA
4 DUMP
5 DUMP ALPHA
6 and 7 are undefined but are
passed on by the CAL handler.

MAGtape function ~ thru 17 8
Transfer direction ~ thru 3

Sub function code 1 thru 3

User restart address plus code bits (~ - 2)

Line buffer address

lChecked for non-existent memory. If this is a Background CAL and if the Back­
ground is operating in normal protect mode ($MPON) this address is also compared
with the contents of . SCOM+31 , the software boundary, to signal an error if the
address points below the bound.

2Same as for footnote 1, except that the check is made on .SCOM+32, the hardware
bound, and only if the function is to be executed by the Teletype handler.

7-12

WORD 16:

WORD 17:

• FSTAT I

.DLETE I

.RENAM I

.ENTER2

.SEEK 2

. TRANI

• READ 3

. REALR 3

• TRAN 3

.WRITE3

.REALW 3

. FSTAT I

• REALR"

" .REALW

• TRAN

Address of the Directory entry block

Core starting address.

Address of register which is to have standard
buffer size placed in it .

Linebuffer word count (from the CAL argument list) .

Line buffer word count (from the linebuffer word
pair count, except for dump mode and mode 5 which
use counts from the CAL argument list .

Address of the register which will have the device
code placed in bits ~ - 2 .

Address to which control will be passed on completion
of the real-time I/O request. Bits 0 - 2 will contain
the priority code:

~ Background Mainstream
1 Foreground Mainstream
5 Foreground API Level 5
6 Foreground API Level 6
7 Foreground API Level 7

The CAL handler always changes the Background code to
~ since Background cannot use the API software levels.

The device address (block number) •

Words 20 through 32 make up the Function JMP Table. Those functions which are

ignored, those which are illegal, and those which do not issue rOT's at the CAL

level must prepare to have the Foreground or Background busy flag (WORD 1 and

WORD 2, respectively) cleared during the protected exit routine. Because the CAL

handler in the Monitor has set the busy flag prior to entering the handler, the

handler must clear the busy register since no further processing will be done.

IChecked for non-existent memory. If this is a Background CAL and if the Back­
ground is operating in normal protect mode ($MPON) this address is also compared
with the contents of .SCOM+31, the software boundary, to signal an error if
the address points below the bound.

2 No address check is made.

3Counts are validated for the Background job to ensure a negative value and
to ensure that the count added to the start address does not reference non­
existent memory.

"Same as for footnote 1, except that the check is made on .SCOM+32, the hardware
bound.

7-13

WORD 2~: JMP INIT
WORD 21: JMP OPER
WORD 22: JMP SEEK
WORD 23: JMP ENTER
WORD 24: JMP CLEAR
WORD 25: JMP CLOSE
WORD 26: JMP MTAPE
WORD 27: JMP READl
WORD 30: JMP WRITE 2
WORD 31: XX 3
WORD 32: JMP TRAN

WORD 33: -"

WORD 34: SUBRF

/Function 1
/Function 2
/Function 3
/Function 4
/Function 5
/Function 6
/Function 7
/Function l~
/Function 11
/Function 12
/Function 13

/Storage for .SCOM+35,
/interrupt service" fl
/the CAL handler. Thi
/from the PDP-9.

the "in an
g -- set by
is a vestige

/Address of the STOP-F~REGROUND-I/O
/subroutine.

When the Foreground job terminates as a result of a terminal e~ror, CTRL C, or

a .EXIT command, the Foreground STOPIO routine in every device handler

assigned to the Foreground job is called~ at the Mainstream level to effect

the controlled shutdown of the device (see 7.8).

WORD 35: SUBRF /Address of the STOP-BACKGROUND-I/O
/subroutine.

For single user device handlers (devices that cannot be shared by Foreground

and Background), the same subroutine can be used for Foreground and Background

STOPIO (as noted above).

WORD 36: /Handler I.D. code (normally ~).

This word has other values (non-~) for devices that require special considera­

tion from the CAL handler. The Monitor will not allow .INIT to force its way

into a busy handler unless the I.D. code is -1 and the .INIT is to the same .DAT

slot on which the handler is busy.

7. 5 . 2 . SETUP

If a device generates hardware interrupts they must be routed to the proper

interrupt service routines. When the appropriate handler is not in core, the

interrupts are routed to an error processor which treats the interrupts as

illegal.

lIncludes .REALR.

2Includes .REALW.

3.WAIT and .WAITR never get to the handler: they are processed by the Monitor's
CAL handler. Word 31 can be used for data storage.

~The call is made only if the handler's Foreground busy register is set.

7-14

When a handler has been loaded in core it must call the Monitor's .SETUP routine

at the CAL level, API level 4) to connect the interrupt line(s) to the handler's

interrupt service routine(s). As a rule, this is executed as once-only code the

first time a .INIT call is processed. To ensure that .SETUP has been done for a

device which has lOT's that can cause interrupts, all CAL functions that could

perform such lOT's must test that a .INIT was performed at least once. If .INIT

was not performed, the offending job should be terminated with an .ERR ~6~ (.INIT

not executed).

The .SETUP routine is typically called only once for API devices; but, for de­

vices on the Program Interrupt Control, one call per lOT in the Monitor's skip

chain is required. Read section 8.3.4, Note 3, for a clearer explanation.

Calling sequence:

LAC *
DAC
JMS*
SKPIOT
INTSVC
(return

(.SCOM+55
TEMP
TEMP

here)

7.5.3 Initiating I/O

/Get address of .SETUP

/Call .SETUP
/Argument 1: lOT skip
/Argument 2: Address of the
/interrupt service subroutine

For interrupt driven devices it is imperative that all lOT's that initiate

hardware operations be executed during the protected exit from the handler

to ensure that the exit takes place prior to the completion of the hardware

operation (which could cause re-entry to the handler at the interrupt level).

CAL function requests that require more than one hardware operation should

cause the 2nd through Nth operations to be initiated at the inter~upt level

during protected exit. A handler should not cause an implicit .WAIT for the

duration of the function processing because this prevents optimum usage of the

central processor time. The .CLOSE and .OPER functions are exceptions and the

implied .WAIT in those functions is handled automatically by the CAL handler.

7.6 DEVICE HANDLER'S INTERRUPT PROCESSOR

The following steps detail the logic necessary for interrupt processing in a

single-user handler. References to a common exit routine for both CAL's and

interrupts presupposes that interrupts for the device cannot occur while CAL's

are being processed.

Both page mode and bank mode systems now require API hardware, consequently the

interrupt serv~e routine can rely on its existence.

7-15

I

1. If this ic ~n API interrupt, the PC, Link (bit ~), Page/Bank (bit 1),

and Memory Protect (bit 2) are stored at the entry point to this routine.

If this is a PIC interrupt, the PC et ale are stored in location zero

in memory. This routine is entered at the API level of the device

(level 3 with PIC off if a PIC interrupt), with memory protect disabled.

2. DBA -- Disable Bank (Enter Page) Address Mode.

3. Save the AC -- to be restored on exit from interrupt service. Also,

save hardware registers such as XR, LR, if they are to be used herein.

4. Save the PC, Link, Page/Bank Mode, and Memory Protect in WORD 7 of the

handler. WORD 7 is so used if the CAL and interrupt code can use common

exit logic.

5. Store a DBR instruction in WORD 6 of the handler. This is done only

if the CAL and interrupt code can use common exit logic.

6. Turn off (~lear) the device's hardware flag so that it will not cause

another interrupt unless reset.

7. If this is a PIC interrupt, set location zero to zero and execute the

ION instruction to turn the Program Interrupt Control on. Location

zero with non-zero contents indicates a PIC interrupt in progress (this

was significant in PDP-9 logic. On a PDP-9, the device flag(s) must

be cleared before the PIC is turned on again.)

8. If this is the type of device for which I/O in progress cannot be

stopped, test if this is the last

If it is, clear (set to zero) the

describing STOPIO procedures).

interrupt expected from the device. 1

IOSTOP flag (read section 7.8

Only one lOS TOP flag is needed for

a single user or sequential multi-user handler.

9. Is the busy flag (WORD 1 if Foreground; WORD 2 if Background) zero?

If it is (meaning that the handler was not busy and that the

interrupt was unsolicited, or that the STOPIO routine was called),

ignore the interrupt by going to step 13.

l~. Process the interrupt, e.g., store data or prepare to transmit more

data.

11. Is the I/O request (the I/O call issued by the user program) complete

as a result of this last interrupt? If so, continue at step 14.

IThe CR~3B card reader handler must test if this is last interrupt since, for
one read operation, 8~ column interrupts will occur and there is no way to
prevent them.

7-16

12. If more I/O must be done before the CAL request is satisfied, set up

the protected exit routine to issue the next IOT(s) to the device. Go

to step 22, the protected exit routine.

13. If the interrupt was unsolicited, set up to have the Foreground or

Background busy flag (WORD 1 or 2 as appropriate) cleared during the

protected exit code. Go to step 22, the protected exit routine. Note

that WORD 11 in the handler indicates Background or Foreground owner­

ship of the I/O request.

14. I/O is complete as a result of this interrupti therefore, set up to

have the Fo~eground or Background busy flag (WORD 1 or 2 as appropriate)

cleared during the protected exit code. Note that WORD 11 in the

handler indicates Background or Foreground ownership of the I/O request.

15. LAC *
ISA

(. SCOM+l~2

16.

This will raise to API level zero or one, depending upon the contents

of .SCOM+l~2. If this device interrupts at level one or zero, reread

section 7.4.

LAC * (. SCOM+52
DAC TEMP
LAC (WORD ~
JMS* TEMP

.SCOM+s2 contains the address of the Monitor's IOBUSY subroutine,

which must be protected against reentrancy. It is passed an argument

in the AC -- the address of WORD ~ of the device handler. IOBUSY will

compare this with the contents of the Foreground busy registers

(.SCOM+42 through .SCOM+4s). If a match is found, it indicates that

the Foreground level was waiting for I/O completion by this device.

Since I/O has completed, the Foreground level is made not busy and

is set up to resume operation when that level becomes the highest

active level in the system. The level-busy .SCOM registers are set

originally by the Monitor's CAL handler. Note that the call to IOBUSY

must be done for Background as well as Foreground I/O completion.

17. DBK

Debreak from API level zero or one (reread section 7.4 if this device

interrupts at level zero or one). This is done, as is step 19, simply

to allow interrupts to occur for higher level devices if their flags

come up while the IOBUSY code is being executed.

18. The handler must check if this is a real-time I/O request. It is if

WORD l~ contains a JMP to WORD 27 (.READ or .REALR) or to WORD 3~

7-17

(.WRITE or .REALW) and WORD 17 is non-zero. If this is not a real-time

request, go to step 22.

19. LAC *
ISA

(. SCOM+l,,2

2fJ.

Raise to API level zero or one to protect the following Monitor

routine from being reentered. If this device operates at level ~ne

or zero, reread section 7.4.

LAC * (. SCOM+51
DAC TEMP
LAC WORD 17
JMS* TEMP

.SCOM+51 contains the address of the Monitor's REALTP subroutine. It

is passed an argument in the AC -- the contents of WORD 17 which is

the priority level code plus real-time subroutine address. REALTP

will prime the Monitor to run the real-time subroutine.

21. DBK

From API level zero or one, as in"step 17.

22. This is the beginning of the protected exit routine. Note that it

is coded as a common exit for both interrupt and CAL code. This is

explained in section 7.3.2. If I/O is to be performed now to the

device, check the device to ensure that it is ready to accept I/O

commands. If the device is not ready, a message must be output to

denote this fact (see section 7.9) and the I/O must be deferred.

Therefore, set a program flag, call it IOTFLG,for example, so that

the IOT(s) will not be issued in step 27. If the device is ready,

clear IOTFLG.

23. LAC *
ISA

Raise to API level zero or one. Reread section 7.4 for level zero

or level one devices.

24. If WORD 6 contains a DBR instruction (recall step 6), this is an

interrupt service exit. If so, request an API level 4 interrupt as

follows:

LAC
ISA

The API level 4 handler is the Monitor's dispatch routine. It con­

trols transitions from Background to Foreground, real-time requests,

errors, and control character functions.

7-18

25. If previously set up to do so, as in steps 13 and 14, clear the

Background and/or Foreground busy flags (WORDS 2 and 1, respectively).

The busy flag is cleared on ignored functions, completed functions,

and aborted functions.

26. Is I/O supposed to be done now? If IOTFLG (set or cleared in step 22)

is non-zero, if the appropriate busy flag is zero, or if the IOSTQP

flag is non-zero (see step 8) go to step 28 to Qypass execution of

the IOT(s).

27. Execute the IOT(s) to the device. This may involve several instruc­

tions. If this is an exit from the CAL level of the handler and if

no I/O is to be done (e.g., an ignored function), this code will be

bypassed since the busy flag was cleared.

28. Restore the AC plus any other hardware registers used (refer to

step 3).

29. DBK

Debreak from API level zero or one (reread section 7.4 if this is a

level zero or level one device).

3~. XCT WORD 6

This will be a DBR instruction if this is an interrupt exit (recall

step 6) and ION if this is a CAL exit. This assumes that the device

handler can have common interrupt and CAL exit code.

31. JMP* WORD 7

Again, this assumes common CAL and interrupt exit code. The DBR in

step 3~ for an interrupt exit will debreak out of the device's hard­

ware level and will prime the machine to restore the state of the Link,

Page/Bank Mode, and Memory Protect (in this case from bits ~ - 2 of

WORD 7). The ION instruction in step 3~ for a CAL exit is effectively

a NOP. Return will be at API level 4 to CALXIT, the common CAL exit

routine in the Monitor.

Note that once the DBK in step 29 is executed, the sequence of code leading to

step 31, the JMP*, must be non-interruptible, i.e., a string of lOT instruc­

tions.

If the exit is done with the device not ready, note that the device's busy

flags are still set. The job will continue execution without knowledge of the

not-ready situation. Of course, if the job attempts to perform more I/O to

the device (.INIT being a special case: see section 7.9.2), it will become

I/O bound.
7-19

7.7 ERROR PROCESSING

All device handler error conditions should be terminal; that is, they should

terminate the operation of user programs. Whether errors are detected during

CAL processing or during interrupt processing the following coding sequence

will set up an error condition and cause an error message to be printed on the

appropriate job control Teletype. This coding sequence cannot be common to

both the CAL and interrupt levels unless it is known that the device cannot

cause interrupts while the handler is processing a CAL.

1. LAC *
DAC

(.SCOM+66
TEMP /This TEMP cannot be common.

/(See preceding paragraph.)

.SCOM+66 contains the address of the error queuer subroutine in the

Monitor.

2. LAC *
ISA

(.SCOM+l~2

Raise to API level zero or one to protect the error queuer from being

reentered. Reread section 7.4 for level zero and level one devices.

3. LAW code or LAC (code
JMS* TEMP
auxarg

Go to the error queuer with one argument in the AC and one following

the JMS instruction. The argument in the AC, loaded either by LAW

code or LAC (code, is formatted as follows:

Bits ~ - 5 are ignored

Bit 6 1 means a terminal error

Bit 7 1 means a Background error

Bit 8 1 means a Foreground error

Bits 9 - 17 form a 3-digit error code

If the error pertains to both jobs then both bits 7 and 8 may be set.

The auxiliary argument, auxarg, is simply a 6-digit quantity to be

printed with the error message, which is of the form:

.ERR NNN XXXXXX)

NNN is a 3-digit error code

XXXXXX is a 6-digit auxiliary argument

7-20

4. DBK

Debreak from API level zero or one. Reread section 7.4 if this is a

level zero or level one device.

5. If no further interrupts are expected, set up to have the appropriate

job busy flag (WORD 1 or WORD 2) cleared during protected exit from

the handler. However, if more interrupts are expected, the busy flag

must remain set to signal the STOPIO routine that interrupts are

pending. Instead, set the IOSTOP flag so that I/O set up to be

executed in the protected exit routine will be bypassed.

The actual printing of the error message will not be done until all interrupt

and CAL processing is complete. Background error messages are not printed until

the Background job is given control.

As a result of a terminal error, the handler can be certain that its STOPIO

routine will be called by the Monitor if the handler's busy flag is set for the

job in error.

7.8 STOP I/O ROUTINES

In Background/Foreground it is necessary to have some orderly means of stopping

I/O that is in progress. When a job terminates (.EXIT, terminal error, etc.),

the Monitor must ensure that all I/O for that job is shut down. This is

particularly necessary in the Background where I/O must be stopped before the

associated device handlers are removed from core.

WORD 34 of each handler must contain the address of its Foreground STOPIO sub­

routine.

WORD 35 of each handler must contain the address of its Background STOPIO sub­

routine, which for single-user handlers can be the same as the Foreground STOPIO

routine.

Whenever a job terminates execution, the Monitor calls the appropriate STOPIO

subroutine at the Mainstream level. The following steps should be followed:

1. Is this the type of device for which I/O can be terminated by

issuing an rOT instruction? Terminating I/O means ensuring that no

further interrupts will occur. If so, do so, and continue at step 6.

7-21

2. LAC*
ISA

(. SCOM+l0'2

Raise to API level zero or one to protect against getting interrupted

in mid-decision.

3. If this device does not generate Not-Ready conditions (read section

7.9), go to step 5.

4. Check the "CTRL R in progress" flag (see CTRLR in section 7.9). If it

is set, clear the STOPIO flag (which is tested in step 11) and go to

step 6. This is done because I/O cannot be under way if the handler

is waiting for tR. Otherwise, go to step 5.

5. Check the appropriate job busy flag (WORD 1 or WORD 2). If it is set,

set the IOSTOP flag (a flag internal to the handler) non-zero. Other­

wise, clear it. This flag is tested in step 11.

6. Clear the appropriate job busy register (WORD 1 or WORD 2).

7. Clear the appropriate .CLOSE register (WORD 3 or WORD 4).

8. If the handler has one, clear the "CTRL R in progress" flag (see

step 18 in section 7.9).

9. If this is the type of device which can terminate I/O by lOT (refer

back to step 1), go to step 12.

lfJ. DBK

Debreak from API level zero or one back to Mainstream to allow hard­

ware flags that may have or will occur to be serviced.

11. LAC IOSTOP
SZA
JMP .-2

If the appropriate busy register had been set and I/O is under way,

control will stay here until the IOSTOP flag is set to zero. That

will happen only when the device's final interrupt occurs (refer to

section 7.6, step 8). This loop is executed at Mainstream, in case

the handler is being used by Background, so that the Foreground job

may resume execution when ready.

12. JMP* STOPIO

Exit back to the Monitor. I/O by the device has stopped and, if the

job is restarted, the handler flags have been reset so that the

handler can accept more I/O commands.

7-22

7.9 RECOVERY FROM I/O DEVICE NOT READY CONDITION

7.9.1 CTRL R Mechanism

The Background/Foreground Monitor system is designed to handle simultaneously

one not-ready condition per job. This is a limitation but a reasonable one

based on Keyboard Monitor (single user) experience.

I/O handlers that can encounter and detect not-ready conditions must adhere to

the following ground rules in their announcement of the not-ready condition and

in their continuation once the condition has been corrected.

Some devices are designed so that they can be tested at any time for a state of

readiness; therefore, the test can be made at the CAL level prior to starting

I/O. Other devices will not generate a not-ready condition until after an lOT

has been issued and an error flag results. In such cases, the not-ready condi­

tion is detected at the interrupt level.

The reader is assumed to understand the mechanism whereby a device interrupt

transfers control to a handler's interrupt service routine at a hardware API

level and the process called .SETUP whereby the handler connects itself to the

device's interrupt line(s). When the handler is not in memory, interrupts from

the device are shunted to the illegal interrupt handler. When the handler is in

core and has performed the • SETUP , device interrupts will transfer control to

the handler. The processing of a device-not-ready condition involves a pseudo­

.SETUP and a simulated API interrupt, which will be explained at the end of this

section.

It is best to check for device ready in only one location, the beginning of the

protected exit routine in the handler. This starts at step 22 in section 7.6,

where it is assumed that the CAL and interrupt portions of the handler share a

common exit logic.

1. Test for device ready or not. This is the same as step 22 in section

7.6. If the device is ready, set IOTFLG to zero so that the IOT(s) in

step 27 may be executed, and go to step 23 in section 7.6.

2. With the device not ready, it is necessary to defer the IOT(s), announce

the not-ready condition, and exit from the handler set up to continue

after CTRL R is typed on the user's control Teletype. For a single-user

or sequential multi-user handler, the IOT(s) that were to be executed

may remain where they are. Set IOTFLG non-zero so that they will not

be executed in step 27 of the protected exit logic (section 7.6). (For

multi-user handlers, the IOT(s) must be physically moved in case I/O

7-23

for the other job is started up.)

3. JMS NRMSG
Call a subroutine to initiate the printing of the not-ready message.

Then go to step 23 in the protected exit routine (section 7.6).

Steps 4 through 11 contain the code for subroutine NRMSG.

4. NRMSG ~ /Entry point.

5.

6.

LAC CTRLR
SZA!CLC
JMP* NRMSG
DAC CTRLR

Register CTRLR is a program flag internal to the handler. If it

contains zero, the handler has not already initiated a not-ready

request. If it is non-zero, exit from the subroutine, since a not­

ready condition has been announced. If CTRLR was zero, set it non-zero.

LAC WORD 11
DAC ARGI

WORD 11 in the handler contains zero if Foreground and one if Back-

ground. This is passed on as argument one in the call to the Monitor's

CTRL R setup routine.

LAC UNITNO
DAC ARG3

Bits ~-2 of argument three are considered to be the device unit number,

which is printed as part of the device-not-ready message. Some devices

have only one unit, for example, the papertape punch; and this code is,

therefore, unnecessary. The card reader handler uses the unit number in

the printout to indicate the cause of the not-ready condition.

7. LAC *
DAC

(. SCOM+64
TEMP /Beware -- TEMP probably cannot be used

/by both the CAL and interrupt levels .

• SCOM+64 contains the address of the CTRL R setup subroutine, which

is part of the Teletype handler in the Monitor. Store this address in

a temporary register.

8. LAC *
ISA

(. SCOM+l~2

Raise to API level zero or one. Reread section 7.4 if this device is

already operating at level one or zero.

7-24

9.

ARGI
ARG2

ARG3
ARG4
ARG5

JMS* TEMP

XX
.ASCII /DV/
. LaC .-1
XX
F.CTLR+?~~~~~
B.CTLR+?~~~~~

Call the CTRL R subroutine in the Monitor. Argument 1 contains

zero if Foreground and one if Background. Argument 2 is the two­

letter device name in .ASCII, e.g., LP for Line Printer. Argument

3 is the device's unit number, in bits ~-2. Argument 4 is the

address (F.CTLR) and API level code (?~~~~~) of the subroutine which

is to be entered when a Foreground not-ready condition for this

device exists and CTRL R is typed on the Foreground control Teletype.

Argument 5 is similar to argument 4, but is used for Background.

(?~~~~~) for API level 2 would be 2~~~~~, for example. Only levels

~, 1, 2, or 3 are allowed.

For device DV with unit number ~, the not-ready message would be

printed as follows:

DV~ NOT READY)

Return from the CTRL R subroutine will either be normal (step l~) or

skip one location (to step 11).

l~. DZM CTRLR

If the Monitor's CTRL R subroutine does not skip on return (returns

here), it is because the request to set up a not-ready condition was

not honored. This would happen if, for this job, a not-ready condi­

tion had been established for some other device. No queueing

mechanism exists; thus, two simultaneous not-ready conditions for a

job will result in a job terminal error, .ERR ~~4. When return is

to step l~, the Monitor has already posted the .ERR ~~4 printout re­

quest.

11. DBK
JMP* NRMSG

If the Monitor has honored the request to set up a device-not-ready

condition, step l~ will have been bypassed. Debreak from API level

zero or one. Reread section 7.4 if this device operates at level

zero or one.

Steps 12 through 18 contain the code for subroutine F.CTLR and B.CTLR.

7-25

12. F.CTLR ~ /Entry point
B.CTLR=F.CTLR

For a single-user handler, the same subroutine can be used for Fore­

ground and Background, as indicated by the equivalence statement.

Prior to entering this routine, the Monitor was called by the handler

to set up a not-ready condition for this device. A not-ready message

was printed on the appropriate job control Teletype and the CTRL R

function for that job was primed by storing ARG4 or ARG5, as appropriate,

(see step 9), in the Monitor's Foreground CTRL R or Background CTRL R

register.

Note that this has the effect of a pseudo-.SETUP call. If CTRL R is

now typed on the appropriate job control Teletype (the user's way of

posting a "done" flag), the corresponding CTRL R register in the Moni­

tor acts like an API channel register. The Teletype handler raises

to the designated API priority level and then performs a JMS to this

subroutine. The subroutine must be entered at API level zero, one,

two, or three. Prior to entering this subroutine, the Teletype handler

will clear the relevant Monitor CTRL R register to disable CTRL R

until another not-ready condition is established.

13. DZM CTRLR

Clear the handler's not-ready-condition-in-progress flag.

14. Test for device ready or not. If ready, go to step 16.

15. JMS NRMSG

The device still isn't ready. Reestablish the not-ready condition

and then exit by going to step 17.

16. Execute the IOT(s) that were deferred for this device, i.e., start

I/O up again.

17. DBR
JMP* F.CTLR

Debreak and return to the Teletype handler. Note that the AC need

not be restored.

18. CTRLR ~

The "CTRL R in progress" flag must initially be cleared. It must

also be cleared in the STOPIO subroutine and in the .INIT code. For a

single-user handler, only one CTRLR register is needed.

7-26

7.9.2 .INIT Consideration

WORD 36 of the I/O handler is an identification code which is zero for most

handlers. Only if the code is -1 (777777)1 will the Monitor allow .INIT to be

processed by a busy handler.

In the latter case, the handler must test its CTRLR flag (and then clear it) to

see if a not-ready condition existed for the device. If so, the handler must

also clear the appropriate CTRL R register in the Monitor as follows:

UC CTRLR
SNA
J~ OVER
LAC (.SCOM+67
TAD WORDll /~ = FGD; 1 = BGD.
DAC TEMP /.SCOM+67 = FGD; .SCOM+7~ BGD.
UC* TE~ /Address of FGD or BGD CTRL char. table.
TAD (4
DAC TE~

DZM* TEMP /~ Monitor's B or F CTRL R.
OVER DZM CTRLR /~ Handler's own CTRL R.

Note that .SCOM+67 points to the Foreground control character table in the Tele­

type handler and that .SCOM+7~ points to the Background control character table.

WORD 11 in the handler contains zero if Foreground and one if Background. The

CTRL R register for each job is the fifth entry in each of these tables.

7.10 THE .INIT FUNCTION

In order to satisfy the requirements of the disk and DECtape handlers, the FlOPS

routine in the FORTRAN Object Time System operates somewhat differently in

Background/Foreground from the way it does in the Keyboard Monitor. In Background/

Foreground, FlOPS will perform a .INIT to a given .DAT slot only the first time

the slot is referenced, not each time the direction of data transfer changes.

The .INIT-only-once change is necessary because DTA. and DKA. can perform non­

file-oriented I/C, that is, treat the DECtape or Disk as if it were MAGtape •

. INIT always resets the device to file-oriented mode and is, therefore, avoided.

This change has ramifications for user-written device handlers, even if they are

strictly file-oriented handlers. .INIT can no longer be relied upon to signal

a change in the direction of data transfer. However, if .CLOSE is followed by

.SEEK, .ENTER, . FSTAT, .DLETE, .RENAM, • CLEAR, or REWIND (.MTAPE ~), the trans­

fer direction is obvious anyway. Therefore, .INIT need only be used to tie the

IThis is a necessary but not sufficient condition.

7-27

handler to its interrupt lines (.SETUP) and to abort I/O (after CTRL P, for

example) •

7.11 SEQUENTIAL MULTI-USER DEVICE HANDLER

7.11.1 Transition from Single-user Handler

To accomplish the transition from a single-user device handler to a sequential

multi-user device handler, the following procedures must be adhered to:

1. The device handler must be the "A" version; that is, LPA., MTA., etc.,

as the Background/Foreground Monitor System will only allow "A" versions

to be connected to both jobs simultaneously. Also, this shareability

must be specified to the B/F System Generator.

2. The SWAP subroutine (pointed to by WORD~ of the handler) ~ set

both busy registers (WORDI and WORD2) to prevent the Foreground job

from forcing itself in before the Background job has completed its

operation. This is in addition to and prior to its normal duties as

outlined in 7.5.1.

3. The handler's identification code, WORD36, should not be -1. If it

were, it would be possible for one job to abort the I/O operation of

the other.

4. There must be two unique STOP I/O subroutines, one for Foreground

(pointed to by WORD34) and one for Background (pointed to by WORD35).

Before executing the STOP I/O procedures, both subroutines must first

determine if the I/O belongs to their respective jobs. This is done

by testing WORDll, (~=Foreground I/O, l=Background I/O). They should

do nothing if the other job is in control.

In step 8 of the STOPIO routine, section 7.8, check the CTRLR flag

before clearing it. If the flag was set, call the I/O BUSY routine

in the Monitor (as in steps 15, 16, 17 of section 7.6) in case some

level of the Foreground iob is I/O bound on this device.

5. Because the SWAP subroutine sets both busy registers (WORDI and WORD2),

the CLEAR BUSY FLAG routine that sets up to have the flags cleared

during protected exit from the device handler (refer to steps 13 and

14 in section 7.6) must always setup to have both flags cleared.

The STOP I/O subroutines should also clear both busy registers.

7-28

7.11.2 Peculiarities

It is understood that in multi-user handlers, such as DTA., the Foreground has

a built-in priority. Therefore, it comes as no surprise that the Foreground job

can completely prevent the Background from performing DECtape I/O. For

sequential multi-user handlers, one might assume that Foreground and Background

I/O operations would compete on an equal basis. This may not be the case.

It is possible, given the right set of circumstances, that Foreground never gets

a chance to manipulate the device, that Background never gets a chance to mani­

pulate the device, or that one program (not necessarily Foreground) does more

actual I/O to the device than an identical program running as the other job.

This situation should only become a problem when one or both jobs attempt con­

tinuous operation of the device. The "right set of circumstances" depends upon

where processing is in the Monitor's CAL handler when the current I/O operation

for the device completes (interrupts).

7.11.3 Use of the .WAITR Function

When a sequential multi-user device handler is being used by the Background job,

the Foreground job will become I/O bound if it attempts to use the same handler.

The .WAITR monitor function affords both the Foreground job and the Background

job a means of determining that the handler is available before requesting I/O

from and to it. This feature is only useful when the job has other things which

can be performed while it is waiting for the handler to free up.

The use of .WAITR in this manner is foolproof when executed in the Foreground.

This is not so in the Background because the Foreground job can regain control

after the Background .WAITR has been executed and before the ensuing Background

I/O command.

7.12 EXTERNAL I/O BUFFERS

Device handlers which might require a great deal of buffer space may do well

to use the system's capability of setting aside I/O buffers at load time. Only

multi-user or sequential multi-user handlers (the shareable "A" versions) may

utilize external buffers.

Buffer sizes required by each shareable handler are specified during system

generation. Buffers are set aside at load time by the Loaders either as a result

of a $FILES Keyboard command or, in lieu thereof, one per .OAT slot which

references the multi-user device handler.

7-29

Typically, the handler would test to see if it had a buffer for a given .OAT

slot before performing the I/O request. If not, it would call the GETBUF routine

in the Monitor to scan the buffer table, .BFTAB, for a usable free buffer. At

the end of the I/O sequence, usually .CLOSE, the handler must relinquish the

buffer so that other handlers might use it.

7.12.1 Calling for a Buffer

At run time, the handler may obtain an external I/O buffer as follows:

1. LAC *
OAC

(.SCOM+56
TEMP /Beware -- TEMP probably cannot be

fused by both the CAL and interrupt
/levels.

The address of the GETBUF subroutine in the Resident Monitor is in

.SCOM+56.

2. LAC *
ISA

(.SCOM+l~2

Raise to API level zero or one. Reread section 7.4 if the handler

is already at level zero or one.

3. JMS*
argument

TEMP

Call GETBUF with one argument:

Bit ~ = ~ if Foreground
Bit ~ = 1 if Background
Bits 1-5 = ~
Bits 6-17 = Buffer size.

GETBUF will search .BFTAB for a free Foreground or Background buffer,

as specified, of a size equal to (or greater than, if necessary)

that indicated in the argument.

4. If a buffer is found, the address of the first word of the .BFTAB

entry is returned in the AC and the entry is flagged busy by the

GETBUF routine. If no buffer can be found, zero is returned in the

AC and GETBUF initiates a terminal error (.ERR ~55) for the

job.

s. OBK

Oebreak -- Reread section 7.4 if this is an API level one or zero

device.

7-30

7.12.2 Releasing a Buffer

The format of .BFTAB is given in Appendix IV. When the handler wishes to

relinquish a buffer, it does so by clearing the busy bit of the entry in .BFTAB.

Note that the address of the first word of this entry in .BFTAB is returned in

the AC by the Monitor subroutine GETBUF.

7.13 PDP-9/PDP-IS COMPATIBILITY

7.13.1 Page Mode

The I/O handler description in this manual was written for page-mode operation,

which is vilid only on the PDP-IS.

Two coding requirements which are necessary for PDP-9 hardware may be omitted

for handlers that are to run in page-mode-only systems: (1) raising to API

level 3 and (2) double XCT .+1 following DBR (see 7.13.2). For page mode opera­

tion on a PDP-IS, add a DBA (Disable Bank Addressing = Enter Page Mode) instruc­

tion as the first instruction in the handler's interrupt service routine.

7.13.2 Bank Mode

Since handlers that operate in the bank mode system must be able to run on both

a PDP-9 and a PDP-IS (assuming that the device exists on both machines), the

following PDP-9 requirements must be followed:

7.14

1. Do not insert a DBA instruction at the beginning of the interrupt
service routine.

2. If a device on the PDP-9 is connected to the PIC (Program Interrupt
Control) but not to API, then the interrupt service routine must raise
to API level 3 before executing the ION instruction. On the PDP-IS,
this raise to level 3 is done automatically by the hardware. Formerly,
when API hardware was optional on PDP-9 Background/Foreground, an "in
interrupt service routine" flag (.SCOM 3S) was needed to signal that
state ~fter the ION instruction was executed.

3. To allow API synchronization following a DBR instruction on a PDP-9,
the following exit sequence must be used:

DBR
XCT .+1
XCT .+1
JMP*

DEVICE HANDLER LISTING

The following pages contain the assembly listing of a paper tape reader handler

(PRA.) for PDP-IS Background/Foreground operation.

7-31

PAGE 1 P~A. (21(218

1
2
3
4
5
6
7
8
9

10
11
12
13

-..I 14
I 15 w

'" 16
17
18
19
2(21
21
22
23
24
25
26
27
28
29

-- PRA,

.TITLE -- PRA.

/COPYRIGHT 197(21, DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASS~

/PAPER TAPE READER I/O DEVICE HANDLER rOR THE
/PDP-15 BACKGROUND/FOREGROUND MONITOR SYST£M.

/THIS IS NOT T~E VERSION or PRA. SUPPLIED WITH
/THE BAC~GOUND/FoREGROUNO SYSTEMS, IT IS AOAPTED
/(8y C, PROTEAU) fROM PRA. (WRITTEN BY O. LENEY
lAND M, SIFNAS) TO CONFORM TO THE DESCRIPTION
10F A DEVICE HANnLER IN SECTION 7 OF THE POP-15/30
lAND PDP-15/40 MONITOR MANUAL. THE MAJOR OlrFERENCE
IBETWEEN THESE TwO VERSIONS IS T~AT THIS ONE IS
/NOT PARTICULARLV AMENABLE TO CONVERSION rOR
/OPERATION IN PDP·9 BACKGROUND/fOREGROUND,

/CHARACTERISTICS'
/
I 1, ~INGLE-USER (NONpSHAREABLE) HANOLER
/ 2. NON-fiLE-ORIENTED (A TERM SOMETIMES
/ TAKEN TO MEAN NONwRANOOM-ACCESS)
I 3. HANDLrs DATA ~oOES " THROUGH.
I 4, CAN USE CODE AND REGISTERS IN COMMON
/ BY CAL AND INTERRUPT SERVICE
/ 5, OPERATES ENTIRELY IN PAGE ADDRESSING MODE

.EJECT

PAGE 2 f'" A • 008

30 700101 A
31 70::'112 A
32
33 70~li?14 A
34
35
36
37 700144 A
38
39
40

-..J 41
I

42 w
w 43

44
45 0001<J0 A
46
47 44[7:000 A
48
49
50
51

PRA.

RSF=70~1i211
RRR=7fi"!1112

RSA=7rl10H/4

RSB=700144

.SCO~=10{1

IOX=IS2

.EJ~CT

ISKIP Ir READER F~AG IS SET,
IREAD READER BUFFER IN~O THE AC
lAND CLEAR THE READER fLAG,
ISELECT READER IN ALPHANUMERIC MODE,
ICLEAR THE READER FLAG AND THEN
IREAD ONE 8-BIT CHARACTER (RIGHT
IJUSTIFIED) INTO THE READER BUFFER,
ISELECT READER IN BINARy MODE,
ICLEAR READER FLAG AND THEN READ
ITHREE 6-81T CHARACTERS AND ASSEMBLE
ITHEM INTO THE READER BUFFER TO rORM
lONE 18-BIT BINARY WORD, IN THIS MODE.
18IT 7 or A TAPE ~INE IS IGNOR£DJ AND
ITHE LINE IS IGNORED IF 8IT 8 IS
INOT SET,
IBASE ADDRESS OF THE MONITOR'S
ISYSTEM COMMUNICATION REGISTERS,
IIDX IS USED INSTEAD or IS~ WHEN THE
IINTENT IS TO ADD 1 TO A REGISTER BUT
INDT TO SKIP,

"AGE 3 PRA. 008 PRA,

52 ITHIS AND THE NEXT PAGE CONTAIN THE PIRST 37 OCTAL WORDS WHICH
53 IARE STRUCTURED ACCORDING TO BGO/fGD HANDLER CONVENTION,
54
~5 ,GLOBL PRA,
56
57 INOTE -- A HANOLrR MAY HAVE ONLy 1 GLOBAL SYMBOL~
58
59 2Z?~- R 1002137 R pRA, JMS PRSWAP 11010 0 - JMS TO SWAP SUBROUTINE
60 0~,\\;1. R 00001321 A 0 11010 1 • rGO BUSY REGISTER
61 00.:'02 R 000.000 A ~ 11010 2 • eGo BUSY REGISTER
62 ("0:'~0,3 R 00~0j2lf21 A 0 11010 3 ~ rGD CLOSE REGIST£R
63 e:N,V) 4 f~ 00Ql0OJ0 A 0 11010 4 - eGO CLOSE REGISTER
64 0V~'('" R 74~1Z4'" A XX 11010 5 - ION (SET BY CA~ HANDLER)
65 I THIS IS AN UNUSED VESTIGE PROM PDP.9~

-..J 66 ~N~~" rl 74004i1l A XX 11010 6 • ION oR 10F OR DBR I
w 67 0~":1<" 1 R 74!i'!i2i40 A XX 11010 7 - RETURN POINTER ~

68
69 ISTART OF LlvE/BAC~UP DATA 'REGISTERS
70
71 0001} R 740040 A xx 11010 10 - JMP TO FUNCTION
72 e: e ~. 11 R 74 " 111 4 0 A xx 11010 11 - WHOSE CAL (0.FGD.1.SGO)
73 QH'h'12 R 740040 A PR8CT xx 11010 12 - ,OAT SLOTt ~ 8TH BIT COUNT
74 00~13 R 740040 A PARER xx 11010 13 - UNIT # AND CAL ADDRESS ~ PARITY COUNT
75 ('10214 R 740040 A PTRDM XX 11010 14 - DATA MOOE
76 00<'lS R 7400421 A PRL8HP xx 11010 15 - LINE BUFPER ADDRESS
77 0071b R 74021421 A PTRwC XX 11010 16 - ~wc OR BuFFER SIlE POINTER
78 0.10717 R 7400421 A XX 11010 17 - REAL TIME REQUEST .
79
80 lEND or DATA REGtSTERS
81
82 .EJECT

PAGE 4 Pt:lA, rlItZlB PRA,

83 1ST ART OF FUNCTI~~ DISPATCH TABLE
/,;4
J' r~ r-,r;. i R M004~~ R .I~:f' PRIN tWO 2" - l-,INIT ' .
86 00021 R 6130517 R JMP PR r G~I IWO 21 - 2-,OPER-IGNORED 87 rlIrl1~22 R 6~~517 R JMP PRIGN IWD 22 - J.,SEEK-IGNORED
88 00~23 R 6~tZl621 R JMP PRER6 IWO 23 - 4=,ENTER~ERROR
89 00Z24 R 6rl1Ql621 R JMP PRER6 IwO 24 - 5.,C~EAR~ERROR
90 007125 R 6Ql:1l517 R JMP PRIGN IwD 25 - 6.,C~OSE~IGNORED
91 rlI0'2J26 R 6210517 R pRJIGN JMP PRIGN IWD 26 - 7=,MTApE-IGNORED 92 130027 R 6002165 R pRE AD JMP PRREn IWO 27 - 10 •• READ,.REA~R 93 00~30 R 600621 R JMP pRER6 IWD 3" - 11.~WRITE"REA~W - ERROR 94 et0ii13l. R 000000 A pTR57 Ql IWO 31 - 12.;WAIT •• WAITR 95 I SINCE T~IS FUNCTION IS pROCESSED 96 I ENTIRE~Y BY THE MONITOR, PRA. USES 97 I THIS REGISTER AS A VAAIAB~E STOR-98 I AGE -. 5/7 ASCII CHARACTER positION; 99 00032 R 600621 R J'1P PRER6 IWO 32 - 13 •• TRAN~ERROR

11210 (lIrlIr.l3~~ R rlIeJ0Ql0Ql A 0 IWO 33 - SAVEO .SCOM.J5 (SET BY CA~ ~ANOLER)
101 I THIS IS AN UNUSED V£STIGE rROM POP-9. --.J 11112 00~34 q 000644 R PRSTOP IWO 34 - STOP rGO 110 I

w 1ftlJ3 (lI01il3~ R 000644 R PRSTOP IwD 35 - STOP BGO 1/0 VI
104 0.0036 R 0Ql000Ql A 21 IWO 36 - HANDLER 10 • III

PAGE 5 PRA, 01218 -- SWAP SUBROUTINE API lEVEL 0 OR 1

1135 .TITlE - SWAP SUBROUTINE ~- API ~EVE~ 0 OR 1
11216
107 ITHIS SUBROUTI~E IS ENTERED BY T~E
108 ICAl HANDLER VIA WORD 0 OF THIS 1/0
109 IHAND~ER JUST PRiOR TO GIVING CONTROL
110 ITO TME HANULER AT THE APpROPRIATE
111 lEN TRY IN THE fUNCTION DISPATCH TABLE,
112
113 0121037 R 0"I1lI1l~rIJ A PRSWAP 10
114 0212140 R 4111011105 R XCT pRA •• 5 lION,
115 00041 R 71213304 A OBK IFROM ~EvEL " OR 1 TO ~EVE~ 4.
116 P.l0Ql42 R 620037 R JI'1P* PRSWAP IRE TURN TO CA~ HANOlER.

-...J
I

W
0'1

FlAGE

117
119
119
1221
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
14 .~
141
142
143
144
145
146
147
1 4 8
149
152
151
152
153
154
155

6 pRA, 008 -- CAL PROCESSING -- API LEVEL 4

00;;4~ R 20f.ll673 R
0~'W44 R 060016 R

00~4~ R 22~674 R
00~4~ R 040~12 R
e0~47 R 120~12 R
00~~~ R 70e101 A
00~51 R 000160 R.

000051 R
00"~2 R 200054 R
00753 R 040045 R
~02~4 R 600517 R

I'e;,?:> R 7001<)4 A
0 ... ','it- r~ 7C:~144 A
"r~:>7 M 70(')11'4 A
r'(" 5, R 700H14 A
~ (: :, (', 1 R 7 217 1 4 4 A
Zt' '6;' R V1~?J617 R
70,'b3 R 000617 R
'l8"~', K 00~1617 R

,TITLE -: CAL PROCESSING ~- API LEVEL 4

I.INlT -- CAL FU~CTldN

INOTE -- SI~CE THE HANDLER 1.0. CODE (WORD 36) IS NOT 81 •• INtT
ICANNOT OVERRIDE A BUSY CONDITIO~. THEREFORE. NO CAL WILL BE
IALLOWEO INTO PRA. UNTIL pRA. HAS CONCLUDED ITS INtERRUPT PROCrSSING~

PRIN LAC (64
DACII PRA,+16 ISTANDARD BUFfER SI~E.52(10)

INOTE -- ThE TEST ON .SETUP ~AVING BEEN DONE AND, CONS[QUENTLV~
IAT LEAST ONE .I~IT, lS BASED ON PRNlT BEING SET TO "JMP FlRIeN".
ITHE FOLLO~ING Is ONCE-ONLY CODE! HENCE. THESE REGISTERS ARE USEO
ILATER ON TO STORE DATA VARIABLES,

PRNIT LAC* (.SCO M+55 IADDRESS 0, MONITORIS .S£TUP ROUTINE~
IDAT. WORD COUNT PRDTCT DAC PRBCT

pRCCT JMS* PR8rT I,SETUP - CHAR COUNT
pRDBP RSF·
pRCKSM PTRI!\:T
PRDVS2=PRCKSM
pRCNT LAC ,+2

ILATER DATA wORO POINTER
ICHECKSUM (lOPS ASCII)
ITEMPORARY STORAGE FOR PRDVS SUBROUTiNr~
IpARITY CHECK COUNTER

PTRAC CAC PR~IT ISAVED Ae
PRCHAR JMP PRIG~ ICHARACTER PROCESSED

lEND OF O~CE-O~Lv CODE.
ITABLE OF IOTIS llSEQ WITH THE VARIOUS DATA MODES. NOTE THAT
15, 6 AND 7, BEING POSITIvE VALUES, INDICATE ILLEGAL DATA MOOES.

PTRIaT RSA
R:;d
RSA
RSA
RSH
PRER7
PRErt7
PRER7
,EJECT

IIOPS BINARy
IIMAGE BINARY
IIOPS ASCII
IIMAGE ALPHA
IDuMP MODE
IILLEGAL MODE
IILLEGAL MODE
III..LEGAL MODE

IHODE ""
IMODE l.
IHODE 2
IHODE 3
IHODE 4
IMODE 5
IHODE 6
IMODE 1

PAGE 7 P"A. ~fOe CAL PROCESSI~G -- API LEVEL 4

156 I,READ OR ,REALR CAL FUNCTION
1';7
158 v(:6, R 2ZV'Z~5 R pRRED LAG PRIloIT IIF PRNIT HASN'T BEEN CHANGED
159 .' e :; 6 i) R '54 Zi 226 R S~J pRJIr.N ITO "JMp PRIGN", THEN ,INIT
16~ 72"67 R 74H1l0 A 5~P

161 r077~ R 600615 R J"1P PRER6e1 IWAS I\JEVER DONE,
162
163 ITHE PRECEJING TEST WAS MADE TO INSURE THAT THE HANDLER IS
164 ICONNECTED TO IT~ INTERRUPT LINE BEFORE IT ISSUES lOT'S,
165 10THERWISE, AN ILLEGAL INTERRUPT MIGHT RESULT THAT WOULD ABO~T
166 IBOTH BGO AND FGr OPERATION,
1~7
168 e~"71 R 777777 A LAW -1
169 ('v,!'12 " e40663 R CAe PRIO:.oC IIOPS BINARY WORD COUNT
17~ 2e7'7~1 R 2e~!'l!15 R LAC PRLB;.;P IUNE BtlFFER HEADER

-J 171 ~el74 R 'l4~~50 R DAC pRDBp IDAH , 172 'Iv?7; H 14 7246 R U'i PRDTcT ICLEAR DATA COUNT w
-J 173

174 /THE DATA POINTER IS NOW pOINTING TO THE LINE BUFFER HEADER ADORrSS,
175 /FOR DUMP ~OCE (~ODE 4) THERE IS NO HEADER, SO DON'T CHANGE TH£ DATA
176 IPOINTER, FOR lOpS BINARY MODE (~ODE 0) THE HEADER WORD pAIR MUST
177 IFIRST 9E READ 1\ FROM THE TAPE, So cON'T CHANGE T~E DATA POiNTE~.
178 IFOR IMAGE MODES AND FOR lOPS AScII THERE IS NO HEADER ON THE TAPE.
179 /THEREFO"lE. THE ~ATA POINTER MUST BE MOVED PAST THE HEADER WORO PAIR~
18e!
181 N"n6 R 2<1:.'l2l14 R LAC PTRD~ IDAH MOr.E
182 0r('77 R ~e~675 R A\lO (3 ICHECK FoR DUMP AND lOPS BINARV MODES.
183 Cl'r,HZ R 741230 A S,\JA
184 0E1~1 R 60~104 R J:1P PR~XRl IIOPS BINARY AND DUMP MODES ~. DO NOT
185 IINDEX DATA AREA POINTER,
186 rrt0~ R 1e0562 R J~S PRNX\fiD IINDEX PAST LINE BUFFER HEADER
187 P~1~3 R 1e1~562 R JMS PRNX~;D IFOR lOPS AscII OR IMAGE MODES.
188
189 ,EJECT

PAGE 8 PRA, 008 CAL PROCESSING -- API LEVEL 4

190 001~4 R 200014 R PRNXR1 LAC PTRoM IDATA MODE
191 7Z1:J, R 340676 R TAD (LAC PTRf{lT
192 Z?106 R 040107 R DAe • +1
193 0fl~7 R 740040 A XX
194 0,z,11;" R 040153 R DAG PRIOT
195 00111 R 7401021 A SMA
196 ee112 R 60'11617 R J'~p PRER7 II~LEGAL DATA MODE.
197 00113 R 777773 A LAW -5 1517 CHARACTER
198 ~0114 R ~4~031 R DAG PTR5, ICOUNTER.
199 00115 R 14'11047 R Di!M PRCCi' ICLEAR c~ARACT[A COUNT~
200 0e1l6 R 140051 R Di!t1 PRCKSM ICL.EAR c~ECJ<SUM
2211 ~0117 R 140012 R Ob-' PR8CT ICL.EAR ASCII 8T~ BIT S~T COUNTER
2Pl2 0C'120 R 14~HH3 R Di!M PARER ICL.EAR PARITy ERROR SWITCH
203 ~e121 R 14e>672 R Di!M PRXCrS ICLEAR "£XCESS lOPS BINARY DATA" rLA~~

PAGE 9 pI'< A , III III 8 -- COMMON EXIT -- APr LEVEL 4 OR 2

-...I 204 .TITLE -: COMMON EXIT -- API LEVEL 4 OR 2
I 205 w

(Xl UJ6 ITHE lOPS BINARY INTERRUPT SERVICE ROUTINE MAY ENT£R HERE .~
207 ICODE IN COMMON WITH THE READ CAL.
208
209 00122 R 160050 R pRI086 Di!M* PRoBP ICLEAR NEXT DATA wORD.
210 1210123 R 777775 A pRIOB' UW -3 IIOPS BINARY 3 BYTE COUNT.
211 012'124 R 040664 R DAC PRIOBN
212
213 IIF THIS wE~t THr TYPE OF DEVICE THAT CAN BECOME NOT R£AOY, THE
214 IRECOMMENDED CHECK POINT WOULD BE HERE. T~E ENO-or.MEDIUM TEST BELOW
215 lIS LIKE A NOT Rr.ADy CHECK. WHEN A DEVICE IS DETECTED NOT RE~OY,
216 ITHE HANDLEH REMAINS BUSY AND THE CAL FUNCTION IS NOT COMPLETED, ON
217 IEND-OF-MEDIUM, HOWEVER, THE NOT READY INrORMATION IS RETURNrO TO TH~
218 ICALLER AND THE CAL fUNCTION IS COMPLETED. END-or.MEDIUM IS ALSO
219 ICHECKED IN THE INTERRUPT SERVICE CODE,
2221
221 0U25 R 7~0314 A pROUT2 IORS 181T 8 • 1 IN THE IORS
222 012'126 R 5021677 R AND C1~0" ISTATUS WORD MEANS
223 1210127 R 740200 A SH
224 1?J013:J R 600441 R JMP PREOM INO-TAPE~IN~READER,
225
226 ,EJECT

PAGE 10 PRA. elfli8 COHMON EXIT -- API LEVEL 4 OR 2

227 ICOMMON PRoTECTEn EXIT rOR CAL LEVEL (API LEVEL 4)
228 lAND INTERRUPT LFVEL ~API LEVEL 2).
229
230 (IIk::i31 R 22070121 R PRNOR LAC* (,SCOM+102 IRAISE TO ~IGHEST LEVEL ALLOWED
231 00132 R 71215504 A ISA I(API 0 OR 1),
232 00133 q 200006 R LAC PRA.+6 IDOES WORD 6 CONTAIN A DBR?
233 ("0134 R 540701 R SAO (DBR
234 00135 R 74101210 A SKP lyES, THIS IS AN INTERRUPT EXIT,
235 ~013~ R 600141 R ,JMP • +3 INC, THIS IS A CAL EXIT,
236 0e137 R 221121702 R LAC (404(1!12I121 IREQUEST A LEVEL 4 INTERRU~T TO
237 001421 R 71215504 A ISA IACTIVATE THE MONITORIS DISPATOH£R,
238 00141 R 600144 R PRCFLG JMP ,+3 ISET TO "NOP" Ir rLACS ARE TO BE CLEiRED;

--.J 239 00142 R 140001 R DlM PRA,+1 ICLEAR BOTH THE rCD AND BGO
I 240 20143 R 14i1lel02 R Orr., PRA, +2 IBUSY REGISTERS .~ ONLY 1 WAS SET, w

\0 241 1210144 R 200703 R LAC (JMP , IRESET PRCFLG TO SKIP THE O~MIS,
242 00145 R 040141 R OAe PRCFLG
243 00146 R 2e0001 R LAC PRA. +1 lIt THE APPROPRIATE BUSY FLAG
244 00147 R 34001212 R TAD PRA,+2 115 121 (THE OTHER ALWAYS IS (21)
245 00150 R 75120121 A SlI.JAlCL,A lOR IF THE STOP 1/0 rLAG IS
246 01(l151 R 600154 R JMP ,+3 ISET (NON-0), BYPASS THE lOT;
247 210152 R 54067f2J R SAD pRSTpS
246 2e:153 R 741i1f2J411l A PRIOT XX IREADER lOT.
249 21e154 R 200053 R LAC PTRAc IRESTORE AC,
250 210155 R 703304 A OBK IFROM LEVEL 0 OR 1,
251 00156 R 411l0vH:l6 R XCT pRA •• 6 liON elr CAL EXIT) OR
252 IDBR (IF INTERRUPT EXIT),
253 00157 R 62121007 R J M P * P R A " + 7 IRETURN POINTER, rOR CAL EXITS,
254 ITHIS WILL R£TURN TO A POINT.
255 ICALLED "CALXIT" IN THE MONITOR,

PAGE 11 P::,A. 01218

256
257
256
259
26[21
261 0k';16,1 R V'12I0iHHl A
262
263 0e161 f1 707762 A
264 e"H62 R 1214Z!1I53 R
265 00163 R 21210'1160 R
266 1210164 R [J412112107 R
267 r016<; R 200701 R
266 ;7,["166 R 121412112106 R

...... 269
I 2721 ~

00167 R 700112 A

0 271 e 01 7'! R 0 4 121121 :; 4 R
272
273
274
275
276
277
27ll 0(>'1/1 :1 140670 R
279
280
281
282
2~3 0017? n 200001 R
284 Ii' Ii' 1 7,~ " 3 4 0 iH! 2 R
285 1?C17~ R 7412010 A
286 0;117' ~ 6;);.1517 R
287
288

INTERRUPT SERVICE -- API LEVEL 2

.TITLE -- INTERRUpT SERVICE _w API LEVEL 2

IREADER INT~RRUPT SERVICE SUBROUTINE .~ ENTERED AT A~I LEVEL 2
IBV THE JMS INSTRUCTION SET UP IN API CHANNEL 1~ (CORE REGISTER '0).

PTRINT :J IL+P/S+MP+RETURN ADDRESS.

DBA IENABLE PAGE MODE ADORESSING~
DAC PTRAr; ISAVE THE AC.
LAC P TR I ~IT ISAVE THE L.P/B.Mp.PC IN
DAC PRA •• 7 'WORD 7 (THE COMMON EXIT REGISTER).
LAC (DBR ISTORE A DBR INSTRUCTION
OAC pRA.+6 lIN WORD 6.
RRB IREAD READER BurrER INTO THE

lAC AND CLEAR THE READER rLAG.
DAC pRCHAR ISAVE THE CHARACTER CSITS 10;11),

ITHIS IS THE rlNAL INTERRUPT EXPECTED rROM THE READER rOR THIS
1110 OPERATlo~. THER[rORE, 1/0 HAS STOPPED. IN CASE IT WAS srT. CLrAR
ITHE STOP 110 rLAG TO SIGNAL THE STOP 1/0 ROUTINE THAT NO rURTH[R
IINTERRUPTS wILL OCcuR.

OlM PRSTpS ICLEAR STOP SWITCH.

IIr THE APpROPRIATE BUSY rLAG IS lERD (THE OTHER ONE MUST BE O),
ITHEN THE STOP 1/0 ROUTINE CLEARED IT. Ir so, IGNORE T~E INTrRRUPT,

LAC PRA.+1 ICHECK t~R STOP SINCE LAST SE~ECT,
TAO PRA.+2
S '~A 10K?
JMP PR I G~. IND. IGNoRt LAST READ.

.EJECT

PAGE 12 PRA, 0i!R INTERRUPT SERVICE .- API LEVE~ 2

289 IPROCESS THE I~TrR~UPT, IF AFTER DOING SQ, T~E I/O CA~L IS CnMPL[T[,
29~ ICONTROL ~ILL GO TO THE 1/0 DONE LOGIC. IF NOT. MORE I/O WILL BE
291 IINITIATEJ ~y lOT IN THE COMMON EXIT ROUTINE.
292
293 7i'ilh fi 72r'314 A laRS /READ 10RS STATUS INTO THE AC.
294 ('?j 77 R 512"'677 R A'n (10012 IREADER oUT of TAPE? (IORS6"1l
295 ;I??/_~-- p. 74(2:-2' A Stb.
296 V0211 >l 627441 R J ~1 P PRE OM ISET EOM IN OATA BUFFER AND STOP REA~ING~
297
298 IDISPATCH aN T~E OATA MODE AND PROCESS THE INTERRUPT,
299

-.J 31'1?l r: k' 2 "i 2 R 20 01H 4 R LAC PTRO",
I 3211 702Z3 ~ 34:'7iJ4 R TAD (JMP PRO I Sl

01>0
I-' 302 7(;::>,j4 R 04021'6 R CAe ,+2

303 0~225 R 22'£1054 R LAC PRCHAR
304 "~2;;:6 R 74??l40 A xx ISERVICE ACCORDING TO DATA MODE.
3?l5 C0:?t7 R 602'216 R PROIS1 J,'1P PR I 08 /IOPS Blt>JARY
306 e,,21: R 6~Z213 R JMP PR I Mfl /IMAGE BINARY
3127 e0211 R 60~)327 R JMP PRIOA IIOPS AscI I
308 i2i(;21? R 74;'200 A r-.;OP IIMAGE ASCII
309
31~ IPROCESS I~AGE BT~ARY OR IMAGE ASCI! OR DUMP MODE,
311
312 ['C'215 R e6~~50 R PPIM8 GAC* PRDAP 1ST ORE CHARACTER OR BINARV
313 'WORD IN DATA BUrFER,
314 0?214 ~ 1~e562 R J''1S PRI\,X'.'D IwORD COMPLETE SUBROUTINE
315 2!0?13 R 6"0125 R J'1fl PROUr2 INEXT CHARACTER
316
317 ,EJECT

~AGE. 13 .. h A. e,;;J 8 I~TERRUPT SERVICE -- API lEVEL 2

318 IRRDCES') lOPS EI~ARy.
319
327 rl21~ R 10~312 R PRIDB j;1S FRPAR ICOMPUTE PARITY AND EXIT Ir NULL
321 ('r:?17 R 7444Hi A S\JL!RAllr"LL 181T 8=1 (BINARy rRAME7)
322 ~~22" R 6kjC125 R JMP PROUT2 INON·SINARy fRAME (IGNORE)
323 ve~21 R 242054 R CAe PRCHAR ICHARACTER t~ 1"5
324
325 INEXT 6-8IT BVTE ROUTINE
326
327 ('r222 R 200672 R LAC PRXCrS lIS THIs EXCESS DATA?
323 t:e223 R 74e2(10 A StA
329 ?f!224 R 6003~15 R J'1R PRIORS IVES, IGNORE IT,
330 00223 R 220"'50 R LACII RRDgp ISHIrT EARLIER CHARACTERS LErT
331 70?2f- R 744020 A RARlCLL
332 7~227 R 24l~54 R XOR PRCHAR IADD THIS CHARACTER TO OTHER 1 OR 2
333 0e:;37 R 742010 A RTL
334 7~"31 R 7420H'] A RTl
335 2!Z?32 R 742010 A 'iTL

-...J 33e- VV233 R 743010 A RAL
I 337 H;234 R ~6~050 R :JACII PRD8~
~ 338 7~23'5 R 207665 R LAC PRCtl:T1 ICHECK CHARACTER PARITY I\J

339 ;'7236 ~ 74U']20 A RAR 1000 IF" sIT 17-1
342 72237 R 7424100 A S:~L 10 I K,
341 P24? R 44~H"13 R I ;)X PARER IPARITY ERRORNSAVE BUT PASS CHARACT~R
342 re2 41 R 447J~112 R lOX PR8Cr ITO rORcr A PARITY CHECK.
343 ,.'0242 R 440664 R IS2 PRI08N IINDEX 3 BYTE lOPS BINARy COUNT,
344 (00243 R 62111'125 R J.'1P PRQui'2 ISTILL WORKING ON CURRENT DATA WORD,
345 rZ244 R 447663 R IS2 PRIO.,C IIND~X ~EAOER WORD ~ COUNT,
346 0Q'245 R 621Z264 R J'1P PRIOB4 IcURRENT DATA WORD COM~LETE,
347 (7;;246 R 2270521 R LAC· PRDBP IC~ECK Ir THE WORD PAIR COUNT IWPC)
348 CC'?47 R 7422321 A S~HA lIS LESS THAN THE WORD COUNT (WC),
349 0rnS? R 740~Hl A RI\L
350 02251. R 50en5 R AND (776
351 2'0252 R 040663 R DAC PRIOHC ITEMPORARILY STORE THE WPC,
352 vHP~3 R 34?!2!16 R TAD PTRWC
353 rl'254 R 74132121 A SPA!SNA IWPC > we. SHORT LINE,
354 ~'0255 R 6003~0 R JMP PRIDB9 IWPC INTO PTRWC, NO S~ORT LINE~
355
356 ,EJECT

PAGE 14 PRA, 008 INTERRUPT SERVICE -- API LEVEL 2

357 '~[256 R 2007V6 R LAC (60 IWC STAyS IN PTRWC.
3513 7r?!:l7 R 1120606 R J"iS PRDVS ISET DATA VALIDITV 8ITS-SHORT LINE.
359 'C?6" R 777776 A LAw -2
360 r'l?61 R 340663 R HD PRIO~C ISET UP pRIO~C TO SKIP EXCrSS DATA
361 01Z262 f~ 742,(:101 A C;>1A
362 !i'026,~ R 040663 R DAC PRIO~C
363 [6J{1?64 R 220050 R pRIOB4 LAC" PRDBP IOATA WORD-THIS INSTRUCTION IS USED
364 lAS A LITERAL.
365 H?6'S R 342!e51 R TAD PRCK5M IADD TO CHECKSUM
366 2!vI26~ R 040051 R CAC PRCK!;M
367 N'?67 R 440050 R IDX PRDBp IINDEX DATA WORD POINTER
368 N:27/ R 44("Ll46 R lOX PRDTrT IINDEX DATA WORD COUNT
369 0;:271 R 440016 R IS2 PTRWC IINDEX WORD COUNT
37/'1 0(£272 R 6120122 R J"IP PRIOR6 INEXT DA U WORD 371 710273 R 22121663 R LAC PRIOOJC IEXCESS DATA? I

~ 372 ~~274 R 75g1~1 A SMA!CLC w 373 00275 R 61210452 R J'1P PRIOBE INO,
374 00276 R 1214121672 R [JAC PRXCrS ISET "EXCESS DATA" FLAQ.
375 0f!277 R 600123 R JMP PRIOR? IRESET 3 BVTE COUNT.
376 '" 23 ~H' R 77 77 77 A PRIOS9 LAW .. 1
377 003~1 R 340663 R TAD PRIOHC IWPC INTO F'TRwC
376 00302 R 740001 A CMA
379 003e3 R 04012116 R DAC PTRWC
380 ee3Z4 R 0121121264 R JMP PRIOA4
381
382 ICOME ~ERE TO BYPASS EXOESS BINARY DATA W~EN THE USER LIN~'
383 IBUffER IS SHORT~
384
385 0e3~,:j R 44Z664 R PRIOSS IS2 PRIOSN IINDEX 3 BVTE COUNT
386 01213:36 R 6013125 R JMP PROUi'2
387 00307 R 440663 R lSi! PR!O~C IINDEX EXCESS DATA WORD COUNT.
388 0031.) R 600123 R J'1P PRIOg7
389 00311 R 600452 R Ji'1P PR I Os E lEND or 8INARV BLOCK
390
391 .EJECT

PAGE 15 PRA. 12108 INTERRUPT SERVICE -- API LEVEL 2

392 ISUBROUTI:,E PRPAR .. - EXIT TO PROUT2 Ir THE a-BIT CHARACT£R PRCI'W~ IS
393 INULL (rERO). IF NOT, COUNT THE ~UMBER Or 1 8ITS, THE SIGNIricANt
394 IRESULT IS T~E EvEN OR ODD PARITY tBIT 11) pJ PRCNTl',
395 I
396 ICALLING SEQuENCrl
397 I
398 I JMS PRPAR
399 I (RETURN iF CHARACTER IS ~'ON.eI)
40(!'
401 0Z312 R 02'e'000 A PRPAR ,..

~.

...... 4f2.!2 Z,;;313 R 77777'1; A LA 10 /pARITY COUNTER (.8)
I 4i2!3 0e314 R ~4e052 R DAC PRCNT ~
~ 4!il4 vW'31 S R 14e665 R Di!i'1 PRCNTl

405 ~'?31~ R 200e54 R LAC PRCHAR
4~6 V'~~17 R 7412~10 A S ~J A
407 ~j~ 32 J R 61:1121125 R J'IP PRCUT2 INULL
4218 ,1~"321 R 74012120 A RAR
409 ?322 R 741421~ A SlL
4H) Z32.3 r' 44~665 R lr;x PRCNTl 11 BIT COUNTER
411 ~:324 R 44~e"2 R lSi! PRCNT
412 ;;3<2::' ~ 60;.J321 R J''1P ,-4
4U :'3?'l R 62"312 R J'1P* PRPAR
414
415 .EJl:.cT

PAGE 16 PRA, 01218 •• INTERRUPT SERVICE -~ API LEVEL 2

416 IPROCESS lOPS ASCII
417
418 00327 i=l 2121012116 R PRIOA LAC PTRWC ISEE Ir rXCESS DATA
419 0~33'~ R 740HH3 A S'1A
420 ;)0331 R 600405 R JMP pRASF.:3 lyES
421 021332 R 212112112154 R LAC PRCHAR
422 03333 R 512112170; R AND (177
423 r0334 R 540il0 R SAD (12
424 121'-"335 R 60121125 R JMP PROUT2 IIGNORE LINE rEED
425 e'0336 R 54121711 R SAD (13
426 0121337 R 6121121125 R JMP PROUT2 IIGNORE VERTICAL TAB
427 P'034C1 R 540712 R SAO (14
428 00341 R 6121121125 R JMP pROUT2 IIGNORE rORM rEED
429 01'342 R 11210312 R JMS pRPAR ICOMPUTE PARITY AND EXIT I' NULL
430 ~',0343 ~ 74141210 A Si!L
431 00344 R 44121012 R IDX PRBCT 18TH BIT-l. ADO TO COUNT
432 00345 R 44121047 R lOX PRCCi'

-..J 433 :"0346 R 2121121665 R LAC PRCNT1 IPARITY COUNT·SHOULD 8E EVEN I
~ 434 2Ie:347 R 7401320 A RAR
VI 435 0e35'1 R 7414121121 A Si!L

436 ?!e~:>l R 440[(H3 R lOX PARER INOT EVEN PARITY
437 00352 R 1121121425 R J"1S PRENnT ICONVERT ALTMOOES
438 0(1'353 R 512107<'l7 R A"iD (177 IDROP ALL BUT 7 BITS
439 0'-"354 R 54121707 R SAD (177 IDELETE cOOE (RUBOUT)-IGNORE
440 70355 R 600125 R Ji>1P PROUT2
441 00356 R 100522 R JMS pRPK57 IPACK INTO LINE BUrrER IN 5/7
442 02357 R Hl0425 R J~S PRPH'li
443 :' e 3 6 '1 R 7 4 0 H~ 0 A SMA
444 Q'Z361 R 61210125 R JMP PROUT2 INEXT AscII CHARACTER
445 0(:,362 R 200047 R LAC PRCCr
446 W.-~63 Ii 54;J713 R SA J (1
447 (;'2364 R 600124 R JMP PRt-.iXR1 IIGNORE SINGLE CARRIAGE RETURN LINE
448 ~n6', R H1057121 R JMS PRPAD IpAD LAST DATA WORD PAIR
449
45,,1 ,EJECT

PAGE 17 r'lA. 2tj8 INTEqRUPT SERVICE -- API LEVEL 2

451 lEND OF I~PS ASCII. IMAGE ASCII. IM~GE ~INARY. AND
452 IDU~p MQC'E LINE.
45~
454 :~'366 ~ 20il014 R PRASE LA~ PTRDf-'
455 ?V367 ~ 540714 R SAD (4
456 ;lv37:" r.: 60V'472 R JMP PRIOBS 10UMP MODE.
457 n",~7t R H"~1517 R JMS PRt-t£AD ISET UP L,B.H 0, ~.P.C,.O,M.
458 ""~·37? R 222'li'l12 R LAC pR8CT 1010 ALL CHAR'S HAVE 81T 8
459 V',z;H3 ~ 542047 R SAl) pRCCT INO • lOPS ASCII CHECK PARITY
46li r~r314 :1 6204~1 R JMP FRASF4 lyES • ASSUME ~ON topS ASCII
461 ('("375 R 2iZi~1/l13 R LAC PARER IPARITY rRROR
462 r'P7,., 'i 7402!Z!~ A SlA INO
463 :'0377 R 2(2)0715 R LAC (20 lyES
464 /v:4V'!' R Ul0606 R JMS pRrlV~ IPARITY rRROR SET VALIDITY 8ITS
465 7P'4C:l, R 200014 R pRASE4 LAC PTROM
466 rr412 R 240716 R XQR (2 II OPS AscII
467 :' !i 4 .~ ,~ >l 7 4 e: 2 e r2J A SlA 468 V:04(}4 R 6erz47'2 R J'-1P PRIORB lEND LINE I

~ 469
0'1

470 IIOPS ASCII £XCE~S 04TA TO BE ICNOREC,
471
472 '-;Hc4~" ~ 19.!~425 R pRASE3 JMS pRENQT ISKIP TO END ~I~E
473 ;'024"6 R 751101 A SPA!CLA!r.MA
474 004'''' R 60~4 72 R J~p PRIOPB
475 i7041~ R 34N151Z1 R TAD PRDB"
476 0~411 R 04005ril R DAC pRDBp IpOINTS TO LAST eHARACTER
477 0('412 R 7774021 A LAlol 1741210
478 C'Je4u R 5202150 R fiNO· PROep
479 00414 R 240717 R XOR (33 IPUT CARRIAG£ RETURN IN LAST WORO'PAiR
48121 ?!PH15 q 0601215121 R DAC. PR09P
481 00416 R 44005121 R I:JX pROBp lIN CASE MORE BrrORE CARRIAG[RETURN
482 210417 R 22e015 R LAC· PRL8j.jP
483 0042'-' R 50e:706 R ANI,) (621 lIP OATA VALIDITY BITS HAVEN'T ALREADY
484 (~0421 R 2407k116 R XOR (6;') ISEEN SET, srT TO INDICATE SHORT ~INr.
485 0121422 R 5407136 R SAD (60
486 00423 R 101i'J6~6 R JMS PRDVS
487 erlJ424 R 6121121125 R JMP PROUT2
488
489 ,EJECT

F'AGE 18 PRA. 000 INTERRUPT SEHVICE -- 41'1 LEVEL 2

49~ ISUBROUTI\E PRENnT ~. CALLED rOR 10~S ASCII, Ir AN ALTMOO£ IS IN
491 IPRCI-IAR, IT IS C~ANG~O <IN T~E AC) rROH 33 O~ 176 TO THE STANDARD
492 1175, IN ADDITIO~, IF THE CHARACTER IS CARRIAGE RETURN OR ALtMoOr.
493 180T~ LI~E TER~I'ATORS, THE NUMBrR IS SET NEGATIVE SO THAT IT CAN
494 IBE TESTED O~ RETURN,
495 I
496 ICALLING SEQUENCrl
497 I
498 I J"1S PRENrT
499 I CRETURt\!)

"" 500 I.
olio 501 re42'3 R Z0Z:2!0" A PRE NOT ~

"" 512'2 kJil426 R 200054 R LAC PRCHAR
503 r'iC:'427 R 52J0707 R AND (177
5k'J4 ~043[R 54Z720 R SAD (15 IRE TURN
5"'5 "I?-431 R 760015 A LAW 15
5i2!6 ZIZJ432 R 54'-"1721 R SAD (175 IAL-THODE
5k'J7 00433 R 760175 A LAw 175
51'18 r0434 R 540722 R SAD (176 IAL-THODE
509 00435 R 760175 A LAioI 175
510 i?l0436 R 5421717 R SAO (33 IESCAPE
511 ~;e437 H 76QJ175 A LAW 175
!512 "'044.' ~ 62el425 R J~P* PRE~IOT

PAGE 19 PRAt i:'J08 •• 1/0 DONE LOGIC •• API LEVEL 4 OR 2

!513 ,TITLE w~ 1/0 DONE LOGIC •• API LEVEL. OR 2
514
515 lEND or p~PER TAPE ROUTINE,
!516
!517 012441 R 221eih4 R PREOH L~C PTRDM ICHECK DATA MODE
518 0e1442 R 5421714 R SAD C 4 IDUMP MODE HAS NO HEADER,
519 22144 3 f~ 6eJ0472 R JMP PRIoeR ITHEQErOqt. IGNORE END~O'.MEDIUM~
520 "0444 f./ 540716 R SAD (2
521 2'0445 R 10'15721 R JMS PRPAQ IIOPS AscII.PAD LAST WORD PAIR.
522 ~0446 R 12!?J577 R JMS PRHEAD IsET UP WORD ~ or HEADER.
523 ~0447 R 500723 R AND (7777621 IMASK ALL BUT MODE BITS,
524 ?12'45e R 2412724 R XOR (6 lAND SET THE MOOE BITS To
525 ~1IJ451 R 216V1015 R DAC· PRLBHP IINDICATE ENO-O'-MEDIUM,
526 0~4~2 >1 2~H12l12 R pRIOBE LAC PR8CT IIOPS BI~ARY WILL

.,.J 527 e :2' 4 5 3 I~ 5 4 ~ ill 4 '7 R SAD PRCCT IALwAYS CIot[CK
I 528 ?C454 f\ 62104621 R JMP PRIDSS IF'ARITV, .,.

529 <0 4 55 P 2~HlZ13 R LAC PARER co
5321 2i~456 R 75e2e10 A StAICLA
531 (~04~7 R 61Z1Z47e1 R JMP FRIDBP IPARITY ERROR(S)
532 [,V46'1 R 2212''-''15 R pRIDe5 LAC· PRL!='HP IWORD 21 o~ LINE BUrrER IotEAOER.
533 !~12'461 11 500706 R A\JD (6~

534 :;·04 6/2 ~ 74~:2'H" A StA
535 ?Z46~ R 6eJ472 R JMP PRIDBS IVALIDITV BITS ALREAOY SET
536 :'f!464 >l 2Z1v,~51 R LAC PRCK"M
537 ~~J46~ R 741200 A 5 ~~A
538 "0461' R 60121472 R JMP PRIDBS INORMA~ END or LINE
539 72467 R 200715 R LAC (20 ICHECKSU~ ERROR •• SET DATA
54e IVALIDITY BITS (12-13) • la,
;41 "'~47:' r- 34Q1715 R PRIOBP TAD (2V. IpARITY ERROR -. SET DATA
542 IVALIDITV BITS (12-13) • al.
543 ,.~ 471 R 1~Hl606 R J~1S PRDVS IsET DATA VALIDITY BITS.
544
545 ,EJECT

~AGE 20 PRA, 008 p~ 110 DONE LOGIC p~ API LEVEL 4 OR 2

546 115 THIS DEVICE iNVOLVED IN AN 1/0 BUSY SITUATION' T~E IOBUS~
547 IRDUT HE I'i THE "-',ON I TOR W I1.L ANswER THAT QUESTl ON AND WILL CLEAR
548 ITHE CONDITION Bv REACTIVATING THE rOREGROUND LEVELS THAT WERE BUSY.
549
550 e:e472 ~ 22~725 R PRIOBS LAC· (, SrOM+52 IADDRESs or THE MONITOR'S
551 il~473 R 12412671 R DAC PRTM?l 11/0 BUSV TESTER,
552 J~474 R 2207210 R LAC· (,SCOM+1QJ2 IRAISE TO LEVEL ~ OR 1,
553 "~475 R 705504 A ISA
554 7'12476 R 200726 R LAC (PRA, I(WORD 0,
555 :~e477 R 120671 R J'1S· PRhP1
556 ?0502' R 703304 A 08K IrROM LEVEL ~ OR 1,
557
558 ICHECK IF THE COMPLETED 1/0 CAL rS A REAL.TIME REQUEST~
559
5621 '~~501 R 20~HH 7 R LAC PRA,+11 INON-0 rr REAL-TIME,

-..I 561 (' 0 :; 0 2 ;(7 4 1 2 0 0 A S\JA , 562 " eo;", 3 R 6 0 e 5 1 7 R JMP PRIG~ INOT ,REAL,R,
"" \0 563 325Z4 R 2012727 R LAC (Jt-'P PREAD

564 72'525 R 54201i1l R SAC) PRA,.lJ IJMP F'UNcTION
565 'J 2 ? 0 6 R 7 4 H! 0 :iI A SKP I,REAL,R,
566 ~05n R 600517 R J'1P PRIG~ /tIlOT • RE AL,R,
567 /0<;1\ R 22<l730 R LAC· (, Sr,OM+S1 IADDRESS Or THE MONITOR'S
568 '7~511 q ~4~671 R DAC pRTMFl1 IREAL TINE PROC~SSOR,
569 /0512 R 22;17~~ R LAC· (.SCO M+102 IRAISE TO LEvEL ~ OR 1,
57e 'J<;l~ ~ 705504 A ISA
571 ;,~ 51 4 rt 2 IJ 0 01 7 R L.,AC PRA.+11 ICAL,L, REALTP TO QUEUE THE
572 ['C51'? R 12Vl671 R J'1S· PRTMP1 IREAL-TIME SuBROUTINE.
573 ry:~51fl R 703374 A D3K
574
575 ISET UP TJ CLEAR T~E BUSV rLAG DU~ING PROTECTED [XIT~ THIS IS
576 IDONE 8ECAUSE I/~ HAS COMPL,ETED, BECAUSE 1/0 HAS BEEN ABORTED
577 I(STOPIOI, ~ECAUSE THIS IS AN IGNORED CAL rUNCTION, OR BECAUS[
571' ITHIS CAL FUNCTI~N WAS IGNORED DuE TO AN ERROR,
579
58~ ,~ 0: 5 1 7 R 2 21 ill 7 31 R P RIG ~J LAC (NOP
581 ,.. " 5 2 ~ f. G 4 01 41 R GAC PRCrl G
582
5f!3 "z,21 R 6eJ131 R J1 P P R~I 0 R

PAGE <'I F' ,. A • Z:!lb -~ MISCELLANEJUS SUBROUTINES -- API LEVEL 4 OR 2

584 .TITLE •• MISCELLANEOUS SUBROUTINES .- API LEVEL 4 OR 2
585
5il~ ISUBROUTINE PRPKS7 -. PACKS 5/7 lOPS ASCII DATA, PRIOR TO THE 'IRST
587 ICALL, PT~51 MUST RE INITIALJ~ED TO .5,
5118 I
5A9 ICALLING SEQuE~C~1
5 90 I
59:1 I CHA~ACTER IN TH~ AC
59? I I~ ~ITS 11 T~ROUGH 17
593 I J,>1S PRF'K57
59.: I (CONCITlnNAL RETURN)
595 I
596 IRE TURN ~ILL NOT OCCUR lr THE WORD COUNT IS EXHAUSTEO.
597
598 ;'2522 R 0~Z0(iHJ A PRPK57 ~ ICHARACTER IN AC 81TS 11-17,
599 7f('52~ R 74203121 A SiliHA IMOVE TO AC BITS 0-6
6~0 'ZC524 R 742121121 A RTL
6ClJl ~?'325 R 0421052 R DAC pRTM?

-...J 612'2 00'526 R 77777 ... A LAW .. 7 I
VI 6213 '1(.'527 R 04e!665 R DAe pRLPCT
0 61214 r~0530 i1 20012152 R PRPK8K LAC PRTMP IROTATE CHAR LE,T

60~ ?,0531 Ii 7412lh21 A RAL 17 B ITS THROUGH
6Ql6 1'0532 R 04~12l52 R DAC pRTMP ITHE DOURLE WORD
607 '/0533 R 200667 R PR8CK2 LAC PRRTloIr I ACCUMULA TOR
608 ('0534 R 7400121 A "AL IpRLF'HF" IPRRTHF',
6Y'19 0:;'1535 Fl 040667 R DAC PRRTloir
610 (' 0 536 R 2"? 6 6 6 R LAC PRLrkF'
611 20537 q 740eJ1f('1 A I, AL
612 0054C R 042666 R DAC pRl,.rlolr
613 ',10'541 R 2Q1Q1665 R UC PRLPcT
614 0!il542 R 745200 A S~A: CI.I.
615 n0543 i~ 60V"551 R J"1P PRPD~E 12 WORDS ALL SET,
616 V'0544 q 440665 R lSi! pRLPcT lIS 7 TIMES COUNT EXHAUSTED?
617 ~'054? R 6005~0 R J"'p PRFKRK INO,
618 ')0546 R 443031 R lSi! pTR57 100 WE HAVE 5 CHARACTERS?
619 0C547 H 6221522 R J'1P* PRPK57 INO, EXIT
620 0V15~~1 R 60<"533 R J~~p PR8CK2 lyES, SHIrT LEFT ONCE MORE.
621
622 .EJECT

PAGE 22 PRA, 008 MISCELLANEOUS SUB~OUTINES ~ •• ~I LEVEL 4 OR 2

623 ,"e,";51 R 20QJ666 R PRPDNE LAC FRLF'.-F' IPLACE AcCU~ULATEO
624 '~0552 H ""6~IilS2! R DAC. F'RD8P 12 WC'ROS h'Te
625 v2'>:)~ R 12'21562 R JMS PRNXwD IUSERS LINE eUFrER,
626 '~~54 K 2zr667 R LA.C PRRT~F" IUPDATING ~OINTERS.
627 Ji'55:; R 216210513 R DAC. PROap
628 r'~556 R 10~562 R ,J~S PRNXJ,,!O
629 ,';1557 R 777773 A LA.,J .. 5 IRESET 5 C~ARACTER COUNTER.
630 r.05bC" R ~40031 R OA.C PTR5?
631 :.'10561 R 620522 R JMP· ~RPK5?
632

'-J . 633 .EJECT
I

VI
I-'

PAGE

634
635
636
637
638
639
64kl
641
642
643
644
645
646
647

-..J 64b
I 649

U1 6% '" 651
652
653
654
655
6'56
657
f,)"iR

659
660
661
662
663
664
665
666

23 PRA. 008

l,j V' <; 6 2 R "HH" ::1 0 V'l A
~0563 R 440050 R
'?i?i564 R 44ZI-l46 R
:1 0 5 6 5 R 4 4 [~ 21 16 R
?(\566 R 620562 R
010567 R 6~tl366 R

y','5r R ?iZ~e::J0 "
Z571 ~ 777773 A
C'57? ;; 54;'10:51 R

';''37) R 620,570 R
'7,[:574 "75~0?0 A
",1,37'" R li2'!?522 R
Il;:576 R 621Q1S71 R

_w MISCELLANEOuS SUBROUTINES p. API LEVEL 4 OR 2

ISUBROUTI~E PR~x~D •• INDEXES DATA ~OINTER AND WORD COUNtS~
I
ICALLING SEQUE~Crl
I
I J~S PRNXwD
I (CONDITlnN_L RETURN)
I
IRETURN WILL NOT OCCUR tr THE WORD COUNT IS EXHAUSTED.

pRNXwD 0
I,)X PRDB!='
I i)X PRDUT
IS2 pTRWr
J~~P* PRNXWD
J~1P PHAS"

IINDEX TC NEXT DATA WORD~
IADD TO DATA WORD COUNT,
IWORD COUNT EXHAUSTED?
INO, EXIT rOR NEXT CHARACTrR~ ..
IEXIT TO END 0, IO~S ASCII LIN£ RDUTIN[,

ISUBROUTI~E PRPAC -- PADS LAST WORD PAIR (IN lOPS ASCII) WITH NuLL
1(2ERO) Crl"RACTE~S,
I
ICALLING SEQuENCrl
I
I JMS PRPAn
I (RETURN)

pRPAD Y.
pRPAGN LAW .. 5

SAD PTR57
J'1P* PRPAD
eLA
,J"IS PRPK57
J'1P PRPAGN

.EJECT

lIS LAST WORD
IpAIR FUll.'
lyES, EXIT,
INO, INSERT ANOTHER
INULL CHARACTER,

PAGE 24 PRA. 008 .- MISCELLANEOUS SUBROUTINES .- API LEVEL 4 OR 2

667 ISUBROUTI~E pRHEAD •• SETS UP THE LINE BUFFER HEADER (L.B.H,) WORD 0
668 IWIT~ THE wORD PAIR COUNT AND THE DATA MOD~,
669 I
670 ICALLING SEQUE~C~I
671 I
672 I j~S PRHEAD
673 I (RETURN)
674
675 ~0577 R 01,Hl0[ll0 A PRHE:AD ~

676 7:21601 q 20~H'46 R LAC PRDTrT IWORD COUNT (INCLUDES L.B.H,)
677 ;"0601 .~ 742030 A SWHA
678 '~e602 R 744020 A RCR IWORO PAIR CoUNT (BITS 1-S'.
679 "'0603 '1 240014 R XOR PTRDM IDATA MODE,

...,J 680 [ll[ll604 R 06el,115 R JAC* PRLI1HP I
IJl 681 006,'5 R 620577 R JMP* PRH~AD w

682
683 ISUBROUTINE PRDVS •• SETS DATA VALIDITY (C.V,) BITS IN T~[
684 ILINE 8U~FER HEADER WORD 0.
685 I
686 ICALLI~G SEQUENC£I
687 I
688 I JAiA VALIDITY BIiS (12.13)
689 I SET TO DrSIR£O VALUE IN TH£ AC
69(1 I JMS PRDVS
/)91 I (RETURN)
692
693 ""0621' R 021~0021 A PRDVS k.'
694 7Z5n R 1640051 R (lAC PRDVs2 ISAVE DATA VALIDITY BITS~
690; '~061.' R 777717 A LAW 17717 IMASK ALL BITS IN THE LINE BUrrER ~EAD[R WORO
69b ~c1;1i11 -l 520015 R A~JD* PRLRHP 10, EXCEPT IGNO~E CH£CKSUM BiT (~, A~D O~V.
697 ;1'61? ~ 241lB51 R XOR PRDV~2 IBITS (12.13), ADO IN ~ARITY ERROR, ~H[CKSUM
69& C(613 ~ ;060(115 R LJAC* PRL~HP IERROR, DR S~ORT LINE.
699 7[:614 R 62?'6vi6 R Jr1P* PROvS

PHE 25 PRA, 008 ~. ERQORS .~ API LEVrL 4

7'<.: 'l ,TITLE -. ERRORS "- API LEVEL 4
1 III 1
'''2 I[RROR ROUTl~E -. ALL READER ERR~RS ARE OETECT{D AT THE CAL ~£VEL,
703
704 ;1061'5 R 766060 A PRER62' LA" 606~ I,INIT NOT PERFORMED,
10:) (;106:1.6 R 74H'00 A SKP
7~6 d'H7 R 766007 A pRER7 LAw 6007 IILLEGAL DATA MODE,
7"'7 '1' v' 6 V R 7 410 fiH'l A SKP
7kl8 CfZ621 R 766006 A PPER6 Uloi 6006 IILLEGAL CAL FUNCTION.
7219 C"f622 R 040637 R GAC PRER('IR ITEMPORARY SAVE.
71:.') 9:12162.3 R 2012!011 R LAC PRA. +11 IWHOSE CAL. 0.'GO. i-aGO.
711 ~0b24 R 7416"'20 A RAR
712 :1e;62r, R 20063' R LAC PRERnR

-..J' 713 70626 ~ 74:114 " A SNL IrS IT FCo, I
714 7'((;627 R 24e732 R XOR (3rt00 lyES, CHANGE aGO ERROR To 'GO [RROR~ VI

~ 715 :'PI'l3(: R ~4063' R CAe PREReR
716 ':0631 R 20fiHH3 R LAC PARER IPUT CAL ADDRESS IN THE AUXILIARY
717 r.(?632 R 04~'641 R CAC PRAUx IARGUMENT rOR PRINTOUT,
718 7-0633 ~ 220733 R LAC· (.SCOM+66 IADDRESs or THE MONITOR'S
719 Z~634 R t?40671 R OAC PRTM!=>1 IERROR QuEUE'l,
720 n;635 R 2201VH'J R LAC· (, SCOM+102
721 00636 R 7055;.14 A IS ,iI
722 (1;0637 R 740040 A pREROR xx ILAW ERRoR * + JOB AT 'AULT.
723 ~;064'J R 120671 R JMS. PRTM!'1
724 0(1'641 R 740040 A !'RAUx XX IAUXILIARY ARGUMENT,
725 00642 R 7033~4 A [1BJ< IBACK To L~VEL 4,
726 2'0643 ~ 60:!1517 R JMP PRIG'-i IIGNORE THE CAL BY CLEARINC
727 IT~E BUSy REGISTER.

..j
I

U1
U1

PAGE 26

728
729
73~
731
732
733
734
735
736
737
138
739
740
741
742
7 4 3
744
145
746
747
748
749

.750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

PRA. 008

r'0644 R ~00'H'l0 A.
[i!~645 R 22121700 R
20"46 R 71215504 A
910647 R 2t(J00:::l1 R
r.06~h' R 3400~2 R
(1'0651 R 040670 R
00652 R 142'001 R
k10653 R 140002 R
1;H'654 R 140003 R
NJ655 R 140004 R
r0656 R 7033r214 A
rf2!657 R 200672 R
9'066(' R 74022)(6 A
00~61 R 600657 R
210662 R 620644 R

(/)0663 R 000000 A
21~664 R 00Q!000 A
21"665 ~ 001iH?J00 A.

0~0052 R
000665 R

7?666 R 000000 A
~12'667 R 000000 A
2'e670 R 00000!21 A
00671 R 000000 A
20672 R 000000 A

-- STOPIO SUBROUTINE -- MAINSTREAM

.TITLE ~~ STOPIO SUBROUTINE -- MAINSTREAM

ISTOP 111i SU8ROufINE .~ OPERATING AT MAINSTREAM BY VIRTUE 0, A CALL
IFROM WIT~IN THE FOR[GROUND OR BACKGROUND ERROR ROUTINE IN T~E
IMONITOR. THE ~ONITOR WILL CALL THIS ROUTINE ONLY IF THE APPRO~
IPRIATE JUB BUSY FLAG (WORD 1 OR 2) INDICATES THAT 1/0 IS UNOER
IwAY, J/0 CANNOT BE STOPPED BY ISSUING AN lOT' TH£RErORE, A WAit
ILOOP MAY NEED Tn BE EXECUTED UNTIL THE rINAL INTERRUPT HAS OCCURRED~

PRSTQP "-
LAC· (.SCOM.102
ISA
LAC PRA •• 1
TAO PRA •• 2
DAC pRSTpS
DlM PRA •• 1
DeM PRA •• 2
DeM PRA,.3
OeM PRA •• 4
ORK
LAC PRSTPS
SH
JMP ,·2
J-1p. PRSTOP

ITEMPORARY REGISfERS,

PRIO~C 0
PRIOBN 0
PRCNT1 e'
PRTMP-PRCNT
PRLPChPRCi\iT1
PRI.F'f.lF ~
PRRT~" 0
PRSTPS 0
PRTMP1 (1

PRXCES e

IRAISE TO LEVEL 0 OR 1.

ISET STop SWITCH ACCORDING TO BUSY REG!STER,
ICLEAR BUSy rLAGS.

IC~EAR CLOSE SWITCHES,

IDEBREAK BACK TO MAINSTREAM.
IwAIT LOoP, FALL THROUGH
IWHEN NO FURTHER INTERRUPTS
IWILL OCCUR.
IRE TURN TO THE MONITOR'S ERROR ROUTINE~

IIOPS BIN, WD1 COUNT
1101'S BIN 3 BYTE COUNT
11 BIT COUNTER rOR PARITy CHECK
ITEMP. STORAGE rOR '17 CHAR,
IROTATE , BITS COUNT[R~
12 WORD ACCUMULATOR rOR
15/7 WORD PAIR.
ISTOI' UNDERWAY SWITCH
IGENERAL TEMPORARy REGISTER.
IIOPS BINARY EXCESS OATA rLAG. 0 • OAT.A
IO.K,1 NoN.0 - IGNORE EXCESS DATA.

'AGE 27 PRA, a08 .- L lTERALS

166 .TITLE -~ LITERALS
167
168 0PJ~00~ A .ENO

~Z673 R ~g0a64 A -L
2067. R 000155 A -L
e,0675 R 0~e0@3 A -L
~~676 R 2~0055 R -L
~~677 ~ 0~le00 A -L
107Z70 R 0002~2 A -L
007tl R 703344 A -L
~e7~2 R 404000 A -L
Z07~J ~ 6~0144 R -L
~r124 R 600207 R .L
~07d~ R 000776 A -L
~e706 ~ 000060 A -L
~~7~7 R 000177 A -L
~~11?- ~ 0Z0012 A .L

..... ~G711 R ~e2013 A -L
I ~e112 R 000014 A -L us

~0713 R r0~001 A -L CJ\

~0714 R ~0~~Z4 A -L
~071? R ~0Z020 A -L
?~716 Q 0Z0002 A -L
?~717 R ~~0a33 A -L
~C72~ R 0Z0015 A -L
:r721 R 0~0175 A .L
~?722 Q ~00176 A -L
l~723 R 777760 A -L
)~724 R 00~006 A -L
~~72? R 003152 A -L
~~72A R 000~~0 R -L
~?727 R 600027 R -L
:07J.' l' Z~et51 A -L
~?'73t ~ 74~030 A -L
~e732 R 2e3~~0 A -L
l~7J3 R 000166 A -L

sI~E"00734 NO £RROR LI"IES

PAGE 28 PRAt 008 .. - LITERALS

lOX 44000;1 A PARER 12112112113 R !"RASE 1210366 R F'RASE3 0214215 R
"RASE4 "Ie401 R FRAUX 006041 R PRA. 00 r1I(IHl R pRBCK2 1210533 R
PRCCT ('I~"'47 R FRC~LG 121121141 R F'RCHAR 12102154 R pRCKSM 1212112151 R
PRC'H ('11012152 p PRCNH 2121665 R PRDBP 0021521 R pRDlS1 121021217 R
PRDTCT 021("4/\ R PRDVS 0121606 R PRDVS2 I:H!2112151 R pREAD 12112112127 R
PRE NOT 21042<; R PRE OM 1210441 R PREROR 0~637 R pRER6 121121621 R
PRER6121 00615 R PRER7 00617 R F'RHEAU 013!)77 R pRIGN 1210517 R
F'RIME! 0121213 R PRW 121121043 R PRIOA 1313327 R pRIOB 12121216 R
PRIOB8 00472 R PRIOBE "0452 R PRIOBN fZfIl664 R pRIOBP 12112147121 R
PRI08S ::112131215 R PRIOS4 13121264 R PRIO~!:I ~1346121 R pRIOB6 021122 R
PRIOB7 iZ'0123 p PRIC89 1210313121 R F'RIOHC 0121663 R pRIOT 121121153 R

....:J PRJIGN Ct02/\ R PRL8HP 130015 R PRU"HF 1210666 R pRLPCT 211210665 R I
U1 I'RNIT 0121~45 R PRNOR ~Hl131 R PR,'JXRl 012111214 R FRNXWO 1210562 R
....:J PROUT2 021123 R PRPAD 12111'57121 R PRPAGN ~12!571 ~ pRPAR 1210312 R

PRPO~JE '10551 R PRPK8K J1!12153121 R PRP~57 el2l522 ~ pRRE:O 121121065 R
PRRTHF r<0667 R pRSTnp l2IeJ644 R PRSTPS e0670 R pRSWAP 12112112137 R
PRTMP lV'00:>? ~ PRH1Pl 1210671 R F'RXCES 01216'2 R "RBeT 12102112 R
PTRAC 00 v5:t ;: PTROt-', J1!(/)el14 R PT'lINT 11'12116~ R "TRIOT 02112155 R
PTR~;C c:z,ep ~ PB57 J1!(/)031 Q RR8 70121112 A RSA 7111121104 A
RS8 7:,1144 A R'H" 70011111 A • SCOt1 (/)0e1H'l0 •

PAGE ?9 PR.\. US .. - LITERALS

PRA. t101!ee R pReeT 'la12 p P4~ER el313 A pTRDM 88114 R
PRLBHP :1""'15 ;;p PTRlle "8116 R PqJIGN n,26 ~ pREAD .,11127 R
PTRS7 ~a"31 iC PRSWAP .1.37 R paU:"4 1UJ1'4J A pRNIT 11111'45 R
PRDTCT !'lll!fl46 R PRcer .l1li47 q PROilP ' •• 5111 A pRCI(SM ""051 ~
PROYS2 lI~fI~51 R PRCNT 88152 R PRT"!P 8.8.52 R pTRAC .'853 R
PRCHAR I'!U54 R PTRIOT 1111155 R PRRED iIl8165 A .SCOM a0111U0 A
PRr4XRl :12'104 q PRIOB6 11122 R PRIOSl irJ8123 R pROUT2 1111125 R

...; PRNQA ~'lJl R pRCF'Le 81141 R PRIOT 08153 R pTRIt.lT 111111160 R
I PROIS1 ~"J207 R pRIf'le 1110213 II PRlOB 0121' A pRI094 1118264 R

UI PRIOB9 ~e3e£' R pRIOS" 81305 R PRP4R 88312 R pRIO! . 0U27 R CD
PRASE i1e366 P. PRASt:4 1.401 R PRASE3 nd5 R pAENDT '1425 R
PREO" P-1(I441 R PRIOBE .,452 R PRIOS' 88468 It pRIOBP .,470 R
PRIOBS "'1472 P PRIGN l1li'17 R PRP!(5l 08'22 A pRPIC91C 81530 R
PR9CI(2 00533 R PRPD~E 8.'51 R PRNlCWO e8562 A pRPAD .157. R
PRP"" ~0571 R PflHEAD 8.577 R PROVS '.686 R pRER6' 8111615 R
PRER7 l'IS617 R PRER6 18621 R P~EROR .8637 R pRAUX '111641 R
PRSTO' S864At R PRIOHe 1111663 R PRIDaN 18664 R pACNT1 11166' R
PRLPeT 1109665 p PRV'HF' 81666 R PRRTHf" 88667 R pRSTPS IIfI,,8 ..
PRTMP1 a0671 ~ PAXCES 111672 R lOX 448ell 1 RSF' 78111101 A
RSA 7P0184 A RR8 718112 A RSB 71'1" 1

PAr;E 3Z c:> '" A • CROSS REFERENCE

lOX 4 4 CH~ l'i,' ,,7* 341 342 367 368 410 431 432 436
451 644 645

PARER r:~~13 74. 222 341 436 46l 529 716
PRASE 0036:'\ 4,,4. 648
PRASE3 r";:J4f1"> 4;?r:1 472*
PRASt:4 C"04~1 4f,:c 465.
PRAUX ('I(~64t 717 724.
PRA, 0~~!J~~1 5:; 59. 114 126 232 239 2'U 243 244

2 'j 1. 253 266 268 283 284 554 5621 564
'571 710 7421 741 743 744 745 746

"R8CK2 kW53·~ 60.17. 6U
"RceT :;10047 13S- 199 432 445 459 527
"RC'FLG ;10141 ~3g* 242 581
PRCHi\R (1e'~54 141· 271 3213 323 332 4215 421 5iZJ2
PRCKSM !'I0 i?l51 1~7. 138 20!?J 365 366 536
PRCNT V'l0~5' U9- 4213 411 758

'-J
PRC~JT1 :?W66 '5 .Ba 4(1)4 41121 433 757" 759 I

VI pRnnp 03050 136- 171 209 312 332 337 347 363 367 ID
47~ 476 478 4813 481 624 627 644

F'RDtS1 I'102Vl7 3.01 305.
F'RDTCT 1'121~4~ 134. 172 368 645 676
F'RDVS 0!C 60~, 3::'8 464 486 543 693- 699
PRDVS2 000051 ue- 694 691
PREAD l"M27 92- 563
F'RE~I')T 0e42~ 4'37 442 472 5211* 512
PRE OM 00441 224 296 511_
PREROR 021637 7'19 712 715 722_
PRER6 00621 S8 89 93 99 708-
F'RER60 021615 161 7~4 ..
PRE:R7 00617 152 153 154 196 7i1l6*
"RHEAD 00577 457 522 675_ 681
I'RIGN 00517 80S 87 90 91 141 266 562 566 5elZJ ..

continued on next page.

PAGE 3~ PRA. CROSS REFERENCE (Cont.)

726
PRIM8 00213 3~16 312.
PRIN 00043 85 125.
PRloA 00327 327 418*
PRIOS 00216 305 320*
PRIOSS 0~472 45~ 468 474 519 535 538 55"*
PRIOBE 210452 373 389 526.
PRloeN 00664 211 343 385 75611
PRI08P 0047(" 531 541*
PRIORS 210305 329 385 ..
PRIOS4 00264 346 363* 380
PRIOS5 071467, '2~ 532i1
PRIOB6 00122 209* 370
PRI087 i'l(~ 12 ~ 21:1. 375 388
PRI089 0213~W 354 376*

~ PRloHe 21121663 169 345 351 360 362 371 377 387 75511 I
m PRIOT 00153 1144 24P. 0

PRJIGN 00026 91* 159
PRL8HP "110~1r; 76. 17'" 482 525 532 680 696 698
PRLFHF r:HH6f. 612 612 623 76 QIII
PRLPCT 000665 6"3 613 616 759*
PRN IT 2I0el45 133. 140 158
PR"JQR 00131 2,~ 21. 583

PAGE 31 PRA. CROSS REF'£RENCE

F'RNXRl MUI4 184 19th 447
ItRNXWO 00562 186 187 314 625 628 643. 647
ItROUT2 00125 221* 315 322 344 386 407 424 426 428

440 444 487
F'RPAD ((I057~ 448 521 658. 661
F'RPAGN 00571 65~* 664
PRPAR :')0312 320 40111 413 429
PRPONE "'0551 615 623.
F'RPK8K 00530 604- 617
F'RPK57 ('10522 441 598_ 619 631 663
F'R~ED "'0 rII{) 5 92 158.
I'RRTI-1F' 00667 6':'7 609 626 761*
PRSTOP f'l0644 1712 1~3 73'* 751

-...I PRSTFS 00670 247 278 742 748 762-
I PRSWAP "1.,037 ">9 113. 116 0'1

I-' PRTMP 017J~e52 6~' 1 6~4 61;,6 758_
PFHHPl ~0671 55t 555 568 572 719 723 763-
PRXCES 00672 2k:3 327 374 764_
PR8eT 0~H~12 73- 134 135 201 342 431 458 526
PTRAC r0(~53 14J_ 249 264
PTHDM C'~~14 75- 181 190 3021 454 465 517 679
PTR I '!T 7Ikl16''; 1.37 261- 265
PTRIOT ~i2I~5? 147. 191
PTRwC (lI?t~l(, 77* 352 369 379 418 646
PTR57 30031 '14- 198 618 630 660
RRH 7?1~11? 31- 269
RSA 700104 33- 147 149 150
RSR 700144 37* 148 151
RSF" 70!H(H ~0* 136
,SCOM o "I 01VF' 4:;* 133 230 5513 5~2 567 569 718 72 III

73d

SECTION 8

SYSTEM GENERATION

8.1 INTRODUCTION

Master PDP-IS Background/Foreground Monitor systems are supplied to customers in

an executable binary form on a single DECtape. The Master system represents an

immediately usable system: however, it is recommended that the user perform a

system generation procedure using the Master system, a system generator prograIn,

and command inputs to produce a working Background/Foreground Monitor system

conforming to the user's specific equipment and software needs. The required

system generator program is listed on the Master system under the file name

"BFSGEN SYS".

8.1.1 BFSGEN, Generation and Update Features

The program BFSGEN can perform two optional functions:

1) SYSTEM GENERATION. - This function enables the transfer of a system

of selected software from the Master system to some intermediate,

file structured, mass storage device (DECtape or Disk). Normally,

the transferred system will not conform to the requirements of the

installation on which it is to be used; however, it is in a form

which is easily modified (i.e., updated).

2) SYSTEM UPDATE. - The update function of BFSGEN enables the user to

modify both hardware and software parameters of a generated system.

This feature must be used when building the initial system. Update

may also be used to modify a previously generated system to meet

new hardware or software requirements.

8.2 BFSGEN DEVICE REQUIREMENTS

System generation operations must be performed between two similar I/O devices

(e.g., DECtape to DECtape) i dissimilar devices (e.g., DECtape to DISK) cannot

be used.

8.2.1 DECtape Masters

Both Disk and DECtape system Masters are supplied on DECtape. For both types

of Masters, system generation may be performed directly from the Master DECtape

to a system DECtape.

For an installation with a Disk, the user may first transfer the Master system

from DEC tape onto a Disk unit, using utility program PIP or RFSAV (refer to

PDP-lS Utility Manual DEC-IS-YWZA-D). An example of the required PIP command
string fOllows:

8-1

C DK4 +-DT3 (H»)

System generation is then performed between Disk units. The resulting system

should be copied onto DECtape for backup purposes, using either PIP or RFSAV

(refer to utility manual) .

8.2.2 Loading BFSGEN

BFSGEN uses the following .DAT slots:

. DAT slot

-14

-15

-3

-2

Used for .••

> Input from Master tape

a) Output of a generated system
b) Input/Output of system to be

updated.

> Teletype output

> Teletype input

I Initially, one must run the system supplied on the Master tape since this is the

only way the System Generator program can be loaded and run. The following two

steps must first be performed:

1. If the tape is a Disk Master, the system must be installed onto

Disk unit zero from the Master tape by using the utility program

RFSAV (refer to the PDP-IS Utility Manual, DEC-lS-YWZA-D) or by

performing a COpy using PIP running under the Advanced Monitor

System.

2. Then, whether the operating system resides on DECtape or on

Disk, follow the procedures in paragraphs 5.2.1 and 5.3.1 to

bring in the Monitor and to load IDLE in the Foreground.

The remaining steps indicate how to load the System Generator in the Background.

This is similar to Advanced Monitor System operation.

3. When the Monitor is ready to accept commands on the Background

control Teletype, it prints:

BKMlS V3A
$

4. If the Master tape is on DECtape transport 4 and a scratch tape

(onto which a generated system is to be output) is on DECtape

transport 5, for example, perform the following:

$ASSIGN DT4 -14
$ASSIGN DTS -15
$BFSGEN

When the System Generator is loaded and running, it will print out:

B/F-lS SGEN Vxx

8-2

8.3 SYSTEM GENERATION PROCEDURES

The System Generator consists of modular sections of code. The operation of each

is discussed individually in the following paragraphs.

8.3.1 Section A -- Initialization

Summary:

Operation:

The user is asked if he would like to run in brief mode.

If he answers no, a summary of System Generator rules is

typed out.

When the System Generator has been loaded into core and

is started, it will type:

BF-lS SGEN Vnn
BRIEF MODE? (YIN)

In the brief mode the System Generator will abridge the

messages it types out. The user must respond by typing

! (meaning YES) or ~ (meaning NO). If YES, the remainder

of Section A is bypassed and processing goes to Section B.

If NO, the System Generator types out a summary of

operating rules and from then on all messages are printed

in expanded form.

The summary of operating rules is typed out as follows:

.DAT SLOT ASSIGNMENTS:

WHEN GENERATING A NEW SYSTEM, A BIF MASTER MUST BE ON
THE DEVICE ASSIGNED TO .DAT SLOT -14. A NEW SYSTEM WILL
BE BUILT ON THE DEVICE ASSIGNED TO .DAT SLOT -15.

WHEN UPDATING AN OLD SYSTEM, THAT SYSTEM MUST BE ON THE
DEVICE ASSIGNED TO .DAT SLOT -15.

KEY-IN CONVENTIONS:

STATEMENTS THAT REQUIRE A RESPONSE END IN EITHER A
QUESTION MARK (?), AN ANGLE BRACKET (», OR A SQUARE
BRACKET (]).

QUESTION MARK (?)-- A YES OR NO ANSWER IS REQUIRED. TYPE
'Y' FOR YES OR 'N' FOR NO. IN BRIEF MODE, A QUESTION MARK

MAY BE TYPED TO CAUSE THE QUESTION TO BE RESTATED IN AN
EXPANDED FORM.

ANGLE BRACKET (»-- A PARAMETER (NAME, SET OF NAMES,
OR A VALUE) IS REQUIRED. TYPE THE PARAMETER AND TERMINATE
WITH A CARRIAGE RETURN. **

SQUARE BRACKET (l) --A PARAMETER HAS BEEN TYPED OUT
ENCLOSED IN SQUARE BRACKETS ([]). THE PARAMETER MAY BE
ACCEPTED AS IS BY TYPING A CARRIAGE RETURN, OR IT MAY BE
ALTERED BY RETYPING THE ENTIRE PARAMETER TERMINATED BY A
CARRIAGE RETURN. **

8-3

RESTART:

TYPING A tP WILL RESTART THE SYSTEM GENERATOR. THIS SHOULD
ONLY BE DONE WHILE BFSGEN IS WAITING FOR A TYPE IN.

** THE PARAMETER IS READ IN lOPS ASCII. I.E., RUB OUT & tu
EDITING AND ALTMODE TERMINATION ARE POSSIBLE.

8.3.2 Section B -- System Selection & Read-in

Summary:

Operation:

The user is asked if this is to be a system generation

or an update of a previously generated system. If a

new system (generation) is wanted, the requested

system is transferred to the output device from the

Master system.

The following question is typed:

IS THIS AN UPDATE OF A PREVIOUSLY GENERATED SYSTEM?

If the user types! (for YES), most of Section B is

bypassed and processing continues with the reading

of information from a previously generated tape (see

below) •

If the user types ~ (for NO), the System Generator

copies the Master system onto the output device. As

this is being done, the System Generator informs the

user

SYSTEM BEING TRANSFERRED

When the transfer is complete, BFSGEN reads selected

blocks of information from the generated system and

enters its update ~:'ase. While this is being done,

BFSGEN types:

SYSTEM INFORMATION BEING READ

This information is then presented to the user during

the update process as assumed parameter values. For

instance, if the system was built for a machine with

three Teletypes, one of the parameters will be:

NUMBER OF TTY'S [3]

which the user may either accept or change.

8-4

Once the system parameters have been read in, BFSGEN will type:

A tP TYPEIN WILL RETURN CONTROL AT THIS POINT

8,3.3 Section C -- System Parameters

Sununary:

Operation:

The user is asked if he would like t9 change or see

the system parameters. If he answers yes, each

parameter is typed out with the parameter value

enclosed in square brackets. The user may accept or

retype each value.

At the start of Section C, BFSGEN types:

DO YOU WISH TO CHANGE (OR SEE) SYSTEM PARAMETERS?

expecting the user to type! (if YES) or ~ (if NO) .

If NO, the old parameter values are retained and

operation continues at Section D.

If YES, each parameter is listed with its assumed

value and a response of acceptance (carriage return)

or correction (typing new value) is expected. The

following table lists the parameters in the order in

which they are typed out and also the legal values

that may be typed in.

NOTE

System core size information is obtained from the
"multicore" paper tape bootstrap.

PARAMETER ACCEPTED VALUES

NUMBER OF TTY'S [XX] ~, ... , N (Note 1)

TTY #N IS A MODEL KSR[XX] 33 or 35 (Note 2)

BCONTROL [XX] ~,!, ... ,N-l (Note 3)

FCONTROL [XX] ~,!, ... ,N-l (Note 4)

RAISE TO LEVEL [X] ~,! (Note 5)

$ SHARE [X] !,~ (Note 6)

FCORE [XXXXX] ~'1. ... , core size (Note 7)

FGD tc CONFIRMER [X] !,~ (Note 8)

8-5

NOTE 1:

The maximum number of Teletypes the system will allow is a
function of a parameter assignment made during assembly of
the Resident Monitor. For the initial system generation, the
maximum number is assumed and will appear within the brackets.

NOTE 2:

Teletypes are logically numbered ~ to N-l, where N is the value
of the first parameter (number of Teletypes). For each
Teletype, the parameter is printed in order to verify or
determine that it is a model KSR33 or a model KSR35. ASR33
Teletypes are considered to be KSR33 and ASR35 to be KSR35.

NOTE 3:

The Background control Teletype may be any logical unit from
~ to N-l, where N is the value of the first parameter
(number of Teletypes).

NOTE 4:

The Foreground control Teletype may be any logical unit from
~ to N-I, excluding the unit number assigned to the Background
control Teletype.

NOTE 5:

All system software will raise to API level ~ for reentrancy
protection 1 unless the user wants complete control over
level~. If such is the case, he must specify that all system
software will RAISE TO LEVEL 1.

NOTE 6:

The initial setting of the SHARE flag is determined at
system generation time.

NOTE 7:

The initial setting of FREE CORE is determined at system
generation time. 2 is the lowest value required.

NOTE 8:

One of the two jobs, Background or Foreground, can cause the
Monitor to be reloaded once CTRL C has been typed the first
time on the Foreground control Teletype. That job is
designated as the tc Confirmer 2 . This parameter is phrased in
the form of a question and asks is the Foreground job the
tc Confirmer.

8.3.4 Section D -- Existing I/O Devices

Summary:

ISee section 7.4.

2See section 3.4.

The user is asked if he would like to change or see the

known I/O devices. If he answers yes, the devices

which must exist are listed followed by the devices

which exist but may be deleted from the system.

A question mark is typed following the listing of

8-6

Operation:

each device which may be deleted, and the user must

indicate whether or not each shall be kept by typing

ny" or "N".

BFSGEN begins Section D by typing:

DO YOU WISH TO CHANGE (OR SEE) KNOWN I/O DEVICES?

expecting the user to respond with Y (if YES) or N

(if NO). If NO, the existing devices are retained and

operation continues at Section E. If YES, the following

question is typed out:

DO YOU WISH TO SEE MANDATORY I/O DEVICES?

expecting a response of r or ~.

If NO, operation continues with the expendable devices

(see below).

If YES, the mandatory devices are listed along with

relevant information:

(CLOCK)

API

SKIP lOT 7{J{J{J{Jl

API CHNL 11

(MEMORY PROTECT)

PI

SKIP lOT 7{J17{Jl

MNEMONIC MPSK

TT (TTY CONTROL)

API

SKIP lOT 7{J{J4{Jl

MNEMONIC TSF{J

SKIP lOT 7{J{J3{Jl
MNEMONIC KSF{J

CO (CORE-CORE)

NO (NONE)

DT (SYSTEM DEV)

API

(Note 1)

(Note 2)

(Note 3)

(Note 4)

(Note 4)

(Note 2)

(Note 5)

8-7

SKIP lOT 7~76~1

API CHNL ~4

SKIP lOT 7~7561

API CHNL ~4

The system clock and the
are, therefore, listed.
assignable handlers and
therefore, are shown as

(Note 6)

NOTE 1:

memory protect hardware must exist and
They are devices which do not have

do not have device names. Their names,

NOTE 2:

The designation API or PI is printed to indicate how the device
is attached to the interrupt hardware of the machine. The
Teletype device (TT) always includes the console Teletype which
is not attached to the LT19 and operates always on PI. Tele­
type is the only device in the system which is allowed to
receive interrupts on both PI (console) and API (LT19 Teletypes):
The core to core device (CO) and the device NONE (NO) do not
utilize lOT instructions and do not generate interrupts.

NOTE 3:

SKIP lOT's for each device are listed, whether the device is on
PI or API, for two reasons: First, if the device is on PI, the
skip lOT's must be placed in the lOT skip chain located in the
Resident Monitor so that interrupts for that device can be de­
tected. That, however, is insufficient because the Monitor must
then transfer to some core location where the interrupt will be
processed. Since all but the resident device handlers are loaded
re1ocatab1y from the system's I/O library, the linkage between
the device handler and its interrupt lines must be made after
the handler has been loaded into core. The handler does this by
calling the .SETUP routine in the Resident Monitor. For each
call it passes on two arguments: a skip lOT and the entry point
address of the routine to service the interrupt.

Figure 8-1 illustrates how the linkage is made. If the device is
on API, the System Generator ry1aces a JMS* TV instruction in the
channel register for the devic~. The address, TV, is some
fixed slot in the Monitor's tran3fer vector table. In the same
relative position as the transfer vector, the System Generator
places the associated skip lOT in a register in the SKIP lOT
table. If the device is on PI, the skip lOT is placed in the
skip chain (as well as the skip lOT table) and is followed by the
instructions SKP and JMP* TV.

When the .SETUP routine in the Monitor is called, it searches
the skip lOT table for the first argument (the skip lOT) and then
stores the second argument (the address of the entry point of the
interrupt service routine) in the corresponding transfer vector.
Transfer vectors initially contain the address of an error routine
which traps illegal (unserviceable) interrupts.

l~he LT15 Teletype control is equivalent, from a software point of view, to
the LT19.

8-8

NOTE 4:

If a device operates on API, the API channel number (channel
address-40) is given following the skip lOT. If the device
operates on PI, the skip lOT mnemonic is printed, later to be
used to reorder the skip chain.

NOTE 5:

In a DISK system, the system device is DK (instead of DT for
DECtape) .

NOTE 6:

Sometimes more than one skip lOT is listed for a given API channel
because DEC-supplied handlers are written to operate with or
without API. If two skips must appear in the skip chain, the
handler makes two calls to .SETUP. This sets up two transfer
vectors, only one of which is referenced by the instruction in
the channel register.

8.3.4.1 EXPENDABLE (DELETABLE) DEVICES - Once the mandatory devices have been

(optionally) listed, a check is made to see if any other devices exist. If not,

the following is typed out:

ALL EXISTING DEVICES ARE MANDATORY

and then processing goes on to Section E.

lf deletable devices exist, the following is typed out:

THE FOLLOWING DEVICES EXIST. INDICATE (YIN) TO KEEP

Then, for each expendable device, BFSGEN types a 2-letter device mnemonic

followed by a question mark, e.g.,

LP?

The user must then type ~ (meaning YES) in order to keep the device or ~ (meaning

NO) to delete it. If YES, then the device parameters are typed out in the same

format as the mandatory devices, e.g.,

LP? Y

API

SKIP lOT 7~65~1

API CHNL 16

8-9

4

API CHANNELS

I JMS*

SKIP

DTDF

SKP

DTDFTV

one

CHAIN

JMP* DTDFTV

TRANSFER VECTORS

~ I ERR

I /
or the other

~ SKIP lOT TABLE

(skip if DECtape bTDF

done) /'

MONITOR

HANDLER

INTERRUPT SERVICE .INIT ROUTINE

INTSVC o (JMS* (. SETUP

~ DTDF

INTSVC

FIGURE 8-1 INTERRUPT LINKAGES FOR I/O DEVICES

8-10

It is possible that a user may want to keep an existing device but change its

parameters (e.g., the skip lOT). In such a case, the existing device should be

deleted and then reentered as a new device (refer to 8.3.5).

8.3.5 Section E -- Additional I/O Devices

Summary:

Operation:

The user is asked if I/O devices are to be added to

the system. If he answers yes, the device name,

skip lOT's, and skip mnemonics (or API channel

numbers) are requested.

Section E starts with the following typeout:

ARE I/O DEVICES TO BE ADDED TO THE SYSTEM?

to which the user must respond ! (for YES) or N

(for NO). If NO, processing continues at Section F.

If YES, the following instruction is typed:

PROVIDE PARAMETERS AND ANSWER SPECIFIC QUESTIONS

A series of requests are then made to obtain information about each new device.

The requests will include several of the following typeouts:

a. DEVICE NAME >

b. NUMBER OF INTERRUPTS SETUP>

c. API?

d. SKIP lOT >

e. APT CHNL >

f MNEMONIC >

The requests and ~ypes of responses required are as follows:

a. First, the device name is requested. The user must type a 2-letter

name followed by a carriage return. The name must be unique; that is,

it must not be identical to that of an existing device.

b. The number of interrupt lines that will be set up is asked. This,

(referring to Note 3, Section D)is the number of calls the device

handler(s) will make to the .SETUP routine in the Monitor; this

is also the number of transfer vector table slots which must be

reserved, the number of skips which will appear in the skip

chain (for a PI device) and the number of skip lOT's for which

slots must be reserved in the skip table.

8-11

Specifying zero interrupts setup is legitimate: this indicates

that the device is not interrupt driven, (e.g., the CO, core­

to-core, device). If the reply is 0, no more parameters are

requested for such a device.

c. The user is asked if the device is connected to the API. The

reply must be either y) (for YES) or N) (for NO).

d. A pair of questions are asked pertaining to skip rOT's and are

repeated for as many lOT's as were specified. The user is first

requested to type in the octal value of the skip lOT instruction.

Six digits are required in the answer and the lOT must be one

not previously used.

e. The second request, if an API device, is the API channel number

associated with the preceding skip lOT. The channel number may

be any number from 4 through 37 (octal) but it must not belong

to another existing device.

The same channel number may be used several times for a given

device in order to accommodate device handlers which set up

several skip lOT's and which are written to operate with or

without API l .

f. The second request, for a PI device, is to type in a mnemonic for

the skip lOT, to be used later if reordering the skip chain.

The mnemonic may be 1 to 6 printing characters and must be unique.

The mnemonic may be preceded by a minus sign to indicate a

negative skip lOT (skip if device flag is not set) and will

result in only a 2-word entry in the skip chain as opposed to

the normal entry of 3 (for a positive skip).

When all the parameters have been entered for a new device, the following

question is typed:

DO YOU WISH TO ADD ANOTHER DEVICE?

If the user replies ~ (for NO), BFSGEN will go on to Section F. If ! (for YES),

requests for parameters, as above, will be made for another device.

I lA hold-over from the PDP-9 where systems without API were supported at one time.

8-12

8.3.6 Section F -- PI Skip Chain

Summary:

Operation:

The user is asked if he would like to see or change the

skip chain. If yes, the old skip chain order is typed

out and then the user may retype the skip lOT's in

whatever order he chooses.

BFSGEN types the following question: .

DO YOU WISH TO SEE OR CHANGE THE SKIP CHAIN ORDER?

If N (for NO), operation proceeds to Section G. If! (for YES), the skip lOT

mnemonics are listed in the old order, minus those skips for deleted devices and

with new device skips appended to the end of the list. Then the user is asked:

DO YOU WISH TO CHANGE THE SKIP CHAIN ORDER?

If ~, operation will continue at Section G. If!, BFSGEN types:

RETYPE MNEMONICS IN DESIRED ORDER
>

The angle bracket (» signals the user to type a skip mnemonic followed by a

carriage return. If he types an ALTMODE instead, the first unused skip in the

old skip chain will be typed out. BFSGEN will continue to type an angle

bracket until all the skips have been retyped.

8.3.7 Section G -- .IOTAB

Summary:

Operation:

The user is asked if he wishes to change (or see) the

parameters for I/O device handlers. These are stored

in the I/O table, .IOTAB, within the Non-resident

Monitor. If he answers YES, the name of each existing

device is typed out and the user is requested to

provide information about available device handlers.

The user is asked:

DO YOU WISH TO CHANGE (OR SEE) I/O HANDLER PARAMETERS?

If N is the reply, processing will continue at Section H. If !, the following

is typed:

ACCEPT OR RETYPE THE FOLLOWING HANDLER PARAMETERS

8-13

Then, for each existing device l excluding NO (the null dev:lce), CO (core),

TT (Teletype), and the System Device (DT or OK), some of the following informa­

tion will be typed out for acceptance or revision:

a. DEVICE -- ZZ

HANDLER NAME(S) [ZZA,ZZB,ZZC]

b. DEVICE-SHAREABLE ZZA? [Y]

c. EXT BUF SIZE [XXXX]

d. MAX OPEN FILES [XX]

e. UNIT-SHAREABLE ZZA? [N]

In the preceding list, the characters ZZ represent the 2-letter device name and

XX and XXXX represent octal quantities.

The order of requests and the type of responses required are as follows:

a. First, the device name is typed out with the existing handler names

enclosed in brackets. For a new device BFSGEN assumes at first

that there exists an "A" handler. The user may accept the list

of handlers by typing a carriage return. Otherwise, he must type

in a new list of names-, each separated by a comma, and terminate

the list by a carriage return. Each handler name must be three

letters long. The first two letters must be the device name.

b. If ZZA, namely, the "A" version of the handler, is present, it is

asked if it is a multi-user (shareable) handler. An assumption is

enclosed in brackets. The user must either type a carriage return

to confirm the assumption or type Y) (for YES) or r:!} (for NO). A

shareable ZZA handler is one that may be used by both the Foreground

and the Background jobs simultaneously.

c. If ZZA is shareable, the external buffer size must be specified.

The old value or a default value will be enclosed in brackets.

Typing carriage return signals acceptance. Otherwise, the user must

type in a buffer size (in octal) ranging in value from 0 to 7777.

A zero buffer size is legal because some multi-user handlers may

not require external I/O buffers.

d. If ZZA is shareable, the open file capacity of the handler must

also be established. The value may range from I to 77 octal. For

certain I/O handlers, particularly the ones which do not require

external buffers, this count is meaningless. However, a value of

at least I must be entered.

8-14

e. Finally, if ZZA is device-shareable, it is asked if it is also

unit-shareable (with an assumption in brackets). The system device,

for example, DEC tape , is unit-shareable. This means that if the

keyboard command $SHARE is typed to the Monitor, Background will be

allowed to assign and use any DECtape units which the Foreground

may be using. The responses which the user may give are the same

as for the question "DEVICE-SHAREABLE ZZA?"

Once all the device handlers have been specified, the System

Generator will check if the devices MT (MagTape) or LP (Line

Printer) are present. If so, it will type out a system parameter

related to the device and wait for the user to accept the parameter

or retype it as follows:

DEFAULT MT TRACKS [7]

#LP COLUMNS [XXX]

The Magtape is assumed to operate either as 7-track or 9-track

so the user may type '!..1 or 9). This "default" assumption is

entered in one bit in .SCOM+4 in the Resident Monitor, and that

bit is interrogated by the Magtape handlers in the absence of a

command from the user's program specifying the mode of operation.

The number of columns on the Line Printer can be 80, 120, or 132.

Two bits in .SCOM+4 can be interrogated to determine the above

information.

8.3.8 Section H -- .DAT Slots

Summary:

Operation:

The user is asked if he would like to change (or see)

the permanent .DAT table assignments for Background

(.DATB) and Foreground (.DATF). If he answers yes, he

must accept or retype the contents of each reassignable

slot.

The following question is typed:

DO YOU WISH TO CHANGE (OR SEE) BGD .DAT SLOTS?

After the Background .DAT table has been disposed of, similar questions will

be posed for the Foreground .DAT table. If the user answers N (NO) for the

Background table, processing continues with the Foreground table. If he
doesn't wish to see or modify the Foreground table, operation continues at

8-15

Section I. In eac:. case, if the answer is Y (YES), the following is typed:

ACCEPT OR T;l~TYPE .DAT SLOT CONTENTS

The number and the contents of each .DAT slot will be typed out in the following

form:

-10 [DTA3)

I The assignment (DECtape "A" handler-unit 3) is enclosed in brackets to indicate

that it may be accepted or changed. The assignments in .DAT slots -7, -3,

and -2 will not be enclosed in brackets because reassignment is not permitted.

Typing carriag~ return indicates acceptance of the assignment. Otherwise, a new

handler/unit must be typed using the same rules as for the Background/Foreground

Monitor. For example,

-13 [DTA2) DT) (meaning DTA.'J)

-12 [LPA,0] TTS) (meaning TTA5)

-11 [DTAl) CDB) (meaning CDB~)

-l.'J [PRA.'Jl TTA2)

The System Generator will initially assign NONE to Foreground .DAT slots which

refer to the Background control Teletype and vice versa and will reject user­

typed assignments of the same nature.

8.3.9 Section I -- Re-write System Information

At this point, all system modifications have been made in core. BFSGEN thus

informs the user:

SYSTEM INFORMATION BEING WRITTEN

and proceeds to transfer the modifications to the output device. When this has

been done, the message:

SYSTEM UPDATE COMPLETED
DON'T FORGET POST-GENERATION PROCEDURES

is typed and then the System Generator exits to the Monitor.

8.4 POST-GENERATION PROCEDURES

Once the System Generator has completed its task, the user may need to modify

the new system depending upon his particular hardware configuration:

8-16

a. 50 Cycle Machines

Customers whose hardware operates on a line frequency of 50 Hz

should replace the 60 Hz versions of the subroutines TIME and

TlMElO in the library, .F4LIB BIN, with the 50 Hz versions .

• F4LIB BIN as well as the 50 Hz versions of TIME BIN and TIMEIO

BIN are on the generated Background/Foreground System. To do

this, return to the Monitor and assign .DAT slots -10 and -14

to access files from the generated Background/Foreground system.

Also, assign a scratch device to .DAT slot -15 and call in the

system program UPDATE. When UPDATE is ready for a command, type

the following:

> U + .F4LIB)

> R TIME)

> R TlMElO)

> CLOSE (ALTMQDE)

When UPDATE has returned to the Monitor, call in PIP. Using PIP,

delete the old .F4LIB BIN on the generated system and then trans­

fer to it the new .F4LIB BIN from the scratch device.

Note that the versions of TIME and TlMElO distributed with the

Background/Foreground System will not operate properly in any

other Monitor System nor will the other Monitor versions of TIME

and TlMElO work in Background/Foreground. This is also true of

the FORTRAN OTS routine called FlOPS, the Background/Foreground

version of which is in the library .F4LIB BIN.

b. Card Reader

The device handler CDB. BIN which is supplied in the system's I/O

library, .IOLIB BIN, has been assembled for the CR03B card

reader using the DEC029 character set. For customers who wish

to use the DEC026 character set, the source file of the card

reader handler, CDB. SRC, is present both on the Master system

and on the generated system. The source file may be conditionally

assembled by defining at assembly time the following parameters:

No parameters

DEC026 = 0

CR03B and DEC029

CR03B and DEC026

The new binary of the card reader handler should replace the old

one in .lOLIB BIN on the generated tape. The commands to the

system program UPDATE are as follows:

8-17

Note, the ~ command is a feature available in UPDATE V6A which

strips the internal symbol definitions from binary files and

thereby shortens the library. If an earlier version of UPDATE

is used, omit the S in the first command. The library may be

shortened at some later date.

After UPDATE has created the new I/O library, use PIP, as in

part ~ to replace the old library on the generated system.

c. Line Printers

The device handler LPA. BIN which is supplied in the system's I/O

library, .IOLIB BIN, is for the LPl5 line printer on the DECtape

and RF/RS disk systems and for the 647 line printer on the RB09

system. The following binary files appear on the system tapes in

case the library does not have the desired handler:

LP.l5 BIN
LP.$49 BIN
LP.647 BIN

(for the LPl5)
(for the LP$49)
(for the 647)

The commands to the system program UPDATE to replace the line

printer handler are equivalent to those shown in section 8.4b

above, with the appropriate line printer handler used in place

of the card reader handler.

d. The I/O Library

In the process of updating a Background/Foreground System, the

user mqy have deleted some previously existing devices and

device handlers and also added new ones. Since the System

Generator does not modify the I/O Library, .IOLIB BIN, in the

generated or updated system, the user should use the system

program UPDATE to delete unwanted device handlers and to insert

new ones.

e. Recouping Tape Space

Provided that the user never modifies the Master of the Background/

Foreground System, space may be retrieved on the system "tape"

by deleting the following files using the Delete command in PIP:

TIME BIN
TIMElO BIN
CDB. SRC

(50 Hz version)
(50 Hz version)
(Card Reader Handler)

These files are all present on the Master "tape".

8-18

f. Disk Systems
Once a system generation and update has been performed and a

useable Background/Foreground System has been built onto some

unit on the Disk, that Disk unit should be copied onto a DECtape

(or paper tapes) to provide a backup medium for restoring the

system. To dump a disk unit onto DECtape, use the Copy command

in PIP:

>C DTx+-DKy (H»)

The paper tape utility program RFSAV 1 may also be used to perform

the same function.

g. All Systems

To avoid possible grief due to loss or damage of tapes, the user

is urged to copy Master tapes and generated tapes to be kept as

backups.

8.5 ERROR DETECTION

The System Generator is a locative program, and any mistakes made by the user in

answering queries will result in a descriptive error message. The incorrect

answer will be ignored and the question will be repeated.

Within the System Generator there is a safeguard function which should never be

noticed by the user. If a malfunction is detected, which could be the result

of a bad system tape or of a programming bug in the System Generator itself, the

following will be printed on the console Teletype:

SYSTEM CRASH
PLEASE to &
SAVE TTY LOG

nnnnnn
000000
pppppp

If such a message should occur, the user is requested to perform a dump of core

memory by executing a CTRL a (to). The dump can then be printed for diagnostic

purposes. The TTY Log is simply the entire printout that led to the error. The

six-digit octal numbers that are printed in the preceding message are:

nnnnnn = unrelocated address within BFSGEN where the error
was detected.

000000 =

pppppp

runtime (relocated)
error was detected.
the Link, Page/Bank

the contents of the
detected.

address within BFSGEN where the
Bits ~-2 indicate the state of

Mode, and Memory Protect.

accumulator when the error was

This information would be an aid in tracking down the cause of the error.

lSee PDP-IS utility Programs Manual, DEC-15-YWZA-D

8-19

APPENDIX I

.SCOM REGISTERS

The function of the .SCOM (~ystem COMmunication) Registers is to provide, among

the various program elements of the Background/Foregrounq Monitor System, an

easily accessible set of registers which contain communication pointers, data

words, and program flags indicating the state of the system.

The .SCOM table begins at location 1~~8 within the Resident Monitor. Location

l~~ is referred to as .SCOM or .SCOM+~ and theW+~th register is referred to

as .SCOM+N.

Each .SCOM register has a special meaning and format. At present, there are

1178 such registers. Slots at the end will be allotted for future expansion

as needed.

REGISTER DEFINITIONS: The following list indicates the contents of each .SCOM

register. Those which are fixed at assembly or system generation time and

never changed are marked by (F). Some .SCOM registers must have a Foreground

value and a Background value. Therefore, their contents must be swapped from

one to the other, depending upon which job has control. They are flagged by

(S). Some .SCOM registers have been reserved for future software. If their

contents (format) are as yet unspecified, they will be flagged with (U).

.SCOM + ~ (F)

.SCOM + 1 (S)

.SCOM + 2 (S)

Pointer to the highest register in core
(37777, 57777, or 77777). This value is
established from the location of the
bootstrap loader the first time the system
is loaded.

(a) Address just above the Resident Monitor
when the Non-resident Monitor has been loaded
for Foreground.

(b) Address just above the Foreground job
when the Resident Monitor has loaded the Non­
resident Monitor in the Background. If the
system program PIP is called, this will be
the first location of its .DEV table.

(c) For DDT in the Background this points
to the start of its symbol table.

(a) Same as (a) for .SCOM + 1.

(b) Normally used by user and system programs
to indicate the first (lowest) location in
free core.

(cl For DDT in the Background this points to
the first location after the symbol table,
which is also the first location of free core.

I-I

.SCOM + 3

.SCOM + 4

.SCOM + 5

.SCOM + 6

.SCOM + 7

. SCOM + l~

.SCOM + 11

• seOM + 12

(S)

(S)

(F)

(F)

(S)

(F)
(U)
(F)
(F)

(F)
(F)

(S)

(F)

(F)

Normally used by user and system programs
to indicate the last (highest) location in
free core. For the Foreground, this is also
the highest location allocated to the Fore­
ground job.

Bits indicate machine configuration:

Bit ~
Bit 11
Bits 2-5
Bit 62

Bit 7

Bit 8
Bit 9
Bits 1~-11
Bits 12-13

Bit 14
Bits 15-17

~=NO API; l=API
~=No EAE; l=EAE
~ (Reserved and unused)
~ = 7-channe1 MAGtape
1 = 9-channel MAGtape
~=Bank Mode Addressing
l=Page Mode Addressing
1 = no tQ area on system tape unit ~
Unassigned
~ (Reserved and unused)
~ No Line Printer
1 8~ column printer
2 = 12~ column printer
3 132 column printer
1 Background/Foreground System
~ (Reserved and unused)

(a) Initially this points to RESINT, the
address of the initialization section in
RESMON. The paper tape bootstrac loader
transfers control indirectly through this
location.

(b) When calling the System Loader to
bring in a system program, the Non-resident
Monitor stores here the code number of the
program to be loaded.

(c) When running a system program, its
start address is stored here.

(a) When the Non-resident Monitor calls
the System Loader to load user programs,
bits ~ - 2 indicate which command was
given to the Monitor:

$LOAD, $GLOAD, $DDT, or $DDTNS.
Bit ~ 1 if $DDT or $DDTNS (DDT load)
Bit 1 = ~ if $LOAD: Bit 1 = 1 if $GLOAD
Bit 2 = ~ if $DDT; Bit 2 = 1 if $DDTNS

(b) When the user programs have been loaded,
the start address of the main program is
stored here. The load command code bits
(~ - 2) remain as in (a).

The interrupted PC plus L,P/B,MP are saved
here for DDT in the Background when CTRL T
has been typed •

The interrupted PC plus L,P/B,MP are saved
here after a NORMAL CTRL P has been typed
and honored.

Bootstrap restart instruction.

~ (Reserved for PDP-9 use) .

IThe presence or lack of EAE is determined dynamically by the Resident Monitor.

27/9-channel default operation may be set by Foreground Keyboard command.
I-2

.SCOM + 13 (F)

.SCOM + 14 (F)

.SCOM + 15 (F)

.SCOM + 16 (F)

.SCOM + 17 (F)

.SCOM + 2{J (F)

.SCOM + 21 (F)

.SCOM + 22

.SCOM + 23 (F)

.SCOM + 24 (F)

.SCOM + 25

.SCOM + 26 (S)

.SCOM + 27 (F)

.SCOM + 3{J (F)

Pointer to the .IOIN 1 table in the Resident
Monitor.

Pointer to the .MUD 2 table in the Resident
Monitor.

Pointer to the .BFTAB 3 table in RESMON.

Pointer to .DATF~, Foreground .DAT slot {J
in the Resident Monitor.

Pointer to .DATB~, Background .DAT slot {J
in the Resident Monitor.

{J indicates that the computer does not
have an extra 4K page segment (which rules out
20K and 28K).

Default value of $FCORE (Foreground free core)
established at system generation.

Reserved for MAGtape handler

TWo's complement size of the Monitor's transfer
vector table (used by System Generator) .

Pointer to the Monitor's transfer vector table
(used by System Generator) .

(a) Prior to loading the Foreground job,
the amount of free core requested by the $FCORE
command is stored here. If no $FCORE command
is given, the default assumption is taken from
.SCOM + 21.

(b) After the Foreground job has been loaded,
this register contains a pointer to the register
immediately above the Foreground cote area.

Contains {J if Foreground is in control and 1
if Background is in control.

Pointer to lOT Skip literal table in the
Monitor (used by System Generator) •

Pointer to PI Skip Chain.

".IOIN is the table which indicates which I/O devices are in core, which units on
each device are spoken for, and which job (Background or Foreground) owns them.

2. MUD is a table listing all available multi-user device handlers, with
pertinent information about those handlers.

3. BFTAB is a buffer table containing pointers to and the sizes of all external
I/O buffers that were set up QY the loaders.

\ D:AT.F is the Device Assignment Table for Foreground .
• DATB is the Device ~ssignment Table for ~ackground.

1-3

.scm~ + 31

.SCOM + 32

. SCOM + 33

• SCOM + 34 (F)

.SCOM + 35

.SCOM + 36 (F)

.SCOM "" 37 (F)

.SCOM + 4~

• SCOM + 41

• SCOM + 42

. SCOM + 43

• SCOM + 44

Software Memory Protect Bound

(a) Set from .SCOM + 25 after the System
Loader has loaded the Foreground job.

(b) Set to point just above the Background
I/O handlers and I/O buffers after the Back­
ground job has been loaded.

(a) Pointer to the Hardware Memory Protect
Bound (or where it should be set). Contents
(SCOM + 32)~ contents (.SCOM + 31).

Background Program Counter, including L,P/B,MP •

Address of the resident Teletype handler (TTA) •

Interrupt Service Flag. Non-~ indicates that
control is in some interrupt service routine.

Bits to tell the Teletype handler which units
are model 33 (specific bit = ~) and which
model 35 (specific bit = 1). Bit ~ corresponds
to unit ~, bit 1 to unit 1; etc.

Pointer to CALER. Used to detect attempt
to re~enter CAL handler and to trap CAL*
instructions.

CAL flag. Non-~ if control is in the CAL
handler (indication necessary for interrupt
servicing) •

"Who's running in the Background" Flag.
Bit ~ = 1 if a Loader is running.
Bits 1-17:
17777 = Non-resident Monitor

~ = user program or DDT
1 = EDIT
2 = MACRO
3 = PIP
4 F4
5 = SRCCOM
6 = DUMP
7 UPDATE

l~ unused
11 = MACROA
12 = F4A
13 EXECUTE
14 = CHr.~N
15 PATCH
16 DTCOPY

LevelS (API,Foreground) busy register •
Zero indicates levelS non-busy. Non-Zero
indicates that Foreground level 5 is idle
waiting for some I/O to complete. Set non-~
with the initial address of the device handler
doing the I/O. If the device is Teletype,
the unit number + 4~999~ is stored here instead.

Same as .SCOM + 42 for Foreground level 6 •

Same as .SCOM + 42 for Foreground level 7 •

1-4

.SCOM + 45

.SCOM + 46

.SCOM + 47

.SCOM + 5~

.SCOM + 51 (F)

.SCOM + 52 (F)

.SCOM + 53 (F)

.SCOM + 54 (F)

.SCOM + 55 (F)

.SCOM + 56 (F)

.SCOM + 57

.SCOM + 6~

. SCOM + 61

. SCOM + 62

.SCOM + 63

.SCOM + 64 (F)

Same as .SCOM + 42 for Foreground Mainstream
level.

Foreground level 5 I/O satisfied flag.
Zero indicates that level 5, which was I/O
bound, can be started up again.

Same as .SCOM + 46 for level 6.

Same as .SCOM + 46 for level 7.

Pointer to REALTP 1 in the Resident Monitor.

Pointer to IOBUSy 2 in the Resident Monitor.

Pointer to LV4Q3 in the Resident Monitor.

Pointer to CALL4" in the Resident Monitor.

Pointer to • SETUP 5 in the Resident Monitor.

Pointer to GETBUF 6 in the Resident Monitor.

If non-~, a pointer to the entry point of
the last Mainstream Foreground real-time
subroutine in the chain of subroutines to
be run when Foreground Mainstream gets control.

Pointer to the entry point +1 of the first
subroutine in the chain of Foreground Main­
stream real-time routines to be run when
Foreground Mainstream gets control.

Same as .SCOM + 57 for Background •

Same as .SCOM + 6~ for Background •

Argument for API instruction ISA when interrupts
at API software levels are to be requested.

Pointer to CR.QR 7in the Resident Monitor.

lREALTP is a subroutine to process real-time requests.

2IOBUSY is a subroutine to check for I/O busy termination.

3 LV4Q queue is a list of I/O handlers which are waiting to complete their
interrupt service processing at API level 4.

"CALL4 is a subroutine to initiate an API level 4 request.

;SETUP is the routine initially called by all I/O handlers to set up skips in
the PI skip chain or API channel registers.

6GETBUF is a routine called by the I/O handlers Which assigns buffer areas
to the handlers via .BFTAB.

7CR . QR is a routine called by I/O handlers to initiate a device-not-ready
request.

1-5

.SCOM + 65

.SCOM + 66

.SCOM + 67

. SCOM + 7~

. SCOM + 71

.SCOM + 72

.SCOM + 73

. SCOM + 74

.SCOM + 75

.SCOM + 76

.SCOM + 77

.SCOM + l~~

(F)

(F)

(F)

(F)

(F)

(F)

(F)

(F)

Set non-~, while a Foreground user program is
running, to indicate that the resident buffer
may not be used by the Foreground. The resident
buffer must be available to the Background,
which presumably changes jobs more often, for
use by the Monitor and the Loaders.

Pointer to ERRORQl in the Resident Monitor.

Pointer to Foreground control character table
in TTA •

Pointer to Background control character table
in TTA .

Error flag. The following conditions exist
if the respective bit = 1:
~ - Background error
1 - Foreground error
2 - Background terminal error
3 - Foreground terminal error

Pointer to the Foreground error processing
subroutine plus the 2~~~~~ bit to enter bank
mode.

Same as .SCOM + 72 for Background error
subroutine •

Saved argument for Foreground error routine
ISA instruction.

Contains JMS IGNORE, a call to a dummy inter­
rupt service routine, used during error process­
ing.

Two's complement count of the number of Teletypes
on the machine.

$SHARE Flag (to allow Background to share
Foreground I/O bulk storage units). Non-zero
indicates that SHARING is allowed. Initial
value is set at System Generation.

Pointer to ENTERQ2 in the Resident Monitor.
Will contain ~, instead, if ENTERQ routine
not assembled into the Monitor.

lERRvRQ is a routine called to enter information in the Foreground and/or
Background error queues and to set the error flags in .SCOM + 71.

2ENTERQ is a subroutine which makes entries in the API queue.

I-6

.SCOM + I,m

.SCOM + 1~2

• SCOM + 1~3

.SCOM + 1~4

.SCOM + 1~5

.SCOM + 1~6

.SCOM + 107

.SCOM + 11~

.SCOM + III

.SCOM + 112

.SCOM + 113

.SCOM + 114

.SCOM + 115

• SCOM + 116

• SCOM + 117

(F)

(F)

(F)

(F)

(F)

(F)

If set non-zero by the Foreground keyboard
command, $MPOFF, Background enters EXEC mode.
The memory protect boundary register is
zeroed to allow Background to modify and
transfer to any location in core. Background
IOT's will still trap to the Monitor but the
IOT's will be executed.

Argument for ISA instructions which will raise
either to API level ~ or level 1 (as the
highest used Monitor level) to protect common
Monitor routines from being reentered. Value
established at System Generation •

Monitor version number. For FKM15 V3A printout,
for example, this register will contain:
.ASCII "3A".

Flag to indicate which job (~ = Foreground;
1 = Background) confirms Foreground CTRL C
see Section 3.4).

Two's complement size of the PI ship chain.
(Used by System Generator) •

Pointer to the register immediately above
the Resident Monitor (set by the Non-resident
Monitor after it has built the .MUD table).
(Used by CHAIN program.)

Used to store the file directory entry
block of the XCT file to be EXECUTEd in
the Foreground.

Used to store the file directory entry block
of the XCT file to be EXECUTEd in the
Background.

Maximum number of Teletypes allowed, which
is a function of an assembly parameter in
the Monitor (Used by System Generator) •

Foreground MAGtape status •

Background MAGtape status .

I-7

APPENDIX II

ERRORS

ERROR HANDLING IN BACKGROUND/FOREGROUND

The processing of errors detected by the Resident Monitor, I/O handlers, the

Linking Loader, and the System Loader in the Background/Foreground System has

been changed from the manner of error processing in the ADVANCED and I/O Monitor

Systems.

The most significant change is the introduction of terminal and non-terminal

errors. A terminal error stops execution of the job associated with the error.

This causes all I/O handlers assigned to that job to be called to stop I/O that

may be in progress and all Monitor queues to be cleared of entries for that job

(Background, Foreground, or both) .

A non-terminal error does not necessarily warrant aborting the operation of the

offending job. A non-terminal error message is entered into a queue for the

appropriate job and is printed on the appropriate control Teletype when that

unit is free. While the printing of non-terminal error messages is pending or

in progress, operation of the offending job is suspended. This restriction does

not apply to I/O handlers, which may continue interrupt processing.

The format for error messages generated by the Resident Monitor, I/O handlers,

and the Loaders is:

.ERR NNN XXXXXX

where NNN = error code

XXXXXX = auxiliary information

These errors are tabulated on pages 11-3, -4, and -5.

Errors detected by the FORTRAN Object Time System (OTS) are formatted as follows:

OTS NN

where NN error code.

OTS errors are listed on page 11-6.

11-1

CONTINUATION AFTER ERROR

All .OTS errors, except 7 and IS (see list on page 1I-6), are terminal errors.

After OTS has printed the error message, it exits to the Monitor. Therefore, after

a terminal .OTS error the user does not have the option of restarting his program.

Terminal .ERR errors terminate the operation of user programs. After the print­

ing of the error message, the user has the option of typing CTRL P (to restart

his program at the CTRL P restart address), CTRL T (to return to DDT), CTRL Q (to

take a dump of memory), or CTRL C (to return to the Monitor to load another job).

If the error occurs while control is in the Non-resident Monitor or in a Loader,

the user does not have the options indicated above. The Monitor will automatically

be reloaded.

Non-terminal .ERR errors do not terminate the operation of user programs. Con­

tinuation, following the printing of the error message, is automatic.

ERROR CALL

Routines that wish to set up an error condition, I/O device handlers for

example, should use the following coding sequence:

LAC * (.SCOM+66 /POINTER TO ERRORQ
DAC TEMP /SUBROUTINE.
LAC * (.SCOM+l,02 /RAISE TO API
ISA /LEVEL {J (OR 1) .1

LAW CODE /SEE BELOW.
JMS* TEMP /CALL ERRORQ.

AUXARG XX /AUXILIARY ARGUMENT.
DBK /RETURN HERE:

The calling program must be operating with memory protect disabled in order to

be able to issue lOT's.

The first argument, given in the AC to ERRORQ, may be loaded either by LAW code
or by LAC (code in the following format:

Code

Bits {J-S are ignored
Bit 6 = .0 means non-terminal error
Bit 6 = 1 means terminal error
Bit 7 = 1 means Background error
Bit 8 = 1 means Foreground error
Bits 9-17 is a 3-digit error code

Both bits (7 and 8)
may be set to 1

I For a routine that operates at API level 1 or {J, read the discussion on
Reentrancy Protection, 7.4.

1I-2

To avoid the possibility of future conflicts, user programs and device handlers

should utilize codes 6~~ - 777.

The auxiliary argument, following the JMS to ERRORQ, will be printed in the error

message as a 6-digit octal number. The error message will be printed in the form:

.ERR NNN XXXXXX

where NNN = the 3 digit error code

XXXXXX = the 6-digit auxiliary information

The actual printing of the error message and processing of the error will be

done only after all interrupt processing has ceased and when control is no longer

in the CAL handler.

BACKGROUND/FOREGROUND MONITOR ERRORS (.ERR)

The following abbreviations are used below in describing the auxiliary informa­

tion:

ERROR NO.

~~~ 

~~l 

~~2 

~~3 

~~4 

~~5 

~~6 

~~7 

~l~ 

L - bit ~ is the status of the link 

PB - bit 1 is the status of page/bank addressing mode 

MP - bit 2 is the status of memory protect 

CAL ADDR - bits 3-17 contain the address of the CAL in error. 

ERROR AUXILIARY TERMINAL 
INFORMATION 

ILLEGAL CAL FUNCTION L, PB, MP, CAL ADDR YES 

CAL * ILLEGAL L, PB, MP, CAL ADDRI YES 

.DAT SLOT ERROR L, PB, MP, CAL ADDR YES 
(erroneous .DAT slot 
number or .DAT slot not 
tied to an I/O handler) 

ILLEGAL INTERRUPT L, PB, MP, PC YES 

MORE THAN ONE DEVICE .ASCII /XX/ ; YES 
NOT READY XX = DEVICE NAME 

ILLEGAL . SETUP RETURN ADDRESS FROM YES 
. SETUP (ADDRESS IN 
CALLING DEVICE HANDLER) 

ILLEGAL HANDLER FUNCTION L, PB, MP, CAL ADDRI YES 

ILLEGAL DATA MODE OR L, PB, MP, CAL ADDRI YES 
SUBFUNCTION CODE 

FILE STILL ACTIVE UNIT #, CAL ADDR YES 

IThe auxiliary information, depending on the source of the error, is sometimes 
UNIT #, CAL ADDR. 

11-3 



ERROR NO. ERROR 

911 SEEK/ENTER/REWIND NOT 
EXECUTED 

912 UNRECOVERABLE DECTAPE 
ERROR 

913 FILE NOT FOUND 

914 DIRECTORY FULL 

915 DECTAPE FULL 

916 OUTPUT BUFFER OVERFLOW 

917 TOO MANY FILES FOR 
HANDLER 

929 DISK FAILURE 

921 ILLEGAL DISK ADDRESS 

922 TWO OUTPUT FILES ON ONE 
UNIT 

923 ILLEGAL WORD PAIR COUNT 

927 ILLEGAL DISK UNIT 

931 NON-EXISTENT MEMORY 
REFERENCE 

932 MEMORY PROTECT VIOLATION 

936 BACKGROUND MEMORY PROTECT 
VIOLATION ATTEMPT VIA CAL 
ARGUMENT 

937 LINE OVERFLOW 

947 ILLEGAL HORIZONTAL TAB 

959 .TIMER REQUEST CANNOT 
FIT IN CLOCK QUEUE OR 
BACKGROUND REQUEST 
REMOVED TO MAKE ROOM FOR 
FOREGROUND REQUEST 

952 MAINSTREAM REAL TIME 
REQUEST IGNORED BECAUSE 
ROUTINE IS ALREADY 
ENTERED 

953 APIQ OVERFLOW 

954 ILLEGAL WORD OR WORD 
PAIR COUNT 
(Either the word count 

was positive or the start­
ing address plus the 
absolute value of the word 
count exceeded existing 
memory) 

955 NO BUFFERS AVAILABLE 

956 ILLEGAL .ERROR CAL 2 

AUXILIARY 
INFORMATION TERMINAL 

UNIT #, CAL ADDR YES 

STATUS REGISTER B YES 
(Bits 0-11) AND UNIT 
(Bits 15-17) 

UNIT #, CAL ADDR YES 

UNIT #, CAL ADDR YES 

UNIT #, CAL ADDR YES 

UNIT #, CAL ADDR YES 

UNIT #, CAL ADDR YES 

DISK STATUS REGISTER YES 

UNIT #, CAL ADDR YES 

UNIT #, CAL ADDR YES 

UNIT #, BLOCK # YES 

UNIT #, CAL ADDR YES 

L, PB, MP, PC YES 

L, PB, MP, PC I YES 

L, PB, MP, CAL ADDR YES 

L, PB, MP, CAL ADDR YES 

L, PB, MP, CAL ADDR YES 

ADDRESS OF REAL TIME NO 
SUBROUTINE THAT WAS TO 
GET CONTROL ON COM-
PLETION OF INTERVAL 

PRIORITY LEVEL/SUB- NO 
ROUTINE ENTRY POINT 

ENTRY THAT WOULD NOT NO 
FIT (PRIORITY LEVEL/ 
SUBROUTINE ENTRY POINT) 

L, PB, MP, CAL ADDR YES 

RETURN ADDRESS FROM YES 
GETBUF (ADDRESS IN 
CALLING DEVICE HANDLER) 
L, PB, MP, CAL ADDR YES 

IIf a memory protect violation occurs because of a Background JMP instruction, 
the PC is the effective address rather than the location of the JMP. 

2A special error call to the Monitor (CAL code 16) is available for use only by 
the Loaders. 

II-4 



EROOR~. EROOR 

~57 ILLEGAL .EXIT CAL 

~6~ .INIT NOT EXECUTED 

~61 

~62 

PARITY ERROR IN 
DIRECTORY BLOCK (l~~) 
OR FILE BIT MAP 
BLOCK (71-77) 

TOO MANY NON-TERMINAL 
ERRORS 

ILLEGAL TELETYPE UNIT 

LOADER ERRORS (.ERR) 

AUXILIARY 
INFORMATION 

L, PB, MP, CAL ADDR 

CAL ADDR 

UNIT i, BLOCK # 

NUMBER OF ERRORS 
DISCARDED 

L, PB, MP, CAL ADDR 

TERMINAL 

YES 

YES 

YES 

NO 

YES 

All Loader errors are terminal. The auxiliary information which is printed is 

irrelevant. 

l~~ NO ROOM IN CORE FOR PROGRAM SEGMENT 

l~l PROGRAM AND SYMBOL TABLE OVERLAP 

1~2 .BFTAB OVERFLOW 

1~3 .IOIN TABLE OVERFLOW 

1~4 $FILES COUNT OVERFLOW 

1~5 

1~6 

1~7 

PARITY ERROR, CHECKSUM ERROR, OR BUFFER OVERFLOW 

ILLEGAL LOADER CODE 

COMMON BLOCK SIZE ERROR l 

ll~ MISSING GLOBAL(S) 

III ILLEGAL .DAT SLOT NUMBER 

112 .DAT SLOT CONTENTS = ~ 
113 SAME DEVICE - DIFFERENT HANDLERS2 

114 ILLEGAL HANDLER CODE (Illegal .DAT slot contents) 

115 ABSOLUTE PROGRAM ERROR 3 

116 FOREGROUND CAN'T USE UNIT ~ ON SYSTEM DEVICE 4 

117 NO ROOM TO BUILD .EXIT LIST 

12~ XCT FILE OVERLAYS EXECUTE 

121 XCT FILE OVERLAYS THE MONITOR 

122 XCT FILE OVERLAYS THE SYMBOL TABLE 

123 XCT FILE NOT BUILT FOR THIS CONFIGURATIONs 

1 COMMON Block size declared differently when Block size previously fixed in 
BLOCKDATA subprogram. 

20nly one version of a device handler may be in core. .DAT slot requested a 
different handler for a device when another handler for that device was 
already in core. 

3An absolute .LOC program may not be loaded once relocatable programs have 
been loaded. Absolute and relocatable .LOC in same program is illegal. 

4$SHARE command was not given. 

SConfiguration word in "XCT" file indicates if it was built to run in bank 
or page mode and Background or Foreground. 

II-5 

I 



OBJECT TIME SYSTEM ERRORS (.OTS) 

All .OTS errors (except 7 and 15) are terminal and no auxiliary information 

is printed: 

fiJ-4 UNUSED 

5 ILLEGAL REAL SQUARE ROOT ARGUMENT 

6 ILLEGAL DOUBLE SQUARE ROOT ARGUMENT 

7 ILLEGAL INDEX IN COMPUTED GO TO 

lfiJ ILLEGAL I/O DEVICE NUMBER 

11 ILLEGAL INPUT DATA OR INCORRECT DATA MODE 

12 ILLEGAL FORMAT STATEMENT 

13 ILLEGAL REAL LOGARITHMIC ARGUMENT 

14 . ILLEGAL DOUBLE LOGARITHMIC ARGUMENT 

15 RAISE ZERO TO A POWER LESS THAN OR EQUAL TO ZERO 

II-6 



APPENDIX III 

TELETYPE HARDWARE CHARACTERISTICS 

SYSTEM REQUIREMENTS AND OPTIONS 

The multi-unit Teletype handler assumes that the Teletype configuration consists 

of: 

a. A model 33 or Model 35KSR console Teletype, 

b. from 1 to 4 LT19 1 multi-station Teletype controls, and 

c. from 1 to 1610 Model 33 or Model 35KSR Teletypes interfaced 

to the LT19 controls 2 • 

The console Teletype has its own set of lOT's, operates as half-duplex, and 

is connected to the PIC (Program Interrupt Control). 

The LT19 can handle from 1 to 5 Teletype lines and will operate at API level 3, 

using channel registers 74 and 75. 

Teletypes connected to LT19 controls are operated in full-duplex mode, which 

requires the software to echo characters input from the Keyboard back to the 

teleprinter. 

LT19 lOT's 

The following tables list the device and subdevice codes associated with each 

teleprinter and keyboard and indicate the logical unit numbers which the 

Teletype handler associates with them. The console Teletype, which is not 

connected to the LT19 controls, is defined to be logical unit ~ 

TABLE 1: 1 to 5 units; 1 LT19 

UNIT PRINTER KEYBOARD LOGICAL 
# CODE CODE UNIT # 

LT19 1 XX400X XX410X 1 
#1 2 XX402X XX412X 2 

3 XX404X XX414X 3 
4 XX406X XX416X 4 
5 XX420X XX430X 5 

IFor two-Teletype systems, an LT15 control may be used rather than LT19. The 
LT15 is operationally identical to line 1 on the LT19; thus no further mention 
will be made of the LT15. 

2As standardly supplied, the Background/Foreground system will support a maximum 
of six Teletypes. Expansion beyond six requires a simple reassembly of the 
Resident Monitor. 

II~-l 



TABLE 2: 6 to 10 units; 2 LT19's 

UNIT PRINTER KEYBOARD LOGICAL 

-*- CODE CODE UNIT * 

LT19 
U 1 XX400X XX410X 1 

2 XX402X XX412X 2 
3 XX404X xx414x 3 
4 XX406X XX416X· 4 
5 XX440X XX450X 11 

LT19 
*2 1 XX420X xX430X 5 

2 XX422X xX432X 6 
3 XX424X XX434X 7 
4 XX426X XX436X 10 
5 XX442X XX452X 12 

TABLE 3: 11 to 15 units; 3 LT19's 

UNIT PRINTER KEYBOARD LOGICAL 

-*- CODE CODE UNIT * 

LT19 
U 1 XX400X XX410X 1 

2 XX402X XX412X 2 
3 XX404X XX414X 3 
4 XX406X XX416X 4 
5 XX460X XX470X 15 

LT19 
#2 1 XX420X XX430X 5 

2 XX422X XX432X 6 
3 XX424X XX434X 7 
4 XX426X XX436X 10 
5 XX462X XX472X 16 

LT19 
#3 1 XX440X XX450X 11 

2 XX442X XX452X 12 
3 XX444X XX454X 13 
4 XX446X XX456X 14 
5 XX464X xx474X 17 

III-2 



TABLE 4: 16 units; 4 LT19's 

(The setup for the first three 
controls is in Table 3). 

UNIT PRINTER KEYBOARD LOGICAL 
_#- CODE CODE UNIT # 

LT19 
#4 1 Unused Unused 

2 Unused Unused 
3 Unused Unused 
4 Unused Unused 
5 XX466X XX476X 20 

TELETYPES 

In the Background/Foreground System, Teletype models are presumed to have 

certain hardware characteristics: 

Model 33: 

Model 35: 

No horizontal tabbing mechanism 

No vertical tabbing mechanism 

No form feed mechanism 

(Note, the lack of vertical tab or form 
feed does not affect the software.) 

Has horizontal tabbing mechanism 

Has vertical tabbing mechanism 

Has form feed mechanism 

The Teletypes are assumed to be KSR (Keyboard Send/Receive) units. ASR (Automatic 

Send/Receive) Teletypes may be used; however, their paper tape input and output 

capability cannot be used. The system will not support Model 37 Teletypes. 

The Teletype handler will simulate horizontal tab both on input and on output, 

on model 33 Teletypes, but will not simulate either vertical tab or form feed. 

Tab stops are assumed to be 8 spaces apart. 

III-3 





APPENDIX IV 

MONITOR SYSTEM TABLES 

1. CONTENTS 

Some of the most commonly used Monitor system tables are described in this 

appendix. These descriptions are intended for individuals interested in the de­

tailed structural aspects of the Monitor; the information they contain is not 

required to operate the system. The following tables are described: 

MNEMONIC 

a) SYSBLK 

b) . OAT 

c) .IOIN 

d) • MUD 

e) .BFTAB 

2. SYSBLK 

DERIVED FROM 

~tem Bloc~ 

~evice ~ssignment !able 

~nput/Qutput Handlers In Core Table 

Multi-user Device Table 

Buffers Table 

The following paragraphs describe in detail the overall aspects and components 

of a system SYSBLK. 

2.1 Function 

SYSBLK acts as a central source of information about system programs. For example, 

the system loader (.SYSLD) uses SYSBLK information to determine how to load each 

system program. Utility program PATCH also uses SYSBLK for loading information 

and can also modify SYSBLK to permit system programs to be loaded or patched 

onto the system tape. 

2.2 Size and Location 

SYSBLK is a 256-word block located on the system DECtape. In Background/ 

Foreground system DECta~es, SYSBLK is located in block 408; in ADVANCED Monitor 

systems, SYSBLK is located in block 618 of the system DECtape. 

When loaded, SYSBLK resides in core immediately below the system loader (.SYSLD). 

2.3 Overall Structure 

The following table illustrates the overall structure and organization of SYSBLK. 

IV-l 



(1st word) pointer to .DAT slot 

pointer table. 

(7 words) 

(7 words) 

(7 words) 

(DATTAB = 7*(N+l)+1) 1 

.DAT slot pointers table 

Pointer to the END. 

(PROG~) 

(PROGl) 

(PROGM} 1 

(END) 

2.4 Entry Structure 

2.4.1 System Program Parameter Table 

DATTAB 

System parameters for Program ~ 

System parameters for Program 1 

System parameters for Program M 

Program ~ 
Program 1 

Program N 
END 

List of .DAT slots used by Program ~. 

List of .DAT slots used by Program 1. 

List of .DAT slots used by Program M. 

The System Program Parameter Table is so arranged that it can be used unaltered 

in the command table for the system progra.l PATCH, as all entries for Program I 

(I is greater than or equal to ~ and smaller than or equal to N) can be described 

in general without knowing which value I takes on. The following discussion will 

cover all the entries (7*(N+l) of them) with just 7 descriptions. 

INote that M need not equal N. 

IV-2 



Example: 7-Register System Parameter Block for .SYSLD (an .ABS Program 

with Values Taken from PDP-15/2~ System) 

WORD CONTENTS DESCRIPTION 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

.SIXBT /.SYSLD/ 

134~.08 

4237 8 

Name of system program for use by PATCH 
(~ if program is relocatable). 

First block occupied by .SYSLD on 
system device. 

Number of blocks allotted to .SYSLD on 
system device. 

First address in .SYSLD (13 bits) . 

Program size of .SYSLD. 

Starting address of .SYSLD (13 bits). 

(1. ) 
(2. ) 

154.0.0 8 

WORD 1*7+1 
WORD 1*7+2 

If program I is an .ABS system program, these words contain the 
.SIXBT name in the PATCH command to select program I for patching; 
otherwise they must be .0. 

(3. ) WORD 1*7+3 

This word contains the first system device block in which .ABS 
system program I is stored (ignored for relocatable system 
programs) . 

(4. ) WORD 1*7+4 

This word contains the number of system device blocks allotted to 
.ABS system program I (ignored for relocatable system programs) • 

( 5 . ) WORD 1*7+5 

This word contains the 13 bit address of the first core location 
that .ABS system program I occupies (ignored for relocatable system 
programs) • 

( 6. ) WORD 1*7+6 

This word contains the size of the .ABS system program (ignored 
for relocatable system programs). The size of a program is defined 
as the last core location occupied by the program minus the first 
core location occupied by the program plus 1. 

(7. ) WORD 1*7+7 

This word contains the 13 bit starting address of the .ABS system 
program I (ignored for relocatable system programs) • 

IV-3 



2.4.2 .DAT Slot Pointer Table 

The next M words after the system program parameter table (starting with address 

DATTAB) contain pointers to lists of .DAT slots used by the system programs loaded 

by .SYSLD. 

(1) 

(2) 

WORD DATTAB+I 

This word points to the first word in SYSBLK containing the first 
member of the list of . DAT slots used by system program I. (either 
.ABS or relocatable system programs need this table). 

WORD DATTAB+I+l 

Points to the last word plus 1 in SYSBLK of the list of ~AT slots 
used by program I. The .DAT slot numbers are contained in bits 
9-17 of the entry words with bits ~-8 always ~ (bit 9 is the sign 
bit and negative numbers are expressed in 2's complement notation). 
As can be seen, this word also represents the first word in SYSBLK 
containing the list of .DAT slots used by system program I+l. 

2.4.3 Table of .DAT Slot Lists 

From the end of the .DAT slot pointer table until the end of SYSBLK is the space 

reserved for .DAT slot lists for each system program as divided by the .DAT slot 

pointer table. 

2.5 SYSBLK for PDP-15/3~ and PDP-15/4~ 

The following are excerpts from a listing of the SYSBLK used for PDP-15/3~ and 

PDP-15/4~ systems. The listing is used here for illustration only; the 

numerical values of this "version" may have been altered and cannot be relied upon . 

. TITLE B/F SYSTEM BLOCK 

I 
I EDIT U 8-18-7~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
/ 
I 
I 

COPYRIGHT 197~, DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. 

PDP-9/15 BACKGROUND FOREGROUND SYSTEM 

SPECIAL SYSTEM PROGRAM BLOCK (4~) WITH 7-WORD ENTRY PER PROGRAM 

ORDERING OF PROGRAMS IN SYSBLK MUST NOT CHANGE. 
LOGICAL CODES FOR PROGRAM NAMES ARE THE NUMBER OF THE ENTRY IN SYSBLK 
THIS BLOCK IS USED BY BFKM9/15 (NON-RESIDENT MONITOR), .SYSLD (SYSTEM 
LOADER), AND PATCH (SYSTEM PATCHER). 

WD1,2 
WD3 
WD4 
WD5 
WD6 
WD7 

.SIXBT 'PGNAME' 
LOGICAL BLOCK It 
It OF BLOCKS RESERVED 
LOAD ADDRESS (13 BITS) 
PROGRAM SIZE 
START ADDRESS (13 BITS) 

IV-4 



COMTAB 
/ 

.ABS 

.LOC )1 
DATTAB 

/ f8. 
/ 
/ 
/ 

THIS NUMBER CORRESPONDS TO THE LINKING LOADER OR DDT, BUT BECAUSE 
THESE PROGRAMS ARE RELOCATABLE THEY ARE NOT REPRESENTED HERE. 
THIS SPOT IS USED, AS FAR AS PATCH IS CONCERNED, FOR THE RESIDENT 
MONITOR. 

/ 
.SIXBT 'RESMON' 

f8 
4f8 
If8f8 
177f8f8 
f8 

/ 
/ l. 'I'HE SYSTEM EDITOR PROGRAM 
/ 

.SIXBT 'EDIT' 

514 
13 
12577 
52f81 
13f8f8f8 

/ 
/ 24. THE CROSS REFERENCE PROGRAM SEGMENT OVERLAY TO THE ASSEMBLER 
/ 

.SIXBT 'CREF' 

• BLOCK 5 
/ 
/ 25. THE PI VERSION OF THE RESIDENT MONITOR (PDP9 ONLY) 1 

/PARAMETERS UNKNOWN AT THIS TIME 

/ 

.IFDEF PDP9 

.SIXBT 'PIRESM' 

.BLOC¥ ~ 

.ENDC 

.IFUND PDP9 
f8 
f8 
.BLOCK 5 
.ENDC 

/ TABLE WHICH CONTAINS POINTERS TO .IODEV INFORMATION FOR SYSTEM PROG. 
/ 
DATTAB LOAD. 

EDIT. 
MACRO. 
PIP. 
F4. 
SRCOM. 
DUMP. 
UPDTE. 
CONV. 
MACA. 
F4A. 
EXEC. 
CHAIN. 

/f8 - $LOAD,$GLOAD,$DDT 
/1 - $EDIT 
/2 - $MACRO 
/3 - $PIP 
/4 - $F4 
/5 - $SRCCOM 
/6 - $DUMP 
/7 - $UPDATE 
/1f8 - $CONV 
/11 - $MACROA 
/12 - $F4A 
/13 - $EXECUTE 
/14 - $CHAIN 

Not applicable to the bank mode system. 

IV-5 



/ 

PATCH. 
DTCOP. 
F17. 
F2fL 
F21. 
F22. 
END. 

/15 - $PATCH 
/16 - $DTCOPY 
/17 - NOT USED 
/2~ - NOT USED 
/21 - NOT USED 
/22 - NOT USED 
/TO TELL WHERE END IS 

/ .IODEV INFORMATION FOR SYSTEM PROGRAMS 
/ 
LOAD. - 7 & 7 77 

-5&777 
-4& 777 
-1& 777 

EDIT. -15&777 
-14& 777 
-1~&777 

MACRO. -14&777 
-13&777 
-12&777 
-11& 777 
-1~&777 

PIP. -1 
F4. -13& 777 

-12&777 
-11& 777 

PATCH. -14&777 
-10&777 

DTCOP. -15&777 
-14& 777 

F17.=. 
F2~.=. 
F21.=. 
F22.=. 
END.=. 

3. .DAT TABLES 

3.1 Function 

There are 2 .DAT tables: .DATF for Foreground (FGD) and .DATB for Background 

(BGD). The function of these device assignment tables, as in the ADVANCED 

Monitor system, is to provide the basis for device-independent programming. 

Programs which issued monitor calls to perform some I/O function, such as a READ, 

refer to a slot in the .DAT table instead of a specific I/O device. At program 

load time, the user has the option of assigning that program's .DAT slots to 

any I/O device he wishes to use. 

IV-6 



3.2 Location 

Both .DAT tables reside in the resident portion of the monitor (RESMON). The 

.SCOM registers which point to them are: 

C(.SCOM+16) = .DATF 

C(.SCOM+17) .DATB 

3.3 Table Structure 

The FGD and BGD tables are similarly structured. The entry point, either .DATF 

or .DATB, is equivalent to .DAT slot~. Slot ~ contains a pointer to the highest 

register in the table (.DATND) •• DATND, in turn, contains a pointer to the first 

register in the table (.DATBG). This permits future expansion of table size. 

Each .DAT slot is a one-word entry. The slots are referenced relative to slot ~. 

The most negative slot is at .DATBG; the most positive is at .DATND-1. 

3.4 Entry Structure 

bit 

.DATND 

.DATF} 
or 

.DATB 

.DATBG 

~ 2 3 17 

~ I .DATBG (high) 

positive 
.DAT 

slots 

~ 2 3 17 

~ I .DATND 

negative 
.DAT 

slots 
(low) 

Depending on what phase of the loading process the system is in and on which I/O 

device is to be selected, a .DAT slot entry may contain information in any of 

5 formats. Background/Foreground .DAT tables do not resemble those of the 

ADVANCED Monitor system. 

IV-7 



Format 1: 

bit f! 1 2 17 

Format 2: I ~ III TELETYPE UNIT * 
bit 5 l~ 11 17 

Format 3: DEVICE * HANDLER * 
bit ~ 1 2 17 

Format 4: 11111 TELETYPE UNIT * 
bit f! 1 2 4 5 17 

Format 5: 11101 UNIT *1 HANDLER ADDRESS/4 

Formats 1 through 3 are the ere-setup stage (I/O handler linkage not established); 

Formats 4 and 5 are setup (I/O handler linkage established, handler is in core 

and I/O calls to such .DAT slots will be honored by the Monitor). Bit ~ 

distinguishes Formats 1 through 3 from 4 and 5. 

3.4.1 Format 1: - When a .DAT slot contains zero, no device is assigned to it. 

3.4.2 Format 2: - Bit 1 set to 1 indicates that this is for the resident Teletype 

handler (TTA.), which handles the console Teletype (unit~) and up to 16 10 
Teletypes on the LT15 or LT19 controls (units 1 - 2~8). The unit number appears 

in bits 2 through 17. 

3.4.3 Format 3: - Used for all devices except Teletype. The device unit number 

is in bits 2 - 4 (up to 8 units), the device code is in bits 5 - l~ (up to 64 10 
distinct devices), and the device handler code is in bits 11 - 17 (up to 128 

handlers for the entire system, not 128 per device). The I/O handler codes are 

the same as are used to position entries in the .IOC table~ The logical device 

and handler codes bear no relationship to one another. It is up to the System 

Generator and the Non-resident Monitor to ensure that unit number, device code, 

and handler code correspond to a legal combination. 

3.4.4 Format 4: - Same as Format 2 except that bit ~ is set to 1. In this form 

it is legal to issue I/O calls from a user program which refers to such a .OAT 

slot. When set up in this way, the .OAT slot does not contain the address of 

the Teletype handler. That address (full 15 bit) is permanentlv stored in 

.SCOM+34. 

3.4.5 Format 5: - Differs from Format 2 as follows: Bit 0=1 to indicate the 

.OAT slot is set ue and ready for use. The unit number remains in bits 2 - 4. 

IThe .IOC table, built by the Non-resident Monitor for the loaders, contains the 
names of all I/O device handlers coded in radix 5~ form. 

IV-8 



The device and handler codes (bits 5 - 17) are replaced by the address of the I/O 

handler divided by 4. This means that all I/O handlers, save TTA., must start 

at a core address evenly divisible by 4. The loaders account for this fact. 

4. . lOIN TABLE 

4.1 Function 

The .IOIN Table maintains a list of the I/O handlers which are in core, showing 

which device units are in use and which job owns them. This allows the Non­

resident Monitor and the loaders to prevent conflicts between Foreground and 

Background I/O and ensures that only one handler is loaded per device. 

4.2 Location 

.IOIN is part of the Resident Monitor and is pointed to by .SCOM+13. 

4.3 Table Structure 

The first three words are two's complement counts. 

.IOIN -N (2's comp) (low) 

-M (2's comp) 

-L (2's camp) 

Monitor 
and FGD 
Entries 

2N 
2M BGD 

Entries 

/,//// // » unuse'i~/; /"/ / / /./ 
(high) 

Legend: N 
M 
L 

total # of entries 
maximum # of entries 
# of Monitor and FGD entries 

The first three entries in .IOIN are the following Monitor entries: 

1. The system device handler and unit 

2. The Foreground control Teletype 

3. The Background control Teletype 

4.4 Entry Structure 

Each entry consists of two word registers. The first word contains exactly the 

IV-9 



the same information as a .OAT slot before it was set up (i.e., .OAT slot Formats 

2 and 3). 

EXAMPLE: 

bit ~ 1 2 17 
Format 1: ~ 11 Teletype Unl.t # 

1 ~ 

bit ~ 1 2 4 5 l~ 11 17 

Format 2: ~ ~Iunit # Device #IHandler # 

1 IJ Handler Address/4 

4.4.1 Format 1: - This is used for the resident Teletype handler only. Word 2 

conveys no information. Bit ~ is set to 1. 

4.4.2 Format 2: - Word 2 contains the same information as the .DAT slot would 

when set up (.DAT slot Format 5), except that the unit number is removed. 

5. .MUD TABLE 

5.1 Function 

The .MUD table provides information about the multi-user (shareable) device 

handlers in the system. It indicates, for each handler, the size of external 

buffer used, the maximum file handling capacity, and the number of open files the 

user expects to have. 

5.2 Location 

.MUD is positioned at the very top of the Resident Monitor and is pointed to by 

.SCOM+14. 

5.3 Table Structure 

The first word contains the two's complement count of the number of table entries. 

Each entry consists of two registers. 

.MUD -N (2's comp) (low) 

2N 

(high) 

IV-IO 



5.4 Entry Structure 

All entries are similarly structured. The first word contains the logical 

handler code in bits 5 - 11. There is no assumed relationship between handler 

code and table position. 

bit ~ 1 4 5 11 12 17 

x I ~ I Handler It $FILES count 

Buffer Size Max. Count. 

If, prior to loading his job, the user issues the $FILES command for a given 

device (thereby indicating the maximum number of simultaneously open files he 

expects to have for that device), the count will be entered in bits 12 - 17 of 

word 1 and bit ~ will be set to 1. Otherwise, those bits are zero. 

Word 2 contains the buffer size in bits ~ - 11. A size of zero is legal because 

some multi-user handlers do not need external buffers. One buffer is needed 

for each open file. The maximum count, in. bits 12 - 17, is the maximum open 

file handling capacity of the handler. In the absence of a $FILES count declared 

by the user, the Loaders will compute the count. 

6. .BFTAB TABLE 

6.1 Function 

.BFTAB is a pool of I/O buffers that are assigned to multi-user device handlers 

as needed. The table consists of pointers to the actual buffer locations 

assigned by the loaders. 

6.3 Table Structure 

The first three words are 2's complement counts. 

.BFTAB 

2M 

Legend: 

N = Total It of entries 
M = Maximum It of entrie 
L = # of FGD and Manito 

entries 

-N 

-M 

-L 

Resident Buffer ) 
and 

FGD Buffers 

BGD 
Buffers 

IV-11 

(low) 

2L 

(high) 



The first entry is for the resident buffer located within the Resident Monitor. 

6.4 Entry Structure 

Each entry consists of two words. In word 1 the size of the buffer is in 

bits 6 - 17. Bit ~ is set to ~ if the buffer belongs to Foreground and set to 1 

if the buffer belongs to Background. Bit 1 is set to ~ if the buffer is free 

and to 1 if the buffer is in use. Word 2 contains a pointer to the buffer's 

location in core. 

bit 6 17 
~~~~~~----------~-t 

Buffer Size

IV-12

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements of new and revised software, as well as programming notes, software problems,
and documentation corrections are published by Software Information Service in the following
newsletters:

Digital Software News for the PDP-8 and PDP";12

Digital Software News for the PDP-9/15 Family

Digital Software News for the PDP-11

These newsletters contain information to update the cumulative

Software Performance Summary for the PDP-8 and PDP-12

Software Performance Summary for the PDP-9/15 Family

Software Performance Summary for the PDP-11

The appropriate edition of the Software Performance Summary is included in each basic software
kit for new customers. Additional copies may be requested wi"thout charge.

Any questions or problems on the articles contained in these publications or concerning the use
of Digital's software should be reported to the Software Specialist or Sales Engineer at the
nearest Digital office.

New and revised software and manuals, and current issues of the Software Performance Summary
are available from the Program Library. To place an order, write to:

Program Library
Digital Equipment Corporation
146 Main Street, Building 1-2
Maynard, Massachusetts 01754

When ordering, include the code number and a brief description of the program or manual
requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a
catalog of available programs as well as the DECUSCOPE magazine for its members and non­
members who request it. For further information, please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Building 3-5
Maynard, Massachusetts 01754

READER'S

BACKGROUND/FOREGROUND MONITOR
Programmers Reference Manual

DEC-15-MR3A-D
COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy, organization, usabil,ity, and read­
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date: --------------------------------- -----------
Name: Organization: --------------------------- ----------------------
Street: Department: --------------------------- -----------------------
City: ____________ State: __________ Zip or Country _____ _

- - - - - - - - - - - - - - - - Fold Here - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STAn's

Posta.c will be paid by:

mumuamo
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO. 33

MAYNARD. MASS.

