EK-DTCO1-RM-003

DECtalk DTC01

Programmer Reference Manual

Prepared by Educational Services
of
Digital Equipment Corporation

1st Edition, December 1983
2nd Edition, June 1984
3rd Edition, March 1985

Copyright © 1983, 1984, 1985 by Digital Equipment Corporation.
All Rights Reserved. Printed in U.S.A.

The reproduction of this material, in part or whole, is strictly prohibited. For copy
information, contact the Educational Services Department, Digital Equipment
Corporation, Maynard, Massachusetts 01754.

The informationin thisdocument is subject to change without notice. Digital Equipment
Corporation assumes no responsibility for any errors that may appearin this document.

This equipment generates and uses radio frequency energy and if not installed and
used properly, that is, in strict accordance with the manufacturer's instructions, may
cause interference to radio and telsvision reception. It has been type tested and found
to comply with the limits for a Class B computing device in accordance with the
specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference in a residential installation.
Compliance with the FCC Class Btechnical requirements is dependent upon the use of
interconnecting cables specified in the User/Installation manual. However, there is no
guarantee that interference will not occur in a particular installation. If this equipment
does cause interference to radio or television reception, which can be determined by
turning the equipment off and on, the user is encouraged to try to correct the
interference by one or more of the following methods.

® Reorient the receiving antenna.

® Relocate the computer with respect to the receiver.

® Move the computer away from the receiver.

@ Plug the computer into a different outlet, so that computer and receiver
are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/television
technician for additional suggestions. The user may find the booklet How to Identify and
Resolve Radio/TV Interference Problems, prepared by the Federal Communications
Commission, helpful. This booklet is available from the U.S. Government Printing Office,
Washington, D.C. 20402, Stock No. 004-000-00345-00345-4.

UNIX and System V are trademarks of AT&T Bell Laboratories.
Touch-Tone and AT&T are trademarks of American Telephone and Telegraph Company.
Zeus is a trademark of Zilog, Inc.

The following are trademarks of Digital Equipment Corporation, Maynard,
Massachusetts.

HﬂEﬂEII'” DECwriter RSTS

DEC DIBOL RSX
DECmate LA ULTRIX-32
DECnet MASSBUS UNIBUS
DECsystem-10 PDP VAX
DECSYSTEM-20 P/OS VMS
DECtalk Professional VT

DECUS Rainbow Work Processor

TELEPHONE COMPANY AND FCC REQUIREMENTS

AND RESPONSIBILITIES

FCC regulations require that you provide your local telephone company busi-
ness office with the following information before you connect DECtalk to the
telephone network.

e The particular lines(s) to which terminal equipment will be connected
(by telephone number)

e The make, model number, and FCC registration number (label on bottom
of unit)

e The ringer equivalence for the registered terminal equipment (label on
bottom of unit)

e The type of jack needed (if not already installed)

Make: DECtalk

Model: DTC01-AA

FCC Registration: AO994Q-12463-OT-E

Ringer equivalence: 0.3B

Type of jack: USOC RJ11C or USOC RJXAT1 for telephone line interference
(See the DECtalk DTCO1 Installation Manual.)

You must also notify the telephone company when you permanently disconnect
terminal equipment from telephone line(s).

You may not connect terminal equipment to a party line or coin-operated
telephone equipment.

If the telephone or telephone line is already equipped with a jack you should be
able to plug in DECtalk without any additional telephone company charge.
Otherwise, the telephone company will install a jack, which usually results in a
one-time installation charge.

If terminal equipment damages the telephone network, the telephone company
can, after notifying the customer, temporarily discontinue service. However,
when prior notice is not practical, the telephone company can temporarily
discontinue service immediately. In such cases, the telephone company shall:

e Promptly notify customers that service has been discontinued
e Give customers the opportunity to correct the situation

e Inform customers of their right to bring a complaint to the FCC according
to Subpart E of Part 68 of FCC Telephone Equipment Rules.

The DECtalk DTCO1 unit is classified as terminal equipment.

CANADIAN APPLICATION NOTICE

The Canadian Department of Communications label identifies certified equip-
ment. This certification means that the equipment meets certain telecommuni-
cations network protective, operational, and safety requirements. The depart-
ment does not guarantee the equipment will operate to the user’s satisfaction.

Before you install this equipment, make sure it is permissible to be connected
to the local telecommunications company’s facilities. You must also install the
equipment by using an approved connection method. In some cases, the com-
pany’'s inside wiring associated with single line individual service can be
extended by a certified jack/plug/cord ensemble (telephone extension cord).
Be aware that complying with the above conditions may not prevent degrada-
tion of service in some situations. Telecommunications company requirements
do not allow you to connect their equipment to customer-provided jacks,
except where specified by individual telecommunications company tariffs.

Only authorized Canadian maintenance facilities, designated by the supplier,
should repair certified equipment. If you repair or alter certified equipment
yourself, or if the equipment malfunctions, the telecommunications company
has cause to ask you to disconnect the equipment.

You should ensure (for your own protection) that the electrical ground connec-
tions for the power utility, telephone lines, and internal metallic water pipe
system, if present, are connected together. This precaution may be particularly
important in rural areas.

CAUTION: Do not try to make such connections yourself, but contact the
appropriate electric inspection authority or electrician.

CONTENTS

INTRODUCTION

CHAPTER1 HOW DECtalk PROGRAMMING WORKS

Communicatingwith DECtalk ... 2
Typesof Dataot it e 2
Operating Modes ..ot it 4

Using Escape Sequences and Control Characters 4
ESCape SEQUENCES ...vviiitt ittt ie et aianiaiae s iaaninnns 4
Escape Sequence Formatttt 6
Control Characterscooiiiiiiiii ittt i iiiineiaeans 7
Control Character Loggingcccoiiiiiiiiiiiiiiiiiinieennn. 9
Effect of the Backspace (BS) Character.......................... 9

DECtalk - Computer Communicationciiiiiiiii... 10
DECtalk SetUPS . oot ii ittt e e e s 12
Program Control ..ot 13
Data Synchronization ...ttt 13
DECtalk — Host Program Sequencec.coeviiineennnennnn. 15

Developing Your Application ... 15
Names, Part Numbers, and Alphanumeric Text 16
Direct Numeric Encodingciiiiiiiiiiiiiii i iaiaans 16
Two-Character Encoding ...t et aiiiaaanens 17
Ending Commandsand Data ...l 17
Application Development Tipscoiiiiiiiii e 18

vi CONTENTS

CHAPTER 2 SETUP ESCAPE SEQUENCES

Selecting ASCIl Character Setscoiiiiiiiiiiii it 20
Coding Standards ...t e 22
(07T LT =1 1 =S 23
7-Bit ASCliCode Tablecoiiiiiiiiiiiiii e ieeeeiaanns 23
8-BitCodeTable.......ccoiiiiiiii e et 25
Character Sets ...ttt i e e 27
Selecting Alternate Character Sets (GO-G3)coven... 27
DEC Multinational CharacterSet 30
Working with 7-Bit and 8-Bit Environments 32
Conventions for Codes Transmitted to the Terminal 32
Mode Selection (DT_MODE)coiiiiiiiiiiiiiiiiiee e 32

CHAPTER3 VOICE COMMANDS, PHONEMIC TEXT,
AND THE USER DICTIONARY

SpPeeCh CoNtrol ...ttt et e e e 35
Speech TIMEOULt ..o e et eeeaaeaneaennns 36
English Text ... i et et an e, 36
Speak Phonemic Text (DT_PHOTEXT) ..ot 37
Stop Speaking (DT _STOP) ... et e e iee i eeeaeeennns 38
Data Synchronization (DT_SYNC) ...ttt iieeiiennns 38
Enable or Disable Speaking (DT_SPEAK)ccoiiiiiiiiiininnnn. 39
T 1= 41 Vo 39

Index Text (DT__INDEX)coiiiiiiiii et ieeeeeeens 40

Index Reply (DT__INDEX_REPLY) ...coriiiiiiiiiiiiiienannnn, 40

Index Query (DT_INDEX_QUERY) ...ttt 41
Load Dictionary (DT _DICT) ...ttt e i et ceeeaianeans 43

CHAPTER4 TELEPHONE COMMUNICATIONS

Telephone Management (DT_PHONE)ciiiiiiiiiiiinne... 46
PH _ANSWER ... et ettt e it iaiaeaes 48
PH _HANGUP ittt et e et e e et eaaaeaeeeeans 48
PH _KEYPAD .. i e e e e e e 48
PH _NOKEYPAD ... e e e e s et e 48
PH _TIMEOUT i e e e e e e et eeeaeeeans 48
PH_TONE_DIAL and PH_PULSE_DIALc........ 49

CONTENTS vii

CHAPTERS5 MAINTENANCE AND DEBUGGING COMMANDS

Device Attribute Request ... 51
Device Attribute Request (DAPrimary) ..., 51
Identify Terminal (DECID)coiiiiiiiiiiiiii i 52

Device Testand Status ...ttt e ieienns 52
DECtalk Power-Up Status ...ttt 52
Device Self-Test (DECTST)oiiiiii i iee e eiaes 54
Device Status Request (DSR) (Brief Report) 55
Device Status Request (DSR) (Extended Report) 55
Reset to Initial State (RIS) ... 56
Soft Terminal Reset (DECSTR) ...ttt 57
NVR Feature Settings (DECNVR) ..., 58

Tracing and Debugging Commandso, 58
Local Log Control (DT_LOG)couviiii i 58
[0 1€ =5 A 61
LOG_PHONEME ..ottt it eaae e ianaas 61
LOG _RAWHO ST .ttt it sttt e aae e 61
LOG INHOST i ittt e et aaa s saan e rannns 61
LOG _OUTHOST ittt it ettt i it aaaeees 61
(101 C N = =1 = {0] = J A 61
LOG _TRACE .ttt et ettt aanens 61

Local Terminal Command (DT_TERMINAL)c.cciiiiinnan. 62

Keypad Mask Command (DT_MASK) ...ttt 64

Determining Firmware Revision Levell 67
Phonemic Alphabet ... 67

CHAPTER6 C PROGRAM EXAMPLE

Program Language and Structuret 70
How the Program WOrksooiiiiiiiiiiii i 71
Variable Names and Definitions i 72
Flags it e 72
o O Yo [72
DECtalk-Specific Parameters ..., 73
DECtalk Commandsc.coeiiiiiriiiiiiiieraniaeranaeeennnns 73
Telephone Control Parameters, 74
DECtalk REPlES ..ottt it e et e e aeaaiaeees 75
Self-Test Parameters ...ttt iaaaaaaannns 76
Logging Command Parametersccoiiiiiia, 77

The Sequence Data Structureo i, 78

viii CONTENTS

Application Programscoiiiiiiiiiiiii i ittt 80
DECTLKIH i i et ettt ettt et araanans 83
DEMO.C .o e e 98
DT ANSW. C i e e ettt ettt 100
I8 0 10 2 101
[0 1717, 1 0 X A 103
I T - N 2, 1056
8 I T 1. 3 106
DT DAL C . i e 108
DT D RALC . e e e e e e e 111
DT DUMP. C oo e ettt et e e e e 113
[0 = O 115
DT GESC.C i et e e e 116
0 €] P e 123
0 8 Y 125
0 1 1\ 8 A 126
DTINKE C oottt i et e et e ettt reenns 128
DTIOGE. G .ot e ettt ettt et 130
[0 T T = U X 140
[0 1] S 2 143
I 8 I I 1 144
DT SV A C i e e e e e e e 145
[0 1 2 X O 146
DM G C .ot e e e e 147
[10 o TN 2 149
DTONHO. . C . e e e et 150
[1@] = = VX A 151
D o 1 O 157
DT PES . C ottt et e e e e e 163
DT PHON.C it i e e ittt et e et 167
DT PTES. C .ottt it ettt ettt eaaananan 168
0 1 = 1 1 O A 169
DTREAD.C ..o e e e e 170
DT RESE. C .ottt e e e e e 172
DTS AVE. C .ot e e e e e 173
) 5T o I 0] 175
DT ST oo e e e e 177
I8 15 1 O 2 178
DT T ALK C oo e et e e 179
0 I 0 180
[0 1 Y = -2 181
DT T ONE. C .o e e e et 183
DT TRAP. C . e et e e e 185
[0 1V T X 188

HELLO.C .. e e e e e et 190

CONTENTS ix

CHAPTER7 BASIC-PLUS PROGRAM EXAMPLE

RSTS/E SYStEMS ... ovvttiiinienannr et 191

APPENDIX A DECtalk ESCAPE SEQUENCES

APPENDIXB PHONEMIC ALPHABET

APPENDIXC DOCUMENTATION

FIGURES
1-1 DECtalk, Terminal, and Host Communications 3
1-2 Typical Escape Sequence Formatcooveiieninnnnn. 5
1-3 Escape Sequence Representations...............coooviinnenn. 6
1-4 DECtalk-Computer Program Interactiononn. 11
1-5 Synchronizing DECtalk and Host Communications 14
2-1 Mapping 7-Bitand 8-Bit Tablesc.coiiiiiiiinnnn 21
2.2 7-Bit ASClICode Tableccvviiiiiiiiiiiiiiiiiieiieeees 23
0.3 T-Bit COUE .+ eittiiii it i i 24
2.4 8-Bit ASClICodeTableccoiiiriiiiiiiiiiiiiiiinens 25
D5 B-Bit COUE « et iiiteee e iiae et 26
2-6 Loading 8-Bit Characterscoiiiiiiiiiiiiiaeiiennn, 28
2-7 Selecting Active Character Setsooiiiiiniininnn 28
2.8 DEC Multinational CharacterSet ... 30
3-1 Using DT_SYNC and DT__INDEX__QUERY to Coordinate
(0703111411018 1107= U o) 1 1- TP R LR 42
4-1 Telephone CommuUNICAtiONScovniiniriiiiiniiiiaeeen, 50
5-1 Data Paths for Logging and Debuggingcoivenen 60
5-2 Data Paths for Local Terminal Operationsohe 62
6-1 Calling Tree of DECtalk Application Program 70
TABLES
1-1 Control Characters and Host Communications 8
2-1 Selecting 7-Bitor8-BitMode ... 21
2-2 Selecting the Active Character Setcoivennn. 29
2-3 Selecting the Character Setcoiiiiiiiiiiiiiiien 29
2.4 DT_MODE Parametersoiiiieeemnnnnrniriieeranaaenns 33
4-1 DT_PHONE Parameterscccvieemenriiiiiienneenneenne, 47
4-2 Phone Status ReplyCodescoiiiiiiiiiiiiiiiines 47
5-1 Restoring DECtalk Operating Featurescoovnen 53
5-2 DECtalk Actions Performed at Resetsooivenennn 53
5-3 Self-Test Parametersocoeiiienimiiiiiiiiaraienanaens 54
5-4 DT_LOG Parametersccovieeminrrnentrnernanenieennees 59

X

5-5
5-6

A1
A2
A-3
A4
A-5
A-6
A7
A-8
B-1
B-2

CONTENTS
DT_TERMINAL Parametersc.ouuuueneinne . 63
DT_MASK Parametersouuueeeueeea 65
Application Program Modulesc.oooiiiii. 80
Escape Commandscooveuiuiunin 210
DECtalk Status Repliesooouiuiuiee 213
DT_MODE Parameterscoouuuueeeeni 215
DT_TERMINAL Parametersccoouuueeue 215
DT_PHONE Parameterscouuueeenoie . 216
DECTST Parametersoooueeuiuieaie 217
DT_LOG Parametersouuueeuuuniii 217
DT_MASK Parameterso.uuueuuene 218
Phonemic Inventory oo 220
Phonemic Emphasis Markerscooouoeeiei 221

INTRODUCTION

This manual describes how to use DECtalk with a host computer. The text
explains the escape sequences you can use with DECtalk.

Terminals display information from a computer on a screen or paper; they
provide communication with computers through the sense of sight. DECtalk
speaks information from a computer in an English-language voice; it provides
communication with computers through the sense of hearing.

The DECtalk DTCO1 Owner’s Manual (EK-DTC01-OM) describes how to use
DECtalk connected to a terminal. This manual describes how to use DECtalk
connected to a host computer.

Chapter 1 describes how DECtalk can communicate with a host computer
through computer application programs. The chapter also describes some
guidelines for writing applications.

Chapter 2 describes the setup escape sequences that initialize and control the
DECtalk environment.

Chapter 3 describes how to use voice commands, send phonemic text to
DECtalk, and load the user dictionary.

Chapter 4 describes how DECtalk works when connected to a telephone
network.

xi

xii INTRODUCTION
Chapter 5 describes the maintenance and debugging commands used to test
DECtalk.

Chapter 6 provides a detailed application program written in C programming
language. You can copy this program.

Chapter 7 provides a sample program written in BASIC-PLUS programming
language. You can copy this program.

The appendices summarize the DECtalk escape sequences, the phonemic
alphabet used, and the other available DECtalk documentation.

HOW DECtalk
PROGRAMMING WORKS

This chapter gives you an overview of DECtalk programming. The chapter has
four major sections.

e “‘Communicating with DECtalk’’ describes the types of data DECtalk can
receive and the operating modes DECtalk uses.

e "‘Escape Sequences and Control Characters’ explains the basic format
for entering commands with escape sequences. This section includes a
table of the control characters that DECtalk recognizes.

e “DECtalk-Computer Communication” lists some special rules DECtalk
follows when processing text. This section describes how escape
sequences affect the flow of information between DECtalk, a local termi-
nal, and a computer. The section also describes data synchronization.

¢ “Developing Your Application” provides some guidelines for writing appli-
cation dialog and encoding your program.

2 HOW DECtalk PROGRAMMING WORKS

COMMUNICATING WITH DECtalk
DECtalk is an intelligent peripheral device, so the following guidelines apply.

e You cannot program DECtalk directly. After the initial power-up opera-
tions, DECtalk is controlled through a terminal or host computer.

e DECtalk is easy to control, because the internal DECtalk processor is
sophisticated enough to process complex operations with simple
commands.

e You can select DECtalk’s operating characteristics and have DECtalk
answer questions (from the host computer) about its status. DECtalk can
also inform the host computer of status changes. For example, DECtalk
can tell the host computer if a connected telephone has rung.

e DECtalk memory can store some information. For example, DECtalk has
an extensive built-in pronunciation dictionary. You can load a user-
defined dictionary under computer control.

The following paragraphs describe how DECtalk sends and receives informa-
tion from the host computer.

Types Of Data
DECtalk can receive two types of data through its communications connector,
text and commands.

Text is data that DECtalk will speak. Text consists of English-language
sentences, phonemically spelled text, or a combination of both.

Commands are instructions to perform an action. Commands are not spoken
by DECtalk.

There are two ways to send commands - with escape sequences or with
square brackets []. Some commands you can only send with escape
sequences, and some commands you can send both ways.

Escape sequences start with an ESC character, followed by a string of ASCII
characters. DECtalk interprets the string as a special command. This manual
describes the escape sequence method of sending commands.

Square bracket [] commands let you include speech commands and phonemic
text with text information, if MODE SQUARE is on.

HOW DECtalk PROGRAMMING WORKS 3

The “Mode Selection” section in Chapter 2 describes MODE SQUARE. The
DECtalk DTCO01 Owner’s Manual describes square bracket commands and
syntax.

Appendix B summarizes both command methods. Figure 1-1 shows the rela-
tionship between terminal commands and host commands. This chapter pro-
vides more information on escape sequence conventions and format.

SETUP> SET LOG PHONEME ON

DECtalk

ON-LINE

/’—: MODE
e

Figure 1-1 DECtalk, Terminal, and Host Communications

MA-7590-83

4 HOW DECtalk PROGRAMMING WORKS

Operating Modes
DECtalk has three operating modes: setup, off-line, and on-line.

You use setup mode to select the operating parameters of DECtalk, such as
communication line characteristics and phonemic representation.

You use off-line mode when DECtalk is connected to a terminal. The DECtalk
DTCO1 Owner’s Manual describes off-line mode.

You use on-line mode when DECtalk is connected to a host computer. Com-
mands must be sent as escape sequences from the host computer.

DECtalk powers up in on-line mode. When you connect DECtalk to a terminal
for local use, you must switch DECtalk to off-line mode; press the BREAK key
to enter setup mode, then select the off-line setting.

USING ESCAPE SEQUENCES AND CONTROL CHARACTERS
This section describes the general syntax of escape sequences, and how to
use them with DECtalk.

Escape Sequences
In setup mode, you can enter commands directly to DECtalk through the
terminal.

When DECtalk is on-line, you can enter most setup commands plus other on-
line commands; however the commands come from the computer instead of
the terminal. For example, you can only load the user-defined dictionary while
on-line.

On-line and setup commands act the same, but they have different formats.
For example, the user command

SETUP>SET LOG PHONEME ON
is sent from a computer as an escape seqguence

ESCPO0;81;2zESC\

You can omit parameters with a value of 0 (ASCII). For example, you could
send the above sequence as ESC P ;81 ;2 z ESC \. DECtalk does not send
parameters with a value of 0 in its reply sequences.

NOTE: Escape sequences in this manual are spaced for clarity only. Spaces
are not part of the actual escape sequences.

HOW DECtalk PROGRAMMING WORKS 5

DECtalk escape sequences have the following characteristics.

1.

2.

They begin with an ESC character.

The ESC character is followed by ASCII characters that define the
command.

Every character in the command is important. You must enter the exact
characters shown. For example, in the command above, the semicolons
are part of the command. The letter z is lowercase; an uppercase Z has
no meaning to DECtalk.

Programming standards require that you end some commands with a
sequence terminator - ESC \. This manual includes ESC \ with all com-
mands that require it.

Escape sequences only work on the DECtalk host line. This is different
from most terminals, which can interpret typed escape sequences.

The ESC character plus the ASCII characters are like a compressed version of
the off-line commands. Figure 1-2 shows the meaning of each part of a typical
escape sequence.

DECtalk ignores invalid sequences and commands.

BEGINNING OF ESCAPE SEQUENCE
DECtalk COMMAND

SET LOG

PHONEME ON

DECtalk COMMAND TERMINATOR
END OF ESCAPE SEQUENCE

=

—

ESC PO : 81 ; 2z ESC\

DELIMITER

MA-7691A-83

Figure 1-2 Typical Escape Sequence Format

6 HOW DECtalk PROGRAMMING WORKS

Escape Sequence Format

The following chapters describe the specific escape sequences used with
DECtalk. This manual includes the following information with all escape
sequences (Figure 1-3).

Mnemonic

ASCII characters
Parameters
Decimal value

NOTE: Since DECtalk suppresses parameters with a value of 0, DECtalk
would send ESC P ; 31 ; P38 Z ESC \ for the sequence in Figure 1-3 (assuming
P3 is not 0). If P3 is 0, DECtalk would send ESC P ; 31 ; z ESC \.

The mnemonic is a unique name (such as DT_INDEX) used to identify the
escape sequence. Mnemonics do not have any direct programming signifi-
cance; that is, DECtalk does not recognize a mnemonic name as a valid escape
sequence. However, when you refer to escape sequences by mnemonic in
program documentation and program variables, it simplifies editing and
debugging.

The program examples in Chapter 6 use mnemonics for the appropriate
escape sequences. The header file DECTLK.H in Chapter 6 defines all DECtalk
command mnemonics.

DT_QUERY_REPLY (ESCAPE SEQUENCE MNEMONIC)

ESCAPE CHARACTER

ASCII CHARACTER P

ASCII CHARACTER ZERO

ASCII CHARACTER ;

ASCII CHARACTER 3

ASCII CHARACTER 1 (NOT LOWERCASE L)
DELIMITER

PARAMETER
DECtalk COMMAND TERMINATOR
l I END OF ESCAPE SEQUENCE
ESC P 0 ; 3 1 ; P3 z ESC \ (ASCII REPRESENTATION)

027 080 048 059 051 049 079 " 122 027 092 (DECIMAL VALUE)
L INDICATES VARIABLE VALUE

MA-7592A-83

Figure 1-3 Escape Sequence Representations

HOW DECtalk PROGRAMMING WORKS 7

The ASCII characters are the actual characters to use. The “Escape
Sequences’ section in this chapter gives an example of an escape sequence in
ASCII format. The escape character is represented by ESC in all sequences.
The numbers that appear are actual ASCII characters, not numeric values.

Parameters appear in escape sequences that can cause several DECtalk
actions. These different actions depend on parameter values.

Parameters are represented in this manual by a capital P followed by a number
or letter. Parameters are always sent to DECtalk as a decimal number, in ASCII
format.

An empty parameter is treated like a parameter with a value of 0. The
sequences ESC P ; z and ESC P 0 ; 0 z are identical. DECtalk always sends a 0
parameter as an empty string. However, the 0 parameters are always shown
as explicit zeros in examples.

This manual lists possible parameter values in tables. There are two methods
used to show parameter values.

1. Usually the ASCII character(s) appears (with the decimal value under-
neath as a check). Use the ASCII character(s) in the escape sequence.

2. Sometimes only a numeric value appears. You must convert the numeric
value to a sequence of ASCII characters for the escape sequence.

The decimal value of each escape sequence character appears directly under
the character, so you can verify the sequence characters. Parameters are
marked with asterisks (***), indicating that the value is variable.

Chapter 2 provides complete tables of all ASCII characters and their decimal,
octal, and hexidecimal equivalents.

Figure 1-3 shows all the parts of an escape sequence.

Control Characters

Some control characters (such as carriage return and backspace) have special
meanings. Table 1-1 lists the control characters that DECtalk recognizes.
DECtalk ignores any other control characters.

8 HOW DECtalk PROGRAMMING WORKS

HOW DECtalk PROGRAMMING WORKS 9

Control Character Logging

Version 2.0 of DECtalk firmware improves control character logging. Before
version 2.0, some control characters were not correctly logged. In particular,
the CTRL-K (clause flush) control character sequence (generated internally by
DECtalk), was not logged unless DECtalk received text from the host in 5

seconds. If a heavily loaded system was slow to respond, DECtalk might not
log the current event.

For example, suppose the host system stopped sending data in the middle of a
phonemic text string or an escape sequence. DECtalk would execute a time-
out, exit phonemic text mode (or ignore the escape sequence), and fail to log

the event. The result was problems for the application developer in tracking
control character logs.

NOTE: You should enable LOG_INHOST or LOG_RAWHOST to ensure the
proper logging of all characters. See “Local Log Control (DT_LOG)" in Chap-
ter 5 for more information on control character logging.

Effect of the Backspace (BS) Character
If DECtalk finds the backspace character in a word, DECtalk modifies the word
according to the hierarchy of the characters involved, as follows.

1. letters and digits

2. punctuation
3. underline character

The BS character allows DECtalk to process text containing overstrikes and
underlining.

Here are several examples of DECtalk’s processing (spaced for clarity).

Input Pronounced as
a BS _ a
- BS a a
a BS b b
ab BS BS de de
a BS " a

a BS " BS _ a

10 HOW DECtalk PROGRAMMING WORKS

DECtalk-COMPUTER COMMUNICATION

Programming DECtalk is similar to programming a smart terminal (such as a
VT220). That is, DECtalk and the host computer must exchange information
according to fixed rules.

DECtalk does not process text until reaching a valid clause boundary. Clause
boundaries mark the end of phrases or sentences. DECtalk recognizes the
following clause boundaries.

e A period, comma, exclamation point, or question mark is a valid bounda-
ry. If a period is used, DECtalk checks the characters after the period
(because periods do not always mean the end of a sentence).

o A full buffer also acts as a boundary. If DECtalk’s temporary buffer begins
to approach its fill limit (at about 12 words), DECtalk begins speaking
what is in the buffer and treats the last word as a clause boundary.

e A timeout is another boundary. If nothing is sent to DECtalk within 5
seconds and there is text in the buffer, then DECtalk speaks all text in the
buffer as though a comma had been sent with the text.

Escape sequences represent (1) commands sent from the host to DECtalk, and
(2) status replies sent from DECtalk to the host. All escape sequences begin
with the ESC character; a sequence ends when the last character required for
that sequence is sent. Do not use a carriage return or any other normal
terminating character to terminate an escape sequence.

Figure 1-4 shows the data paths in DECtalk, as follows.

1. The DECtalk unit is in the center of the figure. The speech processor is
part of the DECtalk unit, but is shown as a separate module.

2. Arrows show the direction of information flow. Notice that information
flows from the terminal (or telephone) to the host, and from the host to the
terminal (or telephone). However, information only goes to the speech
processor from the host or terminal. Information from the speech proces-
sor is sent to the telephone or speaker.

3. Each DECtalk escape sequence affects the flow of information within
particular data paths. The switches within the data paths represent the
points at which the escape sequences act. For example, the DT_STOP
escape sequence affects the data flow from the host to the speech
processor.

HOW DECtalk PROGRAMMING WORKS 11

SPEAKER

SPEECH |
|PROCESSOR)
HOST SPEAK — ¥ TOCAL SPEAK
-0
\(‘ LOCAL HOST ‘
!i —o” o
LOGGING
\\ o o
HOST =D
TERMINAL
—O— 00— =SWITCH ON

—0” 0— =SWITCH OFF

SPEECH PROCESSOR SEQUENCES

DT _MODE:MODE __SQUARE
DT _MODE:MODE _MINUS
DT _MODE:MODE _ASKY
DT _PHOTEXT

LOGGING SEQUENCES

DT _LOG:LOG __ RAWHOST
DT _LOG:LOG__TEXT
DT _LOG:LOG __ TRACE

DT _LOG:LOG__PHONEME
DT _ LOG:LOG _ INHOST
DT _LOG:LOG_ERROR
DT _LOG:LOG__OUTHOST

LOCAL HOST SEQUENCE

DT_TERMINAL:TERM _ HOST
DT_TERMINAL:TERM _FILTER

LOCAL SPEAK SEQUENCES

DT_ TERMINAL:TERM _SPEAK
DT_ TERMINAL:TERM _EDITED
DT _TERMINAL:TERM _SETUP
DT _TERMINAL:TERM _HARD

HOST SPEAK SEQUENCES

DT _sTOP
DT _SPEAK

MA-7593-83

Figure 1-4 DECtalk-Computer Program Interaction

4. Since there are a large number of commands and parameters, they are
grouped in boxes under the diagram.

5. Some commands have parameters (sometimes called arguments). Figure
1-4 shows commands and their parameters. The parameters (if any)
appear after a colon (:) mark.

There are many ways to control and use DECtalk when connected to a host
computer. The rest of this chapter and the sample program in Chapter 6
describe a general programming method for DECtalk. If you are writing a
control program for DECtalk, remember that your application and needs may
not match the descriptions that follow exactly.

12 HOW DECtalk PROGRAMMING WORKS

DECtalk Setups
The controlling program first configures DECtalk to ensure that all parameters
are set correctly. Use these steps in your program.

1. Programs may wish to send a ‘“What are you?’’ sequence to make sure
DECtalk is available. DECtalk replies with a code correctly identifying
DECtalk.

The “‘Device Attribute Request” section in Chapter 5 describes ‘‘What are
you?’’ sequences.

2. Send setup commands to configure DECtalk for host-DECtalk communi-
cation. The required setup commands vary from computer to computer
and from application to application; however, here are some commands
to consider.

a. Include any required communication command (such as 7-bit or 8-bit
codes, and code interpretation. See ‘‘Selecting ASCII Character Sets’
in Chapter 2.

b. Set MODE SQUARE on (if desired). This command ensures that pho-
nemic code values are accepted. See ‘“Mode Selection’ in Chapter 2.

c. If you connect DECtalk to the public telephone network, select the
correct telephone handling parameters. See Chapter 4 for these
parameters.

3. You may have to set up the host computer (or DECtalk communication
line) for DECtalk commands. You must set up the computer for single-
character, unsolicited input, and operating system XON/XOFF
processing.

Setting up computers is beyond the scope of this manual; however, Chap-
ter 6 has examples of setting up certain Digital Equipment Corporation
computers for DECtalk.

If your host computer cannot support single-character processing, you
can use the DT_MASK escape sequence to permit line-at-a-time
processing. See ‘'Keypad Mask Command (DT_MASK)"’ in Chapter 5.

4. Other commands depend on the DECtalk environment, such as debug-
ging commands or special text-to-speech commands.

HOW DECtalk PROGRAMMING WORKS 13

Program Control

DECtalk is primarily a speech device; its internal code is directed towards
producing artificial speech. DECtalk assumes the host computer will handie
most of the necessary control operations (such as waiting for task completion
and requests for status).

The host is responsible for control and coordination, but this is not a major
task. The rest of this chapter describes areas you should consider when
designing the DECtalk program application.

Data Synchronization

DECtalk’s speech rate is much lower than the (potential) data transfer rate on
the host communication line. DECtalk sends an XOFF character (CTRL-S) to
the host when its input buffer is almost full, to signal that any more input will be
discarded. When DECtalk's input buffer is almost empty, it sends an XON
character (CTRL-Q); XON tells the host to start sending data again.

The DECtalk input buffer is large enough so that the host can continue sending
data at the highest speed (9600 baud) for up to 250 milliseconds after it
receives the XOFF, without losing data.

Figure 1-5 shows how DECtalk synchronizes data transfer with the host
through XON/XOFF signals.

If the host does not stop sending data in time, the input buffer may overflow
and characters may be lost. DECtalk does not give an audible warning of this
overflow, except for the obvious garbling of partial words. The host can issue a
device status request (DSR) command to determine if an input buffer overflow
occurred.

Most operating systems have a HOSTSYNC option (or its equivalent) in the
terminal setup characteristics. If this characteristic is set on the DECtalk com-
munications line, the host computer handles XON and XOFF signals. If
XON/XOFF coordination is not available, the application program may be able
to avoid buffer overflow by using the DT_SYNC command and controlling the
program’s output rate; however, Digital does not recommend this method
because it causes errors. The “Data Synchronization” section in Chapter 3
discusses DT_SYNC.

14

HOW DECtalk PROGRAMMING WORKS

HELLO. | AM DECtalk. WHEN IN THE
COURSE OF HUMAN EVENTS....
MUMBLE . . . MUMBLE...

&y

/
/

HOST

-.WHEREFORE HE HATH CAUSED...
...MUMBLE . . . MUMBLE...

\i HOST PAUSES WHILE DECtalk EMPTIES ITS BUFFER.

HOST

=)

/7=

XON

/

HOST DECtalk's BUFFER IS NEARLY EMPTY, SO IT SENDS XON.

..MUMBLE . . . MUMBLE..
| THANK YOU FOR
LISTENING TO ME.

/77
)

/.

HOST
HOST RECEIVES XON AND RESUMES TRANSMISSION.

DECtalk

DECtalk

..WHEREFORE..,

DECtalk

...HE HATH CAUSED...

DECtalk

... THANK YOU FOR..

DECtalk

MA-7596-83

Figure 1-5 Synchronizing DECtalk and Host Communications

S—

HOW DECtalk PROGRAMMING WORKS 15

DECtalk-Host Program Sequence

After you set up a parsing method so data can pass between the host comput-
er and DECtalk, you should set up the host for the kinds of data to receive.
How you set up information handling depends on the needs of the user. The
following section provides some guidelines for developing your application’s
dialog.

DEVELOPING YOUR APPLICATION

DECtalk lets people use your computer-based applications from any keypad
telephone. DECtalk speaks your messages in an understandable voice. When
the user presses keypad keys, DECtalk sends those characters to your pro-
gram. The following guidelines should help you adapt your application to your
unique needs.

General Guidelines

e Keep the user’s point of view, not the programmer’s. Use commands that
are logically related to the way users see the task.

e Most people will not carry a large user guide around with them.
e Frequent users become experts quickly.
Writing Dialog
e Keep dialog simple, but meaningful.
¢ Organize each message as follows.
1. Put the hardest element to remember first.
2. Put the easiest elements to remember in the middle.
3. Put information for immediate recall at the end.

e Tell users only what they need to know in order to continue a task.

e Do not use humor or threats. Keep dialog strictly factual and informative.

16 HOW DECtalk PROGRAMMING WORKS

Help Messages and Replies

e Make help messages optional. Let users decide when they want more
information.

¢ Repeat significant phrases in help messages.

e Let users know that DECtalk is acting on their specific commands. For
example, say “‘Sending reply to Ms. Jones,” rather than ‘‘Sending reply.”

Entering Keypad Commands
e Remember, there are only 12 keys on the telephone keypad.
¢ Keep the same function on the same key.

e Refer to keypad numbers, not letters. People do not remember which
letter is on which key. Use “‘Press 1 for next, 2 for previous, 3 to exit,”
rather than “‘Press N for next, P for previous, E for exit.”

e Create a standard method for users to exit from a subtask to the main
dialog.

Names, Part Numbers, and Alphanumeric Text

In many DECtalk applications, you use the 12 keypad keys to enter a person’s
name or an alphanumeric part number. Since the application program only
receives a string of digits (and the # and * characters), the program must use
the digits as an index to the actual data item.

If you are designing a new system, you could specify numeric part numbers
only. However, in the real world, a company is not going to change its existing
warehouse methods to match DECtalk. So the user will have to enter some-
thing that your application can translate into the current system.

Direct Numeric Encoding

Using this method, the user simply presses the key labeled with the desired
letter. For example, to select “DIGITAL" the user would press 3444825. You
could assign the letters Q and Z to the 7 (PQRS) and 9 (WXYZ) keys,
respectively.

HOW DECtalk PROGRAMMING WORKS 17

Numeric encoding is a simple method to describe and implement. Since users
can recall more than one item for a given digit string, your application must
provide a way to select alternatives. You could have users select alternatives
by number. Or you could have them step through a list, using next and previous
commands.

Numeric encoding is probably the best method for lists of names and for many
part number applications. You can even use this method for ID or password
entry.

Two-Character Encoding

Some applications use specific letters in their codes (for example, three-char-
acter airport codes). You cannot use direct numeric encoding to select specific
letters on the keypad.

One possible solution is two-character encoding. This method matches the
three letters on each key to the three columns of keys on the keypad. The user
presses two keys to select a letter. i

1. The key with the desired letter
2. The 1, 2 or 3 key (to select the specific letter)

For example, to select “DEC” the user would press 313223. You could have
users enter numbers together with the 0 (OPER) key. And you could assign the
missing Q and Z (plus the space character) to the 1 key.

The United States Federal Aviation Administration used the above method to
provide a voice response weather system. (The USFAA used stored segments
of speech - DECtalk was not available at the time.)

Ending Commands and Data

You can use single-character commands and fixed-length data fields for many
applications. But for complex applications or variable-length data you may find
it simpler to ask the user to end all commands and data by pressing a special
key (such as #). Pressing # lets the program know that the right number of
characters have been entered.

You could also use DECtalk’s flexible keypad timeout facility. If the user is
entering a variable-length numeric field, use a long timeout for the first digit and
(possibly) a shorter timeout for successive digits.

18 HOW DECtalk PROGRAMMING WORKS

Application Development Tips
Here are some tips for encoding the application itself.

e Use timeouts for everything. Assume that the user may hang up the
phone at any time. Also assume that data entry will be quite slow. This is
important when planning data base entry and record-locking strategies.

e The DECtalk applications support library may return an error code due to
transient problems (such as a system overload). The simplest recovery is
to hang up the call and reinitialize DECtalk. Log the problem for future
action.

¢ People can recall about 5 seconds of text without difficulty. You can use
entries such as “1 for yes, 2 for no, 3 for maybe,”’ but do not ask an
untrained user to remember anything more complex.

e DECtalk tends to spell out text that may be ambiguous (for example, part
numbers). You can write a small filter subroutine that recognizes certain
strings and pronounces them in a form more suitable for your specific
application.

e If your application accepts data from the telephone keypad, make sure
the operating system can buffer type-ahead characters. Also, make sure
the operating system responds to DECtalk’'s XOFFs.

¢ DECtalk speaks pending text if the host system stops delivering text for 5
seconds. This feature may be a problem on an overloaded system. You
may need help from the system manager to obtain more resources or
adjust program priorities.

* When you have DECtalk speak information from a data base, remember
that the listener hears the information only once. You should offer a
repeat function for complex subject matter. If you have DECtalk read mail
or other unstructured text, you should offer a back up one sentence
function, using the Index Test command (Chapter 3) to signal what has
been heard.

SETUP ESCAPE SEQUENCES

DECtalk has several features you can change to control the operating environ-
ment. These parameters include the following.

e line characteristics (such as line speed)
e character sets (to send and receive information)

e modes (to control DECtalk’s interpretation of special characters and pho-
nemic text)

There are also several testing and inquiry commands, described in Chapter 5.

19

20 SETUP ESCAPE SEQUENCES

SELECTING ASCII CHARACTER SETS
DECtalk is a computer terminal device, and conforms to the standards for
computer terminals.

DECtalk speech does not include much of the visual information of character
sets. For example, DECtalk uses the following rules for all character sets.

1. Uppercase and lowercase letters are considered the same. For example,
DECtalk speaks the letter G as ‘‘gee,” not “uppercase gee.”

2. Foreign letters (as found in the multinational character set) are spoken as
English. For example, DECtalk speaks the letter 4 as “‘a,” not “a umlaut.”

3. You can translate or map 7-bit codes into 8-bit codes, and 8-bit codes into
7-bit codes (Figure 2-1). This mapping has no effect on spoken text. Table
2-1 gives the escape sequences that change DECtalk to 7-bit or 8-bit
modes.

The following paragraphs describe how DECtalk interprets certain keyboard
(or host computer) generated codes.

SETUP ESCAPE SEQUENCES 21

‘P’ MAPS INTO ITS

8-BIT EQUIVALENT (208)————-—1

ol e e e ”‘:nmuuuuuuuunnnuuu
& o’ = 00 |[rnujoE]| s ocs | T'}:,
E i :.-.‘ [1 1 —_—— =
- e, g T T—r~——
[T [o —Tm 11 | v |esc o | o8
HEENEREREEE = S . . P
Gl < o T [st T
‘ESC’ MAPS INTO ITS
8-BIT EQUIVALENT ‘CSI
MA-7594-83

Figure 2-1 Mapping 7-Bit and 8-Bit Tables

22 SETUP ESCAPE SEQUENCES

CODING STANDARDS

The DTCO1 uses an 8-bit character encoding scheme and a 7-bit code exten-
sion technique that are compatible with the following ANSI and ISO standards.
ANSI (American National Standards Institute) and ISO (International Organiza-
tion for Standardization) specify the current standards for character encoding
used in the communications industry.

Standard Description

ANSI X3.4 - 1977 American Code for Information
Interchange (ASCII)

ISO 646 - 1977 7-Bit Coded Character Set for
Information Processing Interchange

ANSI X3.41 - 1974 Code Extension Techniques for Use
with the 7-Bit Coded Character Set
of American National Code Information

Interchange
ISO Draft 7-Bit and 8-Bit Coded Character
International Sets - Code Extension Techniques

Standard 2022.2

ANSI X3.32 - 1973 Graphic Representation of the
Control Characters of American
National Code for Information
Interchange

ANSI X3.64 - 1979 Additional Controls for Use with
American National Standard for
Information Interchange

ISO Draft Additional Control Functions for
International Character Imaging Devices
Standard 6429.2

SETUP ESCAPE SEQUENCES 23

CODE TABLE
A code table is a convenient way to represent 7-bit and 8-bit characters,
because you can see groupings of characters and their relative codes clearly.

7-Bit ASCII Code Table
Figure 2-2 is the 7-bit ASCII code table. There are 128 positions corresponding
to 128 character codes arranged in a matrix of 8 columns and 16 rows.

COLUMN 0 1 2 3 4 5 6 7
BITS
b7 0 0 0 [1 1 1 1
—— o o o ' 1 ° o 1 "
Row| b4 b3 b2 b1 0 ! ° ! ° 0
0 20 20 60 100 120] | | 40 160
O|loooo [NUL|o |DLE|"%| SP |32] O || @ |ea| P | 0 ol p |2
0 10 20 3 40 50 60 70
1 il 41 61 101 121 141 161
11 0001 |SOH| 1 E&! 1 T s 1 | A |es| Q |&|] a || q |3
1 1 2 31 41 51 61 kAl
2 z | T 62 102 122 122 162
2] 0010 |STX| 2 |DC2] 18 sl 2 |so] B |e| R 22| b | r |na
2 12 2 32 42 52 62 72
3 p3) 3 63 103 123 143 163
3[oor 1 |ETX |3 [RE3|w| # x| 3 |si| € || S || ¢ || s |5
3 13 2 33 43 53 63 73
7 2 2 54 104 124 144 164
4] 0100 |EOT| 4 |DC4 |20 $ || 4 |s2|] D [e] T |[sa] d |w] t |16
4 14 2 34 44 54 64 74
5 % 5 65 105 125 135 165
5l o101 |ENQ|5 INAK|22 | % |37| & |sa|] E |e| U || e [10] u |17
5 15 25 35 45 55 65 75
6 2 % 6 106 1% 136 166
6] o110 |ACK|6c [SYN|2| & || 6 |s= F [l V [es] f |w2f v [us
6 16 2 36 4% 56 66 76
7 27 . | @ 67 107 127 47 67
71 0111 |BEL|7 |ETB |2 30 7 |ss| G nl W |er] g |103] w |10
7 17 27 37 47 57 67 77
10 30 50 70 110 130 150 70
8l 1000 | BS |38 |CAN| 2 (w| 8 |s H | X 8| h |104] x 120
8 18 28 8 48 58 68 78
X 3 51 7 m 31 151 7
9| 1001 HT | s | EM | s) a 9 57 1 |l Y 89 i ws| y 121
9 19 29 39 49 59 69 79
12 32 52 72 2 132 52 72
10| 1o 1o | LF |10 |[SUB| 5| % |42 . ss]l J |l Z ool j sl z |2
A 1A 2A * 3A 4A 5A 6A 7A
3 33 53 73 13 133 53 73
11 o1 | VT [V |ESC| 27| + | @ . sa] K | 5| [o] k | 107 { 123
B8 18 28 ’ 38 48 58 68 78
14 34 54 74 114 134 154 174
12| 1 oo | FF |12 | FS | 28 4wl £ |eo] L] \ 92| 1 || | 124
c 1c ’ 2c 3c ac 5C 6C 7c
15 35 55 75 15 135 155 175
13| 1 01 |CR |3 | GS | 9] - || = s1] M |] a3l m | 100 } 125
[D 20 30 4 50 60 70
6 36 56 76 16 136 156 176
4] 11 10| SO |14 | RS | | . w] > | 2] N s A al n |0 ™ | s
E 1E 2 3E 4 5E 6E 7€
7 37 57 7 7 137 157 77
18] 11 11 Sl |s| US| | / a| ? el O wl _ | | o | m|DEL|
F 1F 2F 3F 4F 5F 6F 7
craracter| ggC | 3 | O°TA-
27 | pEcimaL
18 _JHex MA-0893A-83

Figure 2-2 7-Bit ASCII Code Table

24 SETUP ESCAPE SEQUENCES

BIT BIT BIT BIT BIT BIT BIT

7 6 5 4 3 2 1
e e o
™ 3most I 4 LEAST |
SIGNIFICANT BITS SIGNIFICANT BITS
(DECIMAL VALUE IS (DECIMAL VALUE
COLUMN IN IS ROW IN
CODE TABLE) CODE TABLE)

MA-0890-83

Figure 2-3 7-Bit Code

Each row represents a possible value of the four least significant bits of a 7-bit
code (Figure 2-3). Each column represents a possible value of the three most
significant bits.

Figure 2-2 shows the octal, decimal, and hexadecimal code for each ASCII
character. You can also represent any character by its position in the table. For
example, the character H (column 4, row 8) can be represented as 4/8.

DECtalk processes received characters based on two character types defined
by ANSI, graphic characters and control characters.

Graphic characters are characters you can display on a video screen. The
ASCII graphic characters are in positions 2/1 through 7/14 of Figure 2-2. They
include alphanumeric characters plus punctuation marks and various text sym-
bols. Examples are C, n, “, !, +, $.

Control characters are not displayed. They are single-byte codes that perform
specific functions in data communications and text processing. The ASCII
control characters are in positions 0/0 through 1/15 (columns 0 and 1) of Figure
2-2. The SP character (space, 2/0) can be considered either a graphic charac-
ter or a control character depending on the context. DEL (7/15) is always used
as a control character. '

Control character codes and functions are standardized by ANSI. Examples of
ASCII control characters with their ANSI-standard mnemonics are CR (carriage
return), FF (form feed), and CAN (cancel).

SETUP ESCAPE SEQUENCES 25

8-Bit Code Table

The above conventions can be generalized to the 8-bit character encoding
used on DECtalk. Figure 2-4 shows the 8-bit code table. It has twice as many
columns as the 7-bit table, because it contains 256 versus 128 code values.

COLUMN
ROX 00l o1|o02]03|04|05]06|07}08|09]| 10| 11|12 | 13|14} 15
00 NUL | DLE | sP Dcs | /I
01 SOH | DC1 PU1
02 STX | bc2 PU2
03 ETX | DC3 STS
04 EOT | DC4 IND | CCH
05 | ENQ | NAK NEL | MW
06 | Ack | syn SSA | SPA
07 | BEL | ETB ESA | EPA
08 Bs | can HTS
09 HT | EM HTJ
10 LF | sus VTS
1 vt | ESC PLD | CSI
12 FF | FS PLU | ST
13 crR | Gs R | osc
14 so | Rrs ss2 | PM
15 st | us DEL | 83 | APC 7
<e5 cones™t GL CODES Feoooest GR CODES -
|+———————78im cooe TABLE————— >

MA-0892-83

Figure 2-4 8-Bit ASCIlI Code Table

26 SETUP ESCAPE SEQUENCES

BIT BIT BIT BIT BIT BIT BIT BIT

8 7 6 5 4 3 2 1
e e |
4MOST ! 4 LEAST L
SIGNIFICANT BITS SIGNIFICANT BITS
(DECIMAL VALUE IS (DECIMAL VALUE
COLUMN IN IS ROW IN
CODE TABLE) CODE TABLE)

MA-0891-83

Figure 2-5 8-Bit Code

As with the 7-bit table, each row represents a possible value of the four least
significant bits of an 8-bit code (Figure 2-5). Each column represents a possible
value of the four most significant bits.

All codes on the left half of the 8-bit table (columns 0 through 7) are 7-bit
compatible: their eighth bit is not set and can be ignored or assumed to be 0.
You can use these codes in either a 7-bit or an 8-bit environment. All codes on
the right half of the table (columns 8 through 15) have their eighth bit set. You
can use these codes only in an 8-bit compatible environment.

The 8-bit code table (Figure 2-4) has two sets of control characters, CO (control
zero) and C1 (control one). The table also has two sets of graphic characters,
GL (graphic left) and GR (graphic right).

On DECtalk, the basic functions of the CO and C1 codes are as defined by
ANSI. CO codes represent the ASCII control characters described earlier. The
CO codes are 7-bit compatible. The C1 codes represent 8-bit control characters
that let you perform more functions than those possible with the CO codes. C1
codes can be used directly only in an 8-bit environment. Some C1 code posi-
tions are left blank because their functions are not yet standardized.

NOTE: DECtalk only recognizes the SS2, SS3, DCS, CSI, and ST control
codes. The others are ignored.

The GL and GR sets of codes are reserved for graphic characters. There are
94 GL codes in positions 2/1 through 7/14 and 94 GR codes in positions 10/1
through 15/14. By ANSI standards, positions 10/0 and 15/15 are not used. You
can use GL codes in 7-bit or 8-bit environments. You can use GR codes only in
an 8-bit environment.

SETUP ESCAPE SEQUENCES 27

CHARACTER SETS

You cannot change the functions of the CO or C1 codes. However, you can
map different sets of graphic characters into the GL and/or GR codes. The sets
are stored in the terminal. But they are not available for use until mapped into
the GL or GR codes.

Selecting Alternate Character Sets (GO - G3)

DECtalk has four alternate character set areas: GO, G1, G2, and G3. When
DECtalk powers up, it loads the ASCII_G (7-bit) character set in alternate
buffers GO and G1. The DEC multinational (8-bit) character set is loaded in
alternate buffers G2 and G3.

DECtalk does not call the alternate character sets directly from GO, G1, G2, or
G3. The selected set is first mapped into the GL or GR areas, then used to
interpret the next received (or transmitted) character. So, three factors deter-
mine the active character set.

e Which character area is active: GL or GR
e Which alternate set is mapped into the active area: GO, G1, G2, or G3

e Which character set is loaded in the alternate (GO or G1) set: ASCII_G or
multinational

Figure 2-6 shows how you can map the ASCII_G and multinational sets into the
alternate character set buffers. Figure 2-7 shows how you can select active
character sets.

Table 2-2 gives the escape sequences and control characters that load and
select alternate character sets. Table 2-3 gives the escape sequences to load
active character sets into GO through G3.

28 SETUP ESCAPE SEQUENCES

ESC1I .. IF ESCI..IF ESCI..IF ESCI..IF @ LS3R

DESIGNATION OF GRAP

GRAPHIC
REPERTORY

Figure 2-6 Loading 8-Bit Characters

7- BIT FORMAT IN USE

(2)
’J @ §S2 OR LS2
GO G1 G2 G3
i /

ESC I ..IF ESC | ..IF ESC I ..IF ESC I ..IF

IGRAPHIC
REPERTORY!

MA-0280A-82

Figure 2-7 Selecting Active Character Sets

HIC SETS

MA-0279A-82

SETUP ESCAPE SEQUENCES 29

30 SETUP ESCAPE SEQUENCES

DEC Multinational Character Set
By factory default, when you power up or reset DECtalk, the DEC multinational
character set is mapped into the 8-bit code matrix (columns 0 through 15).

Figure 2-8 shows the DEC multinational character set.

Figure 2-8 DEC Multinational Character Set (Left Half)

COLUMN o 1 2 4 5 7
s BITS| o o o 0 °
b7 0 0 0 1 1 1
S b6 0 0) o 1
g 0 1 0 1 0 1 0 1
ROW| b4 b3 b2 b1
0 20 20 60 100 120 140 160
Ojoooo INUL|o |DLE|®| SP |32] O 4] @ |e| P |80 w| p |12
0 10 20 30 40 50 60 70
T 2 @ 61 101 21 X 61
1] o001 |SOH| 1 Dgﬂ 17 ! 33 1 49 A || Q 81 | q |13
| ™ 1 21 3 41 51 61 7
2 22 2 62 102 122 142 162
2l o001t o0 |[STX|2|DC2|w] " |3| 2 |so|] B |e| R | 82 | r |mna
2 12 2 32 42 52 62 72
3 2 a3 63 03 123 143 163
3l o011 |ETX]| 3 R(g?) o | # || 3 |s C |e| S 83 ol s |us
3 13 23 33 43 53 63 73
3 24 a 64 104 124 144 164
4| o100 |EOT| 4« |DC4 |2 $ || 4 |5 D |[e| T 84 w| t |ne
4 14 24 3 a4 54 64 74
5 %) 65 105 125 135 165
51 o101 |ENQ| s |NAK |2 % | ¥ 5 |s3 E | U 85 101 u |7
5 15 25 35 45 55 65 75
3 26 6 66 106 126 136 166
6] o110 |ACK|6 |SYN|22| & |3s] 6 |s F [70] V |8 102 v |us
6 16 % 36 6 56 66 76
7 27 ’ 47 67 107 127 147 167
71 0111 |BEL|; |ETB | 23 39 7 |ss G n|l W 87 w03l w | 119
7 17 27 37 a7 57 67 77
10 30 50 70 110 130 150 170
8] 1000 BS | s [CAN| 2 (40 8 56 H 2| X 88 104 x 120
8 18 28 38 8 58 68 .78
I 31 51 7 m 131 151 71
9|l 1001 | HT | s | EM | 2) || 9 |s 1 sl Y 89 ws] y |
9 19 29 39 49 59 69 79
12 32 52 72 12 132 152 72
10 1o 1 0 LF |0 |SUB | 2 * a2 . 58 J nl 2z % we| 2z 122
A 1A 2A ° 3A 4A 5A 6A 7A
13 33 53 73 113 133 153 173
11] 1 01 1 VT | |[ESC| 27| + | a . sa|l K | [91 107 { 123
] 8 28 i 3B 48 58 68 78
14 34 54 74 14 134 154 174
12 1100 | FF |12 | FS | 28 “ul € [e] L %) \ 92 ws| | 124
c 1c ’ 2c 3c ac 5C 6C 7C
15 ES 55 75 115 135 155 175
13| 1101 | CR [13| GS | 2 - 45 = 61l M 77 93 109 } 125
o D 20 3D 4D 50 6D 70
16 36 56 76 16 136 56| . | 176
14| 1 110 | SO |14« | RS | ® w] > 62| N s A 94 110 126
3 1E 2E 3E 4 SE o€ 7€
17 37 57 7 7 137 157 77
15 + 1 1 Sl || US| =x / a7 ? a3l O 9 _ 95 1| DEL | 127
F 1F 2F 3F 4F SF 6F 7F
GL CODES |
[+——cocooes (ASCII GRAPHICS) |
33 | octaL
CHARACTER Es‘:
27 | bEcimaL
18 | HEX
MA-0893-83

SETUP ESCAPE SEQUENCES 31

8 9 10 1 12 13 14 15 COLUMN
1 1 1 1 1 1 1 1 b8 «
0 0 0 0 1 1 1 1 b7 BITS
o 0 1 1 0 0 1 1 b6 !
o 1 o 1 0 1 [1 bs [
b4 b3 b2 b1 JROW
200 220 ’// 20| o [260] |300 E N ES 360
128 144 160 176 192 208 224 240 00 0O o
80 DCS 90 / A0 w| A co o] @ £0 Fo
201 221 241 261 301 321 341 361
| put|es] i e | £ || & || N |20 & || W |241] o001 |1 |
81 91 Al B1 ct D1 Ei F1
202 222 42| 2 |22 302 322 342 362
30| PU2 |1ss| €& |1e2 wa| A |1ee O |20] A |=s| & |22] o002
82 92 A2 B2 c2 D2 E2 F2
203 23 243 3 |263]| . |303 323 343 363
131 | STS |47 £ |3 el A |98 6 21 2 |2 & |23 001113
83 93 A3 83 c3 03 €3 3
204 224 244 264 304 324 344 364
IND |132| CCH | 148 164 wo| A |19 6 212 a |28 6 24 0100} 4
84 94 A4 B4 ca D4 E4 F4
205 225 245 265 305 P 325 345 365
NEL (133 | MW 19| Y fwes| H# |®] A |1w97] o |23 a |29 @ |24s] 01 01 |5
85 95 A5 BS Cs D6 ES F5
206 226 246 266 306 | .o |326 us| .. |3es
SSA | 134 | SPA | 150 166 ﬂ 82| E (98] o |214] @ |20 © |246] 01 1016
86 % A6 86 c6 06 €6 F6
207 27 247 267 307 327 347 367
ESA |15 | EPA |1 § |1e7 - |we] € || & |as| ¢ || @ |27 0111 |7
187 97 A7 87 c7 D7 E7 F7
210 230 250 20| § |310 330 350 370
HTS | 136 12| X |1es] E |20]| @ |26] & [22| @ |28] 10008
88 98 A8 88 c8 D8 €8 8
211 231 251 1 |an| , [331 351 37
HTJ | | © | ws| E o) & || & |z § (2] 100 |9
89 99 A9 B9 co D9 E9 F9
212 232 a |22 o 272 A |32 332 352 372
VTS | 138 154 170 w| B o|22f § |2 & [2a| & [=0] 101 0]10
8A 9A AA BA CA DA EA FA
213 233 253 273 n3| A |33 353 373
PLD |8} CSI |55 « [m] » |w]| E |23] g |22] ¥ |25 & 1] 1000 |11
88 98 AB BB cB DB EB FB
214 234 254 274 . 314 334 354 374
PLU |40] ST |15 2| Vs |88 | | 204 .U. 200 Y |206] W || 1+ 100 |12
8C aC AC BC cc DC EC FC
215 235 255 275 315 335 355 375
r .
Rl |11 | OSC |17 | V2 |ws| o |2s| ¥ |m| f || ¥ [ms] 1100 |13
80 90 AD 8D cD) ED FD
216 236 256 276 A 316 336 A 356 376
S§S2 |142] PM |18 174 190 s 222 1 238 4] 11 1 0 {14
8E % AE BE CE DE EE FE
217 237 257 277 317 337 357 7 377
SS3 | 143 | APC | 159 ws| &] 4 (2] B [223] % |2 % 2s5) 1111 |15
8F 9F AF BF CF DF EF A FF

| GR CODES
“ C1 CODES T (DEC SUPPLEMENTAL GRAPHICS) _'l

MA-0894-83

Figure 2-8 DEC Multinational Character Set (Right Half)

32 SETUP ESCAPE SEQUENCES

The 7-bit compatible left half of the DEC multinational character set is the ASCII
graphics set; the CO codes are the ASCII control characters and the GL codes
are the ASCII graphics set.

The 8-bit compatible right half of the DEC multinational character set includes
the C1 8-bit control characters in columns 8 and 9. The GR codes are the DEC
supplemental graphics character set. The DEC supplemental graphics charac-
ter set has alphabetic characters with accents and diacritical marks that appear
in the major Western European alphabets. It also has other symbols not includ-
ed in the ASCII graphics character set.

DECtalk removes the accent from characters in the supplemental graphics
character set, which are accented versions of characters in the ASCII graphics
set. (Naive is the same as naive.) Other supplemental graphic characters are
ignored.

WORKING WITH 7-BIT AND 8-BIT ENVIRONMENTS
To take advantage of DECtalk’s 8-bit character set, your program and commu-
nication environment must be 8-bit compatible.

Conventions for Codes Transmitted to the Terminal

DECtalk expects to receive character codes in a form consistent with 8-bit
coding. Your application can freely use the 8-bit codes as well as the 7-bit code
extensions if it has enabled 8-bit controls.

When your program sends GL or GR codes, DECtalk interprets these accord-
ing to the graphic character mapping currently being used. The factory default
mapping, which is set when you power up or reset DECtalk, is the DEC mul-
tinational character set.

Mode Selection (DT_MODE)

This sequence acts like the SET MODE command in setup mode. DT_MODE
controls how DECtalk handles particular characters in spoken text. The gener-
al DT_MODE escape sequence is as follows.

ESC P 0 ; 8 0 ; P3 z ESC \
027 080 048 059 056 048 059 *** 122 027 092

Use the following method to obtain the P3 value.

SETUP ESCAPE SEQUENCES 33

1. Add up the values of the MODE flags in Table 2-4 that you want to use.

2. Convert the sum to ASCII digits. Use these digits in place of P3 in the
escape sequence.

For example, assume you want to set MODE_SQUARE and MODE_MINUS,
and clear MODE_ASKY.

MODE_SQUARE =1

MODE_MINUS =4
Desired P3 value =5
ESC P 0 H 8 0 ; 5 z ESC \

027 080 048 059 056 048 059 053 122 027 092

VOICE COMMANDS,
PHONEMIC TEXT,
AND THE USER DICTIONARY

The DECtalk DTCO1 Owner’s Manual describes how to modify the DECtalk
voice (using phonemic commands and the phonemic alphabet) from a terminal.
This chapter describes a special series of escape sequences that gives a host
computer slightly greater control over DECtalk. For example, escape
sequences can turn the DECtalk voice on or off and load the user dictionary.

SPEECH CONTROL
There are three ways to control DECtalk speech.

1. Through English text (sentences in standard English format and spelling).
DECtalk speaks this text as written.

2. Through phonemic spelling (sentences or phrases written in phonemic
symbols). Phonemic spelling is closer to the actual pronunciation of the
text.

3. Through phonemic commands. Phonemic commands control features of

speech that are not obvious from the visible text, such as rate of speech,
sex of the speaker, and excitement level.

35

36 VOICE COMMANDS, PHONEMIC TEXT, AND THE USER DICTIONARY

SPEECH TIMEOUT

Usually, DECtalk does not begin speaking until the host computer sends a
clause terminator (period, comma, exclamation point, or question mark); how-
ever, there is a 5-second timeout limit. If the host does not send data within 5
seconds, DECtalk speaks the pending text in its input buffer, as if a comma had
been sent.

Programs with long interruptions (such as pauses to search a database) should
collect complete sentences before sending anything to DECtalk. Otherwise,
this timeout may cause unnatural breaks in sentences and jerky-sounding
speech.

ENGLISH TEXT
DECtalk speaks sentences written in standard English, if the text follows three
rules.

1. Sentences end with a period, exclamation point, or question mark.

2. All commas, periods, exclamation points, and question marks are fol-
lowed by a space (or an equivalent character from Table 1-1).

3. A period must be followed by enough text to distinguish between abbrevi-
ations and the end of a sentence.

The host computer can send English text in paragraph format; that is,
sentences can be broken in the middle by carriage returns.

If a sentence is too long to store in DECtalk’s buffers, the sentence is spoken in
sections. DECtalk breaks up the sentence and speaks it as if clause bounda-
ries were present; the effect is similar to a person trying to speak a long
sentence and running out of breath. Keep sentences down to a reasonable
length to avoid this effect.

See the DECtalk DTCO1 Owner’'s Manual for more information on speech
phrasing and emphasis. The ‘‘Data Synchronization” section in this chapter
also describes how to coordinate speech and interaction commands to prevent
loss of information.

VOICE COMMANDS, PHONEMIC TEXT, AND THE USER DICTIONARY 37

SPEAK PHONEMIC TEXT (DT_PHOTEXT)

When MODE SQUARE is on, you can embed phonemic text in normal text with
square brackets. When sending data from the host computer, you can use the
DT_PHOTEXT escape sequence as well as the square brackets; MODE
SQUARE does not have to be on. The DT_PHOTEXT escape sequence is as
follows.

ESC P 0 H 0 z text ESC \
027 080 048 059 048 122 ... 027 092

ESC P 0; 0 z is the same as a left bracket ([), and ESC \ is the same as a right
bracket (]). DECtalk uses phonetic speech for all text between the command
terminator z and sequence terminator ESC \.

Appendix C lists the phonemic alphabet used by DECtalk. The DECtalk DTCO1
Owner’s Manual describes the alphabet in detail.

Within the phonemic text string, the host computer can transmit comments (for
program maintenance) enclosed in /* and */ sequences. (An ESC \ can also
terminate any comment.)

For example, in the following sequence the word Hello is a comment.
ESC P 0; 0 z hx’ehlow /* Hello */ ESC \
DECtalk processes a phonemic text escape sequence as though the introducer

and terminator were spaces. This means phonemic text cannot replace part of
a word.

In addition to transmitting the proper pronunciation, the phonemic text escape
sequence can send control phonemes. This example changes the speech rate
to 250 words per minute.

ESC P 0; 0 z :ra250 /* Rate = 250 wpm */ ESC \

NOTE: You cannot use STX (CTRL-B) and ETX (CTRL-C) to delimit phonemic
text. Use the DT_PHOTEXT escape sequence instead.

38 VOICE COMMANDS, PHONEMIC TEXT, AND THE USER DICTIONARY

STOP SPEAKING (DT_STOP)

This escape sequence immediately stops speech, even if DECtalk is in the
middle of a sentence. DT_STOP is useful for stopping speech to perform other
actions. For example, the user may press a key to get more instructions,
warnings, or shortened versions of explanations (such as lengthy HELP
information).

The DT_STOP escape sequence is as follows.

ESC P 0 ; 1 0 z ESC \
027 080 048 059 049 048 122 027 092

Speech stops immediately and all internal buffers are reinitialized.

DATA SYNCHRONIZATION (DT_SYNC)

The application program can send data to DECtalk faster than DECtalk can
speak it. If the user must carry on a dialogue with the application program
(through the telephone keypad), the application program should know whether
or not DECtalk has finished speaking the text sent to it. DT_SYNC provides
this coordination between the application program and DECtalk speech.

When the host sends DT_SYNC, DECtalk finishes speaking any pending text
before processing the next command from the host. This ensures that the user
hears a message before any other action starts, such as hanging up the phone
or starting the phone timeout clock. Note that DT_SYNC acts as a clause
boundary, the same as a comma, period, exclamation point, or question mark.

DECtalk considers a section of text to be spoken as soon as the parameters
for that section are successfully sent to its signal processing section. Audio
output runs approximately 6 milliseconds behind the transmission of the
parameters. Applications that switch the audio output of a single DECtalk to a
number of sites may need to take this delay into account.

The DT_SYNC escape sequence is as follows.

ESC P 0 ; 1 1 z ESC \
027 080 048 059 049 049 122 027 092

DT_SYNC does not reply to the host when processing is complete. However,
you can do this by following the DT_SYNC command with a
DT_INDEX_QUERY command.

VOICE COMMANDS, PHONEMIC TEXT, AND THE USER DICTIONARY 39

ENABLE OR DISABLE SPEAKING (DT—SPEAK)

The DT_STOP sequence stops speech in progress. The DT_SPEAK sequence
turns speech processing off or on, so received text is either spoken or discard-
ed. DT_SPEAK is useful if the host computer can recognize such things as
electronic mail letterheads and discard them as unnecessary. The host can act
as a filter, removing extraneous speech.

The DT_SPEAK escape sequence is as follows.

ESC P 0 ; 1 2 ; P3 z ESC \
027 080 048 059 049 050 059 =* 122 027 092

If P3 is 0, DECtalk stops speaking text; that is, it stops passing characters
received from the host to the text-to-speech processing section. If P3 is not 0,
DECtalk resumes speaking.

DECtalk also resumes speaking if the host sends DT_SYNC, DT_STOP, RIS,
DECSTR, or DT_PHONE:ph_answer.

INDEXING

Text sent to DECtalk can contain index marks. DECtalk remembers these
marks when they are spoken. The host application can listen to the spoken text
(by reading the value of the last index) to determine how much transmitted text
was actually spoken.

Index markers affect the way numbers and abbreviations are spoken. For
example, DECtalk says $ 12.45 as “‘twelve dollars and forty-five cents.” (The
space after the $ is optional.) If an index marker separates the $ and 1, then
DECtalk says ‘‘dollar twelve point four five.”

The following paragraphs describe how to mark text and return their values to
the application program.

40 VOICE COMMANDS, PHONEMIC TEXT, AND THE USER DICTIONARY

Index Text (DT—INDEX)
This sequence inserts an index marker (flag) in the text stream sent to DECtalk.

The DT_INDEX escape sequence is as follows.

ESC P 0 ; 2 0 ; P3 z ESC \
027 080 048 059 050 048 059 ** 122 027 092

The P3 parameter may range from 0 to 32767, sent as the ASCII characters for
the number. Numbers outside the range are brought into range by masking off
the overflow bits.

For example, the host computer sends the following data stream to DECtalk
and marks the second word with the index 15.

Hello ESCP0;20;15zESC\ there.

After speaking the text before DT_INDEX, DECtalk remembers the value 15.
The host may use DT_INDEX_QUERY (described later in this chapter) to get
this stored value.

Index Reply (DT_INDEX_REPLY)
DT_INDEX simply marks a position in the text. DT_INDEX_REPLY marks a
position, but also has DECtalk inform the host when the index is spoken.

The DT_INDEX_REPLY escape sequence is as follows.

ESC P 0 ; 2 1 ; P3 z ESC \
027 080 048 059 050 049 059 *** 122 027 092

The P3 parameter is in the range 0 to 32767, using ASCII characters for the
selected number.

When DECtalk speaks the DT_INDEX_REPLY sequence, it sends a reply
(containing the P3 parameter of the index) to the host. The escape sequence
reply format is as follows.

ESC P 0 ; 3 1 ; P3 z ESC \
027 080 048 059 051 049 059 ** 122 027 092

P3 has the original value specified in DT_INDEX_REPLY.

VOICE COMMANDS, PHONEMIC TEXT, AND THE USER DICTIONARY 41

Index Query (DT_INDEX_QUERY)

DT_INDEX_QUERY requests DECtalk to reply to the host with the last index
marker spoken (that is, the last portion of spoken text that had an index
marker). The DT_INDEX_QUERY escape sequence is as follows.

ESC P 0 ; 2 2 z ESC \
027 080 048 059 050 050 122 027 092

DECtalk immediately returns a DECtalk reply escape sequence to the host in
the following format.

ESC P 0 ; 3 2 ; P3 z ESC \
027 080 048 059 051 050 059 *** 122 027 092

P3 contains the last index spoken. The P3 value is ASCIl 0 under any of the
following conditions.

e The last index passed was ASCII 0.
e No index has been passed yet.

o No index has been marked in the text; that is, the host has not sent a
DT_INDEX or DT_INDEX_REPLY sequence.

Figure 3-1 shows how DT_SYNC and DT_INDEX_QUERY can coordinate
host-DECtalk communications.

42

VOICE COMMANDS, PHONEMIC TEXT, AND THE USER DICTIONARY

—

‘ —
& ;uzu,a‘ tAM aectam | AM A sv x:w. F—————
' C i)
\\ DECtalk
HOST
HOST SENDS TEXT AND DECtalk BEGINS SPEAKING.
...| AM DECtalk. | AM
A SPECIAL...
!i SmmmESC PO 11z ESC\ >
\\ DECtalk
HOST SENDS DT__SYNC ESCAPE SEQUENCE.

HOST DECtalk WILL NOT PROCESS ANY FURTHER COMMANDS
UNTIL IT FINISHES SPEAKING THE CURRENT TEXT.

...COMPUTER DEVICE

THAT IMITATES HUMAN..,

E STTTTTTESC PO 222

\ DECtalk

HOST HOST SENDS DT__INDEX__QUERY ESCAPE SEQUENCE.
DECtalk STORES THE SEQUENCE BUT DOES NOT PROCESS IT.

N ——
Ei <—=ESC PO : 32 : 0z ESC\————= -
\\ DECtalk FINISHES SPEAKING. DECtalk
DT__INDEX__QUERY IS PROCESSED AND
HOST DT_QUERY__REPLY IS SENT TO HOST.

HOST PROGRAM NOW KNOWS DECtalk HAS FINISHED SPEAKING.

MA-75695-83

Figure 3-1 Using DT_SYNC and DT_INDEX_QUERY to Coordinate
Communications

VOICE COMMANDS, PHONEMIC TEXT, AND THE USER DICTIONARY 43

LOAD DICTIONARY (DT_DICT)

The user dictionary is used for processing abbreviations, and for providing
phonemic equivalents of unusual words. The DT_DICT escape sequence is as
follows.

ESC P O H 4 0 z name substitution ESC \
027 080 048 059 052 048 122 ceccrerrriinnnn. 027 092

Whenever the word represented by ‘‘name’’ appears in the input text, the
phonemic pronunciation given by ‘‘substitution” is used.

Any uppercase characters in the name only match uppercase characters in the
input text. Lowercase characters in the name match both uppercase and
lowercase characters in the input text. DECtalk always searches dictionary
entries in the order entered.

If a name ends with a period (.), a period must follow the word in running input
text. This period is included as part of the word, and is not recognized as a
sentence terminator.

Here are some examples of dictionary entries.

ESCPO0;40;zms mihz ESC\
ESCPO0;40;zms. mihz ESC \
ESCP0;40;zDECdehk ESC \

ESC P 0; 4 0;zdec diysehmber ESC \
ESC P 0; 4 0; z Goethe g'owth iy ESC \
ESCPO0;40;zGOSLOW :ra 120 ESC \

DECtalk does not recognize an error in phonemic spelling until the word is
used. You can use comments in the substitution, but they are not recommend-
ed. Note the use of capitalization in the previous examples to distinguish
between abbreviations with the same spelling.

If you do not enter a substitution, DECtalk removes the word from the user text
dictionary. You cannot remove words from the built-in dictionary.

44 VOICE COMMANDS, PHONEMIC TEXT, AND THE USER DICTIONARY

After loading the word and its definition, DECtalk replies with a dictionary
status report.

ESC P 0 ; 5 0 ; P3 z ESC \
027 080 048 059 053 048 059 *** 122 027 092

P3 may have one of the following values.

0 Word entered correctly.
048
1 No room in dictionary.
049
2 Entry too long (256 characters maximum).

050

TELEPHONE COMMUNICATIONS

You can connect DECtalk to the public telephone system to provide a dial-up
link between remote users on telephones and a computer application program.
DECtalk sends and receives information as a link between a remote user and
the host computer.

DECtalk communicates with the phone through the voice circuits, passing on
spoken data to the listener. DECtalk passes information back to the host both
as ordinary ASCII characters, and as escape sequences. The user can commu-
nicate with the host (through DECtalk) by using the Touch-Tone keypad, if
available.

The DT_PHONE escape sequence is the controlling sequence for all telephone
operations.

45

46 TELEPHONE COMMUNICATIONS

TELEPHONE MANAGEMENT (DT_PHONE)

This escape sequence takes one or more parameters and controls the
attached telephone and Touch-Tone keypad interface. The DT_PHONE
escape sequence is as follows.

ESCPO;GO;Pn;PnztextESC\
027 080 048 059 054 048 059 *** 059 *** 122 ... 027 092

The Pn parameters act as a list of telephone management commands and
execute in sequence. Table 4-1 lists the valid Pn parameters.

A single DT_PHONE sequence can perform several commands. Some com-
mands can take additional parameters.

All DT_PHONE commands return a status report to the host in the following
escape sequence. Table 4-2 lists the valid P3 values.

ESC P 0 ; 7 0 ; P3 z ESC \
027 080 048 059 055 048 059 *** 122 027 092

All telephone management commands return a reply sequence back to the
host upon command execution. PH_STATUS is only needed to check the
telephone status when a DT_PHONE command is not pending. Note that
PH_ANSWER generates an additional status report when the phone is
answered.

Telephone keypad characters are sent as text, not escape sequences.
Note that the R3_PH_TIMEOUT reply sequence is sent when a timeout

occurs; that is, the reply sequence may arrive as unrequested input, and the
application program must be ready to receive it.

TELEPHONE COMMUNICATIONS 47

48 TELEPHONE COMMUNICATIONS

PH_ANSWER

DECtalk is set up to answer incoming phone calls. The parameter that follows
the PH_ANSWER parameters indicates the number of rings to wait before
answering the telephone. A parameter of 0 or 1 means answer the telephone
after the first ring; 2 means answer after 2 rings, and so on.

If the telephone is off-hook when the host sends a PH_ANSWER parameter,
DECtalk hangs up the telephone (disconnects any active call) before executing
the PH_ANSWER command.

DECtalk sends two status replies to a PH_ANSWER request. The first status
reply informs the host that the DT_PHONE command was correctly received.
The second reply informs the host that the telephone has actually been
answered.

DECtalk stops waiting for incoming calls whenever the host sends
PH_HANGUP, PH_TONE_DIAL, PH_PULSE_DIAL, RIS, or DECSTR.

PH_HANGUP

This command hangs up the telephone. The status reply is delayed until the
telephone is back on-hook (disconnected). The host should wait for the
R3_PH_ONHOOK reply before sending other commands to DECtalk.

PH_KEYPAD

This command enables the telephone keypad. The request is ignored if the
phone is inactive (on-hook); however, DECtalk returns an R3_PH_ONHOOK
status reply.

PH_NOKEYPAD

This command disables the telephone keypad, but maintains the phone con-
nection. This request is ignored if the phone is inactive (on-hook); however,
DECtalk returns an R3_PH_ONHOOK status reply.

PH_TIMEOUT

This command starts (or restarts) an internal DECtalk timer. If the user does
not press a telephone keypad button within the timeout interval, an
R3_PH_TIMEOUT status is returned (Table 4-2).

The application program should set PH_KEYPAD on before sending a
PH_TIMEOUT command; otherwise, the user cannot respond to DECtalk
requests for input.

TELEPHONE COMMUNICATIONS 49

The parameter following PH_TIMEOUT is the number of seconds to wait for a
response from the caller. A parameter of 0 cancels any active timeouts. After a
timeout, the timer is stopped. The application program must send a new
PH_TIMEOUT command to restart the timer.

Timeouts are the only way to detect that the caller has hung up the telephone.

The public telephone system in your country may have another timeout require-
ment, independent of DECtalk. If this is true, a phone call may be automatically
terminated (hung up) if a response is not given in a certain length of time. Your
application program should accept unsolicited R3_PH_ONHOOK replies.

PH_TONE_DIAL and PH_PULSE_DIAL

DECtalk can dial an outgoing call by using these two commands. If DECtalk is
connected to a Touch-Tone public telephone network, then use the
PH_TONE_DIAL parameter; otherwise, use PH_PULSE_DIAL.
PH_PULSE_DIAL works like an old rotary phone dial.

If the telephone is on-hook when the host sends a dialing command, DECtalk
picks up the telephone and inserts a 2-second delay.

The text between the command terminator z and the ESC \ sequence is the
number to dial. For the Touch-Tone dialing system, the characters
0123456789*#ABCD!” are recognized. For the pulse dialing system, the char-
acters 0123456789!" are recognized.

The ! character inserts a 1-second delay into the dialing stream. DECtalk
pauses during the dialing sequence every time it finds a ! character.

On some telephone systems, a user can press the switch hook to transfer calls
or otherwise interrupt a phone call. This signal is called a switch-hook flash.
The * character inserts a 250-millisecond switch-hook flash signal into the
dialing stream. You can use successive ® characters to generate longer
flashes.

With Touch-Tone dialing, the characters ABCD generate the extra four tones of
the military handset. A is the character to the right of the 3, B is the character
below it, and so on.

Figure 4-1 shows a complete phone call session, including a timeout sequence
initiated because a user disconnected.

50 TELEPHONE COMMUNICATIONS

ﬁw;m:h ESC\
g

A

/

DECtalk
HOST & J rf
ESC PO ; 70 ; 0z ESC\

HOST ENABLES COMMUNICATION WITH DT__PHONE/PH__ANSWER SEQUENCE.

DECtalk SENDS R3_PH__ONHOOK REPLY.
ENDING CALL

mm : 1z ESCA

DECtalk
ESC PO ; 60 ; 30 ; 20z ESC\

CALLER DIALS IN. DECtalk SENDS R3_PH_OFFHOOK SEQUENCE.
HOST ENABLES 20 SECOND TIMOUT AND BEGINS COMMUNICATION CONTROL.

Ending Call f—\\\
(ESC PO ; 70 ; 2z ESC\

AN

HOST

DECtalk

CASE 1. USER HANGS UP. AFTER NO SIGNAL IS RECEIVED FOR 20 SECONDS,
DECtalk SENDS R3_PH__TIMEOUT TO HOST.

!(‘ ESC PO : eo\Sm ESC\ |

HOST
RESCPO;W:O:ESC\

CASE 2. HOST TERMINATES SESSION AND SENDS PH__HANGUP.
DECtalk HANGS UP PHONE AND REPLIES WITH R3_PH__ONHOOK.

MA-7597-83

Figure 4-1 Telephone Communications

MAINTENANCE
AND DEBUGGING COMMANDS

DECtalk has a set of commands that set DECtalk operating features, test
DECtalk, and help debug application programs. Most of these commands have
an inquiry-response format. DECtalk returns an answer to the host computer
after the action is complete (or in response to a pure inquiry).

DEVICE ATTRIBUTE REQUEST

DECtalk responds to device identity requests from the host computer. For
compatibility with an older escape sequence, DECtalk recognizes two different
request sequences, described in the following paragraphs.

Device Attribute Request (DA Primary)
The preferred device attribute request escape sequence is as follows.

ESC [0 c
027 091 048 099

DECtalk identifies itself by sending the following sequence.

ESC [? 1 9 c
027 091 063 049 057 099

DECtalk does not respond to secondary device attribute requests, since its
product identification code is less than 50.

51

52

MAINTENANCE AND DEBUGGING COMMANDS

Identify Terminal (DECID)
DECtalk responds to the old identify terminal sequence (DECID) exactly as it
responds to the DA Primary request.

The old identify sequence is as follows.

ESC Y 4
027 090

DECtalk identifies itself by sending the following sequence.

ESC [? 1 9 c
027 091 063 049 057 099

This is the same sequence as the DA Primary answer.

DEVICE TEST AND STATUS

A special set of escape sequences run DECtalk hardware self-tests. Another
set of escape sequences forces DECtalk to return status reports. The following
paragraphs describe these sequences.

DECtalk Power-Up Status

You can reset DECtalk to its power-up state. The method you use to reset
DECtalk may affect the operating features (such as baud rate). You can reset
DECtalk with any of the following methods. This chapter describes methods 2
through 4.

1.

2.

Power-up (PUP) is the state that DECtalk is in when first turned on.

Return to initial state (RIS) is a hard reset you can set with an escape
sequence.

Soft reset (DECSTR) partially restores DECtalk to its power-up state.
Nonvolatile memory reset (DECNVR) lets you reset the operating features

in permanent memory. At power-up, DECtalk restores the feature settings
that you reset in this memory.

Table 5-1 lists the DECtalk operating features and their factory default settings;
the reset methods in column three restore the feature to its power-up setting.

MAINTENANCE AND DEBUGGING COMMANDS 53

The power-up setting is the factory default, unless you changed the setting and
stored it with a DECNVR sequence. See the section on DECNVR in this
chapter.

Table 5-2 lists some other DECtalk actions performed by certain reset
methods.

CLooaltomsifags 6 PURDECWVAAS.

atﬂam

|OT_SPEAK. PUP, RIS, Dec@*m:'
PP, RIS, DEC%YR[”;
 PUP, RIS
PUP, RIS

RIS, DECSTR

54 MAINTENANCE AND DEBUGGING COMMANDS

Device Self-Test (DECTST)
This sequence initiates local self-tests. The escape sequence is as follows.

ESC [5 ; Pn y
027 091 053 059 *** 121

The Pn parameter specifies the test to perform (Table 5-3).

The TEST_POWER parameter (Pn = 1) causes DECtalk to rerun its power-up
initialization and test sequences. ALL DECtalk operating features return to the
power-up state; the telephone is hung up, the user dictionary is deleted, and all
features are reset to their power-up values.

The loopback tests require the appropriate loopback connectors.

The built-in message provides a quick check of the DECtalk system. The
message includes the version number of the DECtalk firmware.

~ Table 5-3 smf~resx Pmmetm '

"?‘"‘“’"’ Va'“e fmeen

'Mnem' ' \ﬁﬂ,oﬁic'mﬁf‘,,’f '

| TEST_POWER - 1 L Rgrun ~pdmr-up'iésts‘, .
.. . .
TEST_HDATA 9 Run host port data Eoopback
. . e - test. .

 TEST HCONTHOL a4 . | . A hos&pmtcommﬂabpbackw
o . «:051 . , ',te‘Q’t . ,
TESTDAtA 4 . B ecal port data ;oopbacx .
e st e

CTestsheak . @ ;:speax,aﬂ'mi:g-f;message;g~.f

MAINTENANCE AND DEBUGGING COMMANDS 55

Device Status Request (DSR) (Brief Report)
The brief DSR escape sequence is as follows.

ESC [5 n
027 091 053 110

If no malfunctions are detected, DECtalk replies with the following sequence.

ESC [0 n
027 091 048 110

If a malfunction is detected, DECtalk replies with the following sequence.

ESC [3 n
027 091 051 110

Applications can use this brief DSR format in most cases, because a brief
request does not reset any of DECtalk’s internal error flags. The following
extended DSR format is useful when a malfunction is detected.

Device Status Request (DSR) (Extended Report)

The extended DSR escape sequence lets an application program determine
when DECtalk was first powered on. The application sends the extended DSR
escape sequence as follows.

ESC [n
027 091 110

If no malfunctions are detected, DECtalk replies with one of two sequences. If
this is the first extended DSR since DECtalk was powered on, DECtalk replies
with the following sequence.

ESC [O n ESC [? 2 1 n
027 091 048 110 027 091 063 050 049 110

For later requests, DECtalk replies with the following sequence.

ESC [0 n ESC [? 2 0 n
027 091 048 110 027 091 063 050 049 110

56 MAINTENANCE AND DEBUGGING COMMANDS

If a malfunction is detected, DECtalk sends the following sequence.

ESC [3 n ESC [? Pn ; .. Ph n
027 091 051 110 027 091 063 *** 059 .. ** 110

Each Pn parameter specifies an error as follows. The extended status request
sequence resets the error flags.

2 2 Communication failure.
050 050

2 3 Input buffer overflow.
050 051

2 4 Last NVR operation failed.
050 052

2 5 Error in phonemic transcription.
050 053

2 6 Error in DECtalk private control sequence.
050 054

2 7 Last DECTST failed.
050 055

Reset to Initial State (RIS)
Table 5-1 shows how the reset to initial state affects DECtalk. The RIS escape
sequence is as follows.

ESC c
027 099

This sequence resets DECtalk to its power-up state, without changing the
speeds or data formats used on the host and local communication lines. All
pending, unspoken text is lost. All user-defined dictionary entries are deleted.
The telephone is returned to the on-hook state. Some operating features are
restored from nonvolatile memory (NVR).

MAINTENANCE AND DEBUGGING COMMANDS 57

The RIS sequence always turns host speech on, even if host speech is turned
off by the setup commands.

This NVR recall is almost identical to a DECNVR recall from user memory. (See
“NVR Parameters” in this chapter.) RIS does not change the line characteris-
tics, and RIS updates the ‘‘status of the last NVR operation” flag reported by
device status reply sequences.

Digital recommends always using the DT_PHONE:ph_hangup sequence to
hang up the telephone. If DECtalk receives an RIS sequence when the tele-
phone is off-hook, and reads the telephone status during the hangup, DECtalk
may report an off-hook status (instead of the expected on-hook status).

Soft Terminal Reset (DECSTR)
Table 5-2 shows how the soft terminal reset affects DECtalk. The DECSTR
escape sequence is as follows.

ESC [! +]
027 091 033 112

This sequence resets DECtalk to its power-up state, without changing the
speeds or data formats used on the host and local communication lines, or
resetting user convenience features on the local terminal. Pending, unspoken
text is not lost. The telephone returns to the on-hook state.

Digital recommends always using the DT_PHONE:ph_hangup sequence to
hang up the telephone. If DECtalk receives a DECSTR sequence when the
telephone is off-hook, and reads the telephone status during the hangup,
DECtalk may report an off-hook status (instead of the expected on-hook
status).

The DECSTR sequence always turns host speech on, even if host speech is
turned off by the setup commands.

58 MAINTENANCE AND DEBUGGING COMMANDS

NVR Feature Settings (DECNVR)

You can store operating feature settings permanently in nonvolatile memory
(NVR). DECtalk restores these settings at the next power-up. To save or
restore the current settings in NVR, use the following DECNVR escape
sequence.

ESC [Pn ; Pm ! r
027 091 ** 059 ** 033 114

If Pnis 0, this sequence restores all feature settings from NVR. This action may
change the speeds or data format of the serial lines, so communication with the
host or local terminal may be lost. The user dictionary is not deleted. The
telephone is not hung up.

If Pn is 1, this sequence stores all current feature settings in NVR. DECtalk
stops processing host line commands until the feature settings are safely
stored.

The Pm parameter specifies which NVR memory to use. Memory 0 is a
read/write memory you can use to store feature settings. DECtalk normally
uses memory 0 at power-up. Memory 1 is a read-only memory, and always
contains the factory-default DECtalk feature settings. DECtalk uses memory 1
at power-up if memory 0 cannot be used. Diagnostics may use memory 1 to
force DECtalk back to its factory settings.

DECtalk remembers the success or failure status of the last NVR operation
command. A device status request (DSR) sequence can check this status.

TRACING AND DEBUGGING COMMANDS

You can set DECtalk to log its actions and reactions to various commands on
the local terminal. These commands are useful for testing and debugging
during application program development.

Local Log Control (DT_LOG)

This sequence controls the logging of trace and debugging information on the
local terminal. DT_LOG works like the SET LOG command in setup mode. (See
the DECtalk DTCO1 Owner’s Manual.) The DT_LOG escape sequence is as
follows.

ESC P O© ; 8 1 ; P3 z ESC \
027 080 048 059 056 049 059 *** 122 027 092

MAINTENANCE AND DEBUGGING COMMANDS 59

Use the following method to obtai

n the P3 value.

1. Add up the values of the DT_LOG parameters in Table 5-4 that you want

to use.

2. Convert the sum to ASCII digits. Use these digits in place of P3 in the

escape sequence.

Table 5-4 DT_LOG Parameters

Value

Mnemo%ni@:

LOG_TEXT 1
LOG_PHONEME 2
LOG_RAWHOST 4
LOG_INHOST 8
LOG_OUTHOST 16
LOG_ERROR 32
LOG_TRACE 64
LOG_DEBUG 128

Enable ASCII text logging.

Enable phonemic text logging.

~ Send all characters from the

host to the terminal without
inspwtion. ,

‘Enable logging of text read

from the host.

Enable logging of text sent to
the host.

Enable the display of DECtalk
error messages.

Symbolically display all escape
sequences that affect DECtalk

operations.

Reserved for Digital internal

use.

60 MAINTENANCE AND DEBUGGING COMMANDS -

For example, assume you want to set LOG_TEXT and LOG_RAWHOST. -

LOG_TEXT =1
LOG_RAWHOST =4 T
Desired P3 value =5 T

ESC P 0 ; 8 1 ; 5 z ESC \ JR—
027 080 048 059 056 049 059 053 122 027 092 ,

Table 5-4 lists the P3 parameters. Figure 5-1 shows the data paths for logging —_—
and debugging. “

PROCESSOR|) LOG—TEXT

SPEECH {LOG_ERROR

LOG__PHONEME

TERM__SPEAK

loge’ -0 0——
LOG__OUTHOST

o~ 0—
LOG__RAWHOST -

-0 O \
LOG__TEXT
TERMINAL J—

—0~ 0~
LOG__TRACE

loglle:
LOG__PHONEME

00
LOG__INHOST
—0~ 0

—e
_— R—
@ ———
_————————

—O—C—=SWITCH ON
—o/ O~ = SWITCH OFF
ALL SWITCHES SHOWN ARE OFF.

[}

MA-7598-83

Figure 5-1 Data Paths for Logging and Debugging B —

MAINTENANCE AND DEBUGGING COMMANDS 61

LOG_TEXT
This command logs all spoken text. The text source does not matter; text is
logged from both the host and the terminal.

LOG_PHONEME

This command logs all spoken text in its phonemic transcription.
LOG_PHONEME is useful for testing the phonemic form of words and
phrases.

LOG_RAWHOST

This command logs all control and text characters as received, except NUL
characters (which are always deleted) and XON/XOFF characters (which still
perform flow control functions).

LOG_INHOST
This command logs all characters received from the host. Control characters
also print.

LOG_OUTHOST
This command logs all characters sent to the host. Control characters also
print.

LOG_ERROR

This command logs all error messages. Usually DECtalk error messages are
returned as escape sequences. Setting the LOG_ERROR flag causes error
messages to be logged also.

LOG_ERROR is useful during the early stages of application program
development.

LOG_TRACE

This command displays all escape sequences symbolically rather than as
escape sequences. If you use LOG_TRACE in debugging, you do not have to
look up the meaning of escape sequences.

62 MAINTENANCE AND DEBUGGING COMMANDS

LOCAL TERMINAL COMMAND (DT_TERMINAL)

This escape sequence controls the destination of characters typed on the local
terminal when the terminal is not in setup mode. (The TERM_FILTER parame-
ter affects characters sent to the local terminal when the terminal is not in
setup mode.) Figure 5-2 shows the data paths in local terminal operations.

The format of the DT_TERMINAL escape sequence is as follows.

ESC P 0 ; 8 2 ; P3 z ESC \
027 080 048 059 056 050 059 *** 122 027 092

Use the following method to obtain the P3 value.

1. Add up the values of the DT_TERMINAL parameters in Table 5-5 that you
want to use.

2. Convert the sum to ASCII digits. Use those digits in place of P3 in the
escape sequence.

SPEECH
PROCESSOR
TERM__spPeak| [TERM_EDITED
§ _ TERM_HARD
TERM_SETUP
LOG__OUTHOST
——{j
N TERM_HOST MODE_SaTARE|]
TERM_FILTER

FON

HOST

TERMINAL

=E7
:.’

—O—0C—=SWITCH ON
—0" O—= SWITCH OFF
ALL SWITCHES SHOWN ARE OFF.

MA-7599A-83

Figure 5-2 Data Paths for Local Terminal Operations

MAINTENANCE AND DEBUGGING COMMANDS 63

For example, assume you want to set TERM_HOST and TERM_EDITED.

TERM_HOST =1
TERM_EDITED =4
Desired P3 value =5
ESC P 0 H 8 2 H 5 z ESC \

027 080 048 059 056 050 059 053 122 027 092
Table 5-5 lists the possible P3 values.
NOTE: If LOG_RAW and TERM_HOST are in effect and the host sends a

device attribute request, both DECtalk and the terminal will respond. The appli-
cation program sample in Chapter 6 turns off TERM_HOST for this reason.

Table 5-$ DT .,.Temm mmm:a

TERM HosT 4 'm all characters typed on terminal to
. TERM;_,QPEAK i s Speak /iau charamars typed on terminal.
‘, TERM..EGITEB 4 Line editall characters typed on terminal.
.)'(WMMﬁmf mersktanual)
"TERMJ&ARB 8 Dolocal terminal echo operations in
~ herdcopyterminalformat
TERM__ETLP 1% ’ ‘Sneak all charaeters displayed on the
; L - terminal when tn w&ua mode.
: 'rs,m..ésuen . am sem DECtalk-specific escapes

ences to the terminal.

§

NOTE: ;mm you set Tm;:mm*asm also lgnores non-DECtalk
~ escape sequenc - character set and communications
3 setém} sustiﬂ mammaacta:kwdmwm

64 MAINTENANCE AND DEBUGGING COMMANDS

TERM_FILTER is useful when you use DECtalk as a link between a general-
purpose operating system and an applications terminal. TERM_FILTER modi-
fies the operation of LOG_RAWHOST to prevent sending DECtalk-specific
escape sequences to the local terminal.

When you set TERM_FILTER, the following escape sequences usually
processed by DECtalk are now only processed by the local terminal.

Device self-test (ESC [5 ; Ps y)

Brief device status request (ESC] 5 n)
Extended device status request (ESC [n)
Reset to initial state (ESC c)

Soft terminal reset (ESC [! p)

NVR parameters (ESC [Pn ; Pn !r)
Device attributes inquiry (ESC [0 c)
Identify terminal (ESC z)

The following escape sequences are acted on by both DECtalk and the local
terminal.

¢ Select active character set (several sequences)
¢ Select graphics repertory (ESC i B and ESC i <)
Select 7-bit C1 transmission (ESC SP F)

Select 8-bit C1 transmission (ESC SP G)
Truncate high-order bit in C1 (ESC SP 6)
Accept high-order bit in C1 (ESC SP 7)

Because TERM_FILTER must parse and understand escape sequences, you
can only use TERM_FILTER when the local terminal supports ANSI escape
sequences. Digital’'s VT100 and VT200 series terminals and the terminals com-
munications programs available for Digital’s personal computers support ANSI
escape sequences.

KEYPAD MASK COMMAND (DT_MASK)

This command controls how DECtalk sends escape sequences and keypad
characters to the host. DT_MASK simplifies application development when
DECtalk is connected to a host via a packet-switched network or a network
using the SNA (systems network architecture) protocol. These networks have a
significant overhead associated with each message, so sending a line of text
(several characters) is more economical than sending a single character.

MAINTENANCE AND DEBUGGING COMMANDS 65

DT_MASK is also useful when DECtalk is connected to an operating system
that prefers to communicate line-by-line, rather than character-by-character.
For example, when DT_MASK is on, you can use BASIC’s INPUT LINE com-
mand to read text from DECtalk.

The command takes one parameter, which is interpreted as a 16-bit value. If a
bit is set, DECtalk sends a carriage return after sending the associated keypad
character. If any bit is set, DECtalk sends a carriage return after its escape
sequence replies. (The carriage return follows the ESC \ string terminator.) The
DT_MASK escape sequence is as follows.

ESC P O0 ; 8 3 ; P3 z ESC \
027 080 048 059 056 051 059 *** 122 027 092

The P3 parameter is bit-encoded. Specified values have associated characters
(Table 5-6). If you specify a value, DECtalk sends a carriage return after the
associated character (when a user presses that key).

1 o 0

4 2 2

£ 8 3

w4 4

32 @ 5 5

128 7 7

256 B 8

e & &

1024 10 *
2048 11

2
2
.
w

66 MAINTENANCE AND DEBUGGING COMMANDS

For example, to have DECtalk treat the # and * characters as response termi-
nators (but not the digits), a program would send the following sequence.

ESC P ; 8 3 ; 3 0 7 2 z ESC \
027 080 059 056 057 059 051 048 055 050 122 027 092

(3072 = 1024 + 2048)

If the person calling the application presses 123# followed by a keypad time-
out, DECtalk would send the following.

12 3 # <carriage return>

ESC P ; 7 0 2 z ESC \ <carriage return>
027 080059 055 048 059 050 122 027 092

This allows the application program to use standard line-oriented input rou-
tines, rather than character-oriented routines. If you specify a P3 parameter of
0 with DT_MASK, DECtalk will not send a carriage return after keypad charac-
ters or escape sequences.

NOTE: DECtalk will a send carriage return after all sequences, including
responses to non-DECtalk-specific sequences such as device status request.
Only responses generated within DECtalk are affected. Characters and escape
sequences generated by a local terminal are sent without interpretation.

The DECtalk support library does not interpret carriage return characters. You
have to process carriage returns with an application program. (Usually, an
application will ignore them.)

MAINTENANCE AND DEBUGGING COMMANDS 67

DETERMINING FIRMWARE REVISION LEVEL

If your application environment has DECtalk units with different versions of
firmware (1.8 and 2.0) you may need to determine the revision level of a
particular unit. You can use the following steps to determine the firmware
revision level.

1. Use the extended DSR escape sequence in this chapter to clear all
DECtalk errors. (Remember to note the DECtalk reply.)

2. Use the following escape sequence to send a [+] phoneme.

ESC P ; z + ESC\
027 080 059 122 043 027 092

This is silent and new to revision level 2.0 only.

3. Send another extended DSR escape sequence. If DECtalk is a firmware
revision level 1.8, it will report an error in the phonemic transcription. If
DECtalk is revision level 2.0, it will not report any errors.

ESC [0 n ESC[? 2 0 n
027 091 048 110 027 091 063 050 048 110
(firmware 2.0 report)

ESC [3 n ESC[? 2 5 n
027 091 051 110 027 091 063 050 053 110
(firmware 1.8 report)

Phonemic Alphabet
Appendix A lists all phonemes you can use in the DECtalk phonemic alphabet.

C PROGRAM EXAMPLE

This chapter provides the source listings of a sample DECtalk application
written in C programming language. The program uses DECtalk, a host
computer, and a telephone connection to the United States public telephone
network.

You can copy and use this application program; however, the program is only a
model, and cannot cover all possible DECtalk applications. You will find many
algorithms and sections within the application that you can use in your own
program; however, you will probably have to modify large sections of this
program for your own needs. Also, there is no guarantee that this application
program will run in the same way on your computer or on your public telephone
system (especially if you do not live in the United States).

The source programs are available from the DECUS Library (Digital Equipment
Corporation User’s Society) as 11-SP-58 (for PDP-11s) or V-SP-20 (for
VAX/VMS). RSX and RSTS operating systems need a system services library
distributed with DECUS C (DECUS 11-SP-18). All operating systems require a
C compiler to compile the programs. The DECUS library also has versions of
the library written in BASIC-PLUS and COBOL.

To order the latest version of source programs from the DECUS Library, mail
your request to:

DECUS Order Processing
MR02-1/C11

One Iron Way

Mariboro, MA 01752

For general information before placing an order, call (617) 480-3422.

69

70 C PROGRAM EXAMPLE

PROGRAM LANGUAGE AND STRUCTURE

This application program is written in C, a language originally written for the
UNIX operating system. C is a highly structured language, similar to Pascal,
ALGOL, and COBOL in form and syntax. C is also reasonably transportable:
the application program shown here can run on RSTS/E, RSX, UNIX, or
VAX/VMS operating systems (if the correct compilers are on those systems).

The application is written in many small modules, which are called according to
a tree structure (Figure 6-1). There are many modules, because each module
has only one or two functions within the program. The small, tight structure of
each module means that their function is easy to read and grasp.

All variables, constants, and other special values are listed in one module:
DECTLK.H. You must include DECTLK.H with the compilation of all other
modules.

APPLICATION PROGRAM “DEMO”

1
[I 1 I 1 1 1

DT_INKEY DT__INIT DT_ANSWER DT_HANGUP DT_TALK DT__OPEN | | DT__CLOSE

IETAMSG] l DTw.Dcsq
I

DT__READ

lDT,_GESC] I DT__SAVE I

DT_PESC

DT_IOPUT

DT_IOGET

MA-7600-83

Figure 6-1 Calling Tree of DECtalk Application Program

C PROGRAM EXAMPLE 71

HOW THE PROGRAM WORKS

The application program waits for a caller to dial the DECtalk phone number.
DECtalk then acts as a link between the host computer and the caller, passing
a canned message to the caller and informing the host when the caller presses
any keypad buttons. DECtalk releases the phone line (1) when the caller hangs
up, or (2) if no response is received after a certain length of time.

The program works as follows.

1. When started, the program establishes the DECtalk- telephone-host oper-
ating environment. DECtalk is set to wait for an incoming call.

2. When a phone call is received, DECtalk answers the call and informs the
host that a call is active.

3. The host then sends a message for DECtalk to speak to the caller. This
message informs the caller that the keypad can be used.

4. Atthe end of the host message, the telephone keypad is enabled and the
caller can send responses back to the host.

5. The host responds with a “‘you pressed button ..."” message when the
caller presses a keypad button. If the caller doesn't press a button for 15
seconds, the host tells DECtalk to hang up the phone.

72 C PROGRAM EXAMPLE

VARIABLE NAMES AND DEFINITIONS

All global variables and constants are defined in the module DECTLK.H. The
function of an escape sequence or coded reply from DECtalk is not clear when
embedded within a program; therefore, all escape sequences and status codes
are given their mnemonic names in DECTLK.H. The program then refers to
these names rather than the escape codes themselves.

What follows is a list of the global variables, mnemonics, and codes used in the
application program.

Flags
Two flags are used throughout the application program. The flags control
certain critical actions, as follows.

dt_abort This flag is normally FALSE. If dt_trap() is called, the
library will trap a CTRL-C (or INTERRUPT on UNIX).
If the user types CTRL-C, the flag is set to TRUE and
all library modules exit as quickly as possible.

dt_debug This flag can be set nonzero by an application pro-
gram to enable debug printouts. Note that the library
must have been compiled with dt_debug defined in
order to compile in the necessary print calls.

Error Codes
The library may return the following error codes. The error codes are all less
than zero, so they cannot be defined as part of the ASCII character set.

DT_ERROR An operating system error occurred.

DT_TIMEOUT An input operation did not complete in the required
(operating system) time.

I0_ERROR This is an error exit code for the exit() library routine.
The value selected depends on the particular oper-
ating system.

C PROGRAM EXAMPLE 73

DECtalk-Specific Parameters
Certain codes apply only to DECtalk (and not other devices, such as terminals).
These codes are as follows.

CSI_DA_PRODUCT

DCS_F_DECTALK

P1_DECTALK

R1_DECTALK

DECtalk Commands

The DECtalk product identification code.

The DECtalk specific device control sequence (DCS)
final character.

All DTCO1-AA DCS sequences send this for their first
(P1) parameter.

All DTCO01-AA DCS replies send this for the first (R1)
reply parameter.

The DECtalk commands that do not require specific parameters are coded as

follows.

P2_PHOTEXT

P2_STOP

P2_SYNC

P2_SPEAK

P2_INDEX

P2_IX_REPLY

P2_IX_QUERY

P2_DICT

P2_PHONE

Speak phonemic text.
Stop speaking.
Synchronize.
Enable/disable speaking.
Index text.

Index with reply.

Return last spoken index.
Load user dictionary.

Telephone control
(See ““Telephone Control Parameters.”)

74 C PROGRAM EXAMPLE

P2_MODE

P2_LOG

P2_TERMINAL

Synthesis mode control.
Local terminal log control.

Local terminal control.

Telephone Control Parameters

The telephone control command P2_PHONE takes an additional parameter to

specify the specific telephone action.

P3_PH_STATUS

P3_PH_ANSWER

P3_PH_HANGUP

P3_PH_KEYPAD

P3_PH_NOKEYPAD

P3_PH_TIMEOUT

P3_PH_TONE

P3_PH_PULSE

Send a status report.

Answer on P4 rings.

Hang up the phone.

Enable keypad data entry.

Disable keypad data entry.

Send a timeout report if no data entered in P4
seconds if P4 is greater than zero; disable time-
outs if P4 is zero.

Dial out using Touch-Tones.

Dial out using pulses.

C PROGRAM EXAMPLE 75

DECtalk Replies
Several P2_ commands return messages to the host.

R2_IX_REPLY Reply to P2_IX_REPLY. R3 contains the last index
processed.

R2_IX_QUERY Reply to P2_IX_QUERY. R3 contains the last index
processed.

R2_DICT Reply to P2_DICT. R3 contains the dictionary entry
status code.

R2_PHONE Reply to P2_PHONE. R3 contains the telephone
status.

DECtalk returns the following R3 parameters after a P2_PHONE command.
R3_PH_ONHOOK Telephone is hung up (inactive).
R3_PH_OFFHOOK Telephone is answered (active).

R3_PH_TIMEOUT No data was entered by the telephone user within the
required number of seconds.

R3_PH_TOOLONG A telephone number to dial is too long.

DECtalk returns the following R3 parameters after a P2_DICT command.
R3_DI_LOADED Dictionary entry was loaded.

R3_DI_NOROOM The user dictionary is full.

R3_DI_TOOLONG The dictionary entry is too long.

76 C PROGRAM EXAMPLE

Self-Test Parameters
The following parameters control the DECtalk self-test (DECTST).

TEST_POWER Rerun power-up test.
TEST_HDATA Run host data link loopback test.
TEST_HCONTROL Run host line control test.
TEST_LDATA Run local line data test.
TEST_SPEAK Speak a canned message.

The following status codes are returned by the extended DSR sequence.

DSR_OK No errors detected.

DSR_COMFAIL Communication failure.

DSR_INBUFOVER Input buffer overflow.

DSR_DECNVRFAIL Last restore from nonvolatile memory failed.
DSR_PHONEME Incorrect phoneme entered.

DSR_PRIVATE DECtalk DCS parameter error.

DSR_DECTSTFAIL Last DECTST self-test failed.

C PROGRAM EXAMPLE 77

Logging Command Parameters
The following parameters configure the P2_LOG command.

LOG_TEXT Log spoken text.

LOG_PHONEME Log generated phonemes.

LOG__RAWHOST Log all characters received from host without
change.

LOG_INHOST Log all characters received from host in visible
format.

LOG_OUTHOST Log all output to host in visible format.

LOG_ERROR Log error messages.

LOG_TRACE Log commands in mnemonic form.

The following parameters are for the P2_TERMINAL command.

TERM_HOST Send text entered from the local terminal to the
host.

TERM_SPEAK Speak text entered from the local terminal.

TERM_EDITED Line-edit text entered from the local terminal.

TERM_HARD Use hardcopy edit conventions.

TERM_SETUP Speak setup dialog.

TERM_FILTER Filter sequences sent to the local terminal.

The following parameters are for the P2_MODE command.
MODE_SQUARE Accept [] bracket phonemic text.
MODE_ASKY Use single-letter phonemic alphabet.

MODE_MINUS Pronounce a hyphen (-) as “‘minus.”

78 C PROGRAM EXAMPLE

THE SEQUENCE DATA STRUCTURE

The C language uses a powerful form of information control called a data
structure. Data structures closely resemble Pascal records and can pass and
hold multiple pieces of information.

All information needed to generate and parse escape sequences is in the
SEQUENCE data structure. SEQUENCE is configured by the following size
constants.

SEQ_INTMAX Maximum number of intermediate characters.

SEQ_PARMAX Maximum number of parameters.

The SEQUENCE data structure contains the following components.

short state Processing state or introducer character to send.

char final Final character in sequence.

char private Private introducer character (or X to indicate an
error).

short param([] Private parameters (unsigned); param[0] con-

tains the number of parameters.

char inter{] Intermediate characters; inter[0] contains the
number of intermediates.

All information needed by the application program is in the DECTALK data
structure which is created by dt_open() and freed by dt_close(). The DECtalk
data structure is configured by the following parameters.

PEND_SIZE Maximum number of keypad characters that may
be typed ahead. Additional characters are
discarded.

IN_BUFLEN Size of the operating system input buffer.

OUT_BUFLEN Size of the operating system output buffer.

C PROGRAM EXAMPLE 79

The data buffer contains the following information.

DECTALK *link
int unit

short timeout
short pend_fc
short pend_fp
short pend_ep
char *in_ptr

char *in_end
char *out_ptr
SEQUENCE send
SEQUENCE reply
SEQUENCE seq

char *device

char pend[]
char in_buff[]

char out_buff[]

struct sgtty stty__save

FILE *fildes

struct iosb iosb

struct gioparm parm

Chains together all active units.

Operating system 1/O channel.

TRUE if timeouts enabled.

Bytes in pending buffer.

Index to free byte in pending buffer.

Index to next byte to return from pending buffer.
Input buffer pointer.

Input buffer end.

Output buffer free pointer.

Last DCS sequence sent.

Last DECtalk reply received.

Look-ahead for string terminator processing.

Remember dt_open() device name for debug
printouts.

Type-ahead buffer.

Input buffer.

Output buffer.

Terminal characteristics block (UNIX only).
File descriptor (RSX only).

1/0 stétus block (RSX only).

QIO parameter block (RSX only).

80 C PROGRAM EXAMPLE

APPLICATION PROGRAMS
The rest of this chapter lists the modules used to build the complete application
program. All modules with the indicator comment

[*)LIBRARY
should be compiled and loaded into an object library. The main program,
DEMO.C, is compiled and linked with the DECtalk library and the C standard
library.

The modules appear in the following order (Table 6-1).

Table 6.1 Application Program Modul

oMo
"Uﬁm&&C‘g;”
7]k:;rct.@se{*i‘i? ”4‘?‘1‘ Close
DTQMQQ

. ‘m'ncm.c .

QTBCSC L
proALC
DOTORALC Absorbs a

DTEOLC

DTGESCC Reads an escape sequence or keypad character.

C PROGRAM EXAMPLE 81

82 C PROGRAM EXAMPLE

~ Table 6-1 Applicaﬁon ngram m:m {Oﬁnﬂ

Module
DTPUTC

DTREAD.C

DTRESE.C
DTSAVE.C

DTSPLICEC

DTST.C

DTSYNC.C

DTTALK.C
nﬁés'r.c'
DTTIME.C
DTTONE.C

DTTRAP.C

DTVISIC -
HELLO.C

” Brief Dosm*ipﬁon

~ Sends one character to the EECtaik tarmmai tine No value
is returned. ,

'Reads a sequenoe or character

' ‘Sends a soft—resst escape sequenas

Saves user type»ahaad cmaracters

 Lets you control a *ermmat wnnec:tad to DECtalk s tocai

port.

| 'Sends a string terminator {for ﬂhm\emic text and teiephone '
dial commands) to DECtalk

Synchronizes DECtaIk and the applicaﬂon

Speaks one line of text

»Tests a DECtalk rapiy
Enabfes or dlsables a teiephona keypad timeout.

, Sends the msg text strmg as a tone dzaimg sequence.‘

Traps CTRL-C mterrupts

Generates wsibre ASCII character representat:ons

, 'Tasts tnat DEcta!k is operating cofrectiy

C PROGRAM EXAMPLE 83

DECTLK.H

DECTLK.H must be included in all modules that use the DECtalk applications
library. This file also defines common ASCII characters, DECtalk escape
sequence parameters, library globals, and the DECtalk buffer structure. You
can edit this file to enable debugging code defined by the DTDEBUG flag.

Definitions and Globals

This file contains symbolic definitions of the structures
and characters used by DECtalk application programs,
including all DECtalk escape sequence parameters.

Note: on RSX-11M, your program must first #include «<stdio.h>
/

® % % * % ¥ ¥ * ¥

/.
* Select a UNIX "flavor"™ (bizarre code as DECUS C lacks "defined()")
*/

#ifdef unix

#ifndef BSD_42

#ifndef UNIX_V

#define UNIX_V

#endif

#endif

#endif

#ifdef DOCUMENTATION

title dectlk.h DECtalk Library Header File
index DECtalk library header file
synopsis

#include "dectlk.h"
description

This file is included in the compilation of all
modules that use the DECtalk applications library.
It defines common ASCII characters, DECtalk

escape sequence parameters, library globals,

and the DECTALK buffer structure.

configuration

You can edit dectlk.h to enable debugging code
by defining the DT_DEBUG flag as follow.

#define DT_DEBUG 1
This changes the primary input and output routines

so that they become capable of logging all characters
transmitted to and from the DECtalk device.

84 C PROGRAM EXAMPLE

globals

The library provides two global flags which are used
as follows.

dt_abort This is set non-zero by an
intercepted CTRL-C trap (if you
have called dt_trap()). When set,
no I/0 will be performed, and
library subroutines will exit as
quickly as possible.

dt_.debug This may be set nonzero by an
applications program to enable
debug printouts. Note that the
library must have been compiled
with DT_DEBUG defined in order to
compile in the necessary print
calls.

error codes

The library may return the following error codes.
These are all less than zero, and consequently
cannot be part of the ASCII character set.

DT_ERROR An operating-system error.

DT_TIMEOUT An input operation did not
complete in the required
(operating-system) time.

I0_ERROR An error exit code for the
exit() library routine. The
value is selected as appropriate
for the particular operating
system.

Routines implemented as macros

Certain frequently routines may be implemented as
macros (if macro expansion is supported by the

particular C compiler). These are as follows.
dt_iskey(dt) TRUE if data is currently
stored in the keypad type-ahead
buffer.
dt_isvalid(c) TRUE if the character is a

valid keypad character.

Note: evaluation of the argument
must not have side-effects. 1I.e.,
you must not write dt_isvalid(*p++).

dt_ptest(dt,r3) Phone test, TRUE if the current
reply is R2_PHONE, R3.

C PROGRAM EXAMPLE

dt_offhook(dt) Phone test, TRUE if the current
reply is R2_PHONE, R3_PH_OFFHOOK.

dt_onhook(dt) Phone test, TRUE if the current
reply is R2_PHONE, R3_PH_ONHOOK.

dt_.istimeout(dt) Phone test, TRUE if the current
reply is R2_PHONE, R3_PH_TIMEOUT.

dt_phone(dt,p3,p4) Send a phone message.

dt_eol(dt) Send "end of line"™ and force
output to DECtalk.

general definitions
The following variables are defined.

EOS End of string
FALSE For TRUE/FALSE testing
TRUE For TRUE/FALSE testing

ascii characters
The following CO0 control characters are defined.
NUL STX ETX BEL BS vT LS1
LSO XON XOFF CAN SUB ESC DEL
The following C1 control characters are defined.
§s2 §S3 DCS OLDID CSI ST osc
PM APC RDEL

The following DECtalk-specific parameters are
also defined.

CSI_DA_PRODUCT The DECtalk product
identification code.

DCS_F_DECTALK The DECtalk specific device
control sequence (DCS) final
character.

P1_DECTALK All DCTO01 DCS sequences

transmit this for their first
(P1) parameter.

R1_DECTALK All DCTO01 DCS replies transmit
this for the first R1 reply
parameter.

85

86 C PROGRAM EXAMPLE

The P2 and P3 parameters select the specific DECtalk command.

P2_PHOTEXT Speak phonemic text.
P2_STOP Stop speaking.

P2_SYNC Synchronize.

P2_SPEAK Enable/disable speech.
P2_INDEX Index text.

P2_IX__REPLY Index with reply.
P2_IX_QUERY Return last spoken index.
P2_DICT Load user dictionary.
P2_PHONE Telephone control.
P2_MODE Synthesis mode control.
P2_L0G Local terminal log control.
P2_TERMINAL Local terminal control.
P2_MASK Keypad mask control.

The telephone control command takes an additional
parameter to specify the specific telephone action.

P3_PH_STATUS Return a status report.
P3_PH_ANSWER Answer on P4 rings.
P3_PH_HANGUP Hangup the phone.
P3_PH_KEYPAD Enable keypad data entry.
P3_PH_NOKEYPAD Disable keypad data entry.
P3_PH_TIMEOUT Send a timeout report if

no data entered in P4 seconds

if P4 is greater than zero;

disable timeouts if P4 is zero.
P3_PH_TONE Dial out using tones.
P3_PH_PULSE Dial out using pulses.

Several P2 commands return messages to the host.

R2_IX_REPLY Reply to P2_IX_REPLY. R3
contains the last index
processed.

R2_IX_QUERY Reply to P2_IX_QUERY. R3

contains the last index
processed.

R2_DICT Reply to P2_DICT. R3
contains the dictionary entry
status code.

R2_PHONE Reply to P2_PHONE. R3
contains the telephone status.

The following R3 parameters are returned after a
P2_PHONE command.

R3_PH_ONHOOK Telephone is hung up (inactive).
R3_PH_OFFHOOK Telephone is answered (active).
R3_PH_TIMEOUT No data was entered by the

telephone user within the required
number of seconds.

R3_PH_TOOLONG A telephone number to dial is
too long.

C PROGRAM EXAMPLE

The following R3 parameters are returned after a P2_DICT

command.

R3_DI_LOADED
R3_DI_NOROOM
R3_DI_TOOLONG

The following codes
self test (DECTST).

TEST_.POMWER
TEST_HDATA
TEST-HCONTROL
TEST_-LDATA
TEST_SPEAK

Dictionary entry was loaded.
The user dictionary is full.
The dictionary entry is too long.

are used to control host-requested

Rerun power up test.

Host data link loopback test.
Host line control test.

Local line data test.

Speak a canned message.

The following status codes are returned by the extended

DSR sequence.
DSR_0OK
DSR_COMFAIL
DSR_INBUFOVER
DSR_DECNVRFAIL
DSR_PHONEME
DSR_PRIVATE
DSR_DECTSTFAIL

The following flags
LOG_TEXT
LOG_PHONEME

LOG_RAWHOST

LOG_INHOST

LOG_OUTHOST

LOG_ERROR

LOG_TRACE

No errors detected.
Communication failure.

Input buffer overflow.

Last restore from nonvolatile
memory failed.

Incorrect phoneme entered.
DECtalk DCS parameter error.
Last DECTST self-test failed.

configure the P2_L0OG command.
Log spoken text.
Log generated phonemes.

Log all characters received
from host without change.

Log all characters received
from host in "visible" format.

Log all output to host in
visible format.

Log error messages.

Log commands in mnemonic form.

87

88 C PROGRAM EXAMPLE

The following flags are for the P2_TERMINAL command:

TERM_HOST Send text entered from the
local terminal to the host.

TERM_SPEAK Speak text entered from the
local terminal.

TERM_EDITED Line-edit text entered from

the local terminal.
TERM_HARD Use hard-copy edit conventions.
TERM_SETUSPEAK Speak SETUP dialog.

TERM_FILTER Filter escape sequences sent
to the local terminal.

The following flags are for the P2_MODE command.

MODE_SQUARE [] bracket phonemic text.
MODE_.ASKY Use single-letter phonemic
alphabet.

MODE_MINUS Pronounce ‘-’ as "minus."

The following flags are for the dt_splice() function.
SPLICE_SPEAK DECtalk speaks text if set.

SPLICE-LOG Text sent to DECtalk is sent to the
terminal (P2_L0G, LOG_RAWHOST).

SPLICE_TERM The terminal may send text to
DECtalk (P2_TERM, TERM_HOST).

Escape sequence data buffer
All information needed to generate and parse
escape sequences is contained in the SEQUENCE
data structure. It is configured by the following
size constants.

SEQ_INTMAX . Maximum number of intermediate
characters.

SEQ_PARMAX Maximum number of parameters.
It contains the following components.

short state Processing state or introducer
character to send.

char final Final character in sequence.

char private Private introducer character
or ‘X’ to indicate an error.

C PROGRAM EXAMPLE

short paraml] Private parameters C(unsigned);
param{0] contains the number of
parameters.

char interl] Intermediate characters;
inter[0] contains the number of

intermediates.
DECTALK data buffer definition

All information needed by the DECtalk applications
library is contained in the DECTALK data structure
which is created by dt_open() and freed by dt_close().
It is configured by the following parameters.

PEND_SIZE

IN_BUFLEN

OUT_BUFLEN

DECTALK *1link
short unit
short timeout
short flag
short pend_fc

short pend_fp

short pend_ep

char *in_ptr
char *in_end
char *out_ptr
SEQUENCE send
SEQUENCE reply

SEQUENCE seq

char *device

Maximum number of keypad
characters that may be typed-ahead.
Additional characters are discarded.

Size of the operating system input
buffer.

Size of the operating system output
buffer.

The data buffer contains the following information.

Chains together all active units.
Operating system 1/0 channel.
Current timeout value

Speech and dt_splice flags.

Bytes in pending buffer.

Index to free byte in pending
buffer.

Index to next byte to return
from pending buffer.

Input buffer pointer.

Input buffer end.

Output buffer free pointer.
Last DCS sequence sent.

Last DECtalk reply received.

Look-ahead for string terminator
processing.

Remember dt_open() device name
for debug printouts.

89

90 C PROGRAM EXAMPLE

char pendl] Type-ahead buffer.
char in_buffl] Input buffer.
char out_buffl] Output buffer.

struct termio stty._save Terminal characteristics
block C(UNIX System V).

struct sgtty stty_save Terminal characteristics
block CUNIX 4.2 BSD).

FILE *fildes File descriptor (RSX).

struct iosb iosb 1I/0 status block (RSX).

QIOPARM parm QI0 parameter block (RSX).
(RSX only).

int#pos_xk TRUE if POS XK: driver
(RSX only).

The flag entry controls library internal states.

-FLAG_SPEAK Set if DECtalk is speaking.
-FLAG_LOG Set if LOG RAWHOST is set.
-FLAG_TERM Set if TERM HOST is set.

-FLAG_EIGHTBIT Set to read and write eight-bit
data and control sequences.

FLAG_SPEAK, FLAG_LOG, and FLAG_TERM should not be changed
by application programs.

FLAG_EIGHTBIT must be set by the application program if
DECtalk sends and receives C1 control sequences in their
8-bit form. Note that the application program must
ensure that the operating system passes 8-bit data
correctly and DECtalk setup must set HOST FORMAT to NONE.

UNIX Notes

Note

#endif

/‘

On UNIX System V, the DECtalk terminal line is
forced to 9600 Baud. This may be changed to

retain the current Baud rate. Also, you should

be aware that there are numerious subtle differences
between operating systems.

UNIX and System V are trademarks of AT&T Bell Laboratories.

* Define DT_DEBUG to enable debug printouts of transmitted
* characters.

*/

#define DT_DEBUG

#define FALSE 0
#define TRUE 1
#ifndef EOS
#define EOS
#endif

\Q’

#ifdef
#jifdef
#include
#else
#ifdef
#include
#endif
#endif
#endif

unix
BSD_42
<sgtty.h>

UNIX.V
<termio.h>

/'

C PROGRAM EXAMPLE 91

* These error codes may not be in the ASCII range.

*/

#define DT_ERROR -1
#define DT_TIMEOUT -2)

/.
* C0 control characters
*/

#define NUL 0x00
#define STX 0x02
#define ETX 0x03
#define BEL 0x07
#define BS 0x08
#define VT 0x0B
#define LS1 0x0E
#define LSO 0xO0F
#define XON O0x11
#define XOFF 0x13
#define CAN 0x18
#define SUB 0x1A
#define NUL 0x00
#define ESC 0x1B
#define DEL 0x7F
/l
* C1 control characters

*/

#define SS2 0x8E
#define SS3 0x8F
#define DCS 0x90
#define OLDID 0x9A
#define CSI 0x9B
#define ST 0x9C
#define 0OSC 0x9D
#define PM 0x9E
#define APC 0x9F
#define RDEL 0xFF

/I
/G
/'
/'
/i
/Q
/.
/%
/.
/.
/.
/7%
/*
/'
/i

/l
/l
/Q
/.
/I
/Q
/i
/I
/i
/'

NUL code

Start of text
End of text
Bell

Backspace
Vertical tab (’\013’)
LS1 (s

LSO (SI)

DC1

DC3

Cancel <CTRL/X>
Substitute

Null code
Escape

Delete

Single shift 2

Single shift 3

Device control sequence
ESC 2

Control Sequence Introducer
String terminator

Operating System sequence
Privacy Message
Application Program Control
Delete in right side

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

92 C PROGRAM EXAMPLE

#define CSI_DA_PRODUCT 19

/*

Dectalk DA product code

* Basic definitions for DECtalk device control

* strings. All DECtalk sequences have a first parameter of

* P1_DECTALK. This provides an easy place for future DECtalk
* products to fit into the scheme of things.

/'
/i
/.

/!
/G
/*
/.
/.
/'
/l
/'
/*
/‘
/l
/I
/I

DECtalk final
DECtalk param 1
DECtalk reply param 1

the basic command.

Speak phonemic text

Stop speaking

Synchronize

Enable or disable speaking
INDEX

INDEX_REPLY

INDEX_QUERY

Dictionary control

Phone control

Synthesis mode control

LOG information on local tty
Local terminal control

Set keypad mask

* Additional parameters for the phone command.

*/

#define DCS_F_DECTALK ‘2’
#define P1_DECTALK 0
#define R1_DECTALK 0
/*

* The second parameter selects
*/
#define P2_PHOTEXT 0
#define P2_STOP 10
#define P2_SYNC 1
#define P2_SPEAK 12
#define P2_INDEX 20
#define P2_IX_REPLY 21
#define P2_IX_QUERY 22
#define P2_DICT 40
#define P2_PHONE 60
#define P2_MODE 80
#define P2_L0G 81
#define P2_TERMINAL 82
#define P2_MASK 83
/%

*/
#define P3_PH_STATUS 0
#define P3_PH_ANSWER 10
#define P3_PH_HANGUP 11

#define P3_PH_KEYPAD 20
#define P3_PH_NOKEYPAD 21
#define P3_PH_TIMEOUT 30

#define P3_PH_TONE 40
#define P3_PH_PULSE 41
/%

* The second parameter in
* of the reply sequence.
*/

#define R2_IX_REPLY 31
#define R2_IX_QUERY 32
#define R2_DICT 50
#define R2_PHONE 70

/*
/l'
/*
/*
/i
/"
/.
/l

a reply

/Q
/.
/I
/I

Send a status report

Answer (P4 has ring number)
Hangup

Raw keypad

Disable keypad

Status report on timeout
Dial out

Dial out

specifies the general class

Sent after INDEX_REPLY
Sent after INDEX_QUERY
Sent after DICT

Telephone status report

*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

C PROGRAM EXAMPLE 93

/* i
* Additional reply information is passed in the third parameter.
#define R3_PH_ONHOOK 0 /* Hung up */ I
#define R3_PH_OFFHOOK 1 /* Phone is lifted */
#define R3.PH_TIMEOUT 2 /* No reply in N seconds */ ;
#define R3_PH_TOOLONG 3 /* Telephone # text too long */
#define R3_DI_LOADED 0 /* Dictionary entry loaded ok */
#define R3_DI_NOROOM 1 /* No room in dictionary */
#define R3_DI_TOOLONG 2 /* String too long */

/*
* Test specification codes for the request self test
* (DECTST) sequence.

*/
#define TEST_POWER 1 /* Rerun power up tests */
#define TEST_HDATA 2 /* Host line data loopback test */
#define TEST_HCONTROL 3 /* Host line control test */
#define TEST_LDATA 4 /* Local line data test */
#define TEST_SPEAK S /* Speak a canned message */
VAl

* Error (and success) codes for the extended DSR sequence.

*/
#define DSR_OK 20 /* All OK */
#define DSR_COMMFAIL 22 /* Communication failure */
#define DSR_INBUFOVER 23 /* Input buffer overflow */
#define DSR_DECNVRFAIL 24 /* Last DECNVR failed */
#define DSR_PHONEME 2s /* Error in phonemic text */
#define DSR_PRIVATE 26 /* Error in DECtalk private DCS */
#define DSR_DECTSTFAIL 27 /* Last DECTST failed */
/I

* Local logging flags for the P2_L0OG command.

*/
#define LOG_TEXT 0x0001 /* Log text that is spoken */
#define LOG_PHONEME 0x0002 /* Log generated phonemes */
#define LOG_RAWHOST 0x0004 /* Log raw host input */
#define LOG_INHOST 0x0008 /* Log host input */
#define LOG_OUTHOST 0x0010 /* Log host output */
#define LOG_ERROR 0x0020 /* Log errors */
#define LOG_TRACE 0x0040 /* Log sequence trace info. */
/I

* Local terminal flags for the P2_TERMINAL command.

*/
#define TERM_HOST 0x0001 /* Send text to host */
#define TERM_SPEAK 0x0002 /* Speak local terminal input */
#define TERM_EDITED 0x0004 /* Edited */
#define TERM_HARD 0x0008 /* Local terminal is hardcopy */
#define TERM_SETUSPEAK 0x0010 /* Spoken setup mode */

#define TERM_FILTER 0x0020 /* Filter logged esc. sequences */

94 C PROGRAM EXAMPLE

/*

* Mode flags for the P2_MODE command.

*/
#define MODE_SQUARE 0x0001 /* [] are phonemic brackets */
#define MODE_ASKY 0x0002 /* Use ASKY alphabet */
#define MODE_MINUS 0x0004 /* "-" is5 pronounced "minus" */
/*

* Flags for dt_splice() and C((DECTALK *J)dt)->flag
*/

#define SPLICE_SPEAK 0x0001 /* Speak text if set */
#define SPLICE_LOG 0x0002 /* Log rawhost if set */
#define SPLICE_TERM 0x0004 /* Local host if set */
#define _FLAG_SPEAK 0x0001 /* Speaking, set by dt_splice() */
#define _FLAG_LOG 0x0002 /* Log rawhost from dt_splice() */
#define _FLAG_TERM 0x0004 /* Term host from dt_splice() */

#define _FLAG_EIGHTBIT 0x0008 /* Read eight-bit C1 controls */

/*
* These macros and structure definitions are used by the escape
* sequence parser.

*/
#define SEQ_INTMAX 2 /* Max. # of intermediates */
#define SEQ_PARMAX 16 /* Max. # of parameters */
/*

* dt_gesc() (get escape sequence) and dt_pesc() (put escape
* sequence) use this structure for all processing.
*/

typedef struct <

short state; /* Processing state or intro */
char final; /* Final character in seq. */
char private; /* Private introducer */
#jifdef decus
unsigned param[SEQ_PARMAX+11;
Yelse
unsigned short param[SEQ_PARMAX+11;
#endif
/* Intermediate count, values */
char inter[SEQ_INTMAX+1];

} SEQUENCE;

/G

* The DECTALK structure is used to maintain all information
* needed to process a DECtalk device. It is allocated by

* dt_open(), freed by dt_close() and a required parameter

* by essentially all routines.

*/

#ifdef rsx

/!

* The qio parameter block

*/

typedef struct qioparm {
char *buffer;
int size;
char *p3;
char *table;
int unused[(2];

} QICPARM;

* The 1/0 status block receives the status of all 1/0 requests.

/l

*/

typedef struct iosb {
char status;
char terminator;
int count;

} 10SB;

#endif

#ifndef PEND_SIZE

#define PEND_SIZE 32
#endif

#ifndef IN_BUFLEN

#define IN_BUFLEN 32
#endif

#ifndef OUT_BUFLEN

#define OUT_BUFLEN 128

¥endif

C PROGRAM EXAMPLE 95

controls all RSX11-M 1/0 requests.

/l
/’
/l
l.
/.
/'

/I
/Q
/.
/l

QI0 parameter block */

Buffer location */
Bytes to transfer */
For ctrl/c ast */
Terminator table */
Not used here */

1/0 status block
Operation status

Input terminator byte
Bytes read from device

/* Pending buffer size

rif CIN_BUFLEN < 1 1! OUT_BUFLEN < 1 11 PEND_SIZE < 1)
<< error, mandatory parameters aren’t correct >>

#endif

typedef struct DECtalk {

struct DECtalk *link; /* Chain all units together
short unit; /* 1/0 channel

short timeout; /* For dt_timeout()

short flag; /* Speech and "splice" flags
short pend_fc; /* Bytes in pending buffer
short pend_fp; /* Pending buffer fill index
short pend_ep; /* Pending buffer empty index
char *in_ptr; /* 1/0 input buffer pointer
char *in_end; /* -> end of input buffer
char *out_ptr; /* -> free spot in output buff.
SEQUENCE send; /* Last sequence sent
SEQUENCE reply; /* Last sequence read
SEQUENCE seq; /* Sequence look-ahead

char *device; /* DECtalk hardware device
char pend[PEND_SIZE1l; /* Type-ahead ring buffer
char in_buff[IN_BUFLEN]; /* 1/0 input buffer
char out_buff[OUT_BUFLENI]; /* 1/0 output buffer

*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

96 C PROGRAM EXAMPLE

/I
* The following entries are operating-system specific.
*/
#ifdef wunix
#ifdef BSD_42
struct sgttyb stty_save; /* Terminal flags
#else
#ifdef UNIX_V
struct termio stty_save; /* Terminal flags C(UNIX V7)
#endif
#endif
fendif
#ifdef rsx
FILE *fildes; /* File descriptor
10SB iosb; /* 1/0 status block
QIOPARM parm; /* QI0 parameter block

short pos_xk; /* Device characteristics word

#endif
} DECTALK;

~
* *

Certain short routines and common tests are expressed as

as returned by dt_open(). Note that the arguments should
not have “side-effects".

The following are only useful after executing dt_phone().
dt_ptest(dd, r3) TRUE if specific phone reply.

dt_onhook(dd) TRUE if last DECtalk reply is ONHOOK.

The following simple commands may be written as macros:

dt_phone(dd,p3,p4) Send a phone message.

* ok & %k k & ok &k ok k Kk % &k % k % k *k ok k &k k & &

/

macros. In all instances, ‘dd’ is a DECtalk I/0 descriptor

dt_iskey(dd) TRUE if something in type-ahead buffer.
dt_isvalid(c) TRUE if argument is a valid keypad key.

dt_offhook(dd) TRUE if last DECtalk reply is OFFHOOK.

dt_istimeout(dd) TRUE if last DECtalk reply is TIMEOUT.

dt_get(dd, sec) Read a character (with timeout)
dt_putldd, ¢) Send a character to DECtalk
dt_eol(dd, c¢) Send "end of line"™, flush output buffers

If DT_DEBUG is #defined, dt_get() and dt_put() are functions
which may log all characters to the standard output stream.

*/

*/
*/
*/
*/

C PROGRAM EXAMPLE 97

#ifndef DT_DEBUG
#define dt_get di_ioget
#define dt_put dt_ioput
#endif
#ifndef nomacarg
#define dt_iskey(dd) (dd->pend_fc != 0)
#define dt_isvalid(c) (C Cc »>= ‘0’ && c <= ’'9") \
11 ¢ == ‘#’ || ¢ == ‘%’ \
11 Cc >= ‘A’ && c <= ‘D))
#define dt-ptest(dd,r3) (dt_test(dd, R2_PHONE, r3))
#define dt_offhook(dd) (dt_ptest(dd, R3_PH_OFFHOOK))
#define dt_onhook(dd) (dt_ptest(dd, R3_PH_ONHOOK))
#define dt_istimeout(dd) (dt_ptest(dd, R3_PH_TIMEOUT))
#define dt_phone(dd,p3,p4) (dt_msgldd, \
P2_PHONE, p3, p4, R2_PHONE, -1))
#ifdef unix
#define dt_eol(dd) (dt_put(dd, ‘\n’), di_putldd, 0))
felse
#define dt_eol(dd) (dt_putldd, “\r’), \
dt_putCdd, ‘\n’), dt_putldd, 0))
#endif
#endif
#ifdef decus
#ifdef DT_DEBUG
/'
* This forces traceback on Decus C systems.
*/
#define exit error
#define I0_ERROR “"fatal DECtalk I/0 error"
#endif
#endif

#ifndef I0_ERROR
#ifdef wvms
#include

#define I0_ERROR
felse

#define I0_ERROR
#endif

#endif

/'

<ssdef.h>
SS$_ABORT

2

* dt_abort may be set by a user program at any time to

*
*
*

stop DECtalk. Typically, it would be set by dt_trapO)
when a ¢CNTL/C> CUNIX INTERRUPT signal) is typed by the
terminal user.

*/
extern int dt_abort; /* Set TRUE to stop */
extern DECTALK *dt_root; /* Root of device chain */
#ifdef DT_DEBUG
extern int dt_debug; /* TRUE if debug log */

#endif

98 C PROGRAM EXAMPLE

DEMO.C
The executable program’s name is DEMO, derived from this program. DEMO.C
is the main module of the program.

#include <stdio.h>
#include “"dectlk.h"

mainCargc, argv)

int argc;

char *argvil];

{
register DECTALK *dt; /* Dectalk device */
register int retries; /* Initializations */
register int ncalls; /* Completed calls */
char *dev;

extern DECTALK *dt_open();

dev = "TT2:";

if Cargc > 1)
dev = argvii1];

retries = 0

ncalls = 0;

dt_debug = TRUE;

if ((dt = dt_open(dev)) == NULL) {
perror(dev);

return;
}
dt_trapQ); /* Catch CTRL-C abort */
while (dt_init(dt)) { /* One-time setup */
dt_dcs(dt, P2_MODE, MODE_SQUARE, -1);
retries++; /* Count attempts */
while (dt_answer(dt, 1)) { /* Answer the phone */
if C(process(dt)) { /* Do user process */
ncalls++; /* User ran ok, */
retries = 0; /* Clear retry count */
}
dt_hangup(dt); /* Hangup the phone */
if (dt_abort) /* Check interrupt */
goto finis; /* Error exit */
}
if (dt_abort)
goto finis; /* Error exit */
if Cretries > 2) { /* Got lost? */
printf("Too many retries\n");
break;
}
}

fprintf(stderr, *"Couldn’t initialize DECtalk\n");

C PROGRAM EXAMPLE 99

finis: dt_abort = FALSE; /* Restart output */
dt_reset(dt); /* Hangup DECtalk */
dt_putCdt, 0); /* Force out buffer */
dt_close(dt); /* Close up DECtalk */

}

process(dt)

register DECTALK *dt;

{
register char cs /* Keypad character */
char work[301]; /* For echo message */

dt_talk(dt, "Welcome to DECtalk");

if ('dt_keypad(dt, TRUE)) /* Enable keypad */
return (FALSE); /* Error occurred */

for C(33) { /* Do forever... */
c = dt_inkey(dt, 15); /* Key with timeout */

if (tdt_isvalid(c)) /* Check for timeout */
break; /* Exit if so */

sprintf(work, "You pressed Xc", c);
dt_talk(dt, work);

if Cc == "*7) { /* Make ‘*’ special */
dt_timeout(dt, 0); /* No timeouts now */
dt_talk(dt, "Long message...");
}
}
/l
+ Timeout is normal, others are errors.
*/

return ((c == ‘T’) ? TRUE : FALSE);

100 C PROGRAM EXAMPLE

DTANSW.C
This routine hangs up the phone and answers on n rings.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_answer Answer the Telephone
index Answer the telephone
synopsis
#include <stdio.h>
#include “dectlk.h"
int
dt_answer(dt, nrings)
DECTALK *dt; /* Device descriptor */
int nrings; /* Number of rings */

description
Hang up the phone (by calling dt_hangup()) and
answer the phone after the specified number
of rings.

Return TRUE if successful, FALSE if in error.

#endif
#include ¢<stdio.h>
#include "dectlk.h"

int
dt_answer(dt, nrings)

register DECTALK *dt;

int nrings;

/*

* Hang up the phone and answer on nrings.

*/

{

register int code;
again: if C(!dt_hangup(dt)) /* Make sure it’s
return (FALSE); /* on-hook.

dt_dcs(dt, P2_PHONE, P3_PH_ANSWER, nrings);
while (dt_read(dt, 0), dt_onhook(dt)) {
if (dt_abort)
return (FALSE);
}
if (dt_onhook(dt))
goto again;

if (!dt_offhook(dt)) /* Did it answer ok?
return (FALSE);

/*

* 0K, clear timeout flag and type-ahead counters.

*/

dt->timeout = 0;
dt->pend_fc = dt->pend_fp = dt->pend_ep = 0;
return (TRUE);

*/
*/

*/

1

171 1 1

8

-1

.

DTCLOS.C

C PROGRAM EXAMPLE

This routine closes the DECtalk channel and frees all buffers.

/*)LI1BRARY
*/

#ifdef DOCUMENTATION

title dt_close Terminate DECtalk Operation
index Terminate DECtalk Operation
synopsis

#include <stdio.h>

#include "“dectlk.h"

dt_close(dt)

DECTALK *dt; /* DECtalk device */

description

Close the DECtalk channel and free
No error is returned.

#endif
#include «stdio.h>
#include “dectlk.h"

#ifdef rsx

#include <cx.h>

#include <giofun.h>
#include <qioret.h>
#include <qiottd.h>

#define QIO_EFN 1

static QIOPARM noparm; /*
#endif

dt_close(dt)
register DECTALK *dt;
/.
* Close the DECtalk channel.
*/
{
register DECTALK **linkps
#ifdef wunix
#ifdef BSD_42
stty(dt->unit, &dt->stty_save)d;
felse
#ifdef UNIX_V

ioctlCdt->unit, TCSETA, &dt->stty_saved; /* Restore tty flags

#endif

all buffers.

QIO parm Call zero) */

/* Restore tty flags

101

*/

*/

102 C PROGRAM EXAMPLE

#endif
close(dt->unit);
#endif
#ifdef wvms
sys$dassgn(dt->unit);
#endif
#ifdef rt11
rs_close(dt->unit);
#endif
#ifdef rsx
qiowC(IO_DET, dt-»>unit, QIO_EFN, NULL, NULL, &noparm);
fclose(dt->fildes);
#endif
/Q
* Unlink the device from the chain.
*/
for C(linkp = &dt_root; *linkp !'= NULL;
linkp = &(C*1linkp)->link)) {
if (*linkp == dt) {
*linkp = dt->link;
break;
}
}
free(dt->device);
free((char *)dt);
return (NULL);

1

1 1]

n

]

C PROGRAM EXAMPLE

DTCMD.C
This routine sends a DCS command to the DECtalk terminal.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_cmd Send DCS w/o String Terminator
index Send DCS w/o string terminator
synopsis

#include <stdio.h>

#include "dectlk.h"

int

dt_cmd(dt, p2, p3)

DECTALK *dt; /* Device descriptor */

int p2; /* P2_... parameter */

int p3; /* P3.... parameter */
description

This routine sends a DCS command to the DECtalk
terminal. The string terminator is not sent.
This is needed to send phonemic text or telephone
dial commands.

The p2 or p3 parameter may be -1 if it is to be
ommitted.

A phonemic text sequence would be sent as follows.

dt_cmd(dt, p2, p3);
dt_talk(dt, "hh’ehlow.");

dt_st(dt);
fendif
#include «stdio.h>
#include “"dectlk.h"

static SEQUENCE command = {
DCS, DCS_F_DECTALK, 0, { 3, P1_DECTALK, 0, 0 }

rs

dt_ecmd(dt, p2, p3)

register DECTALK *dt; /* Device descriptor */
int p2; /* P2_command or -1 */
int p3; /* P3_command or -1 */

103

104 C PROGRAM EXAMPLE

/

{

*

* Send a DCS command, no string terminator

*/

if (p2 == -1)
command.param[0] = 1;
else {
command.paraml(2] = p2;
if (p3 == -1)
command.param(0] = 2;
else {
command.param[0] = 3;
command.param(3] = p3;
}
}
dt_pesc(dt, &command);

1 1 1

|

.

]

~ 1

2

1

C PROGRAM EXAMPLE 105

DTDCHA.C

This routine formats characters into a visible ASCIl datascope format and
writes the resulting text to the indicated file. Note that this routine is indepen-
dent of DECtalk definitions. Output is via the C standard library. Dumps to
terminals are unbuffered.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_dchar Dump One Character Visibly
index Dump one character visibly
synopsis

#include ¢<stdio.h>

dt.dchar(c, iov)

int cs /* Character to dump */
FILE *iov; /* File to write to */
description

The character is formatted into a visible ASCII
Datascope format and the resulting text written
to the indicated file.

Note that this routine is independent of DECtalk
definitions.

Output is via the C standard library. If the dump
is to a terminal, it is unbuffered.

#endif
#include ¢<stdio.h>

dt_dchar(c, iov)

register int c3
register FILE *iov;
,!
* Dump a character.
*/
{
char work[121;

dt_visible(c, work);

fprintfCiov, "%s", work);

if (isatty(filenoCiov)))
fflushCiov);

t
i
|

106 C PROGRAM EXAMPLE

DTDCS.C ,
This routine sends a DECtalk DCS control sequence using the p2, p3, and p4
parameters. Pn parameters are -1 if not sent. No errors are possible.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_dcs Send a DECtalk DCS Command
index Send a DECtalk DCS command
synopsis

#include <stdio.h>

#include “dectlk.h"

dt_dcs(dt, p2, p3, p4)

DECTALK *dt; /* Device descriptor */
int p2; /* P2_xxx parameter */
int pP3; /* P3_PH_xxxx parameter */
int p4; /* timeout or rings */

description

This routine sends a DECtalk DCS control sequence
using the p2, p3, and p4 parameters.

Note that the Pn parameters are -1 if they
are not sent.

No errors are possible.

#endif
#include <stdio.h>
#include "dectlk.h"

static SEQUENCE DT_string_terminator = {
ST /* String terminator */
};

dt_dcs(dt, p2, p3, p4)
register DECTALK *dt; /* Dectalk device */
int p2, p3, p4; /* Parameters to send */

/

{

C PROGRAM EXAMPLE

*

* Load the parameter buffer and send the sequence.
* dt->send.param[0] contains the number of additional parameters.
*/

dt->send.state = DCS;
dt-»>send.final = DCS_F_DECTALK;
dt->send.private = 0;
dt-»>send.inter[0] =
dt->send.param(0] =
if (p2 >= 0) o
dt->send.param[01++;
dt->send.param(2] = p2;

03
13

}

if (p3 >= 0) {
dt->send.paraml01++;
dt->send.param(3] = p3;

b4

if (p4 >= 0) {
dt->send.param(0]++;
dt-»>send.paraml4] = p4;

}

dt_pesc(dt, &dt->send);

dt_pesc(dt, &DT-string-terminator);

107

108 C PROGRAM EXAMPLE

DTDIAL.C
This routine dials the DECtalk telephone, depending on whether the telephone
used is Touch-Tone or pulse type.

/*JILIBRARY
*/

#ifdef DOCUMENTATION

title dt_dial Dial the Telephone

index Dial the telephone

synopsis
#include <«stdio.h>
#include "dectlk.h"
int
dt_dial(dt, p3, numb, wait, msg)
DECTALK *dt; /* Device descriptor */
int p3; /* P3_PH_xxxx parameter */
char *numb; /* Number to dial */
int wait; /* See below */
char *msg; /* Announcement */

description

This routine dials the DECtalk telephone. The P3
parameter must be either P3_PH_TONE (tone dial)
or P3_PH_PULSE (pulse dial).

For tone dialing, the number text may contain any
valid touch-tone characters ("0123456789*#ABCD")

or the characters ‘!’ (for a one second delay)

or the ‘"‘ for a 250 millisecond switch-hook flash.
All other characters are ignored.

If pulse dialing is selected, only the digits, ‘!’ and
‘"¢ are interpreted.

Note that the telephone will not be hung up before
dialing tf it is offhook when the command is issued.

1

1 1

1

. a,]

11

>

C PROGRAM EXAMPLE

Call Progress Detection

#endif

#include
#include

DECtalk cannot tell if or when someone answers the
phone. The only way to do this is to speak a message,
such as “This is DECtalk, please press any button

on the keypad." and wait some limited time for the
person to press the button. The wait and msg
parameters provide this capability.

If wait is less than or equal to zero, DECtalk returns
without attempting to verify that someone has answered
the phone. The return will be TRUE if the phone is
offhook.

If wait is greater than zero, it specifies the number

of seconds to wait for a response, and msg is the
message to speak. (If msg is NULL, the sample text
shown above will be used.) The message is repeated
continuously until either the alloted time has

elapsed or a button is received. dt_dial() then returns
TRUE if the phone is offhook, as above.

To cause DECtalk to silently wait for a message, use
a zero-length string (""), Note, however, that an
audible message is required by some public telephone
systems.

When DECtalk returns after call progress detection,
keypad data entry and keypad timeout will be disabled.

<stdio.h>
"dectlk.h"

#define ANNOUNCEMENT “This is DECtalk, please press any key."

int

dt_dial(dt, p3, number, wait, message)

register DECTALK *dt; /* Device descriptor */
int p3; /* P3_PH_PULSE or TONE */
register char *number; /* Number to dial */
int wait; /* Call progress delay */
char *message; /* Announcement */

109

110 C PROGRAM EXAMPLE

/l
* Send a phone message.
*/
{
register int code;
int dialtime; /* Time to dial phone */
long endtime;
extern long time();
if (number == NULL) /* Paranoia, */
number = ', /* Ahh, paranoia */

dt_cmd(dt, P2_PHONE, p3);
dialtime = strlenCnumber);
if (p3 == P3_PH_PULSE)
dialtime *= 2;
while (*number != EO0S) /* Send the number */
dt_put(dt, *number++);
dt_st(dt);
do {
code = dt_read(dt, dialtime + 30);
} while (code == ST |l dt_save(dt, code));
if (wait <= 0)
return (dt_offhook(dt));

/*

* Call progress detection.

*/

if (!dt_offhook(dt) 1! !dt_keypad(dt, TRUE))

return (FALSE);
endtime = time(NULL) + wait + 1;
if (message == NULL)
message = ANNOUNCEMENT;
do {
dt_talk(dt, message); /* Speak announcement */
dt_put(dt, VT); /* Make sure it’s heard */
} while ((code = dt_read(dt, 5)) < 0
&& time(NULL) <= endtime);

dt_dcs(dt, P2_STOP, -1, -1); /* Enough already */

if (dt_isvalid(code)) { /* User key? */
dt_keypad(dt, FALSE); /* Turn off keypad and */
dt_drain(dt); /* Drop pending text */
return (TRUE); /* Normal return */

}

else if (dt_phone(dt, -1, -1), dt_offhook(dt))
dt_hangup(dt); /* No response, hangup */

return (FALSE);

1

1 7

- M

C PROGRAM EXAMPLE 111

DTDRAI.C
This routine absorbs any type-ahead characters. No errors are possible.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_drain Drain Pending Input
index Drain pending input
synopsis

#include <stdio.h>

#include “"dectlk.h"

dt_drain(dt)
DECTALK *dt; /* Device descriptor */

description

Absorb any type-ahead characters.
No errors are possible.

note
On UNIX systems, dt_drain() will also cancel pending
output. This may cause DECtalk to receive word
fragments or partial escape sequences.
The code is conditionally compiled for two varieties
of UNIX: Ultrix-32 Cor 4.2 bsd) and UNIX System V.
Other varieties of UNIX and UNIX-like systems may
need to edit this file.

#endif

#include ¢<stdio.h>

#include "dectlk.h"

#ifdef unix

dt_drain(dt)

register DECTALK *dt;

/%

* dt_drain() tosses out any pending type-ahead.
*/

{
dt->pend_fc = dt->pend_fp = dt->pend_ep = 0;

#ifdef BSD_42
ioctlCdt->unit, TIOCFLUSH, NULL);

#else

#ifdef UNIX_V
ioctl(dt->unit, TCFLSH, 0); /* UNIX V7 */

#endif

#endif
dt->in_ptr = dt->in_end = dt->in_buff;

}

fendif

112 C PROGRAM EXAMPLE

#ifdef wvms

#include <iodef.h>

dt _drain(dt)

register DECTALK *dt;

/*

* dt_drain() tosses out any pending type-ahead.

*/

{
dt->pend_fc = dt->pend_fp = dt->pend_ep = 0;
/l-

* This is probably sub-optimal. It should be possible
* to do "syss$qiow(...

* I0$_READLBLK | IO$SM_PURGE ! IOSM_TIMED
* with a zero-length timeout, but I sure don’t know.
*/

while (dt_vmsread(dt,
10$_READLBLK ! IO$M_NOECHO { IOSM_NOFILTR ! IO$M_TIMED,
IN_BUFLEN, 0) >= IN_BUFLEN)
dt->in_ptr = dt->in_end = dt->in_buff;
}
#endif

#ifdef rti11
#include <rsts.h>

di_drain(dt)

register DECTALK *dt;
/*
* di_drain() tosses out any pending type-ahead.
*/
{
dt->pend_fc = dt->pend_fp = di->pend_ep = 0;
clrxrb();
xrb.xrlen = 7; /* Cancel type-ahead */

xrb.xrci = dt->unit * 2;

xrb.xrblkm = TTYHND;

rstsys(_SPEC);

dt->in_ptr = dt->in_end = dt->in_buff;
}
#endif

#ifdef rsx
dt_drain(dt)

register DECTALK *dt;

/'

* dt_drain() tosses out any pending type-ahead.
*/

{
dt->pend_fc = dt->pend_fp = dt->pend_ep = 0;
do {
dt->in_ptr = dt->in_end = dt->in_buff;
} while (dt_get(dt, 1) > 0);
dt->in_ptr = dt->in_end = dt->in_buff;
}
fendif

1

111 1 1

-}

B

C PROGRAM EXAMPLE 113

DTDUMP.C
This routine writes an escape sequence buffer to the standard output file. This
mode is for debugging.

/*)LI1BRARY
*/

#ifdef DOCUMENTATION

title dt _dump Dump Escape Sequence Buffer
index Dump escape sequence buffer
synopsis
#include <stdio.h>
#include "dectk.h"
int
dt _dump(what, seq)
char *what; /* Explanation */
SEQUENCE *seq; /* Buffer to dump */

description

The requested escape sequence buffer is written
(visibly) to the standard output file.

If what is not NULL, it is written as an identifier.
Output is via the C standard library.
For example,

#include <¢stdio.h>
#include "“dectlk.h"

DECTALK *dt;
extern DECTALK *dt_open();
e e
* Open a DECtalk device,
* request phone status and
* dump returned status sequence.
*/
dt = dt_open("kb2:");
dt_phone(dt, P2_PH_STATUS, -1);
dt_dump(”status", &dt->reply);

#endif
#include ¢<stdio.h>
#include "dectlk.h"

S‘
%
!

114 C PROGRAM EXAMPLE

dt_dump(what, seq)

char *what;
register SEQUENCE *seq;
{
register int i
register char *wp;
char work(81];
extern char *dt_visible();
if C(what !'= NULL)
printf("Xs: \"", what);
wp = dt_visible(seq->state, work);
switch (seq->state) {
case ESC:
case CSI:
case DCS:

if (seq->private != 0)
wp = dt_visible(seq->private, wp);
for (4 = 1; 1 <= seq->param(0]; i++) {
1f €1 > 1)
'WP** - I;I;
if (seq->param(il]l != 0) {
sprintfCwp, "Zu", seq->paramlil);
wp += strlen(wp);
}
}
for €i = 15 1 <= seq->inter(0]; i++)
wp = dt_visible(seq->inter(il], wp);
break;

default:

}
if ¢

.wp

break;

seq->final !'= 0)
wp = dt_visible(seq->final, wp);
= EOS;

printf("%XsXs", work, (what == NULL) ? "% : #u\r\p%),

]

11 71]

]

C PROGRAM EXAMPLE 115

DTEOL.C
This routine writes an end of line to DECtalk and calls the operating system
executive service to write the local output buffer to the terminal. No value is
returned.

You need this routine on operating systems that enforce line wraparound on
the terminal. DTEOL.C also improves the appearance of the debugging logs.

/*)L1BRARY
*/

#ifdef DOCUMENTATION

title dt_eol Write End of Line to DECtalk
index Write End of Line to DECtalk
synopsis

#include <stdio.h>

#include “"dectlk.h"

dt_eol(dt)

DECTALK *dt; /* Device descriptor */
description

An "end of line" is written to DECtalk and the
operating system executive service is called to
cause the local output buffer to be written to
the terminal.

No value is returned.
This routine is needed on operating systems that

enforce "line wrap-around" on terminal devices.
It also improves the appearance of debugging logs.

fendif
#include ¢<stdio.h>
#include "dectlk.h"

#ifdef dt_eol
#undef dt_eol
#endif

dt_eol(dt)
register DECTALK *dt; /* Device descriptor */
{

#ifndef unix
dt_putddt, ‘\r’);
#endif
dt_put{dt, ‘\n’);
di_put(dt, 0);

116 C PROGRAM EXAMPLE

DTGESC.C
This routine reads an escape sequence or keypad character.

/*)LIBRA
*

#ifdef

title
index

synopsis

descript

RY

DOCUMENTATION

dt_gesc Read Escape Sequence or Character
Read escape sequence or character

#include «stdio.h>

#include “dectlk.h"

int

dt_gesc(dt, sec)

DECTALK *dt; /* Device descriptor */

char sec; /* 0.S. timeout value */

16n

Read an escape sequence or keypad character.

dt_gesc() interprets a stream of 7- or 8-bit characters
including escape sequences adhering to the coded representations
of IS0 646, IS0 2022, and IS0 6429 with extensions to the DCS
introducer as required by DEC Standard 138.

The function dt_gesc() recognizes ESC, CSI, and DCS,

and processes characters following each of these introducers
until a complete sequence is encountered. In the case of DCS,
control returns to the caller after the final character of
the DEC Standard 138 introduction sequence, but before the
first data character of the device control string.

When sandwiched between the application and a get character
function (dt_get()), dt_gesc() transforms the input

stream from a character stream to a stream of tokens consisting
of characters, escape sequences, control sequences, and DCS
introduction sequences. When any of the recognized sequence
types is encountered, the function value returned is that of
ESC, CSI, or DCS, and the interpretted body of the sequence

is returned in the seq structure. The caller may treat
dt_gesc() similarly to getchar(), ignoring the returned
structure in all cases except when the returned function value
is ESC, CSI, or DCS.

11171

1 1

"1 1)

B I I

-

B

C PROGRAM EXAMPLE 117

An additional function performed by dt_gesc() is that all

C1 control functions received in their 7-bit form are returned
to the caller in their 8-bit form, thus eliminating the need
for the caller to process C1 control functions in their (7-bit)
escape sequence form and enforcing the equivalence of the 7-bit
and 8-bit forms of the C1 control functions. The function

also enforces the sequence cancellation effect of the SUB and
CAN control characters.

The dt_gesc() function calls the user-supplied dt_get()
(read one character) function as many times as required to
complete an escape sequence, control sequence, or Digital
standard DCS introduction sequence. In the passed data
structure, it returns the final character, intermediate
characters, and parameter values.

Since 7-bit operation is a compatible subset of 8-bit
operation, there is -- normally -- no distinction in the
dt_gesc() function between the two environments.

The application program may set the _FLAG_EIGHTBIT bit

in dt->flag to receive C1 control characters in their
eight-bit form. If _FLAG.EIGHTBIT is set on, the
application program must also ensure that the host

operating system communication line receives eight

data bits, and that DECtalk setup has set HOST FORMAT EIGHT.

Also, dt_get() may return two special values,
DT_ERR and DT_TIMEOUT, to indicate operating-system errors
and communication line timeouts respectively.

Because C0 control characters may be embedded in sequences,

and must be interpretted as if they occurred before the
sequence in the stream, the di_gesc() function

retains internal state information in the sequence data
structure from call to call. The seq.state value is zero

on return to indicate a complete escape sequence. If non-zero,
it contains the sequence introducer.

1f the "seq.state” element is zero, dt_gesc() assumes

that the remainder of the data structure is invalid and that
there is no data being retained from a prior call. A non-zero
value for the "seq.state” element indicates a particular
internal state (ESC, CSI, or DCS) that the parser should assume
on the next call.

Intermediate characters and parameter values interpretted up

to the occurrence of the embedded control character are also
stored in the returned data structure and also should not be
altered by the caller.

Escape sequence syntax errors are indicated by setting the
seq.private parameter to ‘X’ (which is not a possible
private parameter).

118 C PROGRAM EXAMPLE

If the dt_gesc() function encounters more than the

allowed maximum number of intermediate characters, the
returned data structure indicates that one more intermediate
character was received than allowed. Of course, characters
after the maximum are not stored.

If the dt_gesc() function encounters more than the

allowed maximum number of parameters, the extra parameters
are ignored and the returned data structure indicates that
the allowed maximum number of parameters was received.

After each call to dt_gesc() the dt->seq SEQUENCE
contains the following information.

seq.state Zero to indicate complete sequence
seq.final The sequence final character

seq.private Private parameter character:
EOS, <, =, >, ?, or X for errors

seq.param(0] The number of parameter values
(0:SEQ_PARMAX)

seq.paramin] (unsigned) The n’th parameter value

seq.inter[0] The number of intermediate characters
C0:SEQ_INTMAX+1)

seq.interln] (char) The n’th intermediate character.

In general, the intermediate and final characters should be
taken as a whole to determine the action. It is easy to
ignore sequences with too many intermediate characters since
the returned number of intermediate characters will not match
any action function.

To simplify the code, this module doesn’t test for overly
large parameter values and assumes that all overflow errors
are due to invalid escape sequences.

#endif

#include ¢<stdio.h>

#include "dectlk.h™

int

dt_gesc(dt, sec)

register DECTALK *dt; /* Dectalk device */
int sec; /* 0.S. timeout */

B

]

B I N B B B

1]

.

o s

/l

C PROGRAM EXAMPLE 119

* Return a character or sequence

*/
{

#ifdef

felse

#endif

#ifdef

#endif

register int c3
decus
register unsigned) -H

register unsigned short *p;

DT_DEBUG
if (dt_debug) {
dt_put(dt, 0);
printf(*get: \"");
if (isatty(fileno(stdout)))
fflush(stdout);

}
for €;3) {
/.
* Loop until end of sequence forces an exit.
* Get the next character from the input stream.
* Note: we assume that negative values are
* “out of band" signals.
*

* Note that DT_TIMEOUT and DT_ERR must be negative
*/
if (Cc = dt_get(dt, sec)) > 0) {

if ((dt->flag & _FLAG_EIGHTBIT) == 0)

c &= O0x7F; /* Enforce 7-bit input
}
if Cc == NUL ! c == DEL)
continue; /* Ignore NUL, DEL
/'

* Branch to ci_continue when changing <ESC> [
* to CSI, etc.

cli_continue:

*/
if (c == ESC /* ESC, CSI, DCS
it ¢ == CSI /* Introduce control
{{ ¢ == DCS) { /* sequences.
dt->seq.state = cj
dt->seq.inter(0] = 03
dt->seq.private = 03
dt->seq.paraml0] = 0;
dt->seq.paraml1] = 03
continue;
}

values.

*/

*/

*/
*/
*/

120 C PROGRAM EXAMPLE

else if (dt->seq.state == 0) /* No pending sequence
goto exit; /* Return the character

else if ((c >= 0x80 && c <= 0x9F)
i1 (c == CAN)
i1 (c == SUB)) {
dt->seq.state = 0;
goto exit;
}
else if (c ¢ 0x20)
goto exit;
else if (c <= 0x2F) {
dt->seq.inter[0]++;

/* C1 control
/* or sequence
/* resetter.

/* CO0 control or error

/* Intermediate

if (dt->seq.inter[0] < SEQ.INTMAX)
dt->seq.interldt->seq.inter[01] = c;

}
else if (dt->seq.state == ESC) {

/* ESC final

if (dt->seq.inter[0] == 0 && C(c & 0x3F) ¢ 0x20)

/I

* This is the 7-bit form of a C1 control

* character. Convert it to the actual

* C1 control character and restart the

* parse without getting another character.

*/
c = (c & 0x3F) + 0x80;
goto cl1_continue;

}
else {
break; /* Ordinary ESC ending
}
}
else if (c <= 0x3F) { /* Parameter
if Cc >= 0x3C) { /* Private introducer?
if (dt->seq.param(0] > 0) /* Is it first?
dt->seq.private = “X’; /* error if not
else {
dt->seq.private = c; /* Store it
dt->seq.param(01++; /* Flag seen
}
}
else { /* Not private

if (dt->seq.paraml0] == 0)
dt->seq.param[0]++;

if (dt->seq.interl0] != 0)
dt->seq.inter(0] = 0;
dt->seq.private = ‘X’;

{

/* Record first

/* Syntax error

*/
*/
*/
*/
*/

*/

*/

*/
*/
*/
*/
*/
*/
*/
*/

*/

1]

]

11 1 1 1

111 1]

1

C PROGRAM EXAMPLE

if Cc «= 97> { /* 0..9 */
if (dt->seq.paraml[0] <= SEG_PARMAX) {
/l

+ There is room. Store it.

p points to current parameter.

This should check for value
overflow.

/

P = t¢(dt->seq.paramldt->seq.param[011);
*p = (*p * 10) + Cc - “0');

* & % & %

}
else {
dt->seq.private = X'
}
}
else if Cc == ;') { /* Separator */
if (dt->seq.paraml0] >= SEG_PARMAX)
dt-)seq.parum[O] = SEQ_PARMAX + 1;
else {
/i
* There’s room to setup for
* another parameter value.
*/
dt->seq.paraml[01++;
dt->seq.paramldt->seq.param[01] = 0;
b4
b
else { /* colon is invalid */
dt-»>seq.private = ‘X’;
}
}
}
else { /* CSI/DCS terminator */
1f (dt->seq.paraml0] == 0) /* No parameters: */
dt-)seq.param[01+0; /* want one zero-value */
break; /* Exit parser */
}
}
/*

* Control transfers to here as result of either of the
* two break statements. Character is the final char.
* of ESC, CSI, or DCS.
*/
if (dt->seq.paraml0] > SEQ_PARMAX) {
dt->seq.paraml0] = SEQ_PARMAX; /* Set count to max. */

dt->seq.private = X7 /* Flag an error */
}
dt->seq.final = c; /* Store final char. */
#ifdef decus
¢ = dt->seq.state; /* Fetch return value */

felse
¢ = (unsigned short) dt->seq.state;

121

122

#fendif

exit:
#ifdef

#endif

}

C PROGRAM EXAMPLE

dt->seq.state = 0; /* No sequence pending

/* Here to return char
DT_DEBUG
if (dt_debug)
printf("\"\n");

return (c); /* and return.

*/
*/

*/

71771)

]

]

11]

]

]

11

N

]

C PROGRAM EXAMPLE

DTGET.C
This routine reads a character from the DECtalk terminal line.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_get Read one Character from DECtalk
index Read one character from DECtalk
synopsis

#include «stdio.h>

#include “dectlk.h"

int

dt_get(dt, sec)

DECTALK *dt; /* Device descriptor */

int sec; /* 0.S. timeout param. */
description

One character is read from the DECtalk terminal line.
The sec parameter enables operating-system timeout;
it is zero if no timeout is needed.

dt_get() returns the character or an error code.

DT_ERROR An operating system error
Cor <CTRL-C> interrupt) was received.
DT_TIMEOUT The sec parameter was nonzero and no

character was received in sec seconds.

I1f DT_DEBUG is #defined when the library is compiled
and the global dt_debug is set nonzero (by the
application program), the character

received is logged to the standard output device.

#fendif
#include <stdio.h>
#include “"dectlk.h"

#ifdef dt_get
#undef dt_get
#endif

123

124 C PROGRAM EXAMPLE

int dt_debug;
int
dt_get(dt, sec)
register DECTALK *dt; /* Device descriptor
int sec; /* Operating system timeout
{)
register int c;
extern int dt_debug;

¢ = dt_ioget(dt, sec);
if (dt_debug != 0)

dt_dchar(c, stdout);
return (c);

*/
*/

11 1)

]

{0 N IR [IS B B B B

R

.

DTHANG.C

C PROGRAM EXAMPLE

Hang up the telephone connected to DECtalk.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_hangup Hangup the telephone
index Hangup the telephone
synopsis

#include <stdio.h>

#include "dectlk.h"

dt_hangup(dt)

DECTALK *dt; /* Device descriptor */

description

Hang up the telephone connected to DECtalk.
Return TRUE if successful, FALSE if an error.

#endif

#include ¢<stdio.h>
#include "dectlk.h"

int

dt_hangup(dt)

register DECTALK *dt;

/*

* dt_hangup() hangs up the phone.
*/

Drain pending text

If it’s not hung up

Couldn’t hangup?
While still off-hook
Exit if interrupt
signal sets

Wait and poll again

Poll failed?

Did it hang up ok?

{
register int code;
dt_drain(dt); /*
if ('dt_phone(dt, P3_PH_STATUS, -1)) /* Check state
return (FALSE); /* Oops
if (dt_offhook(dt)) { /%
if (ldt_phone(dt, P3_PH_HANGUP, -1))
return (FALSE); /*
while (dt_offhook(dt)) { /*
if (dt_abort) /%
return (FALSE); /*
sleep(5); /*
if ('dt_phone(dt, P3_PH_STATUS, -1))
return (FALSE); /*
}
}
if ('dt_onhook(dt)) /*
return (FALSE);
}

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

*/

125

126 C PROGRAM EXAMPLE

DTINIT.C
This routine initializes the DECtalk terminal on the channel opened on dt.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_init DECtalk Initialization Routine
index DECtalk initialization routine
synopsis

#include <stdio.h>

#include "dectlk.h*

int

dt_init(dt)

DECTALK *dt; /* Device descriptor */

description

Initialize the DECtalk terminal on the channel opened
on dt.

Return TRUE if the device initialized successfully.
Return FALSE on failure.

note
This routine turns off "local mode" so a logging terminal
does not inadvertently send a response to the "who are you"
escape sequence.

fendif

#include ¢<stdio.h>

#include "dectlk.h"

static SEQUENCE DT.who.are_you = {
cSI, ‘¢’
b

int
dt_init(dt)
register DECTALK *dt;

1l

)

]

1

11 171

—

B

]

.

/

{

C PROGRAM EXAMPLE

* dt_init() is called to initialize DECtalk.

*/

reg

dt.
dt.
dt-
/Q
*
*
./
dt.
if
&&
&&
&&
&&
&8

}
ret

ister int code;

drain(dt); /* Ignore pending input */
dcs(dt, P2_TERMINAL, 0, -1); /* No local->host stuff */
>flag &= ~_FLAG_TERM; /* Remember this fact */

Read device attributes and fail if it isn’t DECtalk.
Expected reply is <ESC>[?19c for the DTC01-AA

pesc(dt, &DT_who_are_you);

(dt_read(dt, 15) == CSI

dt->reply.final == ‘c’

dt->reply.private == 72/

dt->reply.interf0] == 0

dt->reply.paraml0] >= 1

((code = dt->reply.parami1]) == CSI_DA_PRODUCT)) |
dt_reset(dt); /* Reset device

return (TRUE); /* Hang up and restart

urn (FALSE);

127

*/
*/

128 C PROGRAM EXAMPLE

DTINKE.C
This routine reads a telephone keypad button.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_inkey Read a Telephone Keypad Character
index Read a Telephone Keypad Character
synopsis

#include <stdio.h>

#include "dectlk.h"

int

dt_inkey(dt, sec)

DECTALK *dt; /* Device descriptor */

int sec; /* Seconds to wait */

description

This routine reads a telephone keypad button.
The application program has previously enabled
the keypad (by calling dt_keypad(dt, TRUE)).
dt_inkey() will call dt_timeout() to enable

or disable timeouts.

If sec is nonzero, it will indicate the number of
seconds to wait for a keypad response. If zero,
it will turn off keypad timeouts.

The operating-system timeout (needed to catch
hardware or communication line problems) will be
set to four times the timeout value, plus an
operating-system specific additional timeout.

dt_inkey() returns a character as follows.

0123456789*#ABCD A valid keypad button
(Note that "ABCD" may be
generated by certain
keypad phones.)

E An operating-system error

T Keypad timeout

X Badly parsed escape sequence.
H Unexpected telephone hangup.

The ‘H’ code is received if the DECtalk device hangs
up the phone (as may be required by specific telephone
system requirements).

C PROGRAM EXAMPLE

129

fendif
#include <stdio.h>
#include "dectlk.h"
/I
* Fudge is needed because of terminal output buffering
* capacities and strategies. It should be tuned by
* inspection.
*
* The RSTS/E value is large because RSTS/E will resume a
* program when less than 80 bytes remain to be transmitted
* to DECtalk. DECtalk may have about 100 bytes in its input
* buffers and two phrases in the letter to sound and
* synthesizer sections. If the value is set too low, the
* application program may incorrectly assume that DECtalk
* or the communication line is broken.
*/
#ifdef rt11
#define FUDGE 60 /* RSTS/E needs extra time */
telse
#define FUDGE 15 /* This is just a guess */
#endif
dt_inkey(dt, sec)
register DECTALK *dt; /* DECtalk device */
int sec; /* Keypad timeout */
{
register int code;
register int os_timeout;
dt_timeout(dt, sec); /* Set/clear timeout */

if (dt_iskey(dt)) {
code = dt->pendldt->pend_epl;
if (++dt->pend_ep >= PEND_SIZE)
dt->pend_ep = 0;
dt->pend_fc--;

}
else {
if ((code = dt_read(dt,
(sec == 0) ? 0 : (sec * 4 + FUDGE))) <= 0)
code = ‘E’;
else if (dt_istimeout(dt)) {
code = ‘T’;
dt->timeout = 0;
}
else if (dt_onhook(dt))
code = ‘H’;
else if (dt->reply.private == ‘X’
i1 !dt_isvalid(code))
code = ‘X’;
}

return (code);

130 C PROGRAM EXAMPLE —

DTIOGE.C
This routine reads one character from the DECtalk terminal line. DTIOGE.C is

maximized for efficiency.

/*)LIBRARY
*/ P
/*

* Edit History

* 84.04.10 MM HNGTTY incorrectly specified.

*/ R

#ifdef DOCUMENTATION

title dt_ioget Read one Character from DECtalk J—
index Read one character from DECtalk
synopsis
#include <stdio.h> |
#include "dectlk.h"
int JR—
dt_ioget(dt, sec)
DECTALK *dt; /* Device descriptor */
int sec; /* 0.S. timeout param. */

description

One character is read from the DECtalk terminal line.
The sec parameter enables operating-system timeout; JR—
it is zero if no timeout is needed.

dt_ioget() returns the character or an error code.

DT_ERROR An operating system error
Cor <CTRL-C> interrupt) was received.
DT_TIMEOUT The sec parameter was nonzero and —
no character was received in sec
seconds.
dt_ioget() is the operating-system specific input

routine. It is the only routine to read data from
the DECtalk terminal line.

note R

On vms, an internally-used routine, dt_vmsread(),
is also defined. Application programs should
not call this routine.

This module contains specific code for Ultrix-32 (UNIX

4.2BSD) and UNIX System V. The makefile for the library
should #define one of these as appropriate. i

#endif

#include
#include

/l
* Defin
*/
int
DECTALK

#ifdef
#include
#ifdef
#include
#include
#else
#ifdef
#include

static i
#endif
#endif

int
di_ioget
register
int

/*

* UNIX:
*/

{

#ifdef

felse
#ifdef

#endif
#endif

C PROGRAM EXAMPLE

«<stdio.h>
“dectlk.h"

e all DECtalk library globals in this module.
dt_abort; /* TRUE on interrupt */
dt_.root; / Chain of all open units */
unix

<errno.h>
BSD_42

<sys/types.h>

<time.h>
UNIX_V

<signal.h>
gnore() {} /* Dummy function for signals */
(dt, sec)
DECTALK *dt; /* DECtalk device */

sec; /* Wait time, 0 == forever */

Fill the input buffer, return the next (first) character.

register int incount; /* Count and error code */
BSD_42
auto int fdmask; /* File descriptor mask */
struct timeval timeout; /* Select() timer value */
UNIX_V

register int ecode; /* For error handling */
extern int errno; /* System error value */
/.

* Return buffered character (if any)

*/

if (dt->in_ptr ¢ dt->in_end)
return (*dt->in_ptr++ & O0xFF);

/i
* We must refill the buffer
*/
dt->in_ptr = dt->in_end = &dt->in_buffl0];
dt_ioput(dt, 0); /* Flush output */

if (dt_abort)
return (DT_ERROR);

131

132 C PROGRAM EXAMPLE

#ifdef BSD.42

fdmask = 1 << dt->unit; /* Select unit */
timeout.tv_usec = 0; /* No milliseconds */
timeout.tv_sec = sec; /* Max. seconds to wait */
incount = select(dt->unit + 1, &fdmask, 0, 0, &timeout)d;
if Cincount ¢ 0 il dt_abort)
return (DT_ERROR); /* Select failed? */
else if Cincount == 0) /* Timeout triggered? */
return (DT_TIMEOUT); /* Guess so */
else {
incount = read(dt->unit, dt->in_buff, IN_BUFLEN);
}
felse
#ifdef UNIX_V .
signal (SIGALRM, ignore)d; /* Enable alarms */
alarm(sec); /* Start timeout */
errno = 0; /* Clear error flag */
incount = read(dt-»unit, dt->in_buff, IN_BUFLEN);
ecode = errno; /* Save error code */
alarm(0); /* Cancel timeout */
s5ignal (SIGALRM, SIG_IGN); /* Disable alarms */
if Cincount ¢ 0 && ecode == EINTR) /* Did it timeout? */
return (DT_TIMEOUT); /* Return failure */
#endif
#endif
if (dt_abort I! incount <= 0) /* Other error? */
return (DT_ERROR); /* Return bad failure */
dt->in_end = &dt->in_bufflincountl;
return (*dt->in_ptr++ & O0xFF);
}
#endif
#ifdef wvms
#include <ssdef.h> /* System status codes */
#include <iodef.h> /* 1/0 request codes */
/Q
* Define the possible vms input flavors
*/
#define RAW_READ (I0$_READLBLK § IO$M_NOECHO | IO$SM_NOFILTR)
#define TIMED_READ (RAW_READ { I10$M_TIMED)
typedef struct io_status_block {
short int status; /* 1/0 status code */
short int term_offset; /* Datum size */
short int terminator; /* Input terminator */
short int term_size; /* Terminator size */
} I10STAB;
int
dt_ioget(dt, sec)
register DECTALK *dt; /* DECtalk device */

int sec; /* Wait time, 0 == forever */

/%
* VMS:
*/

{

}

int

C PROGRAM EXAMPLE

Fill the input buffer, return the next (first) character.

register int incount; /* Count and error code */

/Q
* Return buffered character (if any)
*/
if (dt->in_ptr < dt->in_end)
return (*dt->in_ptr++ & OxFF);
/.
* We must refill the buffer
*/
dt->in_ptr = dt->in_end = &dt->in_buffl0];
di_ioput(dt, 0); /* Flush output */
/Q

* First read anything in the system type-ahead
* puffer by reading with a zero timeout.
* If nothing was read, read one byte (with
* timeout if specified). :
*/
incount = dt_vmsread(dt, TIMED_READ, IN_BUFLEN, 0);
1f Cincount == DT_TIMEOUT) {
incount = dt_vmsread(dt,
(sec > 0) ? TIMED_READ : RAW_READ, 1, sec);
}
if Cincount < 0)
return Cincount); /* Return error code */
/l
* Common exit from all read routines
*/
dt-»>in_end = &dt->in_bufflincountl;
return (*dt->in_ptr++ & O0xFF);

dt.vmsread(dt, command, how_many, timeout)
register DECTALK *dt; /* DECtalk device */

int
int
int

command; /* QI0 command */
how_many; /* How many bytes to read */
timeout; /* timeout value */

133

134 C PROGRAM EXAMPLE

/I

* Actually read from vms. Return

*
*
*

*/

}
#endif

#jifdef
/*
-

*/

#include

int

(result > 0)
(result < 0)

the number
error code

(result cannot equal zero).

register int incount;
10STAB status;
register int is

/i
* termset is a terminator

of bytes read
(EQOF or TIMEOUT)

/* Status parameter
/* 1/0 status block
/* For debugging

mask indicating "terminate

* on any character". As implemented on VMS, this
* allows the operating system to handle XOFF/XON.

*/
static long termset(2] = {

if (dt_abort)
return (DT_ERROR);
/}

0, 0 };

* The status entries term_offset and term_size
* will yield the number of bytes read.

*/
incount = sys$qiow(1, /*
dt->unit, /*

command, /*
&status, /*
NULL, /*
0 /*

dt->in_buff, /*

how_many, /*
timeout, /*
dtermset, /*
NULL, /*
0); /*

if Cincount == SS$_TIMEQOUT)

return (DT_TIMEQUT);

Event flag

Input channel

Timed read

1/0 status block

AST block (none)

AST parameter

P1 - input buffer

P2 - buffer length

P3 - wait P3 seconds

P4 - terminator set

PS - ignored (prompt buffer)

P& - ignored (prompt size)
/* Timeout returned

else if C(incount != SS$_NORMAL) /* Some other error

return (DT_ERROR);

incount = status.term_offset + status.term_size;

if Cincount <= 0)
return (DT_TIMEOUT);
return Cincount);

rt11

/* Nothing input?
/* equals timeout.

RSTS/E

<rsts.h>

dt_ioget(dt, sec)

register DECTALK

int

dt; /
sec; /*

DECtalk device
Wait time, 0 == forever

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/

*/
*/

C PROGRAM EXAMPLE 135

/Q
* RSTS/E: Fill the input buffer, return the next (first) character.
*/
{
register int incount; /* Count and error code */

/I'
* Return buffered character (if any)
*/
if (dt->in_ptr ¢ dt->in_end)
return (*dt->in_ptr++ & O0xFF);
,i
* We must refill the buffer
*/
dt->in_ptr = dt->in_end = &dt->in_buffl0];
dt_ioputCdt, 0); /* Flush output */
if (dt_abort)
return (DT_ERROR);
/I
* RSTS/E handles timeout within
* the operating system.
*/
clrxrb();
xrb.xrlen = 4; /* No delimiter */
xrb.xrci = dt->unit * 2;
xrb.xrblkm = TTYHND;
rstsys(_SPEC);
clrxrb();
xrb.xrlen = 3; /* No echo */
xrb.xrci = dt->unit * 2;
xrb.xrblkm = TTYHND;
rstsys(_SPEC);
incount = rs_read(dt->unit, dt->in_buff,
IN_BUFLEN, 0, 0, sec, 0);
if C(incount == (-HNGTTY)) /% 84.04.10 */
return (DT_TIMEOUT);
else if Cincount <= 0)
return (DT_ERROR);
/!
* Common exit from all read routines
*/
dt-»>in_end = &dt->in_bufflincountl;
return (*dt->in_ptr++ & 0xFF);
}
#endif

#ifdef rsx

136 C PROGRAM EXAMPLE

/%
* Load

* % * x %

/

#include
#include
#include
#include
#include

#define
#define
static ¢
static Q@
static i

int
dt_ioget
register
int
/~l
* RSX:
*/
{

in RSX specific information:
cx.h common header
qiofun.h I1/0 service function codes
qioret.h 1/0 service error and status codes
qiottd.h Terminal I/0 service bits and bytes
lunbuf.h Device characteristics buffer
<cx.h>
<qiofun.h>
<qioret.h>
<qiottd.h>
<lunbuf.h>
QIO_EFN 1 /* 1/0 event flag */
MKT_EFN 2 /* Time event flag */
har gmcbufl2] = { TC_TBF }; /* get typeahead count */
IOPARM gmcparm = { gmcbuf, sizeof gmcbuf };
nt termtablel161]; /* Terminator bitmask */
(dt, sec)
DECTALK *dt; /* DECtalk device */
sec; /* Wait time, 0 == forever */
Fill the input buffer, return the next (first) character.
register int incount; /* Count and error code */
register char *ip; /* To copy to rsx buff */
int errorcode;
int efn_bufferl4]l; /* Event flag buffer */
/*
* Return bufferedicharacter (if any)
*/
if (dt->in_ptr < dt->in_end)
return (*dt->in_ptr++ & OxFF);
/*
* We must refill the buffer
*/
dt->in_ptr = dt->in_end = &dt->in_buffl0l;
dt_ioput(dt, 0); /* Flush output */

if (dt_abort)
return (DT_ERROR);

if (dt->

pos—_xk) {

C PROGRAM EXAMPLE 137

/i
* The PRO-350 XK: port is actually pretty simple.
*/
dt->parm.buffer = dt->in_buff;
dt->parm.size = IN_BUFLEN;
dt->parm.p3 = 0; /* No timeout */
errorcode = qiow(IO_RLB | TF_TMO, dt->unit, QIO_EFN,
&dt->iosb, NULL, &dt->parm);
if (Cincount = fixiosb(dt)) == 0) {
dt->parm.size = 1;
if (C(dt->parm.p3 = (256 * sec)) == 0) {
errorcode = qiow(IO_RLB, dt-»unit, QIO_EFN,
&dt->iosb, NULL, &dt->parm);

}

else {
errorcode = qiow(IO_RLB | TF_TMO, dt->unit,
QIO_EFN, &dt->iosb, NULL, &dt->parm);

}

if Cerrorcode != [IS_SUC) {
return (Cerrorcode == I1S_TMO)
? DT_TIMEOUT : DT_ERROR);
}
if (Cincount = fixiosb(dt)) == 0) {
return (DT_TIMEOUT);
}
}
}
else {
/‘
* Read from a terminal.
* First, check whether anything is in the
* system type-ahead buffer.
*/
errorcode = qiow(SF_GMC, dt->unit, QIO_EFN,
4dt-»>iosb, NULL, &gmcparm);
if Cerrorcode != IS_SUC)
gmcbufl[11 = 0;
dt->parm.buffer = dt->»in_buff;
dt->parm.size = 1; /* Assume 1 byte read */
if (Cincount = (gmcbufl1]l & 0xFF)) > 0) {
if C(incount > IN_BUFLEN)
incount = IN_BUFLEN;
dt->parm.size = incount;
errorcode = qiow(IO_RTT { TF_RNE, dt->unit, QID_-EFN,
&dt->iosb, NULL, &dt->parm);
incount = fixiosb(dt);
}
if Cincount == 0) {
if (sec == 0) {
dt->parm.table = termtable;
qiow(IO_RTT { TF_RNE, dt->unit, QIO-EFN,
&dt->iosb, NULL, &dt->parm);
if (Cincount = fixiosb(dt)) == 0)
return (DT_ERROR);
}
else {

138 C PROGRAM EXAMPLE

/l

* VAX compatibility doesn’t support read with

* timeout (nor does it cause an error). Thus,

* we have to do this the hard way.

*

* Set a mark time (alarm) for "timeout" seconds.
* Read one byte without waiting. If the wait

* completes, cancel the timeout. If the timeout
* completes, cancel the readin.

*/

if (mrkt{MKT_EFN, sec, 2, NULL) != IS_SUC
il qioCIO.RTT ¢ TF_RNE, dt->unit, QIO_EFN,
&dt->iosb, NULL, &dt->parm) != IS_SUC)
return (DT_ERROR); /* Can’t happen */
/Q
* Wait until something completes,
* read event flags then cancel the
* request that didn’t complete.
*/
wtloOCQIO_EFN | MKT_EFN);
rdaf(efn_buffer);
if (Cefn_buffer[0] & MKT_EFN) == 0)
cmkt (MKT_EFN, NULL); /* Cancel timer */
if (Cefn_bufferl0] & QIO_EFN) == 0) {
qiow(IO0O_KIL, dt->unit, QIO_EFN,
&dt->iosb, NULL, &dt->parm);
return (DT_TIMEQOUT);
}
if (Cincount = fixiosb(dt)) == 0)
return (DT_ERROR);

}
}
}
/G
* Common (success) exit from all read routines
*/

dt->in_end = &dt->in_bufflincountl;
return (*dt->in_ptr++ & O0xFF);
}
static int
fixiosb(dt)
register DECTALK *dt; /* DECtalk device */

C PROGRAM EXAMPLE

* This routine returns the correct input count.
* The code is unusual.

* fixiosb() returns the true byte count.

*/

}
#endif

extern int $sferr;

if (dt->iosb.terminator != NUL) {
/!
* Append the terminator to the buffer.
*/
dt->in_buffldt->iosb.count] = dt->iosb.terminator;
dt->iosb.count++;
}
if (dt_abort
! dt->iosb.status == IE_ABO
Il dt->iosb.count == 0) {
return (0); /* Read aborted */
}
else if (dt->iosb.status !'= IS_SUC
&& dt->iosb.status !'= IS_TMO) {
$$ferr = dt->iosb.status;
return (0); /* 1/0 error */
}
return (dt->iosb.count);

139

140 C PROGRAM EXAMPLE

DTIOPU.C

If the argument character is zero, or output buffer is full, this routine writes
output buffer contents to the DECtalk device. Otherwise, DTIOPU.C stores the
character in a local buffer.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_ioput Write one Character to DECtalk
index Write one character to DECtalk
synopsis

#include ¢<stdio.h>

#include "dectlk.h"

int

dt_ioput(dt, byte)

DECTALK *dt; /* Device descriptor */

char byte; /* Character to write */

description

If the argument character is zero, or the output
buffer is full, the output buffer contents are
written to the DECtalk device.

If the argument character is nonzero, it is stored
in the output buffer for subsequent transmission.

By buffering characters internally, the load on the
operating system is significantly reduced. Note that
the input routine (dt_get(), dt_ioget()) will flush
the output buffer before attempting to read any data.
The *"speak'" routine, dt_talk(), also flushes the
output buffer.

No data is returned. Errors are fatal.
dt_ioput() is the operating-system specific output

routine. It is the only routine to write data to
the DECtalk terminal line.

#endif

#include <stdio.h>

#include “dectlk.h"
#ifdef wvms

#include <ssdef.h>

#include <iodef.h>

typedef struct io_status_block

C PROGRAM EXAMPLE

short int status; /* 1/0 status code */
short int term_offset; /* Datum size */
short int terminator; /* Input terminator */
short int term_size; /* Terminator size */
} I0STAB;
#endif
#ifdef rsx
/i
* Load in RSX specific information:
* cx.h common header
* qiofun.h 1/0 service function codes
* qioret.h 1/0 service error and status codes
* qiottd.h Terminal 1/0 service bits and bytes
*/
#include <cx.h>
#include <qiofun.h>
#include <qioret.h>
#include <qiottd.h>
#define QID_EFN 1 /* 1/0 event flag */
#fendif
dt_ioput(dt, ¢
register DECTALK *dt; /* DECtalk device */
int cs /* Character to output */
/i

* Store the byte (if not EOS). If the byte is EOS,

* or the buffer is full,
*/
1{
register int size;
#ifdef wvms
register int code;
I0STAB status;
#endif
#ifdef rti11
register int code;
extern int sferr;
#endif
#ifdef rsx
register int code;
extern int sferr;
#endif

1f Cc t= 0) {
#ifdef rti11

*dt-d>out_ptr++ = (c

felse

*dt->out_ptr++ = c3

write it out.

== ESC) ? (ESC ! 0x80)

c3

141

142

#endif

#ifdef

#endif
#ifdef

#endif
#ifdef

#endif
#ifdef

#endif

}

C PROGRAM EXAMPLE

size = (dt->out_ptr - dt->out_buff);

if (Cc
/'

* We must write the buffer.

*/

if (Ydt_abort) {

unix

vms

rt11

rsx

}

if (writeCdt->unit,

dt->out_buff, size)

perror(dt->device);
exit(1);

-1 A

if ((code = sys$qiow(1, /* Event flag

dt->unit,

dstatus, /*
NULL, /*
0, /*
dt->out_buff, /*
size, /*
0, /*
0, /*
0, /*
0)» /*

!'= SS$_NORMAL)
perror(dt->device);
exit(code);

/* Input channel
I0O$_WRITELBLK | IO$M_NOFORMAT,

== 0 && size > 0) 1! size >= QUT_BUFLEN) {

/* format

1/0 status block
No AST block
No AST parameter

P1 -

P2 -
P3 -

P4 -
PS5 -
P6 -
{

buffer
bytes
ignored

no carriage ctl

ignored
ignored

if ((code = rs_write(dt->unit, dt->out_buff,

size, 0, 0, 0)) !=
$$ferr = code;
perror(dt->device);
exit(I0_ERROR);

dt->parm.size = size;

0) {

dt->parm.buffer = dt->out_buff;

dt->parm.table = NULL;

if (Ccode = qiow(IO_WAL, dt->unit, QIO_EFN,
&dt->iosb, NULL, &dt->parm)) !=

$$ferr = code;
perror(dt->device);
exit(I0_ERROR);

dt->out_ptr = dt->out_buff;

IS_SuUcC)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

{

C PROGRAM EXAMPLE 143

DTISKE.C
This routine returns TRUE if the telephone user already typed any characters.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_iskey Test for type-ahead
index Test for type-ahead
synopsis
#include <stdio.h>
#include "dectlk.h"
int
dt_iskey(dt)
DECTALK *dt; /* Device descriptor */

description

This routine (which may be implemented as a macro)
returns TRUE if any characters have already been
typed by the telephone user, or if an asynchronous
status message (such as timeout) was received.

fendif
#include <stdio.h>
#include “dectlk.h"

#ifdef dt_iskey
#undef dt_iskey
#endif

int
dt_iskey(dt)

register DECTALK *dt; /* Device descriptor */
/'

* Test for type-ahead.

*/

{

return(dt->pend_fc != 0);
}

144 C PROGRAM EXAMPLE

DTISTI.C

Used to test the result of a dt_phone () message for keypad timeout.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_istimeout Test Phone Reply for Keypad Timeout
index Test phone reply for keypad timeout
synopsis

#include <stdio.h>

#include "dectlk.h"

int

dt_istimeout(dt)

DECTALK *dt; /* Device descriptor */

description

This routine (which may be implemented as a macro)

tests the result of a dt_phone() message.

It returns TRUE if the current reply is the DECtalk
phone reply with the R3 parameter equal to R3_PH_TIMEOUT.

#endif
#include <stdio.h>
#include "dectlk.h"

#ifdef dt_istimeout
#undef dt_istimeout
#endif

int
dt_istimeout(dt)
register DECTALK *dt; /* Device descriptor
/*

* Test for telephone keypad timeout.

*/

{

return (dt_test(dt, R2_PHONE, R3_PH_TIMEQOUT));

}

*/

C PROGRAM EXAMPLE 145

DTISVA.C
This routine returns TRUE if the argument character is one of
0123456789#*ABCD.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_isvalid Test for Valid Keypad Character
index Test for valid keypad character
synopsis

#include <stdio.h>

#include "dectlk.h"

int

dt_isvalid(c)
description

This routine (which may be implemented as a macro)
returns TRUE if the argument character is one of

0123456789#*ABCD
#endif
#include «<stdio.h>
#include “"dectlk.h"

#ifdef dt_isvalid
#undef dt_isvalid
#endif

int
dt_isvalid(c)
char c3
/I
* Test for valid pushbutton key.
*/
{
return ((c >= ‘0’ && c <= ’'9’)
Il ¢ == ’%¢ || ¢c == "#'
11 Cc >= ‘A’ &8 c <= ‘D’));

146 C PROGRAM EXAMPLE

DTKEYP.C
This routine enables the telephone keypad if the flag is TRUE, and disables the
keypad if it is FALSE.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_keypad Enable or Disable the Telephone Keypad
index Enable or Disable the Telephone Keypad
synopsis

#include <stdio.h>

#include "dectlk.h"

int

dt_keypad(dt, flag)

DECTALK *dt; /* Device descriptor */

int flag; /* TRUE to enable */

description

Enable the telephone keypad if the flag is TRUE,
disable it if FALSE.

Returns TRUE if successful. If FALSE, the telephone
may have been hung up.

#endif

#include <stdio.h>
#include "dectlk.h"

int
dt_keypad(dt, enable)
register DECTALK *dt;
int enable;
/'
* Enable or disable the telephone keypad.
*/
{
dt_phone(dt,
(enable) ? P3_PH_KEYPAD : P3_PH_NOKEYPAD, -1);
if (dt_offhook(dt))
return (TRUE);
return (FALSE);

DTMSG.C

C PROGRAM EXAMPLE 147

This routine sends a DECtalk DCS control sequence using the p2, p3, and p4
parameters. The r2 and r3 parameters are not checked by the module. A
FALSE reply means an error occurred.

The user may have pressed keypad buttons or a timeout may have occurred.
These values are saved for use by the dt_save routine.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_msg
index

synopsis

#include
#include

int
dt_msg(dt,
DECTALK
int

int

int

int

int

description

Send a DECtalk Command with Reply
Send a DECtalk command with reply

<stdio.h>
“"dectlk.h"

p2, p3, p4, r2, r3)
* .

dt; /* Device descriptor */
p2; /* P2_xxxx parameter */
p3; /* P3_PH_xxxx parameter */
p4; /* timeout or rings */
r2; /* R2_xxxx parameter */
r3; /* R3_xxxx parameter */

This routine sends a DECtalk DCS control sequence
using the p2, p3, and p4 parameters. It then reads

a DCS reply from DECtalk, returning TRUE if it matches
the r2 and r3 calling parameters.

If p2 is -1, no sequence is sent; but a DCS reply
is read and tested.

Note that the Pn and Rn parameters are -1 if they
are not sent or checked respectively.

Returns TRUE if successful. 1f FALSE, something is funny.

Note: dt_msg() saves user keypad characters in the type-ahead

buffer.

148 C PROGRAM EXAMPLE

#endif

#include <stdio.h>

#include "dectlk.h"

int

dt_msg(dt, p2, p3, p4, r2, r3)

register DECTALK *dt; /* Device descriptor

int P2, p3, p4; /* Pn parameters to send

int r2, r3; /* Reply R2 and R3 parameters
/I

* Send a DECtalk DCS message and wait for a reply.
* Return TRUE if the proper reply was received.
*/

{
register int code;
if (p2 1= -1)
dt_dcs(dt, p2, p3, p4); /* Send the sequence
do {
code = dt_read(dt, 60);
} while (code == ST |! dt_save(dt, code));
return (dt_test(dt, r2, r3)); /* Check result
}

*/
*/
*/

*/

*/

C PROGRAM EXAMPLE 149

DTOFFH.C
This routine tests the result of a dt_phone () message for OFFHOOK.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_offhook Test Phone Reply for Offhook
index Test phone reply for Offhook
synopsis

#include <stdio.h>

#include “dectlk.h"

int

dt_offhook(dt)

DECTALK *dt; /* Device descriptor */

description

This routine (which may be implemented as a macro)
is used to test the result of a dt_phone() message.
It returns TRUE if the current reply is the DECtalk
phone reply with the R3 parameter equal to R3_PH_OFFHOOK.

#endif
#include ¢<stdio.h>
#include "dectlk.h"

#ifdef dt_offhook
#undef dt_offhook
#endif

int
dt_offhook(dt)
register DECTALK *dt; /* Device descriptor */
/.

* Test whether the phone is off-hook.

*/

{

return (dt_test(dt, R2_PHONE, R3_PH_OFFHOOK));
}

150 C PROGRAM EXAMPLE

DTONHO.C
This routine tests the result of a dt_phone () message for ONHOOK.

/*)LIBRA
*/

#ifdef

title
index

synopsis

descript

#endif

#include
#include

#ifdef
#undef
#endif

int
dt_onhoo
register
/l
* Test
*/
{

}

RY
DOCUMENTATION
dt_onhook Test Phone Reply for Onhook
Test phone reply for onhook
#include <stdio.h>
#include "dectlk.h"
int
dt_onhook(dt)
DECTALK *dt; /* Device descriptor */
ion

This routine (which may be implemented as a macro)
is used to test the result of a dt_phone() message.

It returns TRUE if the current reply is the DECtalk
phone reply with the R3 parameter equal to R3_PH_ONHOOK.

<stdio.h>
"dectlk.h"

dt_onhook
dt_onhook

kC(dt)
DECTALK *dt; /* Device descriptor

whether the phone is on-hook.

return (dt_test(dt, R2_PHONE, R3_PH_ONHOOK));

*/

P

C PROGRAM EXAMPLE 151

DTOPEN.C

This routine performs operating-specific initializations to initiate communica-
tions with a DECtalk device. Operating systems include UNIX, RSX, RSTS/E,
and VMS (either compatibility or native modes).

/*)LIBRARY
*/
#ifdef DOCUMENTATION
title dt_open Connect to DECtalk Terminal
index Connect to DECtalk terminal
synopsis

#include «<stdio.h>

#include "dectlk.h"

DECTALK *

dt_open(dev)

char *dev; /* Terminal device name */
description

Perform operating-specific initializations to
initiate communication with a DECtalk device.
(This routine is similar to fopen() for FILE
devices.) If the open fails, return NULL;
else return a pointer to a data descriptor
block that will be used for all other DECtalk
operations.

1f the open failed, the standard library perror()
routine may be called to print error information.

This routine does not communicate with DECtalk.

For example, the following sequence opens DECtalk,
checks that it is responding, sets "square-bracket"
mode, and speaks a message:

#include «stdio.h>
#include '"dectlk.h"

DECTALK *dt;
main() {
if ((dt = dt_open("kb2:'")) == NULL) {
perror("kb2:");
printf("Can’t open DECtalk\n");
}
else if (!'dt_initddt))
printf("Can’t initiate DECtalk\n");
else {
dt_decs(dt, P2_MODE, MODE_SQUARE, -1);
dt_talk(dt, "Hello world.");
dt_sync(dt);
dt_close(dt);
printf("Success.\n");

162 C PROGRAM EXAMPLE

UNIX notes

This routine conditionally compiles for Ultrix-32 (4.2BSD)
and System V.
Zeus version of UNIX. This hasn’t been independently checked.

There is also a conditional for the Zilog

UNIX implementors are encouraged to read and understand
this module when developing DECtalk applications.

UNIX and System V are trademarks of AT&T Bell Laboratories.

#endif

#include
#include

#ifdef
/'

* UNIX
*/
#include
#include
#endif

#ifdef
/I

* UMS n
*/
#include
#include
#include

typedef
/*

* The following macro builds a descriptor from an argument string.

*/
#define

#endif

#ifdef
/Q

* RSTS/
*/
#include
#endif

#ifdef
#include
#include
#include
#include
#include
#define
static Q@
#endif

<stdio.h>
“"dectlk.h"
unix
specific definitions

<signal.h>
<errno.h>

vms
ative specific definitions
<ssdef.h> /* Status definitions */
<iodef.h> /* 1/0 request codes */
<descrip.h> /* String descriptors */
struct dsc$descriptor_s STRING; /* string descriptor */

descrip(text, p)
((p)->dscs$a_pointer = text,
(p)->dsc$w_length = strlen(text),
(p)->dsc$b_dtype = DSC$K_DTYPE_T,
(p2->dsc$b_class = DSC$K_CLASS_S)

P

rt11
E native specific definitions

<rsts.h>

rsx
<cx.h>
<qiofun.h>
<qioret.h>
<qiottd.h>
<lunbuf.h>
QIO_EFN 1
IOPARM noparm; /* QI0 parm (all zero)

*/

C PROGRAM EXAMPLE 153

DECTALK *
dt_open(name)
char *name; /* Device name */
/l
* Initialize the DECtalk terminal line.
*/
{
register DECTALK *dt;
register int is /* Channel search, temp */

#ifdef unix
register char *tiname; /* -» stdin name */

#ifdef BSD_42
struct sgttyb stty_buffer; /* Terminal flags */
felse
#ifdef UNIX_V
struct termio stty_buffer; /* Terminal flags */
#endif
#endif
extern char *ttyname(); /* Get stdin name */
#endif
#ifdef wvms
STRING dev;
#endif
#ifdef rti11
char work(301;
extern int $$rsts;
extern char *ES$SNOD; /* Invalid device */
extern char *ESSFAT; /* Fatal error */
extern char *ES$SNOC; /* No more channels */
#endif
#ifdef rsx
extern int $$rsts; /* TRUE if RSTS/E */
extern int $$pos; /* TRUE if P/0S */
extern int $dsw; /* Dir. status word */
extern int sferr; /* DECUS C error value */
struct lunbuf lunbuf; /* Get lun information */
#endif
extern char *calloc();
extern char *malloc();
/’

* Allocate the DECtalk buffer and save the
* device name (for debugging).
*/
if ((dt = (DECTALK *)calloc(sizeof (DECTALK), 1)) == NULL)
return (NULL);
if ((dt->device = malloc(strlen(name) + 1)) == NULL)
goto error2;
strcpy(dt->device, name)d;

154 C PROGRAM EXAMPLE

#ifdef

#ifdef

felse
#ifdef

#ifdef

#else

#endif

#endif
#endif
#endif
#ifdef

unix
if (Cttname = ttyname(fileno(stdin))) != NULL
&& strcmp(ttname, name) == 0)
dt->unit = fileno(stdin); /* stdin
else if ((dt->unit = open(name, 2)) < 0)
goto error1;
if (lisatty(dt->unit)) {
close(dt->unit);
goto errori;
}
/i
* Force the terminal into single-character, no-echo mode.
*/

BSD_42

gtty(dt->unit, 4stty_buffer); /* Get current info */
gtty(dt->unit, 4dt->stty_saved; /* For restore, too */
stty_buffer.sg_flags &= ~ECHO; /* Set no echo */
5tty-buffer.sg_f1ags i= CBREAK; /* Single character */
stty(dt->unit, &stty_buffer); /* Set temp. mode */
signal (SIGALRM, SIG_IGN); /* Ignore timer signals */
UNIX_V

ioctl(dt->unit, TCGETA, &stty_buffer); /* Get current info
ioctl(dt-»unit, TCGETA, 4dt->stty_saved;/* For restore, too
stty_buffer.c_iflag = BRKINT ! IXON § IXOFF;
stty_buffer.c_oflag = 0;

stty_buffer.c_cflag = B9600 { CS8 | CREAD ! CLOCAL;

zeus

/I

* The following edit was reported by a customer for a Zilog
* "Zeus" port but hasn’t been independently tested.

*/

stty_buffer.c_lflag = 0101;

stty_buffer.c_lflag = 0;

stty_buffer.c_cclVMIN] = 1;
stty_buffer.c_ccIVTIME] = 2;
ioctl(dt->unit, TCSETA, &stty_buffer); /* Set temp. mode

vms

descrip(name, &dev);

if (sys$assign(édev, &dt->unit, 0, NULL) != SS$_NORMAL)
goto error1;

*/

*/
*/

*/

#endif
#ifdef

#endif
#ifdef

C PROGRAM EXAMPLE

rt11

if ('srsts) {
sferr = (int) &ES$SFAT; /* Illegal function */
goto errori;

}

/I

* Search for a free channel.

*/

for €i = 12; 1 >» 05 i--) «
clrxrb();
xrb.xrci = i * 23
if C(rstsys(_POSTN) == NOTOPN)

break;
}
if (i <= 0) { /* Fail if all channels */
$$ferr = (int) &ES$SSNOC; /* are in use. */
goto errorl;
}
dt->unit = ij; /* Save unit number */
/I
* On RSTS, the terminal is opened in a special mode:
* 1 binary
* 16 do not abort on CTRL-C or modem hangup
* 32 terminal service handles XOFF/XON
*/

sprintf(work, "Ys/mo:%d", name, 1+16+32);
if C(rs_openCi, work, "r") != 0)
goto errori;
if ((firqb.fqflag & O0xFF) != TTYHND) {
$$ferr = (int) SES$SSNOD; /* Not a terminal */
rs_close(i);
goto errori;

}

rsx

if ($$rsts) {
sferr = IE_IFC; /* Not on RSTS/E */
goto erroril;

}

/I

* We only call fopen() to get a free lun.

*/

if ((dt->fildes = fopen(name, "rn')) == NULL)

goto errori;

dt->unit = fileno(dt->fildes);

glunCdt->unit, &lunbuf);

if ($$pos

&& lunbuf.g-lunal0] == “X’

&% lunbuf.g-lunal1]l == ‘K’)
dt->pos_xk = TRUE;

else
dt->pos_xk = FALSE;

if (Ci = qiow(IO_ATT, dt->unit, QIO_EFN,

NULL, NULL, &noparm)) != IS_SUC) {

fclose(dt->fildes);
sferr = i
goto errori;

155

156 C PROGRAM EXAMPLE

#endif

errori:
error2:

}

/i

* Normal exit, initialize other pointers

*/
dt->link = dt_root;
dt_root = dt;
dt->out_ptr = dt->out_buff;
dt->flag = _FLAG_SPEAK;
return (dt);

free(dt->device);
free((char *) dt);
return (C(DECTALK *)NULL);

/'
/l'
/%

/I
/I
/I

Out buffer setup
Normally speaking
Normal exit

Error, free device
and DECTALK buffer
Error exit

*/
*/
*/

*/
*/
*/

s

C PROGRAM EXAMPLE 157

DTPEEK.C
This routine tests if a character is pending from DECtalk. The character may be
a keypad character (user selected) or part of an escape sequence.

/*J)LIBRARY
*/

#3ifdef DOCUMENTATION

title dt_peek Test if Character Available from DECtalk
index Test if character available from DECtalk
synopsis

#include ¢<stdio.h>

#include "dectlk.h"

int

dt_peek(dt)

DECTALK *dt; /* Device descriptor */
description

Returns TRUE if a character is pending from DECtalk.
Note that this may be a keypad input character (as
entered by the user) or part of an escape sequence.

dt_peek() does not flush pending output. It contains
operating-system specific code.

note
This module contains specific code for UNIX
4.2BSD. The makefile for the library should
#define BSD_42.
bugs
Tested only on VMS.
#endif
#include <stdio.h>
#include “"dectlk.h"
/'
* Define all DECtalk library globals in this module.
*/

#ifdef wunix

#include <errno.h>
#ifdef BSD_42

#include <sys/types.h>
#include <time.h>

fendif

158 C PROGRAM EXAMPLE

int
dt_peek(dt, sec)
register DECTALK *dt; /* DECtalk
/I’
* UNIX.
*/
{
register int incount; ’*
#ifdef BSD_42
auto long pending; /*
#else
register int ecode; /*
extern int errno; /*
#endif
/*
* Anything buffered?
*/

device

Count and error code
Number pending

For error handling
System error value

if C(dt->pend_fc > 0 !l dt->in_ptr ¢ dt->in_end)

return (TRUE);
#ifdef BSD_42
/'

* Works for 4.1 BSD, too.

* Won’t work for Unix V7 or System N (N >= 3)

*/
ioctlCdt->unit, FIONREAD,
return(pending > 0);

&pending);

&dt->in_buffl01];

Start timeout
Clear error flag

dt->in_buff, IN_BUFLEN);

Save error code
Cancel timeout
/* Did it timeout?

Other error?
Return bad failure

#else
dt->in_ptr = dt->in_end =
alarm(1); /*
errno = 0; /*
incount = read(dt->unit,
ecode = errno; /*
alarm(0); /*
if Cincount ¢ 0 && ecode == EINTR)
return (FALSE); /* Return failure */
if (dt_abort I! incount <= 0) /*
return (FALSE); /*
dt->in_end = &dt->in_bufflincountl;
return (TRUE);
#endif
}
#endif

#ifdef wvms

#include <ssdef.h>
#include <iodef.h>
typedef struct io_status_block {
short int status;
short int term_offset;
short int terminator;
short int term_size;

} 10STAB;

/*
/*

/*
/i
/*
/I'

System status codes
1/0 request codes

1/0 status code
Datum size

Input terminator
Terminator size

*/

*/

*/

*/
*/

*/
*/

*/
*/
*/

*/
*/

*/
*/

*/
*/
*/
*/

U

C PROGRAM EXAMPLE 159

int
dt_peek(dt)
register DECTALK *dt; /* DECtalk device */
/l
* YMS: Fill the input buffer, too.
*/
{
register int incount;
struct type_ahead {
short pending-count;
char first_character;
char char_reserved;
int long-reserved;
} type_ahead;
10STAB status; /* 1/0 status block */
if (dt->pend_fc > 0 il dt->in_ptr < dt->in_end)
return (TRUE);
incount = sys$qiow(1, /* Event flag */
dt->unit, /* Input channel */
I0$_SENSEMODE | IO$SM_TYPEAHDCNT,
&status, /* 1/0 status block */
NULL, /* AST block (none) */
0, /* AST parameter */
¢type_ahead, /* P1 - buffer */
sizeof type_ahead, /* P2 - buffer length */
0, /* P3 - */
NULL, /* P4 - */
NULL, /* PS - ignored (prompt buffer) */
0); /* P6 - ignored (prompt size) */
return Cincount == SS$_NORMAL && type_ahead.pending-count > 0);
}
#fendif

#ifdef rti11
/I

»

*/
#include «<rsts.h>

int
dt _peek(dt)

register DECTALK *dt;

RSTS/E

/* DECtalk device

*/

160 C PROGRAM EXAMPLE T

/*l
* RSTS/E: Fill the input buffer, return the next (first) character.
*/
{
register int incount; /* Count and error code */

if (dt->pend_fc > 0 !l dt->in_ptr < dt->in_end)
return (TRUE);
/l [ana
* We must refill the buffer
*/
dt->in_ptr = dt->in_end = &dt->in_buffl0];
clrxrb(); ~—
xrb.xrlen = 4; /* No delimiter */ [
xrb.xrci = dt->unit * 2;
xrb.xrblkm = TTYHND;
rstsys(_SPEC); "
clrxrb();
xrb.xrlen = 3; /* No echo */
xrb.xrci = dt->unit * 2;
xrb.xrblkm = TTYHND; I
rstsys(_SPEC); ?
incount = rs_read(dt->unit, dt->in_buff,
IN_BUFLEN, 0, 0, 0, 8192);
if Cincount == -(HNGTTY)) r‘”“
return (FALSE); |
else if Cincount <= 0) ‘
return (FALSE);
dt->in_end = &dt->in_bufflincountl; —
return (TRUE); |
}
#endif

#ifdef rsx

/i
* Load in RSX specific information:
* cx.h common header -
* qiofun.h [/0 service function codes
* qgioret.h I/0 service error and status codes
* qiottd.h Terminal 1/0 service bits and bytes
* lunbuf.h Device characteristics buffer T
Q/ 1
#include <cx.h>
#include <qiofun.h> ™
#include <qioret.h> |
#include <qiottd.h> ‘
#include <lunbuf.h>
#define QIO_EFN 1 /* 1/0 event flag */
#define MKT_EFN 2 /* Time event flag */
static char gmcbufl2] = { TC_TBF }; /* get typeahead count */
static QIOPARM gmcparm = { gmcbuf, sizeof gmcbuf }; i

static int termtable(161]; /* Terminator bitmask */

C PROGRAM EXAMPLE

int
dt_peek(dt)
register DECTALK *dt; /* DECtalk device */
/l
* RSX:
*/
{
register int incount; /* Count and error code */
register char *ip; /* To copy to rsx buff */
int errorcode;
/Q
* Return buffered character (if any)
*/
if (dt->pend_fc > 0 I! dt->in_ptr < dt->in_end)

/'l

return (TRUE);

* We must refill the buffer

*/

dt->in_ptr = dt->in_end = &dt->in_bufflO0];
if (dt->pos_xk) {

/l

* The PRDO-350 XK: port is actually pretty simple.

*/

dt->parm.buffer = dt->in_buff;

dt->parm.size = IN_BUFLEN;

dt->parm.p3 = 0; /* No timeout */

errorcode = qiow(IO_RLB ! TF_TMO, dt->unit, QIO_EFN,
&dt->iosb, NULL, &dt->parm);

if (Cincount = fixiosb(dt)) == 0) {
return (FALSE);

}

dt->in_end = &dt->in_bufflincountl;

return (TRUE);

}
else {
/I
* Check whether anything is in the
* system type-ahead buffer.
*/
errorcode = qiow(SF_GMC, dt->unit, QIO_EFN,
&dt->iosb, NULL, &gmcparm);
return (errorcode == IS_SUC && gmcbufl1] > 0);
}

161

162 C PROGRAM EXAMPLE

static int
fixiosb(dt)

register DECTALK *dt; /* DECtalk device

/i

* This routine returns the correct input count.
* The code is unusual.

*

* fixiosb() returns the true byte count.

*/

*/

*/

{
extern int $sferr;
if (dt-»>iosb.terminator '= NUL) {
/i
* Append the terminator to the buffer.
*/
dt->in_buffldt->iosb.count] = dt->iosb.terminator;
dt->iosb.count++;
}
if (dt_abort
! dt->iosb.status == IE_ABO
1! dt->iosb.count == 0) {
return (0); /* Read aborted */
}
else if (dt->iosb.status != IS_SUC
&% dt->iosb.status !'= IS_TMO) {
$$ferr = di->iosb.status;
return (0); /* 1/0 error
}
return (dt->iosb.count);
}
#endif

C PROGRAM EXAMPLE 163

DTPESC.C
This routine compiles an appropriate escape sequence from the parameter

buffer.

/*)LIBRA
*/

#ifdef

title
index

synopsis

descript

#endif

RY

DOCUMENTATION

dt_pesc Transmit Escape Sequence
Transmit escape sequence

#include ¢<stdio.h>

#include “"dectlk.h"

dt_pesc(dt, seq)

DECTALK *dt; /* Device descriptor */
SEQUENCE *seq; /* What to transmit */
ion

Compile an appropriate escape sequence from the
parameter buffer. This is similar to putchar()
except when seq->state is ESC, CSI, or DCS. In
these cases, the function generates an appropriate
sequence from the passed data structure. dt_pescQ)
calls the user-supplied dt_put() to output each
character.

C1 control sequences are sent in their eight-bit

form if _FLAG_EIGHTBIT is set in dt->flag. If

this bit is off, they are sent in their <ESC>X

form. If the application program sets _FLAG_EIGHTBIT
it must also ensure that the operating system
transmits eight data bits, and that DECtalk

was setup as HOST FORMAT EIGHT.

No value is returned.

164 C PROGRAM EXAMPLE

#include <stdio.h>
#include “"dectlk.h"

dt_pesc(dt, seq)

register DECTALK *dt; /* Dectalk device */
register SEQUENCE *seq; /* Sequence buffer */
/7%

* Output the character (in seq->state) and maybe a sequence, too.
*/
{
register unsigned i; /* Index into interl], param(]l. */
unsigned max; /* Max for inter(] and paraml(]l. */

#ifdef DT_DEBUG
if (dt_debug) {
printf("put: \"");
if (isatty(fileno(stdout)))
fflush(stdout);
}
#endif
i = seq->state;
if ((dt->flag & _FLAG_EIGHTBIT) == 0
&% i >= 0xB0 && i <= 0x9F) {
/l
* Output is in 7-bit mode and the character is
* a C1 control character. Convert it.
*/
dt_put(dt, ESC);
dt_put(dt, i - 0x40);
}
else {
/*
* Not the special case; output the character.
*/
dt_put(dt, i);
}
switch (i) {
case ESC:
case CSI:
case DCS:
/Q
* Here is a sequence. Output all of its components.
*

* First, the parameters.

* i counts the parameters

* max stores the parameter max.

* wval working copy of parameter value.
*/

if (seq->private != 0)
dt_put(dt, seq->private)d;
max = seq->param(0];
if (max > SEQ_PARMAX)
max = SEQ_PARMAX; /* Too many, use limit */
for €i = 15 1 <= max; i++) {
if ¢i > 1)
dt_putCdt, “;‘);
if (seq->paramlil != 0)
intout(dt, seq->paramlil);

PR—

C PROGRAM EXAMPLE

/.

* Qutput intermediates.

* 1 counts intermediates.

* max stores the number to output.
*/

max = seq->inter[0];
if (max > SEQ_INTMAX)

max = SEQ_INTMAX; /* Too many, use limit */
for €i = 1; 1 <= max;) {

dt_put(dt, seq->interli++1);
}
dt_put(dt, seq->final)d; /* OQutput the final
break;

default:
break;
}
#ifdef DT_DEBUG
if (dt_debug)
printf("\“\n“);
#endif
}
#ifndef INT_32
#ifdef vax
#define INT_32
#endif

#ifdef ME8000
#define INT_32
#endif
#endif

static unsigned power10[] =
{/*
* Powers of 10 for intout
./
#ifdef INT_.32
10000000,
1000000,
100000,
#endif
10000,
1000,
100,
10,
1,
};

#define NPOWERS ((sizeof power10) / (sizeof (unsigned)))

static

intout(dt, value)
DECTALK *dt; /* DECtalk device */
register unsigned value; /* Value to convert */
/'

* Convert an unsigned number to ASCII and call dt_put() on

* each character. Note, as implemented here, a zero value

* does not output anything.
*/

165

*/

166 C PROGRAM EXAMPLE

register unsigned *power;
int out_char;
int nonzero;

power = power10; /* Pointer to power table
nonzero = FALSE; /* Don’t output leading zeros
do {
/*
* Loop until all places except digits place
* have been done.
*/
for Cout_char = 0; value »>= *power; out_char++)
value -= *power; /* Subtract a power
if C(nonzero i! out_char > 0) {
nonzero = TRUE; /* Not leading zero
dt_put(dt, out_char + ‘07);
¥
} while (++power < &power10INPOWERS1);

*/
*/

*/

*/

C PROGRAM EXAMPLE 167

DTPHON.C
This routine sends a DECtalk phone message.

/*)LIBRA
*/

#ifdef

title
index

synopsis

descript

#endif

#include
#include

#ifdef
#undef
#endif

int
dt_phone
register
int
int
/Q
* Send
*/
{

+

RY
DOCUMENTATION
dt_phone Send a Phone Message
Send a phone message
#include <stdio.h>
#include “dectlk.h"
int
dt_phone(dt, p3, p4)
DECTALK *dt; /* Device descriptor */
int p3; /* P3.PH.xxxx parameter */
int p4; /* timeout or rings */
ion

This routine (which may be implemented as a macro)
sends a DECtalk phone message (i.e., the p2 parameter
is P2_PHONE).

p3 and p4 should be given as -1 if no parameter is to
be sent.

It then reads the status reply and returns TRUE
if the r1 and r2 parameters are R1_DECTALK and
R2_PHONE respectively. The application program
should then test for offhook/onhook as appropriate.

Returns TRUE if successful. If FALSE, something is funny.

¢stdio.h>
"dectlk.h"

dt_phone
dt_phone

(dt, p3, p4)

DECTALK *dt; /* Device descriptor */
P3:
P43

a phone message.

return (dt_msg(dt, P2_PHONE, p3, p4, R2_PHONE, -1));

168 C PROGRAM EXAMPLE

DTPTES.C
This routine tests a phone reply.

/*)LIBRA
*/

#ifdef

title
index

synopsis

descript

#endif

#include
#include

#ifdef
#undef
#endif

int
dt_ptest
register
int
/I
* Test
*/
{

}

RY
DOCUMENTATION
dt_ptest Test Phone Reply
Test phone reply
#include <stdio.h>
#include "“dectlk.h"
int
dt_ptest(dt, r3)
DECTALK *dt; /* Device descriptor */
int r3; /* R3_PH_xxxx parameter */
ion

This routine (which may be implemented as a macro)

is used to test the result of a dt_phone() message.

The parameter is a R3_PH.... reply value.
It returns TRUE if the current reply is a DECtalk
phone reply with the specified R3 parameter.

«stdio.h>
"dectlk.h"
dt_ptest
dt_ptest
dt, r3)
DECTALK *dt; /* Device descriptor
r3;

a phone message.

return (dt_test(dt, R2_PHONE, r3));

*/

C PROGRAM EXAMPLE 169

DTPUT.C
This routine sends one character to the DECtalk terminal line. No value is
returned.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_put Write one Character to DECtalk
index Write one character to DECtalk
synopsis

#include ¢<stdio.h>

#include “"dectlk.h"

dt_putddt, c)
DECTALK *dt; /* Device descriptor */
int cs /* Character to write */

description

One character is written to the DECtalk terminal line.
No value is returned.

I1f DT_DEBUG is #defined when the library is compiled
and the global dt_debug is set nonzero (by the
application program), the character

written is logged to the standard output device.

fendif
#include ¢<stdio.h>
#include "dectlk.h"

#ifdef dt_put
#undef dt_put
#endif

dt_put(dt, ¢)

register DECTALK *dt; /* Device descriptor */
register int c3 /* Character to write */
{

extern int dt_debug;

dt.ioput(dt, c);
#ifdef DT_DEBUG
if (dt_debug != 0)
dt_dchar(c, stdout);
#endif
}

170 C PROGRAM EXAMPLE

DTREAD.C
This routine reads a sequence or character.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_read Read Sequence or Character
index Read sequence or character
sSynopsis
#include <stdio.h>
#include "dectlk.h"
int
dt_read(dt, sec)
DECTALK *dt; /* Device descriptor */
char sec; /* 0.S. timeout value */

description

Read an escape sequence or keypad character. Ignore
any characters between the DECtalk final and the
string terminator. Return the character read or

the sequence introducer.

#endif
#include <stdio.h>
#include “dectlk.h"
int
dt_read(dt, sec)
register DECTALK *dt; /* Dectalk device */
int sec; /* Operating system timeout */
{
register int code;
register int i
/*
* Read another sequence (or continue reading this one).
* Copy the sequence read into the working “reply" buffer.
* Note, this code is not quite general enough for all
* escape sequence parsing. Specifically, it cannot
* properly deal with C0 control characters embedded
* inside of escape sequences (as is necessary if the
* operating system cannot process XOFF/XON controls).
*

~

again:

C PROGRAM EXAMPLE

dt->seq.state = 0;
dt->reply.state = code = dt_gesc(dt, sec);
switch (code) {
case CAN:
case SUB:
goto again;

case ESC:
case CSI:
case DCS:
dt->reply.final = dt->seq.final;
dt->reply.private = dt->seq.private;
for Ci = 0; 1 <= dt->seq.interl0]; ++1)
dt->reply.interli] = dt->seq.interli];
for Ci = 0; i <= dt->seq.parami0]; ++1)
dt->reply.paramli] = dt->seq.paramlil;
break;

default:
dt->reply.final = dt->reply.private =
dt->reply.inter[0] = dt->reply.paraml0] = 03

break;
}
if (dt->reply.state == DCS) {
/l
* Ignore text between DCS final and ST
*/
dt->seq.state = 0;
do {
code = dt_gesc(dt, 1);
} while C(code > 0 && code < 0x80);
}

return (dt->reply.stated;

171

172 C PROGRA

DTRESE.C

M EXAMPLE

This routine sends a soft-reset escape sequence.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_reset
index

synopsis

#include
#include

dt_reset
DECTALK

description

Send a "
No error

#endif

#include
#include

static SEQUENCE
csr, ‘p’, o0,
}s

dt_reset(dt)
register DECTALK
/*

DECtalk Soft Reset
DECtalk soft reset

<stdio.h>

“dectlk.h"
(dt)

dt; / Device descriptor */
soft reset" escape sequence.

s are possible.

<stdio.h>
"dectlk.h"

soft_reset =
{013 {1, *v7

*dt;

* dt_reset() sends a soft-reset escape sequence.

*/

{
dt_pesc(dt, &soft_reset);
dt-)f]ag I= _FLAG_SPEAK; /* Speaking now
dt->timeout = 03 /* No timeout now

*/
*/

C PROGRAM EXAMPLE 173

DTSAVE.C
This routine saves user type-ahead characters.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_save Save User Type-ahead
index Save user type-ahead
synopsis
#include ¢<stdio.h>
#include “dectlk.h"
int
dt_save(dt, c)
DECTALK *dt; /* Device descriptor */
char c3 /* Character to save */
description

I1f ¢ is a keypad character, save it in the
type-ahead buffer and return TRUE, else return
FALSE.

1f the current reply is a timeout and nothing
is stored in the type-ahead buffer, save ‘T’
and clear the timeout flag. This is necessary
as a timeout sequence may be returned in

the middle of a message/reply sequence.

This routine should not be called by application

programs.
#endif

#include ¢<stdio.h>
#include "dectlk.h"

174 C PROGRAM EXAMPLE

int
dt_save(dt, c¢))
register DECTALK *dt; /* Dectalk device */
int c; /* Character to test */
{
register int timeout; /* Current value */
if C(!dt_isvalidCed) { /* Not a keypad button? */
if (!dt_istimeout(dt)) /* If it isn’t timeout, */
return (FALSE); /* it’s not for us. */
else { /* Timeout is funny */
/I

* Ignore timeout if timer
* something is already in

is set to zero or
the type-ahead buffer.

Get old value */
Clear timer */

Toss it away */
Save it in typeahead */

Save it if there’s */
enough room, else */
throw it away. */

*/
timeout = dt->timeout; /*
dt->timeout = 03 /*
if Ctimeout == 0 I} dt_iskey(dt))
return (TRUE); /*
c = 'T*"; /*
}
}
if (dt->pend_fc < PEND_SIZE) { /*
dt->pend_fc++; /*
dt->pendldt->pend_fpl = c; /*
if (++dt->pend_fp >= PEND_SIZE)
dt->pend_fp = 0;
}

return (TRUE);

C PROGRAM EXAMPLE 175

DTSPLICE.C
This routine lets you control a terminal connected to DECtalk’s local port.

/*)LIBRARY
*/
#ifdef DOCUMENTATION
title dt_splice Manage Local Terminal
index Manage Local Terminal
synopsis

#include «<stdio.h>

#include "dectlk.h"

descript

dt_splice(dt, flag)

DECTALK *dt; /* Device descriptor */
int flag; /* Required state */
ion

dt_splice() allows control over a terminal
connected to DECtalk’s local port. Note that
the terminal must correctly process ANSI escape
sequences. Specifically, it must ignore any
escape sequence that it doesn’t understand.

The flag parameter may have the following
(bit-encoded) values.

SPLICE_.SPEAK Speak subsequent text,
if set. Do not speak text
if not set. Initially zero.

SPLICE_LOG Text sent to DECtalk is sent
(in raw mode) to the local
terminal if set. Initially
not set.

SPLICE_TERM Text typed on the local
terminal is sent to DECtalk
if set. Initially not set.

The bits would normally be set and cleared in combination.
For example:

dt_splice(dt, SPLICE_SPEAK);
Speak text, don’t log it, ignore text typed on the host.
dt_splice(dt, SPLICE_LOG ! SPLICE_TERM);

Stop speaking text, transmit text from/to the attached
terminal.

176 C PROGRAM EXAMPLE

#endif
#include <stdio.h>
#include "dectlk.h"

dt_splice(dt, flag)

register DECTALK *dt;
register int flag;
/%
* Manage line-splice modes.
*/

{
splice(dt, flag & SPLICE_SPEAK, _FLAG.SPEAK,
P2_SPEAK, 1);
splice(dt, flag & SPLICE_LOG, -FLAG_LOG,
P2_L0G, LOG_RAWHOST);
splice(dt, flag & SPLICE_TERM, _FLAG_TERM,
P2_TERMINAL, TERM_HOST);

}

static

splice(dt, flag, bit, p2, p3)

register DECTALK *dt;

int flag; /* TRUE to set bit
int bit; /* dt->flag bit to do
int p2, p3; /* For DCS

/I

*/
*/
*/

* Do the dt_splice() work. If dt->flag doesn‘t agree with flag,

* send the appropriate dt_dcs().
*/
{
if (((dt->flag & bit) != 0) t= (flag !'= 0)) {

if (flag !'= 0) { /* Turn mode on,
dt->flag i= bit; /* Set flag bit and
dt_des(dt, p2, p3, -1); /* Sends the p2/p3

}

else { /* Turn mode off,

dt->flag &= ~bit; /* Clear flag bit and

dt_dcs(dt, p2, 0, -1); /* Send "mode off"

*/
*/
*/

*/
*/
*/

C PROGRAM EXAMPLE 177

DTST.C
This routine sends a string terminator to DECtalk. This string terminates pho-
nemic text or telephone dial commands.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_st Send String Terminator
index Send String Terminator
synopsis
#include ¢<stdio.h>
#include “"dectlk.h"
int
dt_st(dt)
DECTALK *dt; /* Device descriptor */

description
This routine sends a string terminator to DECtalk.
This is needed to terminate phonemic text or telephone
dial commands.

A phonemic text sequence would be sent as follows.

dt_cmd(dt, p2, p3);
dt_talk(dt, "hh’ehlow.");

dt_st(dt);
#endif
#include «stdio.h>
#include “dectlk.h"

static SEQUENCE string_terminator = {

ST
}s
dt_st(dt)
DECTALK *dt; /* Device descriptor */
/l
* Send a string terminator
*/

{
dt_pesc(dt, lstrlng_terminator);
}

178 C PROGRAM EXAMPLE

DTSYNC.C
This routine synchronizes the application with DECtalk.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_sync Synchronize with DECtalk
index Synchronize with DECtalk
synopsis
#include <stidio.h>
#include "dectlk.h"
int
dt_sync(dt)
DECTALK *dt; /* Device descriptor */
description

The program delays until all text sent to DECtalk
has been spoken.

Returns TRUE if successful. If FALSE, something is funny.

#endif
#include <stdio.h>
#include "dectlk.h"
int
dt_sync(dt)
register DECTALK *dt; /* Device descriptor */
/!
* Synchronize DECtalk and the application.
*/
{
dt_dcs(dt, P2_SYNC, -1, -1); /* Synchronize */
dt->flag I= _FLAG_SPEAK; /* Now speaking */

return (dt_msg(dt, P2_IX_QUERY, -1, -1, R2_IX_QUERY, -1));

C PROGRAM EXAMPLE

DTTALK.C
This routine speaks one line of text.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_talk Speak One Line of Text
index Speak one line of text
synopsis

#include <stdio.h>

#include "dectlk.h"

dt.talk(dt, text)

DECTALK *dt; /* Device descriptor
char *text; /* What to say
description

This function sends a line of text to DECtalk.

dt_talk(dt, NULL) flushes DECtalk by sending
a vertical-tab sequence.

#endif

#include <stdio.h>

#include “dectlk.h"

static char vtlinell = { VT, 0 };

dt_talk(dt, text)

register DECTALK *dt; /* Device descriptor
register char *text; /* Text pointer

{

if (text == NULL)
text = vtline;
while (*text != 0)
dt_put(dt, *text++);
dt_eol(dt);

*/
*/

*/
*/

179

180 C PROGRAM EXAMPLE

DTTEST.C
This routine tests a DECtalk reply.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_test Test a DECtalk Reply
index Test a DECtalk reply
Synopsis
#include <stdio.h>
#include "dectlk.h"
int
dt_test(dt, r2, r3)
DECTALK *dt; /* Device descriptor */
int r2; /* R2_xxx parameter */
int r3; /* R3_xxx parameter */

description

This routine checks the last reply received from
DECtalk against the model. r3 is -1 to ignore it.
It returns TRUE if the reply is a properly parsed
DECtalk reply sequence, or FALSE on any failure.

#endif

#include ¢<stdio.h>

#include "dectlk.h"

int

dt_test(dt, r2, r3)

register DECTALK *dt; /* Device descriptor
int r2;

int r3;

/'

* Test the current returned sequence for the proper
* DECtalk reply. r3 is -1 to ignore it.
*/
{
if (dt->reply.state == DCS
&4 dt->reply.final == DCS_F_DECTALK
&4 dt->reply.inter[0] == 0
&4 dt->reply.private == 0) {
if (dt->reply.paraml{1] == R1_DECTALK
&% dt->reply.paraml2] == r2
&¢ (r3 == -1 1! dt->reply.paraml3] == r3))
return (TRUE);
}
return (FALSE);

*/

1

1

1 1

]

]

C PROGRAM EXAMPLE

DTTIME.C
This routine enables or disables telephone keypad timeout.

/*)L1BRARY
*/

#ifdef DOCUMENTATION

title dt_timeout Enable or Disable Keypad Timeout
index Enable or disable keypad timeout
synopsis

#include <stdio.h>

#include “dectlk.h"

int

dt_timeout(dt, sec)

DECTALK *dt; /* Device descriptor */

int sec; /* Timeout in seconds */
description

If sec is nonzero, timeouts are being enabled;
if zero, they are being disabled.

Enable keypad timeouts if sec is nonzero and there
is no data in the type-ahead buffer (and timeouts
are not already enabled).

Disable timeouts if they are enabled and sec is zero,
or any data is in the type-ahead buffer (even if
sec is nonzero).

Before enabling timeouts, DECtalk is synchronized.

Returns TRUE if successful. If FALSE, the telephone
may have been hung up.

#endif

#include <stdio.h>

#include “dectlk.h"

int

dt_timeout(dt, sec)

register DECTALK *dt; /* Device descriptor */
register int sec; /* Timeout in sec seconds */

181

182 C PROGRAM EXAMPLE

/l

* Enable or disable timeout. No errors are possible.
* Note that timeout(dt, 15) looks at the state of the
* type-ahead buffer before deciding whether to turn

* timeouts on, off, or to do nothing.

*/
{
if (sec !'= 0) { /* If enabling, */
if (dt_iskey(dt)) /* Disable if typeahead */
sec = 0;
if (sec '= 0) { /* Still enabling? */
dt_sync(dt); /* Synchronize and */
if (dt_iskey(dt)) /* Check again. */
sec = 0;
}
}
if (dt->timeout == sec) /* Don’t set to the */
return (TRUE); /* same value */
dt_phone(dt, P3_PH_TIMEOUT, sec);
dt->timeout = sec;
if (dt_onhook(dt) ! dt_offhook(dt))
return (TRUE);
return (FALSE);
}

C PROGRAM EXAMPLE

DTTONE.C
This routine sends the msg test string as a tone dialing sequence.

*/
#ifdef DOCUMENTATION
title dt_tone Send DTMF Tones
index Send DTMF tones
synopsis
#include <stdio.h>
#include "dectlk.h”
int
dt_tone(dt, msg)
DECTALK *dt; /* Device descriptor */
char *msg; /* Announcement */
description
This routine sends the msg text string as a tone
dialing sequence. If the telephone was on-hook
when dttone() was called, it will be returned
to the on-hook condition. Note, this routine
may not work to your satisfaction in countries
which require automatic announcement messages
on automatically dialed calls. See your DECtalk
programmer’s manual for more information.
For message text may contain any valid touch-tomne
characters ("0123456789*#ABCD") or the characters
‘17 (for a one second delay) or the ‘"’ for a 250
millisecond switch-hook flash. All other characters
are ignored.
Note that the telephone will not be hung up before
dialing if it is offhook when the command is issued.
fendif
#include ¢<stdio.h>
#include © "dectlk.h"
int
dt_tone(dt, message)
register DECTALK *dt; /* Device descriptor */
char *message; /* Announcement */

183

184 C PROGRAM EXAMPLE

/D

* Send tones.

*/

{
register int state;
register int code;

dt_phone(dt, -1, -1);
state = dt_onhook(dt);
dt_cmd(dt, P2_PHONE, P3_PH_TONE);
dt_talk(dt, message);
dt_st(dt);
do {
code = di_read(dt, 30);
} while (code == ST Il dt_save(dt, code));
if (state)
dt_hangup(dt);

DTTRAP

C PROGRAM EXAMPLE

.C

This routine traps CTRL-C interrupts.

/*)LIBRA
*/

#ifdef

title
index

synopsis

descript

RY

DOCUMENTATION

dt_trap Trap <CTRL-C> Interrupts
Trap <CTRL-C> Interrupts

#include <stdio.h>

#include “"dectlk.h"

di_trapQ)

ion

Set the global dt_abort flag if the user types
¢CTRL-C> at the command terminal. (On UNIX,
this is interpreted as catching the INTERRUPT
signal, which is not necessarily <CTRL-C>, and
which may be generated by running the Ykill*
system program.

When the interrupt is received, pending 1/0
is cancelled (on those operating systems where

this makes sense).

If dt_abort is set TRUE when the interrupt is received,
the program aborts.

No error is returned.

#endif
#include <stdio.h>
#include "dectlk.h”
#ifdef unix
#include <signal.h>
static
catch()
{
if (dt_abort)
_exit(2);
dt_abort = TRUE;
}
dt_trapQO)

185

186 C PROGRAM EXAMPLE

VA
* Trap CTRL-C interrupts.
*/
{
signal(SIGINT, catch);
signal(SIGTERM, catch);
}
#endif

#ifdef wvms

#include <ssdef.h>
#include <signal.h>
static
catch()
{
register DECTALK *dt;

if (dt_abort)
-exit(SS$_ABORT);
dt_abort = TRUE;
for (dt = dt_root; dt !'= NULL; dt = dt->link)
sys$cancel(dt->unit);
}

dt_trapQ)
/i

* Trap CTRL-C interrupts.
*/
{
signal(SIGINT, catch);
¥
#endif

#jifdef rsx

#include <cx.h>

#include <qiofun.h>
#include <qioret.h>
#include <qiottd.h>

#define QIO-EFN 1

static
catch()
{
register DECTALK *dt;

astset(); /* AST entry
if (dt_abort)
$$fail();
dt_abort = TRUE;
/I
* Kill all pending DECtalk I/0
*/
for (dt = dt_root; dt != NULL; dt = dt->link)
qiow(I0O_KIL, dt->unit, QIO_EFN,
4dt->iosb, NULL, &dt->parm);
}
astx(1); /* AST exit

{

*/

*/

C PROGRAM EXAMPLE

static QIOPARM astparm = { NULL, 0, catch };

dt_trapQ)

/0

* Trap CTRL-C interrupts.

*/

{

qiow(I0_ATA, fileno(stderr), QIO_EFN,
NULL, NULL, &astparm);

}

#endif

#ifdef rti1

static
catch(Q)
/I
* Executed by the operating system if an interrupt is
* detected.
*/
{
if (dt_abort)
$$fail();
dt_abort = TRUE;
}

dt_trapQ)
/I
* Trap CTRL-C interrupts.
*/
{
setcc(catch);
}
#endif

187

188 C PROGRAM EXAMPLE

DTVISI.C

This routine generates a visible ASCII representation of a character stored in

the work buffer.

/*)LIBRARY
*/

#ifdef DOCUMENTATION

title dt_visible Generate Visible Representation
index Generate Visible Representation
synopsis

char work[121; /* Output buffer */

char *

dt_visible(c, work)

int c; /* Character to dump */

char work[l; /* Work buffer */
description

A visible ASCII representation of the character
is stored in the work buffer. A pointer to the
end of the output string is returned.

Note that this routine is independent of DECtalk
definitions (except that it knows about the DT_ERROR
and DT_TIMEOUT error codes).

#endif

#include <stdio.h>

#include "dectlk.h"

char *

dt_visible(c, buffer)

register int c; /* Character to convert
register char *buffer; /* Where to store conversion

*/
*/

/'

* Make a character "visibl
* Return a pointer to the
*/

{
register int fla
switch (c) {
case NUL:
strcpy(buffer,
break;

case DT_ERROR:
strcpy(buffer,
break;

case DT_TIMEOUT:
strcpy(buffer,
break;

case ESC:
strcpy(buffer,
break;

case DCS:
strcpy(buffer,
break;

case CSI:
strcpy(buffer,
break;

ST:
strcpy(buffer,
break;

case

default:
flag = (c >= 0x
11 Cc ¢ *
if (flag)
*buffer++ =
if (Cc &= O0xFF)
c -= 0x80;
*buffer++ =
}
if (flag && c <«
*buffer++ =
*buffer++ =
}
else if (flag !
*buffer++ =
if (flag)
*buffer++ =
*buffer = EOS;
return (buffer)
}
return (buffer + st

C PROGRAM EXAMPLE

e'" ASCII.
trailing EOS.

9

"<NUL>")

YU¢ERROR>");

“¢TIMEOUT>");

"CESC>");

"¢<DCS>");

"¢CSI>»");

"eST>»");

7F

&& c '= ‘\n’ && c '= ‘\r’));

l‘l;

>= 0x80) {
P N

H
vy g
n,,

3

c + b4;

f ¢ == ’\n’ Il c>="")
c3

g
>73
i

rlen(buffer));

189

190 C PROGRAM EXAMPLE

HELLO.C
This is a very simple test program, to show that DECtalk is operating correctly.

/*)BUILD
$CINCLUDE) = { dectlk.h }
$(RTLIB) = { dtlib,c:rstslb,c:clib }
$(RXLIB) = { dtlib/1lb,c:cx/1lb,c:c/1lb }
*/

#include «¢stdio.h>
#include '"dectlk.h"
#ifdef wvms

extern int errno;
#define ID_ERROR errno
#endif

#ifdef unix

#define I0_ERROR 1
#endif

DECTALK *dt;

mainCargc, argv)

int argc;
char *argvl];
{
char *dev;

dev = "ttg7:";

if Cargc > 1)
dev = argvi1];

if ((dt = dt_open(dev)) == NULL) {
perror(dev);
printf("Can’t open DECtalk\n");
exit(I0_ERROR);

}
dt_debug = TRUE; /* Log text */
dit_trap(); /* CTRL-C trap enabled */

printf("calling init\n");
if ('dt_initCdt))
printf("Can’t initiate DECtalk\n'");
else {
printf("Initialized\n");
dt_dcs(dt, P2_MODE, MODE_SQUARE, -1);
dt_talk(dt, "Hello world.");
dt_sync(dt);
dt_dump("after sync", &dt->reply)d;
dt_close(dt);
printf("Success.\n");

BASIC-PLUS
PROGRAM EXAMPLE

This chapter provides the source listings of a simple DECtalk telephone
answering program, written in BASIC-PLUS for RSTS/E. You can copy and use
this program; however, the program is only a model, and cannot cover all
possible DECtalk applications.

RSTS/E SYSTEMS ~

On some RSTS/E systems, you may need system manager privileges to run
this program. Please refer to the appropriate RSTS/E manuals for more
information.

10 EXTEND

20 pe
'* DECtalk function library and a sample application.
'* The function library generally duplicates the C
'* library, with some minor simplifications.
e
'* The sample program reads a string of numbers from
t* the keypad and speaks them as a number, and as a
1* string of digits. The ‘*’ key functions as a dollar
'* sign, and the “#’ key functions as a decimal point.
'* The program also illustrates how an application

!'* might manage keypad timeouts.
!I

[N B N B B B B

100 1e
1+ Defaults
s
DEF.kb$ = *"KB2:" ! DECtalk device
\ DEF.log$ = "yes" ! Assume log?

L O

191

192

1000

1010

1100

1200

1300

1800

1900

2000

2010

BASIC-PLUS PROGRAM EXAMPLE

P *

t* Main program

[

Initialize DECtalk and start the DEMO

Channel 1
Channel 2

Log file

open "kb:" for input as file 1%
kb$ = FNprompt$("Dectalk terminal®, DEF.kb$)
DT.log% = (FNyesnoX(™Enable logging", DEF.log$))
debugX = FNyesnoX("Enable debug printouts", "yes")

P

re
er
if

triesX, ncallsX = 0X
ror.countX = 0%
(debug% or DT.log%) then

Console keyboard for parameters

Clear counters
No errors yet
Need a log file.

logfile$ = FNprompt$("Debug log file"™, "kb:")
\ open logfile$ for output as file 2%

while (FNinitX%(kb$))
\ g% = FNlogX("Initialization")

\ retriesX = retriesX + 1%
\ while (FNanswerX)
\ if (FNprocessX) then
ncallsX = ncalls¥% +
\ retries¥% = 0%

Initialize DECtalk

Count initializations

Answer the phone
Do this call

1% ! Got a call

! Clear retry

goto 1800 if (debugX% and error.countX > 0%)

N\ if C(retriesX > 2%) then

! Trouble?

q% = FNlog%("Too many retries")

\ goto 1800

next

\ next

! Fatal.

For all calls
For all restarts

q% = FNlogx("finished after " + numi$(ncallsX))
\ close 2% if DT.logX%

goto 32767

def* FNprocess¥
]

Us

sp
Re

FNprocess?12

All done

er process. Read a number from the keypad and
eak it out. Return when phone is to be hung up.
turn TRUEX if ok, FALSEX on error.

FNprocessX = FALSEX

\

P

P

nk

eys¥% = 0%
= FNlogX("answered")

! Count button presses

Assume failure

= FNspeakX("[:np :ra 180] Welcome to DECtalk."™)
= FNspeakX("It is now " + time$(0X)
+ " on " + date$(0X) + ".'")

= FNspeakX("Enter a number,

the star key means")

= FNspeakX("dollar sign, while the number-sign")
= FNspeakX("key means decimal point.")

(not FNphoneX('20")) then

turn the keypad on

q% = FNlogX%("error enabling keypad")

\ goto 2080

Error exit

B LB B B B o o o o > e

= e S o

o o o e R o0 L d

o Q0 90 S0 o o e Qo oG

11 1

1

]

2020

2030

2050

2060

2080

2090

3000

3090

BASIC-PLUS PROGRAM EXAMPLE

if (not FNptestX(R3.PH.OFFHOOKZ)) then
q! = FNlogX("enable keypad,

\ goto 2080

while TRUEX
\ timerX = 10%
\ work$ = ""
\ while TRUEX

\ cX = FNkeyX(timerX)

c$ = chr$(cX)

goto 2080 if
goto 2080 if
goto 2080 if

c$ = ‘8’ if
c$ = .’ 1if

c$

c$ =

c$
c$
c$
c$

work$ = work$ +

timerX = 2%

\
\
\
\
\ goto 2050 if
\
\
\
\
xt

\ ne

Ty
g
X
T
re

rpe

goto 2060 if (work$ = ")
\ g% = FNspeakX%("You entered " + work$ + ",")
\ qX% = FNspeakX("that is" + FNexpand$(work$) + ".")

\ next
FNprocessX = TRUEX

q% = FNphoneX("21")
\ g% = FNhangupX

state:

- e e

" + num1$(R3%))
Error exit

For all numbers

For first character
Input buffer

Get the number

Read a character
Get both flavors
Hangup

Error from RSTS/E
Escape sequence error
Timeout

Fix funny

buttons

Stuff it

Short prompt now
Read a number loop

Did we read anything?

Read all numbers
Normal completion

Turn off keypad
And hang up the phone

\ g% = FNlogX("process exit after " + numi$(nkeysX))
fnend

!I

1e FNexpand$ (text$)

[

'* Expand a number string into its component bytes.
!'* Note that this would be useful in a "bank by phone"
!'* application to speak a number, digit by digit, so
!'* the caller could copy it down. If the input is
I* "12.3", the output will be " 1 2 point 3". Note
'* the leading blank.

[

def* FNexpand$(text$)

\ g¢ = " ! Output work
\ for q%¥ = 1% to len(text$) ! For each byte
\ q1$ = mid(text$, q%, 1X) ! Locate it
\ q1$ = "point"™ if q1$ = *.” ! Fix the
\ q1$ = "minus" if q1$ = *-' ! special
\ q1$ = "dollar sign" if q1$ = ‘¢’ ! cases

!

\g$ =qgs + " "+ qls

\ next qX%
\ FNexpand$ = q$

fnend

and stuff it
Do ‘em all
That’s it

L

o e e Qe e feofe e

- - R

L

e R0 00 Q0 Q0 Q0 S0 o o R o P09 Q0 0 O o

[

193

194 BASIC-PLUS PROGRAM EXAMPLE

10000

!O
!.
!'
!.
!'I

»

Basic-Plus Support functions for DECtalk

Note that the code is not particularly fast and some
of the error conditions that are handled by the C
version of the Escape Sequence parser are ignored.

Note: the following channels are used:

8 DECtalk input
9 DECtalk output
2 Log file

If DT.log% is TRUE, a log file is open
on channel 2

e e e e e e e e e e e e

*

* Application programs call the following routines
*

FNinitX(kb$) Initialize DECtalk on kb:
FNanswerX Finish last call, answer next
FNhangupX Hangup the call
FNkeyX(timeoutX) Read a character with timeout
Returns the character, or

E Error (from RSTS)

H Phone hung up

T Timeout

X Bad Escape sequence
FNtimeoutX(secX) Set specified timeout, 0 = none

FNtestX(R2%, R3%X)

Test current reply, true if ok
R3X%X is -1 to ignore it.
FNtest%X() checks character,
intermediates, and finals.

FNptestX(R3%) Test phone reply (R2X checked)
FNsendX(text$) Send text to DECtalk.
FNspeakX(text$) Send text followed by <CR><LF>
FNlogZ(text$) Log text message
FNvisible$(charX) Make character printable for

logging and debugging msgs.

FNmessageX(text$, R2%, R3%)

FNphoneX(text$)

FNfunnyZ(text$)
FNdumpX(text$)

Send DCS seq. test reply.
text is "P2;P3...",
return TRUE if ok.
Note: FNmessageX() ignores
R3.PH.TIMEOUT replies.
Send DCS sequence, test reply
text is "P3;P4..."
R2X must be R2.PHONEX
R3% not tested
FNfunnyX called if error
returns as FNmessageX()
Print bad sequence on the log
Dump the current reply

o o o e

R Qo 0o Qo Q0 R Qo o Qo Qo Qo o e Ko Lo 2 o oo eoe e e R e

10010

*

BASIC-PLUS PROGRAM EXAMPLE

'* The application program generally doesn’t call the
t* following routines.

- -

tes ee e e st v s em em es es em tem tEm tem cEm s cm tem

- - e

*

*
*
*

FNsaveX(char)
FNdcs%(text$)
FNcsiX(texts$)

FNfromdectalkX
FNgetseqX(time
FNgetX(timeout

FNreadX%(timeou

Globals:
R1%, R2%, R3%
DT.timeoutX

error.countX
ESCX

CANZ

SUBX

CSI%

DCS%

STX

ESCS

CRLFS$

VTs

R2.PHONEZX
R3.PH.ONHOOKZX
R3.PH.OFFHOOKX
R3.PH.TIMEOUTX

DT.anything
SEQ.anything
qlanythingl

Save type-ahead character,
return TRUE if saved.

Send DECtalk DCS message.
text is "“P2;P3...%,

Send DECtalk CSI message.
text has parm, inter, final.

(timeX) Read key or escape sequence.
%) Read key or escape sequence.
%) Read one character.

parity is stripped.
<NUL> and are ignored.
Return 0% on timeout.
Other errors are fatal.
NOTE: do not use fngetX() to
read from the telephone keypad.
tx) Read a record from DECtalk

current reply parameters
set by FNgetsequenceX()
TRUE if keypad timeouts are
currently enabled.
Incremented on serious errors
ESC character (parity bit cleared)
CTRL-U character (cancel sequence)
CTRL-Z character
CSI character
DCS character
ST character
An escape to send chr$(155%)
Carriage-return, Line-feed
Vertical Tab (DECtalk flush)

R2% phone reply

R3X (phone hung up)

R3% (phone is alive)

R3% (keypad timeout)

reserved for local buffers
reserved for sequence parser
general temporaries

Re Qo S0 Qo o Ko Qo Ko Ko Do R Qe e o 00 00 G0 o Lo o 90 L0 o 00 P00 P Qo o oo X PSPPSR e e

196 BASIC-PLUS PROGRAM EXAMPLE

10100

10110

10120

10130

10190

def* FNinitX(kb$)

[RJ

FNinitX kb

$)

Initialize the DECtalk device
FALSEX if error

Return TRUEX if ok,

!* Open the terminal in "binary" mode.
'* Then initialize all constants.

[K]

open kb$ for input as file 8%, mode 32%+16%+4%+1%
open kb$ for input as file 9%, mode 32X%++16%+4%+1X

- 64% +

Clear input buffer
Clear input state
3 parameters
For debugging
TRUE
FALSE
Escape
Define escape char
DECtalk flush char
<CR><LF> string
CANcel (CTRL-U)
SUBstitute (CTRL-2Z)
! Define
! C1 control
! characters

128%)) ! CTRL-Q

No local->host
"Who are you"

Read escape sequence

\

\ DT.incount¥%, DT.inend% = 0% 4
\ SEQ.stateX = 0% !
\ DIM DT.p%(3), SEQ.p%X(3) !
\ DIM qX%(256) !
\ TRUEXZ = (1% = 1X) !
\ FALSEX = not TRUEX !
\ ESCX% = 27% '
\ ESC$ = chr$(ESCX + 128%) !
\ VT$ = chr$(ascii(’K’) - 64%) !
\ CRLF$ = chr$(13%) + chr$(10%) !
\ CANX = ascii(’U’) - 64% !
\ SUBXZ = ascii(’Z’) - 64X !
\ CSI%Z = ascii(’[’) - 64% + 128%
\ DCS% = ascii(’P’) - 64% + 128%
\ STX = ascii(’\’) - 64% + 128%
\ R2.PHONEX = 70X%

\ R3.PH.ONHOOKX = 0%

\ R3.PH.OFFHOOKX = 1%

\ R3.PH.TIMEOUTX = 2%

q% = FNsendX(chr$(ascii(’Q‘)

\ g% = FNgetX(2%) while (q% > 0%) ! Drain text
\ q% = FNdcs%("82") !
\ g% = FNcsiX("c") !
\ g% = FNfromdectalk%(5%) !
\ if (DT.charX <> CSIZ% !

or DT.finals <>

o

or DT.private$ <> ’?°

or R1%

<> 19%) then

Check
for
DECtalk

reply

q% = FNfunnyXZ("initialization")

\ FNinitX = FALSEX

\ goto 10190

q% = FNsendX(ESC$ + "!p')

\
\
\

q% = FNdcsz("80;1'")
DT.timeoutX = 0%
FNinit% = TRUEX

fnend

Return failure
from FNinitX()

Soft Terminal Reset
Set MODE SQUARE

No timeouts now
Return TRUE

e Qo Q0 R e Qo Qe

Qo 0o Sv Qo Qo Qo S0 Do Qo Do R o W Qe P e e N e d N R

Qo S0 20 2o o R0 Ko G o Do P

P

2

[I R Y S I

N

1

10200

10210

10220

10230

10240

10250

10260

10290

10300

10310

BASIC-PLUS PROGRAM EXAMPLE

def* FNanswerX
FNanswer2?X

Finish off any current call (hanging up the phone)
Then setup and answer the next call.

Return TRUEX if the call was answered.

Return FALSEX if there’s serious problems.

T

FNanswerXZ = FALSEX

\ g% = FNgetX(2X) while (q% > 0%X)

\ goto 10290 if (not FNphoneX(""))

\ if (R3X = R3.PH.OFFHOOKX) then
goto 10290 if (not FNhangupX)

Assume error
Drain text
poll status
if alive,
hangup phone

if (R3% <> R3.PH.ONHOOKX) then
qX% = FNfunnyX("hangup/poll™)
\ goto 10290

still alive?
Urk.
exit this

- -

goto 10290 if (not FNphoneX("10;1")) ! answer 1 ring
\ 1f (R3X <> R3.PH.ONHOOKX) then ! ok?

q% = FNfunnyX("enable answer") ! Urk.

\ goto 10290 ! exit this

q% = FNfromdectalkX(0X) wait for ring

-

\ if (q% <> DCSX) then ok?
qX% = FNfunnyX(“waiting for ring") ! oops.
\ goto 10290 ! exit this

if C(not FNptestX(R3.PH.OFFHOOKX)) then
qX% = FNfunnyX("expecting offhook")
\ goto 10290

DT.timeoutX% = 0%
\ DT.pending$ = "*"
\ FNanswerX = TRUEZ

No timeouts now
Nothing pending now
ok.

fnend

def* FNtimeoutX(secondsX)
FNtimeoutX((seconds2i)

Enable or disable keypad timeout. Note that

FNtimeout%X(non-zero%) will examine the state of the
type-ahead buffer before actually enabling timeouts

if (secondsX > 0X%X) then
secondsX = 0% if C(len(DT.pending$) > 0%)
\ if (secondsX > 0X) then
q% = FNsyncX ! make sure all heard
\ seconds¥% = 0% if (len(DT.pending$) > 0%)
If the program requests that timeouts be turned
on, perform some special checks that the user
hasn’t already entered any text (which would be
stored in one of the type-ahead buffers. If
something is pending, turn timeouts off. This is
needed because RSTS allows a program to run even
if all output has not been sent to the device.

o 00 oo oo e R e

Re 00 0 R =

e

o Q0 S0 > = e

LB B N B B IR B

198 BASIC-PLUS PROGRAM EXAMPLE

10320

10330

10390

10400

10410

10490

10500

10510

10590

10600

10610

goto 10390 if (seconds% = DT.timeoutX) ! Don’t resend
\ print #2%, "timeouts set "; seconds% if (DT.log¥%)
\ g% = FNphoneX("30;" + numi$(seconds¥))

DT.timeout% = seconds¥% ! save timeout state
\ if (not FNptestX(R3.PH.OFFHOOK%X)) then
q% = FNfunnyX("timeout")

fnend

def* FNsyncX

]

FNsyneci#

Synchronize with DECtalk. This function returns
when all text sent to DECtalk has been spoken.
Warning: if you have sent much text to DECtalk and
the moon is in the wrong phase, there is a very
slight chance that this code could get an operating
system timeout, even though there are no errors.

q% = FNsendX(VT$)- ! Flush speech
\ g% = FNdecsx("11™) ! Send sync
\ if (not FNmessageX("22", 32, -1)) then
q% = FNfunnyX("sync'")
fnend
def* FNhangup¥
]
FNhangupX

Hangup the telephone. Returns when the phone is
properly on-hook (TRUEX) or an error is detected.

FNhangup% = FALSEX ! Assume problems

\ goto 10590 if C(not FNphoneX("11")) ! send hangup
\ while (R3% = R3.PH.OFFHOOKX) ! wait until
\ sleep 5% ! it’s hung up
\ goto 10590 if (not FNphoneZ("*))
\ next ! loop forever
\ FNhangupX% = TRUEX ! 0K now.
fnend

def* FNphoneX(text$)

'
! FNphoneX (text$)

!

! Send a phone message, return the FNmessageX code.
You should then call FNtestX to see just what the
phone state actually is.

‘- -

if (texts <> ") ! If extra parameters
then text$ = "60;*" + text$! tack them on, else

else text$ = "“60" ! just do status report

e

L

e 0 0o e L PP P oWw e (4

. R e e x

R o o o e o e

. R o o o e oS

R R xR

&
&
&

1 71777777000

]

.

10620

10690

10700

10710

10720

10790

10800

10810

10820

10890

BASIC-PLUS PROGRAM EXAMPLE

FNphoneX = FNmessageX(text$, R2.PHONEX, -1%)
fnend
def* FNsaveX(charX)
1
FNsaveXCchari%)
If the charX came from a user data entry, save it in
the DT.pending$ buffer and return TRUEX, otherwise,
return FALSEX. Note that FNsaveX() watches for

asynchronous keypad timeouts.

Note that unreasonable amounts of type-ahead may
cause the program to overflow memory.

s e tee e e e e e e s

FNsaveX = TRUEX

\ if FNptestX(R3.PH.TIMEQUTX) then ! Timeout?
goto 10790 if (DT.timeoutX = 0%) ! Disabled?
\ DT.timeout¥% = 0% ! None now
\ goto 10790 if (len(DT.pending$) > 0%)
\ charX = ascii(’T’) ! Save ‘T’

if Cinstr(0%, "0123456789*#ABCDT", chr$(chari)) = 0%)

then FNsaveX = FALSEX

else DT.pending$ = DT.pending$ + chr$(char?)
fnend
def* FNkeyX(timeoutX)
]

FNkeyZ(timeoutZ)

Read a keypad character (in there is one in the
type-ahead buffer, or read a character or escape
sequence from DECtalk. The timeoutX parameter is
non-zero to enable timeouts.

extended to compensate for RSTS/E output buffering.

FNkeyX ignores user timeout if timeout was disabled.

qX = FNtimeoutX(timeoutX) ! Set/clear timeouts
\ if C(len(DT.pending$) > 0%) then

FNkeyX = ascii(DT.pending$)

\ DT.pending$ = right(DT.pending$, 2%)

\ goto 10890

timeoutX = (timeoutX * 4X) + 60% if timeoutX > 0%

\ q% = FNfromdectalkX(timeoutX)

\ q% = ascii(’'T") if FNptestX(R3.PH.TIMEOUTX)
\ DT.timeoutX = 0% if (g% = asciiC(’T’))

\ g% = ascii(’H’) if FNptestX(R3.PH.ONHOOKZ)

\ qX = asciiC’E’) if (q% <= 0%) ! 0.S. error
\ FNkeyX = q%

fnend

Note that the timeout parameter, if non-zero, will be

Re Qo fo Ko Qo Qo Qo o ™ P e Qe o

o o o o e e

e e 2

o e oo e e [

R Qo e e @

R R Qo o o R o

L4

200 BASIC-PLUS PROGRAM EXAMPLE

12000

12010

12020

12090

12100

12110

12120

12180

12190

12200

def* FNmessageX(text$, t2%, t3%)

- -

FNmessage$ (texts$s, t 2%, t 3 %)

Send a DECtalk DCS sequence
for a reply. Make sure the
and t3X parameters. Return

to DECtalk and wait
reply matches the t2%
TRUEX if ok, else FALSEX.

A keypad timeout (escape sequence) may be read when
we are expecting some other reply. In this case,
the timeout is ignored, the timeout status flag is
set FALSE and we read another sequence.

q% = FNdcsi(text$)
\ FNmessageX = TRUEX

q% = FNfromdectalkXZ(60%)
\ goto 12020 if (g% = STX)
\ goto 12020 if FNsaveXZ(qZX)

\ if not (FNtestX(t2%,

t3%)) then

Send the sequence
Assume success

get something
ignore string term.
save type-ahead

! Check seq.

q% = FNfunnyX("message test error")

\ FNmessageX = FALSEX

fnend

def* FNfromdectalk%(timeout%)

FNfromdectaltk%Ctimeout %)

Read an escape sequence or keypad character. Dump
junk between DCS final and string terminator.

if (SEQ.stateX <> 0% and SEQ.stateX <> STX) then

gosub 12200
\ goto 12180

SEQ.stateX = 0%

\ g% = FNgetsequenceX(timeoutX)

\ gosub 12200
\ g% = FNtossX if (q% = DCSX)

FNfromdectalk% = DT.charX

fnend

Grab the sequence
And return char value

Nothing pending now
Get something

Make it current
Toss junk until ST

Return character

Subroutine called from FNfromdectalkXZ to copy the
last escape sequence read into the "current sequence"
buffer. This is needed to skip over junk between

the DCS final and the string terminator.

R R R R

L4 R 2 o o o e o R

R R >

R o o

L

JR——

1

]

12210

12290

12300

12310

12320

12390

13000

DT.char% = SEQ.charX

BASIC-PLUS PROGRAM EXAMPLE 201

Sequence type

]

\ DT.final$ = SEG.final$! Sequence terminator
\ DT.private$ = SEQ.private$! private characters
\ DT.inter$ = SEQ.inter$! Intermediates

\ DT.parmX = SEQ.parmX ! Parameter count

\ R1%, DT.p%C1%) = SEQ.pXC1%) ! Param’s

\ R2%, DT.p%(2%) = SEQ.p%(2X) !

\ R3%, DT.p%(3%) = SEQ.pX(3%) !

! \ print #2%, dt.parm¥%; "parms: "; R1%; R2%; R3%
return

def* FNtossX

FNto

5 5 %

Called after reading a DCS, this function reads
text to the terminating string terminator.

SEQ.stateX = 0%

qX% = FNgetsequenceX(S5X)

\ if (q% <= 0% or (g% >= 128% and q% <= 159%))
then FNtossX = qX%

else goto 12320

fnend

def* FNgetsequenceX(timeoutX)

ta tem em s sem tEm sem tem cEs sES JEN Em tEm tEm ER tER JEs lem S Es S Em Gem cem les lEe e

FNgetsequenceX(timeout?X)

Read the next character or the next ANSI standard
Escape Sequence.

Initialize by setting SEQ.stateX to zero. Returns:

SEQ.

Note
goto
goto

goto
goto
goto

The

SEQ.
SEQ.
SEQ.
SEQ.
SEQ.
SEQ.
SEQ.

stateX

sequence final character

the following goto’s:

13010 to
13020 to

13120 to
13130 to
13140 to

following
char?
final$
stateX
parm%
pAL]
inter$
private$

read the next character in a sequence.

continue processing (needed when escape

followed by a second character turns
into a C1 control character).

exit an ESC sequence

exit after reading a DCS/CSI sequence.
exit a CO0 control within a sequence.

is set by this module:

the character or sequence type

the sequence final for CSI/DCS/ESC
zero when sequence ends.

number of parameters

each parameter as read

intermediates

private introducer, ‘X’ if error seen

R Qo R o Qo o Q0 % G0 00 Qo o R P o M o P 2 oo o> S >N

e 0o Q0 @ R0 o R o e

= e o o Re R fo o S B P e

L4

202

13010

13020

13030

13040

13050

13060

13070

BASIC-PLUS PROGRAM EXAMPLE

DT.cX% = fngetX(timeoutX) ! Get a character

if (DT.c% = ESC% ! If the character

or DT.c% = CSI% ! introduces a new

or DT.cX%X = DCS%) then ! sequence, initialize
SEQ.stateX = DT.cX% ! all work areas.

! \ print #2X%X, *"seq start: "; fnvisible$(dt.c¥%)

\ SEG.inter$ = uu

\ SEQ.privates$ = v

\ SEQ.parm% = 0%

\ SEQ@.pXC1%), SEQ.pX(2%), SEQ.p%(3%) = 0%

\ goto 13010 ! go read another byte
goto 13140 if (SEQ.stateX = 0%) ! done if no sequence
!

! Continue processing the current sequence

!

\ if ((DT.c%Z >= 128% and DT.cX < 160%) ! C1 control
or (DT.cX = CANX) ! or CTRL-U
or (DT.c% = SUB%)) then ! or CTRL-2Z

SEQ.stateX = 0% ! force sequence exit

! \ print #2X%, "cO0 control: "; fnvisible$(dt.cX)

\ goto 13140 ! and return CO0 control
goto 13140 if (DT.cX < 32%) ! Exit if CO control

!
! Process C1 introducers, intermediates, parameters,
! sequence terminators and other strange stuff
4
\ if (DT.cX < 48%) then ! Intermediate
SEQG.inter$ = SEQ.inter$ + chr$(DT.c%)
' \ print #2%, "intermediate: "; fnvisible$(dt.c%)

\ goto 13010 ! Go get another
if (SEQ.stateX = ESCX) then ! ¢ESC> -> C1 control?
q% = DT.cX and 63% ! Mask out lower 6 bits
\ goto 13130 if (SEQ.inter$ <> ™" or q% >= 32%)
\ DT.cX = q% + 128% ! Make it a C1 control
'\ print #2%, "c0 -> c1: "; fnvisible$(dt.c¥%)
\ goto 13020 ! Process C1 control
goto 13120 if (DT.cX >= 64%) ! Sequence terminator

' \ print #2%, "not terminator "; fnvisible$(dt.c¥X)

\ goto 13080 if (DT.cX < 60%) ! private introducer?

! \ print #2X%, “private introducer "; fnvisible$(dt.c%)
\ if (SEQ.parm% > 0%) ! maybe, but illegal

then SEQ.privates$ = "x* ! after first param.
else SEQ.private$ = chr$(DT.c%)

\ SEQ.parm% = 1% ! Mark "param"
goto 13010 ! Read another char.

L d

[I L IR IR R] e 2 Q0o d e ox e

o oo

e Qo o e Qo Ko Lo o

o

]

]

1

1

s s s e e

1

.

13080

13090

13100

13110

13120

13130

13140

13180

13190

14100

BASIC-PLUS PROGRAM EXAMPLE

1

! We know the character is in the range “0’..’9’ or
1 7;¢ (separator) or ‘:’ (illegal separator)
]

SEQ.parmX = 1% if (SEQ.parmX = 0X)

! \ print #2%, "param or sep: "; fnvisible$(dt.cX)

\ if (SEQ.inter$ <> "") then ! No param’s after
SEQ.inters = " ! intermediates.
\ SEQ.private$ = "X" ! Mark it invalid.
' \ print #2%, "“parm or separator after inter"

if (DT.c% <= ascii(’9’)) then ! Parameter digit
SEQ.p%(SEQ.parm%) = ! Make it a number

(SEQ.p%(SEQ.parm%) * 10%) + (DT.c% - asciiC’0°))

'\ print #2%, *digit, param =ty seq.pZ(SEQ.parmZ)
\ goto 13010 ! Go read another byte

if (DT.c% = ascii(’;’)) then ! parameter separator
SEQ.parm% = SEQ.parmX% + 1%
\ goto 13010 ! and read another byte

SEQ.private$ = "X t /:’ isn‘t a separator
! \ print #2%, "bad separator "; fnvisibles(dt.c%)
\ goto 13010 ! read another byte

'

! Character is a sequence terminator. If no parameters
! were read, return a single zero-valued parameter.
!

SEQ.parmX = 1% if (SEQ.parmX = 0%)

'\ print #2%, “terminator: "; fnvisible$(dt.cX%)

g

! Jump here at the end of the sequence.

L

SEQ.final$ = chr$(DT.c%) ! Set the final

\ DT.c% = SEQ.stateX ! Get return value
\ SEQ.stateX = 0% ! Not in a sequence
SEQ.charX% = DT.c% ! Character code
FNgetsequenceX = SEQ.charX ! Return value
fnend ! That’s all, folks

def* FNsendX(text$)
'
FNsend2%(text$)
Send a string of text to DECtalk. Note, the text

length must be less than the DECtalk terminal buffer
size.

P R A R L

L4 Qe fo So Ko Qe

L4

o Qo R

[B

o R0 o e e

e Qo Qo o R & S o

204 BASIC-PLUS PROGRAM EXAMPLE

14110

14190

14200

14300

14400

15000

15010

15020

field #9%, len(text$) as q$
\ lset q$ = texts
\ put #9%, record 4096%, count len(text$)
\ if (debugX and DT.log%) then

print #2%, using ‘sent: ### "’ Jen(text$);

\ change text$ to q%

\ print #2%, FNvisible$(q%(q¥%));

for q% = 1% to q%(0%)

\ print #2%, ‘’u/
fnend
def* FNcsiX(text$) = FNsendX(ESC$ + "[" + text$)
]

FNcsi2Ctexts$)

Send a Control Sequence to DECtalk.

def* FNdcsX(text$) =
FNsendX(ESC$ + "PO;" + text$ + "z" + ESCS$ + "\")

FNdcsZCtext$)
Send a DECtalk Device Control Sequence.

Note that the DECtalk P1 parameter, final, and
string terminator are automatically included.

R LR

def* FNspeakX(text$) = FNsendX(text$ + CRLF$)
'

! FN1lIineZ (texts$)
!
!
!

def* FNgetXZ(timeoutX)
FNgetX(timeout%)

Read the next character from DECtalk.

timeout% = 0% means none
timeoutX > 0% wait timeoutX seconds
timeout% = -1% return immediately if none

- e e e e e e

return 0% on timeout, fatal exit on other errors
The character is forced into the range 000 to 127
and <NUL> (000> and €127) are ignored

while (DT.incountX >= DT.inend%) ! None saved?
\ goto 15080 if (not FNread%(timeout%))

next

Send a line of text to DECtalk, followed by <CR><LF>

oo e oo O o S0 G0 0o 0o Qe ™ R Q0 Qo Q0 Qo Qo o Ko Qo

e Q0 2 R 00 Qo

[B B I R R

e R

*

N

-

1]

11]

15030

15080

15090

15100

15110

15120

15150

15180

15190

BASIC-PLUS PROGRAM EXAMPLE 205

field #8%, DT.incountX% as q$, 1% as q$!
DT.incount¥% = DT.incountX + 1X !
q% = ascii(q$) and 127% !
goto 15010 if (g% = 0% or q% = 127%) !
FNget% = gX !
goto 15090 !

PP A A A

FNget% = 0X !
fnend
def* FNread%X(timeoutX)

FNreadX(timeout?2)

Read a record from DECtalk.

get char
step index
drop parity
ignore nulls
return char
exit

got timeout

! timeoutX = 0% means none

! timeoutX > 0% wait timeoutX seconds

! timeoutX = -1% return immediately if none

I return FALSEX on timeout, fatal exit on other errors
! return TRUEX on success.

1

goto 15120 if DT.incount% < DT.inendX 4

\ on error goto 15150 !

\ q$ = sys(chr$(3%) + chr$(9%)) !
+ sysCchr$(4X) + chr$(9%)) 4

wait timeoutX if timeoutX > 0X H

get #8% if timeoutX >= 0X !

get #8%, record 8192% if timeoutX < 0%

DT.inend% = recount

wait 0%

DT.incountX = 0%

on error goto 19000

if (debugX% and DT. log%) then

P AP AP A i A
- e

Still stuff
grab error
no echo

odt mode
timeout
read buffer

got it

no timeout

clear index
common exit

print #2%, using “read: ### ‘", DT.inend%;

\ field #8%, DT.inendX as q$

\ change q$ to q%

\ print #2%, FNvisible$(qX(qX));
for q% = 1% to qXC0X)

\ print #2%, "'"

FNreadX = TRUEX
\ goto 15190

resume 15180
if (Cerr = 15% and timeoutX > 0%)
or (err = 13% and timeoutX < 0%))
\ goto 19000

FNreadX = FALSEX

fnend

o e e g0 o 0

e

L4

oo e G G G0 o O e

e o R0 o M G0 S Re e o 90 o O o o>

o Qe

o o G 0

e

206 BASIC-PLUS PROGRAM EXAMPLE

16000

16100

17000

17010

17090

17100

def* FNtestX(t2%, t3%) =

def* FNptest%(t3%) =

(DT.charX% = DCS%) !
and (DT.final$ = ‘z’) ! sure
and (len(DT.inter$) = 0%) !
and C(len(DT.private$) = 0%) !
and (R1% = 0%) ! DECtalk
and (t2% = R2%) ! Check R2X%
and (t3% = R3% or t3% = -1%) ! maybe check R3%

FNtestXxct2x, t3%)
Return TRUEX 1if the current reply is a properly-
formed DECtalk reply sequence whose R2% and R3%

parameters match T2% and T3%. T3% is ignored if
it is -1%.

! Test phone reply
FNtestX(R2.PHONEX%, t3%)
FNptestzCt3x)

Return TRUE% if the current reply R2X parameter
is R2.PHONEX and the T3% matches R3%

def* FNfunnyX(text$)

FNfunnyXCtexts)

Log an error message and dump the current reply.

error.countX = error.count¥% + 1%

\ if (DT.log%) then
print #2% if C(ccpos€2%) <> 0%)
\ print #2%, "Illegal reply at "; text$; ".v
\ FNfunnyX = FNdump%("')

fnend

def* FNdump%(text$)
1

- -

FNdumpX%XCtexts)

! Dump the current reply.
'

R0 R0 Q0 R o Qo2 R R o e g

L N

R Qe R Qo oo o

R e o = o 0

o 2 e ox o

1710700

B I

.

B

17110

17190

17200

17210

17290

17300

17310

BASIC-PLUS PROGRAM EXAMPLE 207

if (DT.log%) then

print #2%, "Last sequence read";
\ print #2%, " at w. text$; if C(texts <> ")
\ print #2%, ": ";

\ if (DT.charX = 0%)

fnen

d

the

n print #2%, "“<TIMEOUT>"

else print #2%, FNvisible$(DT.charX);
\ print #2%, DT.private$; DT.inter$;

\ for g% = 1% to DT.parmX

\ print #2%, num1$(DT.pX(q%));

if (DT.pX(q%) <> 0%)
\ print #2%, ";";

if ((q% + 1%) < DT.parm%)

\ next q%
\ print #2%, DT.final$;

\ print #2%, "¢ST>"; if (DT.char% = DCSX)

\ print #2%

def* FNvisible$(cX)

if CecX = ESCX) then FNvisible$

else
else
else
else
else
else
else

fnen

if
if
if
if
if

F N

(cX
CcX
CcX
CcX
CcX
CcX

visible$CcX)

Return "datascope" version of cX%

= DCS%) then FNvisible$ =
= CSI%) then FNvisible$ =
= STX) then FNvisible$ =
= 10%) then FNvisible$ =
= 11%) then FNvisible$ =
= 13%) then FNvisible$ =
= (c% >= 127% or cX% < 32%)

q‘ = M

PP AP A A e
0
*

$
FN

d

vis

e~ 3 f (cX >= 128%)
e if (eX ¢ 32%)
c% and 127%

= M¢ESCH"™

"¢DCSH"
"¢CSI»™
"eSTH" .
CRLFS$
"eVTH"

qQ$ + """ + chr$(ck + 64%) if (cX < 32%)

q$ + chr$(cX) if (cX >= 32%)
q$ + "> 1f q.visX
ible$ = q$

def* FNlogX(text$)

FNlogiX%Ctexts$)

Log a text message

if (DT.log%X) then
print #2%, date$(0%); ™ "; time$C0%X);

"o texts

e %o Qo fe R e

L4

e R0 00 o oo e

G Qo Qo o Qo 0 00 00 G0 o G0 R e 0 R

o

L o

- -

208 BASIC-PLUS PROGRAM EXAMPLE

17390

17400

17410

17490

17500

17510

17590

19000

19010

19100

19180

19190

32767

fnend

def* FNyesnoX(prompt$, default$)

Prompt and get a yes/no answer

- s

q% = 0%
\ until (g% = 1% or q% = 5%)

FNyesnoXCprompts$,defaults)

\ q$ = FNprompt$(prompt$ + "(Yes/No)", defaults$)
\ g% = instrC1%, “YES NO", cvts(q$, -1%))

\ next
\ fnyesnoX = (g% = 1X)

fnend

def* FNprompt$(prompt$, defaults
]

FNpromptXCprompts$,defaults)

! Prompt and get a response
!

)

print #1X%, prompt$; * «"; default$; "»? u;

\ input line #1%, q$
\ FNprompt$, q$ = cvt$$(qs, 397%

]

\ FNprompt$ = cvt$s(defaults, 397%) if len(q$) = 0%

fnend

' Fatal Error
!

error% = err
\ error.line¥% = erl
\ resume 19100

print
\ print ‘Fatal Error "’;

cvi$sCright(sys(chr$(6%) + chr
+ chr$CerrorX)), 3%), 4%);

‘" at line’; error.line¥
stop
goto 32767

end

- e

save error number
and error line
and take fatal exit

force new line
print error message

$(9%)

and line number

Qe Re 9o o 9o e oo oo Re R o o o o o R ™ e o fo R

e Qo

R

e R

e Qo P > o

’M

DECtalk ESCAPE SEQUENCES

This appendix summarizes the escape sequences (and their parameters)
described in this manual. The following tables list escape sequence mnemon-
ics and their ASCII representations.

You can verify each ASCIl character by checking the decimal value that
appears below the character.

209

210 APPENDIX A: DECtalk ESCAPE SEQUENCES

Table A-1 Escape Commands

Mnemonic

DA Pﬁmary
DECACT
'bECSTR "
DECTC1

DECTST
DSR Brief

 DSR Extended

DT_DICT

Escape Sequence
Decimal Value

ESC [0O c
027 091 048 099

Request DECtalk to identify itself. See Table A-2 for
reply.

ESC SP 7
027 032 055

‘ Select 8-bit C1 control character receptaon (accept the

high-order bit).

Esc [I p
027 091 033 112

‘Reset to power-up state.

ESC SP 6
027 032 054

Select 7-bit C1 control character reception (truncate the
high-order bit).

ESC [5 ; Pn y

027 091 053 059 *** 121

Initiate local self-tests. See Table A-6 for Pn parameters.

ESC [5 n
027 091 053 110

Give a brief status report. See Table A-2 for replies.

ESC [n

027 091110

Grve an extended device status report. See Table A-2 for

replies.

ESC P O ;: 4 0 2 name subESC \

027 080 048 059 052 048 122 027 092

Load user dictionary. See Table A-2 for replies.

"ram A1
i % ;

m«mﬁg i ‘

DT..&NQEX

i Table
' n'r..mnex.iﬂEPLY

.
i
i

pr.ioe |

;' DT_,MA, IASK

DT_MODE

DT_PHONE

m P o0 ; 2 0
027 080 048 059 050 ,,,aﬁs“wzzczma

~ same as for amm% Ssa‘t‘awe A2 for repty

APPENDIX A: DECtalk ESCAPE SEQUENCES 211

Psziﬁc\

~ Insert index flag in text. P3 ranga is 0 to 32767
v ,iswt as ASQI@ e:haraem) ;

ESC P 0 ; 8 1 ; P3 z ESC\’
027 eaemamasﬁmasam 122 027 092

bugging kag fum:!éma. sm Table A-’? far

ESC P O ; 8 3 ; P3 2 ESC\

027 mma&smw 958‘" 122927092

' ,Gammts how ﬂﬁcwk 'sends escape sequences and
~ ;keypade!wmrstotiwhmm‘fmaa-afwm

iascve aa;m“zesc\
027 mmme&sma&sm 122 027 092

et DECtalk mads See 'fabie A-s fer P3 pammaters

ESC P 0 ;‘s_s% 0 ; Pn ; Pn ztext ESC\
1027 080048 059 054 048 059" 059™** 122.. (027092

Ccntmi attachacf telephone and Wmne keypad
mdm See. Tam A-& for Pn patmm

212 APPENDIX A: DECtalk ESCAPE SEQUENCES

Table A-1 Egﬁppe'cammands {Cont)

o Escape Sequence
Mnemonic _Decimal Value
DTPHOTEXT | ESC P 0 ; 0 2 tt ESC \ = —

027 080 048 059 04»8 122 027 092
,Speakphunemlctext L —

DT_SPEAK ESC P 0 : 1 2 : Py z ESC \
0 027 080 048 059 049 050 059 *** 122 027 092

Enable (P3=1) or dlsable (P3==0) speaking

DT_STOP ESC P 0 ; 13, 0 z ESC \ ‘ —
' 027 080 048 059 049 048 122 027 092

L Stop spaaking am:l dump any pending unspoken text , —

DT_SYNC Esc P O ; 1 1 2 ESC \
| 027 080048 059 049 049 122 027 092

Finish spaakmg current text before processing next
command. ; ,

DT_TERMINAL ESC P 0 : 8 2 Ps z ESC\
1027 080 048 059 056 050 ass 122027 092

~ Set local terminal mode See Tab!e Aut for P3
- parameters.

DECD = ks 7
1027 090

.Old 1dentify termmai request Not racommandad

e ,"TEsc e 0 "
. e e ; T

Reset m power-up state

si01Ir | st @0 B
L B i

. 'Se'ect 7-bit C1 comrol character transmrsswn

APPENDIX A: DECtalk ESCAPE SEQUENCES 213

[

- -

214 APPENDIX A: DECtalk ESCAPE SEQUENCES

;i;"‘;:'rahie A2 DECtalk stam Repﬁes (c‘om; i

DSR Extended
' *Replﬁes '

L 1 ,:Escam SQQWBBQ
jﬁecimaikue Gy . ;
BSc [0 nECf 7 2 1 n

. 2 091 048 110 02? 0&1 663 050 949 110

'~V'\;;Nc malfunctwna, f:rst rapry

ESC [0 n Esc '{' "? 2 0 @

027 09 048 110 027 091 063 050 048 110

~ No maliunctmns second or later repiy

Esc [3 n Escp ?pn,;,,,,’ P

027 091 051 110 927091 aaa o 059 M

. Maifunctton occurred Pn paramater vaiues are as fo!lows

2 . ',2 i Commumcatfon faﬂure
050 ?050, ,
- 2 3 Input buffer overflow.
. 050 o081 - .
2 4 Last NVR opera'tion\'failed. '
050 o8z L L .
4 5 Error in phonemic transcription.
. 2 s Error in DECtalk prwate comrol
050 054 sequence . ,
2 7 | , Last DECTST fauled
. 050 5-055 '

' DT,_JNDEX_QUER?
. Reply ‘ ~

ESC P 0 32 7; P32 Bsc \
027 080 048 059 051 050 059 122 027 092

PR3 is tha ASCH vaiue of the last mdex spcken

C)T_JNDEX..,.REPLY

ESC P 0 : 3 1 . p3 s pSC \

i 027 080 048 GSQ 051 049 059 T ue 027

Heply sent by DECtaik after speaking mdexed text. P3 is
the ASCII value of the last index spoken.

APPENDIX A: DECtalk ESCAPE SEQUENCES 215

wefzﬁatmsg in harﬂcwy farmat

- TERM_ aucha amrs whan tamsinai is in seet-

TERM*F?LTE;; e ,‘gBe not send &Ecmm s pe
e Lsaquanmsmihemrmmai ,

|
I
o

216 APPENDIX A: DECtalk ESCAPE SEQUENCES

PH_HANGUP

- PH_KEYPAD

PH_NOKEYPAD

PH_TIMEOUT

PH_TONE_DIAL

PH_PULSE_DIAL

- 049
048
048

049

- Send a telephone status report.

Enabfeteaephoneamoa nswer.

Hang up the teiephone and

~ disable the keypad.

~ Enable the,téléﬁh&;he keypad.
Qisable the ftélephor{é xeypad. '

- Send telephone status message

after n seconds (Chaptér 4).

Dial the telephone by usmg
Tcuch—Tona diabng

Dial the telephone by using

 pulse dialing.

APPENDIX A: DECtalk ESCAPE SEQUENCES 217

Function .
Speak an Ascu text.
 Log all spoken text in phonemic format.

,Logaii!ext readfmmmhostmthe
ml tsrmmai '

,Lag all text read fmmthehostonma '
‘me / ,

. 'Logaﬁthsamwmehostonmemca!

: ¢£.cg aﬁ emr massagas on the terminal.

218 APPENDIX A: DECtalk ESCAPE SEQUENCES

PHONEMIC ALPHABET

This appendix summarizes the phonemic symbols that DECtalk uses. DECtalk
recognizes all 17 vowel phonemes and 24 consonant phonemes in the English
language (Table B-1).

DECtalk uses two-character symbols for each English phoneme. DECtalk also
recognizes a one-character system of representing phonemes. Use of the one-
character system is discouraged, as it is not in wide use and may not be
supported on future releases of DECtalk. However, DECtalk can be set to the
one-character system. Refer to Chapter 4 of the DECtalk DTCO1 Owner's
Manual.

Table B-2 lists emphasis characters, for adding stress and suggesting proper
phrasing (syntax).

219

220 APPENDIX B: PHONEMIC ALPHABET

Table B-1

ir
ar
ur

Phonemic Inventory

1-Char.

Symbol

cocOo—">P»m— o0

Consonants

ol
em

ZroTowsogw -(—'-x'*'f*o

 est

2-Char. 1-Char.

Allophones (Override DECtalk internal values.)

o ;

.
x |-
q q
dx &
tx Q

Example Symbol Symbol Example
bake ah » but
Bob aw w bout
beat yu Y cute
bet rr R bird
bite ao ¢ bought
b ae @ bat .
boy uh U book
boat = ix ; kisses
lute ax X ~ about
beer er bear
bar or bore

. poor :
pet . b b bt

.4 d debt

Ken g g guess
fin v v vest
thin dn D this
sit oz oz z00
shin zh Z azure
chin jh J _gin
wet m m met
wt . on n net
head nx G sing
et en N button
red silence
ransom

~ Oration ~ postvocalic r
electric ~ postvocalic | .
‘we eat glottal stop (W'iy qx'iyt)
rider _ flappedd .
Lafin glottalized t

PHONEMIC ALPHABET 221

APPENDIX B:

o

e

.
e
e

3

L
e

L

.

e

-

i

S

e

e

e
L

-

G

-

-
-

L
, G
e

e
o Ao

S i G e ol . co

s . - e

‘

-

G

L

o
s
e

San
S

= el

RELATED DOCUMENTATION

DOCUMENTATION

You can order the following DECtalk documents from Digital.

Title

DECtalk DTCO1
Owner’s Manual
(EK-DTCO01-OM)

DECtalk DTCO1
Programmer
Reference Manual
(EK-DTCO01-RM)

DECtalk DTCO1
Programmer

Reference Card
(EK-DTCO01-RC)

DECtalk DTCO1
Installation Manual
(EK-DTCO1-IN)

Description

This manual gives an overview of DECtalk
operations and a detailed description

of DECtalk off-line (local) operations,
phonemic codes, and spoken text
conventions.

This manual describes DECtalk-computer
connections, DECtalk escape sequences,
and programming methods for interfacing
DECtalk with a host computer and
telephone.

This card summarizes DECtalk phonemic

codes, commands, and escape sequences.

This manual explains how to install and
operate DECtalk.

223

224 APPENDIX C: DOCUMENTATION

ORDERING INFORMATION
You can obtain ordering information by telephone from 8:30 a.m. to 6:00 p-m.
Eastern Standard Time (EST) or by mail.
By phone
Continental U.S.A. and Puerto Rico
1-800-258-1710 —
New Hampshire, Alaska, Hawaii
1-603-884-6660
Bymail T
In the U.S.A. and Puerto Rico
Digital Equipment Corporation
PO Box CS2008 —
Nashua, New Hampshire 03061 ?
Outside the U.S.A. and Puerto Rico r’*
Digital Equipment Corporation

Attn: Accessories and Supplies Business Manager
c/o Local Subsidiary or Digital-Approved Distributor

Abbreviations
how indexing affects, 39
in user dictionary, 43
ALGOL, 70
Allophones, 220
Alternate character sets,
selecting, 27
ANSI standards, 22
Answering the phone, 48
Application programs
BASIC-PLUS, 191
C, 69
DECtalk-specific codes, 73
dialog, 15
error codes, 72
flags, 72
guidelines, 15
numeric encoding, 16
SEQUENCE data structure
inC, 78
two-character encoding, 17

INDEX

ASCII code tables

7-bit, 23

8-bit, 25

ASCII character sets,
selecting, 20

ASCI| escape sequences, 6

ASCI__G, 27

Audio delay, 38

Autoanswering telephone, 47

Backspace (BS) character, 11
BASIC-PLUS program, 191
Baud rate with XON/XOFF, 13
Buffer

overflow, 13

size, 13

reset with DT_STOP, 38

225

226 INDEX

Cc

CO control characters, 26, 27

C1 control characters, 26, 27, 32
selecting, 21

C language, 70

C modules
DECTLKH, 83
DEMO.C, 98

DTANSW.C, 100
DTCLOS.C, 101

DTCMD.C, 103
DTDCHA.C, 105
DTDCS.C, 106
DTDIAL.C, 108
DTDRALC, 111
DTDUMP.C, 113
DTEOL.C, 115
DTGESC.C, 116
DTGET.C, 123
DTHANG.C, 125
DTINIT.C, 126

DTINKE.C, 128
DTIOGE.C, 130
DTIOPU.C, 140
DTISKE.C, 143
DTISTIC, 144
DTISVAC, 145
DTKEYP.C, 146
DTMSG.C, 147
DTOFFH.C, 149
DTONHO.C, 150
DTOPEN.C, 151
DTPEEKC, 157
DTPESC.C, 163
DTPHON.C, 167
DTPTES.C, 168
DTPUT.C, 169
DTREAD.C, 170
DTRESE.C, 172
DTSAVE.C, 173

DTSPLICEC, 175
DTST.C, 177
DTSYNC.C, 178
DTTALKC, 179
DTTEST.C, 180
DTTIME.C, 181
DTTONE.C, 183
DTTRAP.C, 185

DTVISI.C, 188
HELLO.C, 190
C program

data structure, 78
DECtalk commands, 73
DECtalk replies, 75
DECtalk-specific
parameters, 73
error codes, 72
flags, 72
logging command
parameters, 77
module list, 80-82 (see also C
modules)
self-test parameters, 76
structure, 70
telephone control
parameters, 74
variables, 72

Characters

backspace, 9

control, 8, 24 (see also CO and
C1)

graphic, 24

hierarchy of, 9

Character sets, 27

7-bit ASCIIl, 23-24

8-bit, 25-26

DEC multinational, 30-32

DEC supplemental graphics, 32
mapping, 20

selecting alternate, 27
selecting ASCII, 20

speaking, 20

Clause boundary, 10, 36
DT_SYNC as, 38
COBOL, 69,70

Code table

7-bit, 23

8-bit, 25

Coding standards, 22
Command

enter phonemic text, 37
index query, 41

index reply, 40

index text, 40

load dictionary, 43

local log, 58

local terminal, 62

speak, 39

stop speaking, 38
synchronize, 38
telephone management, 46
Commands

arguments or parameters, 11
DECtalk, 73

ending sequences, 5
invalid commands, 5
telephone, 45

voice, 35

Communication
DECtalk-computer, 10
DECtalk guidelines, 2
setting up DECtalk, 12
telephone, 45

Computer. See Host computer
Control character logging, 9
Control characters, 8, 24, 26
Controlling DECtalk, 2
Controlling DECtalk speech, 35
CR (carriage return), 8
CTRL-K, 9

CTRL-Q, 13

CTRL-S, 13

INDEX 227

DA primary, 51

Data loss, 13

Data paths, 10

logging and debugging, 60

Data synchronization, 13, 38

Debugging, 58-61

DECAC1, 21

DECID, 52

DECNVR (nonvolatile memory
reset), 58

DECSTR (soft reset), 39, 57

DECtalk speech

sentences and paragraphs, 36

DECTC1, 21

DECTST, 54

DEL (delete), 8

Delete user dictionary, 53, 56

Device attribute request, 51

Device attributes, 51

Device self-test, 54

Device status failure codes, 56

Device status report, 55, 57
brief report, 55

extended report, 55

Device testing, 52

Dialing phone numbers, 47, 49

Dictionary, user, 2,43

status report, 44

deleting, 53, 56

Discarding host data, 13

DSR (device status report), 55

DT_DICT, 43

DT_INDEX, 40, 41

DT_INDEX QUERY, 38, 40, 41

DT_INDEX_REPLY, 40, 41

DT_LOG, 58

parameters, 59

DT_MASK, 64

parameters, 65

228 INDEX

DT_MODE, 32
parameters, 33
DT_PHONE, 39, 45, 46, 48
parameters, 47
DT_PHOTEXT, 37
DT_STOP, 38, 39
DT_SYNC, 38, 39, 41
DT_TERMINAL, 62
parameters, 63

E

Empty parameters, 7

Enable or disable speaking, 39

English, 2,20

rules for text, 36

Enter phonemictextcommand, 37

Error flags, 55, 56

ESC (escape), 8

Escape sequence. See also
Command

ASCII characters, 6
decimal value, 7
description, 2, 4-5

format, 6

mnemonic, 6

parameters, 7

summary list, 210-213
terminator, 5

F

Factory settings, 53, 58
Firmware version level, 9
FF (form feed), 8

Flush pending text, 53
Foreign letters, 20

G

GO-G3 character sets, 27-29

GL (graphics left), 27,32

GR (graphics right), 27, 32

Graphic characters, 24
processing, 33

H

Hang up telephone, 47,48, 53,57

Hardware tests, 52

Host computer, 2,11, 13
commands (see the specific topic)
setup, 12

Host-DECtalk interaction, 10, 42

Host line format, 53

Host line speed, 53

Host port tests, 54

HOSTSYNC, 13

HT (horizontal tab), 8

Hyphen, pronouncing a, 33

Identify terminal command, 52
Index
defining an index, 40
last index seen query, 41
replying when an index is
spoken, 40
Index query command, 41
Index reply command, 40
Index text command, 40
Indexing text, 39
Input buffer, 13
ISO standards, 22

K

Keypad characters

sending, 46

parameters, 47

Keypad mask command, 64
parameters, 65

L

LF (line feed), 8

Line editing on terminal, 63
Load dictionary command, 43
Local line format, 53

Local line speed, 53

Local log command, 58
parameters, 59

Local log flags, 53

Local port tests, 54

Local terminal command, 62
parameters, 63

Local terminal flags, 53
LOG_DEBUG, 59
LOG_ERROR, 61
LOG_INHOST, 61
LOG_OUTHOST, 61
LOG_PHONEME, 61
LOG_RAWHOST, 61
LOG_TEXT, 61
LOG_TRACE, 61

Long sentences, 36
Loopback tests, 54

LS (locking shift) commands, 29

Maintenance commands, 51-67
Mapping 7-bit and 8-bit

sets, 20-21
Marking text, 39

INDEX 229

Memory, 58

Mnemonics, 6
MODE__ASKY, 33
MODE_MINUS, 33

Modes

7-bit or 8-bit, 21

off-line, 4

on-line, 4

operating, 4

setup, 4

MODE_SQUARE, 2,12, 33, 37
Multinational character set, 27
as default, 32

N

Names and definitions
variable, 72

NUL, 8

NVR (nonvolatile memory), 58

o

Operating features, 53
Operating modes, 4
Owners manual, 3

P

Parameters
DECtalk-specific, 73
logging command, 77
self-test, 76
telephone control, 74
values, 7

Parameters in escape

sequences, 6

Pascal, 69

PH_ANSWER, 46, 48
two status replies to, 48

230 INDEX

PH_HANGUP, 48
PH_KEYPAD, 48
PH_NOKEYPAD, 48
Phonemes, 37
Phonemic alphabet, 219-221
Phonemic commands, 35, 37
Phonemic spelling, 35
in abbreviations, 43
recognizing errors in, 43
Phonemic text
interpreting, 33
speaking, 37
using comments in, 37
Phone status, 47
PH_PULSE__DIAL, 49
PH_STATUS, 46, 47
PH_TIMEOUT, 48
PH_TONE__DIAL, 47,49
Power-up status, 51
Product identification, 51
Program language and
structure, 70
Programming
considerations, 13
escape sequence format, 6
escape sequences, 4
Programs
application, 80
Pronunciation
changing, 33
of foreign letters, 14
using phonemics, 37
Public telephone network, 12
automatic hangups, 49
PUP (power up), 51

R

R3_PH_OFFHOOK, 47

R3_PH_ONHOOK, 47,48, 49
R3_PH_TIMEOUT, 46, 47, 48

Received characters, 2

7-bit and 8-bit environment, 32

Replies
DECtalk, 71
Reset, 53-54

RIS (reset to initial state), 39, 52,

56
Rules
for DECtalk sequences, 4
for text, 36

S

S7C1T control sequence, 21
S8C1T, control sequence, 21
Selecting active character
sets, 29
Self-test, 52, 54
Sequences, 5
ending, 5
Setup
escape sequences, 19-33
commands, 4,12
Setup mode, 4
speaking in, 63

using BREAK key to enter, 4

Seven-bit mode, 20

Shift commands, 29

Sl (shift in), 8

SO (shift out), 8

Soft terminal reset, 57
Source programs, ordering, 69
SP (space), 8

Speak
command, 39
foreign letters, 20
phonemic text, 37
Speech
changing rate of, 37
commands that restart, 39
control, 35
enable or disable, 39
stopping, 38
timeout, 36
Square bracket commands, 2
SS2 (single shift 2), 29
SS3 (single shift 3), 29
Standards

coding, 22
Status
power-up, 52

Status report, 55
Status reporting, 52
Stop speaking command, 38
Stress marks, 221
SUB (substitute), 8
Switch-hook flash, 49
Synchronization
data, 13
DT_SYNC command, 38
XON/XOFF example, 14

T

Telephone, 45-50

See also Phone

example, 50

keypad, 47,48
management command, 46
replies, 47

status messages, 47

Telephone control parameters, 74

INDEX

TERM_EDITED, 63
TERM__FILTER, 63, 64
TERM_HARD, 63
TERM_HOST, 63
TERM_SETUP, 63
TERM_SPEAK, 63
Terminal and DECtalk, 2
Terminal commands, 63
Terminal identification, 52
TEST_DATA, 54
TEST_HCONTROL, 54
TEST_HDATA, 54
TEST_POWER, 54
TEST_SPEAK, 54
Text, 36

Timeout, 10, 36, 48-49

231

Touch-Tone keypad, 44, 46, 49

Tracing, 58

U
Underlined text, 9
User dictionary, 2,43
deleting entries, 53, 56
status report, 44

\'
VT (vertical tab), 8

X

XOFF, 12,13, 61
XON, 12,13, 61

