RRRRBRT
CIGIGIGIGIGIGIGIOIGOIOIOION

8888666666666

IOh@©)
C m
uur O @ °
ANV@Q mmd .._m
55T E8¢
O) 556 :
= @@@ rgm._wd m
= @rm b E :
- ® o L
0, G o} ’

Nvesler 73

DEc-lijRSA—D o e
ypdd? o.nF

pects
w,w"’/' 5/0//44'60«/

PDP-15/30 anp PDP-15/40
BACKGROUND/FOREGROUND MONITOR

SOFTWARE SYSTEM

PROGRAMMERS REFERENCE MANUAL

To obtain additional copies of this manual, order number DEC—15-MR3A-D
from the Program Library, Digital Equipment Corporation, Maynard,
Massachusetts, 01754. Price $6.50

Printed December, 1970
Second Printing, April, 1972

Copyright (:) 1970, 1971, 1972 Digital Equipment Corporation

The material in this manual is intended for
information purposes and is subject to change
without notice.

The following are trademarks of Digital

Equipment Corporation, Maynard, Massachusetts

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

Page

SECTION 1 BACKGROUND/FOREGROUND MONITOR

Introduction
Background/Foreground Monitor Functions
Scheduling of Processing Time
Protection of Foreground Core and I/0O
Sharing of Multi-User Device Handlers
Use of Sottware Priority Levels
Use of Real-Time Clock
Communication Between Background and Foreground Jobs
Use of CPU Registers
Hardware Requirements and Options

e o o o o o
NoutdswN -

el e e e

e o o o e s e o e o

whhNDNDNDDDNDNDND -

il
1
QU DHWNDHH-

SECTION 2 BFKM15 - NON-RESIDENT BACKGROUND/FOREGROUND MONITOR

Introduction
Location and When Called
Initial Operation
Information Commands
The LOG Command (L)
The REQUEST Command (R)
The DIRECT Command (D)
The INUSE Command (I)
Allocation Commands
The ASSIGN Command (A)
The FILES Command (F)
The FCORE Command
The FCONTROL Command
The BCONTROL Command
The NEWDIR Command (N)
The SHARE Command (S)
The NOSHARE Command
The 7CHAN Command (7) 2-11
The 9CHAN Command (9) 2-12
The MPOFF Command 2-12
The MPON Command (M) 2-12
Program Load Commands 2-13
Final Operation 2-13
Control Characters 2-13
Summary of Commands 2-14

o o e o
=W N

| U T T AN U RN N F N A N N S N |

HROVOVoNOAUTUIULLE S WNKFH

NN NNNDNDNNDNNONNNNDNDNDNODND
1

NN
e e s ¢ o o o e s o o s o s e e e e o o o
e e o s o s o o o e e o
RPHHFWOVYONOULd WN
N O

oot & _WNEH

SECTION 3 CONTROL CHARACTERS

1 Purpose 3-1
2 Control Teletype 3-1
3 Teletype Handler 3-2
4 CTRL C (4C) 3-2
5 CTRL S (48) 3-3
6 CTRL T (4T) 3-3

Page

3.7 CTRL P (4P) 3-3
3.7.1 NORMAL CTRL P 3-4
3.7.2 No Change 3-5
3.7.3 REAL-TIME CTRL P 3-5
3.8 CTRL R (4R) 3-5
3.9 CTRL Q (4Q) 3-5
3.10 CTRL U (@) 3-6
3.11 RUBOUT (\) 3-7
3.12 CTRL D (4D) 3-7

SECTION 4 LOADERS

4.1 Introduction 4-1
4.2 Foreground Linking Loader 4-1
4.2.1 Option Characters and Their Meanings 4-2
4.2.2 Use of « Terminator 4-2
4.2.3 Sequence of Operation 4-2
4.3 Background System Loader 4-3
4.4 Background Linking Loader 4-5
4.5 Loading XCT Files 4-6
4.5.1 EXECUTE in the Foreground 4-6
4.5.2 EXECUTE in the Background 4-7
4.6 Error Conditions 4-8
4.7 System Memory Maps 4-9
SECTION 5 EXAMPLES OF BACKGROUND/FOREGROUND OPERATIONS

5.1 Introduction 5-1
5.2 Startup Procedures 5-1
5.2.1 Loading Master B/F Monitor System 5-1
5.2.2 System Generation 5-3
5.3 Examples 5-3
5.3.1 IDLE Loaded as the Foreground Job 5-3
5.3.2 Single-user FOCAL Loaded (Foreground) 5-4
5.3.3 Two-user FOCAL Loaded (Foreground) 5-4
SECTION 6 BACKGROUND FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)
6.1 Introduction 6-1
6.2 .REALR 6-1
6.3 . REALW 6-2
6.4 .IDLE 6-3
6.5 .IDLEC 6-4
6.6 . TIMER 6-4
6.7 . RLXIT 6-5
6.8 Mainstream Real-Time Subroutines 6-5
6.9 API Software Levels -- Programming Note 6-5

ii

SECTION 7 WRITING DEVICE HANDLERS FOR THE PDP-15
BACKGROUND/FOREGROUND MONITOR SYSTEM

Introduction
I/0 Service Routine
I/0 Device Handler
Types of Device Handlers
General Structure of Device Handlers
Reentrancy Protection
Device Handler's CAL Processor
Arguments of the CAL
.SETUP
Initiating I/0
Device Handler's Interrupt Processor
Error Processing
Stop I/O Routines
Recovery From I/O Device Not Ready Condition
CTRL R Mechanism
.INIT Consideration
The .INIT Function
Sequential Multi-user Device Handler
Transition from Single-user Handler
Peculiarities
Use of the .WAITR Function
External I/0 Buffers

« o .
« e
N =

o o o o o
P
wN -

NN SNUOUO NN NNNUNNNNNNNN NN NN NN NN
. . . . e e .
HEFRRS R R EREREREREREOOOWONOATOUU S WWWN -
.
N

BWWONNNNHRFRFFO:.

. .
o« .
w N =

.1 Calling for a Buffer
.12.2 Releasing a Buffer
. PDP-9/PDP-15 Compatibility
.13.1 Page Mode
.13.2 Bank Mode

Device Handler Listing
SECTION 8 SYSTEM GENERATION

Introduction
BFSGEN, Generation and Update Features
BFSGEN Device Requirements
DECtape Masters
Loading BFSGEN
System Generation Procedures
Section A -- Initialization
Section B -- System Selection & Read-in
Section C -- System Parameters
Section D -- Existing I/O Devices
Expendable (Deletable) Devices
Section E -- Additional I/O Devices
Section F -- PI Skip Chain
Section G -- .IOTAB
Section H -- .DAT Slots
Section I -- Re-write System Information
Post~Generation Procedures
Error Detection

. o

.
[

.« .
N -

)
.
WO & W
.
[

B WWWWLWWWwWWwWwWwWwWwWwNNN -

00 00 0O 0O 0O 00 0O 00 00 G0 OO0 OO 00 00 O 00 O ™

APPENDICES

I .SCOM Registers

IT Errors

III Teletype Hardware Characteristics
Iv Monitor System Tables

iii

Page

NNNNNNNNNN
|
0000 ~~O0 Ut ==

1 L I B |
HEOMNANTBWWNOHEFFE

=

w

00 0O GO 00 CO OO 0O 00 00 00 00 CO OO 0O 00 @
1 1

=

oUW

8-16
8-19

I-1
II-1
ITI-1
Iv-1

SECTION 1

BACKGROUND/FOREGROUND MONITOR

1.1 INTRODUCTION

In the preparation of this manual, it was assumed that the reader is familiar
with the PDP-15 ADVANCED Monitor Software System as described in DEC-15-MR2A-D.
A complete description of the Background/Foreground Monitor System is given in
this manual; however, where redundancy occurs, the reader has been referenced to

the ADVANCED Monitor manual.

1.2 BACKGROUND/FOREGROUND MONITOR FUNCTIONS

The Background/Foreground Monitor is designed to control processing and I/O
operations in a real-time or time-shared environment. It is, essentially, an
extension of the ADVANCED Monitor and allows for time-shared use of a PDP-15

by a protected, priority, user FOREGROUND program' and an unprotected system or

user BACKGROUND program.

The Background/Foreground Monitor greatly expands the capabilities of PDP-15/20
ADVANCED Software and makes optimum use of all available hardware. It permits
recovery of the free time (or dead time) that occurs between input/output

operations, thus promoting 100% utilization of central processor time.

FOREGROUND programs are defined as the higher-priority, debugged user programs!
that interface with the real-time environment. They normally operate under
Program Interrupt (PI) or Automatic Priority Interrupt (API) control, and are
memory protected. At load time they have top priority in selection of core
memory and I/O devices, and at execution time they have priority (according to
the assigned priority levels) over processing time. Depending upon system
requirements, the user's Foreground program could be an Executive capable of

handling many real-time programs or subprograms at four levels of priority.

BACKGROUND processing is essentially the same as the processing normally
accomplished under control of the ADVANCED Monitor. That is, it could be an
assembly, compilation, debugging run, production run, editing task, etc.
Background programs may use any facilities (for example, core, I/0 and processing
time) that are available and not simultaneously required by the Foreground job.
Under certain circumstances, I/0O devices may be shared by both the Foreground

and the Background jobs.

'It may be feasible in the future to provide system programs which will operate
in the FOREGROUND.

The Background/Foreground Monitor system is externally a keyboard-oriented
system; that is, Foreground and Background requests for systems information,
core, I/0 devices, programs to be run, etc., are made via the Teletypelkeyboards.
At run time, the Monitor internally controls scheduling and processing of I/O

requests, while protecting the two resident users.

The Background/Foreground Monitor performs the following functions as it controls
the time-shared use of the PDP-15 central processor by two co-resident programs:

a. Schedules processing time.

b. Protects the Foreground job's core and I/O devices.

c. Provides for the sharing of multi-user device handlers, such as
DECtape, by both Foreground and Background jobs.

d. Allows convenient use of API software levels by Foreground jobs.

e. Provides for convenient and shared use of the system Real Time
Clock.

f. Allows communication between the Background and Foreground jobs
via core-to-core transfers or by the shared use of bulk storage
devices.

g. Allows concurrent use of the CPU's active registers, such as the

AC and Index Register.

1.2.1 Scheduling of Processing Time

At run time, the Foreground job retains control except when it is I/O bound;
that is, when completion of an I/O request must occur before it can proceed

any further. In the following example, if the .WAIT is reached before the input
requested by the .READ has been completed, control is transferred to a lower
priority Foreground segment or to the Background job until the input for the

Foreground job is completed.

.READ 3, 4, LNBUF, 48 /READ TO .DAT SLOT 3

.WAIT 3 /WAIT ON .DAT SLOT 3

Since multi-user device handlers can be shared by Foreground and Background
programs, there is a mechanism by which a Foreground I/O request may cause a
Background I/0 operation to be stopped immediately so that the Foreground
operation can be honored. On completion of the Foreground I/0, the Background
I/0 is resumed with no adverse effects on the Background job.

The Foreground program can also indicate that it is I/O bound by means of the

lTeletype is a registered trademark of the Teletype Corporation.

1-2

.IDLE or .IDLEC command (Sections6.4 and 6.5). This is useful when the
Foreground job is waiting for real-time input from any one of a number of

input devices. Consider the following example (see Section 6.2 for description
of real-time read .REALR command).

.REALR 1, ¢,LNBUF1, 32, CTRL1l, N1 /REAL
.REALR 2, 2,LNBUF2, 42, CTRL2, N2 /TIME
.REALR 3, 3,LNBUF3, 36, CTRL3, N3 /READS
.IDLE

If .IDLE is reached before any of the input requests have been satisfied, control
is transferred to a lower priority Foreground segment or to the Background job.
The lower priority job retains control until one of the Foreground input requests
is satisfied. Control is then returned to the Foreground job by executing the’
subroutine at the specified completion address (CTRL1l, CTRL2, CTRL3) and at the
priority level specified by N1, N2, N3 which may be:

Value of N Level
g = Mainstream (lowest level)
4 = Current level (level of .REALR)
5 = Software level 5
6 = Software level 6
7 = Software level 7

NOTE

If real-time reads (.REALR), real-time writes (.REALW),
or interval timer (.TIMER) requests are employed in

the Background, N may be set to #, 4, 5, 6, or 7, but
is converted to ¢ since the Background job can run only
on the mainstream level. This allows the value of N to
be preset in cases where a Background program is to be
subsequently run in the Foreground.

1.2.2 Protection of Foreground Core and I/O

The Foreground job's core is protected by the Memory Protection Option (Type
KM15). The Background job runs with memory protect enabled; the Foreground job

runs with memory protect disabled.

Protection of the Foreground job's I/0 devices is accomplished via the haraware
by the Memory Protect Option (which prohibits IOT and Halt instructions in the
Background area) and by the software since the Monitor screens all I/O requests
made via I/0 macros. Also, the Monitor and the Background Loaders prevent the
Background job from requesting I/0 which would conflict with that of the Fore-

ground job (for example, they would not honor a Background request for a paper

1-3

tape handler being used by the Foreground job).

1.2.3 Sharing of Multi-User Device Handlers

The Background/Foreground Monitor permits sharing of multi-user device handlers
(such as DECtape, Magnetic Tape and Disk) between Background and Foreground jobs.
Using these multi-user handlers, n files can be open simultaneously, where n
equals the number of .DAT slots associated with the particular bulk storage
device. Some multi-unit handlers require external data buffers (assigned at
load time), one for each open file. These buffers are acquired from and

released to a pool by the handler as needed.

When this count is not accurate (when the .DAT slots are not used simultaneously),
the keyboard command FILES (Section 2.5.2) can be used to specify the actual
number of files simultaneously open. Both the Foreground and Background jobs

can indicate their file requirements by means of the FILES keyboard command.

The multi-user handlers are capable of stacking one Background I/0 request.
This'provision is made to exactly simulate program operation as it would occur
under ADVANCED or I/0 Monitor (i.e., single user) control. Thus, control is
returned to the Background job to allow non-I/0 related processing when the
handler is preoccupied with an I/0 request from the Foreground job. For
example, if the Foreground job has requested DECtape I/0 with a .READ, and is
waiting for its completion on a .WAIT, control is returned to the Background job.
If the Background job then requests DECtape I/0O with a .READ, the handler will
stack the request and return control to the Background job following the .READ.
The Background job can then continue with non-I/0 related processing as though
the .READ were being honored.

1.2.4 Use of Software Priority Levels

The Background/Foreground Monitor allows convenient use of software priority
levels of the API by the Foreground job. The Background job is permitted to use

only the mainstream level.

1.2.5 Use of Real-Time Clock

The Background/Foreground Monitor provides for convenient and shared use of
the system real-time clock. It will effectively handle many intervals at the
same time; thus, the real-time clock can be used simultaneously by both Back-

ground and Foreground jobs.

1.2.6 Communication Between Background and Foreground Jobs

The Background/Foreground Monitor allows communication between Background and

1-4

Foreground jobs via core-to-core transfers. This is accomplished by means of a
special "Core I/0 device" handler within IOPS. Complementing I/O requests are
required for a core-to-core transfer to be effected; for example, a Foreground

-READ (.REALR) from core must be matched with a Background .WRITE (.REALW) to
core.

Two possible uses of this feature are:

a. The Background job could be related to the Foreground job and,
as a result of its processing, pass on information that would
affect Foreground processing, or vice-versa.

b. The Background job could be a future Foreground job and the

current Foreground job, being its predecessor, could pass on
real-time data to create a true test environment.

Communication between two jobs can also be done by storing and retrieving data on

shared bulk storage devices.

1.2.7 Use of CPU Registers

Whenever contrcl passes from one API software level to another, or to Foreground

mainstream or to Background, the following CPU registers are saved and restored.

XR Index Register !

LR Limit Register!

MQ Multiplier-Quotient Register

AIX The Autoincrement Registers —

L The Link

PC The Program Counter (including bits to indicate the

state of memory protect and page/bank mode)

The Step Counter and the Accumulator are saved and restored only for the Back-
ground job. The~§2§é§32¥§e job, because it runs with memory protect disabled,
can save the contents of the Step Counter in the two free (non-interruptible)
instructions following a Normalize instruction by saving the AC (DAC) and then
loading the AC with the SC (LACS). The AC is not saved for any level of the
Foreground job because a level can give up control only by issuing a Monitor
call (CAL) (either .IDLE, .WAIT, or an implied .WAIT). The contents of the AC
are not saved and restored by the CAL handler. In addition to these hardware
registers, .SCOM+1,+2,+3,+4, and +1§ are swapped whenever control changes from

Foreground to Background or vice versa.

1.3 HARDWARE REQUIREMENTS AND OPTIONS

The following PDP-15 System hardware configurations are required to run the

! In the bank mode system, the XR and LR registers are not saved and restored; all other registers

are handled as stated.

PDP-15/30 DECtape System

PDP-15 CPU with a minimum of
16K - core memory

KE15 (EAE)

KSR35 Console Teletype!

PC1l5 (High Speed Reader/Punch)
KAl5 (API)

KW1l5 (Real Time Clock)

KM15 (Memory Protect)

TC@2D?0r TCl5 (DECtape Control)

3 TU55 (DECtape Transports)

or
2 TU56 (Dual-DECtape Transports)
as a minimum

An LT15 or an LT192Teletype Control
Unit with at least one additional
KSR33 or KSR35 Teletype

Background/Foreground Monitor Software System.

PDP-15/40 DECdisk System

PDP-15 CPU with a minimum
of 24K of core

KE15 (EAE)

KSR35 Console Teletype'

PCl5 (High Speed Reader/Punch)
KAl5 (API)

KW1l5 (Real Time Clock)

KM15 (Memory Protect)

TC@2D?0r TCl5 (DECtape Control)

2 TU55 (DECtape Transports)

or
1 TUS56 (Dual-DECtape Transport)
as a minimum

An LT15 or an LT192Teletype Control
Unit with at least one additional
KSR33 or KSR35 Teletype

RF15 (DECdisk control)

2 RSlL3 (Disk platters) minimum;

4 maximum at present.

!The basic system Teletype is normally assigned to the Background environment.
One Teletype of the external Teletype system must be reserved for the Foreground
job; additional Teletypes may be assigned to either Background or Foreground
functions.

Model 37 Teletypes are not supported. Models 33 or 35 ASR are supported only to
the extent that they operate as KSR's;. their paper tape input and output
facility cannot be used. Detailed information concerning Teletype units is
given in Appendix III.

“The TC02D DECtape control and the LT19 Teletype Control require the DW15.

1-6

In addition to the 15/30 and 15/40 configurations shown,

the following

PDP-9 configurations may also be used when running the bank mode system.

PDP-9 DECtape System

PDP-9 with a minimum of 16K core
memory

Real Time Clock
KX09A (Memory Protect)
KEO9 (EAE)

2KSR 33/35 (Teletypes)

PC02 (high speed paper tape
reader/punch)

KF09A (API)

TCO02 (DECtape control)

3 TU55 (DECtape transports)
or

2 TU56 (Dual-DECtape transports)

LT19A (Teletype control)

PDP-9 DECdisk or RB@9 Disk System

PDP-9 with minimum of 24K core
memory

Real Time Clock

KX09A (Memory Protect)
KEO9 (EAE)
2KSR 33/35 (Teletypes)

PC02 (high speed paper tape
reader/punch)

KF09A (API)
TCO02 (DECtape control)
2 TU55 (DECtape transports)

or
1 TU56 (Dual-DECtape transport)
LT19A (Teletype control)
RF09 (NECdisk control) and

Rs09 (DFCdisk plotter) or
KBU9 disk aunu control

The following options currently supported by software may be added to improve

system performance (as noted):

Options

Additional 8192-word Core Memory

Modules, Type MM15-A plus MK15A
(to a maximum of 32,768 words)

Additional DECtape Transports,
Type TU56, or IBM-compatible
Magnetic Tape Transports, Type
TU20A or TU20B and Tape Control
Type TC59D

Automatic Line Printer, Type
LP15F or C

200 CPM Card Reader, Type CRO3B

Additional Teletype Line Units,
Type LT19Ef and Teletypes, Type
KSR33, KSR35 or equivalent

(standard system is configured

to handle up to 6 Teletype units
including the console unit. The

system may be expanded to handle up

up to 17 units including the
console unit).

and LP@9.
LT19B on the PDP-Y.

Effect

Increases the maximum size of
both Background and Foreground
programs that can be handled
by the system.

Allows greater bulk storage
capability, simultaneous use

of storage media by more programs.
Since only one file may be open

at a time on IBM-compatible mag-
netic tape transports, more than
two Type TU20A or TU20B transports
may be desirable for some applica-
tions

Provides greater listing capabilities.

Provides another form of data
input to the machine.

Provides additional control
terminals useful for multi-
user programs.

MM09 B and C core memory modules on the PDP-9,
Two line printers supported on the PDP-9 are designated Type 647

SECTION 2

BFKM15 - NON-RESIDENT BACKGROUND/FOREGROUND MONITOR

2.1 INTRODUCTION

The non-resident portion of the Background/Foreground Monitor, entitled BFKM15,
is identical in nature to the Keyboard listening section of the ADVANCED Monitor.
BFKM15 reads and interprets commands typed by the user at either the Background

control Teletype or the Foreground control Teletype.

There are three kinds of commands which the user may type:

a. Requests for information, such as a directory listing of unit @
of the system device;

b. Allocation parameters, such as free core required, number of open
files, and I/0 devices to be used;

c. Requests to lcad a system or user program.

2.2 LOCATION AND WHEN CALLED

BFKM15 is loaded from register 12000 of the highest core bank to the top of

memory and 1s transparent to the user since it is always overlayed.

When the Background/Foreground system is loaded or reloaded to start a new Fore-
ground job, the Resident Monitor is first loaded into lower core from unit @
of the system device, either by use of the paper tape bootstrap or by typing
CTRL C! at the Foreground control Teletype. The Resident Monitor then brings
the Non-resident Monitor into the top of memory. When operating in the Fore-

ground, BFKM15 runs with memory protect disabled.

After the Foreground user program has been loaded and has started to run, the
Non-resident Monitor is reloaded with memory protect enabled, to converse with
the user at the Background control Teletype.\ BFKM15 is also reloaded whenever
the Background job exits or the user types CTRL C at the Background control
Teletype.

In both the Foreground and the Background, after the user has given a command
to load a program, the Non-resident Monitor brings the System Loader into

memory from the system device, overlaying the Non-resident Monitor.

lRefer to Section 3.4 for a discussion of CTRL C.

2.3 INITIAL OPERATION

When BFKM15 is started for the Foreground job, it must perform some initialization

of which the following is of interest:

a. Set the contents of .SCOM+25 to the initial size of free core
to be allotted to the Foreground job, in addition to the space
required by the Foreground user programs. The initial value
of .SCOM+25 is set during system generation. This value must
take into consideration the initial size of free core to be
allotted to the Foreground job plus the space required by the
Foreground user program. The user may change free core
allotted by issuing the FCORE command, described in Section 2.5.3.

b. BFKM15 checks the entire Foreground Device Assignment Table
(.DATF) to see if any of those .DAT slots request the Teletype
handler and the unit number currently assigned to the Background
control Teletype. If so, those slots are changed to the Fore-
ground control Teletype and a message is output as in the follow-
ing example.

EXAMPLE 1: The Foreground control Teletype is TT1l, the Background
control Teletype is TT@, and the initial contents of
.DATF slots 1 and 3 refer to TTAJ. .DATF slots 1 and
3 will be changed to refer to TTAl and the following
message will be printed on the Foreground control Teletype:

FGD .DATS CHANGED TO TTAl:

1 3

FKM15 v3al
$

The Non-resident Monitor identifies itself to the Fore-
ground user by printing FKM15 V3A and types $ whenever
it is ready to accept a command.

When BFKM15 is started for the Background job, it performs initialization, of

which the following is of interest:

a. It builds the initial configuration of the Background .DAT table
(.DATB). Any .DATB slots which request a single user version of
a device handler (for example, DTF) will be changed to
the multi-user handler (DTA in this case) if it is already in
core for the Foreground job or if it is the resident system device
handler.

b. BFKM15 will check all Background .DAT slots to make certain that
they do not conflict with Foreground I/0. The Resident Monitor
contains, for this purpose, a table (.IOIN) which lists all I/O
handlers and unit numbers in use. The following occurs:

(1) If a handler for this I/0 device is not already in core, the
Background .DAT slot is left untouched.

! FKM15 is the page mode monitor printout. F9/15 is the bank mode monitor

printout. Bank mode users should substitute the correct monitor printout
in further references.

(2)

(3)

(4)

If a single user handler for this device is already in
core for use by the Foreground job, by definition the
Background job may not use this device. Therefore the
Background .DAT slot is cleared (set to zero).

If the multi-user handler for this device is in core, but
the device unit number in question is not assigned to the
Foreground job, Background is allowed to share that

handler. ©Unit @ of the system device may always be
used by the Background job.

If the Background .DAT slot requests a multi-user handler
and unit number already assigned to the Foreground,
normally this is illegal and that .DAT slot will be
cleared. However, some users may wish to allow both jobs
to access the same unit. Normally, this is permitted
only for bulk storage devices (DECtape, Disk, etc.)
provided that the Foreground user typed the command
SHARE, explained in Section 2.5.7.

If the initial Background .DAT table was altered by clearing .DAT slots for the

reasons given above, a message will be output to the Teletype as in the following

example.

EXAMPLE 2: The Foreground job is running and has been assigned

device handlers and unit numbers DTAl, DTA2, TTAl,
TTA2, and PPA (paper tape punch handler - not

shareable). The initial Background .DAT table contains
conflicting requests as follows:
.DAT SLOT CONTENTS
-15 DTAl
-4 DTA2
3 TTA2
7 PPAQ

The following will be printed on the Background control
Teletype when BFKM1l5 is first loaded:

BGD .DATS CLEARED BECAUSE OF FGD I/O:
-15 -4 3 7
FCONTROL = TTAl
FGD DEV-UNITS:
TTA2
DTAL
DTAZ2
PPAJ

BKM15 V3A'l
$

1

BKM15 is the page mode monitor printout. B9/15 is the bank mode monitor

printout.

in further references.

Bank mode users should substitute the correct monitor printout

FCONTROL indicates which unit is the Foreground control
Teletype. The remainder of the message indicates what
;/O is being used by the Foreground job. The Monitor
identifies itself to the Background job user as BKM1S5 V3A
and signals that it is ready to accept a command by
printing $.

2.4 INFORMATION COMMANDS

The following information commands exist in Background/Foreground:

COMMAND USE

LOG To print a comment

REQUEST To examine .DAT slots

DIRECT To obtain a directory listing

INUSE To list information about core and I/0

in use by the Foreground.

2.4.1 The LOG Command (L)

This command is legal in both Foreground and Background and may be abbreviated
by the single letter L. It is used to record comments on the Teletype. Unlike
all other commands, LOG is terminated only by the character ALTMODE, so that

multiple comment lines may be typed.

EXAMPLE 3:
$LOG THIS LINEJ
AS WELL AS THIS ONE)
AND THIS ONE ARE IGNORED
$

2.4.2 The REQUEST Command (R)

This command is legal in both Foreground and Background and may be abbreviated
by the single letter R. It is used to examine the contents of all or part of
the user's .DAT table. The Foreground user may examine only the Foreground

.DAT table and th=2 Background user, only the Background .DAT table.

FORM 1: RJ)

This requests a printout of the entire .DAT table. No example is given since
R is essentially the same request as in the ADVANCED Monitor System.

FORM 2: R_USER)

This requests a printout of the contents of all the positive numbered .DAT
. slots. The result, again, is the same as in the ADVANCED Monitor System.

FORM 3: R XYZ)

Here, XYZ stands for the name of a system program; e.g., MACRO, PIP, F4, LOAD,
etc. The names given must be identical to those used to load the programs.

The information printed, as in the ADVANCED Monitor System, is those .DAT slots
used by the given system program. Since, at present, the only system program
load commands allowed in the Foreground are LOAD, GLOAD, PIP and EXECUTE, only
these four may be used in Foreground REQUEST commands.

FORM 4: R_.DAT j, k, 1, ... , £, sJ
Here, j, k, 1, etc., are .DAT slot numbers.
EXAMPLE 4:

$R,.DAT, -3, -1, 4, 7)
TTA1l DTA2 NONE LPAZ

$

2.4.3 The DIRECT Command (D)

This command is legal in both Foreground and Background and may be abbreviated

as D. The format is:
D_n)

where n = a unit number (g through 7) on the system device. Directory listings
have been altered in BFKM15 to print the number of free biocks before the file
names. The Background user may not request directory listings of any units
owned by the Foreground job unless the Foreground user typed the SHARE command
(see below) .

2.4.4 The INUSE Command (I)

This command is legal only in the Background and may be abbreviated by the
single letter I. It causes the Monitor to print the first free core location
above the Foreground job, the Foreground control Teletype unit number, and

any other I/O used by Foreground.

EXAMPLE 5:

$I1)

1ST REG ABOVE FGD = 32301
FCONTROL = TTA2

FGD DEV-UNITS:

DTAl
LPAg

2.5 ALLOCATION COMMANDS

The following commands assign parameters, controls, and conditions:

2-5

COMMAND PURPOSE

ASSIGN To assign I/O handlers to .DAT slots
FILES To specify handler file capacity

FCORE To set up Foreground free core
FCONTROL To select Foreground control Teletype
BCONTROL To select Background control Teletype
NEWDIR To write a new file directory

SHARE To allow jobs to share same I/O units
NOSHARE To nullify effect of SHARE

7CHAN To specify 7-channel MAGtape operation
9CHAN To specify 9-channel MAGtape operation
MPOFF To let Background access all of core
MPON To nullify effect of MPOFF

2.5.1 The ASSIGN Command (A)

This command is legal in both Foreground and Background and may be abbreviated
by the single letter A. 1Its format and function are, with a few exceptions,
identical to the same command in the ADVANCED Monitor System.

The format is:

A DDLNmM, n, ..., p/ .../DDLN,m, D, ..., P)

where DD stands for the two letter device name; e.g., DT for DECtape,
PP for paper tape punch, etc.

L represents the third letter of a device handler name and is
optional. If not given, the third letter is assumed to be A;
e.g., DTl = DTAl. The "A" version of a handler is the multi-
user, shareable handler, provided that one exists. PPA, for
example, is not a multi-user handler.

N is the unit number to go with the device handler and is also
optional. If the unit number is missing, N is assumed to be {4,
e.g., DTA = DTA@.. Therefore, DT = DT = DTA = DTA@. The
letters m, n, ..., p stand for .DAT slot numbers. The slash (/)
separates handlers.

To clear out a .DAT slot, assign NONE to it. If any error is detected in the

command, none of the assignments will be made.

The Foreground and Background users may make assignments only to their
respective .DAT tables. Foreground may not assign TTA@ if, for example, that
is the Background control Teletype. Since DTA is permanently in core with the
Resident Monitor (assuming that DECtape is the system device) DTE, DTF, etc.,
when assigned, will automatically be changed to DTA. This applies as well to
handler assignments made in the Background whenever the multi-user version of

the handler is in core for Foreground use.

2-6

Background .DAT slot assignments are tested to ensure that they do not conflict
with Foreground I/0, as explained in section 2.3. Whenever the Monitor detects

such a conflict, it will print the message:

OTHER JOB'S DEV-UNIT
To ensure that no conflict can occur when assigning the core-to-core handler,
COA., the unit number is preset to @ for Foreground and 1 for Background. The

core-to-core handler disregards the unit number anyway.

2.5.2 The FILES Command (F)

This command is legal in both Foreground and Background and may be abbreviated
as F. The purpose of this command is to save core space by limiting the number

of I/0 buffers assigned to multi-user device handlers.
- p—————————

The format of the FILES command is:

FILES, DD_N,)

where: DD stands for the multi-user handler or device name (e.g., DTA or DT).

N stands for an octal file count.

EXAMPLE 6: Assume that the Foreground user programs are being loaded
into core by the Foreground Linking Loader and that these
programs use .DAT slots 1 through 1g. (.IODEV 1, 2, 3, ...,
18). Further, assume that all 1@ slots were assigned to
DECtape, DTAn (the unit numbers are unimportant to this
discussion).

Most multi-user handlers, DTA being one of them, require
that I/O buffers be assigned to them externally. This is
done by the various loaders. In this example, the Fore-
ground Linking Loader, seeing that no FILES command was
given for the handler DTA, must assume that the user wants

19 files open simultaneously. This will require 1§ buffers,
each 6f8 octal words in size.

The FILES command is used to tell the loaders to assign a
given number of buffers for a particular multi-user handler
based on the maximum number of files that the user programs
will have open simultaneously. Each multi-user handler

has a maximum open file capacity; for example, DTA may have
up to 2@ octal. If 1 I/0 buffers are assigned for DTA in
the Foreground, then only up to 1§ may be assigned for
Background. The FILES command issued in the Foreground
specifies only Foreground I/O buffers. Thus, to limit the
number of I/O buffers assigned to the Background, the

FILES command, for the same multi-user device, must also be
issued in the Background.

At load-time, I/0 buffers are set aside in core by the Loaders. The buffers are
recorded in a table within the Resident Monitor, .BFTAB, but are not flagged for

the exclusive use of particular device handlers. At run-time, each multi-user
2-7

handler which needs a buffer must request a buffer from the Monitor. The handler

must also release the buffer to the pool when it is no longer needed.

The resident buffer!, permanently assembled into the Resident Monitor, is always
available to the Background job. In the event that the Background job were to
.IODEV only one .DAT slot which is linked to a multi-user handler that requires
external buffers, (DTA. for example) the user could save 6@@ registers by

typing:
$FILES,_DT, 0

that is, assign one less buffer than is needed.

In the FILES command, the pseudo-device .. is recognized. The size of the
external buffer for this pseudo-device is 1@@ octal. Some functions in multi-
user handlers may require a smaller buffer size than others. If the user were
only to use such function types, he could type, for example, $FILESupTU¢ and
SFILES_.. . N. 1In DTA., .TRAN and .MTAPE commands only require the smaller buffer.

2.5.3 The FCORE Command

This command is legal only in the Foreground and may not be abbreviated.
The format of the FCORE command is:
FCORE,N)
where N is the amount (in octal) of free core requested for the Foreground job.

As in the ADVANCED Monitor System, unused (free) core is defined by the
address pointers in the registers .SCOM+2 and .SCOM+3, the lowest and the
highest free core location, respectively. Since both the Foreground and the
Background jobs have their own separate free core areas, the values in .SCOM+2

and .SCOM+3 are changed appropriately whenever control passes from one job to
the other.

The FCORE command allows the Foreground user to specify how much free core his
program will need, in addition to that required to load his program. The default
value for FCORE is specified during system generation. It is possible for all
of core to be assigned to Foreground. This means, however, that there will be
no room for Background to run, which is perfectly legal. If this is the case,
the message:

SORRY, NO ROOM FOR BGD

1The resident buffer (6@f . words) is assumed to be large enough to be used by
any multi-user handler which might be used by the loaders.

2-8

is printed on the control Teletype.

2.5.4 The FCONTROL Command

This command is legal only in the Foreground and may not be abbreviated. It is

used to transfer control from the control Teletype to some other Teletype unit.
The format of the FCONTROL command is:
FCONTROL, N,))

where: N is the number (octal) of any Teletype on the system.

If N is already the Foreground control Teletype, the command is ignored. TIf N
is the current Background control Teletype, the two Teletypes are swapped but

no message will be printed to this effect. Changing the Background control
Teletype may affect Foreground .DAT slots and an appropriate message will be
printed on the Foreground control Teletype. This is fully explained in the next
section on the BCONTROL command.

When FCONTROL changes the Foreground control Teletype, the following action

takes place:

a. The following message is printed on the old control unit:

CONTROL RELINQUISHED

b. The system is reloaded from the system device.

c. The Monitor prints

FKM15 V3A
$

on the new Foreground control unit and is ready to accept
commands there.

2.5.5 The BCONTROL Command

This command is legal both in the Foreground and in the Background and may not
be abbreviated. It is used to transfer control from the Background control Tele-
type to some other Teletype unit.
The format of the BCONTROL command is:
BCONTROL,_NJ

where N is the number (octal) of any Teletype on the system. This command is

2-9

illegal and is ignored if

a. N is the Foreground control Teletype

b. N has been .IODEVed by a Foreground user program
c. N is already the Background control Teletype

If the Background control Teletype is changed by either a BCONTROL or FCONTROL
command in the Foreground, all Foreground .DAT slots which now refer to the new
Background control unit will be changed to the Foreground control unit to avoid

I/0 conflict. Should that situation occur, the following example shows what

would be printed on the Foreground control unit:

FGD .DATS CHANGED TO TTAl

-6 2 7 19
If BCONTROL is issued in the Background, the following action takes place:

a. The following message is printed on the o0ld control unit:

CONTROL RELINQUISHED
b. 4C is printed on the new unit

c. The Non-resident Monitor (BFKM15) is reloaded for Background
from the system device

d. The Monitor prints

BKM15 V3A
$

on the new Background control Teletype and is ready to
accept commands there.

2.5.6 The NEWDIR Command (N)

This command is legal in both Foreground and Background and may be abbreviated
by the single letter N. Just as in the ADVANCED Monitor System, this command
allows the user to write a new file directory on some unit of the system device..

However, space will not be reserved for a +Q (CTRL Q) area.

The format of the NEWDIR command is:

N, MJ)

where M is some unit number (octal) on the system device. Unit # may not be
used., The Background may not write a new file directory on a unit that belongs
to the Foreground unless the Foreground has issued the SHARE command (see below).

2-10

2.5.7. The SHARE Command (S)

This command is legal only in the Foreground and may be abbreviated by the single
letter S. 1Its purpose is to allow the Background job to assign and to use the
same units of any I/O devices that belong to the Foreground job, provided that
they are unit-shareable devices! (DECtape, Disk, MAGtape, etc.) and that the
device handlers are the multi-user versions. The user must be careful when
allowing this condition to occur. The "tape" could be fouled if both jobs were

to try to use the same unit for output at the same time.

The SHARE command also removes the restriction that the Foreground user program
may not use unit @ on _Lhe system device. Normally, this unit is reserved for the
Background.

The format for this command is:

SHARE))

2.5.8 The NOSHARE Command

This command is legal both in Foreground and in Background and may not be
abbreviated. It nullifies the effect of any previous SHARE command; i.e., does

not allow the Background to share device units with the Foreground.

When NOSHARE is issued in the Background, it may cause some Background .DAT slot
to be cleared. A message, as in Example 2, will be printed to that effect.

The command format is:
NOSHARE)

2.5.9 The 7CHAN Command (7)

This command is legal only in the Foreground and may be abbreviated by the
single character 7. The effect of this command is to clear bit 6 in .SCOM+4 to
inform the Magtape device handlers that the default assumption is 7-channel
operation.

The format of the 7CHAN Command is:

7CHAN,)

*Normally, only mass storage devices are unit-shareable.

2-11

2.5.10 The 9CHAN Command (9)

This command is legal only in the Foreground and may be abbreviated by the single
character 9. It sets bit 6 in .SCOM+4 to inform the Magtape device handlers that

the default assumption is 9-channel operation.
The format of the 9CHAN command is:
9CHAN)

2.5.11 The MPOFF Command

This command is legal only in the Foreground and may not be abbreviated.
The format is:
MPOFF,)

Under normal circumstances, the Background job operates in user mode (memory
protect enabled) with the memory protect boundary register set from the contents
of .SCOM+32. The MPOFF Command does not disable memory protect for Background;
it causes the contents of the boundary register to be set to zero, independent
of .SCOM+32.

The effect this has is to allow the Background job to reference, modify, and
transfer to any location in core memory. Any attempt to do so via a system
macro call (CAL sequence, such as .WAITR) will not result in a terminal error,
.ERR @36. Normally, the Monitor's CAL handler would validate Background argu-
ments by comparison with .SCOM+31 or .SCOM+32, as appropriate.

Since the Background still runs with memory protect on, IOT instructions,
non-existent memory references, double XCT instructions, HLT, and OAS will

trap to the Monitor. OAS! is executed by the Monitor whether or not the MPOFF
command was issued. IOT instructions are executed by the Monitor for the Back-
ground job (this includes IOT's that cause a skip) when MPOFF is in effect.

The reader is cautioned to avoid the use of instructions, such as CAF, EBA,

DBA, ISA, which could play havoc with the system if executed in the Background.
The MPOFF facility was provided to allow a limited amount of Foreground debugging
by using DDT in the Background (strictly for examination and modification--no

breakpoints) .

2.5.12 The MPON Command (M)

This command is legal in both Foreground and Background and may be abbreviated by
the letter M.

'0AS must not be microcoded with any skip instruction.

2-12

The format is:

MPON,)

The MPON command nullifies the effect of MPOFF, thereby protecting the Foreground

job from the Background job in the normal manner.

2.6 PROGRAM LOAD COMMANDS

In the Foreground, only four load commands are legal: LOAD,), GLOAD,), PIP), and
EXECUTELJXXX). EXECUTE may be abbreviated by the single letter E. LOAD and
GLOAD have the same meaning and effect as in the ADVANCED Monitor System.

The following program load commands exist in the Background:

PATCH,) MACROAJ)
CHAIN,) LOAD)
F4) GLOAD,)
F43) DDT.)
EDIT) DDTNS,)
PIP) DUMP,)
EXECUTE, XXX,) UPDATE,)
MACRO) BFSGEN
DTCOPY) SRCCOM)

2.7 FINAL OPERATION

After BFKM15 has received a program load command from either the Foreground or the
Background, it will bring the System Loader (.SYSLD) into the top of core over-
laying BFKM15. In the Foreground, .SYSLD is actually the Foreground Linking
Loader. In the Background, .SYSLD loads Background System Programs, including

the Background Linking Loader.

2.8 CONTROL CHARACTERS

While control is in BFKM15, the user may type CTRL P to terminate execution of
the current command and to restart. Restart in this manner does not nullify the
effect of previously executed commands; e.g., will not reset the .DAT table to
its initial configuration. To reload the Monitor for the current job, the user

may type CTRL C.!

!Refer to section 3.4 for a discussion of CTRL C.

2-13

2.9 SUMMARY OF COMMANDS

LEGAL IN ABBREVIATION COMMAND EXAMPLE
F B A ASSIGN DTAl 2, 3/TT1_1, 4/DT_-4)
F B BCONTROL,,2)

B BFSGEN))
B CHAIN)
F 7 7CHAN,)
F 9 9CHAN,)
B DDT)
B DDTNS)
F B D DIRECT #,))
B DTCOPY)
B DUMB)
B EDIT)
F B E EXECUTE, XXX))
B F4)
B F4a)
F FCONTROL, 1)
F FCORE_1408)
F B F FILES, DT, 37
F B GLOAD,)
B I INUSE)
F B LOAD) -

o]
W
e
[y
o
@
L
H
=2
@]
|}
&}

o
5
@}
o
(@]
L

B MACROA,)
F MPOFF,)
F B M MPON,)
F B N NEWDIR, 5)
F B NOSHARE)
B PATCH.J
F B PIP)
F B R REQUEST, XXX,) or REQUEST, JSER) or
REQUEST, .DAT j,k,1l) or REQUEST)
F S SHARE)
B SRCCOM))
B UPDATE:)

2-14

SECTION 3

CONTROL CHARACTERS

3.1 PURPOSE

Control characters are single characters, typed by the user at a Teletype, which
request special action by the Monitor. Except for the character, RUBOUT, all
control characters are formed by holding down the control key, CTRL, while
striking the appropriate letter key.

The characters CTRL U and RUBOUT are used as "erase" characters during Teletype
input or output. CTRL C, CTRL P, CTRL S, and CTRL T are used to interrupt the
operation of the current program and to transfer control elsewhere. CTRL R

is used to restart I/O after a not-ready condition has been detected for some
device. CTRL Q stops the current job and dumps memory onto a specified area of
some unit of the system device. CTRL D effects an end-of-file condition during

Teletype input.

3.2 CONTROL TELETYPE

In the Background/Foreground System, which may accommodate up to 17 (decimal)
Teletype units!, two Teletypes are designated as control Teletypes (one for
Background and one for Foreground). Initially, it is assumed that unit @ (the
console Teletype) is the control Teletype for Background and unit 1 is the con-

trol unit for Foreground?.
Control Teletypes differ from the other units in two ways:

a. They are used to converse with the Non-resident Monitor and
system programs in order to set up parameters and conditions
for a job and to initiate the loading and execution of programs.
b. Certain control functions are honored only at control Teletypes;
i.e., they are ignored if they are typed on the other Teletype
units (see Section 3.4 and following).

!The system as shipped to customers will handle a maximum of 6 Teletypes. Expan-
sion requires a simple reassembly of the code for the Resident Monitor.

’The initial control Teletypes are specified during system generation,

3.3 TELETYPE HANDLER

The multi-user Teletype handler (TTA) which is imbedded in the Resident Monitor
makes special tests for control characters when it receives typed input. Normally,
when no .READ request has been issued to a Teletype, characters received from

that unit are ignored unless they are control characters. A description of the

action taken in each case is given in the following paragraphs.
3.4 CTRL C (*C)

This character is ignored unless typed at a control Teletype. It is echoed to
the teleprinter as *C.

If a Background job is not in core and the user types CTRL C at the Foreground
control Teletype, 1C is echoed to it and the Resident Monitor is reloaded by
the resident bootstrap.

If a Background job is in core when CTRL C is typed on the Foreground control
Teletype, 1B is echoed to it to indicate fhat a Background job exists, a "bell"
is sent to the Background control Teletype, and a flag is set indicating that
CTRL C has been typed in the Foreground. What happens thereafter depends on
which job is the "confirmer", a parameter set by the System Generator. Once

CTRL C has been entered on the Foreground control Teletype, the Foreground job is

terminated.

When Foreground is the "confirmer", the second time CTRL C is typed on the
Foreground control Teletype 4C is echoed to it and the Resident Monitor is
reloaded.

When Background is the "confirmer", CTRL C typed on the Foreground control
Teletype causes 4B to be printed on the Foreground control Teletype and a "bell"
to be sent to the Background control Teletype. Thus Foreground cannot abort
Background. When CTRL C is typed on the Background control Teletype, 1C is
echoed to it and then the Resident Monitor is reloaded by the resident bootstrap.

In the normal case where Foreground is running and CTRL C is typed on the Back-
ground control Teletype but not on the Foreground control Teletype, the Fore-
ground job is not affected. The Background job is aborted and the Non-resident
Monitor is reloaded to start up a new Background job.

The "confirmer" flag is .SCOM+104.
§ = Foreground.
1 (nonzero) = Background.

3.5 CTRL S (4S)

CTRL S is recognized only at a control Teletype and, specifically, only after
the Monitor has printed 4S. This is the result of loading a user program by
giving the command $LOAD (instead of $GLOAD) to the Non-resident Monitor. Both
commands bring in the Linking Loader to load user programs. $GLOAD means
LOAD-AND-GO. S$LOAD means load the user programs, signal the user that this has
been done (by printing 4S), and then wait for the go-ahead signal (when the
user types CTRL S).

This feature allows the user to set up I/0 devices before starting his program.
When CTRL S is typed by the user and is accepted by the Monitor, 1S is echoed
back to the teleprinter.

3.6 CTRL T (4T)

This character is recognized only at the Background control Teletype when the
user has called in the system program DDT. When CTRL T is typed and accepted,
it is echoed to the teleprinter as 4T.

CTRL T provides a means of interrupting the execution of a user program and
transferring control to DDT. When CTRL T is typed, the Monitor saves the

status of the Link, page/bank mode, and memory protect along with the interrupted
PC in .SCOM+7 so that DDT will be able to return control to the user program at
the point at which it was interrupted. The contents of the AC at the time of
interruption is returned in the AC and saved by DDT.

3.7 CTRL P (4P)

CTRL P is the interrupt and restart character available to user and system
programs. When it is typed on some Teletype and is accepted by the Monitor, 1P
is echoed to the teleprinter on that unit.

In the Background/Foreground system there are two types of CTRL P functions:

1. NORMAL CTRL P and
2. REAL TIME CTRL P.

The two CTRL P functions are described, individually, in paragraphs 3.7.1 and
3.7.3.

Setting a CTRL P restart address (ADDR) is accomplished by issuing the I/0O
MACRO .INIT to any .DAT slot linked to the Teletype handler.

The format of the

.INIT macro is:

.INIT A,M,P+ADDR

which is expanded by the MACRO assembler into the following machine code:
LOC CAL M,+A
LOC+1 1 8 917
LOC+2 P+ADDR
LOC+3 g =17
where A = a .DAT slot number (octal radix)
g = Input
M = transfer mode
1 = Output
ADDR = a 15-bit address (octal) of a restart point in the program
or of the entry point of a closed real-time subroutine.
P = priority code] = Normal CTRL P
%ggggg} = Mainstream (REAL-TIME)
300000 = No change to CTRL P
ApPRR8 = Priority level of the .INIT
5000089 = API level 5
600008 = API level 6
799809 = API level 7

Background requests to an API level (40g9@gF9 - 79999@) will be converted to

Mainstream since Background programs cannot use the API software levels.

3.7.1 NORMAL CTRL P

A .INIT to set up a NORMAL CTRL P (priority code f#) may be done only to a
NORMAL CTRL P was so named because the action taken when the
user types CTRL P is nearly the same as in the ADVANCED Monitor System.

control Teletype.

When a control Teletype has been set up for a NORMAL CTRL P and that character
is typed by the user, the Teletype handler will abort all Teletype I/O for
that job (Background or Foreground). The Monitor will, when control is at
Mainstream, save the status of the Link, page/bank mode, and memory protect
with the interrupted PC in .SCOM+10 (whose contents are swapped in and out for
Background and Foreground), return the interrupted AC to the AC, and transfer

control to the restart address ADDR as specified by the last .INIT.

NOTE

When the Monitor processes a CTRL T or a NORMAL CTRL P, it
kills any pending mainstream real-time routines to be run
by zeroing the contents of .SCOMt+57 (Foreground) or .SCOM+61
(Background) . The user's program (if NORMAL CTRL P) or the
user (if CTRL T) must zero the entry points of all his main-
stream real-time routines. CTRL P and CTRL T do not affect
API level real-time requests.3_4

If the restart address ADDR = @, CTRL P to the given Teletype will be disabled;
i.e., ignored if typed (except if P = 3@g0g08%).

3.7.2 No Change

If .INIT for a given Teletype unit contains the priority code 3¢@@@@, the CTRL P
restart address for that unit is not changed. DDT uses this so that it can .INIT
to abort a .READ to the Teletype without altering the CTRL P address set up by the

user's program.

3.7.3 REAL-TIME CTRL P

A .INIT to set up a REAL-TIME CTRL P may be done to any Teletype unit. When so
set up and the user types CTRL P, I/O to that Teletype is aborted. Control
eventually goes to a closed real-time subroutine, ADDR, at the priority level

defined by P, in the same manner as for a .REALR, .REALW, or .TIMER request.

If the restart address ADDR = @, CTRL P to the given Teletype will be disabled,
i.e., ignored if typed.

REAL-TIME CTRL P is useful for multi-user programs, for instance multi-user

FOCAL, where each Teletype has the ability to interrupt and restart.
3.8 CTRL R (1R)

In the Background/Foreground system, I/0 device handlers which detect a not-ready
condition will request the Monitor to print a message on the appropriate control

Teietype. The line printer handler message, for instance, would be:
LP@ NOT READY

The unit number has no significance for the line printer. Some single-unit
handlers, such as the card reader handler, use the unit number designation to
indicate the cause of the not-ready condition. After the message has been
printed, the user should ready the device and then type CTRL R, which is

echoed as tR. I/0 for that device is then resumed.

While the Monitor is waiting for the user to type CTRL R, the user's program
continues execution provided that it is not hung up waiting for completion of
I/0 from the not-ready device. The Monitor can handle one not-ready condition
per job. Should a second not-ready request occur while another is being

processed, job execution will be aborted with a .ERR @@g4 terminal error.
3.9 CTRL Q (1Q)

CTRL Q may be typed at any time, but it is ignored if it is not issued at a
control Teletype.
3-5

The purpose of typing CTRL Q is to stop program execution and to dump all of
core memory onto a specified area of some unit on the system device. The dump
starts with block 1§l octal on the given unit and overlays any data that may
have existed in that area on the output device. A 16K system will dump 108
octal blocks (1@1-2@¢); a 24K system, 148 octal blocks (181 - 24¢); a 32K
system, 2@ octal blocks (1@l - 3g44).

To ensure that CTRL Q will not overlay useful data, the user must employ the
system program PIP to write a new file directory on that unit, using the (S)

switch to reserve space for CTRL Q. For example:
>NXXuwa(S))

where XX is the device name and u the unit number. Note that the size of the
CTRL Q area reserved is based on the amount of core existing in the system in
which the new directory is written. The area reserved on a DECtape in a 16K

system is not sufficient to do a protected CTRL Q in a 24K or 32K system.

When the Monitor accepts CTRL Q, it first terminates execution of the job

(Foreground if Foreground CTRL Q, Background if Background CTRL Q). This
involves calling all device h-ndlers tied to that job to stop I/0, clearing all
Monitor queues of entries for that job and disabling all control characters for
that job except CTRL C.

The Monitor then prints 1Q on the appropriate control Teletype and reads one
character. The user must then type the number of the unit on which the dump

is to occur. Unit zero may not be used. If the SHARE command is not in effect,
a dump may not be done to a unit which belongs to the other job. If the
Monitor rejects the typed character, it prints #4Q again and waits for another
character.

When the unit number is accepted, the dump takes place; then the Monitor is
automatically reloaded. A Background CTRL Q does not affect Foreground. A Fore-
ground CTRL Q, on the other hand, aborts the Background job. It is not possible

to load and restart a core dump in Background/Foreground.
3.10 CTRL U (@)

CTRL U may be typed at any Teletype unit. If a .READ or .REALR was issued to
some Teletype and the user decides he wants to "erase" everything he has

typed for that read request, he may type CTRL U, which will be echoed to the
teleprinter as @. The .READ or .REALR will still be in effect and he may then
retype the input.

While output to a Teletype is being done as a result of a .WRITE or .REALW,

3-6

the user may type CTRL U to terminate the write. 1In this case nothing is echoed

to the teleprinter.

3.11 RUBOUT (\)

This character is recognized only while the user is typing input to satisfy a
.READ or .REALR request. When typed, RUBOUT deletes the last input character.
For example, if the user has typed ABC and then RUBOUT, the C will be "erased".
If he now types another RUBOUT, the B will be 'erased". Every time a character is

so removed, the character \ 1is echoed to the teleprinter.
3.12 CTRL D (1D)

The character CTRL D is recognized at all Teletypes and is echoed back as 4D.
When typing input, CTRL D effects an end-of-file condition by terminating the
.READ or .REALR request and storing the end-of-file, @@1@@#5, in the input line
buffer header. Since the word pair count returned is a 1, any characters

typed prior to the CTRL D for the same read request will be lost.

SECTION 4

LOADERS

4.1 INTRODUCTION

There are three program Loaders in the Background/Foreground system. On the
system file directory they are listed as .SYSLD SYS!, BFLOAD BIN? and
EXECUT BIN?Z.

.SYSLD is an absolute system program that functions as two loaders: when it is
called in for Foreground loading, it is the Foreground Linking Loader; when it
is called in for Background loading, it is the Background Syétem Program
Loader. BFLOAD is the Background Linking Loader.

EXECUTE operates in both Foreground and Background as a loader of overlay programs
(XCT files) built by the CHAIN system program. A description of CHAIN and
EXECUTE is given in the utility manual.

4.2 FOREGROUND LINKING LOADER

Link loading of the Foreground job is initiated by typing GLOAD (Load-and-Go)
or LOAD (Load-and-Pause) to the Monitor at the Foreground control Teletype.
The Foreground Link Loader (.SYSLD) is then brought into the top of memory,
overlaying the Non-resident Monitor. The following message will then be

printed:

FGLOAD V2A
>

The > signals the user that he may now type in his command string.

The command string format is the same as for the Linking Loader in the ADVANCED
Monitor System:

>options<«mainprog, others,... ALTMODE

loperates in bank mode.

Z0perates in page mode; operates in bank mode only when running in bank mode.

4.2.1 Option Cheracters and their Meanings

Character Meaning
p Print program names and their assigned relocation
tactors
C Print common block names and their assigned
locations
G Print global symbol names and their definitions

4.2.2 Use of « Terminator

Prior to the terminator « all characters except option characters are ignored.
Carriage return p:ieceding the « starts a continuation line headed by >. ALTMODE

preceding the + restarts the Loader; therefore, no loading is done unless the

character « appears in the command string.

If no option characters precede the <+, the default assumption is that no memory

map is to be print*ed.

After the +, type the program names (main program first - no extensions)
separated by comma or carriage return. Terminate the command string with
ALTMODE. Before the terminating ALTMODE has been typed, the Loader may be re-
started by typing CTRL P. All files named in the command string may contain 1

or more program units, and all program units will be loaded in each file named.

4.2.3 Sequence of Operation

Once the command string has been accepted, the Loader will perform the following

sequence of operations:

a. Load to end of file all user programs' specified in the command
string, from .DATF -4. These programs are loaded from the bottom
of core up, starting at the top of the Resident Monitor. Calls to
external library routines via .GLOBL, common block definitions, and
.IODEV requests are saved in the Loader's symbol table, built from
the bottum of the Loader down. Programs containing executable code
(which excludes BLOCKDATA subprograms) are relocated such that
they do not overlap core page boundaries in the page mode system or
core bank boundaries in the bank mode system.

! These programs will operate in page mode and must not execute the EBA

instruction which would change operation to bank mode. All programs

in the bank mnde system operate in bank mode only. Avoid EBA instructions
in the bank mode system. Although EBA instructions have no effect on the
PDP-15, they are equivalent to a LEM {(leave extend mode) on the PDP-9.

LEM has disas:cecrous results during a background/foreground system run.

4-2

b. If a library search is necessary and the contents of .DATF -5 is
non-zero, the Loader will seek the user library, .LIBR5 BIN, via
that .DAT slot, and will load all requested library routines!

which it finds. I/0 device handlers must not be in the user

library.

c. If a library search is still necessary for non-I/0 routines,

the Loader will search the system arithmetic library?,
.F4LIB BIN, via .DATF -7 in the same manner as above.
I/0 device handlers must not be in .F4LIB.

d. If any I/O handlers! must be loaded, the Loader searches
through the system I/0 Library, .IOLIB BIN, via .DATF -7.

After this has been done, program loading has terminated.

e. At this point, all undefined common blocks are defined and
assigned core space. Common blocks are allowed to overlap

page boundaries.

f. 1If there are still some undefined global symbols, they will
be matched with common block names and, if a match is found,

defined as the base address of the matching common block.

g. For all multi-user device handlers in use for the user's
programs, external I/O buffers are assigned core space (if
necessary) and recorded in .BFTAB within the Resident Monitor.
The number of such buffers depends on the $FILES counts given
by the user to the non-resident Monitor or, if no counts
given, the number of .IODEV'ed .DAT slots calling those

handlers. 1I/O buffers are allowed to overlap core boundaries.

h. The amount of free core assigned to the Foreground job
(contents of .SCOM+25) is added to the current size of
assigned Foreground core to determine the upper limit of the
Foreground job. Pointers to the first and last registers in
Foreground free core are then stored in .SCOM+2 and .SCOM+3,

respectively.

i. The Loader now exits to the Resident Monitor. The Resident
Monitor prints 4S and waits for the user to type CTRL S, if
the Loader is called by the LOAD command. Control then is
given to the start address of the user's main program, which
was stored in .SCOM+6 by the Loader.

4.3 BACKGROUND SYSTEM LOADER

Loading of all system programs is done by the System Loader (.SYSLD), which

1 . .

.These programs will operate in page mode and must not execute the EBA
instruction which would change operation to bank mode. All programs in the
bank mode system operate in bank mode only.

4-3

also performs link loading for the Foreground. Initiation of the loading cycle
is done when the user, in the Background, types a request to the Non-resident

Monitor to load a system program; e.g., $PIP, SEDIT, etc.

The Non-resident Monitor puts a code number in .SCOM+5 to tell the System Loader
which program to load. The System Loader is then loaded into upper core overlaying
the Non-resident Monitor. When loading a Background program other than the

Linking Loader or EXECUTE, .SYSLD contains a SYSBLK which lists the .DAT slots

used by each system program and information about the load address, start

address, size and initial block number on the system device for each system
program. SYSBLK exists as block 48 on the system device and is also used by

PATCH.

To load a system program in the Background, .SYSLD performs the following

operations:

a. For each .DAT slot (with non-zero contents) required by a system
program, it determines which device handlers! are needed; and, if
a library search is necessary, it brings in the handlers from the
file .IOLIB BIN on the system device through .DATB -7. They are
loaded starting immediately above the top of the Foreground job.

b. I/O buffers are then assigned core space immediately above the
handlers as in the description in paragraph 4.2Z2.3g. The hardware

memory protect bound is set above the handlers and buffers.

c. If the load command was S$LOAD, S$SGLOAD, $DDT, or SDDTNS, the
Background Link Loader (BFLOAD)'!, a relocatable file, is loaded

starting just above the new hardware protect bound.

d. For all other system programs (excluding EXECUTE)', .SYSLD builds
a short routine just above the hardware protect bound to bring in
the program? overlaying the System Loader.

e. Finally, .SYSLD exits to the Resident Monitor?, which establishes
the new hardware protect bound and then passes control to the

system program via the address stored by .SYSLD in .SCOM+5.

The Loader allows the loading of absolute .LOC programs prior to loading any
relocatable files. This permits the user to load programs which may overlay
parts of the Resident Monitor. Mixing of absolute and relocatable .LOC's in

the same program file is not allowed and will be flagged as an error. The

'Operate(s) in page mode; operates in bank mode only when using bank mode system.

Z0perates in bank mode.

Loader ensures that the relocatable programs do not overlay any of the absolute

programs.

The Foreground Linking Loader is also responsible for loading the system program
PIP! in the Foreground. The Foreground version of PIP exists in the system as
the relocatable file PIP BIN. It is loaded by typing PIP as a command to the
Non-resident Monitor?.

4.4 BACKGROUND LINKING LOADER

Externally, the Background Linking Loader (BFLOAD) looks nearly the same to the
user as the Foreground Linking Loader. When it has been loaded, it prints the

following message on the Background control Teletype:

BGLOAD V2A
>

The command string processing is identical with that of the Foreground Linking
Loader (see 4.2).

If the Load command was $DDT or $DDTNS, the system program DDT! (a relocatable
file) has already been loaded into the top of core via .DATB -1, prior to

reading in the command string.

Once the command string has been accepted, the Loader will perform the following

sequence of operations:

a. Load to end of file all user programs®! specified in the command
string from .DATB -4. These programs are loaded from the top
of core down. Calls to external library routines via .GLOBL,
common block definitions, and .IODEV requests are saved in the
Loader's symbol table, built from the top of the Loader upwards
in core. Programs containing executable code (which excludes
BLOCKDATA subprograms) are relocated such that they do not overlap

page boundaries.
b. Same action as described in 4.2.3b, using .DATB -5.
c. Same action as described in 4.2.3c, using .DATB -7.

d. If any I/0 handlers must be loaded, the Loader searches through
.IOLIB BIN via .DATB -7. The handlers are relocated to run in

lower core, that is, as if they were being loaded upwards in

'Operate(s) in page mode; operates in bank mode only when using bank mode system.
20perates in bank mode.

core, stsrting just above the Foreground job. They may, however,
be loaded above the Loader if the Loader is in the way.

e. Same act. ... as described in 4.2 e,f,g. Common blocks are

assigned space in upper core; I/O buffers, in lower core.

f. The hardware memory protect bound is established above the I/O
handlers and buffers. Common blocks may go below the hardware

protect bound.

g. If DDT was loaded and a symbol table was requested (not
$DDTNS), the symbol table is compacted to delete entries
not needed by DDT. The Loader determines where the symbol
table should be moved; and, along with the I/O handlers which
were loacd»d into upper core, builds a special .EXIT list which
tells the Resident Monitor where to block transfer each segment.
The DDT symbol table may be loaded below the hardware protect
bound.

h. The Loader then exits to the Resident Monitor, which performs
the block transfers, sets the new hardware memory protect bound,
and transfers control to DDT (via .SCOM+5) or to the user
program (via .SCOM+6), pausing to print 4 and waiting for the
user to type CTRL S if the Load command was S$LOAD.

4.5 LOADING XCT FILES

XCT files are overlay programs1 built by the system program CHAIN and run by
the system program EXECUTE . Loading of an XCT file in either the Foreground
or the Background is initiated by typing ELXXX or EXECUTEWXXX to the Monitor

{where XXX 1s the file name without the extension XCT).

The Non-resident Monitor, BFKM1l5, stores the filename (.SIXBT format) in
.SCOM+1#7, 11§, and 111 for the Foreground, or .SCOM+112, 113, and 114 for the
Background. If EXECUTE's .DAT slot requests the resident system device
handler?, the Monitor stores "XCS" as the extension. If EXECUTE's handler is

different from the resident handler, the Monitor stores the extension "XCT".

The System Loader is then called in, overlaying the Non-resident Monitor in

upper core.

4.5.1 EXECUTE in the Foreground

The following operations are carried out when EXECUTE is used in the Foreground:

! These programs will operate in page mode and must not execute the EBA instruc-
tion which would change operation to bank mode. All programs in bank mode
system operate in bank mode only.

Runs in bank mode, unlike most I/0 handlers; in the bank mode system, all I/0
handlers run in bank mode only.

4-6

EXECUTE's handler, if different from the resident handler, is

loaded immediately above the Monitor.

b. The System Loader, which must open the XCT file, checks the
extension. If "XCS", meaning EXECUTE's handler is the
resident handler, the file is loaded via .DAT -7. If "xcr",
it is loaded via .DAT -4. The extension is then set to "XCT".

c. The XCT file is read and checked that it was indeed built to be run
in the Foreground of a PDP-15 in page mode. In the bank mode system,

The XCT file is checked to ensure that it was built to run in bank mode.

d. The upper and lower core limits of the overlay structure are
saved and a check is made that it does not overlay the

Resident Monijitor.

e. The .IOREV bit map in the XCT file is decoded. The loading
bound is set immediately above the area of core to be
occupied by the overlay structure and then all I/O handlers
required by the XCT file are loaded. Also, another copy of
EXECUTE's handler is loaded (the first copy will be overlayed).

f. EXECUTE is loaded.
g. Same action as described in 4.3.4g and h.

h. The Loader exits to the Resident Monitor. The Monitor gives
control to EXECUTE, whose start address is stored in .SCOM+6
by the Loader.

4.5.2 EXECUTE in the Background

The following operations are carried out when EXECUTE is used in the Background:

a. EXECUTE's handler, if different from the resident handler, is

loaded immediately above the Foreground job.
b. Same action as described in 4.5.1b.

c. The XCT file is read and checked that it was built to be run in the
Background of a PDP-15 in page mode. In the bank mode system, the
XCT file is checked to ensure that it was built to run in the bank

mode.

d. The lower core limit of the overlay structure is saved and,
when EXECUTE has been loaded, a test is made to ensure that

they do not overlap.

e. The .IODEV bit map in the XCT file is decoded and then any
I/0 handlers needed by the file are loaded.

f. Same action as described in 4.3.4g.

g. The hardware memory protect bound is set above the I/O buffers
and EXECUTE is loaded starting above this bound.

h. Same action as described in 4. 3e.

4.6 ERRCR CONDITIONS

The number of differeant error messages in the Loaders has been ex-
panded in Background/Foreground. These are tabulated in Appendix II.
The error number is passed on to the Resident Monitor by a special
error .EXIT macro /CAL seguence). Loader errors are non-recoverable
After the error message is printed, the Monitor will automatically be

reloaded to start another job.

4-8

SYSTEM MEMORY MAPS

Memory Map A

16K

8K

%

N

«—System Bootstrap

The System Bootstrap is loaded at the top of

core via the paper tape reader in HRM format.

Memory Map B

.SCOM—16K ////
//jjé-—System Bootstrap

8K f---------

.SCOM + 1

.SCOM + 2 _’7

€—Resident Monitor includ-
ing the multi-unit
Teletype handler and
the system device handler,
(DTA. or DKA.)

, /

The System Bootstrap automatically loads the

Resident Monitor from the system device into lower
core.

Memory Map C

7
/C;;;%ffff «——Non-resident Monitor

8Kl oo -

.SCOM—>16K

.SCOM + 1
.SCOM + 2

i &——Resident Monitor

0

The Resident Monitor loads the Non-resident Monitor
(via the resident system device handler) into upper
core, overlaying the System Bootstrap. Within
itself the Resident Monitor contains a simpler copy
of the bootstrap which is used whenever the Resident
Monitor is to be reloaded. The bootstrap restart

address is location 1118.

Memory Map D

.SCOM ———1 6K

//// Foreground Linking
/(;;;! Loader (.SYSLD)
V4

.SCOM + 3 N

8K
.SCOM + 1 R
.SCOM + 2 ?

0

22;;//
;;;;;;;;;;‘_____Resident Monitor

N

To load a user FOREGROUND program, the Non-resident

Monitor brings in the Foreground Linking Loader
(.SYSLD), overlaying itself.

Memory Map E

.SCOM —>16K 7
€e——Foreground Linking Loader
~] (.SYSLD)

é&——Loader's I/0 Handlers

gxi\s\>\>\\ «——Loader's Symbol Table
v

.SCOM + 32— \::::?Hardware protect bound
.SCOM + 31 Software protect bound
.SCOM + 3 ~__ Foreground free core

.SCOM + User's I/0 Handlers and

I/0 Buffers
Foreground Foregcound user programs
Job 8 R\ @_____ and library routines

<«——Resident Monitor

NN\

The Foreground Linking Loader first brings in any additional
I/0 handlers required for loading. Then it loads the user
program(s), library routines, user I/O handlers and I/0
buffers, and allocates Foreground free core. The software
memory protect bound is established just above the Foreground
job. The hardware memory protect bound, because it can be set
only in increments of 256 decimal, will leave some unused space
between it and the Foreground job. The software protect bound
allows this space to be used for dynamic data storage by the
Background job. On the PDP-9 the memory protect bound can only be
set at 1024 (10) word intervals, so the bank mode system sets

the bound at 1024 word increments, not 256, even on a PDP-15.

For a description of loading of Foreaground XCT files, see Memory
Map L.

Memory Map F

.SCOM —>16K

——Non-resident Monitor

.SCOM + e____Hardware protect bound
.SCOM +
.SCOM + \«—— Software protect bcund
.SCOM +
.SCOM +

Foreground job

&—— Resident Monitor

When the FOREGROUND job becomes I/0 bound, control is trans-
ferred to the BACKGROUND 3ob. The Resident Mcnitcr loads the Non-
resident Monitor (via the resident system device handler) into
upper core. It then gives control to the Keyboard Listener
(within the Non-resident Monitor) to await a BACKGROUND keyboard
command. Memory protect is enabled while the Background job is

runniag.

Memory Map G

.SCOM—16K
Background System

¢ Loader, (.SYSLD)
.SCOM + 3 N /
.SCOM + 32
.SCOM + l’>\\\\ﬁ e Hardware protect bound
.SCOM + 2 < &—— Software protect bound
.SCOM + 25
.SCOM + 31

Foreground Job

7
:;;;;;j;;; ¢——Resident Monitor

When a BACKGROUND keyboard command requests loading

o
AN

of a system or user program, the Non-resident Monitor
brings in the System Loader, overlaying itself. Note
that the BACKGROUND System Loader and the FOREGROUND
Linking Loader are physically the same program, except
that SYSBLK is also read into core when the BACKGROUND
system program to be loaded is other than the Linking
Loader or Execute.

Memory Map H

.scom————eﬂext;;//
///////” Background
s

¢ System Program

.SCOM + 3 5
(//Background Free Core

- SCOM + 32‘~\$ __________ _—Hardware Protect Bound

.SCOM + 2 «—Software Protect Bound

.SCOM + 31 le—— Background I/O Buffers

.SCOM + ¢«———Background I/0 Handlers

.SCOM +

Foreground Job

iii;;;:;jjg____Resident Monitor
%

If the BACKGROUND request is for a system program, the

System Loader loads the system program I/O0O handlers up
from the top of the FOREGROUND job, allocates I/O buffer
space, and loads the system program at the top of core
(overlaying the System Loader). Control is returned to
the Resident Monitor, which sets the memory protect bound
above the buffer space and gives control to the system

program.

4-16

Memory Map I

\
=EN

.SCoOM 16K
.SCOM + 3

&—— Background System
Loader (.SYSLD)

.SCOM + 2 N

’ <« Background Linking Loader
.SCOM + 32 > « Hardware Protect Bound
.SCOM + 1 1 «—Link Loader's I/O Handlers
.SCOM + 25 N < Software Protect Bound
.SCOM + 31J ¢

Foreground Job

8K

«——Resident Monitor

N \\\\W: /é

If the BACKGROUND program is a user program!, the
System Loader loads the Linking Loader I/O handlers
up from the top of the FOREGROUND job and loads the
Linking Loader such that the memory protect bound
can be set just below it.

lUser programs may be loaded along with the system
program DDT.

4-17

.SCOM
.SCOM

.SCOM

.SCOM

.SCOM

. SCOM

. SCOM

Memory Map J

e

Background user Programs and
Library Routines

" Background User I/O0
Handlers

<«—Loader's Symbol Table
<«— Background Linking Loader

“~—_ Hardware Protect Bound

———-ﬁ m
32 —m7
1] .
- 8K
31

0

Software Protect Bound

Foreground Job

&—Resident Monitor

The BACKGROUND Linking Loader overlays the System Loader
by loading user programs down from the top of core. User

I/0 handlers, presuming that they cannot fit in core
between the FOREGROUND job and the bottom of the Loader,
are loaded into upper core but relocated to run just above
the FOREGROUND job so that the memory protect bound can

be set above them.

shown in this memory map.

Common blocks and I/0O buffers are not

Memory Map K

.SCOM—>16K
«— Background User Programs
//C; and Library routines

‘ «———User's Common Blocks
-SCOM + 3 4 Background Free core
.SCOM + 32
TacoM + 2 7Y - -1 Hardware Protect Bound
.SCOM + 31 [TIT 1T —software Protect Bound
.scoM + 17 «———Background User I/O handlers
.SCOM + 25

Foreground Job

:;;;;;;;;;jé_——Re51dent Monitor

The .EXIT from the Linking Loader causes the user program

I/0 handlers to be block transferred to their running
position, the memory protect bound to be set just above

the I/0 buffer space, and control given to the user program.
If DDT was also loaded, it resides at the top of core, above
the user programs. Its symbol table, built by the Loader,
is block transferred by the Monitor to start at the soft-
ware protect bound.

1If DDT is loaded, .SCOM + 1 will be set to point at the start
of the DDT symbol table.

Memory Map L

.SCOM ——— 16K

////G————System Loader
yd

% «——Loader's symbol table
.SCOM + 32 ———— e — — — «——Hardware protect bound
.SCOM + 25 and 3173 — ¢ Software protect bound
.SCOM + 3— A==
JSCOM + 2 R —14¢——Foreground free core
€«——EXECUTE
j\\\ N I/0 Handlers + I/0 buffers
N including 2nd copy of
EXECUTE's handler
Foreground . < '
Job Core occupied by
Overlay structure
8 |——— — —
_____ i 1lst copy of EXECUTE's
I/0 handler

!

EXECUTE in the Foreground:

The System Loader first loads EXECUTE's I/0 handler (if not
the resident handler) in order to read the XCT file. The
core limits of the overlay structure are read from the file
as well as the request for I/0O from its .IODEV bit map.

The requested handlers, including a second copy of EXECUTE's
handler, are loaded above the core area to be occupied by
the overlay structure. Then I/O buffers are created, if
necessary, and EXECUTE is loaded above them. Finally,
Foreground free core, the software protect bound, and the
hardware protect bound are established.

Memory Map M

.SCOM ——>16K|
&——System Loader

Core occupied by /////
Overlay structur

& &——Loader's symbol table
-SCoM + ’ \\\Ne————Free core
-Scom + > «—EXECUTE
-scort + 32 > //;4;/;4““-Hardware protect bound
.SCOM + 31 >

:::::lUnused core

Software Protect Bound
-SCOM + 25 > t\\\\‘[Background I/0 handlers

8K and I/0 buffers

Foreground job

«— Resident Monitor

EXECUTE in the Background:

The System Loader loads EXECUTE's I/O handler (if not in
core) in order to read the XCT file. The core limits of
the overlay structure and the I/O requests in the .IODEV
bit map are read from the XCT file. The user's I/0
handlers and I/0 buffers are then loaded above EXECUTE's
handler, and the hardware protect bound is established
above them. EXECUTE is loaded above the bound and Back-
ground free core is set up from the top of EXECUTE to the
bottom of the overlay area.

SECTION 5

EXAMPLES OF BACKGROUND/FOREGROUND OPERATIONS

5.1 INTRODUCTION

The initial system startup procedure and three examples of operating within the
Background/Foreground environment are described in this Section. The procedure
and examples are intended to get the programmer "on the air" and to demonstrate

loading programs in the Foreground.

5.2 STARTUP PROCEDURES

During initial system startup, the user normally loads the master system supplied
(on DECtape) and utilizing system program BFSGEN generates a "working system".
The user may run using the master system, but it is usually more desirable to
generate a working system which is optimized to meet the user's needs and

particular equipment configuration.

5.2.1 Loading Master B/F Monitor System

The master system for both the DECtape and DECdisk B/F systems is supplied on
DECtape. To load the master system into a PDP-15/30 (DECtape system):

1. Mount the master DECtape onto a transport (TU-55 or -56) and set
its unit number to that of the system device; that is, @ on a
TU-56, 8 on a TU-55.

2. Load the paper tape Bootstrap; B/F V3A uses the multi-core bootstrap.

3. Set the console address switches as follows:

If you have a - Set Switches to -
16K system 37637
24K system 57637
32K system 77637

4. Check to ensure that the MEMORY PROTECT/RELOCATE switch is in the
PROTECT position. This switch is located at the rear of the
memory protect cabinet. P-mode and R-mode indicator lights are

mounted on a panel located at the top front of the cabinet. T.c

PDP-9 does not have a MEMORY PROTECT/RELOCATE switch. A PDP-9 equip-

ped with the memory protect feature will always be in the protect
position.

5. Press and release, in sequence, the console STOP, RESET, and READIN
switches.

When loaded, the Monitor identifies itself and indicates its readiness by out-
putting the following message on the Foreground control Teletype (normally unit 1):

FKM15 V3A
$

To load the master system into a PDP-15/40 DECdisk system:

1. Mount the master disk system DECtape onto a transport and set its
unit number to that of the system device; that is, # on a TU-56;
8 on a TU-55.

2. Load the RFSAV paper tape (supplied with the system) into the paper
tape reader.

3. Set the console address switches to 17724.

4. Set the DECdisk WRITE LOCKOUT switches for disk unit @ to the WRITE
ENABLE position.

5. Press and release, in sequence, the console STOP, RESET, and READIN
switches. When loaded, the RFSAV program outputs the following

message:

RFSAV V2A

SET: ACS@= @ DECTAPE TO DISK (LOAD)
ACS@= 1 DISK TO DECTAPE (SAVE)
ACS15-17= UNIT#¢4,1,2,3,4,5,6,7

6. Set all console AC switches to the @ position.

7. Press and release the console CONTINUE switch. This action causes
the disk system contained by the DECtape on unit @ to be copied onto
disk unit g.

8. Set the DECdisk WRITE LOCKOUT switches to the WRITE DISABLE position.

9. Load the disk multicore bootstrap, RF15BT, into the paper tape reader.

10. Set the console address switches as follows:

If you Have a - Set Switches to -
16K system 37637
24K system 57637
32K system 77637

1l1. Press and release, in sequence, the console STOP, RESET, and READIN
switches. When loaded, the Monitor identifies itself and
indicates its readiness by outputting the following message on the
Foreground control Teletype:

FKM15 V3A
$

5.2.2 System Generation

A step-by-step procedure for the generation of a working system from a master
system is given in Section 8 of this manual.

5.3 EXAMPLES

Three example procedures are described in paragraphs 5.3.1, 5.3.2, and 5.3.3.
These procedures are used to demonstrate the loading of IDLE, single-user FOCAL,
and two-user FOCAL in the Foreground. ‘

The following conventions are used for the examples given:

1. All user inputs are underlined.

2. Readiness to accept commands is indicated by the symbol $ for the Monitor
and the symbols > and * for system programs.

3. The entry of an ALTMODE character is indicated by the symbol GD.

5.3.1 IDLE Loaded as the Foreground Job

An Idle job is loaded in the Foreground to allow immediate use of the Background.
Refer to section 6.4 for a discussion of the .IDLE system macro.

FKM15 v3A

$A DTAQ -4 (DECtape) /The program "IDLE" is on unit
°f sa DKAJ -4 (DECdisk) /@ of the system device.

$GLOAD

FGLOAD V2A /The Loader is in core.

>IDLE (%) /Load "IDLE BIN".

When IDLE is loaded, no indication is given on the Foreground control Teletype.
Control passes to the Background and the Non-resident Monitor is then loaded into
core. The Monitor identifies itself on the Background control Teletype as:

BKM15 Vv3A /The Monitor is now ready to
$ /accept Background commands.

5-3

5.3.2 Single-user FOCAL Loaded (Foreground)

The following illustrates a step-by-step procedure to load single-user FOCAL in

the Foreground:

FKM15 V3A

or SA DTg -4 (DECtape) /FOCAL is on unit @ of
SA DK@ -4 (DECdisk) /the system device.
$A DT1 3,5 /Library input-output to FOCAL.
SA DT3 7,19 /User's data input-output.
SFCORE 1499 /Free core for FOCAL buffer.
SGLOAD /Call loader to LOAD-and-Go.

FGLOAD V2
>~FOCAL gg!
FOC

*

/Loader is in core.

/Load FOCAL.

/FOCAL is in core and is ready to
/accept commands.

/User can begin to run FOCAL commands.

5.3.3 Two-user FOCAL Loaded (Foreground)

FKM15 V3A

or SA DT@ -4 (DECtape) /FOCAL is on unit @ of
$A DKJ -4 (DECdisk) /the system device.
A TTL 1 /Teletype for User #1.
A DT1 2 /Library input-output for User #1.
A TT2 3 /Teletype for User #2.
SA D12 4 /Library input-output for User #2.
SFCORE _ 3g8¢ /Assign 14@@ (octal) locations
SGLOAD /for each user.

/Call Loader to LOAD-and-Go.

FGLOAD V2A - /Loader is in core.

>+FOCAL2 £§>
FOCAL VoA

*

/Load two-user FOCAL'

/FOCAL is in core and will identify
/itself on each user's Teletype.

/User can begin to run FOCAL programs.

NOTE

Two-user FOCAL is not available on
the bank mode B/F V3B system.

SECTION 6

BACKGROUND/FOREGROUND MONITOR COMMANDS (SYSTEM MACROS)

6.1 INTRODUCTION

The system MACROS unique to the Background/Foreground Monitor are listed and
described briefly in Table 6-1. The Monitor Macros listed below are available
in addition to those provided in the PDP-15/2§ Monitor System for use in
programs that are to be run in the Background/Foreground environment. Detailed

descriptions of the macros are given in the remainder of this Section.

The .INIT macro has been altered for Background/Foreground to handle the CTRL P
restart address in a manner different from the Advanced Monitor. Refer to

Section 3 for an explanation.

TABLE 6-1
Background/Foreground System Macros
Name Pureose
.REALR Real-time transfer of data from I/O device to line
buffer (real-time READ).
.REALW Real-time transfer of data from line buffer to I/O
device (real-time WRITE).
.IDLE Allows Foreground job to indicate that control can

be given to lower levels of the Foreground job or to
the Background job until completion of any Foreground
real-time transfer or clock interval.

.IDLEC Allows Foreground Mainstream to give control to
Background job with Foreground continuing after the
.IDLEC on completion of any Foreground real-time
transfer or clock interval.

.TIMER Calls and uses real-time clock and allows priority
level to be established.
.RLXIT Accomplishes the exit from all real-time subroutines

that were entered via .REALR, .REALW, .TIMER, or
real-time CTRL Pl!requests.

6.2 .REALR

FORM: .REALR A, M, L, W, ADDR, P
VARIABLES: A = .DAT slot number (octal radix)

IOPS binary

Image binary

IOPS ASCII

Image Alphanumeric
Dump Mode

L = 15-bit buffer address (octal radix)

M?= Data Mode

BwWwhHFXR
W wun

lsee section 3.7.
’Data modes 5, 6, and 7 are passed to all I/O handlers.

6-1

W = Line buffer word count (decimal radix),
including the two-word header

ADDR! = 15-bit address of closed subroutine that
is given control when the request made by

the .REALR is completed.
P = API priority level at which to go to ADDR

P Priority Level
) Mainstream
4 Level of .REALR
5 API software level 5
6 API software level 6
7 API software level 7
EXPANSION: L.OC CAL+108@f+M _o+RAg_
Loc+l 19
LOC+2 L
.DEC /Decimal Radix
LOC+3 -W
.OCT /Octal Radix

LOC+4 ADDR+Py_,

DESCRIPTION: The .REALR command is used to transfer the next
line of data from the device assigned to .DAT slot A to the line
buffer in the user's program. In this operation, M defines the
mode of the data to be transferred, L is the address of the line
buffer (including the two-word header), and ADDR is the address
of a closed subroutine which should be constructed as shown in
the following example.

EXAMPLE 1: STRUCTURE OF A REAL-TIME SUBROUTINE

ADDR 2 /Entry point

DAC SAVEAC /SAVE AC and all other
. /live registers used.
. /Any system Macro may be

. /issued at this point.

LAC SAVEAC /Restore AC and all other
/registers saved.

.RLXIT ADDR /Return to interrupted

/point via Monitor CAL.

6.3 .REALW

FORM: .REALW A, M, L, W, ADDR, P
VARIABLES: A = .DAT slot number (octal radix)

1The subroutine specified by a .REALR, .REALW, .TIMER, or real-time CTRL P
should not be used at more than one priority level. The subroutine is
entered via a JMS and normally cannot be protected against re-entry.

IOPS binary
Image binary

IOPS ASCII
Image Alphanumeric
Dump Mode

M!= Data Mode

N S S
nnnunn

= 15-bit Line buffer address (octal radix).

L
W = Line buffer word count (decimal radix),
including the two-word header

ADDR’= 15-bit address of closed subroutine that is
given control when the request made by the
.REALW is completed.

P = API priority level at which to go to ADDR

P Priority Level
2 Mainstream
4 Level of .REALW
5 API software level 5
6 API software level 6
7 API software level 7
EXPANSION: LOC CAL+10p@f+M,_o+Ag_1
LOC+1 11
LOC+2 L
.DEC /Decimal Radix
LOC+3 -W
.OCT /Octal Radix

LOC+4 ADDR+Py ,

DESCRIPTION: The .REALW command is used to transfer the next line
of data from the line buffer in the user's program to the device
assigned to .DAT slot A. In this operation, M defines the mode of
the data to be transferred, L is the address of the line buffer, W
is the count of the number of words in the line buffer (including
the two-word header), and ADDR is the address of a closed subroutine
which should be constructed as shown in EXAMPLE 1 above.

6.4 .IDLE
FORM: .IDLE
EXPANSION: LOoC CAL

LOC+1 17

DESCRIPTION: The Foreground job in a Background/Foreground environ-
ment can indicate that it wishes to relinquish control to lower levels
of the Foreground job or to the Background job by executing this
command. This is useful when the Foreground job is waiting for the
completion of real-time I/O from any one of a number of I/O requests
that it has initiated or for completion of .TIMER requests.

The .IDLE is the logical end of the current level's processing;

!Data modes 5, 6, and 7 are passed to all I/O handlers.

2The subroutine specified by a .REALR, .REALW, .TIMER, or real-time CTRL P
should not be used at more than one priority level. The subroutine is
entered via a JMS and normally cannot be protected against re-entry.

that is, control never returns to LOC+2. If the .IDLE is issued at
a Foreground API software level, it effects a debreak (DBR) from
that level so that pending real-time routines at that level will not
be executed until the level is requested again. If the .IDLE is
issued at Foreground Mainstream, control goes to the Background job.
If the .IDLE is issued at Background Mainstream, control is returned
to the .IDLE CAL.

. IDLEC
FORM: .IDLEC
EXPANSION: LOC CAL+1000@
LOC+1 17
DESCRIPTION: .IDLEC is identical to .IDLE except when issued at

the Foreground Mainstream level. 1In this case, control goes to the
Background job, and LOC+2 is saved as the Foreground Mainstream
return pointer. The next time control returns to Foreground (at

any priority level), Foreground Mainstream processing will resume at
LOC+2 when Mainstream becomes the highest active Foreground level.

.TIMER
FORM: .TIMER N, ADDR, P
VARIABLES: N! = Number of clock increments (decimal radix)
ADDR?= 15-bit address of closed real-time subroutine
to handle interrupt at end of interval
P = API priority level at which to go to ADDR
P Priority Level
2 Mainstream
4 Level of .TIMER
5 API software level 5
6 API software level 6
7 API software level 7
EXPANSION: LOC CAL?
LOC+1 14
LOC+2 ADDR+P;_,
.DEC /Decimal Radix
LOC+3 -N
DESCRIPTION: .TIMER is used to set the real-time clock to N increments

and to start it. Each clock increment represents 1/60 second for 60

Hz systems and 1/50 second for 50 Hz systems. When the Monitor services
the clock interrupt, it passes control to location ADDR+1 with the
priority level set to P. The coding at ADDR should be in closed sub-
routine form, as in EXAMPLE 1.

7o transfer control to subroutine ADDR at priority level P immediately, N
should be set equal to zero.

2The subroutine specified should not be used at more than one priority level.
The subroutine is entered via a JMS and normally cannot be protected against
re-entry.

’When bit 8 of CAL is set to 1, an abort .TIMER is effected. All intervals
having the same address and priority level (LOC+2) will be aborted.

6-4

6.7 L.RLXIT

FORM: .RLXIT ADDR

VARIABLES: ADDR = 12-bit! entry point address of the
real-time subroutine from which an exit
is to be made.

EXPANSION: LOC CAL ADDR
LOC+1 24
DESCRIPTION: L.RLXIT is used to exit from all real-time subroutines

that were entered via .REALR, .REALW, .TIMER, or real-time CTRL P
requests. The instruction just preceding the .RLXIT call should
restore the AC with the value of the AC on entrance to this sub-
routine. .RLXIT will restore the link from bit @ and page/bank mode
from bit 1 of the contents of ADDR.

.RLXIT protects against re-entrance to Background or Foreground Main-
stream real-time subroutines. When the contents of ADDR is non-zero,
the subroutine is assumed active; .RLXIT sets the contents of ADDR

to @, thus making it available again. Note: Real-time subroutines
should initially have their entry point register set to f@; and
restart procedures, entered via CTRL P or after CTRL T, should reset
all entry points to #.

6.8 MAINSTREAM REAL-TIME SUBROUTINES

Mainstream real-time subroutines in the Foreground are not equivalent to those
in the Background due to the manner in which I/0 busy situations are handled.
If the Background becomes I/0 busy, the Monitor "sits on" the Background CAL
instruction (while Background is in control) until it can be processed.
Therefore, Background Mainstream real-time routines can be executed despite

the fact that Background Mainstream is I/O busy. If Foreground Mainstream is
I/0 busy, Foreground Mainstream real-time routines cannot be executed until the
busy situation is terminated. This is due to the fact that control is given to
the Background whenever Foreground Mainstream becomes I/O busy. The device
handler responsible for the busy situation is remembered in the Foreground Main-
stream busy flag. Mainstream real-time routines cannot then be run because

they too could become busy.
This situation can be avoided either by using .REALR or .REALW in conjunction
with .IDLE or .IDLEC, or by using .WAITR to prevent Foreground Mainstream from

becoming I/0O bound.

6.9 API SOFTWARE LEVELS -- PROGRAMMING NOTE

On configurations that have API, elements of the Foreground job may run at four

!The Resident Monitor, which operates in bank addressing mode, uses .RLXIT
with a 13-bit entry point address. In the bank mode system, all addresses
have 13-bit values.

priority levels (levels 5, 6, and 7 of the API and Mainstream). It is important
to understand that as Foreground becomes I/O busy at a given level, the Monitor
drops to the Foreground's next highest active level.

The lower level may be dependent upon the completion of the I/0 that caused the
higher level to become busy. The following coding method is incorrect because

the lower level will receive control as a result of the I/O not being done.

Level 5 Subroutine

.READ n,2,BUFFER,52
.WAIT n

When the Monitor processes the .READ and encounters the unsatisfied .WAIT, it
recognizes this as an I/O busy situation on level 5 and drops control to the

next lower active level. Suppose at level 7 there is a user subroutine dependent
upon the contents of BUFFER.

Level 7 Subroutine

.WRITE x,2,BUFFER,52

In the above case, the .WRITE will be executed independent of whether the level
5 I/0 call to fill BUFFER has been completed.

Two proper coding methods would be:

(1) to perform the .WRITE within the level 5 subroutine after
the .WAIT n;

(2) to use a .REALR at level 5 which would specify the level 7
subroutine to be called upon completion of the .REALR.
This would eliminate the need for .WAIT n in the level 5
subroutine.

SECTION 7

WRITING DEVICE HANDLERS FOR THE PDP-15
BACKGROUND/FOREGROUND MONITOR SYSTEM

WARNING:

I1/0 device handlers and service routines
written according to this section will
operate on a PDP-15 in page mode or, with
the modifications noted, on a PDP-9 or
PDP-15 in bank mode. For further infor-
mation, read section 7.13.

7.1 INTRODUCTION

The reader is assumed to be acquainted with the concept of an I/0 device handler
from experience using the Keyboard Monitor system. I/O handlers are a con-
venience because they interface to user programs by accepting a small set of
standard commands (Monitor calls), e.g., .READ and .WRITE. Within reason,
programs can be written to function without regard to specific I/0 devices.

They refer to logical devices (.DAT slots) and the assignment of real devices

is made at program load time. Device handlers, because they interface with the
Monitor, must conform to certain established conventions (which differ from
those in the Keyboard Monitor environment) and are more difficult to write and

to understand than stand-alone I/0 service routines.

An I/0 service routine'!, unlike a device handler, is coded into the user program
or is loaded as a user subprogram. It interfaces directly with the user program
and does not use system macros (.READ, etc.), does not use .DAT slots, and is
not loaded from the system's I/0 library. Such a routine cannot normally?

operate in the Background because it employs IOT instructions.

7.2 I/0 SERVICE ROUTINE

The coding of an I/0 service routine is most easily explained by example. Cen-
sider a device which consists of two pushbuttons. Each sets a hardware flag
which can be tested by skip IOT, and either flag being set requests a hardware
interrupt. The device has the following IOT instructions:

'The term I/O service routine is used in this section to distinguish a simple,
direct interface user I/0 routine from a standard, full-blown I/O device handler.

2Refer to the MPOFF command in Section 2.5.12.

PBSF1 /Skip if button 1 flag is set.

PBCF1 /Clear button 1 flag.
PBSF2 /Skip if button 2 flag is set.
PBCF2 /Clear Button 2 flag.

If the device were connected to the API assume that it would interrupt at API
level 3 and via API channel 2@ (Register 6f). If the device were connected to
the PIC it would interrupt at API level 3?and via Register @ (as all PI devices
do) .

At system generation time one would have to add this as a new device to the
system. The following illustrates the conversation with the System Generator
(read Section 8):
API CASE:
MORE I/0? Y

DEVICE NAME > PBJ
NUMBER OF INTERRUPTS SETUP > 1J

API 2 Y
SKIP IOT > 786641)
API CHNL > 2

PI CASE:

MORE I1/0 ? Y

DEVICE NAME > PBJ)

NUMBER OF INTERRUPTS SETUP > 2)
API ? N
SKIP I0OT >
MNEMONIC >
SKIP IOT >
MNEMONIC >

In the API case, note that both device flags interrupt via the same API channel;

hence, only one .SETUP call is needed.

Since PB is added as a new device, the System Generator assumes the existence
of a "PBA" handler. To be safe, change the handler to "PBW" so that this non-

existent handler is not inadvertently assigned to some .DAT slot.

.TITLE FOREGROUND JOB

/THE PUSHBUTTON SERVICE ROUTINE COULD BE A SEPARATELY LOADED SUBPROGRAM;
/HOWEVER, HERE IT IS SHOWN AS IN-LINE CODE WITHIN A LARGER PROGRAM.
/IN THE NORMAL MODE OF SYSTEM OPERATION THIS CODE IS ILLEGAL IN THE
/BACKGROUND BECAUSE IT USES IOT INSTRUCTIONS?. SINCE THE MONITOR HAS NO

True only of the PDP-15.
? See Section 2.5.12.

/CONNECTION TO THIS SERVICE ROUTINE, THERE IS NO WAY TO GUARANTEE THAT THIS
/DEVICE HAS STOPPED I1I/0 BEFORE RELOADING THE MONITOR', E.G., FOLLOWING CTRL C.

BEGIN . /THIS IS MAIN PROGRAM CODE AND
. /NEED HAVE NOTHING TO DO WITH
. /THE "PB" SERVICE ROUTINE.

/"PB" (PUSHBUTTON) SERVICE ROUTINE. THE FOLLOWING IS ONCE-ONLY
/INITIALIZATION CODE. THESE LOCATIONS MAY BE USED LATER ON FOR TEMPORARY
/STORAGE (AS SHOWN).

ACH LAC* (.SCOM+55 /ADDRESS OF THE MONITOR'S
.SETUP DAC . SETUP /.SETUP ROUTINE.
TEMP1 LAC* (.SCOM+51 /ADDRESS OF THE MONITOR'S
REALTP DAC REALTP /REALTP ROUTINE.

/RAISE TO API LEVEL 4 FROM THE MAINSTREAM LEVEL. THE MONITOR'S .SETUP
/ROUTINE IS. CALLED FROM THE CAL LEVEL AND IS NOT REENTRANT CODE.

ACl LAC (499819
AC2 ISA

/CALL THE MONITOR'S .SETUP ROUTINE TO LINK HARDWARE INTERRUPTS FROM
/THE DEVICE TO THE SERVICE ROUTINE NOW THAT IT IS IN CORE?. AT SYSTEM
/GENERATION TIME, IT IS ASSUMED, BFSGEN RESERVED API CHANNEL 2§

/ (REGISTER 6@) FOR THIS DEVICE BY PLACING THERE A "JMS* (ERROR"
/INSTRUCTION AND ASSOCIATING IT WITH THE SKIP IOT "PBSF1l". THE .SETUP
/ROUTINE WILL CHANGE THE INSTRUCTION TO "JMS* (PBINT".

JMS* .SETUP /CALL .SETUP WITH 2 ARGUMENTS:
PBSF1 /THE SKIP IOT AND THE ADDRESS
PBINT /OF THE INTERRUPT SERVICE ROUTINE.

/IF THIS DEVICE IS ON PI, A SECOND .SETUP CALL IS NECESSARY BECAUSE
/THERE WILL BE TWO SKIP IOT'S IN THE SKIP CHAIN. FOR PI DEVICES,
/THE ENTRY INSTRUCTIONS ARE "JMP* (PBINT".

JMS* .SETUP /CALL .SETUP WITH 2 ARGUMENTS:
PBSF2 /SKIP IOT AND THE ADDRESS
PBINT /OF THE INTERRUPT SERVICE ROUTINE.

/DEBREAK FROM LEVEL 4 BACK TO MAINSTREAM.
DBK
/END OF ONCE-ONLY CODE.

/MAIN PROGRAM PROCESSING MAY NOW CONTINUE UNTIL IT IS INTERRUPTED BY ONE
/OF THE PUSHBUTTON FLAGS.

/THE FOLLOWING IS THE INTERRUPT SERVICE ROUTINE FOR THE PUSHBUTTONS. IT
/IS ENTERED AT API LEVEL 3.

/IN THE CASE WHERE THIS DEVICE IS ON API, THIS ROUTINE IS ENTERED VIA A
/JMS INSTRUCTION. THE STATE OF THE PROGRAM INTERRUPT CONTROL (ION OR IOF)
/WILL NOT BE ALTERED.

lsee Section 7.8.
2See Section 8.3.4, Note 3.

PBINT '] /LINK + PAGE/BANK + MEM.PROT. + PC.
DBA! /ENTER PAGE MODE.
DAC ACH /SAVE THE ACCUMULATOR.

/IF, INSTEAD, THE DEVICE IS CONNECTED TO THE PIC, THE ROUTINE IS ENTERED
/BY A JMP INSTRUCTION AND THE FOLLOWING CODE SHOULD BE SUBSTITUTED FOR
/THE ABOVE. THE PIC IS OFF (IOF).

PBINT DBA /ENTER PAGE MODE.
DAC ACH /SAVE THE ACCUMULATOR.
LAC* (9 /SAVE THE INTERRUPT POINT:
DAC PC /LINK + PAGE/BANK + MEM.PROT. + PC.
DZM* (g /NECESSARY ON THE PDP-9; GOOD
I0N? /PRACTICE ON THE PDP-15.

/FROM HERE ON, THE CODE IS COMMON TO BOTH API AND PIC DEVICES.

PBSF1 /SKIP IF BUTTON 1 FLAG SET.
JMP PB2 /NO. MUST BE BUTTON 2.
PBCF1 /CLEAR BUTTON 1 FLAG.

/BUTTON 1 IS INTERPRETED TO MEAN: REQUEST REAL-TIME SUBROUTINE "SUBR1"
/AT API SOFTWARE PRIORITY LEVEL 5.

LAC (SUBR1+5ggg080
JMP RUN.IT

/BUTTON 2 MEANS: REQUEST "SUBR2" AT API LEVEL 6.

PB2 PBCF2 /CLEAR BUTTON 2 FLAG.
LAC (SUBR2+683308

/CALL THE MONITOR'S REALTP SUBROUTINE TO PLACE THE REAL-TIME REQUEST IN
/THE API QUEUE. AS SOON AS THE API LEVEL AT WHICH THE SUBROUTINE IS TO RUN
/BECOMES THE HIGHEST ACTIVE LEVEL, THAT SUBROUTINE WILL BE CALLED.

RUN.IT DAC TEMP1

LAC* (.SCOM+1@2 /RAISE TO API LEVEL @ OR LEVEL 1.°
ISA

LAC TEMP1 /SUBR+API LEVEL CODE.

JMS * REALTP"

DBK /TO LEVEL 3.

/NOW THAT THE PUSHBUTTON HAS BEEN SERVICED AND A SPECIFIC ACTIVITY

/ {SUBRlL OR SUBR2) HAS BEEN SCHEDULED, EXIT FROM THE HARDWARE LEVEL TO

/THE API LEVEL 4 INTERRUPT HANDLER IN THE MONITOR. LEVEL 4 IS THE SYSTEM
/DISPATCHER WHICH DECIDES WHAT IS TO BE RUN NEXT BASED UPON CONDITIONS SET
/BY HARDWARE INTERRUPT ROUTINES.

" Omit DBA instructlons in background /foreground bank mode.

The ION instruction may precede the clearing of the device flags on the
PDP-15 so long as operation continues at API level 3. On a PDP-9, however,
the ION must come after the flags have been cleared; otherwise, an immediate
interrupt would occur, unless the ION was executed after a raise to API level

’Refer to section 7.4 which explains why .SCOM+1@2 is used to protect common
Monitor routines from reentrancy.

“If the highest Monitor API level is defined to be level one, according to
the contents of .SCOM+1@2, then REALTP must not be called at API level zero.
This statement holds true for all Monitor routines called at the highest
Monitor level.

LAC (404000 /REQUEST AN API INTERRUPT

IsA /AT SOFTWARE LEVEL 4.
LAC ACg /RESTORE THE ACCUMULATOR.
DBR /DEBREAK AND RESTORE FROM LEVEL 3.

/IF THE DEVICE IS ON API, THE INTERRUPTED PC IS STORED IN "PBINT".
JMP* PBINT

/IF THE DEVICE IS ON THE PIC, THE INTERRUPTED PC IS STORED IN "PC".

JMP * PC

/WHICHEVER JMP* IS USED, IT MUST IMMEDIATELY FOLLOW THE DBR. ONCE THE
/DBR HAS BEEN EXECUTED, THERE MUST BE NO POSSIBILITY OF INTERRUPTING BEFORE
/THE JMP* IS DONE. ALL DECISION MAKING MUST THEREFORE PRECEDE THE DBR.

/END OF PUSHBUTTON SERVICE ROUTINE.

/API LEVEL 5 REAL-TIME SUBROUTINE -- DOES SOMETHING AS A RESULT OF BUTTON 1
/HAVING BEEN PRESSED.
SUBR1)

DAC ACl

LAC ACl

.RLXIT SUBR1

/API LEVEL 6 REAL-TIME SUBROUTINE -- DOES SOMETHING AS A RESULT OF
/BUTTON 2 HAVING BEEN PRESSED.

SUBR2 ']
DAC AC2
LAC AC2
. RLXIT SUBR2

.

This is a very simple I/0 service routine. It does not perform data manipula-

tion and does not issue any IOT's that could cause further interrupts.

7.3 I/0 DEVICE HANDLER

A device handler written to operate in the Background/Foreground Monitor

environment must conform to the rules outlined in the remainder of this

section. Handl .=z differ from I/0 service routines in the following ways:

They ii.cziiace to user programs via Monitor calls, e.g., .READ.

2. Because they are referenced by .DAT slot number, they can be
used bv device independent programs.

3. Except for TTA. and the resident system device handler, all
handlers are part of the system's I/O library.

4. Handlers can be used by the Background job when there is no
conflict with Foreground needs.

5. I/0 handlers all have STOPIO routines which allow the Monitor
to shut down I/O in an orderly fashion. This is absolutely
necessary when a handler is to be used by the Background .job.

7.3.1 Types of Device Handlers

There are three types of I/0 device handlers that can operate within the
Background/Foreground Monitor System:

1. Single user -- This handler can be used by either the Foreground
job or the Background job but not both during the same core load;
that is, it is dedicated to one job and the Monitor System will
not permit the other job to be connected to it.

2. Sequential Multi-user -- This handler can be connected to both
the Foraeground and the Background job and both can utilize
it on a sequential first-come-first-served basis.

3. Multi-user -- This handler can be connected to both the Foreground
and the Background jobs with the Foreground job having priority
on usacg=. If the Background job is using the handler and Fore-
ground regquires it, the Background I/O will be deferred until
-the Foreground I/O has been completed.

This section is primarily devoted to describing the development of single-user
handlers. Thereafter, the transition to a sequential multi-user handler is

described.

I/0 handler type 3 (Multi-user) is not described because it is unlikely that
a customer will need to write one and because the description would overly
complicate this section of the manual. Should the need to write such a
handler arise, it is recommended that a listing be obtained of the Multi-user
DECtape (DTA.) or Disk (DKA.) handler to be used as a guide.

All device handlers, except for TTA. and the resident system device handler,
are loaded to run in page mode and therefore may use indexed instructions.
Where they do so, however, they must save and restore the Index Register (and

7-6

Limit Register, if used). All device handlers in the bank mode system run only
in bank mode; rnc indexed instructions are allowed in the bank mode system.

7.3.2 General Structure of Device Handlers

User program commands to device handlers are initiated by CAL instructions,
which trap to absolute location 2@ octal in the Monitor. The CAL handler in
the Monitor, operating at API level 4, transfers control to the CAL processing
section of the device handler at level 4.

All devices which perform I/O should be interrupt driven!, i.e., should rely

on a hardware interrupt condition to signal I/O completion. Without an interrupt,
the device would have to be polled after elapsed clock intervals (which is pos-
sible for slow devices) or tested continuously (which defeats the purpose of a
real-time system). Handlers which perform I/0 will, in general, have an
interrupt service routine which operates at the API level of the hardware.

For some devices, all I/O must be solicited. For example, no interrupt from the
papertape punch can occur until the handler, PPA., has initiated I/O as a result
of some Monitor call. This fact allows the CAL and interrupt portions of PPA.
to share common storage registers and common code.

Some devices, such as Teletype, generate unsolicited interrupts which can occur
while the Teletype handler is processing a CAL command. Therefore, the CAL and
interrupt portions of TTA. cannot use common code and common registers except

where the CAL code raises to API level 3 (the hardware level for Teletypes) to

prevent Teletype interrupts.
Besides CAL and interrupt processors, a handler must have subroutines for stop-
ping I/O0. The STOPIO code is called at Mainstream (all API levels inactive) but

is guaranteed not to be called while CAL processing is in progress.

7.4 REENTRANCY PROTECTION

There are common routines in the Monitor which are called by all device handlers.
Since these routines cannot be reentered?, all calling programs must raise to

the highest commonly used API level in order to avoid being interrupted. Normally,
API level @ is the highest commonly used level; and the instructions to raise to
level @ would be:

LAC (499289
ISA

! The core-to-core handler, COA., is an example of a handler which is not interrupt
driven; and therefore all its processing is done at the CAL level (API level 4).

2Interrupted, entered at a higher API level, and then resumed at the lower level.

7-7

However, some Monitor routines which operate at this highest commonly used level
may take nearly 2@@ microseconds to complete. Some devices may require faster
service than this allows; hence, it is desirable to reserve API level # for

them. The highest commonly used Monitor level would be defined to be API level
1, and devices on level g would only have to compete with one another. They
could not, however, use common Monitor routines!due to the problem of reentrancy.

Such routines would best be I/0 service routines rather than I/0 device handlers.

The highest commonly used API level (f or 1) is established during system gen-
eration and the value 480298 (for level g) or 4@g10@ (for level 1) is placed
in .SCOM+1@2. The instructions that must be executed to protect against

reentrancy are:

LAC* (.SCOM+1@2
ISA

For devices which operate at the highest commonly used API level, a raise has

no effect. Therefore, a check for this case must be made so that the corres-
ponding debreak (DBK) instruction is not executed. Where a DBR (debreak and
restore) instruction would have been used, an RES (restore) should be executed
instead. The PDP-9 does not have an RES instruction as does the PDP-15; however,

there has never yet been a need for a user to replace a DBR with an RES.
As a side issue to reentrancy protection, the reader is cautioned not to share
subroutines within a handler at the CAL and interrupt levels unless CAL's and

interrupts cannot coincide.

7.5 DEVICE HANDLER'S CAL PROCESSOR

7.5.1 Arguments of the CAL

The first 37 (octal) words of an I/0 handler must have the format described in
the following pages. The CAL handler in the Monitor has been implemented to do
as much of the function processing as possible. In giving control to the I/0
handler, the CAL handler will have set up registers in the I/0O handler with all
pertinent information (arguments) of the CAL in the most accessible state, and
will then transfer control to the appropriate function processor via the JMP
table in the I/0O handler which begins at word 208 relative to the first location
in the handler. Since CAL is not a reentrant process, CAL instructions should

not be executed while at the CAL level or at a hardware interrupt level?

!such as, REALTP and IOBUSY.

’As a special case, the Monitor allows the MAGtape handler to do so.

WORD #: JMS SWAP

The SWAP subroutine is in the device handler. The JMS instruction will be
simulated from within the Monitor so that the SWAP routine will return to the
Monitor and not to WORD1l of the handler. The SWAP subroutine must execute
WORD5 which restores the state of the program interrupt! and DBK from level #
or 1 of the API. The presence of this routine becomes functionally necessary
for type 3 (Multi-user) handlers to accomplish swapping from Background to
Foreground usage. The I/O device independence of the system requires that all
handlers look alike to the outside world (namely, the Monitor's CAL handler).

WORD 1: [’} /Foreground Busy Register?
WORD 2: '] /Background Busy Register?

For both busy registers:
@ = Not Busy

Non-g = Busy (the CAL handler in the Monitor places
the current .DAT slot number here --
full 18 bit value if negative.)

When the Monitor's CAL handler receives an I/0O call, it checks the validity of
the .DAT slot number for this job (Foreground or Background), checking for its
existence, whether or not a device has been assigned to it, and if the appro-
priate handler was loaded.

The CAL handler then checks the appropriate busy register® and proceeds as
follows:

1. If the flag indicates that the handler is already busy, the job
becomes I/0 bound at this level. Foreground can become I/0
bound at 4 levels, which means it gives up control to lower levels
or to the Background until the I/O operation is completed.

2. If the flag indicates not busy, it is set to busy® and the CAL
handler processes the function and passes the request on to the
device handler.

!This is a vestige from PDP-9 code.
Must be assembled with contents = f. The Teletype handler is a special case.
’The Teletype handler is an exception.

*Actually, there is also a test on the CLOSE flag (Word 3 or 4) which is des-
cribed on the next few pages. As a result, the function might not be passed
on to the handler.

7-9

Note that .WAIT's and .WAITR's are c?mpletely processed by the CAL handler and
are not passed on to the I/O handler .

If the corresponding busy register indicates busy:

1. For .WAIT in the Foreground, control is given to a lower Foreground
level or to the Background. The .WAIT command is not reexecuted;
instead, the WAIT condition is recorded for the specific Foreground
level in a .SCOM register. When the I/0 completes, the device
handler will call the IOBUSY routine in the Monitor, which will clear
the WAIT condition and prepare to resume processing at that level
following the .WAIT.

2. For .WAIT in the Background, since there is no further processing
that can be done, control is returned to the .WAIT.

3. For .WAITR in either the Background or Foreground, control goes to
the address specified in LOC+2 (which must be above the hardware
memory protect bound if in the Background) 2.

If the corresponding busy register indicates not busy, the WAIT condition has
been satisfied and control is returned to LOC+2 (if .WAIT) or LOC+3 (if .WAITR).

WORD 3: g /Foreground .CLOSE register?®.
WORD 4: g /Background .CLOSE register?®.

For both .CLOSE registers:
= .CLOSE or .OPER not in progress
Non-g = .CLOSE or .OPER in progress

.CLOSE and .OPER functions have a built-in WAIT condition. When the .CLOSE or
.OPER is first executed, the busy register and .CLOSE register for the appro-

priate job contain zero. The CAL handler in the Monitor sets the return PC so
that the function will be reexecuted. The busy register is set with the .DAT

slot number and the .CLOSE register is set non-g (-1).

At completion of the .CLOSE or .OPER function, the device handler must clear
only the appropriate busy register. When the function is reexecuted with the
busy register cleared but the .CLOSE register set, the contents minus 1 of the
.CLOSE register are returned in the AC to the calling program following

the .CLOSE or .OPER command and the handler's .CLOSE flag is cleared by the

;The Teletype handler is an exception.

The CAL handler validates Background arguments in Monitor calls. The test
based on the setting of the hardware memory protect bound uses the contents
of .SCOM+32, which is not set to zero by the $MPOFF command.

IMust be assembled with contents = .

Monitor. The handler is not entered a
.CLOSE register are returned in the AC
.RENAM, .DLETE).

appropriate .CLOSE register (WORD 3 if

Device handlers that

follows:

l:
INFORMATION +1 =

File not present

device block

Either @# or INFORMATION is returned in

second time. The contents minus 1 of the
specifically for .OPER functions (.FSTAT,
utilize this capability should set the

Foreground; WORD 4 if Background) as

File is present (where INFORMATION is the

number, which must not = -1)

the AC.

/The CAL handler will store an ION
This is vesti-
/gial code from the PDP-9.

/The CAL handler will also store an

The CAL handler
/places the address of the Monitor's
/CALXIT routine in this register.

The CAL handler sets up
For multi-user handlers,

The handler's SWAP

WORD 5: ION
/instruction here.
WORD 6: ION'
/ION here.
WORD 7:! /Return Pointer.
Words 1@ through 17 are the BACKUP DATA REGISTERS.
these registers prior to entering the device handler.
a set of backup registers must be available to queue one Background I/0 re-
quest when the handler is processing a Foreground request.

routine is called to swap the contents

the live registers (elsewhere in the handler).

of the backup registers with that of

For single user handlers, the

SWAP routine does not perform a swap since the backup registers are the live

registers.

WORD 10: JMP FUNC

WORD 11:

WORD 12:

/After checking the validity of
/function and subfunction codes, the
/CAL handler places a JMP to the
/appropriate entry in the function
/IMP table (words 2@-32) of the I/O
/handler in this register.

/The CAL handler sets this register
/to indicate which job executed

/this CAL:
/ # = Foreground
/ 1 = Background

/.DAT slot number (18-bits if
/negative). The CAL handler sets
/this register.

'If it is guaranteed that the device cannot cause an interrupt while processing
is at the CAL level, then the handler's CAL and interrupt processors can use

common exit code as described in 7.6.

If so, the interrupt service routine

must store a DBR instruction in WORD6é and the interrupted PC (with Link,
Page/Bank Mode and Memory Protect bits) in WORD7.

7-11

/Unit number for multi-unit devices
/in bits @#-2 with bits 3-17 contain-
/ing the address of the CAL. The CAL
/handler sets this register.

WORD 13:

The CAL handler makes a general check for validity on:

a. File type

b. Data Mode

c. MAGtape subfunction code
d. Transfer directions

e. .OPER subfunction code
f. Addresses

g. Word counts

and will pass on what appears to be legitimate values. Each handler must then

make itg own validity determination with respect to the device it controls. For
example, . the CAL handler will always accept data modes @§ through 7; however,

the device handler may only accept a subset of these.

The contents of words WORD 14 through WORD 17 vary with the function being
processed. Adjacent to what will appear in each of these words are the limits

on the values that will be-accepted and passed on by the CAL handler.

WORD 14: .INIT File type g = input
1 = output
.READ Data mode # = IOPS binary
1 = Image binary
- REALR 2 = IOPS ASCII
.WRITE 3 = Image ALPHA
4 = DUMP
- REALW 5 = DUMP ALPHA
6 and 7 are undefined but are
passed on by the CAL handler.
.MTAPE MAGtape function g thru 178
. TRAN Transfer direction @ thru 3
.OPER Subfunction code 1 thru 3
WORD 15: LINIT? User restart address plus code bits (g - 2)
.READ! Line buffer address
.REALR!
.WRITE!
.REALW!

!Checked for non-existent memory. If this is a Background CAL and if the Back-

ground is operating in normal protect mode ($MPON) this address is also compared
with the contents of .SCOM+31, the software boundary, to signal an error if the

address points below the bound.

2same as for footnote 1, except that the check is made on .SCOM+32, the hardware
bound, and only if the function is to be executed by the Teletype handler.

7-12

.FSTAT! Address of the Directory entry block
.DLETE!
.RENAM!
.ENTER?
.SEEK?

.TRAN! Core starting address.

WORD 16: JINIT! Address of register which is to have standard
buffer size placed in it.

.READ?® Linebuffer word count (from the CAL argument list).
.REALR?
.TRAN®

.WRITE? Line buffer word count (from the linebuffer word
pair count, except for dump mode and mode 5 which
.REALW? use counts from the CAL argument list.

WORD 17: .FSTAT® Address of the register which will have the device
code placed in bits g - 2.

.REALR" Address to which control will be passed on completion
4 of the real-time I/0 request. Bits 0 - 2 will contain

.REALW the priority code:
g = Background Mainstream
1 = Foreground Mainstream
5 = Foreground API Level 5
6 = Foreground API Level 6
7 = Foreground API Level 7

The CAL handler always changes the Background code to
g since Background cannot use the API software levels.

. TRAN The device address (block number).

Words 20 through 32 make up the Function JMP Table. Those functions which are
ignored, those which are illegal, and those which do not issue IOT's at the CAL
level must prepare to have the Foreground or Background busy flag (WORD 1 and
WORD 2, respectively) cleared during the protected exit routine. Because the CAL
handler in the Monitor has set the busy flag prior to entering the handler, the

handler must clear the busy register since no further processing will be done.

!Checked for non-existent memory. If this is a Background CAL and if the Back-
ground is operating in normal protect mode ($SMPON) this address is also compared
with the contents of .SCOM+31, the software boundary, to signal an error if

the address points below the bound.

2 No address check is made.

3Counts are validated for the Background job to ensure a negative value and
to ensure that the count added to the start address does not reference non-
existent memory.

“Same as for footnote 1, except that the check is made on .SCOM+32, the hardware
bound.

WORD 24:
WORD 21:
WORD 22:
WORD 23:
WORD 24:
WORD 25:
WORD 26:
WORD 27:
WORD 30:
WORD 31:
WORD 32:

WORD 33:

WORD 34:

When the Foreground job terminates as a result of a terminal error,

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
xx3
JMP

INIT
OPER
SEEK
ENTER
CLEAR
CLOSE
MTAPE
READ!
WRITE?

TRAN

SUBRF

/Function
/Function
/Function
/Function
/Function
/Function
/Function
/Function
/Function
/Function
/Function

/Storage for .SCOM+35, the "in an
/interrupt service" flag -- set by

/the CAL handler. This is a vestige

/from the PDP-9.

/Address of the STOP-FOREGROUND-I/O
/subroutine. i

a .EXIT command, the Foreground STOPIO routine in every device handler

assigned to the Foreground job is called"® at the Mainstream level to effect

the controlled shutdown of the device (see 7.8).

WORD 35:

For single user device handlers (devices that cannot be shared by Foreground

SUBRF

and Background) ,

STOPIO (as noted above).

WORD 36:

/Address of the STOP-BACKGROUND-I/O

/subroutine.

CTRL C,

or

the same subroutine can be used for Foreground and Background

/Handler I.D. code (normally #).

This word has other values (non-f) for devices that require special considera-

tion from the CAL handler.
into a busy handler unless the I.D.
slot on which the handler is busy.

7.5.2 .SETUP

code is -1 and the

.INIT is to the same

If a device generates hardware interrupts they must be routed to the proper

interrupt service routines.

interrupts are routed to an error processor which treats the interrupts as

illegal.

'Includes .REALR.
.REALW.

2Includes

The Monitor will not allow .INIT to force its way

.DAT

When the appropriate handler is not in core, the

3.WAIT and .WAITR never get to the handler; they are processed by the Monitor's
Word 31 can be used for data storage.

CAL handler.

“The call is made only if the handler's Foreground busy register is set.

- 7-14

When a handler has been loaded in core it must call the Monitor's .SETUP routine
@t the CAL level, API level 4) to connect the interrupt line(s) to the handler's
interrupt service routine(s). As a rule, this is executed as once-only code the
first time a .INIT call is processed. To ensure that .SETUP has been done for a
device which has IOT's that can cause interrupts, all CAL functions that could
perform such IOT's must test that a .INIT was performed at least once. If .INIT
was not performed, the offending job should be terminated with an .ERR @6F (.INIT
not executed).

The .SETUP routine is typically called only once for API devices; but, for de-
vices on the Program Interrupt Control, one call per IOT in the Monitor's skip
chain is required. Read section 8.3.4, Note 3, for a clearer explanation.

Calling sequence:

LAC* (.SCOM+55 /Get address of .SETUP

DAC TEMP

JMS* TEMP /Call .SETUP

SKPIOT /Argument 1l: IOT skip

INTSVC /Argument 2: Address of the
(return here) /interrupt service subroutine

7.5.3 Initiating I/O

For interrupt driven devices it is imperative that all IOT's that initiate
hardware operations be executed during the protected exit from the handler
to ensure that the exit takes place prior to the completion of the hardware

operation (which could cause re-entry to the handler at the interrupt level).

CAL function requests that require more than one hardware operation should
cause the 2nd through Nth operations to be initiated at the intertupt level
during protected exit. A handler should not cause an implicit .WAIT for the
duration of the function processing because this prevents optimum usage of the
central processor time. The .CLOSE and .OPER functions are exceptions and the
implied .WAIT in those functions is handled automatically by the CAL handler.

7.6 DEVICE HANDLER'S INTERRUPT PROCESSOR

The following steps detail the logic necessary for interrupt processing in a
single-user handler. References to a common exit routine for both CAL's and
interrupts presupposes that interrupts for the device cannot occur while CAL's
are being processed.

Both page mode and bank mode systems now require API hardware, consequently the

interrupt servige routine can rely on its existence.

1. If this ic =2n API interrupt, the PC, Link (bit g), Page/Bank (bit 1),
and Memory Protect (bit 2) are stored at the entry point to this routine.
If this is a PIC interrupt, the PC et al. are stored in location zero
in memory. This routine is entered at the API level of the device

(level 3 with PIC off if a PIC interrupt), with memory protect disabled.

2. DBA -- Disable Bank (Enter Page) Address Mode.

3. Save the AC -- to be restored on exit from interrupt service. Also,

save hardware registers such as XR, LR, if they are to be used herein.

4. Save the PC, Link, Page/Bank Mode, and Memory Protect in WORD 7 of the
handler. WORD 7 is so used if the CAL and interrupt code can use common

exit logic.

5. Store a DBR instruction in WORD 6 of the handler. This is done only

if the CAL and interrupt code can use common exit logic.

6. Turn off (slear) the device's hardware flag so that it will not cause

another interrupt unless reset.

7. If this is a PIC interrupt, set location zero to zero and execute the
ION instruction to turn the Program Interrupt Control on. Location
zero with non-zero contents indicates a PIC interrupt in progress (this
was significant in PDP-9 logic. On a PDP-9, the device flag(s) must

be cleared before the PIC is turned on again.)

8. If this is the type of device for which I/O in progress cannot be
stopped, test if this is the last interrupt expected from the device.'!
If it is, clear (set to zero) the IOSTOP flag (read section 7.8
describing STOPIO procedures). Only one IOSTOP flag is needed for

a single user or sequential multi-user handler.

9. Is the busy flag (WORD 1 if Foreground; WORD 2 if Background) zero?
If it is (meaning that the handler was not busy and that the
interrupt was unsolicited, or that the STOPIO routine was called),

ignore the interrupt by going to step 13.

19. Process the interrupt, e.g., store data or prepare to transmit more
data.

11. Is the I/0 request (the I/O call issued by the user program) complete

as a result of this last interrupt? If so, continue at step 14.

'The CR@3B card reader handler must test if this is last interrupt since, for
one read operation, 8§ column interrupts will occur and there is no way to
prevent them.

7-16

12.

13.

14.

15.

16.

17.

18.

If more I/O must be done before the CAL request is satisfied, set up
the protected exit routine to issue the next IOT(s) to the device. Go
to step 22, the protected exit routine.

If the interrupt was unsolicited, set up to have the Foreground or
Background busy flag (WORD 1 or 2 as appropriate) cleared during the
protected exit code. Go to step 22, the protected exit routine. Note
that WORD 11 in the handler indicates Background or Foreground owner-
ship of the I/0 request.

I/0 is complete as a result of this interrupt; therefore, set up to
have the Fereground or Background busy flag (WORD 1 or 2 as appropriate)
cleared during the protected exit code. Note that WORD 11 in the
handler indicates Background or Foreground ownership of the I/O request.

LAC* (.SCOM+1@2
ISA

This will raise to API level zero or one, depending upon the contents
of .SCOM+1@2. If this device interrupts at level one or zero, reread
section 7.4.

LAC* (.SCOM+52
DAC TEMP

LAC (WORD @
JMS * TEMP

.SCOM+52 contains the address of the Monitor's IOBUSY subroutine,
which must be protected against reentrancy. It is passed an argument
in the AC -- the address of WORD @ of the device handler. IOBUSY will
compare this with the contents of the Foreground busy registers
(.SCOM+42 through .SCOM+45). 1If a match is found, it indicates that
the Foreground level was waiting for I/0 completion by this device.
Since I/O has completed, the Foreground level is made not busy and

is set up to resume operation when that level becomes the highest
active level in the system. The level-busy .SCOM registers are set
originally by the Monitor's CAL handler. Note that the call to IOBUSY

must be done for Background as well as Foreground I/O completion.

DBK

Debreak from API level zero or one (reread section 7.4 if this device
interrupts at level zero or one). This is done, as is step 19, simply
to allow interrupts to occur for higher level devices if their flags

come up while the IOBUSY code is being executed.

The handler must check if this is a real-time I/O request. It is if
WORD 1f contains a JMP to WORD 27 (.READ or .REALR) or to WORD 3¢

7-17

19.

29,

21.

22.

23.

24.

(.WRITE or .REALW) and WORD 17 is non-zero. If this is not a real-time

request, go to step 22.

LAC* (.SCOM+192
ISA

Raise to API level zero or one to protect the following Monitor
routine from being reentered. If this device operates at level one

or zero, reread section 7.4.

LAC* (.SCOM+51

DAC TEMP

LAC WORD 17

JMS * TEMP

.SCOM+51 contains the address of the Monitor's REALTP subroutine.
is passed an argument in the AC -- the contents of WORD 17 which is

the priority level code plus real-time subroutine address. REALTP
will prime the Monitor to run the real-time subroutine.

DBK

From API level zero or one, as in step 17.

This is the beginning of the protected exit routine. Note that it
is coded as a common exit for both interrupt and CAL code. This is
explained in section 7.3.2. If I/O is to be performed now to the
device, check the device to ensure that it is ready to accept I/0
commands. If the device is not ready, a message must be output to
denote this fact (see section 7.9) and the I/O must be deferred.
Therefore, set a program flag, call it IOTFLG, for example, so that
the IOT(s) will not be issued in step 27. If the device is ready,
clear IOTFLG.

LAC* (.SCOM+1@2
ISA

Raise to API level zero or one. Reread section 7.4 for level zero

or level one devices.

If WORD 6 contains a DBR instruction (recall step 6), this is an
interrupt service exit. If so, request an API level 4 interrupt as
follows:

LAC (4p4089
ISA

The API level 4 handler is the Monitor's dispatch routine. It con-
trols transitions from Background to Foreground, real-time requests,
errors, and control character functions.

25. If previously set up to do so, as in steps 13 and 14, clear the
Background and/or Foreground busy flags (WORDS 2 and 1, respectively).
The busy flag is cleared on ignored functions, completed functions,

and aborted functions.

26. Is I/0 supposed to be done now? If IOTFLG (set or cleared in step 22)
is non-zero, if the appropriate busy flag is zero, or if the IOSTOP
flag is non-zero (see step 8) go to step 28 to bypass execution of
the IOT(s). ‘

27. Execute the IOT(s) to the device. This may involve several instruc-
tions. If this is an exit from the CAL level of the handler and if
no I/0 is to be done (e.g., an ignored function), this code will be

bypassed since the busy flag was cleared.

28. Restore the AC plus any other hardware registers used (refer to

step 3).

29. DBK
Debreak from API level zero or one (reread section 7.4 if this is a
level zero or level one device).

38. XCT WORD 6
This will be a DBR instruction if this is an interrupt exit (recall
step 6) and ION if this is a CAL exit. This assumes that the device

handler can have common interrupt and CAL exit code.

31. JMP* WORD 7
Again, this assumes common CAL and interrupt exit code. The DBR in
step 38 for an interrupt exit will debreak out of the device's hard-
ware level and will prime the machine to restore the state of the Link,
Page/Bank Mode, and Memory Protect (in this case from bits g - 2 of
WORD 7). The ION instruction in step 3% for a CAL exit is effectively
a NOP. Return will be at API level 4 to CALXIT, the common CAL exit

routine in the Monitor.

Note that once the DBK in step 29 is executed, the sequence of code leading to
step 31, the JMP*, must be non-interruptible, i.e., a string of IOT instruc-

tions.

If the exit is done with the device not ready, note that the device's busy
flags are still set. The job will continue execution without knowledge of the
not-ready situation. Of course, if the job attempts to perform more I/O to
the device (.INIT being a special case; see section 7.9.2), it will become

I/0 bound.
7-19

7.7 ERROR PROCESSING

All device handler error conditions should be terminal; that is, they should

terminate the operation of user programs. Whether errors are detected during

CAL processing or during interrupt processing the following coding sequence

will set up an error condition and cause an error message to be printed on the

appropriate job control Teletype. This coding sequence cannot be common to

both the CAL and interrupt levels unless it is known that the device cannot

cause interrupts while the handler is processing a CAL.

1.

LAC* (.SCOM+66
DAC TEMP /This TEMP cannot be common.
/ (See preceding paragraph.)

.SCOM+66 contains the address of the error queuer subroutine in the
Monitor.

LAC* (.SCOM+1@2
ISA

Raise to API level zero or one to protect the error queuer from being

reentered. Reread section 7.4 for level zero and level one devices.

LAW code or LAC (code
JMS* TEMP
auxarg

Go to the error queuer with one argument in the AC and one following
the JMS instruction. The argument in the AC, loaded either by LAW
code or LAC (code, is formatted as follows:

Bits #§ - 5 are ignored

Bit 6 = 1 means a terminal error
Bit 7 = 1 means a Background error
Bit 8 = 1 means a Foreground error

Bits 9 - 17 form a 3-digit error code
If the error pertains to both jobs then both bits 7 and 8 may be set.

The auxiliary argument, auxarg, is simply a 6-digit quantity to be

printed with the error message, which is of the form:
.ERR NNN XXXXXX,))

NNN is a 3-digit error code

XXXXXX is a 6-digit auxiliary argument

4. DBK)
Debreak from API level zero or one. Reread section 7.4 if this is a
level zero or level one device.

5. If no further interrupts are expected, set up to have the appropriate
job busy flag (WORD 1 or WORD 2) cleared during protected exit from
the haﬁdler. However, if more interrupts are expected, the busy flag
must remairn set to signal the STOPIO routine that interrupts are
pending. Instead, set the IOSTOP flag so that I/O set up to be
executed in the protected exit routine will be bypassed.

The actual printing of the error message will not be done until all interrupt
and CAL processing is complete. Background error messages are not printed until
the Background job is given control.

As a result of a terminal error, the handler can be certain that its STOPIO
routine will be called by the Monitor if the handler's busy flag is set for the

job in error.

7.8 STOP I/O ROUTINES

In Background/Foreground it is necessary to have some orderly means of stopping
I/0 that is in progress. When a job terminates (.EXIT, terminal error, etc.),
the Monitor must ensure that all I/O for that job is shut down. This is
particularly necessary in the Background where I/O must be stopped before the

associated device handlers are removed from core.

WORD 34 of each handler must contain the address of its Foreground STOPIO sub-

routine.

WORD 35 of each handler must contain the address of its Background STOPIO sub-
routine, which for single-user handlers can be the same as the Foreground STOPIO
routine.

Whenever a job terminates execution, the Monitor calls the appropriate STOPIO
subroutine at the Mainstream level. The following steps should be followed:

1. Is this the type of device for which I/O can be terminated by
issuing an IOT instruction? Terminating I/0 means ensuring that no
further interrupts will occur. If so, do so, and continue at step 6.

1g.

11.

12.

LAC* (.SCOM+102
ISA

Raise to API level zero or one to protect against getting interrupted

in mid-decision.

If this device does not generate Not-Ready conditions (read section

7.9), go to step 5.

Check the "CTRL R in progress" flag (see CTRLR in section 7.9). If it
is set, clear the STOPIO flag (which is tested in step 11) and go to
step 6. This is done because I/0O cannot be under way if the handler

is waiting for *R. Otherwise, go to step 5.

Check the appropriate job busy flag (WORD 1 or WORD 2). If it is set,
set the IOSTOP flag (a flag internal to the handler) non-zero. Other-
wise, clear it. This flag is tested in step 1ll1l.

Clear the appropriate job busy register (WORD 1 or WORD 2).
Clear the appropriate .CLOSE register (WORD 3 or WORD 4).

If the handler has one, clear the "CTRL R in progress" flag (see
step 18 in section 7.9).

If this is the type of device which can terminate I/O by IOT (refer
back to step 1), go to step 1l2.

DBK
Debreak from API level zero or one back to Mainstream to allow hard-
ware flags that may have or will occur to be serviced.

LAC IOSTOP
SZA
JMP .-2

If the appropriate busy register had been set and I/O is under way,
control will stay here until the IOSTOP flag is set to zero. That

will happen only when the device's final interrupt occurs (refer to
section 7.6, step 8). This loop is executed at Mainstream, in case
the handler is being used by Background, so that the Foreground job

may resume execution when ready.

JMP * STOPIO
Exit back to the Monitor. I/O by the device has stopped and, if the
job is restarted, the handler flags have been reset so that the

handler can accept more I/O commands.

7-22

7.9 RECOVERY FROM I/O DEVICE NOT READY CONDITION

7.9.1 CTRL R Mechanism

The Background/Foreground Monitor system is designed to handle simultaneously
one not-ready condition per job. This is a limitation but a reasonable one

based on Keyboard Monitor (single user) experience.

I/0 handlers that can encounter and detect not-ready conditions must adhere to
the following ground rules in their announcement of the not-ready condition and

in their continuation once the condition has been corrected.

Some devices are designed so that they can be tested at any time for a state of
readiness; therefore, the test can be made at the CAL level prior to starting

I/0. Other devices will not generate a not-ready condition until after an IOT
has been issued and an error flag results. In such cases, the not-ready condi-

tion is detected at the interrupt level.

The reader is assumed to understand the mechanism whereby a device interrupt
transfers control to a handler's interrupt service routine at a hardware API
level and the process called .SETUP whereby the handler connects itself to the
device's interrupt line(s). When the handler is not in memory, interrupts from
the device are shunted to the illegal interrupt handler. When the handler is in
core and has performed the .SETUP, device interrupts will transfer control to
the handler. The processing of a device-not-ready condition involves a pseudo-
.SETUP and a simulated API interrupt, which will be explained at the end of this

section.

It is best to check for device ready in only one location, the beginning of the
protected exit routine in the handler. This starts at step 22 in section 7.6,
where it is assumed that the CAL and interrupt portions of the handler share a

common exit logic.

1. Test for device ready or not. This is the same as step 22 in section
7.6. If the device is ready, set IOTFLG to zero so that the IOT(s) in
step 27 may be executed, and go to step 23 in section 7.6.

2. With the device not ready, it is necessary to defer the IOT(s), announce
the not-ready condition, and exit from the handler set up to continue
after CTRL R is typed on the user's control Teletype. For a single-user
or sequential multi-user handler, the IOT(s) that were to be executed
may remain where they are. Set IOTFLG non-zero so that they will not
be executed in step 27 of the protected exit logic (section 7.6). (For
multi-user handlers, the IOT(s) must be physically moved in case I/0

7-23

for the other job is started up.)

3. JMs NRMSG
Call a subroutine to initiate the printing of the not-ready message.
Then go to step 23 in the protected exit routine (section 7.6).

Steps 4 through 11 contain the code for subroutine NRMSG.

4. NRMSG g /Entry point.
LAC CTRLR
SZA!CLC

JMP* NRMSG
DAC CTRLR

Register CTRLR is a program flag internal to the handler. If it
contains zero, the handler has not already initiated a not-ready
request. If it is non-zero, exit from the subroutine, since a not-

ready condition has been announced. If CTRLR was zero, set it non-zero.

5. LAC WORD11
DAC ARGl

WORD 11 in the handler contains zero if Foreground and one if Back-
ground. This is passed on as argument one in the call to the Monitor's
CTRL R setup routine.

6. LAC UNITNO
DAC ARG3

Bits #-2 of argument three are considered to be the device unit number,
which is printed as part of the device-not-ready message. Some devices
have only one unit, for example, the papertape punch; and this code is,
therefore, unnecessary. The card reader handler uses the unit number in
the printout to indicate the cause of the not-ready condition.

7. LAC* (.SCOM+64
DAC TEMP /Beware -- TEMP probably cannot be used
/by both the CAL and interrupt levels.

.SCOM+64 contains the address of the CTRL R setup subroutine, which
is part of the Teletype handler in the Monitor. Store this address in

a temporary register.

8. LAC* (.SCOM+102
ISA

Raise to API level zero or one. Reread section 7.4 if this device is

already operating at level one or zero.

1.

11.

JMS * TEMP

ARGl XX

ARG2 - .ASCII /DV/
.Loc .-1

ARG3 XX

ARG4 F.CTLR+?g00800
ARG5 B.CTLR+?g@000

Call the CTRL R subroutine in the Monitor. Argument 1 contains

zero if Foreground and one if Background. Argument 2 is the two-
letter device name in .ASCII, e.g., LP for Line Printer. Argument

3 is the device's unit number, in bits @-2. Argument 4 is the
address (F.CTLR) and API level code (?00@9@8@) of the subroutine which
is to be entered when a Foreground not-ready condition for this
device exists and CTRL R is typed on the Foreground control Teletype.
Argument 5 is similar to argument 4, but is used for Background.
(?000809@8) for API level 2 would be 2g@g@g@@, for example. Only levels
g, 1, 2, or 3 are allowed.

For device DV with unit number @, the not-ready message would be
printed as follows:

DV@ NOT READY)

Return from the CTRL R subroutine will either be normal (step 1#) or
skip one location (to step 11).

DZM CTRLR

If the Monitor's CTRL R subroutine does not skip on return (returns
here), it is because the request to set up a not-ready condition was
not honored. This would happen if, for this job, a not-ready condi-
tion had been established for some other device. No gueueing
mechanism exists; thus, two simultaneous not-ready conditions for a
job will result in a job terminal error, .ERR @g@g4. When return is
to step 1f, the Monitor has already posted the .ERR @g@4 printout re-
quest.

DBK
JMP * NRMSG

If the Monitor has honored the request to set up a device-not-ready
condition, step 1@ will have been bypassed. Debreak from API level
zero or one. Reread section 7.4 if this device operates at level

Zero or one.

Steps 12 through 18 contain the code for subroutine F.CTLR and B.CTLR.

7-25

12.

13.

14.

15.

16.

17.

18.

F.CTLR 2 /Entry point
B.CTLR=F.CTLR
For a single-user handler, the same subroutine can be used for Fore-

ground and Background, as indicated by the equivalence statement.

Prior to entering this routine, the Monitor was called by the handler
to set up a not-ready condition for this device. A not-ready message
was printed on the appropriate job control Teletype and the CTRL R
function for that job was primed by storing ARG4 or ARG5S, as appropriate,
(see step 9), in the Monitor's Foreground CTRL R or Background CTRL R

register,

Note that this has the effect of a pseudo-.SETUP call. If CTRL R is
now typed on the appropriate job control Teletype (the user's way of
posting a "done" flag), the corresponding CTRL R register in the Moni-
tor acts like an API channel register. The Teletype handler raises

to the designated API priority level and then performs a JMS to this
subroutine. The subroutine must -be entered at API level zero, one,
two, or three. Prior to entering this subroutine, the Teletype handler
will clear the relevant Monitor CTRL R register to disable CTRL R

until another not-ready condition is established.

DZM CTRLR

Clear the handler's not-ready-condition-in-progress flag.

Test for device ready or not. If ready, go to step 16.

JMS NRMSG
The device still isn't ready. Reestablish the not-ready condition
and then exit by going to step 17.

Execute the IOT(s) that were deferred for this device, i.e., start
I/0 up again.

DBR
JMP * F.CTLR

Debreak and return to the Teletype handler. Note that the AC need
not be restored.

CTRLR §
The "CTRL R in progress" flag must initially be cleared. It must
also be cleared in the STOPIO subroutine and in the .INIT code. For a

single-user handler, only one CTRLR register is needed.

7.9.2 L.INIT Consideration

WORD 36 of the I/O handler is an identification code which is zero for most
handlers. Only if the code is -1 (777777)! will the Monitor allow .INIT to be

processed by a busy handler.

In the latter case, the handler must test its CTRLR flag (and then clear it) to
see if a not-ready condition existed for the device. If so0, the handler must

also clear the appropriate CTRL R register in the Monitor as follows:

LAC CTRLR

SNA
JMP OVER
LAC (.SCOM+67
TAD WORD11 /B = FGD; 1 = BGD.
DAC TEMP /.SCOM+67 = FGD; .SCOM+7@ = BGD.
LAC* TEMP /Address of FGD or BGD CTRL char. table.
TAD (4
DAC TEMP
DZM* TEMP /@ Monitor's B or F CTRL R.
OVER DzZM CTRLR /@ Handler's own CTRL R.

Note that .SCOM+67 points to the Foreground control character table in the Tele-
type handler and that .SCOM+7@ points to the Background control character table.
WORD 11 in the handler contains zero if Foreground and one if Background. The
CTRL R register for each job is the fifth entry in each of these tables.

7.10 THE .INIT FUNCTION

In order to satisfy the requirements of the disk and DECtape handlers, the FIOPS
routine in the FORTRAN Object Time System operates somewhat differently in
Background/Foreground from the way it does in the Keyboard Monitor. In Background/
Foreground, FIOPS will perform a .INIT to a given .DAT slot only the first time

the slot is referenced, not each time the direction of data transfer changes.

The .INIT-only-once change is necessary because DTA. and DKA. can perform non-
file-oriented I/C, that is, treat the DECtape or Disk as if it were MAGtape.

.INIT always resets the device to file-oriented mode and is, therefores avoided.

This change has ramifications for user-written device handlers, even if they are
strictly file-oriented handlers. .INIT can no longer be relied upon to signal
a change in the direction of data transfer. However, if .CLOSE is followed by
.SEEK, .ENTER, .FSTAT, .DLETE, .RENAM, .CLEAR, or REWIND (.MTAPE @), the trans-
fer direction is obvious anyway. Therefore, .INIT need only be used to tie the

!This is a necessary but not sufficient condition.

7-27

handler to its interrupt lines (.SETUP) and to abort I/O (after CTRL P, for
example) .

7.11 SEQUENTIAL MULTI-USER DEVICE HANDLER

7.11.1 Transition from Single-user Handler

To accomplish the transition from a single-user device handler to a sequential

multi-user device handler, the following procedures must be adhered to:

1.

The device handler must be the "A" version; that is, LPA., MTA., etc.,
as the Background/Foreground Monitor System will only allow "A" versions
to be connected to both jobs simultaneously. Also, this shareability
must be specified to the B/F System Generator.

The SWAP subroutine (pointed to by WORDZ of the handler) must set
both busy registers (WORD1l and WORD2) to prevent the Foreground job
from forcing itself in before the Background job has completed its
operation. This is in addition to and prior to its normal duties as
outlined in 7.5.1.

The handler's identification code, WORD36, should not be -1. If it
were, it would be possible for one job to abort the I/O operation of
the other.

There must be two unique STOP I/O subroutines, one for Foreground
(pointed to by WORD34) and one for Background (pointed to by WORD35).
Before executing the STOP I/0 procedures, both subroutines must first
determine if the I/O belongs to their respective jobs. This is done
by testing WORD1ll, (@=Foreground I/O, l=Background I/0O). They should
do nothing if the other job is in control.

In step 8 of the STOPIO routine, section 7.8, check the CTRLR flag
before clearing it. If the flag was set, call the I/O BUSY routine
in the Monitor (as in steps 15, 16, 17 of section 7.6) in case some
level of the Foreground job is I/O bound on this device.

Because the SWAP subroutine sets both busy registers (WORD1 and WORD2),
the CLEAR BUSY FLAG routine that sets up to have the flags cleared
during protected exit from the device handler (refer to steps 13 and

14 in section 7.6) must always setup to have both flags cleared.

The STOP I/O subroutines should also clear both busy registers.

7.11.2 Peculiarities

It is understood that in multi-user handlers, such as DTA., the Foreground has

a built-in priority. Therefore, it comes as no surprise that the Foreground job
can completely prevent the Background from performing DECtape I/O. For
sequential multi-user handlers, one might assume that Foreground and Background

I/0 operations would compete on an equal basis. This may not be the case.

It is possible, given the right set of circumstances, that Foreground never gets
a chance to manipulate the device, that Background never gets a chance to mani-
pulate the device, or that one program (not necessarily Foreground) does more

actual I/O to the device than an identical program running as the other job.

This situation should only become a problem when one or both jobs attempt con-
tinuous operation of the device. The "right set of circumstances" depends upon
where processing is in the Monitor's CAL handler when the current I/O operation

for the device completes (interrupts).

7.11.3 Use of the .WAITR Function

When a sequential multi-user device handler is being used by the Background job,

the Foreground job will become I/O bound if it attempts to use the same handler.

The .WAITR monitor function affords both the Foreground job and the Background
job a means of determining that the handler is available before requesting I/O
from and to it. This feature is only useful when the job has other things which
can be performed while it is waiting for the handler to free up.

The use of .WAITR in this manner is foolproof when executed in the Foreground.
This is not so in the Background because the Foreground job can regain control
after the Background .WAITR has been executed and before the ensuing Background
I/0 command.

7.12 EXTERNAL I/O BUFFERS

Device handlers which might require a great deal of buffer space may do well
to use the system's capability of setting aside I/0 buffers at load time. Only
multi-user or sequential multi-user handlers (the shareable "A" versions) may

utilize external buffers.

Buffer sizes required by each shareable handler are specified during system
generation. Buffers are set aside at load time by the Loaders either as a result
of a $FILES Keyboard command or, in lieu thereof, one per .DAT slot which

references the multi-user device handler.

7-29

Typically, the handler would test to see if it had a buffer for a given .DAT

slot before performing the I/O request. If not, it would call the GETBUF routine
in the Monitor to scan the buffer table, .BFTAB, for a usable free buffer. At
the end of the I/0 sequence, usually .CLOSE, the handler must relinquish the
buffer so that other handlers might use it.

7.12.1 Calling for a Buffer

At run time, the handler may obtain an external I/0 buffer as follows:

1. LAC* (.SCOM+56
DAC TEMP /Beware -- TEMP probably cannot be
/used by both the CAL and interrupt
/levels.
The address of the GETBUF subroutine in the Resident Monitor is in
.SCOM+56.
2. LAC* (.SCOM+1@2
ISA

Raise to API level zero or one. Reread section 7.4 if the handler

is already at level zero or one.

3. JMs* TEMP
argument

Call GETBUF with one argument:

Bit # = @# if Foreground
Bit @ = 1 if Background
Bits 1-5 =@

Bits 6-17 = Buffer size.

GETBUF will search .BFTAB for a free Foreground or Background buffer,
as specified, of a size equal to (or greater than, if necessary)
that indicated in the argument.

4. 1If a buffer is found, the address of the first word of the .BFTAB
entry is returned in the AC and the entry is flagged busy by the
GETBUF routine. If no buffer can be found, zero is returned in the
AC and GETBUF initiates a terminal error (.ERR @55) for the

job.

5. DBK
Debreak -- Reread section 7.4 if this is an API level one or zero

device.

7.12.2 Releasing a Buffer

The format of .BFTAB is given in Appendix IV. When the handler wishes to
relinquish a buffer, it does so by clearing the busy bit of the entry in .BFTAB.
Note that the address of the first word of this entry in .BFTAB is returned in
the AC by the Monitor subroutine GETBUF.

7.13 PDP-9/PDP~-15 COMPATIBILITY

7.13.1 Page Mode

The I/O handler description in this manual was written for page-mode operation,
which is valid only on the PDP-15.

Two coding requirements which are necessary for PDP-9 hardware may be omitted
for handlers that are to run in page-mode-only systems: (1) raising to API
level 3 and (2) double XCT .+1 following DBR (see 7.13.2). For page mode opera-
tion on a PDP-15, add a DBA (Disable Bank Addressing = Enter Page Mode) instruc-

tion as the first instruction in the handler's interrupt service routine.

7.13.2 Bank Mode

Since handlers that operate in the bank mode system must be able to run on both
a PDP-9 and a PDP-15 (assuming that the device exists on both machines), the

following PDP-9 requirements must be followed:

1. Do not insert a DBA instruction at the beginning of the interrupt
service routine.

2. If a device on the PDP-9 is connected to the PIC (Program Interrupt
Control) but not to API, then the interrupt service routine must raise
to AP1 level 3 before executina the ION instruction. On the PDP-15,
this raise to level 3 is done automatically by the hardware. Formerly,
when API hardware was optional on PDP-9 Background/Foreground, an "in
interrupt service routine" flag (.SCOM 35) was needed to signal that
state after the ION instruction was executed.

3. To allow API synchronization following a DBR instruction on a PDP-9,
the following exit sequence must be used:

DBR
XCT .+1
XCT .+1
JIMPpP*

7.14 DEVICE HANDLER LISTING

The following pages contain the assembly listing of a paper tape reader handler

(PRA.) for PDP-15 Background/Foreground operation.

ze-L

PAGE 1 PRA, pos -= PRA,

1 JTITLE == PRA,

2

3 /COPYRIGHT 1972, DI!GITAL EQUIPMENT CORPORATION, MAYNARD, MASS,
4

5 /PAPER TAPE READER 1/0 DEVICE HANDLER FOR THE

6 /PDP=15 BACKGROUND/FOREGROUND MONIYOR SYSTEM,

7

8 /THIS IS NOT THWE VERSION OF PRA, SUPPLIED WITH

9 /THE BACKGOUND/FOREGROUND SYSTEMS, IT IS ADAPTED

10 /{8y C, PROTEAU) FROM PRA, (WRITTEN BY D, LENEY

11 /AND M, SIFNAS) TO CONFORM TO THE DESCRIPTION

12 /OF A DEVICE HANBLER IN SECTION 7 OF THE PDP=15/30
13 /AND PDP=~15/40 MONITOR MANUAL, THE MAJOR DIFFERENCE
14 /BETWEEN THESE TWO VERSIONS IS THAT THIS ONE IS

15 /NOT PARTICULARLY AMENABLE TO CONVERSION FOR

16 /OPERATION IN PDP=9 BACKGROUND/FOREGROUND,

17

18 ,

39 /CHARACTERISTICS:

2 /
21 / 1, SINGLE-USER (NON-SHAREABLE) HANDLER

22 / 2, NON=FILE-QRIENTED (A TERM SOMETIMES

23 / TAKEN TO MEAN NON»RANDOM=ACCESS)

24 / 3, HANDLFS DATA MODES @ THROUGK 4

25 / 4, CAN USE CODE AND REGISYTERS IN COMMON

26 / ‘BY CAL AND INTERRUPT SERVICE

27 / 5, OPERATES ENTIRELY IN PAGE ADDRESSING MODE
28

29 JEJECT

€e-L

PRA,

7208

722121
702112

722124

702144

20212@

442000

- PRA.

RSF=702121
RRB=700112

RSA=7021¢4

RSB=700144

«SComM=122

IDX=18%

JEJECT

/SKIP IF READER FLAG IS SET,

/READ READER BUFFER INTO THE AC

/AND CLEAR THE READER FLAG,

/SELECT READER IN ALPHANUMERIC MODE,

/CLEAR THE READER FLAG AND THEN

/READ ONE 8-BIT CHARACTER (RIGHT
/JUSTIFIED) INTo THE READER BUFFER,
/SELECT READER IN BIMARY MODE,

/CLEAR READER FLAG AND THEN READ
/THREE 6-B!T CHARACTERS AND ASSEMBLE
/THEM INTO THE READER BUFFER TO FORM
/ONE 18=BIT BINARY WORD, IN THIS MODE,
/BIT 7 OF A TAPE LINE IS IGNORED) AND
/THE LINE 1S IGNORED IF BIT 8 IS

/NOT SET.,

/BASE ADDRESS OF THE MONITOR'S
/SYSTEM COMMUNICATION REGISTERS,

710X 1S USED INSTEAD OF 1SZ WHEN THE
/INTENT IS 7O Apn ¢ TO A REGISTER BUT
/NOT TO SKIP,

ve-L

PRA,

Vi R
RAVe
222
PRAG
d A
peaAes

PRILA
20de7

gl
getlia
20812
22713
P14
aneLs
CO71n
nazL7

x

XX XTI

JDVBOTLXL

eg8

103237
weeean
202000
Q0202
neA2nn
742240

743049
7472047

742249
740040
740240
742¢40
740040
7420240
742040
742040

> > > > > > > 0

>3 >> > > >

- PRA.

/THIS AND THE NEXT PAGE CONTAIN THE FIRST 37 OCTAL WORDS WHICH
/ARE STRUCTURED ACCORDING TO BGD/FGD HANDLER CONVENTION,

+GLOBL PRA,

/NOTE =~ A HANDLER MAY HAVE

PRA, JMS PRSWAP
P
v
2
e
X X

XX
XX

/WD
/WD
/WD
/WD
/WD
/WD
/

/W0
/WD

ONLY 1 GLOBAL SYMBOL,

NEaWNNFE D

~N O

1T 0 3 4 9

JMS TO SWAP SUBROUTINE

FGD BUSY REGISTER

RGD BUSY REGISTER

FGD CLOSE REGISTER

RGD CLOSE REGISTER

10N (SET BY CAL WANDLER) .
THIS IS AN UNUSED VESTIGE FROM PDPs9,
10N OR IOF OR DBR

RETURN POINTER

/START OF LIVE/BACKUP DATA REGISTERS

XX
XX
PRBCT XX
PARER XX
PTROM XX
PRLBHP XX
PTRWC XX
XX

/END OF DATA REGISTERS
JEJECT

/WD
/WD
/WD
/WD
/W0
/WD
/WD
/WD

10
11
12
13
14
15
16
17

JMP TO FUNCTION

WHOSE CAL (28FGD,4=BGD)

+DAT SLOT# - BTW BIT COUNT ‘

UNIT # AND CAL ADDRESS ~» PARITY COUNT
DATA MODE

LINE BUFFER ADDRESS

“WC OR BUFFER S12E POINTER

REAL TIME REQUEST

SE-L

PAGE

125
126
127
128
189
110
111
112
113
114
115
116

P2na,

el

@21
goc22
G223
gpz24
ggres
ap226
peaz27
gpa3n
ree3.

02232
2Rr33

ACL3a
goeds
20036

PRA,

2237
222492
ope41
po042

VDV VVBAUODT D

ol ol v

TV VO

ece

6P S
620517
602517
620621
600621
602517
620517
602265
602621
222000

620621
22ea00

2ga644
PB2644
200202

eos

20020
400025
703304
620037

-= PRA,

/START OF FUNCTIPN DISPATCH TABLE

R JHPOPRIN /Wl 28 - 1s,INIT
R JMP PRIGN /WD 21 - 2=,0PER~IGNORED
R JMP PRIGN /W0 22 - 3a3,SEEK~IGNORED
R JMP PRERS& /WD 23 - 4= ENTER=ERROR
R JMP PRERSG /WD 24 - 58, CLEAR=ERROR
R JMP PRIGN /WD 25 - 68,CLOSE~IGNORED
R PRJIGN JUMP PRIGN /WD 26 -~ 7=,MTAPE=~IGNORED
R PREAD UMP PRRED /W0 27 - 1P=,READ, REALR
R JMP PRERS /WD 30 - 11s,WRITE, ,REALW = ERROR
A PTRS? 2 /WD 31 - 122 WAIT, . WAITR
/ SINCE THIS FUNCTION 1S PROCESSED
/ ENTIRELY BY THE MONITOR, PRA, USES
/ THIS REGISTER AS A VARIABLE STORs
/ AGE == 5/7 ASCII CHARACTER POSITION.
R JMP PRERS /WD 32 - 13s,TRANRERROR)
A 2 /WD 33 - SAVED ,SCOM+35 (SET BY CAL HANDLER)
/ THIS IS AN UNUSED VESTIGE FROM PDP=9,
R PRSTOP /WD 34 - STOP FGD 1/0
R PRSTQP /WD 35 - STOP BGD 1/0
A 2 /WD 36 - HANDLER 1D = 2

== SWAP SUBROUTINE =~ AP! LEVEL 2 OR 3
«TITLE == SWAP SUBROUTINE -= AP] LEVEL @ OR 1%

/THIS SUBROUTINE IS ENTERED BY THE
/CAL HANDLER VIA WORD @ OF THIS 1/0
/HANDLER JUST PRIOR TO GIVING CoNTROL
/T0 THE HANULER AT THE APPROPRIATE
ZENTRY IN THE FUNCTION DISPATCH TABLE,

A PRSWAP

R XCT PRA,+5 /10N,

A DBK /FROM LEVEL ® OR 1 TO LEVEL 4,
R JMP* PRSWAP /RETURN 10 CAL WANDLER,

9€-L

PAGE

117
118
119
122
121
122
123
124
125
126
127
1238
129
130
131
132
133
134
135
136
137
138
139
14
141
142
143
144
145
14¢
147
148
149
152
151
152
153
154
155

PRA,

20743
ape44

fQrées
2RA4A
2an47
TSl
22451

20452
2753
2gz25a

AR
Pp 9k
FCeo7
rPesy
AENEA
zeey
2063

r!lg.'464

D VDT DU

0 TV

228

200673
p6COL6

221674
240212
120212
702101
207160
202351
200754
n42245
670517

728124
73144
72¢124
700104
722144
n22617
200617
pRweL7

20 0

VDDDVDV>>DVBO

V0D >>P > >

-= CAL PROCESSING =- APl LEVEL 4

WTITLE == CAL PROCESSING == APl LEVEL 4
/+INIT == CAL FUNCTION

/NOTE =- SINCE THE HANDLER 1,D, CODE (WORD 36) IS NOT =1, ,INIT
/CANNOT OVERRIDE A BUSY CONDITION, THEREFORE, NO CAL WILL BE »
/ALLOWED INTO PRA, UNTIL PRA, HAS CONCLUDED ITS INTERRUPT PROCESSING,

PRIN LAC (64
DAC#®# PRA,+16 /STANDARD BUFFER S!ZE=52(12)

/NOTE == THE TEST ON ,SETUP HAVING BEEN DONE AND, CONSEQUENTLY.,
/AT LEAST ONE ,INIT, IS BASED ON PRNIT BEING SET TO "JUMP PRIGN",
/THE FOLLOAING IS ONCE=-ONLY CODE; HENCE, THESE REGISTERS ARE USED
/LATER ON TO STORE DATA VARIABLES,

PRNIT LAC* (,ScOM+55 /ADDRESS OF MONITOR'S ,SETUP ROUTINE,
PRDTCT DAC PRECT /DATA WORD COUNT

PRCCT JMS# PRBCT /. SETUP - CHAR COUNT

PRDBP RSF /LATER DATA WORD POINTER

PRCKSM PTRINT /CHECKSUM (1OPS ASCIID)

PRDVS28PRCKSM /TEMPORARY STORAGE FOR PRDVS SUBROUTINE,
PRCNT LAC ,+2 /PARITY CHECK COUNTER
PTRAC LAC PRNIT /SAVED AC

PRCHAR JMP PRIGM /CHARACTER PROCESSED

JEND OF QNCE-ONLY CODE,

/TABLE OF 10Tt'S USED WITH THE VARIOUS DATA MODES, NOTE THAT

/5y 6 AND 7+ BEING POSITIVE VALUES, INDICATE ILLEGAL DATA MODES,

PTRIOT RSA /10PS BINARY /MODE @
R33 /IMAGE BINARY /MODE 1
RSA /10PS ASCI! /MODE 2
RSA /IMAGE ALPHA /MODE 3
RSB /DUMP MODE /MODE 4
PRER7 /1LLEGAL MODE /MODE 5
PRER7 /1LLEGAL MODE /MODE 6
PRER? /1LLEGAL MODE /MODE 7

JEJECT

Le-L

PAGE

156
157
153
159
162
161
162
162
164
165
166
167
168
169
179
171
172
173
174
175
17%
177
178
179
182
181
182
183
184
185
186
187
188
189

=
SEDESJANS I 0]
IS B

~N OO
Pal NI G

<

er”71
4 AN
22%73
7R 74
720775

2e776
gec77
eeliz
2r1dl

re1u2
PE1E3

T X0

X

T VDX

0 v

2210245
544226
741229
6272615

777777
242663
22%718
0452
1427246

222214
502675
741229
622104

120562
122562

0 >» 00

2 20DV >

o>» 020

0 0

-= CAL PROCESSING =-- API LEVEL 4

/«READ OR ,REALR == CAL FUNCTION

PRRED LAC PRNITY
SAD PRJUIGN
SKP
JMP PRERg®

/1F PRNIT HASN'T BEEN CHANGED
/T0 "JUMp PRIGN", THEN ,INIT

/WAS NEVER DONE,

/THE PRECEDING TEST WAS MADE TO INSURE THAT THE WANDLER 1S
/CONNECTED TC ITS INTERRUPT LINg BEFORE IT ISSUES 1oT!'S, i
/OTHERWISE, AN ILLEGAL INTERRUPT MIGHT RESULT THAT WOULD ABORT
/BOTH BGO ANC FGD OPERATION,

LAW =1

DAC PRIOWC
LAC PRLBWP
DAC PRDBp
CZ% KROTCT

/10PS BINARY WORD COUNT
/LINE BUFFER HEADER
/DATA

/CLEAR DATA COUNT

/THE DATA POUINTER IS NOW POINTING TO THE LINE BUFFER HEADER ADDRESS,
/FOR OUMP 40CE (M0DE 4) THERE IS N0 HEADER, SO DON'T CHANGE THE DATA
/POINTER, FOR 10PS BINARY MODE (MODE @) THE HEADER WORD PAIR MUST
/FIRST 3£ READ In FROM THE TAPE, SO DON'T CHANGE THE DATA POINTER,
/FOR IMAGE MODES AND FOR]OPS AScI! THERE 1S NO HEADER ON THE TAPEJ
/THEREFOKE, THE nATA POINTER MUST BE MOVED PAST THE HEADER WORD PAIR,

LAC PTRDM
AND (3

SNA

JMP PRNXR1

JMS PRNXWD
JMS PRNXWD

JEJECT

/DATA MonE
/CHECK FoR DUMP AND !OPS BINARY MODES,

/10PS BINARY AND DUMP MODES -« DO NOT
/INDEX DATA AREA POINTER,

/INDEX PAST LINE BUFFER HEADER

/FOR 10PS ASCI! OR IMAGE MODES,

8€-L

PAGE

19¢
191
192
193
194
195
196
197
198
199
220
201
2m2
203

PAGE

224
225
206
207
208
209
212
211
212
213
214
215
216
2”17
218
219
222
221
222
223
224
225
226

FRA,

2¢1¢4

22155

22126
24167
2¢117
77111
zg112
2eL1l3
22114
2z11s
Z211s
20117
72127
2z121

PRA,

zpl22
ogl1es
pgl124

7c125
7e12s
pe127
22132

Q00

DL DU

zas

202214
3402676
pa@127
742042
242153
740190
602617
777773
724C031
140047
142€51
140¢12
142013
142672

228

162050
777775
P40664

722314
502677
7408200
602441

-- CAL PROCESSING =-=- APl LEVEL 4

R PRNXR1 LAC PTRDwM /DATA MonDE

R TAD (LAC PTRIOT

R DAC .+*1

A XX)

R DAC PRIOT

A SMA

R JMP PRER7 /1LLEGAL DATA MODE,

A LAW =5 /5/7 CHARACTER

R DAC PTR57 : /COUNTER, _

R DZM PRCCT /CLEAR CHARACTER COUNT,

R DZM PRCKSM /CLEAR CHECKSUM

R nZM PRBCT /CLEAR ASCI! 8TH BIT SET COUNTER

R DZM PARER /CLEAR PARITY ERROR SWITCH .
R DZM PRXCrS /CLEAR "EXCESS 10PS BINARY DATA"™ FLAG.

-= COMMON EXIT =- AP! LEVEL 4 OR 2
WTITLE == COMMON EXIT == AP] LEVEL 4 OR 2

/THE 10PS BINARY INTERRUPT SERVICE ROUTINE MAY ENTER WERE wm=
/CODE IN COMMON WITH THE READ CAL,

R PRIOB6 DZM* PRDBP /CLEAR NEXT DATA WORD,

A PRIOB7 LAW =3 /10PS BINARY 3 BYTE COUNT,

R DAC PRIOBN
/1F THIS WERE THF TYPE OF DEVICE THWAT CAN BECOME NOT READY, THE
/RECOMMENDED CHEcK POINT WOULD BE MWERE, THE END~OF=MEDIUM TEST BELOW
/1S LIKE A NOT READY CHECK. WHEN A DEVICE IS DETECTED NOT READY,
/THE HANDLER REMAINS BUSY AND THE CAL FUNCTION IS NOT COMPLETED, ON
/END-OF-MEDIUM, MOWEVER, THE NOT READY INFORMATION IS RETURNED TO THE
/CALLER AND THE CAL FUNCTION IS COMPLETED, ENDeOF«MEDIUM IS ALSO
/CHECKED IN THE INTERRUPT SERVICE CODE,

A PROUT2 IORS /BIT 8 = 1 IN THE !ORS

R AND (102p /STATUS WORD MEANS

A SZA

R JMP PREOM /NO=TAPE-IN=READER,

JEJECT

6E-L

PAGE

227
228
229
232
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
245
247
245
249
250
251
252
253
254
255

12

PRA .

26131
20132
77133
7@134
7z135
72134
22137
ge14a
2Q141
72142
20143
02144
£0145
70146
00147
ge15@
#3151
28152
27153
22154
22155
g2156

70157

0

2e8

222720
705524
200006
542701
741200
602141
200722
705504
6002144
1402201
1420222
200723
240141
220201
340202
751200
602154
542679
740040
2020253
72334
400006

620007

V> VD>P>0V>VVDVVVDVVDVP>»>V0>» V0>

pel

-= COMMON EXIT =~ AP1 LEVEL 4 OR 2

/COMMON PROTECTER EXIT FOR CAL LEVEL (AP! LEVEL 4)
/AND INTERRUPT LFVEL (API LEVEL 2).

PRNOR LAC® (,SCcOM+182 /RAISE 70 MW]GHEST LEVEL ALLOWED

1SA
LAC PRA,.,+6
SAD (DBR
SkP
JMP ,+3
LAC (404gp0
1SA
PRCFLG JUMP ,+3
DZM PRA,+%
DZM PRA,+2
LAC (JMP ,
DAC PRCFLG
LAC PRA,¢1
TAD PRA,#+2
SNA!CLA
JMP ,+3
SAD PRSTPS
PRIOT XX
LAC PTRAC
DBK
XCT PRA.+6

JMP*® PRA,+7

/(AP1 2 OR 1),
/DOES WORD 6 CONTAIN A DBR?

/YES, THIS IS AN INTERRUPT EXIT,

/NO, THIS 1S A CAL EXIT,

/REQUEST A LEVEL 4 INTERRUPT TO

/ACTIVATE THE MONITOR'S DISPATCHER, ,
/SET TO #NOP" IF FLAGS ARE TO BE CLEARED,
/CLEAR BOTH THE FGD AND BGD '

/BUSY REGISTERS == ONLY 1 WAS SET,

/RESET PRCFLG TO SKIP THE D2ZM!'S,

/1F THE APPROPRIATE BUSY FLAG
/1S @ (THE OTHER ALWAYS IS 2)
/0R IF THE STOP 1/0 FLAG IS
/SET (NON=2), BYPASS THE 10T,

/READER 10T,

/RESTORE AC,

/FROM LEVEL 2 OR 4,

/10N (IF CAL EXIT) OR

/DBR (IF INTERRUPT EXIT),)
/RETURN POINTER, FOR CAL EXITS,
/THIS WILL RETURN TO A POINT
/CALLED nCALXIT" IN THE MONITOR,

ov-L

PAGE

256
257
258
259
260
261
262
263
264
265
266
267
268
269

271
272
273
274
275
276
277
278
279
289
281
282
283
284
285
286
287
288

11

26162

n2161
2p162
22163
2164
re16s
720166
Pn167

2o17~

22171

pe1iz
173
2E174
a7

b o}

zes

regaon

707762
242253
2001682
p40007
208741
g4eené
700112

740254

140678

22deu1
34¢002
741200
623517

> 0 VO V> >

T

D» 0D

-= INTERRUPT SERVICE == APl LEVEL 2

WTITLE =- INTERRUPT SERVICE =» APl LEVEL 2

/READER INTERRUPT SERVICE SUBROUTINE ==~ ENTERED AT API! LEVEL 2
/BY THE JUMS INSTRUCTION SET UP IN APl CHANNEL 1@ (CORE REGISTER 50),

PTRINT 2 /LL*P/B*MP+RETURN ADDRESS,
DBA /ENABLE PAGE MODE ADDRESSING,
DAC PTRAC /SAVE THE AC.
LAC PTRINT /SAVE THE LeP/BeMP#PC IN)
DAC PRA,+7 /WORD 7 (THE COMMON EXIT REGISTER),
LAC (DBR /STORE A DBR INSTRUCTION
DAC PRA,+6 /1IN WORD 6,
RRB " /READ READER BUFFER INTO THE
/AC AND CLEAR THE READER FLAG,
DAC PRCHAR /SAVE THE CHARACTER (BITS 12=17),

/THIS 1S THE FINAL INTERRUPT EXPECTYED FROM THE READER FOR TH1!S

/170 OPERATION, THEREFORE, I/0 HaS STOPPED. IN CASE IT WAS SET, CLEAR
/THE STOP 1/0 FLAG TO SIGNAL THE STOP [/0 ROUTINE THAT NO FURTWER
/INTERRUPTS WILL OCCUR,

DZM PRSTPS /CLEAR STOP SWITCH,

/1F THE APPROPRIATE BUSY FLAG IS ZERO (THE OTHER ONE MUST BE),
/THEN THE STOP 1,0 ROUTINE CLEARED 1T, IF SO, IGNORE THE INTERRUPT,

LAC PRA,s1 /CHECK FAR STOP SINCE LAST SELECT,
TAD PRAQ"Z

SNA /0K? _

JMP PRIGA /NO, IGNORE LAST READ,

JEJECT

Iv-L

PAGE

289
292
291
292
293
294
295
296
297
298
299
3IN2
321
322
303
3n4
325
326
327
308
3IZ29
310
311
312
313
314
315
316
317

12

PRA

?¥17e
177
pr2a

Y7271

K242
72243
rE244
7C225
P27 4
ce2¢7
egelr
Pp211
2212

72214
20213

U T X

2ZR

720314
520677
74¢272
677441

227214
342724
7240276
22dg54
742240
622216
6272213
604327
7427200

26C350

122562
620125

0 >» 0 >

> 0D VDIUV>>VDVDVDO

-= INTERRUPT SERVICE == APl LEVEL 2

/PROCESS THE INTFRRUPT. ‘
/CONTROL 4ILL GO TO THE 1,0 DONE LOGIC. IF NOT, MORE 1/0 WILL BE
JINITIATED BY 10T IN THE COMMON EXIT ROUTINE,

10RS

AND (120¢
S24A

JMP PREQM

IF AFTER DOING SO, THE 1/0 CALL 1S COMPLETE,

/READ 1QRS STATUS INTO THE AC,
/READER oUT 0F TAPE? (]0RSB831)

/SET EOM [N DATA BUFFER AND STOP REANING,

/DISPATCH ON THE DATA MODE AND PROCESS THE INTERRUPT,

PRDISY

LAC PTRDmM

TAD (JMP PRpD!S1
CAC .+2

LAC PRCHAR

XX

JMP PR10OB

JMP PRIMR

JMP PRIOA

NOP

/SERVICE ACCORDING TO DATA MODE,
/10PS BINARY

/IMAGE BINARY

/10PS AscllI

/IMAGE ASCII

/PROCESS [IMAGE BINARY OR IMAGE ASCI!! OR DUMP MODE,

PRIMR

LAC#® PROBP

JMS PRNXWD
JMP PROUT2

JEJECT

/STORE CHARAGCTER QR RINARY
/W0ORN IN DATA BUFFER,
/WORD COMPLETE SUBROUTINE
/NEXT CHARACTER

=L

PAGE

318
319
320
321
322
323
324
325
326
327
328
329
33¢
331
332
333
334
335
33¢
337
338
339
34z
341
342
343
344
345
346
347
348
349
35¢
351
352
353
354
355
356

13

FRA,

rp2la
70217
cpe2”

rge21

Pr222
2223
77224
£r22s
72225

VD0

©wz8

124312
744417
6€2125
242254

228672
7472200
620315
222452
744220
2627254
742010
742010
742910
742210
67050
227665
742228
742420
44727213
442012
441664
620125
447663
602264
2272250
742230
740210
522725
P42663
3472216
7413020
6023002

VP> VDDV FP>>VDDVDDIVDF>VDIV>>»>r.0>200>»

INTERRUPT SERVICE == AP! LEVEL 2

/PROCESS I0PS EINARY,

PRIOR JM5 FRPAR /COMPUTE PARITY AND EXIT IF NULL
SNLIRAL!FLL /81T 831 (BINARY FRAME?)
JMP PRCUT2 /NON=BINARY FRAME (IGNORE)
CAC PRCHAR /CHARACTER IN =5

/NEXT 6=B1T BYTE ROUTINE
LAC PRXCES /1S THIS EXCESS DATA?
SZA
JMP PRIORS /YES, IGNORE [T,
LAC® PRDRP /SHIFT EARLIER CHARACTERS LEFT
RAR'CLL
X0R FRCHAR /ADD TH1S CHARACTER T0 OTHER 1 OR 2
RTL
RTL
RTL
RAL
DAC#® PRDRP
LAC PRCNTH /CHECK CHARACTER PARITY
RAR /000 IF 81T 17s4
SNL /04K,
13X PARER /PARITY ERROR=SAVE BUT PASS CHARACTER
1DX PRBCT /T0 FORCE A PARITY CHECK,
1SZ PRIOBN /INDEX 3 BYTE [0OPS BINARY COUNT,
JMP PROUT? /STILL WORKING ON CURRENT DATA WORD,
152 PRIOHC /INDEX HWEADER WORD & COUNT,
JMP PRIOR4 /CURRENT DATA WORD COMPLETE,
LAC® PRDRP /CHECK IF THE WORD PAIR COUNT (WPC)
SWHA /1S LESS THAN THE WORD COUNT (WC),
RAL
AND (776
DAC PRIOWC /TEMPORARILY STORE THE WPC,
TAD PTRWe
SPAISNA /WPC > WC, SHORT LINE, N
JMP PRIOR9 /WPC INTO PTRWC, NO SHORT LINE,

JEJECT

€Ev-L

PAGE

357
358
359
369
361
362
363
364
365
366
367
368
369
372
371
372
373
374
375
376
377
378
379
382
381
382
383
384
385
386
387
388
389
390
391

14

PRA,

L2256
720257
AP 267
re261
202672
263
G264

7r26s
20264
np267
P27
re271
rg272
20273
20274
20275
ne276
20277
er3on
031
22302
20323
eelia

223E5
ag326
2g307
22312
20311

Pl

P i s B e ¢ I s V)

0D LBV

oes8

20?2706
122626
777776
342663
747001
040663
222252

342251
P40351
442050
4402456
442016
682122
220663
752101
600452
240672
6807123
777777
340663
742801
040016
600264

442664
600125
440663
600123
600452

0 V>0 >V D

VWV>V>VVV>DV0DVD0DT0

VBV ODDO

INTERRUPT SERVICE == APl LEVEL 2

PR1OB4

PRI0BY

LAC (60
JMS PRDVS
LAN =2

TAD PRIOWC
CHMA

CAC PRIOWC
LAC® PRDRP

TAD PRCKSM
CAC FRCKsM
10X PRDBp
10X PRDTCT
1SZ PTRUWC
JMP PRIORS
LAC PRIOKC
SMAICLC
JMP PRIOBE
DAC PRXCFS

JMP PRIOR7.

LAW =1

TAD PRIOKC
CMA

DAC PTRWe
JMP PR10OR4

/WC STAYS IN PTRWC,
/SET DATA VALIDITY BITSsSHORT LINE,

/SET UP PRIOHC TO SKIP EXCESS DATA

/DATA WORD=THIS INSTRUCTION 1S USED
/AS A LITERAL,
/ADD TO CHECKSUM

/INDEX DATA WORD POINTER
/INDEX DATA WORD COUNT
/INDEX WORD COUNT

/NEXT DATA WORD

/EXCESS DATA?

/NO, .
/SET "EXCESS DATA"™ FLAG,
/RESET 3 BYTE COUNT.,

/WPC INTOD PTRWC

/COME HERE T0 BYPASS EXCESS BINARY DATA WHEN THE USER LINE:
/BUFFER IS SHORT,

PRI0BS

1S2 FRIOBN
JMP PROUT?2
1SZ PRIOKC
JMP PR10R7
J4P PRIORE

JEJECT

/INDEX 3 BYTE COUNT
/INDEX EXCESS DATA WORD COUNT,
/END OF BINARY BLOCK

pv-L

PAGE

392
393
394
395
396
397
398
399
422
401
422
423
424
425
476
427
428
4269
419
411
412
413
414
415

15

PRA,

22312
Ze 313
772314
22319
72314
7¢317
2432
22321
77222
r7323
20324
7L3e%
70325

DL LLOUDLODO0D0DUDU

228

a2eane
777770
242052
142665
20¢ep54
741242
682125
74022¢@
7414720
4472665
440052
622321
627312

VDVVDO0OF>»>V>202020> >

== INTERRUPT SERVICE ==~ API LEVEL 2

/SUBROUTINE PRPAR == EXIT TO PROUT2 IF THE 8«BIT CHARACTER PRCHAR IS
/NULL (ZERQ), IF NOT, COUNT THE NUMBER OF 1 BITS, THE SIGNIFICANT
/RESULT IS THE EVEN OR 0DD PARITY (BIT 17) IN PRCNT1,

/

/CALLING SEQUENCE!

/

/ JMS PRPAR

/ (RETURN 1F CHARACTER IS MON=2)

PRPAR z
LA4 =10 /PARITY COUNTER («8)
DAC PRCNT
D2M PRCNT1
LAC PRCHAR
SNA
JMP PRCUT?2 /NULL
RAR
SZL .
10X PRCNTL /1 BT COUNTER
1SZ PRCNT
JMP =4
JMP® PRPAR

JEJECT

Sv-L

PAGE

416
417
4138
419
420
421
422
423
424
425
426
427
428
429
432
431
432
433
434
435
436
437
438
439
44¢
441
442
443
444
445
446
447
448
449
454

16

PRA,

720327
728332
20331
22332
72333
7e334
22335
27336
72337
P24
20341
77342
@2343
cel344
702345
22346
2¢347
ne35sa
22351
25352
722353
72354
207355
72354
2357
12369
72361
np362
AP 363
72364
KT

208

2000216
7401082
622405
200254
502707
540710
622125
540711
600125
540712
600125
102312
741420
442012
442047
200665
7400202
741400
442013
102425
5028727
5427¢7
602125
100522
122425
741100
602125
200C47
542713
620124
1005749

VDV VVV>VDVDVODVIDV>P»VVDVP>VVIVDVDVDVVDODO>D

-= INTERRUPT SERVICE == AP] LEVEL 2

/PROCESS [0PS AScl!

PRIOA

LAC
SMA
JMP
LAC
AND
SAD
JMP
SAD
JMP
SAD
JMP
JMS
SZL
10X
10X
LAC
RAR
SZL
10X
JMS
AND
SAD
JMP
JMS
JMS
SMA
JMP
LAC
SAD
JMP
JMS

PTRWC

PRASE3
PRCHAR
(177
(12
PROUT2
(13
PROUT2
(14
PROUT2
PRPAR

PRBCYT
PRCCT
PRCNTL

PARER
PRENRT
(177
(177
PROUT2
PRPKS57
PRENDT

PROUT2
PRCCT
(1
PRNXRY
PRPAD

JEJECT

/SEE IF EXCESS DATA
/YES

/1GNORE L INE FEED
/1GNORE VERTICAL TAB

/1GNORE FORM FEED
/COMPUTE PARITY AND EXIT IF NULL

/8TH Blvel, ADD TO COUNT
/PARITY COUNT=SHOULD BE EVEN
/NOT EVEN PARITY

/CONVERT ALTMODES

/DROP ALL BUT 7 BITS

/DELETE cODE (RUBOUT)=IGNORE

/PACK INTO LINE BUFFER IN 5/7

/NEXT Ascl! CHARACTER

/1GNORE SINGLE CARRIAGE RETURN LINE
/PAD LAST DATA WORD PAIR

9¥-L

PAGE

451
452
453
454
458
456
457
458
459
462
461
462
463
464
465
466
467
468
469
47¢
471
472
473
474
475
476
477
478
479
4892
481
482
483
484
485
486
487
488
489

17

7366
77367
v RTT
cer7
2377
PEI73
Ar74
A
AT A
377
24t
Tr4¢
Al V]
L R
Cpans

BEAEH
22404
2g4€7
rg41”
2méa1q
#2412
rga1y
zed14
22415
720416
27417
ppAa2y
ne421
20422
22423
zg424

L VIV ALADLLL0DLTDI X

200014
547714
607472
124577
222012
542447
622401
22v013
742200
220715
122606
200014
242716
742222
622477

102425
751121
602472
3472050
24¢e50
777422
522252
242717
262052
440050
22721215
502706
242706
5402726
102626
602125

VP> VTV IUV>P>V VDV DODIODD

VVVVDVIVDVDV>>»>VD0DVB>D

~-= INTERRUPT SERVICE == APl LEVEL 2

/END OF

19PS ASC11I,

/0UMP MATE LINE,

PRASE

PRASE4

/10PS ASCII

PRASES3

LAC PYRDw™
SAD (4

JMP PRIORB
JMS PRHELD
LAC PRBCT
SAD PRCCT
JMP FRASF4
LAC PARER
SEA

LAC (2¢
JMS PRDVS
LAC PTRDOM
XOR (2

SZA

JMP PR]ORB

JMS PRENNT
SPAICLAICMA
JMP PRIORB
TAD PRDBp
DAC PROBp
LAW 17402
AND*® PRDRP
XOR (33
DAC* PRDRP
12X PRDBp
LAC* PRLRHP
AND (60

XOR (62

SAD (62

JMS PROVS
JMP PROUT2

JEJECT

IMAGE ASCII,

EXCESS DATA

IMAGE 3INARY, AND

/DUMP MQDE,)

/SET UP LaBeH @4 WaP,Co*D M,
/01D ALL CHAR'S HAVE BIT 8

/NO = IopS ASCI! CHECK PARITY
/YES = ASSUME NON [0OPS ASCI!1
/PARITY FRROR

/NO

/YES

/PARITY FRROR SET VALIOITY BITS

/10PS Ascll

/END LINE

To BE IGNORED,
/SKIP TQ END LINE

/POINTS t0 LAST CHARACTER

/PUT CARRIAGE RETURN IN LAST WORD PAIR
/1IN CASE MORE BEFORE CARRIAGE RETURN

/1F DATA VALIDITY BITS HAVEN'T ALREADY
/BEEN SET, SET TO INDICATE SHORT LINE,

Ly-L

PAGE 18 FRA, Jop] -= INTERRUPT SERVICE == aP] LEVEL 2

49¢ /SUBROUTINE PRENNT == CALLED FOR lOPS ASCI!, IF AN ALTMODE 1S IN
491 /PRCHAR, 1T 1S CHANGED (IN THE AC) FROM 33 OR 176 TO THE STANDARD
492 /175, IN ADDITION, IF THE CHARACTER 1S CARRIAGE RETURN OR ALTMODE,
493 /BOTH LINE TERMINATORS, THE NUMBER IS SET NEGATIVE SO THAT IT CAN
494 /BE TESTED ON RETURN,

495 /

496 /CALLING SEQUENCF1

497 /

498 / JMS PRENRT

499 / (RETURN)

502

501 CZ42% R 202202 A PRENDT @

502 ©Wg426 R 200054 R LAC PRCHAR

523 np427 R 532727 R AND (177

504 20430 R 542722 R SAD (15 /RETURN

505 2A¢431 R 762215 A LAW 15

526 20432 R 542721 R SAD (175 /ALTMODE

507 72433 3 760175 A LAW 175

508 2434 R 540722 R SAD (176 /ALTMODE

509 20435 R 760175 A LAW 175

512 7436 R 542717 R SAD (33 /ESCAPE

511 #2437 R 763175 A LAW 175

512 72744, R 622425 R JMP# PRENDT

8¥-L

PAGE

513
514
515
516
517
518
519
52
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
54
541
542
543
544
545

19

PRA,

LT XTIV ITIBVDTTTDL

DDV UVLXTBITTDO

T

Ps]

228

20¢214
542714
602472
547716
109570
122577
500723
242724
267215
200012
542¢£47
6204460
200213
752270
622478
222215
5208776
740200
622472
276351
741229
602472
202715

342715

122626

VV>P>» DIVP>VDVIV>P>VVDVD0VDDDOVDITIVDODO

0

20

==]/0 DONE LJGIC =~ AP] LEVEL 4 OR 2

/END OF

PREOM

PRIOBE

PR10OB5

PRIOSP

WTITLE == 1/0 DONE LOGIC == APl LEVEL 4 OR 2

PAPER TAPE ROUTINE,

LAC
SAD
JMP
SAD
JMS
JMS
AND
XOR

PTRDM
(4
PRIORB
(2
PRPAD
PRHEAD
(777762
(6

DAC® PRLBHP

LAC
SAD
JMP
LAC

PRBCT
PRCCT
PRIORS
PARER

SZAICLA

JMP

FRI0BP

LAC#® PRLRHP

AND
SZA
JMP
LAC
SNA
JMP
LAC

TAD

JMS

(60

PR10ORB
PRCKSM

PRI0RB
(22

(2¢

FROVS

JEJECT

/CHECK DaTA MODE
/DUMP MODE WAS NO HEADER))
/THEREFORE, 1GNORE END=OF=MEDIUM.,

/10PS ASCll1ePAD LAST WORD PAIR,
/SET UP WORD @ OF MWEADER,

/MASK ALL BUT MODE B!TS,

/AND SET THE MODE BITS TO
/INDICATE END=OF=MEDIUM,

/10PS BINARY WILL

/ALWAYS CHECK

/PARITY,

/PARITY ERRQOR(S)
/WORD @ oF LINE BUFFER HEADER,

/VALIDITY BITS ALREADY SET

/NORMAL END CF LINE
/CHECKSUM ERROR ew SET DATA
/VALIDITY BITS (12#43) = 10,
/PARITY ERRQR == SET DATA
/VALIDITY BITS (12=13) = 24,
/SET DATA VALIDITY BITS,

6v-L

PAGE

546
547
548
549
552
551
552
553
554
555
556
557
558
559
562
561
562
563
564
565
566
567
568
569
57¢
571
572
573
574
575
576
577
578
579
587
581
582
583

20

FRA,

zg472
72473
32474
2475
72476
12477
22502

2¢501
QE22
22523
205¢4
725485
729266
205¢7
#A51¢
77511
22512
2513
r1514
72515
"1516

2¢517
7527

"gH21

P VEb tRp VI 0]

p D Vvl

DXLV LI

208

220725
za4ags71
220729
725504
222726
120671
723324

202217
741200
602517
202727
5420172
741222
620517
2227382
¢an671
220722
725504
202217
120671
703374

222731
£42141

620131

> D0>0 0T

>0V 0V>VVDIVVD>>VDDDLP>»>D

»= 170 DONE LOGIC == AP! LEVEL 4 OR 2

/1S THIS DEVICE TNVOLVED IN AN 1/0 BUSY SITUATION? THE !OBUSi
/RQUTIME T4 THE MONITOR WILL ANSWER THAT QUESTION AND WILL CLEAR

/THE CONDITION By REACTIVATING THE FOREGROUND LEVELS THAT WERE BUSY.

PRIOBB LAC® (,ScOMe52 /ADDRESS OF THE MONITOR'S
DAC PRTMp1 /1/0 BUSY TESTER,
LAC® (,ScOMe1@2 /RAISE To LEVEL 2 OR 1,
ISA
LAC (PRA, /(WORD 2,
JMS® PRTMPY
08K /FROM LEVEL @ OR 1,

/CHECK IF THE COMPLETED 1,0 CAL 1S A REALeTIME REQUEST,

LAC PRA,s17 /NONe@ IF REAL=TIME,

SNA

JMP PRIGH /NOT REALR,

LAC (JMP PREAD

SAD PRA,+1d /JMP FUNCTION

SKP / REALR,

JMP PRIGM /NOT REALR,

LAC® (,SnOMe¢51 /ADDRESS OF THE MONITOR'S
NAC PRTMpY /REAL TIME PROCESSOR,
LAC® (,ScOMe1@2 /RAISE T0 LEVEL 2 OR 1,
1SA

LAC PRA,#17 /CALL REALTP TO QUEUE THE
JMS# PRTMPY /REAL=TIME SUBROUTINE,
DBK

/SET UP T2 CLEAR THE BUSY FLAG DURING PROTECTED EXIT, THIS IS
/DONE RECAUSE /0 HAS COMPLETEOD, BECAUSE 1/0 HAS BEEN ABORTED
/(STOP!0), BECAUSE THIS IS AN IGNORED CAL FUNCTION, OR BECAUSE
/THIS CAL FUNCTIoN WAS IGNORED DuE TO AN ERROR,

PRIGN LAC (NOP
NAC PRCFIG

J4P PRNOR

0S-L

PAGE 21 PRA, 238 -= MISCELLANEDJUS SUBROUTINES == APl LEVEL 4 OR 2

584 WTITLE =« MISCELLANEOUS SUBROUTINES == AP! LEVEL 4 OR 2
585

586 /SUBRQUTINE PRPKS7 =« PACKS 5/7 10PS ASC!! DATA, PRIOR TO THE FIRST
587 /CALL,) PTR57 MUST BE INITIALIZED TN «5,

588 /

589 /CALLING SEQUENCFI

593 /

591 / CHARACTER IN THE AC

592 / IN BITS 141 THROUGH 17

593 / JMS PRPKR7

594 / (CONCITIANAL RETURN)

595 /

596 /RETURN wlLL NOT OCCUR IF THE WORD COUNT 1S EXHAUSTED,
597

598 22522 R 202002 A PRPK5?7 ¢ /CHARACTER IN AC BJITS 11=17,
599 PPS23 R 742030 A SWHA /MOVE To AC BITS @=6

620 22524 R 742017 A RTL

671 n2525 R 242852 R DAC PRTMP

622 A2526 R 77777. A LAW »7

623 1P527 R 240665 R DAC PRLPCT .

624 20537 R 2280252 R PRPKBK LAC PRTMp /ROTATE CHAR LEFT

625 27531 R 740210 A RAL /7 BITS THROUGH

606 nPE532 R 242252 R DAC PRTMp /THE DOUBLE WORD

677 73533 R 200667 R PRBCK2 LAC PRRTWF /ACCUMULATOR

6028 *y534 R 7420210 A RAL /PRLFHF /PRRTHF,

679 #7535 R 742667 R DAC PRRTWF

61e Y536 R 202666 R LAC PRLFKF

611 27537] 742310 A RAL

612 7754¢ R 042666 R DAC PRLFWF

613 79541 R 200665 R LAC PRLPCT

614 79542 R 745200 A SNALCLL

615 #2543 R 602551 R JMP PRPDAE /2 WORDS ALL SET,

616 70544 R 442665 R ISZ PRLPCT /1S 7 TIMES COUNT EXHAUSTED?
617 720545 R 600530 R JMP PRPKRK /NO,

618 79546 R 4437231 R 1SZ PTR57 /D0 WE HAVE % CHARACTERS?
619 @2547 R 622522 R JMFP#® PRPkS57 /NO, EXIT

629 ARS57 R 622533 R JMP PRBCk2 /YES, SHIFT LEFT ONCE MORE,
621

622 JEJECT

1S-L

PAGE

623
624
625
626
627
628
629
632
631
632
633

22

PRA

"RS51
2552
2503
7554
10559
74556
22557
cvs5ep
561

LIV D

DT T DU

228

220666
2620852
122562
222667
262252
1724562
777773
wa2p31
620522

D 0>VIDDIVO

== MISCELLANEOQUS SUBROUTINES == API LEVEL 4 OR 2

PRPONE

LAC FRLFKWF /PLACE ACCUMULATED

DAC#* PRDRP /2 WORDS INTO

JMS PRNXWD /USERS LINE BUFFER,

LAC PRRTWF /UPDATING POINTERS,

JAC#® PRDRP

JMS PRNXWKD

LAA »5 /RESET 5 CHWARACTER COUNTER,
DAC PTR57

JMP® PRPK57
JEJECT

26-L

PAGE

634
635
636
637
638
639
64y
641
642
643
644
645
646
647
646
549
65¢
651
652
653
654
655
656
657
658
659
6692
661
662
663
664
6€5
K65

23 PRA,

40562
70563
27564
Ap565
#0565
18567

2u57"
12571
"p572
*A573
720574
rp37
20376

008 L T

x

ae8

280200
444050
442046
440216
620562
622366

220227
777773
542031
62757¢
7522720
1272522
627571

VBV O>

V20> 200> >

-» MISCELLANEQUS SUBROUTINES == APl _EVEL 4 OR 2
/SUBROUTINE PRNXWD == INDEXES DATA POINTER AND WORD COUNTS,
/
/CALLING SEQUENCE1

/
/ JMS PRNXWD
/ (CONDJTIANAL RETURN)
/
/RETURN WILL NOT OCCUR IF THE WORD COUNT IS EXHAUSTED,
PRNXWD @ N
10X PRDBP /INDEX TO NEXT DATA WORD,
IDX PRDTET /ADD TO DATA WORD COUNT,
ISZ PTRWe /WORD COUNT EXHAUSTED? -
JMP#® PRNYWD /NO, EXIT FOR NEXT CHARACTER, o
JMP PRASE /EXIT To END OF IOPS ASCI! LINE ROUTINE,

/SUBROUTINE PRPAD =~ PADS LAST WORD PAIR (IN IOPS ASCII) WITHW NULL
/(ZERO) CHARACTERS,

/

/CALLING SEQUENCE!

/

/ JMS PRFPAN

/ (RETURN)

PRPAD ?

PRPAGN L[AW =5 /1S LAST WORD
SAD PTR57 /PAIR FuLL?
JMP# PRPAD /YES, EXIT,
CLA /NO, INSERT ANOTHER
JMS PRPKS7 /NULL CHARACTER,
JMP PRPAgGN

JEJECT

€G-L

PAGE

667
668
669
67¢
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
666
687
688
6893
694
691
£92
693
694
695
696
697
695
699

24

PRA,

20577
7Q6UN
20621
2g622
7623
20624
aN6VS

APRLA
oY)
2261
“2611
2612
76613

78614

T LA LT xXxD

228

200022
200046
742230
744220
240014
262015
620577

naecond
242251
777717
520315
2420251
062915
622616

TV V> >0 >

20020 20>» 0 >

»o MISCELLANEOUS SUBROUTINES == AP! LEVEL 4 OR 2

/SUBROUTINE PRMEAD == SETS UP THE LINE BUFFER WEADER (L.B,H,) WORD 2
/WITH THE WORD PAIR COUNT AND THE DATA MODE,

/
/CALLING SEQUENCE!

/
/
/

PRHEAD

JMS PRHEAD
(RETURN)

2 -
LAC PRDTeY
SWHA

RCR

XQR PTRDM
DAC® PRLRHP
JMP® PRHEAD

/WORD COUNT (INCLUDES L.B.H,)

/WORD PAIR COUNT (BITS 1«8),
/DATA MoDE,

/SUBROUTINE PRDVS == SETS DATA VaLIDITY (D,V.) BITS IN THE
/LINE BUFFER HEADER WORD 2,

/
/CALLING SEQUENCED

NN N NN\

PRDVS

SATA VALIDITY BITS (12413)
SEY TQ DFSIRED VALUE IN THE AC

JMS PRDVS
(RETURN)

7]

NAC PRDVS?2
LAW 17717
AND® PRLBHP
XQR PRDVe2
DAC*® PRLAHP
JMP® PROVS

/SAVE DATA VALIDITY BITS, ,

/MASK ALL BITS IN THE LINE BUFFER WEADER WORD
/@) EXCEPT IGNORE CHECKSUM BIT (8) AND D.V,
/817TS (12,13), ADD IN PARITY ERROR, CHECKSUM
JERROR, OR SHORT LINE,

ve-L

PAGE

7¢e
771
702
7?23
774
705
706
727
768
729
712
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

25

Fra,

0615
77516
a1y
7627
ge21
rre22
7R623
70624
"pe25
7n625
reé627
P63
Tpé3
27632
27633
725634
74635
70636
70637
2644
70641
20642
72643

£28

7660260
741009
766227
741000
766006
240637
200d11
744020
200637
7424 2
24C732
240637
202213
G464y
220733
240671
220702
705524
742040
1272671
7400740
703324
6223517

VD>>VP>>VDVDDVDVVOVD>V> DO PP >

== ERRORS ==~ AFl LEVFL 4

«TITLE =~ ERRORS == APl [EVEL 4

/ERRCR ROUTINE =w ALL READER ERRORS ARE DETECTED AT THE CAL LEVEL,

PRERKEZ LAw 6060
SKP

PRER?Y LAW 6807
SKP

PRERS LAW 6006
GAC PRERAMR
LAC PRA,+11
RAR
LAC PRERPR
SNL
XOR (3kda
DAC PRERAOR
LAC PARER
DAC PRAUX
LAC® (,ScOMeb6
CAC PRTMp1L
LAC® (,ScOM+102
1S4

PREROR xX
JMS® PRTMPY

PRAUX XX
NRK
JMP PRIGN

/,INIT NOT PERFORMED,
/1LLEGAL DATA MQODE,

/1LLEGAL CaL FUNCTION,
/TEMPORARY SaVE,
/WHOSE calt #sFGDJ 1sBGD,

/1S 17 FeD? -
/YES, CHANGE BGD ERROR To FGD ERROR,

/PUT CAL ADDRESS IN THE AUXILIARY
/ARGUMENT FOR PRINTOUT,

/ADDRESS OF THE MONITOR'S

/ERROR QUEUER,

/LAW ERROR # ¢ JOB AT FAULT,

ZAUXILTARY ARGUMENT,

/BACK To LEVEL 4,

/1GNORE THE CAL BY CLEARING
/THE BUSY REGISTER,

SG-L

PAGE 26 PRA, 208 -» STOP10 SUBROUTINE == MAINSTREAM

728 WTITLE =~ STOPIO SUBROUTINE == MAINSTREAM

729

73p /STOP 1/1; SURROUTINE == OPERATING AT MAINSTREAM BY VIRTUE OF A CALL

731 /FROM WITHIN THE FOREGROUND OR BACKGROUND ERROR ROUTINE IN THE_

732 /MONITOR, THE MONITOR WILL CALL THIS ROUTINE ONLY !F THE APPROw

733 /PRIATE JOB BUSY FLAG (WORD 1 OR 2) INDICATES THAT 1/0 IS UNDER

734 /WAY, 170 CANNOT BE STOPPED BY I1SSUING AN 10T) THEREFORE, A WAIT

;gs /LOOP MaY NEED Tn BE EXECUTED UNTIL THE FINAL INTERRUPY WAS OCCURRED,
6

737 rpk44 R C2ODVO A PRSTOP ¢

738 27e45 R 227702 R LAC* (,ScOMe1P2 /RAISE TO LEVEL @ OR 1,

739 0pkd4e R 705504 A 1SA

740 npE47 R 208C241 R LAC PRA,s1

741 Cp652 R 340002 R TAD PRA,#2

742 72651 R 042670 R DAC PRSTPS /SET STOP SWITCH ACCORDING TO BUSY REGISTER,

743 70652 R 142271 R DZM PRA,+1 /CLEAR BUSY FLAGS,

744 #2653 R 140002 R DZM PRA,+2

745 zré654 R 142003 R DZM PRA,#3 /CLEAR CLOSE SWITCHES,

746 2655 R 140224 R DZM PRA,+4

747 FR6%6 R 703324 A DRK /DEBREAK BACK TO MAINSTREAM,

748 72557 R 200672 R LAC PRSTPRS /WAIT LooP, FALL THROUGH

749 70662 R 742220 A SZA /WHEN No FURTHER INTERRUPTS

752 0e661 R 608657 R JMP =2 /WILL OCCUR,

7;1 20662 R 620644 R JYP# PRSTOP /RETURN TO THE MONITOR'S ERROR ROUTINE.

752

783 /TEMPORARY REGISTERS,

754

755 22663 R 0OOCOD A PRIQHC 2 /10PS BIN, WDL COUNT

756 20664 R 220000 A PRIOBN 4 /10PS BIN 3 BYTE COUNT

757 20665 R 202200 A PRCNTL 2 /1 BIT COUNTER FOR PARITY CHECK

758 pZe052 R PRTMPEPRCNT /TEMP, STORAGE FOR 3/7 CHAR,

759 p20665 R PRLPCTSPRCNTY /ROTATE 7 BITS COUNTER,

760 72666 R 2020020 A PRLFHF 2 /2 WORD ACCUMULATOR FOR

761 2¢667 R 220000 A PRRTHF ¢ /5/7 WORD PAIR,

762 266772 R Q02000 A PRSTPS ¢ /STOP UNDERWAY SWITCH

763 70671 R PCR07D A PRTMPL 7 /GENERAL TEMPORARY REGJSTER, §

764 20672 R 220022 A PRXCES ¢ /10PS BINARY EXCESS DATA FLAG, @ = DATA

765 /01K,3 NONe@ = IGNORE EXCESS DATA,

96=-L

PAGE

766
767
768

27

PRA,

70673
2674
Ze675
AgeT6
An677
Ze7232
zg7¢1
re7¢2
zZ0793
72724
ng7d5
32766
~a7837
20712
rc711
“Ag712
2g713
24g714
2p71%
20716
2717
ap722
20721
rR722
28723
Ap724
12725
m724
~2727
U730
2731
~g732
Ap733

DX D0 IRV IV VDIV IDIDIDVITIOLIVDILDVDLDUODDOD

2e8

8ede23
200264
A20155
eregas
296855
ea1¢ea8
002222
733344
4040%0@
622144
622227
2ea776
2eeo6d
2088177
pCO212
ageess
28LB14
rez2e21
pezece
vaceze
322002
Z2eea33
PERELS
220175
2p@176
777768
0angas
222152
goacan
622027
222151
742232
203722
Zne166

5126320734

P>V >r>rrorrrrrPrrrrrrO0>»rr>»I>»r»r»»

oL
L
i
Ll
sl
L
sl
oL
oL
oL
L
sl
oL
oL
oL
oL
oL
oL
oL
oL
oL
oL
oL
oL
sl
oL
sL
oL
L
oL
oL
oL
oL

LITERALS
+TITLE == LITERALS
JEND

NO ERROR L INES

LS=-L

PAGE

10X
PRASE4
PRCCT
PRCNT
PROTCT
PRENDT
PRER6D
PRIMB
PR108BB
PRIORS
PR10B7?
PRJIGN
PRNIT
PROUT2
PRPONE
PRRTHF
PRTMP
PTRAC
PTRWC
RSB

28

440807
2401
09047
APE52
20044
2g425
02615
02213
00472
20305
7123
CA026
r745
72125
2551
np667

200752
nor5
014

707144

PRA,

P UIJIOT IV VDV IVDUDUVUDDI>

208

PARER
PRAUX
PRCFLG
PRCNTY
PROVS
PREOM
PRER7?7
PRIN
PRIOBE
PRICRA4
PR1OB?
PRLEHP
PRNOR
PRPAD
PRPKBK
PRSTNP
PRTMP1
PTRDM
PTR57
RSF

== LITERALS

00043
20641
20141
Pp665
0606
pr44l
pe617
00043
20452
pr264
PR320
00215
pgi31
20570
22530
pr644d
gn671
Pp044
20231
700101

> ODVVVDUTVDIOVDI VDIV IUVBLIO

PRASE
PRA,
PRCHAR
PRDBP
PROVS2
PREROR
PRHEAD
PRIOA
PRIOBN
PRIOBS
PRIQHC
PRLFHF
PRNXRL
PRPAGN
PRPK57
PRSTPS
PRXCES
PTRINT
RRB
«SCOM

po366
pReaQ
P2p54
20050
peoasy
00637
20577
po327?
C0e664
w2460
PR663
00666
22104
208714
eps22
PAe72
22672
0462
700112
2eo4102

PP VDV DDDITTVTDIHIBIDIOITIDDIDD

PRASE3
PRBCK2
PRCKSM
PRD1S1
PREAD
PRERS
PRIGN
PRIOB
PRIOBP
PR10B6
PRIOT
PRLPCY
PRNXWD
PRPAR
PRRED
PRSWAP
PR8CT
PTRIOQT
RSA

2p4025
Pp533
goost
Ba2w?
Re@27
2621
20517
Bp216
2p470
@o122
2pLs3
e@0665
2p562
2e312
0065
2037
Pno12
Rpp55
700104

»BVDVDVXVVIVOVDDOVDIODODOD

8s-L

PAGE

PRA,
PRLBHP
PTRS7
PROTCT
PROVS2
PRCHAR
PRNXRY
PRNOR
PRDIS1
PR1I0BY
PRASE
PREOM
PR10BB
PRBCK2
PRPAGN
PRER7
PRSTOP
PRLPCY
PRTMPY
RSA

29

agler
28215
32931
NAp4s
219e51
@254
azieg4
6131
39207
29327
Ag365
FR441
rEe72
20533
nes571
32617
20644
220665
20671
7720124

e
hv]
B

U VDV BDOVDVLDIDNDDH00D332VD

228

PRBCY

PTRWC

PRSWHAP
PRCCT

PRCNT

PTRIOT
PRICBS
PRCFLG
PRIMB

PR]OBC
PRASZ 4
PR{OBE
PRIGN

PRPDNE
PRHEAD
PRER®6

PRIOHC
PRLFHF
PRXCES
RRB

== L ITERALS

298312
22216
08837
00847
00852
padss
22122
27141
90213
pal3es
po4py
20452
22547
20551
29577
pa621
20663
Pa666
82672
700112

PDUVDVDIIVDVVDVDDVODVIJV000D

PARER

PRJIGN

PRIN
PRD3P
PRTMP
PRRED
PR10B7
PRIOT
PR10B
PRPAR
PRASES
PRIOBS
PRPKS7
PR&X&D
PRDYS
PREROR
PRIOBN
PRRTHF
10X
RSB

22313
28p26
23243
28359
209252
28265
28123
29153
29216
80312
20405
PB468
9522
26562
28406
Pas37
o664
20667
440¢02
709144

PP VDV VVIDBDDIVODVDDIDDD0IT

PTROM
PREAD
PRNIT
PRCKSM
PTRAC
.SCOM
PROUT2
PTRINT
PRIOB4
PRIOA
PRENDT
pRIOBP
PRPKBK
PRPAD
PRER6SO
PRAUX
PRCNTY
PRSTPS
RSF

20214
Bea2?
0p045
poes1
29053
200100
29125
00162
03264

. Be327

08425
20470
Ba530
2es70
Ppse5
D964
0p665
99678
700101

D DVDDVDDVDVIDI>»> DD

6S-L

PAGE 3
1DX

PARER
PRASE
PRASE3
PRASF4
PRAUX
PRA,

PRECK?2
PRCCT
PRCFLG
PRCHAR
PRCKSM
PRCNT
PRONTY
PRNRBRF

PROIS1
PROTCY
PRDVS
PRDOVS2
PREAD
PRENDT
PREOM
PREROR
PRERSG
PRERG6Q
PRER7
PRHEAD
PRIGN

z DA,
44324 47 %
4581
73212 74
72364 454w
f2435 4,0
23441 467
&4 717
PTapn 53
251
571
Q2537 6uTle
A2T47 135e
7141 238#»
(2254 141
ApA51 137w
A2252 139s
20665 338
J2257 138w
475
mJ207 371
MPB4h 134w
geegs 358
002851 133
fag27 92
ng425 4137
n2441 224
02637 779
20621 83
72615 161
ng617 152
fes577 457
22517 6568

341
644
222
648
4724
4650
7244«
59
253
717
62¢
199
242
271
138
403
474
171
476
J05a
172
464
694
563
442
296
712
89
7244
153
522
87

342
645
344

114
266
742

432
581
323
209
411
412
209
478

368
4886
697

472

5147w

715
93

154
6758
9@

CROSS REFERENCE

367

436

126
268
741

445

323
365
758
433
312
480

645
543
S521a

722w
99

196
681
91

358

461

232
283
743
459

332
366

7574
332
481
676
6934
512

708%
7064
141

410

529

239
284
744
527

425
536

759
337
624

699

286

431
716

240
554
745

421

347
627

562

432

243
560
746

502

363
644

566

436

244
564

367

580

Continued on next page.

09-L

PAGE 3§

PRIMR
PRIN
PRIOA
PRIOB
PRIOBSB
PRIOBE
PRIOBN
PRIORP
PRIORS
PR10OB4
PRIOR5
PRIOBS6
PRIOR7
PRIORY
PRIOHC
PRIOT
PRJIGN
PRLEHP
PRLFHF
PRLPCT
PRNIT
PRNOR

00213
70243
20327
70216
22472
20452
02664
02470
28305
20264
pAee™
ne122
ne1ee
22307
00863
c2151
70026
72215
10666
22665
26045
70131

PRA.

726
346
85
327
325
454
373
211
531
329
345
528
27290
217w
354
169
194
91e
76%
612
673
133»
237w

CROSS REFERENCE (Cont.)

312«
1254
418s
320
468
389
343
5414
3854
363
5324
3702
375
376w
345
2484
159
17
612
613
149
583

474
526a
385

380

338

351

482
623
616
158

519 535 538 550

756w

k1Y 362 371 377 387

525 532 680 696 698
760
759

7554

T9-L

PAGE

PRNXR1
PRNXWD
PROUT2

PRPAD
PRPAGN
PRPAR
PRPDNE
PRPKBK
PRPKS?
PRRED
PRRTHF
PRSTOP
PRSTFS
PRSWAP
PRTMP
PRTMPY
PRXCES
PRBCT
PTRAC
PTROM
PTRINT
PTRIOT
PTRKC
PTR57
RRB
RSA
RSR
RSF
+SCoM

31

PRA,
fg104 184
20562 186
gZ125 2214

447

20857¢ 448
pB571 6594
20312 327
n3551 615
22537 674w
nP822 441
ABR6S 92
00667 607
P2644 172
age7n 247
3237 59
pAALS?2 61
nvé71 551
ne672 243
peeL2 734
ARSI 142
o2014 754
16 137
2IP55 (47w
APRq 4 77w
10231 94w
7732112 31#
702124 33e
700144 37w
770121 The
gratgn 450

738

192+«
187
315
444
521
664
401«
6234
617
568«
1584
529
123
278
113»
624
555
327
134
249
181
261w
191
352
198
269
147
148
136
133

447
314
322
487
6584

413

619

626
737
742
116
606
568
374
135
264
19@
265

369
618

149
151

230

CROSS REFERENCE

625
344

661

429

634
761
751
748
7584
572
7644
281
3202
379
630

152

552

628
386

663

7624

719
342

454

418
6672

552

6434

427

723
431
465

646

567

647

424 426
7638

458 526
517 679
569 718

428

720

SECTION 8

SYSTEM GENERATION

8.1 INTRODUCTION

Master PDP-15 Background/Foreground Monitor systems are supplied to customers in
an executable binary form on a single DECtape. The Master system represents an
immediately usable system; however, it is recommended that the user perform a
system generation procedure using the Master system, a system generator program,
and command inputs to produce a working Background/Foreground Monitor system
conforming to the user's specific equipment and software needs. The required
system generator program is listed on the Master system under the file name
"BFSGEN SYS".

8.1.1 BFSGEN, Generation and Update Features

The program BFSGEN can perform two optional functions:

1) SYSTEM GENERATION. - This function enables the transfer of a system
of selected software from the Master system to some intermediate,
file structured, mass storage device (DECtape or Disk). Normally,
the transferred system will not conform to the requirements of the
installation on which it is to be used; however, it is in a form
which is easily modified (i.e., updated).

2) SYSTEM UPDATE. - The update function of BFSGEN enables the user to
modify both hardware and software parameters of a generated system.
This feature must be used when building the initial system. Update
may also be used to modify a previously generated system to meet

new hardware or software requirements,

8.2 BFSGEN DEVICE REQUIREMENTS

System generation operations must be performed between two similar I/O devices
(e.g., DECtape to DECtape); dissimilar devices (e.g., DECtape to DISK) cannot
be used.

8.2.1 DECtape Masters

Both Disk and DECtape system Masters are supplied on DECtape. For both types
of Masters, system generation may be performed directly from the Master DECtape
to a system DECtape.

For an installation with a Disk, the user may first transfer the Master system
from DECtape onto a Disk unit, using utility program PIP or RFSAV (refer to

PDP-15 Utility Manual DEC-15-YWZA-D). An example of the required PIP command

string follows:
8-1

C DK4 «DT3 (H))
System generation is then performed between Disk units. The resulting system
should be copied onto DECtape for backup purposes, using either PIP or RFSAV

(refer to Utility manual).

8.2.2 Loading BFSGEN

BFSGEN uses the following .DAT slots: .

.DAT slot Used for...
-14 > Input from Master tape
-15 a) Output of a generated system
b) Input/Output of system to be
updated.
-3 > Teletype output
-2 > Teletype input

Initially, one must run the system supplied on the Master tape since this is the
only way the System Generator program can be loaded and run. The following two
steps must first be performed:

1. If the tape is a Disk Master, the system must be installed onto
Disk unit zero from the Master tape by using the utility program
RFSAV (refer to the PDP-15 Utility Manual, DEC-15-YWZA-D) or by
performing a COPY using PIP running under the Advanced Monitor

System.

2. Then, whether the operating system resides on DECtape or on
Disk, follow the procedures in paragraphs 5.2.1 and 5.3.1 to
bring in the Monitor and to load IDLE in the Foreground.

The remaining steps indicate how to load the System Generator in the Background.

This is similar to Advanced Monitor System operation.

3. When the Monitor is ready to accept commands on the Background
control Teletype, it prints:

BKM15 V3A
$

4. If the Master tape is on DECtape transport 4 and a scratch tape
(onto which a generated system is to be output) is on DECtape
transport 5, for example, perform the following:

SASSIGN DT4 -14
$ASSIGN DTS5 -15
$BFSGEN

When the System Generator is loaded and running, it will print out:
B/F-15 SGEN Vxx

8.3 SYSTEM GENERATION PROCEDURES

The System Generator consists of modular sections of code. The operation of each
is discussed individually in the following paragraphs.

8.3.1 Section A -- Initialization
Summary: The user is asked if he would like to run in brief mode.
If he answers no, a summary of System Generator rules is
typed out.
Operation: When the System Generator has been loaded into core and

is started, it will type:

BF-15 SGEN Vnn
BRIEF MODE? (Y/N)

In the brief mode the System Generator will abridge the
messages it types out. The user must respond by typing

Y (meaning YES) or N (meaning NO). If YES, the remainder
of Section A is bypassed and processing goes to Section B.
If NO, the System Generator types out a summary of
operating rules and from then on all messages are printed

in expanded form.
The summary of operating rules is typed out as follows:

.DAT SLOT ASSIGNMENTS:

WHEN GENERATING A NEW SYSTEM, A B/F MASTER MUST BE ON
THE DEVICE ASSIGNED TO .DAT SLOT -14. A NEW SYSTEM WILL
BE BUILT ON THE DEVICE ASSIGNED TO .DAT SLOT -15.

WHEN UPDATING AN OLD SYSTEM, THAT SYSTEM MUST BE ON THE
DEVICE ASSIGNED TO .DAT SLOT -15.

KEY-IN CONVENTIONS:

STATEMENTS THAT REQUIRE A RESPONSE END IN EITHER A
QUESTION MARK (?), AN ANGLE BRACKET (>), OR A SQUARE
BRACKET (]).

QUESTION MARK (?)-- A YES OR NO ANSWER IS REQUIRED. TYPE
'Y' FOR YES OR 'N' FOR NO. IN BRIEF MODE, A QUESTION MARK
MAY BE TYPED TO CAUSE THE QUESTION TO BE RESTATED IN AN
EXPANDED FORM.

ANGLE BRACKET (>)-- A PARAMETER (NAME, SET OF NAMES,
OR A VALUE) IS REQUIRED. TYPE THE PARAMETER AND TERMINATE
WITH A CARRIAGE RETURN. **

SQUARE BRACKET (]) --A PARAMETER HAS BEEN TYPED OUT
ENCLOSED IN SQUARE BRACKETS ([]). THE PARAMETER MAY BE
ACCEPTED AS IS BY TYPING A CARRIAGE RETURN, OR IT MAY BE

ALTERED BY RETYPING THE ENTIRE PARAMETER TERMINATED BY A
CARRIAGE RETURN. **

8-3

RESTART:

TYPING A 4P WILL RESTART THE SYSTEM GENERATOR. THIS SHOULD
ONLY BE DONE WHILE BFSGEN IS WAITING FOR A TYPE IN.

** THE PARAMETER IS READ IN IOPS ASCII. I.E., RUBOUT & 4U
EDITING AND ALTMODE TERMINATION ARE POSSIBLE.

8.3.2 Section B --

System Selection & Read-in

Summary:

Operation:

IS THIS AN

The user is asked if this is to be a system generation
or an update of a previously generated system. If a
new system (generation) is wanted, the requested
system is transferred to the output device from the
Master system.

The following question is typed:
UPDATE OF A PREVIOQOUSLY GENERATED SYSTEM?

If the user types Y (for YES), most of Section B is
bypassed and processing continues with the reading
of information from a previously generated tape (see
below) .

If the user types N (for NO), the System Generator
copies the Master system onto the output device. As
this is being done, the System Generator informs the

user

SYSTEM BEING TRANSFERRED

When the transfer is complete, BFSGEN reads selected
blocks of information from the generated system and
enters its update prase. While this is being done,
BFSGEN types:

SYSTEM INFORMATION BEING READ

This information is then presented to the user during
the update process as assumed parameter values. For

instance, if the system was built for a machine with

three Teletypes, one of the parameters will be:

NUMBER OF TTY'S [3]

which the user may either accept or change.

8-4

Once the system parameters have been read in, BFSGEN will type:

8.

3.3

A 4P TYPEIN WILL RETURN CONTROL AT THIS POINT

Section C -- System Parameters

Summary :

Operation:

The user is asked if he would like to change or see
the system parameters. If he answers yes, each
parameter is typed out with the parameter value
enclosed in square brackets. The user may accept or

retype each value.

At the start of Section C, BFSGEN types:

DO YOU WISH TO CHANGE (OR SEE) SYSTEM PARAMETERS?

expecting the user to type Y (if YES) or N (if NO).
If NO, the old parameter values are retained and

operation continues at Section D.

If YES, each parameter is listed with its assumed
value and a response of acceptance (carriage return)
or correction (typing new value) is expected. The
following table lists the parameters in the order in
which they are typed out and also the legal values
that may be typed in.

NOTE

System core size information is obtained from the
"multicore" paper tape bootstrap.

PARAMETER

NUMBER OF TTY'S [XX]

TTY #N IS A MODEL KSR[XX]
BCONTROL [XX]

FCONTROL [XX]

RAISE TO LEVEL [X]

$SHARE [X]

FCORE [XXXXX]
FGD tC CONFIRMER [X]

ACCEPTED VALUES

«e.s N (Note 1)
or 35 (Note 2)
re++/N-1 (Note 3)
re--,N-1 (Note 4)
(Note 5)
(Note 6)
..., core size (Note 7)
(Note 8)

lu:lw
w ~

-

’

-

<IN K = ==
12 jw |2 [~ |- =

-

NOTE 1:

The maximum number of Teletypes the system will allow is a
function of a parameter assignment made during assembly of
the Resident Monitor. For the initial system generation, the
maximum number is assumed and will appear within the brackets.

NOTE 2:

Teletypes are logically numbered @ to N-1, where N is the value
of the first parameter (number of Teletypes). For each
Teletype, the parameter is printed in order to verify or
determine that it is a model KSR33 or a model KSR35. ASR33
Teletypes are considered to be KSR33 and ASR35 to be KSR35.

NOTE 3:

The Background control Teletype may be any logical unit from
@ to N-1, where N is the value of the first parameter
(number of Teletypes).

NOTE 4:

The Foreground control Teletype may be any logical unit from
@ to N-1, excluding the unit number assigned to the Background
control Teletype.

NOTE 5:

All system software will raise to API level g for reentrancy
protection! unless the user wants complete control over
level @. If such is the case, he must specify that all system
software will RAISE TO LEVEL 1.

NOTE 6:

The initial setting of the SHARE flag is determined at
system generation time.

NOTE 7:

The initial setting of FREE CORE is determined at system
generation time. 2 is the lowest value required.

NOTE 8:

One of the two jobs, Background or Foreground, can cause the
Monitor to be reloaded once CTRL C has been typed the first
time on the Foreground control Teletype. That job is
designated as the 4C Confirmer?. This parameter is phrased in
the form of a question and asks is the Foreground job the

4C Confirmer.

8.3.4 Section D -- Existing I/O Devices
Summary: The user is asked if he would like to change or see the

known I/O devices. If he answers yes, the devices
which must exist are listed followed by the devices
which exist but may be deleted from the system.

A question mark is typed following the listing of

lsee section 7.4.
’See section 3.4.

each device which may be deleted, and the user must
indicate whether or not each shall be kept by typing

"Y" or "N".
Operation: BFSGEN begins Section D by typing:
DO YOU WISH TO CHANGE (OR SEE) KNOWN I/O DEVICES?
expecting the user to respond with Y (if YES) or N
(if NO). 1If NO, the existing devices are retained and

operation continues at Section E. If YES, the following

question is typed out:
DO YOU WISH TO SEE MANDATORY I/O DEVICES?
expecting a response of Y or N.

If NO, operation continues with the expendable devices

(see below).

If YES, the mandatory devices are listed along with

relevant information:

-- (CLOCK) (Note 1)
API (Note 2)
SKIP IOT 789891 (Note 3)
API CHNL 11 (Note 4)

-- (MEMORY PROTECT)

PI
SKIP IOT 7¢17#81

MNEMONIC MPSK (Note 4)
TT (TTY CONTROL) (Note 2)
API

SKIP IOT 799491
MNEMONIC TSF#
SKIP IOT 7¢¢391
MNEMONIC KSFg

CO (CORE-CORE)

NO (NONE)
DT (SYSTEM DEV) (Note 5)
API

8-17

SKIP IOT 7¢7601

API CHNL @4

SKIP IOT 787561

API CHNL @4 (Note 6)

NOTE 1:

The system clock and the memory protect hardware must exist and
are, therefore, listed. They are devices which do not have
assignable handlers and do not have device names. Their names,
therefore, are shown as --.

NOTE 2:

The designation API or PI is printed to indicate how the device
is attached to the interrupt hardware of the machine. The
Teletype device (TT) always includes the console Teletype which
is not attached to the LT19 and operates always on PI. Tele-
type is the only device in the system which is allowed to

receive interrupts on both PI (console) and API (LT19 Teletypes).
The core to core device (CO) and the device NONE (NO) do not
utilize IOT instructions and do not generate interrupts.

NOTE 3:

SKIP IOT's for each device are listed, whether the device is on
PI or API, for two reasons: First, if the device is on PI, the
skip IOT's must be placed in the IOT skip chain located in the
Resident Monitor so that interrupts for that device can be de-
tected. That, however, is insufficient because the Monitor must
then transfer to some core location where the interrupt will be
processed. Since all but the resident device handlers are loaded
relocatably from the system's I/0 library, the linkage between
the device handler and its interrupt lines must be made after
the handler has been loaded into core. The handler does this by
calling the .SETUP routine in the Resident Monitor. For each
call it passes on two arguments: a skip IOT and the entry point
address of the routine to service the interrupt.

Figure 8-1 illustrates how the linkage is made. If the device is
on API, the System Generator nlaces a JMS* TV instruction in the
channel register for the device. The address, TV, is some

fixed slot in the Monitor's tranzfer vector table. In the same
relative position as the transfer vector, the System Generator
places the associated skip IOT in a register in the SKIP IOT
table. If the device is on PI, the skip IOT is placed in the
skip chain (as well as the skip IOT table) and is followed by the
instructions SKP and JMP* TV.

When the .SETUP routine in the Monitor is called, it searches

the skip IOT table for the first argument (the skip IOT) and then
stores the second argument (the address of the entry point of the
interrupt service routine) in the corresponding transfer vector.
Transfer vectors initially contain the address of an error routine
which traps illegal (unserviceable) interrupts.

!The LT15 Teletype control is equivalent, from a éoftware point of view, to

the LTI19.

NOTE 4:

If a device operates on API, the API channel number (channel
address-40) is given following the skip IOT. If the device
operates on PI, the skip IOT mnemonic is printed, later to be
used to reorder the skip chain.

NOTE 5: ‘
In a DISK system, the system device is DK (instead of DT for
DECtape) .

NOTE 6:

Sometimes more than one skip IOT is listed for a given API channel
because DEC-supplied handlers are written to operate with or
without API. 1If two skips must appear in the skip chain, the
handler makes two calls to .SETUP. This sets up two transfer
vectors, only one of which is referenced by the instruction in

the channel register.

8.3.4.1 EXPENDABLE (DELETABLE) DEVICES - Once the mandatory devices have been
(optionally) listed, a check is made to see if any other devices exist. If not,

the following is typed out:
ALL EXISTING DEVICES ARE MANDATORY
and then processing goes on to Section E.
1f deletable devices exist, the following is typed out:
THE FOLLOWING DEVICES EXIST. INDICATE (Y/N) TO KEEP

Then, for each expendable device, BFSGEN types a 2-letter device mnemonic

followed by a question mark, e.g.,
Lp?

The user must then type Y (meaning YES) in order to keep the device or N (meaning
NO) to delete it. If YES, then the device parameters are typed out in the same

format as the mandatory devices, e.g.,

LP? Y

API

SKIP IOT 7@6501
API CHNL 16

API CHANNELS

.

4 [JMS* DTDFTV |

v

.

one or the other

SKIP CHAIN \\\\\\\\\s

-

DTDF (skip if DECtape
SKP done)

[JMP* DTDFTV___|

-
.

MONITOR

TRANSFER VECTORS

1 ERR | €

P

SKIP IOT TABLE

HANDLER

INTERRUPT SERVICE

INTSVC O

.INIT ROUTINE

JMS* (.SETUP
DTDF
INTSVC

FIGURE 8-1 INTERRUPT LINKAGES FOR I/O DEVICES

It is possible that a user may want to keep an existing device but change its
parameters (e.g., the skip IOT). In such a case, the existing device should be

deleted and then reentered as a new device (refer to 8.3.5).

8.3.5 Section E -- Additional I/O Devices

Summary: The user is asked if I/0 devices are to be added to
the system. If he answers yes, the device name,
skip I0T's, and skip mnemonics (or API channel

numbers) are requested.

Operation: Section E starts with the following typeout:

ARE I/O DEVICES TO BE ADDED TO THE SYSTEM?

to which the user must respond Y (for YES) or N
(for NO). If NO, processing continues at Section F.

If YES, the following instruction is typed:
PROVIDE PARAMETERS AND ANSWER SPECIFIC QUESTIONS

A series of requests are then made to obtain information about each new device.

The requests will include several of the following typeouts:

a. DEVICE NAME >

b. NUMBER OF INTERRUPTS SETUP >
c. API ?

d. SKIP IOT >

e. APT THNL >

f MNEMONIC >

The requests and "ypes of responses required are as follows:

a. First, the device name is requested. The user must type a 2-letter
name followed by a carriage return. The name must be unique; that is,

it must not be identical to that of an existing device.

b. The number of interrupt lines that will be set up is asked. This,
(referring to Note 3, Section D)is the number of calls the device
handler (s) will make to the .SETUP routine in the Monitor; this
is also the number of transfer vector table slots which must be
reserved, the number of skips which will appear in the skip
chain (for a PI device) and the number of skip IOT's for which

slots must be reserved in the skip table.

Specifying zero interrupts setup is legitimate; this indicates
that the device is not interrupt driven, (e.g., the CO, core-
to-core, device). If the reply is 0, no more parameters are

requested for such a device.

c. The user is asked if the device is connected to the API. The
reply must be either XQ_(for YES) or §2 (for NO).

d. A pair of questions are asked pertaining to skip IOT's and are
repeated for as many IOT's as were specified. The user is first
requested to type in the octal value of the skip IOT instruction.
Six digits are required in the answer and the IOT must be one

not previously used.

e. The second request, if an API device, is the API channel number
associated with the preceding skip IOT. The channel number may
be any number from 4 through 37 (octal) but it must not belong

to another existing device.

The same channel number may be used several times for a given
device in order to accommodate device handlers which set up
several skip IOT's and which are written to operate with or
without API'.

f. The second request, for a PI device, is to type in a mnemonic for
the skip IOT, to be used later if reordering the skip chain.
The mnemonic may be 1 to 6 printing characters and must be unique.

The mnemonic may be preceded by a minus sign to indicate a
negative skip IOT (skip if device flag is not set) and will
result in only a 2-word entry in the skip chain as opposed to
the normal entry of 3 (for a positive skip).

When all the parameters have been entered for a new device, the following
question is typed:

DO YOU WISH TO ADD ANOTHER DEVICE?

If the user replies N (for NO), BFSGEN will go on to Section F. If Y (for YES),

requests for parameters, as above, will be made for another device.

' !A hold-over from the PDP-9 where systems without API were supported at one time.

8.3.6 Section F -- PI Skip Chain

Summary : The user is asked if he would like to see or change the
skip chain. If yes, the old skip chain order is typed
out and then the user may retype the skip IOT's in
whatever order he chooses.

Operation: BFSGEN types the following question:
DO YOU WISH TO SEE OR CHANGE THE SKIP CHAIN ORDER?
If N (for NO), operation proceeds to Section G. If Y (for YES), the skip IOT
mnemonics are listed in the old order, minus those skips for deleted devices and
with new device skips appended to the end of the list. Then the user is asked:
DO YOU WISH TO CHANGE THE SKIP CHAIN ORDER?

If N, operation will continue at Section G. 1If Y, BFSGEN types:

RETYPE MNEMONICS IN DESIRED ORDER
>

The angle bracket (>) signals the user to type a skip mnemonic followed by a
carriage return. If he types an ALTMODE instead, the first unused skip in the
old skip chain will be typed out. BFSGEN will continue to type an angle
bracket until all the skips have been retyped.

8.3.7 Section G -- .IOTAB
Summary: The user is asked if he wishes to change (or see) the

parameters for I/0 device handlers. These are stored
in the I/0 table, .IOTAB, within the Non-resident
Monitor. 1If he answers YES, the name of each existing
device is typed out and the user is requested to

provide information about available device handlers.
Operation: The user is asked:
DO YOU WISH TO CHANGE (OR SEE) I/O HANDLER PARAMETERS?

If N is the reply, processing will continue at Section H. If Y, the following
is typed:

ACCEPT OR RETYPE THE FOLLOWING HANDLER PARAMETERS

Then, for each existing device, excluding NO (the null device), CO (core),
TT (Teletype), and the System Device (DT or DK), some of the following informa-
tion will be typed out for acceptance or revision:

a. DEVICE -- Z2Z
HANDLER NAME (S) [ZZA,2ZB,Z2C]

b. DEVICE-SHAREABLE ZZA? [Y]
c. EXT BUF SIZE [XXXX]
d. MAX OPEN FILES [XX]

e. UNIT-SHAREABLE ZZA? [N]

In the preceding list, the characters ZZ represent the 2-letter device name and

XX and XXXX represent octal quantities.
The order of requests and the type of responses required are as follows:

a. First, the device name is typed out with the existing handler names
enclosed in brackets. For a new device BFSGEN assumes at first
that there exists an "A" handler. The user may accept the list
of handlers by typing a carriage return. Otherwise, he must type
in a new list of names, each separated by a comma, and terminate
the list by a carriage return. Each handler name must be three
letters long. The first two letters must be the device name.

b. If ZZA, namely, the "A" version of the handler, is present, it is
asked if it is a multi-user (shareable) handler. An assumption is
enclosed in brackets. The user must either type a carriage return
to confirm the assumption or type YJ(for YES) or N) (for NO). A
shareable ZZA handler is one that may be used by both the Foreground
and the Background jobs simultaneously.

c. If ZZA is shareable, the external buffer size must be specified.
The old value or a default value will be enclosed in brackets.
Typing carriage return signals acceptance. Otherwise, the user must
type in a buffer size (in octal) ranging in value from 0 to 7777.
A zero buffer size is legal because some multi-user handlers may

not require external I/O buffers.

d. If ZZA is shareable, the open file capacity of the handler must
also be established. The value may range from 1 to 77 octal. For
certain I/O handlers, particularly the ones which do not require

external buffers, this count is meaningless. However, a value of

at least 1 must be entered.

8-14

8.3.8

Finally, if ZZA is device-shareable, it is asked if it is also
unit-shareable (with an assumption in brackets). The system device,
for example, DECtape, is unit-shareable. This means that if the
keyboard command $SHARE is typed to the Monitor, Background will be
allowed to assign and use any DECtape units which the Foreground
may be using. The responses which the user may give are the same
as for the question "DEVICE-SHAREABLE ZZA?"

Once all the device handlers have been specified, the System
Generator will check if the devices MT (MagTape) or LP (Line
Printer) are present. If so, it will type out a system parameter
related to the device and wait for the user to accept the parameter

or retype it as follows:
DEFAULT MT TRACKS [7]
#LP COLUMNS [XXX]

The Magtape is assumed to operate either as 7-track or 9-track
so the user may type 22 or 22. This "default" assumption is
entered in one bit in .SCOM+4 in the Resident Monitor, and that
bit is interrogated by the Magtape handlers in the absence of a
command from the user's program specifying the mode of operation.

The number of columns on the Line Printer can be 80, 120, or 132.
Two bits in .SCOM+4 can be interrogated to determine the above

information.

Section H -- .DAT Slots

Summary: The user is asked if he would like to change (or see)

the permanent .DAT table assignments for Background
(.DATB) and Foreground (.DATF). If he answers yes, he
must accept or retype the contents of each reassignable
slot.

Operation: The following question is typed:

DO YOU WISH TO CHANGE (OR SEE) BGD .DAT SLOTS?

After the Background .DAT table has been disposed of, similar questions will

be posed for the Foreground .DAT table. If the user answers N (NO) for the
Background table, processing continues with the Foreground table. If he

doesn't wish to see or modify the Foreground table, operation continues at

8-15

Section I. 1In eaci. case, if the answer is Y (YES), the following is typed:
ACCEPT OR RETYPE .DAT SLOT CONTENTS

The number and the contents of each .DAT slot will be typed out in the following

form:
~-10 [DTA3]

The assignment (DECtape "A" handler-unit 3) is enclosed in brackets to indicate
that it may be accepted or changed. The assignments in .DAT slots -7, -3,

and -2 will not be enclosed in brackets because reassignment is not permitted.

Typing carriage return indicates acceptance of the assignment. Otherwise, a new
handler/unit must be typed using the same rules as for the Background/Foreground

Monitor. For example,

-13 [DTA2] DTJ (meaning DTA@)
-12 [LPAP] TT5)D (meaning TTAS)
-11 [DTAL] CDBJ (meaning CDB@)

-19 [PRA@] TTA2)
The System Generator will initially assign NONE to Foreground .DAT slots which
refer to the Background control Teletype and vice versa and will reject user-

typed assignments of the same nature.

8.3.9 Section I -- Re-write System Information

At this point, all system modifications have been made in core. BFSGEN thus

informs the user:

SYSTEM INFORMATION BEING WRITTEN

and proceeds to transfer the modifications to the output device. When this has

been done, the message:

SYSTEM UPDATE COMPLETED
DON'T FORGET POST-GENERATION PROCEDURES

is typed and then the System Generator exits to the Monitor.

8.4 POST-GENERATION PROCEDURES

Once the System Generator has completed its task, the user may need to modify

the new system depending upon his particular hardware configuration:

8-16

50 Cycle Machines

Customers whose hardware operates on a line frequency of 50 Hz
should replace the 60 Hz versions of the subroutines TIME and
TIME1lO0 in the library, .F4LIB BIN, with the 50 Hz versions.
.F4LIB BIN as well as the 50 Hz versions of TIME BIN and TIME1l0
BIN ars on the generated Background/Foreground System. To do
this, return to the Monitor and assign .DAT slots -10 and -14

to access files from the generated Background/Foreground system.
Also, assign a scratch device to .DAT slot -15 and call in the
system program UPDATE. When UPDATE is ready for a command, type
the following:

> U « .F4LIBJ)

> R TIME)

R TIME10)
CLOSE

\%

A\

When UPDATE has returned to the Monitor, call in PIP. Using PIP,
delete the old .F4LIB BIN on the generated system and then trans-
fer to it the new .F4LIB BIN from the scratch device.

Note tinat the versions of TIME and TIME1O distributed with the
Background/Foreground System will not operate properly in any
other Monitor System nor will the other Monitor versions of TIME
and TIME10 work in Background/Foreground. This is also true of
the FORTRAN OTS routine called FIOPS, the Background/Foreground
version of which is in the library .F4LIB BIN.

Card Reader

The device handler CDB. BIN which is supplied in the system's I/O0
library, .IOLIB BIN, has been assembled for the CRO3B card
reader using the DEC029 character set. For customers who wish

to use the DEC026 character set, the source file of the card
reader handler, CDB. SRC, is present both on the Master system
and on the generated system. The source file may be conditionally

assembled by defining at assembly time the following parameters:

No parameters -- CRO3B and DEC029
DEC026 = 0 -- CRO3B and DECO026

The new binary of the card reader handler should replace the old

one in .IOLIB BIN on the generated tape. The commands to the

system program UPDATE are as follows:

8-17

> US <« .IOLIB)
> R CDB.
> CLOSE [ALTMODE

Note, the S command is a feature available in UPDATE V6A which

strips the internal symbol definitions from binary files and
thereby shortens the library. If an earlier version of UPDATE
is used, omit the S in the first command. The library may be

shortened at some later date.

After UPDATE has created the new I/0O library, use PIP, as in
part a. to replace the old library on the generated system.

Line Printers

The device handler LPA. BIN which is supplied in the system's I/0O
library, .IOLIB BIN, is for the LP1l5 line printer on the DECtape
and RF/RS disk systems and for the 647 line printer on the RB09
system. The following binary files appear on the system tapes in
case the library does not have the desired handler: ‘

LP.15 BIN (for the LP15)
LP.@9 BIN (for the LP@9)
LP.647 BIN (for the 647)

The commands to the system program UPDATE to replace the line
printer handler are equivalent to those shown in section 8.4b
above, with the appropriate line printer handler used in place

of the card reader handler.

The I/0 Library
In the process of updating a Background/Foreground System, the

user may have deleted some previously existing devices and
device handlers and also added new ones. Since the System
Generator does not modify the I/O Library, .IOLIB BIN, in the
generated or updated system, the user should use the system
program UPDATE to delete unwanted device handlers and to insert

new ones.

Recouping Tape Space

Provided that the user never modifies the Master of the Background/

Foreground System, space may be retrieved on the system "tape"
by deleting the following files using the Delete command in PIP:

TIME BIN (50 Hz version)
TIME10 BIN (50 Hz version)
CDB. SRC (Card Reader Handler)

These files are all present on the Master "tape".

8-18

f. Disk Systems

Once a system generation and update has been performed and a
useable Background/Foreground System has been built onto some
unit on the Disk, that Disk unit should be copied onto a DECtape
(or paper tapes) to provide a backup medium for restoring the
system. To dump a disk unit onto DECtape, use the Copy command
in PIP:

>C DTx+DKy (H))

The paper tape utility program RFSAV! may also be used to perform
the same function.

g. All Systems
To avoid possible grief due to loss or damage of tapes, the user
is urged to copy Master tapes and generated tapes to be kept as
backups.

8.5 ERROR DETECTION

The System Generator is a locative program, and any mistakes made by the user in
answering queries will result in a descriptive error message.

answer will be ignored and the question will be repeated.

The incorrect

Within the System Generator there is a safeguard function which should never be
noticed by the user. If a malfunction is detected, which could be the result

of a bad system tape or of a programming bug in the System Generator itself, the
following will be printed on the console Teletype:

SYSTEM CRASH
PLEASE +4Q &
SAVE TTY LOG

nnnnnn
000000

PPPPPP
If such a message should occur, the user is requested to perform a dump of core
memory by executing a CTRL Q (4Q). The dump can then be printed for diagnostic
purposes. The TTY Log is simply the entire printout that led to the error. The

six-digit octal numbers that are printed in the preceding message are:

nnnnnn = unrelocated address within BFSGEN where the error
was detected.

oooooo = runtime (relocated) address within BFSGEN where the
error was detected. Bits @-2 indicate the state of
the Link, Page/Bank Mode, and Memory Protect.

ppPPPP = the contents of the accumulator when the error was

detected.

This information would be an aid in tracking down the cause of the error.

lsee PDP-15 Utility Programs Manual, DEC-15-YWZA~D

8-19

APPENDIX I

.SCOM REGISTERS

The function of the .SCOM (System COMmunication) Registers is to provide, among
the various program elements of the Background/Foreground Monitor System, an
easily accessible set of registers which contain communication pointers, data
words, and program flags indicating the state of the system.

The .SCOM table begins at location lﬂﬂs within the Resident Monitor. Location

199 is referred to as .SCOM or .SCOM+@ and the(N+Dth register is referred to
as .SCOM+N.

Each .SCOM register has a special meaning and format. At present, there are
ll78 such registers. Slots at the end will be allotted for future expansion
as needed.

REGISTER DEFINITIONS: The following list indicates the contents of each .SCOM

register. Those which are fixed at assembly or system generation time and

never changed are marked by (F). Some .SCOM registers must have a Foreground
value and a Background value. Therefore, their contents must be swapped from
one to the other, depending upon which job has control. They are flagged by
(S). Some .SCOM registers have been reserved for future software. If their
contents (format) are as yet unspecified, they will be flagged with (U).

.SCOM + @ (F) Pointer to the highest register in core
(37777, 57777, or 77777). This value is
established from the location of the
bootstrap loader the first time the system
is loaded.

.SCOM + 1 (s) (a) Address just above the Resident Monitor
when the Non-resident Monitor has been loaded
for Foreground.

(b) Address just above the Foreground job
when the Resident Monitor has loaded the Non-
resident Monitor in the Background. If the
system program PIP is called, this will be
the first location of its .DEV table.

(c) For DDT in the Background this points
to the start of its symbol table.
.SCOM + 2 (s) (a) Same as (a) for .SCOM + 1.

(b) Normally used by user and system programs
to indicate the first (lowest) location in
free core.

(c) For DDT in the Background this points to
the first location after the symbol table,
which is also the first location of free core.

I-1

.SCOM + 3 (s) Normally used by user and system programs
to indicate the last (highest) location in
free core. For the Foreground, this is also
the highest location allocated to the Fore-
ground job.

.SCOM + 4 (s) Bits indicate machine configuration:
(F) Bit @ @=No API; 1=API
Bit 1! @=No EAE; 1=EAE
(F) Bits 2-5 # (Reserved and unused)
Bit 62 @ = 7-channel MAGtape
1 = 9-channel MAGtape
(s) Bit 7 @=Bank Mode Addressing
l=Page Mode Addressing
(F) Bit 8 1l = no 4Q area on system tape unit @
(u) Bit 9 Unassigned
(F) Bits 19-11 @ (Reserved and unused)
(F) Bits 12-13 0 = No Line Printer
1 = 84 column printer
2 = 12¢ column printer
3 = 132 column printer
(F) Bit 14 1 = Background/Foreground System
(F) Bits 15-17 @ (Reserved and unused)
.SCOM + 5 (a) 1Initially this points to RESINT, the

address of the initialization section in
RESMON. The paper tape bootstrap loader
transfers control indirectly through this
location.

(b) When calling the System Loader to
bring in a system program, the Non-resident
Monitor stores here the code number of the
program to be loaded.

(c) When running a system program, its
start address is stored here.

,SCOM + 6 (a) When the Non-resident Monitor calls
the System Loader to load user programs,
bits @ - 2 indicate which command was
given to the Monitor:

$LOAD, $GLOAD, $DDT, or $DDTNS.

Bit # = 1 if $DDT or $DDTNS (DDT load)
Bit 1 = @ if SLOAD; Bit 1 = 1 if $GLOAD
Bit 2 = g if $DDT; Bit 2 = 1 if $DDTNS

(b) When the user programs have been loaded,
the start address of the main program is
stored here. The load command code bits

(# - 2) remain as in (a).

.SCOM + 7 The interrupted PC plus L,P/B,MP are saved
here for DDT in the Background when CTRL T
has been typed.

.SCOM + 19 (s) The interrupted PC plus L,P/B,MP are saved
here after a NORMAL CTRL P has been typed
and honored.

.SCOM + 11 (F) Bootstrap restart instruction.

.SCOM + 12 (F) # (Reserved for PDP-9 use).

!The presence or lack of EAE is determined dynamically by the Resident Monitor.

27/9-channel default operation may be set by Foreground Keyboard command.
I-2

.SCOM + 13 (F) Pointer to the .IOIN! table in the Resident

Monitor.
.SCOM + 14 (F) Pointer to the .MUD? table in the Resident
Monitor.
.SCOM + 15 (F) Pointer to the .BFTAB? table in RESMON.
.SCOM + 16 (F) Pointer to .DATF*, Foreground .DAT slot f#

in the Resident Monitor.

.SCOM + 17 (F) Pointer to .DATB*, Background .DAT slot #
in the Resident Monitor.

.SCOM + 29 (F) # indicates that the computer does not
have an extra 4K page segment (which rules out
20K and 28K).

.SCOM + 21 (F) Default value of $FCORE (Foreground free core)
established at system generation.

.SCOM + 22 Reserved for MAGtape handler

.SCOM + 23 (F) Two's complement size of the Monitor's transfer

vector table (used by System Generator).

.SCOM + 24 (F) Pointer to the Monitor's transfer vector table
(used by System Generator).

.SCOM + 25 (a) Prior to loading the Foreground job,
the amount of free core requested by the $FCORE
command is stored here. If no $FCORE command
is given, the default assumption is taken from
.SCOM + 21.

(b) After the Foreground job has been loaded,
this register contains a pointer to the register
immediately above the Foreground core area.

.SCOM + 26 (S) Contains @ if Foreground is in control and 1
if Background is in control.

.SCOM + 27 (F) Pointer to IOT Skip literal table in the
Monitor (used by System Generator).

.SCOM + 38 (F) Pointer to PI Skip Chain.

*.IOIN 1s the table which indicates which I/O devices are in core, which units on
each device are spoken for, and which job (Background or Foreground) owns them.

2MUD is a table 1listing all available multi-user device handlers, with
pertinent information about those handlers.

S.BFTAB is a buffer table containing pointers to and the sizes of all external
I/0 buffers that were set up by the loaders.

*.DATF is the Device Assignment Table for Foreground.
.DATB is the Device Assignment Table for Background.

.SCOM + 31

.SCOM + 32

.SCOM + 33

.SCOM + 34

.SCOM + 35

.SCOM + 36

.SCOM + 37

.SCOM + 49

.SCOM + 41

.SCOM + 42

.SCOM + 43

.SCOM + 44

(F)

(F)

(F)

Software Memory Protect Bound

(a) Set from .SCOM + 25 after the System
Loader has loaded the Foreground job.

(b) Set to point just above the Background
I/0 handlers and I/0 buffers after the Back-
ground job has been loaded.

(a) Pointer to the Hardware Memory Protect
Bound (or where it should be set). Contents
(SCOM + 32)2 contents (.SCOM + 31).

Background Program Counter, including L,P/B,MP.
Address of the resident Teletype handler (TTA).

Interrupt Service Flag. Non-f indicates that
control is in some interrupt service routine.

Bits to tell the Teletype handler which units
are model 33 (specific bit = @) and which

model 35 (specific bit = 1). Bit @ corresponds
to unit @, bit 1 to unit 1; etc.

Pointer to CALER. Used to detect attempt
to re-enter CAL handler and to trap CAL¥*
instructions.

CAL flag. Non-g if control is in the CAL
handler (indication necessary for interrupt
servicing).

"Who's running in the Background" Flag.
Bit § = 1 if a Loader is running.

Bits 1-17:
17777 = Non-resident Monitor
= user program or DDT
1l = EDIT
2 = MACRO
3 = PIP
4 = F4
5 = SRCCOM
6 = DUMP
7 = UPDATE
19 unused
1l = MACROA
12 = F4A
13 = EXECUTE
14 = CH:LTN
15 = PATCH
16 = DTCOPY

Level 5 (API,Foreground) busy register.

Zero indicates level 5 non-busy. Non-zero
indicates that Foreground level 5 is idle
waiting for some I/O to complete. Set non-g
with the initial address of the device handler
doing the I/O. If the device is Teletype,

the unit number + 4@g@@P@F is stored here instead.

Same as .SCOM + 42 for Foreground level 6.

Same as .SCOM + 42 for Foreground level 7.

.SCOM + 45 Same as .SCOM + 42 for Foreground Mainstream
level.

.SCOM + 46 Foreground level 5 I/0 satisfied flag.
Zero indicates that level 5, which was I/O
bound, can be started up again.

.SCOM + 47 Same as .SCOM + 46 for level 6.

.SCOM + 58 Same as .SCOM + 46 for level 7.

.SCOM + 51 (F) Pointer to REALTP! in the Resident Monitor.
.SCOM + 52 (F) Pointer to IOBUSY? in the Resident Monitor.
.SCOM + 53 (F) Pointer to LV4Q?® in the Resident Monitor,
.SCOM + 54 (F) Pointer to CALL4* in the Resident Monitor.
.SCOM + 55 (F) Pointer to .SETUP® in the Resident Monitor.
.SCOM + 56 (F) Pointer to GETBUF® in the Resident Monitor.
.SCOM + 57 If non-g, a pointer to the entry point of

the last Mainstream Foreground real-time
subroutine in the chain of subroutines to
be run when Foreground Mainstream gets control.

.SCOM + 64 Pointer to the entry point +1 of the first
subroutine in the chain of Foreground Main-
stream real-time routines to be run when
Foreground Mainstream gets control.

.SCOM + 61 Same as .SCOM + 57 for Background.
.SCOM + 62 Same as .SCOM + 6@ for Background.
.SCOM + 63 Argument for API instruction ISA when interrupts

at API software levels are to be requested.

.SCOM + 64 (F) Pointer to CR.QR’in the Resident Monitor.

"REALTP is a subroutine to process real-time requests.
*IOBUSY is a subroutine to check for I/O busy termination.

*LV4Q queue is a list of I/O handlers which are waiting to complete their
interrupt service processing at API level 4.

“CALL4 is a subroutine to initiate an API level 4 request.

ISETUP is the routine initially called by all I/O handlers to set up skips in
the PI skip chain or API channel registers.

*GETBUF is a routine called by the I/O handlers which assigns buffer areas
to the handlers via .BFTAB.

CR.QR is a routine called by I/0 handlers to initiate a device-not-ready
request.

.SCOM + 65

.SCOM + 66

.SCOM + 67

.SCOM + 74

.SCOM + 71

.SCOM + 72

.SCOM + 73

.SCOM + 74

.SCOM + 75

.SCOM + 76

.SCOM + 77

.SCOM + 199

(F)
(F)

(F)

(F)

(F)

(F)

(F)

(F)

Set non-g, while a Foreground user program is
running, to indicate that the resident buffer
may not be used by the Foreground. The resident
buffer must be available to the Background,
which presumably changes jobs more often, for
use by the Monitor and the Loaders.

Pointer to ERRORQ' in the Resident Monitor.

Pointer to Foreground control character table
in TTA.

Pointer to Background control character table
in TTA.

Error flag. The following conditions exist
if the respective bit = 1:

@ - Background error

1 - Foreground error

2 - Background terminal error

3 - Foreground terminal error

Pointer to the Foreground error processing
subroutine plus the 2g@@g@g bit to enter bank
mode.

Same as .SCOM + 72 for Background error
subroutine.

Saved argument for Foreground error routine
ISA instruction.

Contains JMS IGNORE, a call to a dummy inter-
rupt service routine, used during error process-
ing.

Two's complement count of the number of Teletypes
on the machine.

$SHARE Flag (to allow Background to share
Foreground I/O bulk storage units). Non-zero
indicates that SHARING is allowed. 1Initial
value is set at System Generation.

Pointer to ENTERQ? in the Resident Monitor.
Will contain @, instead, if ENTERQ routine
not assembled into the Monitor.

!ERRURQ is a routine called to enter information in the Foreground and/or
Background error queues and to set the error flags in .SCOM + 71.

2ENTERQ is a subroutine which makes entries in the API queue.

.SCOM + 191 If set non-zero by the Foreground keyboard
command, $MPOFF, Background enters EXEC mode.
The memory protect boundary register is
zeroed to allow Background to modify and
transfer to any location in core. Background
IOT's will still trap to the Monitor but the
IOT's will be executed.

.SCOM + 102 (F) Argument for ISA instructions which will raise
either to API level @ or level 1 (as the
highest used Monitor level) to protect common
Monitor routines from being reentered. Value
established at System Generation.

.SCOM + 13 (F) Monitor version number. For FKM15 V3A printout,
for example, this register will contain:
.ASCII "3Aa".

.SCOM + 104 (F) Flag to indicate which job (@ = Foreground;

1 = Background) confirms Foreground CTRL C
see Section 3.4).

.SCOM + 105 (F) Two's complement size of the PI ship chain.
(Used by System Generator).

.SCOM + 106 (F) Pointer to the register immediately above
the Resident Monitor (set by the Non-resident
Monitor after it has built the .MUD table).
(Used by CHAIN program.)

.SCOM + 107 Used to store the file directory entry
.SCOM + 119 block of the XCT file to be EXECUTEA4 in
.SCOM + 111 the Foreground.

.SCOM + 112 Used to store the file directory entry block

.SCOM + 113 of the XCT file to be EXECUTEd in the

.SCOM + 114 Background.

.SCOM + 115 (F) Maximum number of Teletypes allowed, which
is a function of an assembly parameter in
the Monitor (Used by System Generator).

.SCOM + 116 Foreground MAGtape status.

.SCOM + 117 Background MAGtape status.

APPENDIX II

ERRORS

ERROR HANDLING IN BACKGROUND/FOREGROUND

The processing of errors detected by the Resident Monitor, I/O handlers, the
Linking Loader, and the System Loader in the Background/Foreground System has
been changed from the manner of error processing in the ADVANCED and I/O Monitor

Systems.

The most significant change is the introduction of terminal and non-terminal
errors. A terminal error stops execution of the job associated with the error.
This causes all I/O handlers assigned to that job to be called to stop I/O that

may be in progress and all Monitor queues to be cleared of entries for that job
(Background, Foreground, or both).

A non-terminal error does not necessarily warrant aborting the operation of the
offending job. A non-terminal error message is entered into a queue for the
appropriate job and is printed on the appropriate control Teletype when that
unit is free. While the printing of non-terminal error messages is pending or
in progress, operation of the offending job is suspended. This restriction does

not apply to I/O handlers, which may continue interrupt processing.

The format for error messages generated by the Resident Monitor, I/O handlers,

and the Loaders is:
.ERR NNN XXXXXX

where NNN = error code

XXXXXX = auxiliary information
These errors are tabulated on pages I1I1-3, -4, and -5.
Errors detected by the FORTRAN Object Time System (OTS) are formatted as follows:
OTS NN
where NN = error code.

OTS errors are listed on page II-6.

II-1

CONTINUATION AFTER ERROR

All .OTS errors, except 7 and 15 (see list on page II-6), are terminal errors.
After OTS has printed the error message, it exits to the Monitor. Therefore, after
a terminal .OTS error the user does not have the option of restarting his program.

Terminal .ERR errors terminate the operation of user programs. After the print-
ing of the error message, the user has the option of typing CTRL P (to restart

his program at the CTRL P restart address), CTRL T (to return to DDT), CTRL Q (to
take a dump of memory), or CTRL C (to return to the Monitor to load another job).
If the error occurs while control is in the Non-resident Monitor or in a Loader,
the user does not have the options indicated above. The Monitor will automatically
be reloaded.

Non-terminal .ERR errors do not terminate the operation of user programs. Con-
tinuation, following the printing of the error message, is automatic.

ERROR CALL

Routines that wish to set up an error condition, I/0 device handlers for
example, should use the following coding sequence:

LAC* (.SCOM+66 /POINTER TO ERRORQ
DAC TEMP /SUBROUTINE.
LAC* (.SCoOM+1@2 /RAISE TO API
IsAa /LEVEL @ (OR 1)1}
LAW CODE /SEE BELOW.
JMS* TEMP /CALL ERRORQ.

AUXARG XX /AUXILIARY ARGUMENT.
DBK /RETURN HERE !}

The calling program must be operating with memory protect disabled in order to
be able to issue IOT's.

The first argument, given in the AC to ERRORQ, may be loaded either by LAW code
or by LAC (code in the following format:

Bits @-5 are ignored

Bit 6 = @ means non-terminal error
Bit 6 = 1 means terminal error

Code Bit 7 = 1 means Background error Both bits (7 and 8)
Bit 8 = 1 means Foreground error may be set to 1
Bits 9-17 is a 3-digit error code

For a routine that operates at API level 1 or #, read the discussion on
Reentrancy Protection, 7.4.

I1-2

To avoid the possibility of future conflicts, user programs and device handlers
should utilize codes 698 - 777.

The auxiliary argument, following the JMS to ERRORQ, will be printed in the error

message as a 6-digit octal number. The error message will be printed in the form:
.ERR NNN XXXXXX

where NNN = the 3 digit error code
XXXXXX = the 6-digit auxiliary information

The actual printing of the error message and processing of the error will be
done only after all interrupt processing has ceased and when control is no longer

in the CAL handler.

BACKGROUND/FOREGROUND MONITOR ERRORS (.ERR)

The following abbreviations are used below in describing the auxiliary informa-

tion:
L - bit @ is the status of the link
PB - bit 1 is the status of page/bank addressing mode
MP - bit 2 is the status of memory protect
CAL ADDR - bits 3-17 contain the address of the CAL in error.
ERROR NO. ERROR AUXILIARY TERMINAL
INFORMATION
ag9 ILLEGAL CAL FUNCTION L, PB, MP, CAL ADDR YES
291 CAL* ILLEGAL L, PB, MP, CAL ADDR! YES
g@2 .DAT SLOT ERROR L, PB, MP, CAL ADDR YES
(erroneous .DAT slot
number or .DAT slot not
tied to an I/0O handler)
993 ILLEGAL INTERRUPT L, PB, MP, PC YES
gg4 MORE THAN ONE DEVICE JASCII /XX/ ; YES
NOT READY XX = DEVICE NAME
295 ILLEGAL .SETUP RETURN ADDRESS FROM YES
.SETUP (ADDRESS IN
CALLING DEVICE HANDLER)
g6 ILLEGAL HANDLER FUNCTION L, PB, MP, CAL ADDR! YES
2987 ILLEGAL DATA MODE OR 1, PB, MP, CAL ADDR! YES
SUBFUNCTION CODE
219 FILE STILL ACTIVE UNIT #, CAL ADDR YES

'The auxiliary information, depending on the source of the error, is sometimes
UNIT #, CAL ADDR.

IT-3

AUXILIARY

ERROR NO. ERROR INFORMATION TERMINAL
211 SEEK/ENTER/REWIND NOT UNIT #, CAL ADDR YES
EXECUTED
212 UNRECOVERABLE DECTAPE STATUS REGISTER B YES
ERROR (Bits 0-11) AND UNIT
(Bits 15-17)
213 FILE NOT FOUND UNIT #, CAL ADDR YES
714 DIRECTORY FULL UNIT #, CAL ADDR YES
215 DECTAPE FULL UNIT #, CAL ADDR YES
216 OUTPUT BUFFER OVERFLOW UNIT #, CAL ADDR YES
217 TOO MANY FILES FOR UNIT #, CAL ADDR YES
HANDLER
g2g DISK FAILURE DISK STATUS REGISTER YES
221 ILLEGAL DISK ADDRESS UNIT #, CAL ADDR YES
g22 TWO OUTPUT FILES ON ONE UNIT #, CAL ADDR YES
UNIT
@23 ILLEGAL WORD PAIR COUNT UNIT #, BLOCK # YES
227 ILLEGAL DISK UNIT UNIT #, CAL ADDR YES
#31 NON-EXISTENT MEMORY L, pPB, MP, PC YES
REFERENCE '
232 MEMORY PROTECT VIOLATION L, PB, Mp, PC! YES
236 BACKGROUND MEMORY PROTECT L, PB, MP, CAL ADDR YES
VIOLATION ATTEMPT VIA CAL
ARGUMENT
237 LINE OVERFLOW L, PB, MP, CAL ADDR YES
247 ILLEGAL HORIZONTAL TAB L, PB, MP, CAL ADDR YES
258 .TIMER REQUEST CANNOT ADDRESS OF REAL TIME NO
FIT IN CLOCK QUEUE OR SUBROUTINE THAT WAS TO
BACKGROUND REQUEST GET CONTROL ON COM-

REMOVED TO MAKE ROOM FOR PLETION OF INTERVAL
FOREGROUND REQUEST

252 MAINSTREAM REAL TIME PRIORITY LEVEL/SUB- NO
REQUEST IGNORED BECAUSE ROUTINE ENTRY POINT
ROUTINE IS ALREADY
ENTERED

253 APIQ OVERFLOW ENTRY THAT WOULD NOT NO

FIT (PRIORITY LEVEL/
SUBROUTINE ENTRY POINT)

@54 ILLEGAL WORD OR WORD L, PB, MP, CAL ADDR YES
PAIR COUNT
(Either the word count
was positive or the start-
ing address plus the
absolute value of the word
count exceeded existing

memory)
255 NO BUFFERS AVAILABLE RETURN ADDRESS FROM YES
GETBUF (ADDRESS IN
CALLING DEVICE HANDLER)
g56 ILLEGAL .ERROR CAL? L, PB, MP, CAL ADDR YES

!If a memory protect violation occurs because of a Background JMP instruction,
the PC is the effective address rather than the location of the JMP.

A special error call to the Monitor (CAL code 16) is available for use only by
the Loaders.

" II-4

ERROR NO.

g57
gep
g61

g62

209

AUXILIARY

ERROR INFORMATION
ILLEGAL .EXIT CAL L, PB, MP, CAL ADDR
.INIT NOT EXECUTED CAL ADDR
PARITY ERROR IN UNIT #, BLOCK #

DIRECTORY BLOCK (1g4)
OR FILE BIT MAP
BLOCK (71-77)

TOO MANY NON-TERMINAL NUMBER OF ERRORS
ERRORS DISCARDED
ILLEGAL TELETYPE UNIT L, PB, MP, CAL ADDR

LOADER ERRORS (.ERR)

All Loader

irrelevant.

1998
191
192
193
194
195
186
197
119
111
112
113
114
115
116
117
129
121
122
123

TERMINAL

YES
YES
YES

NO

YES

errors are terminal. The auxiliary information which is printed is

NO ROOM IN CORE FOR PROGRAM SEGMENT

PROGRAM AND SYMBOL TABLE OVERLAP

.BFTAB OVERFLOW

.IOIN TABLE OVERFLOW

SFILES COUNT OVERFLOW

PARITY ERROR, CHECKSUM ERROR, OR BUFFER OVERFLOW
ILLEGAL LOADER CODE '

COMMON BLOCK SIZE ERROR!

MISSING GLOBAL(S)

ILLEGAL .DAT SLOT NUMBER

.DAT SLOT CONTENTS = @

SAME DEVICE - DIFFERENT HANDLERS?

ILLEGAL HANDLER CODE (Illegal .DAT slot contents)
ABSOLUTE PROGRAM ERROR®

FOREGROUND CAN'T USE UNIT @ ON SYSTEM DEVICE"

NO ROOM TO BUILD .EXIT LIST

XCT FILE OVERLAYS EXECUTE

XCT FILE OVERLAYS THE MONITOR

XCT FILE OVERLAYS THE SYMBOL TABLE

XCT FILE NOT BUILT FOR THIS CONFIGURATION®

! COMMON Block size declared differently when Block size previously fixed in
BLOCKDATA subprogram.

20nly one version of a device handler may be in core.

.DAT slot requested a

different handler for a device when another handler for that device was

already in

core.

®An absolute .LOC program may not be loaded once relocatable programs have

been loaded.

*$SHARE command was not given.

‘Configuration word in "XCT" file indicates if it was built to run in bank
or page mode and Background or Foreground.

I1I-5

Absolute and relocatable .LOC in same program is illegal.

OBJECT TIME SYSTEM ERRORS (.OTS)

All .OTS errors (except 7 and 15) are terminal and no auxiliary information

is printed:

g-4 UNUSED

5 ILLEGAL REAL SQUARE ROOT ARGUMENT

6 ILLEGAL DOUBLE SQUARE ROOT ARGUMENT

7 ILLEGAL INDEX IN COMPUTED GOTO

19 ILLEGAL I/0 DEVICE NUMBER

11 ILLEGAL INPUT DATA OR INCORRECT DATA MODE

12 ILLEGAL FORMAT STATEMENT

13 ILLEGAL REAL LOGARITHMIC ARGUMENT

14 . ILLEGAL DOUBLE LOGARITHMIC ARGUMENT

15 RAISE ZERO TO A POWER LESS THAN OR EQUAL TO ZERO

II-6

APPENDIX III

TELETYPE HARDWARE CHARACTERISTICS

SYSTEM REQUIREMENTS AND OPTIONS

The multi-unit Teletype handler assumes that the Teletype configuration consists
of:

a. A model 33 or Model 35KSR console Teletype,
b. from 1 to 4 LT19! multi-station Teletype controls, and
c. from 1 to 16 Model 33 or Model 35KSR Teletypes interfaced

10
to the LT19 controls?.

The console Teletype has its own set of IOT's, operates as half-duplex, and

is connected to the PIC (Program Interrupt Control).

The LT19 can handle from 1 to 5 Teletype lines and will operate at API level 3,

using channel registers 74 and 75.

Teletypes connected to LT19 controls are operated in full-duplex mode, which
requires the software to echo characters input from the Keyboard back to the

teleprinter.
LT19 IOT's

The following tables list the device and subdevice codes associated with each
teleprinter and keyboard and indicate the logical unit numbers which the
Teletype handler associates with them. The console Teletype, which is not
connected to the LT19 controls, is defined to be logical unit @

TABLE 1: 1l to 5 units; 1 LT19
UNIT PRINTER KEYBOARD LOGICAL
CODE CODE UNIT
LT19 1 XX400X XX410X 1
#1 2 XX402X XX412X 2
3 XX404X XX414X 3
4 XX406X XX416X 4
5 XX420X XX430X 5

;gig Fwo—TeleEype i{stems, an LT15 control may be used rather than LT19. The
I 1s operationally identical to line 1 on the LT19; thus no f i
will be made of the LT15. urther mention

2 .
As standardly supplied, the Background/Foreground system will support a maximum

of six Teletypes. Expansion beyond six requires a simol
Resident Monitor. g mpte reassembly of the

III-1

LT19
#1

LT19
#2

LT19
#1

LT19
#2

LT19
#3

TABLE 2:

UNIT

U W+

[O R OV N

TABLE 3:

UNIT
#

UdwWwNH G W+

|mdswN -

6 to 10 units;

PRINTER
CODE

XX400X
XX402X
XX404X
XX406X
XX440X

XX420X
XX422X
XX424X
XX426X
XX442X

11 to 15 units;

PRINTER
CODE

XX400X
XX402X
XX404X
XX406X
XX460X

XX420X
XX422X
XX424X
XX426X
XX462X

XX440X
XX442X
XX444X
XX446X
XX464X

IIT-2

2 LT19's

KEYBOARD

CODE

XX410X
XX412X
XX414X
XX416x
XX450X%

XX430X
XX432X
XX434X
XX436X
XX452X

3 LT19's

KEYBOARD

CODE

XX410X
XX412X
XX414X
XX416X
XX470X

XX430X
XX432X
XX434X
XX436X
XX472X

XX450X
XX452X
XxX454%
XX456X
XX474X

LOGICAL
UNIT #

H&awh e

e
vNONO!

LOGICAL
UNIT #

U W

e
o Joum

TABLE 4: 16 units;

4 LT19's

(The setup for the first three

controls is in Table 3).

UNIT PRINTER
CODE
LT19
#4 1 Unused
2 Unused
3 Unused
4 Unused
5 XX466X
TELETYPES

KEYBOARD

CODE

Unused
Unused
Unused
Unused
XX476X

LOGICAL
UNIT #

In the Background/Foreground System, Teletype models are presumed to have

certain hardware characteristics:

Model 33: No horizontal tabbing mechanism

No vertical tabbing mechanism

No form feed mechanism

(Note, the lack of vertical tab or form
feed does not affect the software.)

Model 35: Has horizontal tabbing mechanism

Has vertical tabbing mechanism

Has form feed mechanism

The Teletypes are assumed to be KSR (Keyboard Send/Receive) units.

ASR (Automatic

Send/Receive) Teletypes may be used; however, their paper tape input and output

capability cannot be used. The system will not support Model 37 Teletypes.

The Teletype handler will simulate horizontal tab both on input and on output,

on model 33 Teletypes, but will not simulate either vertical tab or form feed.

Tab stops are assumed to be 8 spaces apart.

III-3

APPENDIX IV

MONITOR SYSTEM TABLES

1. CONTENTS

Some of the most commonly used Monitor system tables are described in this
appendix. These descriptions are intended for individuals interested in the de-
tailed structural aspects of the Monitor; the information they contain is not

required to operate the system. The following tables are described:

MNEMONIC DERIVED FROM

a) SYSBLK System Block

b) .DAT Device Assignment Table

c) .IOIN Input/Output Handlers In Core Table
d) .MUD Multi-user Device Table

e) .BFTAB Buffers Table

2. SYSBLK

The following paragraphs describe in detail the overall aspects and components
of a system SYSBLK.

2.1 Function

SYSBLK acts as a central source of information about system programs. For example,
the system loader (.SYSLD) uses SYSBLK information to determine how to load each
system program. Utility program PATCH also uses SYSBLK for loading information
and can also modify SYSBLK to permit system programs to be loaded or patched

onto the system tape.

2.2 Size and Location

SYSBLK is a 256-word block located on the system DECtape. In Background/
Foreground system DECtapes, SYSBLK is located in block 40 in ADVANCED Monitor

systems, SYSBLK is located in block 61

g’
8 of the system DECtape.

When loaded, SYSBLK resides in core immediately below the system loader (.SYSLD).

2.3 Overall Structure

The following table illustrates the overall structure and organization of SYSBLK.
Iv-1

(15t word)
pointer table.

pointer to .DAT slot DATTAB

(7 words) System parameters for Program @
(7 words) System parameters for Program 1
(7 words) System parameters for Program M

(DATTAB = 7% (N+1)+1)! Program §#
.DAT slot pointers table Program 1

Program N

Pointer to the END. END

(PROGH) List of .DAT slots used by Program §.
(PROG1) List of .DAT slots used by Program 1.
(PROGM) ! List of .DAT slots used by Program M.
(END)

2.4 Entry Structure

2.4.1 System Program Parameter Table

The System Program Parameter Table is so arranged that it can be used unaltered
in the command table for the system progra PATCH, as all entries for Program I
(I is greater than or equal to @ and smaller than or equal to N) can be described
in general without knowing which value I takes on. The following discussion will

cover all the entries (7*(N+1) of them) with just 7 descriptions.

!Note that M need not equal N.

Example: 7-Register System Parameter Block for .SYSLD (an .ABS Program
with Values Taken from PDP-15/2@ System)

WORD CONTENTS DESCRIPTION

1. .SIXBT /.SYSLD/ Name of system program for use by PATCH

2. (@ if program is relocatable).

3. 568 First block occupied by .SYSLD on
system device.

4. 118 Number of blocks allotted to .SYSLD on
system device.

5. l34¢ﬂ8 First address in .SYSLD (13 bits).

6. 42378 Program size of .SYSLD.

7. 154¢ﬂ8 Starting address of .SYSLD (13 bits).

(1.) WORD I*7+1

(2.) WORD I*7+2

If program I is an .ABS system program, these words contain the
.SIXBT name in the PATCH command to select program I for patching;
otherwise they must be f.

(3.) WORD I*7+3

This word contains the first system device block in which .ABS
system program I is stored (ignored for relocatable system
programs) .

(4.) WORD I*7+4

This word contains the number of system device blocks allotted to
.ABS system program I (ignored for relocatable system programs) .

(5.) WORD I*7+5
This word contains the 13 bit address of the first core location
that .ABS system program I occupies (ignored for relocatable system
programs) .

(6.) WORD I*7+6
This word contains the size of the .ABS system program (ignored
for relocatable system programs). The size of a program is defined
as the last core location occupied by the program minus the first
core location occupied by the program plus 1.

(7.) WORD I*7+7

This word contains the 13 bit starting address of the .ABS system
program I (ignored for relocatable system programs).

Iv-3

2.4.2 .DAT Slot Pointer Table

The next M words after the system program parameter table (starting with address
DATTAB) contain pointers to lists of .DAT slots used by the system programs loaded
by .SYSLD.

(1) WORD DATTAB+I

This word points to the first word in SYSBLK containing the first
member of the list of .DAT slots used by system program I (either
.ABS or relocatable system programs need this table).

(2) WORD DATTAB+I+1

Points to the last word plus 1 in SYSBLK of the list of .DAT slots
used by program I. The .DAT slot numbers are contained in bits
9-17 of the entry words with bits @-8 always @ (bit 9 is the sign
bit and negative numbers are expressed in 2's complement notation).
As can be seen, this word also represents the first word in SYSBLK
containing the list of .DAT slots used by system program I+l.

2.4.3 Table of .DAT Slot Lists

From the end of the .DAT slot pointer table until the end of SYSBLK is the space
reserved for .DAT slot lists for each system program as divided by the .DAT slot
pointer table.

2.5 SYSBLK for PDP-15/3¢ and PDP-15/49

The following are excerpts from a listing of the SYSBLK used for PDP-15/3f and
PDP-15/40 systems. The listing is used here for illustration only; the

numerical values of this "version" may have been altered and cannot be relied upon.

.TITLE B/F SYSTEM BLOCK

EDIT #8 8-18-74

COPYRIGHT 1974, DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
PDP-9/15 BACKGROUND FOREGROUND SYSTEM

SPECIAL SYSTEM PROGRAM BLOCK (4f) WITH 7-WORD ENTRY PER PROGRAM
ORDERING OF PROGRAMS IN SYSBLK MUST NOT CHANGE.

LOGICAL CODES FOR PROGRAM NAMES ARE THE NUMBER OF THE ENTRY IN SYSBLK

THIS BLOCK IS USED BY BFKM9/15 (NON-RESIDENT MONITOR), .SYSLD (SYSTEM
LOADER) , AND PATCH (SYSTEM PATCHER).

WD1,2 .SIXBT 'PGNAME'

WD3 LOGICAL BLOCK #

WD4 # OF BLOCKS RESERVED
WD5 LOAD ADDRESS (13 BITS)
WD6 PROGRAM SIZE

WD7 START ADDRESS (13 BITS)

AN N N Y NN

Iv-4

.ABS
.LOC J')
COMTAB DATTAB

g. THIS NUMBER CORRESPONDS TO THE LINKING LOADER OR DDT, BUT BECAUSE
THESE PROGRAMS ARE RELOCATABLE THEY ARE NOT REPRESENTED HERE.
THIS SPOT IS USED, AS FAR AS PATCH IS CONCERNED, FOR THE RESIDENT
MONITOR.

NONONNYNYN

.SIXBT 'RESMON'

J

49
199
17799
g

1. THE SYSTEM EDITOR PROGRAM

NN

.SIXBT 'EDIT'

514
13
12577
5291
13990

/ 24. THE CROSS REFERENCE PROGRAM SEGMENT OVERLAY TO THE ASSEMBLER

/
.SIXBT 'CREF'

.BLOCK 5
/ 1
/ 25. THE PI VERSION OF THE RESIDENT MONITOR (PDP9 ONLY)
/PARAMETERS UNKNOWN AT THIS TIME

.IFDEF PDP9

.SIXBT 'PIRESM'

.BLOCE :
.ENDC

.IFUND PDP9
g

.BLOCK 5
.ENDC

/
/ TABLE WHICH CONTAINS POINTERS TO .IODEV INFORMATION FOR SYSTEM PROG.

/

DATTAB LOAD. /@ - SLOAD,SGLOAD, $SDDT
EDIT. /1 - SEDIT
MACRO. /2 - S$MACRO
PIP. /3 - SPIP
F4. /4 - SF4
SRCOM. /5 - SSRCCOM
DUMP. /6 - S$DUMP
UPDTE. /7 - SUPDATE
CONV. /18 - SCONV
MACA. /11 - $MACROA
F4A. /12 - SF4A
EXEC. /13 - SEXECUTE
CHAIN. /14 - SCHAIN

! Not applicable to the bank mode system.

Iv-5

PATCH. /15
DTCOP. /16
F17. /17
F2g. /2§ - NOT USED
F21. /21 - NOT USED
F22. /22 - NOT USED
END. /TO TELL WHERE END IS

SPATCH
$DTCOPY
NOT USED

/

/ .IODEV INFORMATION FOR SYSTEM PROGRAMS

/

LOAD. -7&777
-5&777.
-48777
-1&777

EDIT. -15&777
-148&777
-108&777

MACRO. =-14&777
-13&777
-12&777
-11&777
-198&777

PIP. -1

F4. -13&777
-12&777
-11&777

.
-
.

PATCH. -14&777

-10&777
DTCOP. -15&777
-14&777
Fl7.=.
F2g@.=.
F2l.=.
F22.=.
END.=.
3. .DAT TABLES

3.1 Function

There are 2 .DAT tables: .DATF for Foreground (FGD) and .DATB for Background
(BGD). The function of these device assignment tables, as in the ADVANCED
Monitor system, is to provide the basis for device-independent programming.
Programs which issued monitor calls to perform some I/O function, such as a READ,
refer to a slot in the .DAT table instead of a specific I/O device. At program
load time, the user has the option of assigning that program's .DAT slots to

any I/0 device he wishes to use.

IV-6

3.2 Location

Both .DAT tables reside in the resident portion of the monitor (RESMON). The

.SCOM registers which point to them are:

.DATF
.DATB

C(.SCOM+16)
C(.SCOM+17)

3.3 Table Structure

The FGD and BGD tables are similarly structured. The entry point, either .DATF
or .DATB, is equivalent to .DAT slot @. Slot @ contains a pointer to the highest
register in the table (.DATND). .DATND, in turn, contains a pointer to the first
register in the table (.DATBG). This permits future expansion of table size.
Each .DAT slot is a one-word entry. The slots are referenced relative to slot f.
The most negative slot is at .DATBG; the most positive is at .DATND-1.

bit g 23 17
.DATND | @ .DATBG (high)
positive
.DAT
slots
g2 3 17
.DATF
or) .DATND
.DATB
negative
.DAT
slots
.DATBG (low)

3.4 Entry Structure

Depending on what phase of the loading process the system is in and on which I/0
device is to be selected, a .DAT slot entry may contain information in any of
5 formats. Background/Foreground .DAT tables do not resemble those of the

ADVANCED Monitor system.

Iv-7

Format 1: ')

bit g 1 2 17
Format 2: 211 TELETYPE UNIT #

bit g 1 2 4 5 10 11 17
Format 3: @|F|UNIT # [DEVICE # HANDLER #

bit g 1 2 17
Format 4: 1 TELETYPE UNIT #

bit g 1 2 4 5 17
Format 5: 1|(0|UNIT # HANDLER ADDRESS/4

Formats 1 through 3 are the pre-setup stage (I/0O handler linkage not established);
Formats 4 and 5 are setup (I/0 handler linkage established, handler is in core
and I/O calls to such .DAT slots will be honored by the Monitor). Bit @
distinguishes Formats 1 through 3 from 4 and 5.

3.4.1 Format 1l: - When a .DAT slot contains zero, no device is assigned to it.

3.4.2 Format 2: - Bit 1 set to 1 indicates that this is for the resident Teletype
handler (TTA.), which handles the console Teletype (unit @) and up to 16lO
Teletypes on the LT15 or LT19 controls (units 1 - Zﬂg). The unit number appears
in bits 2 through 17.

3.4.3 Format 3: - Used for all devices except Teletype. The device unit number
is in bits 2 - 4 (up to 8 units), the device code is in bits 5 - 1@ (up to 6410
distinct devices), and the device handler code is in bits 11 - 17 (up to 128
handlers for the entire system, not 128 per device). The I/O handler codes are
the same as are used to position entries in the .IOC table! The logical device
and handler codes bear no relationship to one another. It is up to the System
Generator and the Non-resident Monitor to ensure that unit number, device code,

and handler code correspond to a legal combination.

3.4.4 Format 4: - Same as Format 2 except that bit @ is set to 1. In this form
it is legal to issue I/O calls from a user program which refers to such a .DAT
slot. When set up in this way, the .DAT slot does not contain the address of

the Teletype handler. That address (full 15 bit) is permanently stored in
.SCOM+34.

3.4.5 Format 5: - Differs from Format 2 as follows: Bit 0=1 to indicate the

.DAT slot is set up and ready for use. The unit number remains in bits 2 - 4.

TThe .10C table, built by the Non-resident Monitor for the loaders, contains the
names of all I/O device handlers coded in radix 5¢ form.
Iv-8

The device and handler codes (bits 5 - 17) are replaced by the address of the I/0
handler divided by 4. This means that all I/O handlers, save TTA., must start

at a core address evenly divisible by 4. The loaders account for this fact.

4. .JOIN TABLE

4.1 Function

The .IOIN Table maintains a list of the I/O handlers which are in core, showing
which device units are in use and which job owns them. This allows the Non-
resident Monitor and the loaders to prevent conflicts between Foreground and
Background I/O and ensures that only one handler is loaded per device.

4.2 Location

.IOIN is part of the Resident Monitor and is pointed to by .SCOM+13.

4.3 Table Structure

The first three words are two's complement counts.

.IOIN -N (2's comp) (low)
-M (2's comp)
-L (2's comp)

Monitor
and FGD 2L
Entries

M BGD

Entries

s P Ays <7 .
f Unyséd” high

|

total # of entries
maximum # of entries
of Monitor and FGD entries

Legend:

=22
o

The first three entries in .IOIN are the following Monitor entries:
1. The system device handler and unit
2. The Foreground control Teletype

3. The Background control Teletype

4.4 Entry Structure

Each entry consists of two word registers. The first word contains exactly the

Iv-9

the same information as a .DAT slot before it was set up (i.e., .DAT slot Formats
2 and 3).

EXAMPLE:
bit g 1 2 17
Format 1: J’] lI’ Teletype Unit #
)
bit g 1 2 4 5 19 11 17
Format 2: '] QIUnit # |[Device #IHandler #
1} . ¢ Handler Address/4
4.4.1 Format 1l: - This is used for the resident Teletype handler only. Word 2

conveys no information. Bit @ is set to 1.

4.4.2 Format 2: - Word 2 contains the same information as the .DAT slot would
when set up (.DAT slot Format 5), except that the unit number is removed.

5. .MUD TABLE

5.1 Function

The .MUD table provides information about the multi-user (shareable) device
handlers in the system. It indicates, for each handler, the size of external
buffer used, the maximum file handling capacity, and the number of open files the
user expects to have.

5.2 Location

.MUD is positioned at the very top of the Resident Monitor and is pointed to by
.SCOM+14.

5.3 Table Structure

The first word contains the two's complement count of the number of table entries.

Each entry consists of two registers.

.MUD -N (2's comp) (low)

2N

(high)

Iv-10

5.4 Entry Structure

All entries are similarly structured. The first word contains the logical
handler code in bits 5 - 11. There is no assumed relationship between handler

code and table position.

bit g 1 4 5 11 12 17
X Lgﬂ |Handler # | SFILES count
Buffer Size Max. Count.

If, prior to loading his job, the user issues the S$FILES command for a given
device (thereby indicating the maximum number of simultaneously open files he
expects to have for that device), the count will be entered in bits 12 - 17 of
word 1 and bit # will be set to 1. Otherwise, those bits are zero.

Word 2 contains the buffer size in bits § - 11. A size of zero is legal because
some multi-user handlers do not need external buffers. One buffer is needed

for each open file. The maximum count, in bits 12 - 17, is the maximum open

file handling capacity of the handler. 1In the absence of a $FILES count declared
by the user, the Loaders will compute the count.

6. .BFTAB TABLE

6.1 Function

.BFTAB is a pool of I/O buffers that are assigned to multi-user device handlers
as needed. The table consists of pointers to the actual buffer locations

assigned by the loaders.

6.3 Table Structure

The first three words are 2's complement counts.

.BFTAB -N (2's comp) (low)
-M (2's comp)
-L (2's comp)
-
Resident Buffer
2N and 2L
2M FGD Buffers
ﬁ BGD
Legend: Buffers
N = Total # of entries \
M = Maximum # of entrie 57 Unused ;/C// (high)
L = # of FGD and Monito ///////////

entries

" IV-11

The first entry is for the resident buffer located within the Resident Monitor.

6.4 Entry Structure

Each entry consists of two words. In word 1 the size of the buffer is in

bits 6 - 17. Bit @ is set to @# if the buffer belongs to Foreground and set to 1
if the buffer belongs to Background. Bit 1 is set to @ if the buffer is free
and to 1 if the buffer is in use. Word 2 contains a pointer to the buffer's
location in core.

bit g 1 2 56 17
XlY]ﬁ 2 IBuffer Size
) [Buffer's Address

Iv-12

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements of new and revised software, as well as programming notes, software problems,
and documentation corrections are published by Software Information Service in the following
newsletters:

Digital Software News for the PDP-8 and PDP-12
Digital Software News for the PDP-9/15 Family
Digital Software News for the PDP-11

These newsletters contain information to update the cumulative
Software Performance Summary for the PDP-8 and PDP-12
Software Performance Summary for the PDP-9/15 Family
Software Performance Summary for the PDP-11

The appropriate edition of the Software Performance Summary is included in each basic software
kit for new customers. Additional copies may be requested without charge.

Any questions or problems on the articles contained in these publications or concerning the use
of Digital's software should be reported to the Software Specialist or Sales Engineer at the
nearest Digital office.

New and revised software and manuals, and current issues of the Software Performance Summary
are available from the Program Library. To place an order, write to:

Program Library

Digital Equipment Corporation
146 Main Street, Building 1-2
Maynard, Massachusetts 01754

When ordering, include the code number and a brief description of the program or manual
requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a
catalog of available programs as well as the DECUSCOPE magazine for its members and non-
members who request it. For further information, please write to:

DECUS

Digital Equipment Corporation
146 Main Street, Building 3-5
Maynard, Massachusetts 01754

BACKGROUND/FOREGROUND MONITOR
Programmers Reference Manual
DEC-15-MR3A-D
READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback - your critical evaluation of
this manual. ‘

Please comment on this manual's completeness, accuracy, organization, usability. and read-
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
Name: Organization:
Street: Department:

City: State: ‘Zip or Country

——————————————— — FoldHere - - - ---—--- - —-— — — — — — —

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltiall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Postage will be paid by:

