
TSX-Plus
System ManagerJs

Guide

@
s&h computer systems, inc.

TSX-Plus
System Manager's

Guide

§
s&h computer systems, inc.

Third Edition
First Printing -- February, 1984

Copyright (c) 1980, 1981, 1982, 1983, 1984
S&H Computer Systems, Inc.
1027 17th Avenue South
Nashville, Tennessee USA
37212
(615)-327-3670

TSX-Plus
System Manager's Guide

The information in this document is subject to change without notice and should
not be construed as a commitment by S & H Computer Systems Inc. S & H assumes
no responsibility for any errors that may appear in this document.

NOTE: TSX, TSX-Plus, COBOL-Plus, SORT-Plus and RTSORT are proprietary products
owned and developed by S&H Computer Systems, Inc., Nashville, Tennessee, USA.
The use of these products is governed by a licensing agreement that prohibits
the licensing or distribution of these products except by authorized dealers.
Unless otherwise noted in the licensing agreement, each copy of these products
may be used only with a single computer at a single site. S&H will seek legal
redress for any unauthorized use of these products.

Questions regarding the licensing arrangements for these products should be
addressed to S&H Computer Systems, Inc., 1027 17th Ave. South, Nashville,
Tennessee 37212, (615)-327-3670, TELEX 786577 SAND H UD.

TSX, TSX-Plus, COBOL-Plus, SORT-Plus and RTSORT are trademarks of S&H Computer
Systems, Inc. DEC, RT-ll, CTS-300, DIBOL and PDP-II are trademarks of Digital
Equipment Corporation. DBL is a trademark of Digi tal Information Systems
Corporation.

CONTENTS

Chapter 1

DISTRIBUTION KIT • • • • • • • • • •••••••••••• eeeee=~~

Chapter 2

SYSTEM GENERATION
Assembling the TSGEN module •
Setting parameters in TSGEN

General parameters • •
Device spooling parameters •
Record locking parameters • • • • • • • • •
Message communication parameters • • • • • •
Real-time program support parameters • • •••
Performance monitor parameters • • • • • • • •
Shared run-time systems • • • • • • • • • • •
Time-sharing line definitions
Defining start-up files for detached jobs
Line definition example

Assembling the modified TSGEN module
Linking TSX-Plus • • • •
Starting TSX-Plus •
Device handlers for TSX-Plus

Virtual memory handler (VM)
VTCOM/TRANSF support and XL handler
Building device handlers _ _
Patching device handlers for use under TSX-Plus
Device handler restrictions
.TIMIO and .CTIHIO requests

Setting the memory allocation for system programs • •

Chapter 3

SYSTEM AND FILE ACCESS SECURITY
Start-up command files ••••
Log-off command files • • • • • • •
The RUN/LOCK switch
The ACCESS command
The SET MAXPRIORITY command •
Operator privilege • • • • • •
Use of the LOGON facility • • • • • •

Chapter 4

ACCOUNT AUTHORIZATION PROGRAM
Command summary • • • •• ••••••••
Authorizing a project-programmer number ••••
Deauthorizing accounts ••••••••• • • • •

i

1

3
4
5
5

15
16
17
18
19
19
20
26
27
28
28
28
31
31
32
33
34
36
37
37

39
39
40
40
41
42
43
44

45
46
46
48

Listing account status
Listing account usage statistics
Creating a charge information file
Resetting account usage statistics
Exiting from the account authorization program
AUTCVT program

Chapter 5

SYSTEM OVERVIEW
Memory organization

Physical layout of TSX-Plus
User memory

I/O mapping •
Job scheduling

Job priorities
Execution states
Job scheduling algorithm •

Job swapping
Real-time interrupt processing

Interrupt service routines
Interrupt completion routines

Chapter 6

SYSTEM TUNING
Memory utilization

System memory utilization
User program memory utilization

Job scheduling optimization
User program optimization
I/O optimization

I/O wait overlap with computation
Device spooling
Caching
Virtual memory handler (VM)

Chapter 7

SYSMON - DYNAMIC SYSTEM DISPLAY UTILITY
Creating and running SYSMON
SYSMON menu
System status display
Job execution status display
Terminal status display
Message queue display
User times display
CPU modes display

ii

48
49
49
50
50
51

53
53
55
57
57
58
58
59
63
64
64
64
65

69
69
69
70
71
75
76
76
78
78
83

85
85
86
87
89
91
92
93
94

Directory cache display • • • • • •
Shared file data cache display • • • • • •
Data cache display • • • •
Exiting SYSMON • • • • • • • •

Appendix A

STARTUP ERROR MESSAGES • • • • •

Appendix B

SYSTEM ERROR MESSAGES

Appendix C

DEVICE CSR AND VECTOR ADDRESS TABLE

Appendix D

DEVICE DRI\~R SOURCE LANGUAGE PATCH FILES

SYSTEM SIZE CALCULATION
Size of system features
Device handler sizes • • • •

Appendix E

iii

95
96
97
97

99

103

105

107

113 , , ~
........ .,J

115

1. TSX-Plus DISTRIBUTION KIT

The TSX-Plus distribution package you have received should contain the
following items:

1.* TSX-Plus Reference Manual which describes the features of TSX-Plus.

2. * TSX-Plus System Manager's Guide which provides information needed by
the system administrator such as how to generate a system.

3.* TSX-Plus installation guide.

* Note that only new orders include these three manuals. They are not
automatically included with updates.

4. TSX-Plus release notes

5. A magnetic medium (reversible RXOI diskette, RLOI or RL02 cartridge, or
1600 bpi magnetic tape) containing at least the following files:

AUTCVT .SAV
CCL.SAV
DTSUB .i1AC
FILTIM.SAV
FTSUB.MAC
LOGON.SAV
SETSIZ.COM
SETSIZ.SAV
SYSMON.OBJ
SYSODT~REL

TSAUTH.SAV
TSGEN.MAC
TSLNK3.COM
TSODT.OBJ
TSODT.REL
TSXDB.SAV
TSXLNK.COM
TSXPM.SAV
TSXUCL.SAV

Program to convert accounting files to new (v4) format.
SAV file of CCL command processor.
Subroutines to perform record locking for DIBOL.
Program to obtain file creation time.
Subroutines to access RTSORT from FORTRAN.
SAV file of TSX-Plus logon program.
Command file to set memory size of system programs.
Program to store memory size info. into SAV files.
Dynamic system status display program object module.
Program used by system developers to debug TSX-Plus.
TSX-Plus account management program.
Macro source file of TSX=Plus parameter module.
Command file used to link TSX-Plus under RT-ll 3B.
Object file for TSX-Plus ODT debugging program.
Relocatable copy of TSODT debugging program.
Program used by system developers to debug TSX-Plus.
Command file used to link TSX-Plus.
TSX-Plus performance monitor reporting program.
Program to process user-defined commands.

6. Device handler related files:

a) The following device handlers, which, if necessary, have already
been patched and are ready for use: CR, CT, DD, DL, DM, DP, DS,
DT, DU, DX, DY, LP, LS, MM, MS, MT, NL, PC, RF, RK, VM, XL; all
with the extension .TSX. Note that the VM provided is not the DEC
VM handler.

-1-

Distribution Kit

b) The following source language patch files are provided for the rare
situations in which it is absolutely necessary to rebuild the
distri bu ted DEC device handlers: 1) for RT-ll V5 sources --­
DDTSX, DMTSX, DXTSX, DYTSX, FSMTSX, TJTSX, TMTSX, TSTSX; 2) for
RT-ll V4 autopatch level E or later sources --- DDV4, DLV4, DMV4,
DXV4, DYV4, FSMV4, TJV4, TMV4, TSV4. All files have the extension
.SLP.

7 • The following object modules are used together wi th your edi ted and
assembled TSGEN by the command file TSXLNK to build the executable
programs TSX and TSKMON: TSX1, TSX2, TSTTY, TSEM2, TSPLAS, TSUSR,
TSSPOL, TSLOCK, TSMSG, TSRTX, TSMIO, TSSLE, TSEXC2. TSXBND is used
with TSLNK3 to build under RT-ll V3B. SYSMON is used to build the
SYSMON utility.

The process of generating a TSX-Plus system is not long or difficult. If you
understand what you are doing you can probably generate the system in 15 to 30
minutes. However, if you are not already familiar with TSX-Plus, before you
begin the system generation process you should do two things. First, you
should read the TSX-Plus Reference Manual. There are a number of features
provided by TSX-Plus that are not available in standard RT-ll (deferred
character echoing, virtual lines, and detached jobs, to name a few). It is
necessary to understand the function of these features before you can perform a
system generation. Secondly, you should determine the device status register
and interrupt vector addresses of the communication equipment that will be used
by TSX-Plus. Once you have done this you can proceed with the TSX-Plus system
generation as described in Chapter 2 of this manual. If you would like a
simplified, semi-automatic guide to system generation then use the TSX-Plus
Installation Guide.

-2-

2. TSX-Plus SYSTEM GENERATION

+---+

+-----------------------------------+
I I
I Copy all files from distribution I
I medium to a working surface I
I I
+-----------------------------------+

I
I
v

+-----------------------------------+
I I
I Assemble TSGEN with listing I
I I
I I

+-----------------------------------+
I
I
v

+-----------------------------------+
I
I

Edit TSGEN I
I

+-----------------------------------+
I
I
v

+-----------------------------------+
I

Assemble TSGEN

+-----------------------------------+
I
I
v

+-----------------------------------+
I I
I Link TSX, TSKMON and SYSMON I
I using TSXLNK.COM file I
I I
+-----------------------------------+

I
I
v

+-----------------------------------+
I I
I Start TSX by typing R TSX I
I I
• I

+-----------------------------------+

+---+

-3-

System Generation

The process of generating a TSX-Plus system tailored to the needs of a
particular installation consists of 4 steps:

1. Assembling the TSGEN module with listing.

2. Editing parameters in the TSGEN module.

3. Assembling the TSGEN module.

4. Linking the TSX-Plus object modules to form the executable files
TSX.SAV, TSKMON.SAV, and SYSMON.SAV.

2.1 Assembling the TSGEN module -- ~-------

The first step in building a TSX-Plus system is to use the MACRO assembler to
assemble TSGEN.MAC with a listing. The command to do this is:

.MACRO/LIST TSGEN

ThE: files SYSMAC. SML and MACRO. SAV must be present on the system device ("SY")
during the assembly. These files are supplied by DEC with RT-ll.

The TSGEN module of TSX-Plus is supplied in source form. TSGEN contains no
executable code, but rather contains the definitions of parameters and tables
that are used by TSX-Plus. In building a TSX-Plus system, the RT-ll KED, KS2,
TECO, or EDIT editor program is used to set appropriate values for parameters
in TSGEN. This module is then assembled and linked wi th the other TSX-Plus
object modules.
Note that:

Each of the parameters found in TSGEN is described below.

1. Numeric values are assumed to be octal unless the number is terminated
with a decimal point.

2. When using editors that recognize them, the TSGEN module is divided
into several "pages" by form-feed characters.

3. On each parameter needing a file name, the file name is specified as a
RADSO string in the format <DevFilnamExt> with no punctuation (i.e. no
colons or periods) and with spaces where there is no character. For
example SY:A.TSX would be specified as <SY A TSX>. Note that this
does not hold true for the DETACH parameter.

-4-

System Generation

2.2 Setting Parameters in TSGEN

Once a listing of TSGEN is available, save a copy of the original TSGEN.MAC
file, then use an editor to set the appropriate parameter values for the system
being genera ted. The beginning of the parame ter section of TSGEN. HAC can be
easily located by searching for a string of three equal signs.

2.2.1 General Parameters

Parameter Heaning

SWDBLK This is the name of the file that will be used to hold programs swapped
out of memory by TSX-Plus. The default name is "SY:TSXSWP.TSX". The
first three characters of the file specification may be changed to
direct the swap file to some other device. The size of the job swap
file is determined by the number of time-sharing lines and the amount
of memory each may use.

SPLBLK This is the name of the file that holds output directed to spooled
devices. The file name must be supplied even if there are no spooled
devices. The default file name is "SY:TSXSPL.TSX". Note that it is
possible to place the swap and spool files on separate devices. The
size of the spool file is determined by the SPOOL macro (see below).

RSFBLK

HIMEM

This is the name
swap file. This
when they are
"SY:TSXRSF.TSX".
changed to direct

of the PLAS (Program~s Logical Address Space) region
file is used to store memory regions obtained by PLAS
swapped out of memory. The default name is
The first three characters of the file name may be
the PLAS region swap file to some other device. PLAS

regions are used by programs that have virtual overlays or virtual
arrays. The size of the PLAS region swap file is specified with the
SEGBLK parameter (see below).

This parameter is used to specify the maximum amount of memory that can
be used by any job (exclusive of PLAS regions, such as virtual arrays
and virtual overlays). The value is specified in terms of k-bytes.
The maximum value that may be specified is 64 (Kb). The value of this
parameter does not affect the size of the generated TSX-Plus system;
however, it does affect the size of the TSX-Plus swap file whose size
is approximately:

File size (blocks) (Total lines) * (HIMEM+4) * 2

-5-

System Generation

DFLMEM This parameter specifies the default memory size to be allocated to a
job when it logs on. Specify the value as number of k-bytes. After a
line is logged on, the "MEMORY" command may be used to alter the number
of kilobytes of memory allocated to the job. The value for this
parameter must not be greater than the value for the HIMEM parameter.

SEGBLK This parameter specifies the number of 512-byte blocks to allocate for
the swap file that is used for extended memory PLAS (Program's Logical
Address Space) regions. These regions are used by programs that have
virtual overlays or virtual arrays. The name of the PLAS region swap
file is specified with the RSFBLK parameter. If the system is
generated as a non-swapping system (SWAPFL=O) then PLAS regions must
all fi t in memory, no region swap file is allocated or used but the
SEGBLK parameter must be set to a non-zero value to cause code to
support the PLAS facility to be loaded with the system. Note that this
parameter specifies the total space in the PLAS swap file for all
extended memory regions in use at any time by all jobs. For example,
if a system is to support a maximum of 4 jobs each of which may use 50
Kb of PLAS regions, the total space required is 200 Kb (4 * 50) which
requires 400 blocks (1 Kb 2 blocks) in the region swap file.
Actually the file should be allocated with more space than this, since
free space in the file may become fragmented as regions are allocated
and deallocated. Setting SEGBLK to 0 (zero) disables use of PLAS.

SWAPFL This parameter controls whether TSX-Plus is allowed to swap jobs to
disk if insufficient memory is available to hold all active users. The
normal case (SWAPFL=l) allows TSX-Plus to do job swapping. SWAPFL can
be set to 0 (zero) in special situations such as when a small number of
lines are being supported on a floppy disk based system that does not
have room for a swap file. If SWAPFL is set to zero the following
actions occur:

1. No disk swap file is created.
2. A line will not be allowed to log on if there is insufficient free

memory space to support it.
3. Each job is allocated a memory size equal to DFLMEM (default job

memory size).
4. Neither the MEMORY command nor EMTs to change the job size can be

used.
5. Extended-memory PLAS regions can only be created if there is

adequate contiguous free space in memory for them. No PLAS swap
file is created.

BUSTYP This parameter defines the machine bus structure for TSX-Plus. There
are two possible machine bus structures supported by TSX-Plus - the
QBUS (LSI) and the UNIBUS. Select QBUS for 11/23, 11/23-Plus and
11/73, and UNIBUS for 11/24, 11/34a, 11/44 and 11/60.

-6-

System Generation

EXTMCH This parameter, when set equal to 1, enables 22-bit addressing for the
11/23-PLUS, 11/73, 11/24, and 11/44 model CPU's. This should be used
when the machine has more than 256 Kb of memory installed. This
feature requires the use of 22-bit extended memory mapping for the QBUS
or the UNIBUS. If your system (CPU, backplane, and memory) does not
support 22-bit addressing, then set this parameter to 0 (zero). It is
possible with TSX-Plus to use Q-BUS DMA device controllers which only
support 18-bit addressing, however because this is supported by
transferring the data through an intermediate system buffer this type
of I/O suffers some speed degradation. For this reason it is strongly
recommended that on Q-BUS systems the system device controller and
handler support 22-bit addressing if the system is to be used with more
than 256 Kb of memory (EXTMCH = 1). See the description of the ~~PIO
modifier to the DEVDEF macro for further information on system mapping
of I/O transfers. The only Q-BUS DMA device handlers supported by
Digital for 22-bit addressing are DL, DU and MS.

MEMSIZ This parameter controls the maximum memory available for TSX-Plus
system use. The value is the memory upper limit size specification
expressed in number of k-bytes. Memory above this upper limit will not
be used by the operating system. If the ~lliMSIZ parameter is set to 0
(zero), TSX-Plus will use all available memory on the machine. To
disable the use of extended memory, set MEMSIZ to 248 or less (but
greater than zero). On machines with a large amount of memory, it is
convenient to set an upper limit on the amount of memory to by used by
TSX-Plus so that the virtual memory handler (VH) may use the remainder
as a RAM based pseudo disk device. This is especially useful for
compiler intermediate files. See the section on the VM handler for
more information on use of VM with TSX-Plus.

INIABT This parameter controls the action taken by TSX-Plus when certain
errors are detected during system initialization. If INIABT is set to
zero, TSX~Plus ignores the error and continues running. If INIABT is
set to one, TSX-Plus aborts the initialization and prints an error
message. The following initialization errors are controlled by the
INIABT flag:

IOABT

1. A device that was specified in TSGEN is not installed in RT-11 or
does not have a TSX handler on the system disk.

2. A time sharing line that was generated into TSX-Plus is not
installed on the machine.

3. A shared run-time system file could not be found during startup.

This parameter controls the action taken by TSX-Plus when a job
terminates execution. If IOABT is set to zero, TSX-Plus will wait for
all outstand~ng Ilo pending for the job to complete before the ~ob ~s
actually terminated. If IOABT is set to one, TSX-Plus will call the
handler abort entry point for all outstanding I/O pending for the job.
This parameter is usually set to zero. The SET 10 command may be used
to dynamically alter this parameter during system operation. See the
TSX-Plus Reference Manual for more information on the SET 10 command.

-7-

System Generation

U$CL This parameter controls whether or not support for user-defined
keyboard commands is included in the system. If U$CL is non-zero,
TSX-Plus calls on the TSXUCL program to process user-defined commands.
If U$CL is zero, user defined commands are not supported by the system.
Note that if U$CL is set non-zero, the TSXUCL.SAV file should be on the
system disk when TSX-Plus is started.

UCLMNC This parameter sets the maximum number of user-defined commands that
may be declared by each job. It also determines the size of the file
used to store these definitions (SY:TSXUCL.TSX). The size of this
file, in blocks, is approximately:

. File size (blocks) = UCLMNC * (Total lines) / 5

UCLORD This parameter specifies the default order in which the TSX-Plus
command interpreter checks for user-defined commands. The UCLORD
parameter should be equated to one of the symbolic names FIRST, MIDDLE,
LAST, or NONE. The SET UCL command may be used to change the order of
command interpretation for a job. See the description of keyboard
command interpretation in the TSX-Plus Reference Manual for a full
discussion of command processing order.

LDSYS This parameter controls whether the standard system support for logical
disks is to be included in the system. If LDSYS=l, system support is
provided for logical disks; if LDSYS=O, system support is not provided
for logical disks. Normally logical disk support should be included;
however system support for logical disks may be excluded if a special­
ized LD handler providing custom logical disk support is being used
rather than the standard system support.

SLEDIT This parameter controls whether support for the Single Line Editor
facili ty is included in the system. If SLEDIT=l, the single line
editor is included in the generated system; if SLEDIT=O, the single
line editor is not included in the system. Use of the single line
editor for a given time-sharing job is controlled by use of the SET SL
command; however the SLED IT parameter must be set to 1 (one) if the
single line editor facility is to be made available to any lines.

QUANO This parameter specifies the time-slice value used to schedule jobs
with user-specified priorities equal to or greater than the PRIHI
parameter. High priority jobs that have the same priority are
scheduled on a round-robin basis using QUANO as the time-slice value.
If QUANO is set to 0 (zero), high-priority jobs are not time-sliced.
Specify the value of QUANO in 0.1 second units. The SET QUANO keyboard
command may be used to dynamically alter this parameter during system
operation. See the TSX-Plus Reference Manual for more information
about the SET QUANO command.

-8-

System Generation

QUAN1 This parameter specifies the length of time a job will run in an
interactive state after receiving input from the terminal. Specify the
value in 0.1 second units. A job is classified as "interactive" and
given a priority boost each time it receives input from the terminal.
If the job uses up more than QUAN1 units of CPU time before it receives
more input from the terminal, the job is classified as non­
interactive" and runs at normal priority. The SET QUAN1 keyboard
command may be used to dynamically alter this parameter during system
operation. See the TSX-Plus Reference Manual for more information on
the SET QUAN1 command.

QUAN1A This parameter specifies the length of time a non-interactive job will
run in a high-priority state after being restarted from a wait state.
Increasing the value of this parameter tends to give priori ty to I/O
active jobs and allow them to dominate over other jobs. The SET QUANIA
keyboard command may be used to dynamically alter this parameter during
system operation. See the TSX-Plus Reference Manual for more infor­
mation on the SET QUAN1A command.

QUAN1B This parameter specifies the execution time-slice value for round-robin
scheduling of interactive jobs. Specify the value in 0.1 second units.
The SET QUAN1B keyboard command may be used to dynamically alter this
parameter during system operation. See the TSX-Plus Reference Manual
for more information on the SET QUAN1B command.

QUANIC This parameter specifies the length of time a job will execute in the
highest priority interactive state after receiving an activation
charac ter. Specify the value in 0.1 second units. The SET QUAN1C
keyboard command may be used to dynamically alter this parameter during
system operation. See the TSX-Plus Reference Manual for more infor­
mation on the SET QUAN1C command.

QUAN2

QUAN3

This is the time-slice given to compute-bound jobs. A compute-bound
job is allowed to run this long if there are no high-priori ty tasks
that need service. Specify the value in 0.1 second units. The SET
QUAN2 keyboard command may be used to dynamically alter this parameter
during system operation. See the TSX-Plus Reference Manual for more
information on the SET QUAN2 command.

This is the time-slice used for round-robin scheduling of jobs wi th
user-assigned priority values less than or equal to the PRILOW
parameter. Specify the value in 0.1 second uni ts. The SET QUAN3
keyboard command may be used to dynamically alter this parameter during
system operation. See the TSX-Plus Reference Manual for more infor­
mation on the SET QUAN3 command.

-9-

System Generation

INTIOC This parameter controls the scheduling of interactive jobs which also
do non-terminal I/O. An interactive job which exceeds this number of
I/O operations before receiving another activation character will be
rescheduled as a non-interactive job. This parameter should be large
enough to keep jobs that are operator intensive in an interactive
state. The SET INTIOC keyboard command may be used to dynamically
alter this parameter during system operation. See the TSX-P1us
Reference Manual for more information on the SET INTIOC command.

HIPRCT This parameter controls the scheduling of non-interactive jobs which do
non-terminal I/O. On completion of non-terminal I/O, jobs are usually
scheduled into a high-priority state. However, a job which exceeds
this number of I/O operations will be rescheduled in the normal
priority compute-bound state. The SET HIPRCT keyboard command may be
used to dynamically alter this parameter during system operation. See
the TSX-P1us Reference Manual for more information on the SET HIPRCT
command.

CORTIM Each time a job is swapped into memory from disk a timer is started for
that job. The job is not eligible to be swapped out of memory until
CORTIM units of time have elapsed. However, a job becomes immediately
eligible to be swapped if it goes into any wait state other than
non-terminal I/O, regardless of the value of CORTIM. Specify the
CORTIM parameter value in 0.1 second units. The SET CORTIM keyboard
command may be used to dynamically alter this parameter during system
operation. See the TSX-Plus Reference Manual for more information on
the SET CORTIM command.

PRILOW This parameter specifies the highest user-specified job priority that
is part of the fixed-low-priority group. Jobs with priorities less
than or equal to PRILOW are considered low priority jobs and execute at
fixed priorities below normal time-sharing jobs. The value of PRILOW
must be in the range 0 to 126, and must be less than PRIHI.

PRIHI This parameter specifies the lowest user-specified job priority that is
part of the fixed-high-priority group. Jobs wi th priorities greater
than or equal to PRIHI are considered high priori ty jobs and take
precedence over normal time-sharing jobs. Priorities in the fixed­
high-priority group are normally reserved for real-time jobs and should
never be assigned to normal time-sharing jobs. The value of PRIHI must
be in the range 1 to 127, and must be greater than the value specified
for PRILOW.

PRIDEF This parameter specifies the default job priority that will be assigned
to jobs. The SET PRIORITY keyboard command may be used to dynamically
set job priority, and priority may also be set from within a job by use
of an EMT. The value of PRIDEF must be in the range 0 to 127.
Normally, PRIDEF should be greater than PRILOW and less than PRIHI.

-10-

System Generation

PRIVIR When a job switches to a virtual line, the job execution priority of
the disconnected line is reduced by this amount. This automatic
priori ty reduction does not apply to jobs wi th priori ty values less
than or equal to PRILOW or greater than or equal to PRIHI. Also, jobs
with priorities in the normal time-sharing range, between PRILOW and
PRIHI, will never have their priority reduced to less than (PRILOW+1).
See Chapter 5 for more information on priority and job scheduling.

MAXSEC This parameter is used to specify the maximum number of virtual lines
that a single user may own at any given time.

MAXFIL Maximum file size (number of blocks) that will be returned in response
to a .ENTER programmed request that specifies a file size of 0 blocks.
This parameter does not limi t the space that will be allocated to
.ENTER requests that specify a size. Rather, it only affects .ENTER
requests that specify a file size of O. If a value of 0 (zero) is
specified for MAXFIL, no limit is placed on the size of a file created
with a specified size of O.

CACHE This parameter controls the number of 512 byte data blocks allocated in
extended memory for use by the generalized data caching facility. Data
caching is a technique for improving system performance by keeping in
memory a "cache" of the most recently accessed blocks of data. Use of
the generalized data cache is not recommended for systems wi th less
than 256Kb of memory. If generalized data caching is not wanted, set
CACHE=O. If generalized data caching is wanted, set CACHE to the
number of 512 byte blocks to be allocated for the cache.

In selecting this parameter, consideration must be given to the
tradeoff between the improvement to system performance to be gained by
data caching versus the decrease in total free memory space for jobs
which may cause increased job swapping. While data cache buffers are
not included in the low memory area, they do remove space from that
available to user jobs. Generally it is recommended that CACHE be set
to zero if less than 256Kb of memory is installed on the system or if
the system is primarily bound by CPU utilization rather than I/O
throughput. If data caching is used at all, it is recommended that
CACHE be set to at least 50.

One way to determine the best value for this parameter is to generate a
system with a large number of cache buffers and then use the SET CACHE
keyboard command to vary the number of buffers used while observing the
effect on system performance.

-11-

System Generation

MAXCSH The MAXCSH and NMFCSH parameters relate to the cache of file directory
entries maintained by TSX-Plus. This cache is used to reduce the
number of disk accesses required to do .LOOKUPs on frequently accessed
files. The system disk directory is always cached. Other devices are
only cached if they are introduced to the system by use of the "MOUNT"
command. File directory caching can have a dramatic affect on the
speed of .LOOKUPs of commonly used files. It does not affect the time
taken to do .ENTER, .DELETE and .RENAME requests. The MAXCSH parameter
is used to specify the maximum number of device units whose directories
may be cached. Note: the value of MAXCSH must be large enough to
include all mounted logical disks as well as mounted physical devices.

NMFCSH This parameter specifies the maximum number of file entries that can be
held in the file directory cache. This number is the total number of
file entries that will be cached for all users on the system (the cache
is common to all users).

Tll10UT This parameter is only used for lines connected to dial-up telephone
equipment. It is the time between the reception of the ring signal and
the user's logging on that will be allowed before the telephone
connection will be dropped. It also specifies the time until the job
is terminated after carrier is lost if the job has not logged off.
Specify in 0.5 second units.

TSLICH This is the "lead-in" character that tells TSX-Plus that the following
character, which is being output by the program, is to be interpreted
by TSX-Plus as a special command (for example, defining a new activa­
tion character). See Chapter 6 of the TSX-Plus Reference Manual for
more information on program controlled terminal options. The default
value for this parameter is 35 (29 decimal).

VLSWCH This is the character used to signal a request to switch to a virtual
line. See Chapter 3 of the TSX-Plus Reference Manual for a discussion
of the use of virtual lines. The default value is 27, control-W.

MXSPAC TSX-Plus allows running programs to dynamically define activation
characters. (An activation character is a character which completes a
terminal input field, such as carriage return.) MXSPAC specifies the
maximum number of user defined activation characters that each line may
define.

EDITOR This parameter specifies the default system editor. The SET EDIT
keyboard command can be used to select a different default editor for a
job. The allowable editors are EDIT, TECO, KED and K52.

WILDFL This flag sets the system default for implicit or explicit wildcards in
file names. The SET WILDCARDS command can be used to al ter this
setting for a line. Specify 0 (zero) for explicit wildcards or 1 for
implicit wildcards. See the RT-ll System User's Guide for further
discussion of explicit and implicit wildcards.

-12-

System Generation

DEVDEF The DEVDEF macro must be used to define the names and characteristics
of all devices which are to be available to TSX-Plus users. The form
of the DEVDEF macro is:

DEVDEF (dd),[NON]DMA[,MAPIO]

The first parameter defines the 2 character device name. The device
name must be enclosed in angle brackets ("(" and ")").

The second parameter defines whether the device is direct memory access
(DMA) or not direct memory access (NONDMA). DEC standard direct memory
access (DMA) devices include DL, DM, DP, DS, DT, DU, DY, MM, MS, MT,
RF, and RK. Typical non-DMA devices include CR, CT, DD, DX, LP, L5,
NL, PC, VM, and XL.

The third parameter (~~IO) is optional and is used only for Q-BUS DMA
devices which only have 18-bit controllers or handlers (such as RX02 -­
DY) but are being used in an otherwise 22-bit environment. MAP 10
should not be specified for any NONDMA devices nor for any DMA device
for which the handler and controller actually support 22-bit address­
ing. MAPIO should likewise never be specified for any device in an
18-bit environment (EXTMCH = 0; 256 Kb or less memory; 11/23 without
modified backplane). Older LSI-11/23 systems can be usually be
upgraded to support 22-bit memory by changing to the H9275-A backplane.
In addition, 18-bi t DMA controllers should be replaced wi th 22-bi t
controllers whenever possible if more than 256 Kb of memory will be
used. MAPIO should never be specified for any device in a UNIBUS
system. If MAPIO is specified for any device, approximately lKb of
code is added to the mapped portion of the system.

All device definitions must take place in the device definition block.
This block starts with the DEVBEG macro and ends with the DEVEND macro.
Each device is specified using the DEVDEF macro which must be placed
between the DEVBEG and DEVEND macros.

The devices TT, LD, and SL do not require device definitions and should
not be included in the DEVDEF table. These devices are an integral
part of TSX-Plus and do not require separate device handlers. See the
section on device handlers for TSX-Plus for more information. Note
that a maximum of 15 devices can be installed in TSX-Plus as distrib­
uted, including TT and LD. SL is not implemented as a pseudo-device in
TSX-Plus. By convention, the system device (device from which RT-11
was booted and TSX-Plus is run) should be the first device definition.

-13-

System Generation

For example:

DEVBEG jBeginning of device definitions
DEVDEF <DL>,DMA
DEVDEF <RK>,DMA,MAPIO
DEVDEF <DY>,DMA,MAPIO
DEVDEF <DX>,NONDMA
DEVDEF <MS>,DMA
DEVDEF <LP>,NONDMA
DEVDEF <NL>,NONDMA
DEVDEF <VM>,NONDMA
DEVEND jEnd of device definitions

MIONBF This parameter specifies the number of system I/O buffers to be
allocated for I/O mapping. I/O mapping is used for devices with 18-bit
controllers being used with 22-bit Q-bus systems. The MAPIO parameter
to the DEVDEF macro specifies which devices require I/O mapping. One
buffer should be allocated for each device which requires I/O mapping
and which will be in use simultaneously with other devices which also
require system I/O mapping. For example, if both RK and DY need system
I/O mapping, but both devices will never be in use at the same time,
then 1 buffer would be adequate. If however, both devices are likely
to be in use at the same time, then 2 buffers should be allocated.
These buffers are shared by the system and all user jobs that are doing
I/O to devices needing system I/O mapping. If a transfer is requested
to a device which requires system I/O mapping and a buffer is not
available, the transfer will be delayed until a buffer becomes
available.

MIOBSZ This parameter specifies the size of the buffers used for system I/O
mapping. The value specifies the number of 512 byte areas to allocate
for each buffer. The larger this parameter is, the faster system
mapped I/O transfers will occur. The maximum value for this parameter
is 15. Because directory operations are performed in 1024 byte chunks,
if system I/O mapping is selected at all, the minimum recommended
number for MIOBSZ is 2. It is strongly recommended that the system
device not require I/O mapping. However, if the system device does
require I/O mapping, MIOBSZ should be set to 15, the maximum value.

-14-

System Generation

2.2.2 Device Spooling Parameters
Device spooling is an optional feature of TSX=Plus. If any spooled devices are
wanted, give appropriate values to the parameters of the SPOOL macro. If
spooling is not wanted, specify 0 (zero) as the first parameter to the SPOOL
macro; the other parameters will be ignored. See Chapter 5 of the TSX-Plus
Reference Manual for more information on device spooling.

SPOOL The SPOOL macro is used to define information about devices that are to
be spooled by TSX-Plus. The form of the SPOOL macro is:

SPOOL ndev,nfile,nbuf,nblocks,<dev ••• >,hold,nback

The meanings of these parameters are:

ndev The number of devices that are to be spooled by TSX-Plus.
Specify 0 (zero) if there are none.

nfile The number of spooled files that may be open to all users. A
spooled file entry is required for each file that is being
printed, waiting to be printed, or is in the process of being
generated by a running program for printing on a spooled
device.

nbuf The number of 512 byte buffers that are to be used by the
spooling system. If two butters are available for each active
device, the I/O will be "double-buffered" to achieve maximum
speed. If fewer buffers are available than active devices, the
devices will operate in bursts and share the buffers. Space
for these buffers is allocated in the mapped portion of
TSX-Plus.

nblocks The number of disk blocks to be allocated within the spool disk
file. All spooled files share this space in the common disk
spool file. If the file fills up, running programs are
suspended until space becomes available as blocks are printed
and released.

<dev> The names of those devices that are to be spooled. Specify
exactly three characters per name. The spooled devices must be
non-file structured output devices such as line printers, card
punches, or plotters. Note that spooled devices must also be
specified in the DEVDEF (device definition) list.

hold Specify 1 for the this parameter if the default mode for the
spooler is to be 'HOLD' (see SPOOL command description in the
TSX-Plus Reference Manual). Specify 0 (zero) for 'NOHOLD'
mode. In HOLD mode, spooled output will not be processed until
the spool file is completely created and the I/O channel
associa ted wi th the file is closed. In NOHOLD mode, a spool

-15-

System Generation

nback

Example:

file may begin to be copied to the spooled device while the
spool file is being created. This mode may be changed
dynamically wi th the SPOOL <dev>, [NO] HOLD command. This mode
may also be controlled from within programs on an individual
file basis with an EMT request.

This parameter specifies the number of spool blocks that
TSX-Plus will back up in response to the SPOOL <dev>, BACK
command (see SPOOL command description in the TSX-Plus
Reference Manual, Chapter 5).

The following SPOOL macro declares that there is 1 spooled device;
there may be up to 10 active spooled files; two 512 byte buffers are to
be used for spooling I/O; the spool file is to be 500 blocks large; the
spooled device is "LP"; default mode is HOLD; and the SPOOL BACK
command is to backup 10 blocks.

SPOOL 1,10.,2,500.,<LP >,1,10.

2.2.3 Record Locking Parameters
If the shared file record locking and data caching feature of TSX-Plus is
wanted, the three parameters MAXSF, MAXSFC, and MXLBLK must be given approp­
riate values. If the shared file record locking and data caching facility is
not wanted, set MAXSF, MAXSFC, and MXLBLK to 0 (zero).

MAXSF MAXSF specifies how many shared files may be open simultaneously. Note
that several users accessing the same shared file count as one open
shared file.

MAXSFC Maximum number of I/O channels that all users may simultaneously have
open to shared files. Note that this is the total number of channels
for all users not for each user.

MXLBLK Maximum number of file blocks that may be simultaneously held locked by
any channel. A file block contains 512 characters.

NillrDC Number of 512-byte data blocks to be allocated for shared file data
caching. There are two data caching facilities in TSX-Plus: a
generalized data caching facility that caches blocks from all files,
and a shared-file data caching facility that only caches blocks from
files declared to be "shared" to the system. Both data caching
facilities should not be used at the same time. The generalized data
caching facility is controlled by the CACHE parameter (see above); the
shared-file data caching facility is controlled by the NUMDC parameter.

The shared file data caching facili ty provides data caching only for
files which have been declared as shared files (regardless of access

-16-

System Generation

and protection category). Data caching causes the most active blocks
for shared files to be held in memory cache buffers. This eliminates
all disk I/O when these blocks are read. Data caching is particularly
effective for COBOL-Plus ISAM files. The NUMDC parameter controls the
number of 512-byte cache buffers that are allocated for data caching.
If NUMDC is set to a (zero) shared file data caching is not done (but
generalized data caching will be done if CACHE is non-zero).

In selecting this parameter, consideration must be given to the
tradeoff between the improvement to system performance to be gained by
data caching versus the decrease in total free memory space for jobs
which may cause increased job swapping. While data cache buffers are
not included in the low memory area, they do remove space from that
available to user jobs. Generally it is recommended that NUMDC be set
to zero if less than 192Kb of memory is installed on the system or if
shared files are not accessed heavily. If data caching is used at all,
it is recommended that NUMDC be set to at least 5. One way to
determine the best value for this parameter is to generate a system
with a large number of cache buffers and then use the SET NUMDC
keyboard command to vary the number of buffers used while observing the
effect on system performance.

2.2.4 Message Communication Parameters
If the message communication feature is not wanted, the three parameters MAXMC,
MSCHRS and MAXMSG should be set to zero. If the message communication feature
is wanted, assign appropriate values to the three parameters.

MAXMC Maximum number of message communication channels that may be simul­
taneously active. A message channel is active if any messages are
pending on it or if any users are waiting for messages to come through
it.

MSCHRS Maximum length of messages; specify in bytes.

MAXMSG Maximum number of messages that may be simultaneously held in message
queues for all channels. Note, this is the maximum number of messages
that can be queued on all channels, not each channel.

-17-

System Generation

2.2.5 Real-time Program Support Parameters
TSX-Plus provides a real-time program support facili ty that allows multiple
real-time programs to be run concurrently with normal time-sharing operations.
Note: real-time program support must be included in the system if the SYSMON
system monitor display program is to be used.

The basic functions provided by this facility are summarized below.

1. The ability to map the I/O page into the user's virtual memory region
so that device status and control registers may be directly accessed by
the program.

2. The ability to connect device interrupt vectors to program interrupt
service routines. System service support is restricted with this
method, but it is quite fast.

3. The ability to connect device interrupt vectors to program completion
routines. These real-time completion routines run at user-selectable
real-time priority levels that preempt execution of normal time-sharing
jobs.

4. The ability for a program to lock itself in memory so that rapid
interrupt response can be assured.

5. The ability for a program to dynamically set its execution priority.

6. The ability for a program to suspend its execution until an interrupt
occurs.

7. The ability to convert a virtual address within the job's region to a
physical address for DMA I/O control.

8. The ability to map a virtual address region to a physical address
region.

9. The ability for a program to declare a list of addresses of device
control registers to be reset when the program exits or aborts (.DEVICE
EMT) •

The RTVECT parameter controls whether or not the TSX-Plus real-time program
support facility will be included in the generated system. If real-time
program support is not wanted, set the RTVECT parameter to a (zero). If
real-time program support is wanted, set RTVECT to the number of real-time
interrupt vectors that will be used by all real-time programs. If some of the
real-time support features are wanted, but no interrupt vectors are necessary,
then set RTVECT to 1.

If the SYSMON system monitor display program is to be used to monitor system
performance, real-time support must be included in the system and RTVECT must
be at least 1.

-18-

System Generation

See Chapter 11 in the TSX-Plus Reference Manual for more information on
real-time supporte

2.2.6 Performance Monitor Parameter
TSX-Plus includes a performance monitor facility that allows you to monitor the
execution of an application program running under TSX-Plus and produce a
histogram showing the amount of time spent in various regions of the program.

There is one parameter in TSGEN that is associated with the performance monitor
feature. This parameter, PMSIZE, specifies the number of bytes of memory to
set aside for use in accumulating histogram values during a performance
analysis run. Memory space equal to tne size spec1I1ea with PMSIZE is
allocated in a mapped data region of TSX-Plus for use by the performance
analysis facility. If you do not intend to use the performance analysis
feature, set PMSIZE to 0 (zero) to avoid using any memory space for this
feature. The maximum value that may be given to PHSIZE is 8192. See Chapter
13 of the TSX-Plus Reference Manual for information on use of the performance
monitor feature.

2.2.7 Shared Run-time Systems
TSX-Plus supports shared run-time systems. These are reentrant programs or
common data buffers that can be shared by multiple users. The RTDEF macro is
used to declare shared run-time systems. The form of this macro is:

RTDEF <program-name>,r-flag,skip-count

where "program-name" is the 12 character name of the file containing the
run-time system. This must be specified in the form <DevFilnamExt>, that is,
three characters for the device name, six characters for the file name and
three characters for the extension. "r-flag" is either "R" if user _programs
are to have read-only access the run-time system) or "RW" if read-write access
is to be granted. Most run-time systems will use read-only access. Read-write
access is primarily useful when the shared run-time facility is being used to
provide common data areas being accessed and updated by multiple jobs. The
"skip-count" parameter is the number of blocks to be skipped over at the front
of the run-time system file when loading it into memory.

Run-time system files are normally SAV files. However any type of file could
potentially be used. TSX-Plus simply reads it into memory (without inter­
preting its contents) and maps portions of it into the job space as requested
by EMT's. Shared run-time systems are loaded into memory below the mapped
system overlay regions. See Chapter 12 of the TSX-Plus Reference Manual for
information ~bout using a shared run-time system.

-19-

System Generation

Examples of shared run-time declarations:

RTDEF
RTDEF
RTDEF

<SY CBR050SHR>,R,1.
<SY DBLSHRRTS>,R,l.
<RK2COMDTlSAV>,RW,0.

2.2.8 Timesharing Line Definitions

;COBOL-Plus runtime
;DBL runtime

DINSPC This parameter specifies the default number of characters that will be
reserved for the input ring buffer for each line. This value is used
for all virtual lines and for actual lines that do not have any other
value specified. It must be large enough to hold an entire line of
input plus any characters that are typed ahead.

DOTSPC This parameter specifies the default number of characters that will be
reserved for the output ring buffer for each line. This value is used
for all virtual lines and for actual lines that do not specify any
other value. A running program will be suspended when its output ring
buffer is filled.

OTRASZ A job's execution is suspended and the job may be swapped out of memory
when that job's character output buffer is filled. As the output
buffer is emptied the job is reactivated when the number of characters
remaining in the buffer equals OTRASZ. The idea is to get the job
running again before all of the available output is exhausted.

Each line that is to be used as a TSX-Plus timesharing line must be declared in
TSGEN. The total number of timesharing lines is first declared by setting the
proper values as arguments to the TBLDEF macro.

The TBLDEF macro has three arguments:

1. The number of real (physical) timesharing lines.

2. The number of virtual timesharing lines.

3. The number of job slots to allocate for the execution of detached jobs.

See Chapter 4 of the TSX-Plus Reference Manual for more information on virtual
lines and detached jobs.

TSX-Plus will support up to 31 total time-sharing lines, including virtual
lines and detached jobs. However, we do not recommen~ that you enable that
many unless you actually plan to use all of them. The memory that is used by
these lines is limited, and is shared with many other facilities. Therefore,
you should not define more lines than would be useful for your system.
Performance with a large number of lines generated is highly dependent on
configuration, specifically: CPU speed, I/O devices, and types of applications
(programs) being run.

-20-

System Generation

Refer to the example at the end of this section and to the examples in the
supplied TSGEN module as you read the following explanations

The actual line definitions follow the invocation of the TBLDEF macro. Each
line definition is specified by creating a Line Definition Block (LDB). There
must be exactly as many LDB's as there are physical lines. Virtual lines and
detached jobs are not described by LDB's.

A Line Definition Block begins by calling the LINDEF macro and ends by calling
the LlNEND macro. Each LDB must have matching calls to LINDEF and LINEND.
Other optional macros may be called between LINDEF and LINEND to specify
parameters for the line.

TSX-Plus supports lines connected to DL11 and DLV11 serial communication cards
and lines connected to DZ11 and DZV11 multiplexors. TSX-Plus will support a
mixture of DL11 and DZ11 dial-up and direct connect lines. Unless otherwise
stated, there is no distinction between DL11 and DLV11 support, nor between
DZ11 and DZV11 support.

When generating a TSX-Plus system, each real line must be declared with a line
definition block (LDB) that begins with a LINDEF macro call and ends with a
LINEND macro call. This is true for both DL11 and DZ11 lines.

The line definition blocks for lines connected to a DZ11 multiplexor are
enclosed wi thin a Mul tiplexor Defini tion Block (HDB). An MDB begins wi th a
l--HJXDEF macro call, contains the LDB's for all lines connected to the multi­
plexor, and ends with a MUXEND macro call. The HUXDEF macro requires two
parameters: the first is the address of the multiplexor receiver interrupt
vector and the second is the address of the multiplexor Control and Status
Register (CSR). If there are no DZ11 lines, do not use the MUXDEF or MUXEND
macros.

The Line Defini tion Block macros requJ.re different parameters depending on
whether they describe DL11 type lines or DZ11 multiplexor lines. In the case
of DL11 lines, two parameters are required by the LINDEF macro. The first is
the memory address of the input (receiver) interrupt vector for the line. The
second argument is the address of the receiver status register for the line.

A LINDEF macro for a DZ11 multiplexor line requires only a single argument; it
is the number of the line on the DZ11 multiplexor. Note that DEC DZ11 lines
are numbered 0 to 7 and DZV11 lines are numbered from 0 to 3. TSX-Plus will
support up to four DZ11 multiplexors (but not more than 31 total lines,
including virtual lines and detached jobs). If there is more than one DZ11,
each must be defined using a separate multiplexor definition block.

-21-

System Generation

Note that different model DLll cards have different ranges of addresses for the
status register. DLII-A and B cards generally start at 176500, while DLII-C,
D, and E cards start at 175610. The addresses increase by 10 (octal) per line.
Note that 16-bit device addresses are specified in TSGEN. The receiver
interrupt locations for DLll cards normally start at 300 and increase by 10
(octal) per line. The receiver status register and interrupt vector addresses
for all devices are normally written on a card that is attached to the top
cover of the CPU drawer for Unibus machines and somewhere in the cabinet for
Q-bus machines. If you cannot locate the status register and interrupt vector
addresses, default addresses may be found in the PDP-II Programmer's Reference
Card or the processor handbook for your machine. If you still are having
problems, contact the person who installed your machine. The most common
problem in getting started with TSX-Plus is specifying incorrect addresses for
the communication cards.

The LINDEF macro also accepts a third (second for DZll lines) optional
parameter. One terminal may be declared to be the operator's console that
receives system control messages such as requests for special form mounts if
spooling is used. The terminal to be the operator's console is signified by
specifying "OPER" as the third argument. Only one terminal may be declared to
be the operator's console.

Optional macros may be invoked between the LINDEF and LINEND calls to set
parameters for a line. The available macros are listed below.

FLAGS This macro is used to set a variety of control flags for the line. The
form of the FLAGS macro is:

FLAGS

The single argument to FLAGS must be the logical sum of those flags
that are to be set for the line. When more than one flag is specified,
the names of the flags should be joined together with exclamation marks
("! ") which is the MACRO assembler syntax symbol for the logical OR
operation.

The valid flags are listed below.

Flag Meaning when set

$SCOPE Terminal is a CRT type terminal and DELETE is to echo as
backspace-space-backspace.

$ECHO

$ TAPE

Echo characters to the terminal.

If this flag is set the line will be placed in "TAPE" mode.
This mode of operation is useful if the line is receiving input
from a paper-tape reader, cassette tape, floppy disk or other
devices that respond to X-ON/X-OFF control characters to start
and stop transmission. TAPE mode can also be controlled by use

-22-

System Generation

of the SET TT [NO] TAPE keyboard command and the "w" and "X"
program controlled terminal option functions. Setting a line
to TAPE mode has three effects:

1. An X-OFF (CTRL-S) is sent by TSX-Plus whenever the line
input buffer fills to the point that there are only 10
remaining free character positions.

2. An X-oN character (CTRL-Q) is sent by TSX-Plus when a
program is about to enter an input wait state and an X-OFF
has previously been sent.

3. Line-feed characters are ignored -- this is done so that
each line of input can be terminated by a carriage-return
line-feed pair.

$ START If this flag is set the line will be automatically initiated
when TSX-Plus is started. If the flag is not' set, the line
will not be initiated until carriage=return or control=C is
pressed at the terminal.

$NODET If this flag is set the line is prevented from using the DETACH
keyboard command which controls detached jobs.

$TAB Do not simulate tabs by inserting spaces. Use with terminals
whose hardware responds to tab characters) such as VT100
terminals.

$FORM Do not simulate form feed by inserting line feed characters.
Use with terminals whose hardware responds to form feed
characters, such as LA120 terminals.

$ PAGE Allows CTRL-S to suspend output and CTRL-Q to restart output.
If $PAGE is not set, CTRL-S and CTRL-Q are not interpreted by
TSX-Plus and are passed directly to the user's program. $ PAGE
is usually selected.

$LC Enables lower case input from the terminal. Note that bit 14
of the job status word must also be set to enable lower case
input.

$NOVLN If this flag is specified, the line will not be allowed to use
the TSX-Plus virtual line facilities. That is, the line will
always be connected to its primary line.

SDEFER If this flag is set, "deferred" character echoing will be
enabled. If the flag is not set, "immediate" character echoing
will be used. See the description of the DEFER option to the
SET TT command in the TSX-Plus Reference Manual for an
explanation of deferred character echoing. It is recommended
that deferred echoing mode be used.

-23-

System Generation

$QTSET If this flag is set the line will be initialized as if a "SET
TT QUIET" command had been executed. This prevents the listing
of command files.

$PRIV If this flag is set the line will be authorized for "operator
privilege". See the section on operator privilege in Chapter 3
of this manual for an explanation of this privilege.

$PHONE This flag should be set if the line is connected to a dial-up
telephone modem. If this flag is set, TSX-Plus will perform
modem control such as answering the phone when the ring signal
occurs and hanging up when carrier is lost. It is important
that this flag not be specified for a line unless that line is
actually connected to a line with hardware modem control
facilities (DL11-E, DZ-11, etc.)

NRMFLG The NRMFLG parameter, located just before the timesharing line
definition section of TSGEN, is used to define the flags which are
common to all time-sharing lines. If all lines require the same set of
flags, simply set NRMFLG to this combination and do not use the FLAGS
macro.

Note that the FLAGS macro sets the default line characteristics when
each line is started and that the "SET" keyboard command may be used to
alter flag settings for a line. Thus, the command "SET TT LC" would
enable lower case input, and "SET TT NOSCOPE" would say that the
terminal is not a CRT device.

LINPRM The LINPRM macro is used to define parameters for DZ11 and DZV11 mux
lines. It must be used only within LDB's for DZ11 lines. The form of
the LINPRM macro is:

LINPRM speed,parity,stopbits

The LINPRM macro requires three arguments. The first argument is a
code that specifies the line's operating baud rate. The following
codes may be used:

Speed Baud Speed Baud
code rate code rate

0 50 10 1800
1 75 11 2000
2 110 12 2400
3 134.5 13 3600
4 150 14 4800
5 300 15 7200
6 600 16 9600
7 1200

-24-

System Generation

The second parameter specifies whether even (0) or odd (1) parity is to
be generated for transmitted characters. Parity is ignored on received
characters.

The third parameter specifies the number of stop bits to be sent with
each transmitted character. The value may be 1 or 2. Two stop bits
should be used for 110 baud mechanical teletype terminals. One stop
bit should be used for all other types of terminals. If a DZ11 line
defini tion block does not contain a LINPRM macro, the last set of
parameters defined for an earlier line will be used. The first DZ11
LDB must contain a LINP~~ macro.

TR2ITYP The Tru~YP macro is used to declare what type of terminal will be used
with the line. The form of the TRMTYP macro is:

TRMTYP terminal

The terminal types DIABLO and QUME are treated as equivalent and no
longer support the ETX/ ACK protocol which was available with earlier
versions of TSX-Pluse Note that newer terminals which use the
X-ON/X-OFF (DC1/DC3, CTRL-Q/CTRL-S) protocol are acceptable. See the
SET TT command in Chapter 2 of the TSX-Plus Reference Manual for more
information on the meaning of each terminal type. The valid choices
are listed below:

Name

VT100
VT52
LA36
LA120
HAZEL
ADM3A
DIABLO
QUME

Terminal type

DEC VT100 terminal
DEC VT52 terminal
DEC LA36 terminal
DEC LA120 terminal
Hazeltine brand terminals
Lear Siegler ADM3A terminal
Diablo brand terminals (with X-ON/X-OFF protocol)
Qume brand terminals (with X-ON/X-OFF protocol)
(Diablo and Qume are treated as equivalent)

BUFSIZ The BUFSIZ macro is used to specify the number of characters to reserve
for the line's input character ring buffer (argument 1) and the output
character ring buffer (argument 2). The form of the macro is:

BUFSIZ inputsize,outputsize

If a BUFSIZ macro is not used in a Line Definition Block,. the default
sizes as specified for DINSPC and DOTSPC will be used&

-25-

System Generation

CMDFIL The CMDFIL macro is used to specify the name of a start-up command file
to be executed when the line is initialized. The form of the macro is:

CMDFIL dev:file.ext

This macro has one argument that is the name of the command file
(dev: file .ext). This argument must be included in order to use the
TSX-Plus LOGON facility.

This ends the description of macros that can be used within Line Definition
Blocks.

2.2.9 Defining Start-up Files for Detached Jobs
The DETACH macro may be used ~specify the names of start-up command files to
be initiated as detached jobs when the TSX-Plus system is started. The use of
the DETACH macro should follow the last line definition block. The form of the
DETACH macro is:

DETACH dev:file.ext

The DETACH macro requires one argument which is the name of the command file to
be initiated as a detached job. The physical device name must be included in
the command file specification.

There may be one use of the DETACH macro for each detached job slot specified
with the TBLDEF macro. If there are more detached job slots defined than there
arc invocations of the DETACH macro, the excess job slots are left idle when
the system is started and detached jobs may be started on these lines by use of
the DETACH keyboard command.

-26-

System Generation

2.2.10 Line Definition Example
The following example shows the definition of two DLII lines and three DZII
lines. Two virtual lines are also declared (LDB's are not used for virtual
lines). Note that the exclamation mark is used to perform the logical OR (sum)
operation when combining flags.

NRMFLG $ECHO!$PAGE!$DEFER!$LC

TBLDEF 5. , 2 • , 1. ;5 real, 2 virtual, 1 detached

Define DLIJ lines
Define DLII line #1

LINDEF
TRMTYP
FLAGS
BUFSIZ
CMDFIL
LINEND

300,175610 ;DLll=E line
VT100
NRMFLG!$SCOPE
120. ,300.
SY:START.COM

Define DLll line #2
LINDEF
TRMTYP
FLAGS
LlNEND

60,177560,OPER ;console terminal
VT100
NRMFLG!$PRIV!$START

Define DZ11 lines
MUXDEF 310,177620 ;Start of MUX definition block

Define DZII line # 0
o ;WJX line #0 LINDEF

LINPRM
FLAGS
CMDFIL
LINEND

7,1,1 ;1200 baud, odd, 1 stop bit
NRMFLG!$SCOPE
SY:LINEl.TSX

Define DZ11 line # 1
LINDEF 1 ;MUX line #1
LINPRM 5,1,1 ;300 baud, odd, 1 stop bit
TRMTYP LA36
CMDFIL SY:LOGON.TSX
LlNEND

Define DZ11 line # 6
LINDEF 6 ;MDX line #6
LlNEND

End of MUX lines

(use same LINPRM as #1)

MUXEND ;End of MUX definition block
Define start-up command files for detached job slots

DETACH SY:INITDJ.TSX
;Enrl of line definition example

-27-

System Generation

2.3 Assembling the modified TSGEN module

Once the TSGEN module has been modified
settings, it must be assembled using MACRO.

.MACRO TSGEN

to contain the desired parameter
The command to do this is:

If you want to get a listing of the modified TSGEN (a good idea), use the
command:

.MACRO/LIST TSGEN

No errors should occur during the assembly.

2.4 Linking TSX-Plus

The final stage of building TSX-Plus is to link the component parts together.
A command file to do this is provided on the TSX-Plus distribution disk with
the name "TSXLNK.COM". The system command to execute this command file is

.@TSXLNK

If you are linking under RT-ll version 3B you should use the command file
"TSLNK3.COM". These command files create three SAV files: TSX.SAV,
TSKMON.SAV, and SYSMON.SAV. The TSX.SAV and TSKMON.SAV files must be on the
system disk (SY:) before TSX-Plus can be started. The SYSMON.SAV file is only
needed if the SYSMON dynamic system display utility program is to be used (see
Chapter 7). Note that both TSX-Plus and TSKMON must be rebuilt if any
parameters are changed in TSGEN.

Warning: Do not relink TSKMON onto the system device or copy it there while
running under TSX-Plus. The posi tion of the TSKMON file on the system disk
must not change while TSX-Plus is running.

2.5 Starting TSX-Plus

Before starting TSX-Plus, you should check the following items to make sure the
system is set up correctly:

1. The TSX.SAV, TSKMON.SAV, and CCL.SAV files must be on the system disk
(SY:). CCL.SAV is provided on the TSX-Plus distribution disk; TSX.SAV
and TSKMON.SAV are built using the TSXLNK.COM command file as part of
the system generation process.

2. The TSX-Plus version of device handlers (with the extension ".TSX")
must be on the system disk for each device declared in TSGEN.

-28-

System Generation

3. The RT-ll version of the device handlers for all devices to be used by
TSX-Plus must be on the system disk and the devices must be installed
(but need not be loaded) in the running version of RT-ll.

4. If the TSX-Plus logon facility is being used, the LOGON.SAV and
ACCESS.TSX files must be on the system disk. (The ACCESS.TSX file is
created by the TSAUTH account authorization program.) If the account
authorization file was created with a version of TSAUTH prior to the
one supplied with version 4.0, use the AUTCVT program to convert the
format of the account authorization file.

5. If user-defined commands are allowed, the TSXUCL program must be on the
system disk ..

6. Any startup command files associated with time-sharing lines (such as
LOGON.TSX or LINE1.TSX) must be on the system disk.

7. TSX-Plus must be started under RTllSJ (single job); an attempt to start
it under the foreground-background (FE) or extended-memory (XM)
versions of RT-ll will result in a "?KMON-F-Insufficient memory" error
message. This message may also occur if RT-llSJ has been sysgenned to
include multi-terminal support or other features which make it too
large to be able to start TSX-Plus, or if the USR is set NOSWAP or if
too many device handlers are loaded. If your RT-ll has been sysgenned
to include multi-terminal support, copy and boot the distributed
versions of RTllSJ or RTllBL, then run TSX-Plus.

Once you have determined that all of these conditions are met; you can start
TSX-Plus by typing

R TSX

After this is typed, time-sharing lines that were generated to be automatically
starting ($START flag) should start up and print the TSX-Plus greeting message.
Other lines will be initiated when carriage return or control-C is pressed at
the terminal or when the phone rings for dial-up lines.

During its ini tialization TSX-Plus performs a test to make sure the physical
lines defined in TSGEN actually exist. It does this by trying to access the
receiver status register for each line. If a trap occurs, TSX-Plus displays
the message:

?TSX-F-Invalid status register address for Tis line: xxxxxx
Line II = nn

If this occurs you must edit in the correct line address in the TSGEN module.
TSX-Plus does not check the interrupt vector addresses for the lines, so if the
system dies when a line is started, check to see if its interrupt vector
address is correctly specified.

-29-

System Generation

When TSX-Plus is running, the system line frequency clock must be operating at
all times. This is true even if only a single job is being run under TSX-Plus.

If TSX-Plus does not start properly, carefully review the parameter settings in
TSGEN. Check especially the values provided for DLll interrupt vectors and
receiver status registers. Different models of DLll cards use different
addresses.

In the case where RT-ll runs successfully on a system but TSX-Plus does not,
look carefully at the memory installed on the machine above 56Kb. If it is not
functional or improperly configured, TSX-Plus will not run. If you are using
non-DEC peripherals., check with the peripheral vendor to make sure the device
can support extended memory addressing. Refer to Appendix A for information on
error messages received during TSX-Plus startup and Appendix B for information
on error messages received during TSX-Plus operation.

-30-

System Generation

2.6 Device Handlers for TSX-Plus

The names of TSX-Plus device handlers take the form "dd.TSX". Device handlers
for most common devices are included on the TSX-Plus distribution media. If
you received TSX-Plus on a floppy disk, be sure to copy both sides of the
reversible disk to your working surface. Most device handlers (e.g. DL.TSX,
DY.TSX, etc.) are located on the reverse side of the diskette.

If you ordinarily need to make no modifications to the handlers supplied by
Digi talon your system, then you may use the handlers provided wi th the
TSX-Plus distribution. In which case, move on to the next section. Do not
unnecessarily recreate device handlers. Most common changes can be accommo­
dated through device SET options. However, if you need to change the handlers
supplied with RT-11, you may need to apply some patches before using them. An
example of a change that requires regenerating a device handler is adding a
second controller (vector and CSR) to the MT handler. TSX-Plus generally uses
sta~dard RT-11 XM device handlers, however, the DD, DM, DX, DY, MM, MS, and MT
handlers as supplied with RT-11 require minor modifications to function
correctly W1cn T5X-Plus. rne KI-LL version 4 DL handler also requires
modification. The necessary handler modifications are supplied as SLP files
with TSX-Plus. These SLP files have already been applied and are included in
the dd.TSX handlers suPPlied wit~X-Plus. The VM.TSX handler is proprietary
and unique to TSX-Plus.

2.6.1 Virtual Memory Handler (VM)
The virtual memory handler (VM) allows memory which is not allocated for use by
the operating system to be used as a RAH based pseudo=disk device. Since a
memory access is quite a bit faster than a disk access, VM can be use for
greater speed in locating and reading files which are frequently accessed.

Since most machines will lose the contents of memory during a power outage, VM
should be restricted to read-only ~ scratch) or executable files. It may be
used to speed the execution of heavily overlaid programs or store temporary
intermediate sort or work files.

The VM handler uses the memory space above the top of memory used by TSX-Plus.
TSX-Plus can be limited to using less than all installed memory by specifying
the TSGEN MEMSIZ parameter. The MEMSIZ parameter accepts a numeric argument
defining the number of K-bytes for TSX-Plus to use. For instance, the
statement:

MEMSIZ = 256.

would restrict the TSX-Plus operating system to using only the first 256
K-bytes of memory. (Note: The decimal point is required, otherwise the number
is interpreted as an octal value.)

-31-

System Generation

A device definition entry for VM must be made in TSGEN, if VM is to be used.
The correct VM device declaration is:

DEVDEF (VM>,NONDMA

In order to use VM wi th TSX-Plus, the VM handler must be installed in RT-11
before running TSX-Plus. Users who do not have an RT-11 VM. SYS handler can
create one by copying NL.SYS to VM.SYS. This VM.SYS, although not functional,
may be installed in RT-11 so that TSX-Plus can load and use VM.TSX.

After TSX-Plus is started, VM must be initialized before it can be used. Since
VM is implemented as a block structured device, and each block contains 512
bytes, the number of blocks available to VM will be two times the number of
K-bytes allocated. The directory does require some storage and therefore the
number of blocks reported after initialization will be slightly smaller than
this total. For instance, in a system which contains 512 K-bytes total
physical memory and with MEMSIZ=256., VM will have 256 K-bytes available.
After initialization, a directory of VM will then show slightly less than 512
blocks.

VM will normally calculate the correct base address to use to be just above the
last address used by TSX-Plus. You may increase this base address. The format
of the SET command used to adjust the base address used by VM is:

SET VM BASE=nnnnnn

where nnnnnn represents bits 6 through 22 of the base memory address (in octal)
which VM is allowed to use. However, if you specify a base address below the
top address of TSX-Plus, VM will dynamically adjust this base address back
above the top of TSX-Plus. For example, if you wish to set the base address of
VM to start after the first 512 K-bytes, then nnnnnn should be 20000 since the
base memory address is 2000000 (octal). Any time a new base address is
defined, VM should be initialized.

2.6.2 VTCOM/TRANSF Support and XL Handler
The VTCOM/TRANSF file transfer programs may be used to communicate and transfer
files between RT-11 and TSX-Plus systems or between two TSX-Plus systems.

When VTCOM is used to communicate wi th another system, the system where the
user is located and running VTCOM is known as) the "local" system whereas the
remote system to which communication is taking place is known as the "host"
system. TSX-Plus may be used either as the local system, the host system, or
both.

The user at the local system runs the VTCOM program to initiate communication
with the host system. The VTCOM program uses the XL handler (or XC on the
PRO-350) to connect to a communications line. The XL handler must be set up to
drive a DL11 or DLV11 communications port that is connected either directly or
through a modem to the host system. Note that this port must not also be
declared as a time-sharing line.

-32-

System Generation

When TSX-Plus is used as the local system, a modified version of the XL handler
(supplied with this release) must be used. XL must be specified as a device to
TSX-Plus by use of a standard TSX-Plus device definition in TSGEN of the form:

DEVDEF <XL>,NONDMA

An XL handler must also be installed in RT-ll. If· VTCOM is to be used only
with TSX-Plus, the NL (null) handler can be copied to a file named XL.SYS and
this dummy handler installed in RT-ll.

The address of the interrupt vector and CSR register for the DLll line to be
controlled by XL must be set before XL can be used with the system. This can
be done using the following commands which must be executed under RT-ll before
TSX-Plus is started:

RENAME/SYS XL.SYS XL.TMP
RENAME/SYS XL.TSX XL.SYS
SET XL VECTOR=xxx
SET y~ CSR=xxxxxx
RENAME/SYS XL.SYS XL.TSX
RENAME/SYS XL.TMP XL.SYS

~fuen TSX-Plus is used as the local system, the IOABT sysgen parameter must be
set to 1 to enable handler abort entry code.

The VTCOM program references the XL device by use of the logical name xc. So
an assign of the following form must be used before running VTCOM:

ASSIGN XL XC

When TSX-Plus is used as the host system, the connection from the local system
may be made through any TSX-Plus time-sharing line on the host system.

2.6.3 Building device handlers
When building device drivers, it is necessary to set certain switches before
assembly which control condi tional code exclusion and inclusion. TSX-Plus
requires memory management and optionally allows device timeout. However, it
does not support error logging, therefore, error logging should not be
specified when the handlers are built.

An easy method of building device drivers for TSX-Plus is to create a TSX-Plus
conditional file. Using the editor, create a file "T5XCND.MAC" with the
following conditionals:

MMG$T
ERL$G
TIM$IT

1 ;enable memory management
o ;disable error logging
1 ;optionally enable timeout

-33-

System Generation

Note that setting a conditional parameter to zero (0) disables the option and
setting it to one (1) enables the option. Since device timeout is optionally
supported, TIM$IT may be either 0 or 1. Other parameters may be included to
specify device characteristics. For instance, the following conditionals may
be specified for RL01/RL02 support:

DL$UN
DL$CSR
DL$VEC

2 jdefine 2 units for the DL handler
= 176400 jdefine the CSR address for the DL handler
= 164 jdefine the vector for the DL handler

The following conditionals might be specified for file structured MT support:

MT$FSM
MT$UN
MT$CSR
MT$VEC

1 jenable file structured MT support
1 jdefine 1 unit for the MT handler
172520 jdefine the CSR address for the MT handler

= 224 jdefine the vector for the MT handler

Refer to Appendix C of the RT-11 System Generation Guide for an entire list,
defaul t value, and description of device condi tionals. These parameters are
not required and will use a default value if left unspecified, except MMG$T
which must be set to 1 for TSX-Plus.

2.6.4 Patching device handlers for use under TSX-Plus
Handlers which do not require patches for use with TSX-Plus are: CT, CR, DL,
DP, DS, DT, DU, LP, LS, NL, PC, RF, and RK. Some device drivers (DD, DM, DX,
DY, MM, MS, and MT) require minor modifications to execute properly wi th
TSX-Plus. (The RT-11 version 4 DL handler also requires modification if used.)
When using the file struc tured magtape device drivers, the file structured
module (FSM) as well as the device specific drivers (TJ, TM, and TS) must be
patched. The dd.TSX device handlers provided with TSX-Plus have already been
patched using the SLP files provided on the distribution and listed in Appendix
D. These patched handlers have been assembled wi th the appropriate con­
ditionals (ERL$G=Oj MMG$T=lj TIM$IT=l) and linked to create the dd.TSX files
provided with TSX-Plus. Device handlers do not need to be rebuilt unless you
require some modification which ~~ be made via ~ device SET option.

-34-

System Generation

If it is absolutely necessary to rebuild a device handler, then, to apply the
patches, either create the SLP files (from Appendix D) using a familiar editor
or copy the SLP files from the TSX-Plus distribution media. The names of the
SLP files are "ddTSX. SLP" where "dd" represents the two character source file
name (such as DMTSX.SLP) for application to RT-11 version 5 sources. The SLP
files for RT-11 V4 autopatch level E are named "ddV4.SLP". Copy the RT-11
handler source, named dd.MAC, from the RT-11 distribution media to dd.OLD on a
scratch working pack (e.g., COPY DL1:DM.MAC DLO:DM.OLD). Apply the patch using
the following command (do not use the /C:nnnnnn switch with RT~ll version 4):

SLP dd.MAC=dd.OLD,ddTSX.SLP/C:nnnnnn

where "dd" is the two character source file name and "nnnnnn ii is the patch
checksum from the following table for RT-11 version 5 handlers:

Patch file checksums for RT-11 version 5 handlers

DD
DX
FSM
TM

005747
147610
140676
012771

DM
DY
TJ
TS

036211
131466
124673
000444

For example, the following command would patch the DM version 5 source code:

SLP DM.!1AC=DM.OLD,DMTSX.SLP/C:036211

For more information on the use of SLP, refer to Chapter 21 of the RT-11 System
Utilities Manual. Note: Do not apply the patch to the original RT-11
distribution media as any RT-11 patches will require the original source file.

Whether or not patching is required, most handlers may be built (when
necessary) by the following commands:

MACRO TSXCND+dd/OBJ
LINK/EXE:SY:dd.TSX dd

where "dd" represents the two character device name.

Only the file structured magtape handlers require different commands. They may
be built by using the following commands:

MACRO TSXCND+FSM/OBJ
MACRO TSXCND+td/OBJ
LINK/EXE:SY:dd.TSX td,FSM

where "td" represents the tape device source module name (TJ, TS, or TM) and
"dd" represents the corresponding magtape device name (MM, MS, or MT). Notice
that the LINK command automatically appends the "TSX" file extension. Since
TSX-Plus uses handlers wi th the extension "TSX", the handlers must be linked

-35-

System Generation

wi th that extension rather than wi th the extension "SYS". This allows the
TSX-Plus handlers to coexist on the same system disk with standard RT-ll
handlers without conflict. Handlers (dd.TSX files) for all devices included in
your TSGEN DEVDEF list, including the system disk, must be on the system disk
when TSX-Plus is started.

On the LSI-II bus, only the DL, DU and MS handlers are actually supported with
full 22-bit DMA capability, and these devices must have controllers which also
support 22-bit addressing and the controllers must be so configured in order to
achieve actual 22-bit capability. In order to use any DMA device from a
program located above 256 Kb in physical memory, the device and handler must be
capable of and configured for 22-bit addressing or the device must be declared
to use system I/O mapping in its TSGEN device definition. See the description
of the DEVDEF macro for more information on 22-bi t addressing and system I/O
mapping. If a DMA device or handler does not support or is not configured for
22-bit' addressing and does not use system mapping, then attempts to use it will
generally result in "Illegal or uninitialized directory" or "Device I/O error"
error messages. Serial devices which do not use direct memory access do not
require 22-bit handlers or controllers or system I/O mapping.

The following RT-l1 device handlers are unsupported under TSX-Plus: BA
(resident batch handler), EL (SJ error logging pseudohandler), and PD
(PDT-l1/130/150 handler). The single line editor (SL) and logical disk support
(LD) are implemented in TSX-Plus as overlay regions and do not require device
handlers.

2~6.5 Device handler restrictions
TSX-Plus requires device handlers which are written to support a memory
management RT-ll XM environment. Error logging is not supported under
TSX-Plus. See the RT-ll Software Support Manual for details on device
handlers. Device handlers must follow the rules for RT-l1 XM device handlers
in order to function with TSX-Plus.

TSX-Plus stores the number of the job issuing an I/O request in bit positions
11 through 15 of the fourth word of the queue element. A job number of zero
implies the I/O request was initiated from the operating system. User job
numbers correspond to the TSX-Plus time-sharing line number.

Any handler that accesses the user's buffer directly by remapping kernel page
address register (PAR) 1 must be altered to use kernel PAR 6. Addresses in the
I/O queue entries are automatically adjusted to pass virtual addresses within
the PAR 6 region (140000 to 157777). In addition, boundary checking must be
altered to correspond to this virtual address region. Any handler using PAR 6
must first issue a .INTEN or .FORK request.

Kernel page address register 5 is also available for use in device drivers. If
PAR 5 or PAR 6 is used within a handler in an interrupt service routine (after
doing an .INTEN) they do not have to be saved since the .INTEN will do this;
however, if they are used in a handler other than at interrupt or fork level
(e.g., on I/O startup) they must be saved and restored by the handler.

-36-

System Generation

2.6.6 .TIMIO and .CTIMIO requests
Under TSX-PIUS--it is not necessary for a handler to go to fork level before
issuing .TIMIO and .CTIMIO requests. If a job nu~ber is placed in the timer
control block used with a .TIMIO request, the handler will be synchronized with
the specified job number when the timeout routine is entered. If a zero job
number is specified in the timer control block, the handler timeout routine
will be running at fork level but not synchronized with any job if an I/O
timeout occurs. See the RT-ll Software Support Manual for more information on
the .TIMIO and .CTIMIO programmed requests.

2.7 Setting the memory allocation for system programs

SETSIZ.SAV is a program that can be used to store information in a SAV file
about how much memory TSX-Plus should allocate for the program when it is run.
The method used to store this information in the SAV file does not affect the
execution of the program when being run under RT-ll. See Appendix A of the
TSX-Plus Reference Manual for complete information about the SETSIZ program.

A command file named SETSIZ. COM is provided wi th TSX-Plus. It contains the
necessary commands to cause the SETSIZ program to set appropriate allocation
sizes for most of the commonly used system programs. To execute this command
file, make sure the SETSIZ.SAV program and SETSIZ.COM command file is on the
system disk then type:

@SETSIZ

The allocation sizes set by this command file should be adequate for most sites
but a particular site might wish to alter them based on special requirements.
Note that it is not necessary to execute the SETSIZ. COM file every time
TSX-Plus is startedSince the size information is stored permanently in the
program SAV files.

-37-

-38-

3. SYSTEH AND FILE ACCESS SECURITY

TSX-Plus provides a number of system security options that allow the site
manager to control access to the system by timesharing users. By selecting the
appropriate combination of options the system manager can control who can log
onto the system, which files or devices each user can access and can also lock
users to application programs. There are six facilities that can be used to
control system access, all of which are described in this chapter:

1. Start-up command files.

2. Log-off command files.

3. The RUN/LOCK switch.

4. The ACCESS command.

5. The SET MAXPRIORITY command.

6. Operator privilege.

7. The LOGON and account authorization programs.

In addition to these security features, TSX-Plus also provides a use accounting
facility that keeps track of the number of timesharing sessions and the total
connect time that each user uses.

3.1 Start-up command files

When TSX-Plus is generated, the system manager may specify for each time­
sharing line the name of a command riLe that is to be executed each time the
line is started. The command file name is specified by using a "CMDFIL" macro
vlithin the line definition block in TSGEN. This is explained in Chapter 2.
Different command files may be specified for each line and any or all lines may
be generated without start-up command files.

If a line has a start-up command file, that command file is started each time
the line is initialized (e.g., when a user presses carriage return on an
inactive line). Start-up command files are different than other command files
in that their execution cannot be aborted by typing control-C. This allows the
system manager to place any desired commands in a start-up command file to be
executed to completion regardless of the actions of the timesharing user.
However, if the command file aborts for some other reason, the line may be
granted access to the system without proper initialization. This may be
avoided by disabling command file aborts, except in the most serious circum­
stances, by setting the error abort level as the first command. This is
expecially important for lines started wi th complex command files and for
dial-up lines. For example:

-39-

System and File Security

SET ERROR FATAL

R/LOCK LOGON
OFF

This would prevent the line from accessing the system even if the LOGON program
were not found.

A start-up command file can contain any keyboard command and can run one or
more programs. Control-C resumes its normal function when start-up command
file is terminated or a program initiated by it requests input from the
terminal. It is suggested that start-up command files be given the extension
"TSX" to prevent their being tampered wi th by users who do not have operator
privilege (see below). Note, if "TSX" is used as the file extension, it mus t
be specified with the file name in the CMDFIL macro as the default extension is
"COM". The default device is "SY:".

The listing of a start-up command file can be suppressed by placing the two
character sequence " (" at the front of the command file.

3.2 Log-off Command Files

It is possible to declare a command file that is to be executed when a job logs
off. To declare a log-off command file, place a command of the following form
in the start-up command file for the job:

SET LOGOFF FILE=name

Where "name" is the file specification for the log-off command file. The SET
LOGOFF command is only legal within the start-up command file for the job. The
log-off command file is executed whenever the job logs off. Be careful wi th
what you put in a log-off command file since the execution of a log-off command
file cannot be aborted by typing control-C. The listing of a log-off command
file can be suppressed by placing " (" as the first two characters of the file.

3.3 The RUN/LOCK Switch -- ---------
The "R" and "RUN" commands accept a "/LOCK" swi tch that causes the program
being run to be "locked" to the timesharing line. A locked program executes in
the normal fashion, and may chain to other programs (which become locked).
However, if a locked program exits or is aborted by typing control-C the line
is automatically logged off. Note that one can prevent an ongoing program from
being aborted by control-C by doing an .SCCA EMT or by using the TSX-Plus "D"
program controlled terminal option (see Chapter 6 in the TSX-Plus Reference
Manual for information on defining activation characters).

In a situation in which a timesharing line is to be automatically locked to a
program when the line is started, simply build a start-up command file for the
line and include as the last entry in the file a "RUN/LOCK program" command.

-40-

System and File Security

3.4 The ACCESS Command

The ACCESS keyboard command is used to limit access to devices and files. The
ACCESS command is unique in that it is valid only if executed as part of a
start-up command file.

The form of the ACCESS command is:

ACCESS dev:file.ext/switch,dev:file.ext/switch, •••

Up to twenty "dev:file.ext" expressions may be specified. Each logical subset
disk mounted also counts toward the limi t of twenty entries in the access
table.

If no ACCESS command is executed, the timesharing user is allowed to access all
devices and files on the system (with the exception of SYS and TSX-Plus
files--see Operator Privilege, below). If any ACCESS command is executed, the
user is restricted to accessing only the devices and files that are specified
with the command.

The "dev:file.ext" expression has three items: the device name, the file name
and the extension. The "*" (wildcard) character may be substituted for any or
all of these thr~e items. In this case the wildcard will allow access to any
name that occurs in the wildcarded position. For example, "RK1 : *. ABC" will
allow access to any file on RK1 that has the extension "ABC". Consider the
following ACCESS command:

ACCESS RKO:*.ABC,RKO:*.BAK,RK1:*.*,LP:

This allows access to any files on RKO that have the extension "ABC" or "BAK";
it also allows access to all files on RK1 and LP. Note that the LP specifi­
cation is needed if the user is to be allowed to access the spooled line
printer. Access privilege is needed to read, create, delete, or rename a file.
A device can only be initialized (directory zeroed) if full access to the
device is granted.

The ACCESS facility works by matching the user-specified device, file and
extension names with those that were specified on the ACCESS command. This
matching is done after any ASSIGNS of logical to physical device names are
carried out.

Because the utility programs PIP, DUP and DIR directly access device direct­
ories, they exhibit minor deviations from expected access protection behavior.
If access is granted to any files on a device, then DIR will be able to obtain
the device directory. In order for PIP and DUP to access an individual file,
the job must have at least /READ access to the full device, even if access has
been granted to the specific file of interest. These deviations affect the
DIR, COPY, TYPE, and PRINT commands among others.

-41-

System and File Security

The "/READ" switch may be specified with a device-file name to restrict access
to the device-file to be read-only. For example, the following command allows
full access to RKI but read-only access to RKO.

ACCESS RKl:,RKO:/READ

Remember that the common utility programs, such as PIP and DIR, are required by
most users and consequently at least SY:*.SAV/READ access is usually desirable.
Also, access to the system library file (SY: SYSLIB .OBJ or SY: FORLIB .OBJ) and
the system MACRO library file (SY: SYSMAC. SML) may be necessary for program
development. Because of the limited number of ACCESS entries that may be made
(20 for each job), it is not advisable to enumerate each specific file to which
access is desired, but rather to cluster groups of files on the system disk or
on logical subset disks. For example, the following ACCESS command could be
used to grant full access to DLI and limited access to the system disk:

ACCESS DLl:,SY:*.SAV/READ,SY:SYSLIB.OBJ/READ,SY:SYSMAC.SML/READ

The ACCESS and MOUNT commands can be used together to control access to logical
subset disks. To control which logical disks are available to a user, specify
the names of the files that contain the logical disks with the ACCESS command
in the startup command file and then use MOUNT commands after the ACCESS
command to associate logical disk units with the files. This will allow the
user to access all files within the logical disk but will restrict access to
other logical disks or files. For example, consider the following commands
which could be placed in a startup command file:

ACCESS SY:/READ,DLO:CLASSl.DSK,DLO:CLASS2.DSK/READ
MOUNT LDI DLO:CLASSI
MOUNT LD2 DLO:CLASS2

After executing this startup command file, the user will have read only access
to all files on the system disk ("SY: "), read-wri te access to LDI which is
associated with the file DLO:CLASSl.DSK, and read-only access to LD2 which is
associated with DLO:CLASS2.DSK. This will permit the user to initialize LDI
and create, edit, and delete files on LDI. Files on LD2 may be accessed for
reading only. The user may also create nested logical disks within LDI.

3.5 The SET MAXPRIORITY Command -- -- -- ------ ----
TSX-Plus users can assign execution priority values to their jobs by use of the
SET PRIORITY command and a TSX-Plus EMT. The maximum priority that a user is
allowed to use can be controlled by use of ei ther the TSAUTH program (in
conjunction with the LOGON program), or the SET MAXPRIORITY command. Normally
the TSAUTH program would be used to assigned maximum priori ties if the LOGON
facility is being used. The SET MAXPRIORITY command is intended primarily in
situations where the LOGON facility is not being used but it is still desirable
to limit the maximum authorized priority. In these cases the SET MAXPRIORITY
command can be placed in the start-up command file for the line.

-42-

System and File Security

The form of the SET MAXPRIORITY command is:

SET MAXPRIORITY value

where "value" is in the range a to 127. The SET MAXPRIORITY command may only
lower the maximum authorized priority value for the job, it may not increase
it. Thus the system manager may restrict job priority by placing a SET
MAXPRIORITY command in the start-up command file for a line.

3.6 Operator Privilege

Certain system facilities and keyboard commands are only available to times­
haring users who are granted "Operator Privilege,," The following list
summarizes those system facilities that are restricted to users having operator
privilege.

1. The $STOP, $SHUTDOWN and BOOT keyboard commands. If a user wi thout
operator privilege attempts to use one of these commands, TSX-Plus
displays the message "?ICJI10N-F-You re not privileged for that command."
The $STOP, $SHUTDOWN and BOOT commands either halt the system or boot
RT-ll, depending on your system configuration. See the TSX-Plus
Reference Manual for further information.

2. Real-time programming facilities such as the ability to access the I/O
page and connect real-time interrupts to completion routines. Note
that operator privilege is necessary to run the SYSMON utility, because
it uses some real-time facilities.

3. Creation or execution of files with the extension ".TSX" or ".SYS".

4. Use of the TSAUTH account authorization program.

5. The ability to use the .PEEK and .POKE EMT's to access the I/O page or
low memory areas.

6. The use of the EMT to set the user name (operator privilege is not
required to determine the user name).

7. The ability to set the system date or time (DATE and TIME commands and
the • SDTTM EMT).

8. Use of the SYSMON system status display program.

Operator privilege can be granted in either of two ways. If the LOGON program
is used, individual accounts can be granted or denied this privilege (see
Chapter 4, Account Authorization). If the LOGON program is not used, this
privilege is specified on a line-by-line basis during TSX-Plus system gen­
eration by including $PRIV in the FLAGS macro (see Chapter 2 on line defin­
itions). Note that even if the FLAGS macro for a given line includes the $PRIV
flag and the LOGON program is run from that line, then operator privilege is
still controlled by the account authorization system.

-43-

System and File Security

3.7 Use ~ the LOGON facility

The TSX-Plus LOGON facility provides access security to the system by requlrlng
users to enter a valid project-programmer number or user name and password
before granting access to the system. In addition, the LOGON facility allows
the system to grant different privileges to each user and provides system use
accounting on a user by user basis.

To use the LOGON facility the system manager must first use the account
authorization program (see Chapter 4) to create an account authorization file.
This file specifies the valid project-programmer numbers, user names, pass­
words, user start-up command file, and privileges. He must then generate a
TSX-Plus system and specify a line-by-line start-up command file to be executed
for each line that is to be forced to logon. The suggested name for this
start-up command file is "SY: LOGON. TSX" • This command file may contain any
desired keyboard commands but should start by disabling error aborts, should
lock the job to the LOGON program, and should end by logging the job off. In
this fashion, the job will not be able to gain access to the system even if the
LOGON program is missing or some other command fails. For example:

SET ERROR FATAL

R/LOCK LOGON
OFF

This command causes the LOGON program to be started and "locked" to the line so
that the user cannot run any other program until the logon has been success­
fully completed. Note that the logon program (LOGON.SAV) should be present on
the system device. The OFF command will only be executed if the LOGON program
cannot be run.

Note that for each job there may be two start-up command files: the first is
specified with the CMDFIL macro in TSGEN and is associated with a physical
time-sharing line; the second is associated wi th a particular user (account
name, project-programmer number) and is invoked through the LOGON program and
account authorization system.

To prevent listing the start-up command file, the character sequence (" can
be placed at the beginning of the command file. Thus, the logon start-up file
for a physical time-sharing line might contain:

.... (SET ERROR FATAL
R/LOCK LOGON
OFF

A SET LOGOFF command can be placed in the start-up command file to declare the
name of a command file to be executed when the job logs off.

-44-

4. ACCOUNT AUTHORIZATION PROGRAM

TSAUTH, the TSX-Plus account authorization program, is used to authorize
project-programmer numbers for access to the system when the LOGON facility is
used. It is also used to display the use accounting statistics that are
collected by the LOGON facilitye

A user must have operator privilege to be allowed to run TSAUTH under TSX-Plus.
However, TSAUTH may also be run directly under RT-ll without TSX-Plus. In a
hostile environment it might be desirable to restrict access to the TSX-Plus
distribution media and to keep the TSAUTH program on a removable medium rather
than keeping it on the system disk. TSAUTH creates a file on SY named
"ACCESS. TSX". Note that operator privilege is required to create or execute
any file with the extension "TSX".

Whenever TSAUTH is started it checks to see if an account authorization file
already exists. If not it prints the message:

Cannot open account authorization file "SY:ACCESS.TSX"
Do you want to initialize a new authorization file?

If you respond "YES" (or "Y") to this question it will ask you how many
project-programmer numbers (PPN's) you want to reserve room for in the file.
Respond by entering the maximum number of accounts that you anticipate ever
needing to have authorized at anyone time. As old accounts are deauthorized,
file space is recovered that can be used for new accounts. Note however that
the only way to enlarge the ACCESS file is to delete it and build a new larger
one from scratch. Do not underestimate the potential number of accounts
desired.

The format of the account authorization file changed with TSX-Plus version 4.0.
If your authorization file was created with an earlier version of TSAUTH, the
AUTCVT program, which is described at the end of this chapter, must be used to
convert the file to the new format.

Once the authorization file is found or built, TSAUTH prints an asterisk
indicating it is waiting for a command. Commands are entered as a single
letter followed by a space and (for most commands) a user name or a project­
programmer number typed with a comma separating the project number from the
programmer number. The L(IST), K(ILL), U(SE) and R(ESET) commands allow a
wildcard asterisk character to be used in place of the project number,
programmer number or both. This allows sets of project-programmer numbers to
be dealt with as a group. These commands also allow use of the user name
instead of the PPN, allowing one to do these operations wi thout knowing the
PPN.

TSX-Plus gives no special significance to the grouping of accounts by project
and programmer numbers. However, for convenience in using the TSAUTH program,
it is suggested that a common project number be used for all PPN's associated
with the same pro~ect or class and the programmer number be used to identify an
individual.

-45-

Account Authorization

User names given to accounts should be unique. As TSAUTH and LOGON read the
ACCESS. TSX file sequentially, only the first occurrence of a given user name
will be recognized at logon time or during TSAUTH file updating. For example,
if two users have the user name SMITH and the one with the later record in the
access file attempts to log on by using his name, LOGON will not recognize his
password, as it is expecting the password for the first SMITH. However, he can
still log in by specifying his project-programmer number, since PPN's must be
unique.

4.1 Command summary

The following table lists a brief summary of the commands accepted by TSAUTH:

Command

A proj,prog
K user-name
L user-name
U user-name
C
R user-name
E

Function

Authorize a new account
De-authorize an existing account
List authorization status
List account usage statistics
Create charge file (DK:CHARGE.TSX)
Reset account usage statistics
Exit TSAUTH

Commands which accept a user-name will also accept project-programmer numbers
or wildcards. The A command accepts only PPN's.

4.2 Authorizing ~ project-programmer number

The "A" (Authorize) command is used to add a new PPN to the authorization file.
The form of this command is:

A proj,prog

A wildcard ("*") may not be substituted for either the project or programmer
number. A project-programmer number must be deauthorized by the use of the
kill command before it can be reauthorized. Project and programmer numbers
mU8C be decimal values in the range 1 to 65535.

TSAUTH responds to the "A" command by asking a series of questions as follows:

a) User Name:

Enter the user name to be associated with the PPN as a 1 to 12 character
alphanumeric string. User names may be composed of letters and digits but
may not contain spaces. The user name must be unique to the PPN; you may
not have more than one PPN with a given user name. This is necessary as
you can log in with the user name as well as with the PPN.

-46-

Account Authorization

b) Password:

Enter a 1 to 8 character alphanumeric string that is the password to be
associated with the PPN.

c) Start-up file:

Enter the name (dev:file.ext) of the start-up command file to be executed
whenever this user logs on. Press return if no startup command file is
desired. The default device is SY and the default extension is COM.

Note that for each job, two startup command files may be executed; the file
associated with the line and the file associated with the user. Usually,
the start-up command file associated with the line will contain little more
than R/LOCK LOGON, whereas logical assignments and ACCESS commands will be
located in the command file associated with the user, as defined in this
parameter.

d) Virtual ""lines:

Respond wi th "y" for yes or "N" for no, indicating whe ther the account is
to be allowed to use the TSX-Plus virtual line facility.

e) Detached jobs:

Kespond Yes/No indicating whether the account is to be allowed to use
detached jobs.

f) Operator commands:

Respond Yes/No indicating whether the account has operator privilege.
Generally, this should be restricted to a small set of users.

g) Maximum execution priority:

Respond with a (decimal) number in the range of 1 to 127 to restrict this
user's maximum job execution priority. The default value is 50.

Example: In the following example a PPN 107,423 is authorized wi th the user
name "DAGWOOD" and the password "SECRET" and the start-up command file named
"SY: SU107 .TSX" is specified. The maximum execution priority defaults to 50
since no value is entered.

-47-

Account Authorization

*A 107,423
User name:DAGWOOD
Password: SECRET
Start-up file:SY:SUI07.TSX
Virtual lines:Y
Detached jobs:N
Operator commands:N
Maximum execution priority:

*

4.3 Deauthorizing Accounts

The "K" (Kill) command is used to deauthorize project-programmer numbers. The
form of this command is:

K proj,prog
or

K user-name

where a wildcard character ("*") may be substituted for the project number,
programmer number or both.

Examples:

1. Deauthorize PPN 107,423.

*!. 107,423

2. Deauthorize all PPN's with the project number 237.

*K 237 *
- .::::.::...:.-!

3. Deauthorize a PPN with the user name DAGWOOD.

*K DAGWOOD

4.4 Listing account status

The "L" (List) command is used to list the current authorization status of any
or all accounts. The form of this command is:

L proj,prog
or

L user-name

The wildcard character may be substituted for the project and programmer
numbers. The information listed includes all of the items that were specified
when the account was authorized.

-48-

Account Authorization

Example:

List the current status of the account with user name DAGWOOD.

*L DAGWOOD

PPN:I07,423
user-name: DAGWOOD
Password: SECRET
Start-up file:SY:SUI07.TSX
Virtual lines:Y
Detached jobs:N
Operator commands:N
Maximum execution priority:50

*

4.5 Listing Account Usage Statistics

The "u" (Usage) command can be used to display the account usage statistics
which consist of the number of sessions, the connect time, and the CPU time.
The form of this command is:

U proj,prog
or

U user-name

The wildcard character may be substituted for the project number, programmer
number, or both.

Example:

List the usage statistics for all a~counts with the programmer
number 423.

*U *,423

PPN:I07,423
PPN:413,423
PPN:21,423

/I sessions=14
II sessions=5
II sessions=lO

Connect time=Ol:23:00
Connect time=14:02:00
Connect time=Ol:11:00

4.6 Creating ~ Charge Information File

CPU=OO:03:07.4
CPU=Ol:13:02.5
CPU=OO:49:18.9

The "c" (Charge) command causes TSAUTH to create a file of usage infor­
mation. The file is named "DK:CHARGE.TSX"; it contains one record for each
PPN; each record is terminated with a carriage return and line feed.

-49-

Account Authorization

The format of a charge record is as follows:

Columns

1
2 - 6

7
8 - 12

13
14 - 18

19
20 - 24

25
26 - 33

34
35 - 46

47
48

Contents

(blank)
Project number
(blank)
Programmer number
(blank)
Number of logons
(blank)
Number of minutes of connect time
(blank)
CPU time used (0.1 second units)
(blank)
User-name (left justified and padded with blanks)
(carriage return)
(line feed)

4.7 Resetting Account Usage Statistics The "R" (Reset) command resets the
account usage statistics (number of sessions, connect time, and CPU time) to
zero for all or a selected set of accounts. The form of this command is:

R proj,prog
or

R user-name

where the wildcard character may be substituted for the project number, the
programmer number, or both.

Examples:

1. Reset all PPN's with the project number 21.

2. Reset all PPN's.

3. Reset the PPN with the user name DAGWOOD.

*R DAGWOOD

4.8 Exiting from the Account Authorization Program The "E" (Exit) command is
used to exit from the TSAUTH program to the keyboard monitor. The form of this
command is:

E

-50-

Account Authorization

4.9 AUTCVT program

The TSAUTH and LOGON programs supplied wi th TSX-Plus are incompatible with
authorization files created prior to version 4.0. A conversion program named
AUTCVT is supplied to convert old format authorization files to the new format.
It is suggested that a copy of the old format file be made before the con­
version is performed since there is no way to convert back to the old format.

The AUTCVT program reads an old format authorization file with the name
SY:ACCESS.TSX and creates a new format authorization file with the same name
(superseding the old file). This conversion should be done while running under
RT-11 before starting TSX-Plus. In the process of converting the file, AUTCVT
prints each project-programmer number and requests a corresponding user name to
be entered. If you do not wish to specify a user name for some PPN's, press
return without entering a name. This will limit the user to logging on using
his PPN. If a user name is entered, then either the user name or the PPN may
be used in subsequent logons.

51-

-52-

5. SYSTEM OVERVIEW

This chapter presents an overview of the TSX-Plus system organization and
operation. It is intended to provide background information for users who want
to know more about the system internal organization and operation.

5.1 Memory Organization

Memory is organized into two major divisions: memory used by the operating
system and memory available for user programs. The memory required by the
operating system is permanently allocated and contains both code regions and
data structures reserved for its exclusive use. In contrast, the content of
user memory changes frequently as different jobs are swapped in and out of
memory. Associated with each job, the system maintains a 4Kb job context
region. Job swapping only occurs when a user job needs service and there is
not enough contiguous free memory to load it and its job context region. Job
swapping may be disabled entirely as a system generation option. In this case,
a new job can only be started when sufficient user memory is already available.

5.1.1 System Memory Mapping
The operating system is divided into four distinct regions: kernel root,
system overl.ays, mappeo data, and the I/O page. The kernel root is mapped
using kernel PARs (page address registers) 0 through 4. Because of this, the
kernel root code region is restricted to a maximum of 40 K bytes. (Each PAR
maps 8K bytes.) The I/O page is mapped through kernel PAR 7.

Each system overlay code region is mapped through kernel PAR 5 and is therefore
restricted in size to a maximum of 8K bytes. Only one memory resident overlay
code region may be mapped at a time.

Each mapped data region is an individual storage area mapped through kernel PAR
6. Because of this, each data region is restricted in size to a maximum of 8K
bytes. Only one data region may be accessed at a time.

The following diagram illustrates the virtual address organization of TSX-Plus
during execution.

-53-

System Overview

Virtual Memory in the TSX-Plus Kernel

+---------------------------+ 177777
I I/O Page I
+---------------------------+ 160000
I Mapped Data Regions I
+---------------------------+ 140000
I System Overlay Regions I
+---------------------------+ 120000
I I
I I
I Kernel Root Code I
I and Data Region I
I I
I I
+---------------------------+ 0

5.1.1.1 Kernel Root: The kernel root contains: device handler vectors
(located from zero to octal 500); the memory resident overlay handler and
tables necessary for interfacing to overlay code sections; data tables
allocated in TSGEN; executive code including the job swapper, scheduler, etc.;
I/O related processing code; clock and terminal interrupt entry code; and the
startup initialization code. To conserve space, TSX-Plus re-uses the memory
containing the startup initialization code by allocating data structures which
do not require initialization over it after completion of startup. If
additional space is necessary, the top of TSX-Plus is extended. These buffers
co~sist of the job information tables (simulated RMON); I/O queue elements; and
system message buffers. Device handlers are loaded above these data buffers.
The size of the entire kernel root region described here (including device
handlers) must not exceed 40Kb. See Appendix E for more information about the
size of the system.

5.1.1.2 System Overlay Regions: There are currently eleven memory resident
overlay code regions. They are separated logically by function. Since only
one overlay code region may be mapped at a time this functional separation
reduces the number of calls to the overlay handler. Seven of the overlay code
regions are optional and will only be loaded if the feature is selected in
TSGEN. The functions performed by the overlay code regions are:

-54-

1.
2.
3.

4.

5. *
6. *
7. *
8. *
9. *
10. *
1 1 * LL.

Terminal input and output operations
Programmed EMT requests
Directory manipulation requests and
directory cache buffers
Miscellaneous executive functions such as
clock processing and fatal error processing
Program logical address space requests (PLAS)
Device spooling with buffers
Record locking and data structures
Message communication and data structures
Real-time service requests
Mapped I/O servicing
Single line editor

System Overview

* Denotes optional overlays that are only loaded into memory if the corres­
ponding feature is selected during system generation. See Appendix E for
information about the size of the optional system overlays.

r:::, , '1 'IvI'~ ,.....t n ... +- ... 1),..~.;" "". Tho oA A",+-", ,..o~.;" '" ",ll",....,,+-oA A .. ,...; n- c. .. <l,.. .. 11T\
Je..Le.LeJ J.:.1GLpp~U ~ L'\,.~6..LVL.LO. .Ll.l~ .LU.Q.pp~u. uc;a. o. .L~5..L.v&..LO Q...L...LV'-Q.'-~u. UU.L..L..L.l.6 u ~.&. """t'

contain the terminal input and output character buffers, and the following
optional buffers: shared data cache buffers, mapped I/O buffers, performance
monitor buffers, and generalized data cache buffers.

5.1.1.4 Shared Run-time Systems: In addition to the system regions described,
a fifth region, also pre-allocated by the system but not directly used by it,
contains user-defined shared run-time systems such as those provided with
COBOL-Plus and DBL.

5.1.2 Physical Layout of TSX-Plus
The kernel root beginS-at physical memory address zero. Its size is variable,
depending on options selected during system generation, and may extend up to
40Kb. All of the mapped data regions are allocated directly above the kernel
root with the exception of the generalized data cache buffers which are
allocated directly below the system overlay regions and any optional shared
run-times. See Appendix E for information about the size of various optional
system features. The system overlay regions are allocated at the top of
physical memory, or at the top selected by the MEMSIZ parameter if not all
physical memory is to be used by the system. For example, some portion of
memory may be reserved for use by a memory based disk emulator such as VM.
Shared run-time systems, if any, are loaded directly below the system overlay
regions as are the buffers used by the generalized data caching facility.
Finally, all the physical memory between the mapped data regions and shared
run-time systems is available for time-sharing users. The following diagram
depicts the physical memory allocation of TSX-Plus during execution:

-55-

System Overview

Physical Memory Use by TSX-Plus

+----------------------------+
I I/O Page I
+----------------------------+

+----------------------------+ Top of physical memory
I VM Pseudo-disk Data Area I
I (optional) I
+----------------------------+ Top of TSX-Plus (MEMSIZ)
I System Overlay Regions I
I (some optional) I
+----------------------------+
I Shared Run-Times I
I (optional) I
+----------------------------+
I Generalized Cache Buffers I
I (optional) I
+----------------------------+
I I
I I

User Job Region

+----------------------------+
I Performance Monitor Buffer I
I (optional) I
+----------------------------+
I Mapped I/O Buffers I
I (optional) I
+----------------------------+
I Shared File Cache Buffers I
I (optional) I
+----------------------------i
I Terminal I/O Buffers I
+----------------------------+ Maximum 40Kb
I Device Handlers I
I Initialization Code I
I Executive Code I
I TSGEN I
I Overlay Tables I
I Interrupt Vectors I
+----------------------------+ Physical 0

-56-

System Overview

5.1.3 User Memory:
The user's job region, sandwiched between memory used for the operating system,
is allocated dynamically, placing each user's job in the first available free
memory area large enough to contain it. In a swapping system, each job can
potentially be positioned anywhere within the region. A 4Kb job context region
is appended immediately below each job image, allowing the job and its context
region to be swapped together.

The virtual address space of each job is intrinsically limited to 64K bytes by
the PDP-II architecture, although the job may remap itself by use of real-time
or shared run-time EMTs. In addition, each job may request and be granted more
physical space by use of the PLAS requests. These extended memory regions may
be used for virtual overlays or virtual arrays and need not be contiguous with
the job's base image. When an extended job is swapped, the PLAS regions are
swapped into a disk file separate from the base image.

5.2 I/O Mapping

I/O mapping is a facility which allows DMA devices with 18-bit controllers to
be used with Q-bus systems with 22-bit address space.

The original LSI Q-bus used with 11/23 systems had 18 address lines allowing
I/O transfers to take place within 256Kb of memory. Device controllers
developed during this period supported 18 address bits. With the introduction
of the 11/23-Plus processor, four additional address bits were added to the
Q-bus bringing the total to 22 address bits which allowed I/O transfers to take
place to 4Mb of memory. Unfortunately, many sites still have older device
controllers that only support 18 bits and, in fact, DEC still does not build a
Q-bus DY (RX02) controller that supports 22 bi t DMA transfers. The l8-bi t
controllers will operate satisfactorily with 22-bit Q-bus systems provided that
the I/O transfer is always within the lower 256Kb of memory. This would cause
problems with TSX-Plus since jobs may be located anywhere in physical memory
and I/O transfers are normally done directly to buffers located in the job
region.

The I/O mapping facility causes the system to "map" I/O transfers through
system buffers that are always located in the lower 256Kb of memory. This
facility may be specified selectively for those DMA devices that only have
l8-bi t controllers. The "MAPIO" option for the DEVDEF macro is used to
indicate that I/O mapping should be done for a device. Devices which support
22-bit addressing do not need system buffering and can operate normally.

When I/O mapping is selected for a device, TSX-Plus examines each I/O operation
directed to the device and if the buffer is outside of the lower 256Kb it moves
the data from the user's buffer to/from a system buffer and performs the actual
data transfer from the system buffer to/from the I/O device. This allows
l8-bit devices to be accessed by all time-sharing jobs regardless of their
location in physical memory. However, it introduces a significant speed
penalty since the data must be moved between the system buffer and the buffer
in the job space. A further speed penalty is introduced in cases in which the

-57-

System Overview

amount of data being transferred is larger than the system buffer. In this
case, an I/O operation which would normally be accomplished as a single
transfer will be broken down into a series of smaller transfers. When a large
operation is broken down into a series of smaller operations time is lost
waiting for the device to reposition itself for the start of the next oper­
ation. This speed penalty can be minimized by allocating a large enough system
buffer to accommodate most I/O transfers as a single operation. The general­
ized data caching facility can also significantly overcome the speed penalty
since data read from the cache does not have to be mapped.

5.3 Job Scheduling.

TSX-Plus schedules jobs for execution based on two factors: (1) the value of a
user-assigned job priority that may range from 0 to 127; and (2) the execution
state of the job.

5.3.1 Job Priorities
The priority values are arranged in three groups: the fixed-low-priority group
consists of priority values from 0 up to the value specified by the PRILOW
sysgen parameter; the fixed-high-priority group ranges from the value specified
for the PRIHI sysgen parameter up to 127; the middle priority group ranges from
(PRILOW+1) to (PRIHI-1). The following diagram illustrates the priority
groups:

+-------------+
127 -->1 1

1 Fixed I

1 high 1

1 priorities 1

PRIHI -->1 1
+-------------+
1 1
1 Normal 1

PRIDEF -->1 interactive 1
1 priorities 1

1 1
+-------------+

PRILOW -->1 1
1 Fixed 1

1 low 1
I priorities 1

o -->1 1
+-------------+

5.3.1.1 Fixed Priority Jobs: Job scheduling is performed differently for jobs
in the fixed-high-priority and fixed-low-priority groups than for jobs with
normal interactive priorities. Jobs with priorities in the fixed-low-priority
group (0 to PRILOW) and the fixed-high-priority group (PRIHI to 127) execute at
fixed priority values. That is, the priority absolutely controls the sched-

-58-

System Overview

uling of the job for execution relative to other jobs. The job state does not
influence the execution scheduling except as to whether the job is in a
ready-to-run state or a wait state. A job with a fixed priority is allowed to
execute as long as it wishes until a higher priority job becomes active. Jobs
having identical fixed priorities are scheduled on a round-robin basis at rates
determined by the QUANO and QUAN3 parameters.

The fixed-high-priority group is intended for use by real-time programs. See
the chapter on real-time program support in the TSX-Plus Reference Manual. The
fixed-low-priority group is intended for use by very low priority background
tasks. Normal time-sharing jobs should not be assigned priorities in either of
the fixed priority groups.

5.3.1.2 Normal Priority Jobs: The middle group of priorities from (PRILOW+1)
to (PRIHI-1) are intended to be used by normal, interactive, time-sharing jobs.
Jobs with these assigned priorities are scheduled in a more sophisticated
manner than the fixed-priori ty jobs. In addi tion to the assigned priority,
external events such as terminal input completion, I/O completion, and timer
quantum expiration play a role in determining the effective scheduling
priority. For these jobs the job state is the primary factor in determining
execution scheduling and the user-assigned job priority only influences the
scheduling of jobs in the same state.

For most situations, the best strategy is to assign a single priority in
middle of the interactive job priority group to all interactive jobs
reserve the fixed priority groups for real-time or very low priority jobs.
default job priority is specified by the PRIDEF sysgen paraUleter.

the
and
The·

When a job with a normal priority switches to a virtual line, the priority of
the disconnected job is reduced by the amount specified by the PRIVIR sysgen
parameter. This causes jobs that are not connected to terminals to execute at
a lower priority than jobs that are. This priority reduction does not apply to
jobs with priorities in the fixed-high-priority group or the fixed-low-priority
group. The priority reduction is also constrained so that the priority will
never be reduced below the value of (PRILOW+1).

5.3.2 Execution States:
TSX-Plus assigns each job a "state" based on actions taken by the job, and
external events such as I/O interrupts and timed interval expirations. These
states can be grouped into six categories as illustrated by the following
diagram:

-59-

System Overview

+----------------------+
I Fixed high priority I
+----------------------+
I Interactive I
+----------------------+
I Non-interactive I
I wait completion I
+----------------------+
I Non-interactive I
I compute bound I
+----------------------+
I Fixed low priority I
+----------------------+
I Wait states I
I (non-executable) I
+----------------------+

Highest priority

v
Lowest priority

5.3.2.1 Wai t States: Currently, there are sixteen states to identify jobs
waiting for events or resources. These jobs are in non-executable states.
When a particular event occurs or resource becomes available, the jobs waiting
for these events or resources are readily identified by their wait state and
are scheduled for execution.

5.3.2.2 Executable states: There are 10 executable job states which can be
grouped into five categories: (1) fixed-high-priority; (2) interactive; (3)
non-interactive wait completion; (4) non-interactive compute bound; and (5)
fixed-low-priority. Jobs that have user-assigned priorities greater than or
equal to PRIHI are always in either a wait state or in the fixed-high-priority
state. They are never assigned one of the other executable states. Similarly,
jobs with user-assigned priorities less than or equal to PRILOW are always in
either a wait state or the fixed-low-priori ty state. Jobs with priorities
between (PRILOW+l) and (PRIHI-l) are in one of the states: interacti ve,
non-interactive wait completion, non-interactive compute bound, or wait.

The job scheduler gives preference to interactive jobs to provide rapid
terminal response. Each time a job accepts a character from the terminal (this
is effectively the same as when a job receives an activation character), the
job is classified as "interactive" and the following actions are taken:

1. The job is placed in the highest priority state within the interactive
state group.

2. A system timer is started for the job.

3. The I/O count for the job is set to zero.

The job remains in the highest priority interactive state until it either has
executed for QUAN1C units of time or performs an I/O operation. At that time,
the job is rescheduled into the next lower execution state in the interactive
group (interactive-CPU). On return from an I/O operation (during which the job

-60-

System Overview

was probably in an I/O wait state) an interactive job is placed in the
interactive-CPU state. Interactive jobs which accumulate a total of QUANI
units of time or which perform more than INTIOC I/O operations are reclassified
as non-interactive and placed in the non-interactive compute bound state.

Non-interactive jobs normally execute in the non-interactive compute bound
state. Whenever a non-interactive job waits on a resource (such as an I/O
operation), the job is placed in a wait state. On completion of the wait
condition, the job is placed in a non-interactive wait completion state for a
short period of time. The wait completion state has a higher priority than the
normal non-interactive compute state but lower priority than any of the
interactive states. The job remains in the wait completion state until it
reenters a wait state or executes for QUAN1A units of time at which point it is
placed back in the non-interactive compute bound state.

The only way that a non-interactive job can move back into one of the inter­
active states is by receiving input from the terminal.

The diagram on the following page illustrates how time-slice parameters and
external events affect job state transitions.

61-

System Overview

Interactive States

+--+
+--:~:~~~~::~~-~:~~-:~:~~:=~--fl
1-- - - - - - - - - - - - - - I
1-- - - - - - - - - - - - - - I

.... QUANIC

I -
+----------------------------- -+

+----~~~~~~~~:~~-:~~-~~~~~-- -{fl
I - - - - - - - - - - I
I - - - - - - - - - - - - - - - I

I-=_=_=_=_=_=_=_=_=_=_=_=_-_-_~lB

I
I
I
I
I
I
I
I
I
I

+-- ---+
QUANI

Non-Interactive States

+--

+-~~~=:~~~~~~~:~~-~:~~-~~:~~::r_fl-+
I - - - - - - - - - - - - - - - I
1-- - - - - - - - - - - - - - I
.... QUANIA

+----------------------------- -+

+--~~~=:~::::::~~:-:~~-~~~~~--~
I - - - - - - - - - - - - - - - I
I - - - - - - - - - - - - - - - I

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ QUT2
+----------------------- - -~

---+
I
I
I
I
I
I
I
I
I

+--+
-62-

YES

YES

Terminal
Input Done

Interactive
I/O

Completion ,

Non-interactive
I/O

Completion

System Overview

5.3.3 Job Scheduling Algorithm:
The job scheduler selects which job to run based on the job states and
user-assigned job priorities. The scheduling priority of a job is determined
primarily by the priority of the job state and secondarily by the user-assigned
priority. In the case of equal state and priority, jobs are scheduled on a
first queued - first executed basis. Fixed-high-priority jobs and fixed-low­
priority jobs are scheduled solely on the basis of the user-assigned priority
value.

The scheduler selects the job to be executed according to the following steps:

1. Select the job in the highest priority state that has the highest
user-assigned priority.

2. If this job is not in memory, bypass it and search the job queue in
order of decreasing state priori ty and, within a state, decreasing
user-assigned priority looking for a job that is in an executable state
and in memory. If there are no jobs in memory in an executable state,
then no job is executed until some job enters an eXecutable state or an
executable job is swapped into memory.

3. Run the job until: a) the job enters a wait state; b) the allotted
time-slice expires; or c) a higher priority job becomes executable.

a) If the job enters a wait state, remove it from its current queue
position and place it in the appropriate wait state queue.

b) If the allotted time-slice has expired, remove the job from its
current queue position and reposition it in the queue based on (1)
the priority of its state, and (2) the value of the user-assigned
priority. The job is placed behind any other jobs that have the
same state and priority. (Note: the quantum expiration may cause
the job state to change to a lower-priority state.)

c) If an external event interrupts an executing job before it either
enters a wait state or its time-slice expires, then leave the job
in its current state and queue position, but execute the higher
priori ty job. When the interrupted job is resumed, continue its
time-slice wi th the unused remainder of its previous time-slice
parameters.

-63-

System Overview

5.4 Job Swapping:

The role of the job swapper is to keep in memory the highest priority jobs that
are in an executable state. A job swap is initiated whenever the swapper
determines that there is a job in an executable state out of memory and there
is a job in a lower priority state in memory. Note that the wait states have a
lower priority than any executable state. When a job swap becomes necessary,
the job with the highest priority executable state that is out of memory is
selected to be brought into memory. The lowest priority job that is in memory
is swapped out of memory to make room for the job being brought in. If this
outswap does not yield adequate free memory space, the next lowest priority job
is outswapped and the process is repeated until enough space is made available
for the selected job to be brought into memory.

The job scheduler attempts to overlap job swapping time with the execution of
jobs that are in memory. The "Swapping-I/O" statistic produced by the SYSTAT
command indicates the percentage of time that some job swapping was taking
place; the "Swap-wait" statistic indicates the percentage of time that no
executable job was in memory and swapping was taking place.

A system parameter (CORTIM) is used to keep executable jobs in memory for a
reasonable minimum length of time. As long as the job remains executable, it
is not eligible to be swapped out of memory until CORTIM units of time (clock
time, not the job's execution time) have elapsed. If the job enters a wai t
state (other than waiting for non-terminal I/O completion), then it becomes
immediately eligible for swapping.

Jobs are temporarily locked in memory by the system during non-terminal I/O
until released by the device handler in order to make the data transfer into
the correct job area. If the job has exceeded its time-slice parameter, then
the system "holds" its I/O. Jobs may also lock themselves in memory by using
real-time EMT requests.

5.5 Real-time Interrupt processing:

The real-time interrupt handling facility has two subdivisions: real-time
interrupt service routines and real-time interrupt completion routines.

5.5.1 Real-time interrupt service routines:
Real-time interrupt service routines provide rapid interrupt response by
running at fork level in user mode, but do not maintain the full context of the
job. They can execute wi thout requiring a job scheduling cycle, but only a
very limited subset of system service calls can be used from within an
interrupt service routine. Since real-time interrupt service routines execute
at fork level, they are intermixed with system interrupt service fork routines
and are queued and executed in order of occurrence. These real-time interrupt
service routines will execute prior to any other job regardless of the
associated job's priority.

-64-

System Overview

5.5.2 Real-time interrupt completion routines:
Real-time interrupt completion routines run wi th the full context of the job
and require a job scheduling cycle before execution. This mechanism does not
provide as rapid response as interrupt service routines, but allows full access
to programmed requests from within the completion routine. Each real-time
interrupt completion routine has a real-time software priority which is used by
the scheduler to compute the execution priority of the real-time completion
routine. The priority of the completion routine is calculated by adding the
priority specified with the EMT that connects the interrupt to the completion
routine to the PRIHI system generation parameter; this priority is constrained
by the maximum allowed (127). If a real-time completion routine enters a wait
state, then when it resumes execution it returns to the same priority as prior
to the wait condition.

A real-time interrupt completion routine may also have a software priority of
zero, in which case its execution priority depends on the execution priority of
the job. If the execution priori ty of the job is greater than or equal to
PRIHI, then the real~time interrupt completion priority is calculated to be
PRIHI and the real-time completion routine is treated the same as above. If
the priority of the job is less than PRIHI, then the real-time completion
priority is scheduled as a time-shared job in a non-interactive wait completion
state.

The following diagram illustrates the processing of an interrupt and shows the
relationship between interrupt service routines and real-time interrupt
completion routines:

-65-

System Overview

Interrupt Processing

+--+
Level 1

Hardware interrupt
1

v
.INTEN

1

v

Level 2 Level 3

.FORK >-----------------+
1

1<--------------+
V 1

+-----------+ 1
I Interrupt 1 1
1 Service 1 1
1 Routine 1 I
+-----------+ I

1 1
V 1

+--------------+ 1
1 More 1 1
1 Fork 1 (yes) 1
1 Requests 1-------+
1 ? 1

+--------------+
(no) 1

1<-------------------------------+
V I

+--------------+ +------------+ 1
1 Any Pending 1 1 Interrupt 1 1
1 Completion 1 (yes) 1 Completion 1 I
1 Routines 1------->1 Routine 1--+
1 ? 1 1 1
+--------------+ +------------+

(no) I
1

+---------------------+
1
V

Return from interrupt

1

+--+

-66-

System Overview

This diagram shows that there are three "levels" of interrupt processing.
Level 1 is entered when a hardware interrupt occurs. In this level the
processor (hardware) priority is set to 7 which causes other interrupt requests
to be temporarily blocked. After some brief interrupt entry processing, the
system performs a .FORK operation which queues up a request for processing at
fork level and then drops the processor priority to O. At this time another
hardware interrupt can occur, in which case the cycle will be repeated and
another request for fork level processing will be placed on the queue.

Level 2 processing is also known as "fork level" processing. This level of
interrupt processing services requests that were placed on a queue by the .FORK
operation. Hardware interrupts are enabled during this processing and if any
other interrupts occur their service requests are placed at the end of the fork
request queue. Interrupt service requests are processed serially in the order
that the interrupts occurred. Only a limited set of system service calls can
be used from service routines running at fork level. One of the valid EMT's is
a request to queue a user completion routine for subsequent processing.

Level 3 processing occurs in ~job state~. That is, the TSX-Plus job execution
scheduler selects the highest priori ty job or completion routine and passes
execution to it. During level 3 processing, interrupts are enabled and job
execution may be interrupted to process fork level interrupt service routines.

-67-

-68-

6. SYSTEM TUNING

Since every computer si te is unique, there is no single optimum set of
parameters for TSX-Plus system generation. Performance depends on both the
system configuration and its actual use. It is necessary to analyze the
hardware available as well as the type of application programs which are most
commonly run. Together with a knowledge of those programs' characteristics and
a basic understanding of the performance features of the operating system,
decisions can be made to improve system performance. System tuning is an
on-going process which becomes more apparent with increased experience.

Since the basic function of the operating system is to execute user programs,
the most important tool in tuning system performance is knowledge of the
features used by these jobs and the resources available to them.

Above all, have reasonable expectations; do not expect a LSI-11/23 with slow
disk devices to perform like a LSI-11/73 or PDP-11/44 with high-speed disks.

Three distinct system concepts interact
performance tuning: memory utilization,
optimization.

6.1 Memory Utilization

wi th each other to af f ec t s ys tern
job execution scheduling, and I/O

With the drastic reduction in memory price that has taken place in the past few
years, and the availability of models of the PDP-II family such as the
11/23-Plus, 11/24, 11/44, and 11/73 which can address up to 4Mb of memory,
there is a tremendous disparity between the sizes of systems running TSX-Plus.
Fortunately, TSX-Plus has the flexibility to run well in small systems and also
take full advantage of large memory systems.

The tuning of TSX-Plus is quite a bit different depending on the amount of
memory available. From the point of view of system tuning and operation, a
"small" system is one which has inadequate memory to simultaneously accommodate
all of the time-sharing jobs that are routinely active. A "large" system is
one which has more than enough memory to accommodate all active jobs. A
"medium" size system is one which has enough memory to accommodate most active
jobs and which has some, but not heavy, job swapping. It must be realized that
the most careful tuning of a small system will not yield the performance
improvement that could be gained from upgrading the system by adding more
memory.

In tuning a small system, the primary consideration is to minimize job
swapping. This, in turn, reduces to a problem of minimizing the size of the
operating system and the amount of space used by frequently run applications.

6.1.1 System Memory Utilization
The memory utilization of the operating system is discussed and illustrated in
Chapter 5. The components over which you have some control are:

1. Optional features such as the single line edi tor, generalized data
caching, PLAS support, real-time support, etc.

-69-

System Tuning

2. The number of device handlers.

3. Space allocated for job tables; this depends primarily on the number of
lines generated into the system (real, virtual, and detached) and, to a
lesser extent, on the size of the terminal character buffers allocated
for each line.

4. The use of shared run-time systems that allow multiple users to access
a common run-time system.

Since the operating system is permanently resident, keep it to a m1n1mum size.
Do not include unused device handlers or unused time-sharing line definitions.
Do not include more virtual lines or detached jobs than will be actually used.
Do not include optional features which will not be used (e.g. PLAS, perform­
ance monitoring, real-time support). Appendix E provides specific information
about the amount of memory space used by each optional feature and each
additional time-sharing line. Features such as the single line editor, PLAS
support, and the generalized data cache are not recommended for small systems.

Include a shared run-time if it will be used regularly by more than two jobs.
But, remember that shared run-times are permanently resident and are wasting
system space when not in use.

Specify reasonable values for system parameters such as terminal I/O and spool
buffers. Some experimentation may be necessary to determine what buffer sizes
are necessary to achieve satisfactory performance for the job mix in your
situation. Balance the use of adjustable system features with the knowledge
that excessive job swapping may be caused by overly large system parameter
selections.

6.1.2 User Program Memory Utilization
The memory partition allocated to a job under TSX-Plus is dynamic and may
change size from time to time. The key to user memory optimization is to set
the partition size to the smallest size possible for each program that is run.
The amount of memory that is allocated to the job partition can be controlled
through three techniques:

1. The MEMORY keyboard command.

2. A TSX-Plus system service call (EMT).

3. The SETSIZ program that can store into a SAV file a value indicating
how much memory to allocate for the program when it is run.

The • SETTOP EMT does not change the amount of memory allocated to a job
partition. If the partition size is to be changed while a program is execu­
ting, a TSX-Plus specific EMT must be used.

The first step in optimizing program memory utilization is to determine how
much memory space is actually needed by each application program. This is most

-70-

System Tuning

easily done by using the MEMORY keyboard command to set the partition size and
then attempting to run the application program. By varying the size specified
with the MEMORY command you should be able to determine the minimum amount of
memory which can be allocated for each program.

Note that most programs either execute or don't depending on whether there is
adequate memory available; however, some programs such as the COBOL-Plus
run-time system may execute more slowly if there is restricted memory space.
Hence, you should not only determine the minimum amount of memory required to
run the program but should also note the effect of restricted memory space on
the performance of the program.

Once the minimum memory size has been determined for a program, the SETSIZ
program can be used to store a value into the SAV file for the program that
automatically sets the partition size each time the program is run. A command
file named SETSIZ.COM is provided with the TSX-Plus distribution to set
appropriate sizes for system utility programs such as PIP, DIR, KED, etc. Note
that the SETS IZ. COM file needs to be executed only once when the TSX-Plus
system is installed.

The default partition size (as specified by the DFLMEM sysgen parameter) should
be set to a reasonable value.

The SHOW MEMORY command can be used to determine the distribution of memory
resources between the system and users. The SYSMON utility can also be used to
dynamically monitor memory allocation.

6.2 Job Scheduling Optimization

Eight time-slice and two I/O count parameters are used to control job sched­
uling. The eight time-slice parameters are QUANO, QUANI, QUAN1A, QUAN1B,
QUANle, QUAN2, QUAN3, and CORTIM. The two I/O count parameters are INTIOC and
HIPRCT. These parameters are assigned initial values during system generation.
Their values can be changed dynamically during the operation of the system by
use of a command of the form:

SET parameter value

where "parameter" is the name of one of the ten parameters. Values for the
time-slice parameters are specified in 0.1 second un! ts. Operator command
privilege is required to change the value of a system parameter. Note that
system parameters such as QUAN1 and INTIOC (as well as QUAN1A, QUAN1B, etc.)
are global to all users and may not be set on a line-by-line basis.

-71-

System Tuning

The SET SIGNAL command can be used to monitor the job state transitions and is
very useful for selecting values for job scheduling parameters. The form of
the SET SIGNAL command is:

SET SIGNAL [NO]parameter

where "parameter" is one of the following system parameters: QUANO, QUANl,
QUANIA, QUANIB, QUANIC, QUAN2, QUAN3, INTIOC, or HIPRCT.

When signaling has been set for a system parameter, the bell will be rung at
the terminal of the job which set the signal each time a job state transition
occurs because the job has reached the specified parameter value. This allows
the system manager to observe how often the job changes state based on
different parameter values. The SET SIGNAL command operates on a line-by-line
basis and affects only the line that issued the command.

Signaling may be turned on for any combination of parameters, but each
parameter must be specified by a separate SET SIGNAL command. Signaling for an
individual parameter may be turned off by specifying "NO" in front of the
parameter name. All parameter signaling may be turned off by use of the
following command:

SET SIGNAL OFF

When a job receives an activation character from the terminal it is classified
as "interactive" and placed in the highest priority state within the inter­
active state group. The job remains in this state until QUANIC units of time
have passed at which time the job is reclassified into a lower priority state
that is still within the interactive job state group. Jobs in this group are
scheduled on a round-robin basis every QUANIB units of time.

If a job performs more than INTIOC I/O operations or exceeds QUANI units of
time before it receives another activation character from the terminal, it is
classified as non-interactive and is placed in the non-interactive compute
bound state. Jobs in this state are scheduled on a round-robin basis every
QUAN2 units of time. Whenever a non-interactive job waits on a resource (such
as an I/O operation), the job is placed in a wait state. On completion of the
wait condition, the job is placed in a non-interactive wait completion state
which has a higher priority than the compute bound state but a lower priority
than the interactive states. The job is allowed to run in the completion state
for QUANIA units of time after which is is placed back in the non-interactive
compute bound state.

In selecting values for these parameters, the following guidelines should be
considered: It is highly desirable that interactive jobs such as data entry
applications and editing programs be classified as interactive through each
terminal interaction. Thus, QUANI should be set large enough so that the total
CPU time used by the application program during one interaction can be
completed. Note that if a job performs I/O operations the CPU time counter is
suspended (time is not counted while a job is in a wait state) and restarted

-72-

System Tuning

(but not reinitialized) when the I/O operation completes. Also, the INTIOC
parameter should be set to a value large enough to allow all I/O operations
required during a single interactive transaction to be completed.

It is much better to select values for QUAN1 and INTIOC that are too large
rather than too small. If the values are too large they will allow long
running (non-interactive) programs to be scheduled as interactive slightly
longer than necessary. If they are too small, interactive jobs will be
reclassified as non-interactive (and given a lower priority) while they are
executing an interactive transaction.

The QUAN1 and INTIOC system parameters are two of the most critical scheduling
parameters. Jobs are classified as interactive from the time that a character
is received from the terminal until QUAN1 units of CPU time are used or INTIOC
I/O operations have been performed. The following procedure can be used to
select optimum values for these parameters:

1. Issue the following keyboard commands:

SET SIGNAL QUAN1
SET SIGNAL INTIOC

2. Set INTIOC to a large value by use of the following keyboard command:

SET INTIOC 1000

3. Run an application program whose execution is to be optimized.

4. From a separate terminal vary the value of QUAN1 by use of the keyboard set
command:

SET QUAN1 value

For each trial value of QUAN1, enter several transactions to the appli­
cation program and see if the bell rings at the terminal running the
application program. If the bell rings, increase the value of QUAN1 and
try again. The optimum value of QUAN1 is slightly larger (add 1 to 5) than
the smallest value found which is large enough so that the bell does not
ring while processing a transaction.

5. Repeat the process for INTIOC by se t ting QUAN1 to a large value (e. g. ,
1000) and varying INTIOC starting with a reasonable value such as 30.

6. Try several values of INTIOC until the smallest value is found which is
large enough to keep the bell from ringing while processing a single
transaction. The optimum value for INTIOC is slightly larger than this
(i.e., add 2 to 10).

7. After the appropriate value for QUAN1 and INTIOC have been determined, the
system default values for these parameters may be set by modifying TSGEN
and regenerating TSX-Plus.

-73-

System Tuning

Note: When performing this type of optimization, choose the most frequent and
important type of transactions for the test. Don't worry about longer and less
frequent operations such as chaining between separate programs. The perform­
ance measurements should be carried out with a variety of application programs.
Then use the largest values of QUAN1 and INTIOC found for the various appli­
cations as the standard system values. Note that system parameters such as
QUAN1 and INTIOC (as well as QUAN1A, QUAN1B, etc.) are global to all users and
may not be set on a line-by-line basis.

The QUAN1C parameter controls the length of time after each terminal input
activation that a job remains at the highest priority interactive state before
being dropped down to a lower priority interactive state. The ideal value for
QUAN1C is just large enough to allow programs, such as KED, which do single
character processing to complete the processing of a single character at the
highest priority state. It is not desirable to set QUAN1C large enough to
encompass longer editing operations such as cutting and pasting, or moving to
the top or bottom of a file.

To select the optimum value of QUAN1C, use the SET SIGNAL QUAN1C command and
find that value of QUAN1C which is as small as possible but which does not
cause the bell to ring while performing normal text entry to the editor.

The QUAN1B parameter controls the round-robin scheduling of interactive jobs
within the same state. Its value is usually not critical but should be in the
same range as QUAN1C (typically 1 to 4).

The QUAN2 parameter controls round-robin scheduling of non-interactive, compute
bound jobs. In medium to large systems where most programs reside in memory,
the value of QUAN2 is not critical and should be set to a reasonably small
value in the range 2 to 5. In small systems, the value of QUAN2 should be set
large enough to reduce job swapping that could take place when multiple compute
bound programs are running. The recommended value for small systems is in the
range 10 to 30.

Each time a non-interactive job completes an I/O operation, or finishes waiting
on some other resource, the job is given a priority boost. The job remains in
the high priority state until either (1) it goes into a wait state again, such
as waiting on another I/O operation; or (2) it has executed for QUAN1A units of
time, at which time it is rescheduled in the non-interactive compute bound
state. The idea is to give the job a chance to start another I/O operation
without having to wait its normal turn for service. This allows I/O intensive
jobs to keep their I/O active even if there are multiple compute bound jobs
also running.

Jobs with the same user-assigned priority in the fixed-high-priority group are
scheduled in a round-robin fashion based on the QUANO system parameter. If
QUANO is set to 0 (zero), no round-robin scheduling is done for high-priority
jobs. Jobs with the same priority in the fixed-Iow-priority group are
scheduled in a round-robin fashion based on the QUAN3 system parameter. Note
that this round-robin scheduling of fixed-priority jobs only pertains to jobs

-74-

System Tuning

that have the same assigned priority value. A job with a higher fixed priority
is never time-sliced with a job with a lower priority.

The CORTIM system parameter controls how long a job is held in memory after
being swapped in from disk. Each time a job is swapped into memory, a timer is
started for the job. The job is not eligible to be swapped out of memory until
either:

1. The job begins executing and enters a wait state (other than non­
terminal I/O).

2. CORTIM units of time have elapsed.

Note that a job is never swapped out of memory just because a certain time
interval has elapsed. There must be a higher priori ty job in an executable
state out of memory to force a lower-priority job to be swapped. The CORTIM
parameter serves as a "throttle" to control the job swapping rate. Increasing
the value of CORTIM decreases the job swapping rate but slows the interactive

Jobs with user-assigned priorities equal
PRIHI override the CORTIM parameter and may force outswapping of lower priority
jobs regardless of the length of time they have been in memory.

6.3 User Program Optimization

The TSX-Plus performance monitor feature allows the execution of some appli­
cation program to be monitored and a histogram produced showing the percentage
of time spent in various regions of the program.

The use of single character input activation should be minimized because of the
frequency with which this places programs in the high-priority terminal input
complete state. The use of no-wait character input may degrade system
performance even more since this can place the program in a high-priority
terminal input completed state without having received an input character. If
at all possible, terminal input should be buffered and completed wi th a
specific activation character (this is normally a carriage return although
other activation characters may be defined).

During buffered input, the job is suspended and may even be swapped to disk to
allow other jobs to execute. High efficiency terminal mode can be used to
reduce the system overhead by eliminating much of the special character
processing associated with terminal I/O.

-75-

System Tuning

6.4 I/O Optimization. ----
TSX-Flus uses three basic techniques to improve system I/O efficiency: (1)
overlapping of job execution with I/O wait; (2) device data caching; and (3)
device spooling. It is not obvious, but true, that memory size is one of the
key factors in optimizing I/O with TSX-Plus.

6.4.1 I/O Wait Overlap With Computation
One of"the benefi ts o'f"a" mul ti-user operating system like TSX-Plus is that
system resource utilization is improved by allowing multiple users to be
accessing different system resources concurrently.

Whenever one job enters a wait state, waiting for a resource such as an I/O
device to transfer data, the TSX-Plus job scheduler looks for another job that
is ready to run. The second job might initiate an I/O operation on a different
device or might compute and utilize the CPU while the first job is waiting on
the I/O operation to complete. Thus, in an ideal situation, the CPU could be
utilized 100% of the time as could all of the I/O devices. Generally, 100%
utilization of all resources is neither possible nor desirable but the overall
system utilization is typically much higher than for a single user system.

The SYSTAT command provides statistics that indicate the degree of overlap that
occurred between job execution and I/O. The "User I/O" statistic is the
percent of time that some I/O was being performed; the "I/O wait" statistic is
the percent of time that the system is idle because there is no executable job
and some I/O is taking place. If 100% I/O overlap took place, the "I/O wai ttl
value would be 0 (zero) because there would always be some job to run whenever
I/O was active. You can demonstrate this by running a small "loop" program
that will execute continuously while other jobs perform I/O. The RESET command
can be used to reset SYSTAT statistic values.

In attempting to optimize overall system utilization, the first factor to
consider is the number of programs that can fit in memory. Naturally the more
programs that are in memory and ready to run, the better the system utilization
will be. Also remember that job swapping has multiple negative effects on
system utilization: the job being swapped into or out of memory cannot be
executed but the memory space is tied up during the swap and cannot be used by
any other job; the I/O device to which job swapping is being done is tied up by
the swapping and may block I/O operations by the jobs that are in memory and
want to run.

The QUAN1A and HIPRCT parameters affect the amount of overlap that occurs
between compute-bound and I/O-bound jobs. A non-interactive job is given a
priority boost each time it completes an I/O operation. This is done to
increase the amount of overlap that occurs between compute-bound and I/O-bound
jobs.

For example, consider a system that has two continuously executing compute
bound jobs and one I/O bound job. If the job priority was not boosted on I/O
completion, the following cycle would occur:

-76-

System Tuning

1. Initiate an I/O operation.

2. Place the I/O job in a wait state, waiting for the I/O operation to
complete.

3. Alternately execute the two compute bound jobs while the I/O is taking
place.

4. lfuen the I/O completes, place the I/O bound job at the tail of the
compute-bound queue.

In step 4, the I/O job is placed at the tail of the compute bound queue which
means that it will have to wait until both compute bound jobs have used up
their time slices before it is allowed to execute and initiate another I/O
operation.

Instead of this, the TSX-Plus job scheduler handles the situation as follows:

1. Initiate an I/O operation.

2. Place the I/O job in a wait state, waiting for the I/O operation to
complete.

3. Alternately execute the two compute bound jobs while the I/O is taking
place.

4. When the I/O operation completes,
priority state which causes it to
current compute bound job.

place the
interrupt

I/O
the

job in a higher
execution of the

5. The I/O bound job executes for a short period of time and initiates
another I/O operation.

6. Put the I/O bound job back in the I/O wait state.

7. Resume execution of the interrupted compute bound job.

The effect is that the I/O job is able to keep the I/O device busy by
"stealing" time from the compute bound jobs when each I/O operation completes.
However, if there are several I/O intensive jobs they may tend to steal so much
time from the compute bound jobs that the compute bound jobs receive little or
no time. The HIPRCT parameter is used to control this. After HIPRCT con­
secutive priority boosts, the I/O job is scheduled at the tail of the compute
bound state queue, which means that it will not be executed until all other
jobs in the compute bound queue have executed for their full time slice.

If HIPRCT is set to 0 (zero), jobs are never given a priority boost on I/O
completion. The recommended value is in the range 5 to 50. The SET SIGNAL
HIPRCT command can be used to monitor how often the HIPRCT parameter cuts off a
priority boost.

-77-

System Tuning

QUANIA should be set to a small value which is just long enough for I/O
intensive jobs to perform completion processing for one I/O operation and
initiate another I/O operation. For example, a data base application might
have to follow a linked list through an index file to find a selected record.
The QUANIA parameter should be set large enough to allow the program time to
locate the forward link in each index block and initiate the I/O operation to
read the next block. The SET SIGNAL QUANIA command can be used to monitor the
effect of varying the value of the QUANIA parameter. The recommended value for
QUANIA is in the range 1 to 4.

6.4.2 Device Spooling:
Spooling is a technique which intercepts output to slow devices, like printers,
directs the output to a disk file and then services the printer as it becomes
ready for more data. This mechanism is transparent to the user job and returns
the job to an active status more quickly than if the job actually had to wait
for the slow device to complete the transfer.

When the operating system services an I/O queue request, it temporarily locks
the job into its current memory posi tion so that the data transfer can be
correctly fulfilled according to the information in the I/O queue element.
When the output is sent to a slow device, this would prevent job swapping until
the last data was accepted by the handler and the transfer request satisfied.
If several users need access to the system, this could seriously degrade
apparent system performance to those users waiting to be activated. However,
when a slow device is spooled, then the output is redirected to the system
spool file and the transfer completes at the faster rate of disk I/O, returning
control to the job and permitting it to be swapped if necessary. In addition,
TSX-Plus will always attempt to double buffer the spooled output request if two
or more buffers have been defined.

6.4.3 Caching:
Caching is a technique for improving system performance by keeping in memory a
"cache" of the most recently accessed blocks of data. Each time a read
operation is performed a check is made to see if the requested data block(s)
are in the cache. If so, the data is copied from the cache buffer to the
receiving program buffer and no actual device I/O is done. Write operations
update the data in the cache as well as writing to the I/O device.

Caching speeds up read operations so that they are performed at the speed that
the CPU can move data around in memory rather than the speed of an I/O device.
Write operations are somewhat slowed down by caching since updating of the
cache must be done as well as writing of the data to the I/O device.

TSX-Plus offers three distinct types of information caching:
caching, generalized data caching, and shared file data caching.

-78-

directory

System Tuning

6.4.3.1 Directory Caching: When a program opens an existing file on a disk, it
is necessary to determine the location of the file by consul ting the file
directory on the disk. This results in one or more disk I/O operations each
time a file is opened. In order to speed this process, TSX-P Ius contains a
memory resident cache which contains direc tory information for a selectable
number of files. If one or more jobs open the same file several times, then
the ability to locate that file's directory information in the directory cache
can eliminate many I/O requests and significantly improve system performance.

The system device directory is always cached; directory caching for other
devices can be enabled by use of the "MOUNT" keyboard command. See the
TSX-Plus Reference Manual for a detailed description of the MOUNT command.

TSX-Plus manages the entries in the directory cache by retaining those most
recently used. When no space is available in the cache buffer to add a new
directory entry, the least recently accessed entry is discarded and replaced
with the new entry. File operations which change the disk directory infor­
mation (such as .ENTER, .DELETE and .RENAME) are always "written through" the
cache, changing both the directory cache entry and the disk directory. This
eliminates the speed advantage on these types of operations) but reduces the
chances of data corruption.

It is very important to remember to DISMOUNT a disk when changing removable
packs on that device. The DISMOUiJT command clears all entries from the
directory cache for the device. If this is not done the new pack may be
corrupted by use of the (incorrect) directory information maintained in the
cache for the previous disk pack. The SHOW MOUNTS command identifies which
devices are currently eligible for directory caching. Note that all jobs which
have MOUNTed a device must either DISMOUNT it or log off before the device's
directory entries are cleared from the cache.

6.4.3.2 Shared File Data Caching: Shared file data caching maintains memory
resident copies of data blocks from files which have specifically been declared
to use data caching. After a file is opened in the normal manner, a special
system service call must be issued to declare that file eligible for data
caching. (Data caching is requested by using the TSX-Plus EMT to request
shared access to the file, regardless of the protection level selected.)

When a request is issued to read data from that file, a check is made to see if
the requested block(s) are currently in the data cache. If the data is in the
cache the data is moved from the cache to the user's program with no disk I/O
at all. Data blocks are maintained in the cache according to frequency of use.
When the data cache is full, the least active block is replaced whenever a new
block is read. This replacement algorithm is highly efficient for files with
indexed organization, like COBOL-Plus ISAM files. As with directory caching,
the data cache is always ~"'Titten through. That is, if the information in a
block in the cache is changed, then the disk copy of that block is also
updated. If shared file data caching is used at all, it is recommended that at
least 8 blocks be allocated for the cache. If a large area is available for a
data cache, it is recommended that the generalized data caching facility
(described below) be used instead of shared file data caching.

-79-

System Tuning

The number of blocks allocated in memory for the shared file data cache is
controlled by the NUMDC parameter in TSGEN. One way to determine the best
value for this parameter is to generate a system with a large number of cache
buffers and then use the SET NUMDC keyboard command to vary the number of
buffers used while observing the effect on system performance. The SYSMON
program can be used to display statistics about shared file data caching
operation.

6.4.3.3 Generalized Data Caching: Generalized data caching maintains memory
resident copies of data blocks from devices which are mounted using the
keyboard "MOUNT" command. Each time a read operation is performed, the memory
resident cache of data blocks is searched to see if the block(s) requested are
already contained in one of the data cache memory buffers. If the block is in
the memory cache, it is moved directly from the cache buffer requiring no disk
I/O to be performed. If the block(s) are not within the data cache, they are
read into the least recently used data cache buffer(s) and then moved to the
requesting job. Write operations update the memory cache as well as writing to
the device, thus eliminating the possibility of data loss or corruption.

Unlike shared file data caching, generalized data caching applies to all files
that are on mounted devices. This means that SAV files for commonly executed
programs such as PIP, KED, TSKMON, and application programs will benefit from
the cache as well as program overlay segments, and application data files.

To enable generalized data caching, assign a non-zero value to the CACHE
parameter in TSGEN. This causes the data caching code to be included in the
generated system and controls the number of blocks of memory allocated for data
caching buffers. If data caching is not wanted, set the CACHE parameter to 0
(zero).

A SET command is available to dynamically alter the number of blocks of data
held in the data cache. The form of this command is:

SET CACHE value

This command does not alter the amount of space allocated for the data cache
(that is directly controlled by the CACHE sysgen parameter), but can be used to
cause the system to use less than the full cache area. Operator command
privilege is required to use the SET CACHE command. The primary use of this
command is to allow the system manager to experiment with different cache sizes
to determine the effect on system performance. Once an optimum cache size has
been determined the CACHE sysgen parameter can be set to this value and the
system regenerated. A "SHOW CACHE" keyboard command can be used to display the
current number of blocks being used in the data cache.

The effectiveness of the data caching facility increases with the number of
blocks allocated for the data cache. In systems with large amounts of memory
it is reasonable to allocate several hundred blocks to the data cache. However
it is not wise to allocate so much memory space to the data cache that job
swapping is significantly increased due to limited memory space for time­
sharing users.

-80-

System Tuning

The amount of improvement due to data caching also depends on the ratio of the
processor (CPU) speed to the speed of the I/O device being cached. The effects
of data caching are most pronounced when a fast processor is running with a
slow I/O device. Data caching is not recommended for systems which are
primarily bound by CPU utilization rather than I/O throughput.

Data caching can have a dramatic effect on the execution of overlayed programs
if the cache is large enough to hold the overlay segments. FORTRAN and
COBOL-Plus compilation times are typically reduced by 20% to 40% by data
caching.

The following table shows typical cache "hit" rates as a function of the cache
size (in blocks) for various language processors performing assemblies or
compilations:

+---+
I Cache size versus percent of blocks read from cache I
I while performing assemblies and compilations I
+-------+-------+---------+-------+------------+-------+----------+
I Cache I I I I I I I
I Size I MACRO I FORTRAN I F77 I COBOL-Plus I DBL I Pascal-2 I
+-------+-------+---------+-------+------------+-------+----------+

20 2% 0% I 23% 11% I 5% 0%
35 3 1 I 23 21 I 9 0
50 4 1 I 23 82 I 10 5
75 14 2 24 83 25 8

100 36 2 24 84 45 9
150 48 4 27 84 55 90
175 49 51 33 87 84 90
200 50 87 33 87 84 90
250 66 90 34 87 84 90
275 92 92 35 88 84 91
300 92 93 87 88 84 92
400 92 94 94 95 84 92
500 92 97 94 98 84 93

+-------+-------+---------+-------+------------+-------+----------+
The single job (non-XM) versions of F77 and Pascal-2 were used in making these
measurements.

-81-

System Tuning

The following statistics for cache hi t rates were measured while running a
COBOL-Plus program performing 5000 random reads on an indexed organization
(ISAM) file containing 44000 records with a 16 byte key.

+------------------------------+
I Cache Size Versus Hit Rate I
I For Reads From ISAM File I
+---------+--------------------+
I Cache I Cache Hit Rates I
I Size I for Random Reads I
+---------+--------------------+

5
10
15
20
25
30
40
50
60
70
80
90

100
200
300
400
500

1000

24 %
32
38
46
50
55
60
64
65
67
70
71
72
79
82
83
84
85

+---------+--------------------+

These statistics were gathered by generating a TSX-Plus system with a 1000
block data cache and then using SYSMON to measure the cache hi t rate while
varying the effective cache size by use of the "SET CACHE nnn" command. It is
recommended that a similar procedure be carried out to determine the optimum
cache size for a given application program.

The shared-file data caching facility should be used instead of the generalized
data caching facility in the following cases:

1. If the primary goal is to speed up application programs which make
heavy use of shared files, and the memory space which can be devoted to
data caching is limited (less than 50 blocks), then the shared-file
data caching facility is more effective than the generalized data
caching facility.

2. If the size of the unmapped portion of the TSX-Plus system is such that
code for the generalized data caching facility cannot be added. Note
that the shared-file data caching facility does not add any code to the
unmapped portion of the system.

-82-

System Tuning

If the generalized data caching facility can be used, it is recommended that
the shared-file caching facility not be used (it is redundant) and the NUMDC
sysgen parameter be set to 0 (zero).

6.4.4 Virtual Memory Handler (VM):
The virtual memory handler (VM) allows memory which is not allocated for use by
the operating system to be used as a RAM based pseudo-disk device. Since a
memory access is quite a bit faster than a disk access, VM can be use for
greater speed in locating and reading files which are frequently accessed.

Since most machines will lose the contents of memory during a power outage, VM
should be restricted to read-only, scratch, or executable files. It may be
used to speed the execution of heavily overlaid programs or store temporary
intermediate sort or work files.

VM is similar to data caching and the following considerations may help you to
decide which is best suited to your application:

1. Data is "written ~nrough" the cache to the I/O device that is being cached.
Since there is no I/O device associated with the VM handler, no I/O takes
place on write operations. This means that is faster to write to VM than
to a cached I/O device. This could make VM considerably faster for a
"scratch" file that has as many blocks written to it as read.

2. Data written to VM is volatile and will be lost when the system is shut
down or halts due to software malfunction.

3. Ine amount of space in v'M is fixed at sysgen time and an attempt to use
more space will resul t in a no-free-space error return. The number of
blocks allocated for caching affects the performance of the cache but not
the capacity. As long as there is available space on the I/O device, it is
accessible through the cache.

4. Caching is automatic and transparent to application programs. VM requires
that program and data files be copied to VM and that application programs
open files on VM.

5. Data placed in VM is held there until it is deleted or the system is
restarted. Data in the cache is dynamic and may be replaced by data
accessed more recently by other jobs. Therefore the speed of access to
data in VM is guaranteed whereas the speed of accessing data through the
cache depends on whether the data is currently in the cache.

-83-

-84-

System Tuning

7. SYSMON - DYNAMIC SYSTEM DISPLAY UTILITY

SYSMON is a dynamic interactive utility program written to display information
about system activities at a VT100 or VT52 display terminal. It was written to
help the system manager to optimize system resource use and verify that certain
operations are taking place. Currently it provides dynamic screen displays of
how CPU and I/O times are being used, job status, terminal status, message
channel status, user time bar chart, cpu times bar chart, contents of the
directory cache, and data cache usage statistics.

SYSMON draws most of its information from the low memory area of TSX-Plus,
therefore it will not function without real-time support included in TSGEN as
it uses a real-time EMT to access system tables. Operator privilege is
required to run the SYSMON program. If a user without operator privilege tries
to run this program, or anyone tries to run it without real-time support
generated, he will receive the message:

Real-time has not been generated

7.1 Creating and Running SYSMON --- -----~---

SYSMON is created every time TSX-Plus is relinked using the TSXLNK.COM command
file supplied in the distribution. This is necessary as offsets will change
every time TSGEN changes. lr ~ne ~lnk is not done on ~ne system disk, copy the
file SYSMON.SAV from the generation disk used for linking to SY:. Once this is
done, you can run SYSMON by typing:

R SYSMON

If you do not choose to put SYSMON on the system disk, you must use the RUN
command ".'T~ +-'k

W.LLLL the -1= .. 11
..LU...L.~ device/file specification. Note that many of the

displays shown here are slightly narrower than SYSMON produces; this is done to
allow the examples to fit on the page.

-85-

SYSMON

7.2 SYSMON Menu

+--+
License : 999SP - 44

Enter selection :
(RETURN to exit)

1. System status display

2. Job execution status display

3. Terminal status display

4. Message queue display

s. User times display

S & H Computer Systems

Sample time :
(RETURN defaults to 10. seconds)

6. CPU modes display

7. Directory cache display

8. Shared file cache display

9. Generalized data cache display

+--+

Once you have started SYSMON, you will be prompted from this menu for a display
number and the sample rate. The minimum sample time is one second; you may set
the sample time as high as you wish. Beware that on some systems (notably
11/23 based systems) that using a small sample time can have a detrimental
effect on system response in general. Once you are in a display, press RETURN
to return to the menu.

-86-

SYSMON

7.3 System Status Display

+--+
I

License : 999SP - 44 S&H Computer Systems I

***** System Status Display *****

Total Uptime 00:35:41.0 Cur Total System Parameters

User Job Time 00:08:11.6 94.1% 22.9% QUANO 2
QUANl 20

I/O Wait Time 00:01:24.8 4.8% 3.9% QUAN1A = 2
QUAN1B 2

Swap Wait Time 00:00:00.6 0.0% 0.0% QUAN1C 1
QUAN2 10

Idle Time 00:26:04.0 0.0% 73.0% QUAN3 20
INlIOC 30

User I/O Time 00:02:13.2 * 6.7% 6.2% HIPRCT 41
CORTIM 2

Swap I/O Time 00:00:00.6 * 0.0% 0.0% IOABT 0

* - Time is overlapped

The system status display provides information on how time is being used in the
system and current settings for the dynamically modifiable scheduling param­
eters.

Three columns of information are presented for the system time usage display.
The first is the total time spent in a given activity since the system was
booted. (The RESET keyboard command also clears the time counters as if the
system had been booted.) The second column is the percentage of total time
spent in that activity during the last sample period. The final column is the
percentage of time spent in that activity since the system was booted.

Seven rows of information are presented. The first is Total Uptime, that is,
the amount of time since the system was booted. The User Job time is the time
used in computation, that is, actual CPU activity. The I/O Wait time is the
amount of time user jobs spend waiting on information from various I/O devices.
The Swap Wait time is the time the system spends waiting for a job swap to
complete. The Idle Time is the amount of time the system spends idle. The
User I/O time is the amount of time user jobs spend performing I/O. Finally,
the Swap I/O time is the amount of time the operating system spends swapping
user jobs in and out of memory. Note that the percentages will not always add
up to 100 percent. TSX-Plus overlaps I/O and execution time, so I/O time might
be building up on one job as another job is executing. Also, program execution
and particularly, the actual sample rate, are dependent on current system load

-87-

SYSMON

and number of real-time interrupts taking place. As an example, the display
may get interrupted while computing I/O wait time, during which the times for
the subsequent display items may change.

System scheduling parameters are displayed across the bottom of the screen.
The values of these parameters can be dynamically changed during system
operation by use of the keyboard SET command.

-88-

SYSMON

7.4 Job Execution Status .Display

+--+
I
t License : 999SP - 44 S & H Computer Systems

***** Job Execution Status Display *****

Job Line Pri Program User Name Run Size State
------ ------- ---------

1 1(0) 50 KMON TSX 32 Wait-TT input
3 3(0) 50 KMON CRAIG 32 Wait-TT input
4 4(0) 50 SYSMON SAM I 20 TT input done
6 6(0) 50 KMON DIRECTOR 32 Wait-TT input
7 7(0) 50 KED SOFTWARE 34 Wai t-TT input
9 Det. 50 RTSORT [000,000] 60 Wait-message

., .,
4(1) 40 KED SAM 34 Wait-TT input 1.1.

12 4(2) 40 MACRO SAM C 60 CPU bound job

+--+

The job execution status display provides a variety of useful information. For
each job on the system, it provides:

1. Job Number - the TSX-Plus job number assigned to that particular
primary line, virtual line, or detached job.

2" Line - This entry tells the primary line number for the job and the
virtual line number of this job for that primary line. If the virtual
line number is 0, than the job is on the primary line. If Det.
appears, then the job is detached, and as such belongs to no line.

3. Priority - the current priority for this job.

4. Program being run - the name of the SAV file being executed.

~. User - the name of the user who owns the job. If there is no user name
associated with the job (RTSORT running detached or no name assigned to
an account), then the job's project programmer number will be dis­
played.

6. Running state - All jobs that are not in a wait state are classified as
either interactive or cpu-bound, depending on the nature of the work
being done.

-89-

SYSMON

7. Memory size - the amount of memory that the job is using - expressed in
Kb (1024 bytes).

8. Current execution state - What the job is currently doing. The
execution states are:

State Displayed

Real time state
TT input - sing char act

TT input done
TT output buffer empty
Interactive Job compute
Timed wait completion
TT output buffer low
I/O completion
CPU bound job
Low Priority Computation
Wait-I/O queue element
Wait-Mapped I/O Buffer
Wait-Cache Control Block
Wait-USR data access
Wait-I/O completion
Wait-TT output buf full
Wait-locked block
Wait-system message buf
Wait-spool file space
Wait-TT input
Wait-SPD access
Wait-spool entry
Wait-message
Wait-.SPND/.RSUM
Wait-timed interval
Wait-memory expansion

Meaning

Executing high priority real-time job
Input character just received while
in single character activation mode.
Activation character just received
Terminal output buffer empty
Interactive priority job executing
Finished executing .TWAIT or .MRKT request
Ready for program to continue output
I/O transfer completed
Normal job executing
Low priority job executing
Waiting on I/O queue element
Waiting for buffer to be available
Locating device cache control block
Waiting on access to USR data base
Waiting for I/O operation to complete
Terminal output buffer full
Shared file block needed by program locked
Waiting for free system message buffer
Print spool file currently full
Waiting for activation character
Waiting for access to device data base
Waiting for spool file control block
Waiting for a message
Waiting for .RSUM request after .SPND done
Waiting for interval to finish
Waiting for memory expansion to complete

-90-

SYSMON

7.5 Terminal Status Display

+--+
I

License : 999SP - 44 S & H Computer Systems

**** Terminal Status Display *****

Terminal line number = 12
Terminal type = VT100, virtual, primary 4, logged on
Single line editor status = Enabled, NOKED, TTYIN, Inactive
Terminal Characteristics = DEFER ECHO NOFO~~ NOFO~~O NOGAG LC PAGE PRIV
NOQUIET SCOPE NOS INGLE TAB NOTAPE WAIT

Rubout filler character •
Virtual line
Command file input
High=efficiency mode
Echo LF after CR e _ e •

Single char activation
UCL setting • • • • •
Activation characters
Input buffer contents • •

enabled
enabled
disabled
enabled
disabled
middle
none

Escape-letter activation
Transparent output
Field width activate
Field limit activate
Default terminal editor •
Inhibit terminal wait

Unavailable - SL active.

disabled
disabled

o
1'\ v

KED
disabled

+--+

The terminal status display shows the parameters that are currently set on a
given terminal line, various terminal characteristics, the terminal's owner,
and type of job the terminal is connected to. This display will prompt you
first for a job number - this can be obtained from the TSX-Plus SYSTAT command
or the job execution status display. If you do not enter a number or enter an
invalid line number, the parameters for your job will be displayed. For
information on the parameters displayed, see the TSX-Plus Reference Manual,
Chapters 2, 4, and 6.

-91-

SYSMON

7.6 Message Queue Display

+--+
License : 999SP - 44 S & H Computer Systems

Channel

TSTMSG
SAM

***** Message Queue Display *****

Message (only 70 characters printed)

THIS MESSAGE SUBMITTED TO TEST SEND MESSAGE EMT
LUNCH TIME

Jobs waiting (Channel name, job number)
RTSORT 9

I
I
I
I
I
I
I

+--+
The message queue display shows both what messages are waiting in what message
channels, and what jobs are waiting on what channels for messages. This
information is useful to verify that proper information is being sent in the
proper channels. For example, if you send a sort command string on the RTSORT
message channel without RTSORT running, you can verify that the proper
information is being sent, as the message will sit in its channel without a job
to read it. Similarly, you can verify that a job is waiting on the proper
channel. In this example, RTSORT is running as a detached job, running the
messages queued display shows RTSORT waiting on a message channel named RTSORT
on the first available detached line. For more information on message channels
see the TSX-Plus Reference Manual, Chapter 10.

-92-

SYSMON

7.7 User Times Display

+--+
I

License : 999SP - 44 S & H Computer Systems I
I

***** User Times Display ***** I
I

a 25 50 75 1001
+ - - - - + - - + - + - - + I

+ - - - - + - - - - + - - - - + - - - - +

+---=-======~--+

The user times display shows, for each job that used at least one percent of
the CPU time during the last sample period: the job number, project-programmer
nUffiber, user name, program running, percentage of time used by that job during
the last sample period, and a bar graph depiction of that percentage. If a job
uses less than one percent of the time during the period, it will not be
displayed for that period. This display is useful for determining how CPU time
is being used, and the interrelationship between job time, wait time (which
includes both I/O wait and swap wait time), and idle time.

-93-

SYSMON

7.8 CPU Modes Display

+--+
I I
I License : 999SP - 44 S & H Computer Systems I
I I
I ***** CPU Modes Display ***** I
I
I
I
I 0 25 50 75 100
1+-- - - + - + - + - - +

User Job Time 90 ************************************

I/O wait Time 10 ****

Swap Wait Time 0

Idle Time 0
I

User I/O Time * 30 ************
I

Swap I/O Time * 0
+ - + - + - - - - + - - - - +

* - Time is Overlapped

+--+

The CPU modes display shows the same information about sample period time usage
that is shown in the system status display, however, it is shown here in a bar
chart format.

-94-

SYSMON

7.9 Directory Cache Display

+--+
i i
I License : 999SP - 44 S & H Computer Systems
I
I ***** Directory Cache Display *****
I
I Page 1
I

DLO : TS~~ON • SA V
RKO:[SYSMON]SYSMON.SAV
RKO:[UTIL •• OUT]SUPER.TXT
DLO:KED. SAV
DLO:DIR.SAV
DLO:PIP.SAV
DLl:TSKMNl.OBJ
DL 1: TSKMN2 ~ t-f..AC
nTf'I.TC'VTTf'T nAT
.J.J.L.,IV • .l. ...,.L.\.VV.L.Ie JJc:\.,L

DLO: TSXUC •• SAV
DLO:SYSMAC.SML
DL 1: TSKMNI. MAC
DLO:MACRO.SAV
DLl:TSKMON.BAK
RKO:[SYSMGR]SYSMON.NEW
DLO:DEF~COM

DLO:SYSMON.SAV

PJ{O:[UTIL.WOPJ{IT]OUT.DSK
RKO:[UTIL]WORKIT.DSK
RKO:UTIL.DSK
RKO: SYSMON .DSK
RKO:SYSMGR.DSK
RKO:COBOL.DSK
DLl:TSKMN3.0BJ
DL1: TSK..MN3. :tvf..AC

RKO:[SYSMON]SYSMON.COM
DLO:STDASN.COM
DLO:SU05.TSX
DLO:ACCESS.TSX
DLO: LOGON. SAV
DLO:SU05B.TSX
DL1: TSICMN2" B.AK
DLO:DUP.SAV I

I I
+--+

The directory cache display shows what files are in the directory cache. This
information can be used to determine what files are being used frequently and
to determine the best size for the directory cache. Upon initial entry to this
display, you will be asked for the number of pages to display. If you enter 1
or simply hit return, only the first 38 entries in the directory cache will be
displayed. Otherwise, the display will cycle over as many pages as you
request, until there are no more active cache entries. In this mode, 34
entries are displayed per page. Logical disks are shown in square brackets; if
the file in the entry is nested more than two logical disks deep, each omitted
intervening logical disk is denoted with an extra period.

-95-

SYSMON

7.10 Shared File Data Cache Display

+--+
License : 999SP - 44 S & H Computer Systems

***** Shared File Data Cache Display *****

Cur Total

Reads from shared files 240 6818

Reads from data cache 196 4924

Percent reads from cache 81 % 72 %

Writes to shared files 30 3328

Writes through cache 28 3216

Free shared file channels 25

Blocks in cache (NUMDC) a

+--+

The shared file data cache display shows information on utilization of the
TSX-Plus file locking facility. The NUMDC parameter controls the number of
buffers used for shared file data caching. The I/O counters can be reset using
the TSX-Plus monitor RESET command. This may be necessary, as the I/O counts
are stored as 16 bit integers; these tend to overflow after a large amount of
processing. The information presented here can be useful in tuning the data
cache. This is done by setting NUMDC to various values and observing the speed
of the I/O and the percentage of I/O being done out of the data cache. Also,
other effects can be noted, such as the effect of two programs doing shared
file I/O, and the speed of I/O on various devices.

-96-

SYSMON

7.11 Data Cache Display

+--+
License : 999SP - 44 S & H Computer Systems

***** Data Cache Display *****

Cur Total

Reads from mounted devices 57 7968

Blocks read from mounted devices 292 55629

Blocks read from cache 292 48468

Percent blocks read from cache 100 % 87

Writes to mounted devices 101 4556

Blocks written to mounted devices 103 8051

Blocks updated in cache 103 15212

Data cache Sl.ze 1000

'r ,0

I
I
I
I
I
I
I
I
1

+--T
The data cache display shows information on utilization of the TSX-Plus
generalized data caching facility. The information presented here can be
useful in tuning the data cache. This is done by using the SET CACHE command
to enable various cache sizes; and observing the effect on the cache hit ratio.
The intent is to allow as much memory for the data cache as is readily usable,
but to leave sufficient free memory both for other purposes, such as job memory
or VM, and to minimize swapper activity. In this context, swapper activity
includes both swapping of jobs in and out of memory, and the moving of jobs
around in memory to enable all jobs to get the memory they need when job sizes
are changing. Note that both the SET CACHE command and the RESET command will
reset the cache counters.

7.12 Exiting SYSMON

To leave SYSMON, type RETURN to leave the current display, and type RETURN to
the display number prompt. This will cause SYSMON to exit, and will clear the
screen.

-97-

-98-

Appendix ! ~ Startup Error Messages

The following error messages can be displayed during the startup of TSX-Plus.
All are fatal error messages and once reported, abort running TSX-Plus. All
messages are in the format

?TSX-F-error message displayed here

Cannot find device handler file: dd
The file "SY:dd.TSX" cannot be opened (where dd represents a two character
device driver name). TSX-Plus requires a device driver for every device
listed in TSGEN. If the device name was not correctly specified, correct
the device name and generate a new system. Standard device drivers are
provided on the distribution media. If this is a standard device driver,
find the distribution media and copy dd. TSX to SY. If this is a user
written driver, the device handler must be generated for TSX-Plus. Review
the System Manager~s Guide for building device drivers for TSX-Plus.

Cannot find "SY:CCL.SAV" file
The file "SY:CCL.SAV~nnot be opened. This file exists on the distri­
bution media. Find the distribution media and copy this file to SY.

Cannot locate "SY: SYSODT .REL"" file
The file "SY:SYSODT.REL" cannot be located when attempting to run the
system debugger. This file exists on the distribution media. Find the
distribution media and copy SYSODT. REL to SY. Review the instruction
necessary to run the debugger-

Cannot find "SY:TSKMON.SAV" file
The file "SY:TSl<J.\10N.SAV" cannot be opened. This file is built durl.ng the
generation process. Review the system generation process to determine why
the file was not created.

Cannot locate "SY:TSX.SAV"
The file "SY: TSX. SAV" could not be opened. This file is built during the
generation process. Review the system generation process to determine why
the file was not created.

Cannot open program swap file
Number of contiguous~c~eeded = nnnnnn

The-Program swap file (specified in TSGEN) cannot be created because the
assigned disk does not have enough contiguous blocks. The number of
contiguous blocks required is specified by nnnnnn. Delete any unnecessary
files from the disk assigned to contain the swap file and squeeze the disk
to consolidate the empty space. When enough free space is obtained, then
run TSX-Plus.

Cannot open shared run-time file: dev:file.ext
The shared run-time file "dev: file. ext" specified in TSGEN could not be
opened. If the file t as incorrectly spec:!.f:!.ed, CGrrect TSGE:1 and generatE:
a new system. Locate the shared run-time file and copy it to dev.

-99-

Startup Error Messages

Cannot open spooled device: dd
The--spooled device dd cannot be opened by TSX-Plus. Review TSGEN to
determine if the device specified was correct. Make sure the RT-11 device
handler "SY:dd.SYS" exists and that dd is installed in RT-11.

Error on read of SYSODT reI file ----An error occurred when reading the system debugger file "SY: SYSODT .REL"
into memory. Check the system disk and the hardware involved.

Error reading device handler file: dd
An error occurred when reading the device handler file "SY: dd. TSX" into
memory. Check the system disk and the hardware involved.

Error reading "SY:TSX.SAV"
An error occurred when reading the file "SY: TSX. SAV" into memory. Check
the system disk and the hardware involved.

Generated TSX system is too large
The TSX-Plus system generated is too large to load and run. Remove any
unnecessary features, decrease excessive parameters, and generate a smaller
system.

Handler for SY device was not loaded
The handler for SY was not specified in TSGEN. Correct TSGEN and generate
a new system.

Handler not generated with extended memory support: dd
The device handler-Tile "SY: dd. TSX" was not generated wi th support for
memory management. Make sure the device handler was wri tten to support
memory management and review the System Manager's Guide for building device
drivers for TSX-Plus.

Insufficient disk space for spool file
The spool file (specified in TSGEN) cannot be created because the assigned
disk does not have enough contiguous blocks. The number of contiguous
blocks required was specified in TSGEN. Ei ther decrease the number of
blocks required in TSGEN; or delete any unnecessary file from the disk
assigned to contain the spool file and squeeze the disk to consolidate the
empty space. When a block of free space exists that is greater than or
equal to the number of blocks specified in TSGEN, then run TSX-Plus.

Insufficient memory to load all mapped system regions
There is not enough memory to load TSX-Plus. Review
Description to determine if you have enough memory.
generation (TSGEN), remove any unnecessary features,
parameters, and generate a smaller system.

-100-

the Software Product
Review the system

decrease excessive

Startup Error Messages

Insufficient memory to load all shared run-time systems
There is not enough memory to load all the shared run-time systems
specified in TSGEN. Purchase enough memory to load all shared run-time
systems or review the system generation (TSGEN), remove any unnecessary
run-time systems and features, decrease excessive parameters, and generate
a smaller system.

Invalid interrupt vector address for TIs line:
Line II = nn -- --

The line numbered nn has an invalid vector address. Lines are numbered
sequentially in TSGEN starting with the first line definition. Correct the
vector address and generate a new system.

Invalid status register address for TIs line:
Line II = nn -- --
--The-line numbered nn has an invalid status register. Lines are numbered

sequentially in TSGEN starting with the first line definition. Correct the
status register and generate a new system.

RT-ll doesn't recognize device: dd
The dd handler is not recognized by RT-ll and therefore cannot be loaded by
TSX-Plus. Install the RT-l1 device driver for dd. When the driver has
been successfully installed in RT-11, then run TSX-Plus.

System is not equipped with extended memory management hardware
TSX-Plus does not find extended memory management hardware. Purchase
extended memory hardware or specify less than or equal to 248Kb of memory
in TSGEN and generate a new system.

System is not equipped with memory management hardware
TSX-Plus cannot be run on the current hardware configuration because it
requires memory management support. Purchase memory management hardware to
run TSX-Plus. Check the Software Product Description for TSX-Plus to
determine if any other hardware is required.

TSX is already running
TSX-Plus is currently running and therefore cannot be started again.

-101-

-102-

Appendix ! ~ System Error Messages

The error messages
system halts. All
following format:

listed below are fatal and
messages are displayed as

(BELL)?TSX-F-Fatal system error at nnnnn
EEE-Error message displayed here (see below)
Arg. value xxxxxx
Seg. value = yyyyyy

DTL-Demonstration system time limit reached

once
four

reported, the operating
line messages wi th the

The time limit has expired for the demonstration system. This time limit
is generally thirty minutes. T8X-Plus may be started again.

FRK-No free FORK blocks
A system routine issued a FORK request when the FORK queue was full.

INO-Interrupt occurred at location ~
The hardware has asserted an interrupt at location 0 where no device
resides.

KRE-KMON read error
An input error occurred when attempting to read the file "SY: TSKMON. SAV"
into memory. This indicates a probable hardware malfunction with the
system disk.

KTP-Kernel mode trap
A trap through vector 4, lV, or 250 occurred in kernel space while at:

interrupt level. The argument value indicates the address at which the
trap occurred and the segment value indicates the mapped memory resident
overlay region.

LMF-Job lock mem failure
A system failure occurred when no memory was available in which to lock a
job that had previously requested memory.

MIQ-Need ~ increase value £! MIONWB sysgen parameter
The system attempted to perform an I/O operation to a device that requires
I/O mapping and there were no free system I/O mapping buffers or wait queue
elements. You must increase either the MIONBF parameter which will
allocate more I/O mapping buffers or the MIONWB parameter that increases
the number of wait queue elements.

MPR-Memory parity error
A trap occurred through vector 114 indicating a hardware memory parity
error was detected.

l~QE-Ran out of free I/O queue elements
An attempt was made to queue a system I/O request and no queue elements
were available.

-103-

System Error Messages

PFT-Power-fail trap
A trap occurred through vector 24 indicating a hardware power failure.

RIT-Trap in real-time interrupt service routine
A trap in a real-time interrupt service routine causes a system halt
because interrupt service routines run at fork level. A trap in a
real-time interrupt completion routine does not cause a system halt.

SIE-Swap file I/O error
An input or output error occurred either reading or writing into the
program swap file.

SJN-Job # 0 at STOP
A job number of zero was detected during a request to stop the current job
and execute "SY:TSKMON.SAV". User job numbers must be greater than zero.

SOF-Stack overflow
One of the system stacks has overflowed. The argument value reports a
number that indicates which stack has created the failure.

SSE-PLAS region swap file I/O error
A hardware I/O error was detected while reading or writing a PLAS region to
the swap file. The device used for the PLAS swap file is specified in
TSGEN with the RSFBLK parameter.

UEI-Interrupt occurred at unexpected location
An interrupt occurred through a vector that was not attached to a terminal
defini tion, a device handler, or a real-t ime comple tion routine. The
argument value indicates the vector location.

-104-

Appendix ~ = Device ~ and vector address table

System . pc::::..- ~, / + ~ :::>~ \·0,\) CPU & Serial /I
--------------~----~-------- -----------------

Memory installed \ jJ\lS Peripherals installed ~S£.. SO _ :K- "-- 0 \ (. ::"~.l.:,: ~ rO~'\ ---...---"'---- ::::;. . -" \
--'

Interface device(s) installed ~"r:, \~ 'i . T
~~~----~-----------------------------

+--------+------+---------+--------+-----------+--------+--------+-----------+ 
! Device ! Type I Handler I Vector I CSR/RSR I Speed I Parity 1 Stop-bits J 

+--------+------+---------+--------+-----------+--------+--------+----~-----+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+---- I ---------_+ 
I I I I I I I I t 
+--------+------+---------+--------+-----------+--------+--------+---------~ 
I ! I I I 
+--------+------+---------+--------+-----------+--------+------ I ---------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+----- --------+ 
I I I I I I I i 
+--------+=====-+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I J I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+--------~-+ 

-55-





Appendix ~ ~ Device CSR and Vector Address Table 

System CPU & Serial # -------------------------------- ------------------
Memory installed Peripherals installed ---------- ------------------------

Interface device(s) installed --------------------------------------------

+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I Device I Type I Handler I Vector I CSR/RSR I Speed I Parity I Stop-bits I 

+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
I I I I I I I I I 

+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 
I I I I I I I I I 
+--------+------+---------+--------+-----------+--------+--------+-----------+ 

-105-



-106-



Appendix Q = Device Driver Source Language Patch Files 

The following source language patch files are provided in the event it becomes 
necessary to rebuild a device handler. The device handler files supplied on 
the distribution medium have already been patched using these SLP's and linked 
with the appropriate conditional file to create the dd.TSX files. 

D.I RT-II Version 5 Patches 

The following SLP's are for application to the RT-11 version 5, uncommented 
source files. These patches are also provided on the distribution medium as 
files wi th names of the form - dd. SLP. See the section in this manual on 
rebuilding device handlers before attempting to apply these patches. 

DD SLP Patch File 

-48,48 
KISAR1 = 172352 

-174 
• IF NE TSX$P 

MOV DDCQE,R4 
SUB #20000 j Q$BUFF(R4) 

-235 
.FORK PDFBLK 

/ 

DM SLP Patch File 

;USE KERNEL PAR 5 

;CONDITIONAL CODE FOR TSX-PLUS 
jGET POINTER TO THE QUEUE ENTRY 
;ADJUST BUFFER ADDRESS FOR PAR 5 
jE~m OF TSX-PLUS CONDITIONAL CODE 

JDO THE .FORK 

-219,219 
CMP Q$BUFF(R5),#160000jCHECK PAR 6 UPPER BOUNDARY 

/ 

DX SLP Patch File 

-178 
BR 

-293,293 
ADD 

-372,372 
CMP 

/ 

O.BAD 

112 ,RO 

Q$BUFF(R4),#140000 

DY SLP Patch File 

-193 
BR 

-314,314 
O.BAD 

112 ,RO 

;DISABLE /[NO]WRITE UNDER TSX-PLUS 

jINCREMENT BUFFER ONE WORD 

jCHECK PAR 6 LOWER BOUNDARY 

jDISABLE /[NO]WRITE UNDER TSX-PLUS 

;INCREMENT BUFFER ONE WORD ADD 
-384,384 

CMP Q.BUFF-Q.BLKN(R4),#140000jCHECK PAR 6 LOWER BOUNDARY 
/ 

-107-



Device Handler SLP Files 

FSM SLP Patch File --------
-873 

CLR EXTADR 
-937 

CLR EXTADR 
/ 

TJ SLP Patch File 

-296,296 
BIC 11177740, R2 
.IF NE, MMG$T 
MOVB R2,JOBNM 
.ENDC 

-426,426 
BEQ 7$ 

-432,432 
BIC 111 77740 , R3 

-434,434 
BNE 7$ 

/ 

TM SLP Patch File 

-264,264 
BIC 11177740, R2 
.IF NE, MMG$T 
MOVB R2,JOBNM 
.ENDC 

-404,404 
BEQ 7$ 

-410,410 
BIC 11177740, R3 

-412,412 
BNE 7$ 

/ 

TS SLP Patch File 

-337,337 
BIC 
.IF 
MOVB 
.ENDC 

-543,543 
BIC 

/ 

11177740,R1 
NE, MMG$T 
R1,JOBNM 

111 77740 , R3 

;CLEAR 18-BIT ADDRESS EXTENSION 

;CLEAR 18-BIT ADDRESS EXTENSION 

;ISOLATE THE JOB NUMBER 

;STORE JOB NUMBER IN JOBNM 

;BR IF NO ACTIVE QUEUE ELEMENT 

;ISOLATE THE JOB NUMBER 

;BR IF NOT THE ABORTING JOB 

;ISOLATE THE JOB NUMBER 

;STORE THE JOB NUMBER IN JOBNM 

;BR IF NO ACTIVE QUEUE ELEMENT 

;ISOLATE THE JOB NUMBER 

;BR IF NOT THE ABORTING JOB 

;ISOLATE THE JOB NUMBER 

;STORE THE JOB NUMBER IN JOBNM 

;ISOLATE THE JOB NUMBER 

-108-



Device Handler SLP Files 

D.2 RT-ll Version 4 Patches 

The following SLp .... s are for application to the RT-l1 version 4, uncommented 
source files. These patches are only appropriate for RT-11 V4 autopatch level 
E. See the section in this manual on rebuilding device handlers before 
attempting to apply these patches. 

DD SLP Patch File 

-49,49 
KISAR1 172354 
-144,144 
DDINT: : ; 

/ 
BCS 1$ 

-109-



Device Handler SLP Files 

DL SLP Patch File 

-62 
RLBAE 10 
MONLOW = 54 
CONFG2 = 370 
EXTLSI = 20000 
-308,308 
DLERJM: JMP DLERRH 
-346,346 
DLXFER: ADD IIRLBAE,R4 
-348,355 

MOV @tIMONLOW ,R3 
BIT #EXTLSI,CONFG2(R3) 
BEQ 2$ 

.IF NE MMG$T 
MOV Q$PAR-Q$WCNT(R5),R3 
ASH #-4,R3 
BIC #170000,R3 

-357,365 
-366 
2$: MOV (PC)+,R3 
DLWTRK: • WORD 0 

CMP R3,@R5 
BLOS 1$ 
MOV @R5,R3 

1$: MOV R3, (PC)+ 
DLWC: .WORD 0 

NEG R3 
MOV R3,-(R4) 
MOV (PC)+,-(R4) 

DLDA: • WORD 0 
MOV -(R5),-(R4) 

• IF NE MMG$T 
MOV Q$PAR-Q$BUFF(R5),RO 
BIC #AC60,RO 

• IFF 
CLR RO 

.ENDC 
BIS (PC)+,RO 

DLCODE: • WORD 0 
BIS (PC)+,RO 

DLUNIT: • WORD 0 
-397,397 
1$: JMP DLTRAK 
/ 

-110-



DM SLP Patch File 

-34,34 
KISAR1 
/ 

172354 

DX SLP Patch File 

-73,73 
KISAR1 172354 
-154,154 

ADD 
i 

112 ,RO 

DY SLP Patch File 

-176,176 
ADD 

-251,251 
CMF 

112,RO 

Q.BUFF-Q.BLKN(R4),#140000 
/ 

FSM SLP Patch File 

-870 
CLR EXTADR 

. -934 
GLR EXTADR 

/ 

TJ SLP Patch File 

-286,286 
BIG 
.IF 
MOV 
.ENDC 

-414,414 
BEQ 

-420,420 
BIG 

-422,422 
BNE 

111 77740 ,R2 
NE,NMG$T 
R2,JOBNM 

7$ 

111 77740 ,R3 

7$ 

-111-

Device Handler SLP Files 

;001 



Device Handler SLP Files 

TM SLP Patch File 

-254,254 
BIG 

-392,392 

.IF 
MOV 
.ENDG 

BEQ 
-398,398 

BIG 
-400,400 

BNE 
/ 

11177740,R2 
NE,MMG$T 
R2,JOBNM 

7$ 

11177740 , R3 

7$ 

TS SLP Patch File 

-311,311 
BIG 
.IF 
MOV 
.ENDC 

-500,500 
BIC 

/ 

11177740,R1 
NE,MMG$T 
R1,JOBNM 

11177740, R3 

-112-



Appendix!= System Size Calculation 

E.1 System size and sysgen features 

The TSX-Plus system is divided into two portions: an unmapped portion that 
consists of kernel code, device handlers, and job control tables; and a mapped 
portion that consists of virtual overlays for the monitor, shared run-time 
systems, and data areas such as data caching buffers and time-sharing terminal 
character buffers. The unmapped portion of the system is constrained to 40Kb. 
The mapped portion is only constrained by the physical memory installed on the 
system and the amount of memory that needs to be made available for time­
sharing jobs. 

The following table indicates the number of bytes of code and/or data space 
added to the mapped and unmapped portions of the system by various system 
features. 

-113-



System Size Calculation 

+----------------------------------------------------------------------------+ 
I Effect of System Components on Overall System Size I 
+--------------------+---------------------------+---------------------------+ 
I System Component I Bytes in Unmapped Region I Bytes in Mapped Region I 

+--------------------+---------------------------+---------------------------+ 
I Each additional I 840 I Terminal input I 

, time-sharing line , , character buffer , 
, , , + output character buffer , 
+--------------------+---------------------------+---------------------------+ 
, Each I/O device 'Size of device handler '0 , 
+--------------------+---------------------------+---------------------------+ 
, Device spooling '18 + (spool file size)/8 '2100 I 
, , + (number spool files)*24 , +(num. spool buffers)*512 I 
, I + «number spool dev.)* I I 

I I (45+2*(num. backup blk.)))' I 

+--------------------+---------------------------+---------------------------+ 
, Shared file I 10 + NUMDC*8 I 2100 + NUMDC*512 I 

, record locking and I I +MAXSF*14 , 
, data caching I I +(num. time share jobs)*6 , 
I I I +MAXSFC*(12+2*MXLBLK) I 
+--------------------+---------------------------+---------------------------+ 
I Generalized I 1940 I CACHE*528 , 
, data caching , I , 
+--------------------+---------------------------+---------------------------+ 
I Directory caching 'MAXCSH*14 I NMFCSH*18 I 
+--------------------+---------------------------+---------------------------+ 
, Inter-job message '6 I 620 + MAXMC*20 I 
I communication I I + MAXMSG*(4+MSCHRS) , 
+--------------------+---------------------------+---------------------------+ 
, PLAS support , 0 I 2300 , 
+--------------------+---------------------------+---------------------------+ 
I Real-time support '490 + RTVECT*10 I 1010 , 
+--------------------+---------------------------+---------------------------+ 
I Single line editor , 0 I 3120 , 
+--------------------+---------------------------+---------------------------+ 
, I/O mapping I 22 + MIONBF*16 , 960 I 
, (18-bit device , I + MIONBF*(MIOBSZ*512) , 
I support on 22-bit I I I 
, Q-bus systems) , , I 
+--------------------+---------------------------+---------------------------+ 
I Performance , 0 I PMSIZE , 
I analysis monitor I I , 
+--------------------+---------------------------+---------------------------+ 
, Shared run-time '(num. of run times)*14 'Size of run time system , 
+--------------------+---------------------------+---------------------------+ 

-114-



System Size Calculation 

E.2 Device Handler Sizes 

The following table lists the size of the device handlers which are distributed 
with TSX-Plus. 

+-----------+-----------------------+ 
I Handler I Size (bytes) I 
+-----------+-----------------------+ 

CR 778 
CT 2322 
DD 1198 
T"\T 1262 Ul.I 

DM 1316 
DP 346 
DS 246 
DT 256 
DU 826 
DX 594 
DY 738 
LP 318 
LS 590 
MM 4238 (file struct.) 
MS 4716 (file struct.) 
MT 3844 (file struct. ) 
Nt 58 
PC 210 
PD 238 
RF 232 
RK 280 
VM 306 
XL 1170 

+-----------+-----------------------+ 

-115-



-116-



.CTIMIO requests, 37 

.PEEK and .POKE 
Operator privilege, 43 

.TIMIO requests, 37 
22-bit addressing, 13, 14 

Devices on LSI-11 bus, 36 
EXTMCH parameter, 7 

ACCESS command, 41 
use with logical disks, 42 

Account authorization, 45 
file conversion, 51 

Activation characters 
Max number of - MXSPAC, 12 

AUTCVT program, 51 
BA handler, 36 
Batch support, 36 
Baud rate 

Specification for DZ11, 24 
Buffers 

Data caching, 16 
Spooling, 15 
Terminal input, 20, 25 
Terminal output, 20, 25 

BUFSIZ macro, 25 
BUSTYP parameter, 6 
CACHE parameter, 11 

.... jI _ _ on n"'7 
op~~m~z~ng, OV, j/ 

Caching, 78 
Data, 16, 79, 80 
Directories, 12, 79 

CCL sav file, 1, 28 
Character echoing 

DEFER flag, 23 
Charge information, 49 
CMDFIL macro, 26, 39 
Command files 

Controlling listing of, 24 
Detached start-up, 26 
log-off, 40 
Start-up, 39 
Start-up for line, 26 

Compute-bound time-slice 
QUAN2 parameter, 9 

Connect time 
Determination of, 49 

CORTIM parameter, 10 
optimizing, 75 

CPU Modes display, 94 
CPU time 

Determination of, 49 

Index 

CRT terminal support 
SCOPE flag, 22 

CTRL-S/CTRL-Q processing 
PAGE flag, 23 
TAPE flag, 22 

Data caching, 79, 80 
affect on system size, 114 
CACHE parameter, 11 
NUMDC parameter, 16 

DD Device handler patch, 107, 109 
Deauthorizing an account, 48 
Default memory allocation, 6 
Default system editor, 12 
DEFER flag, 23 
Deferred character echoing 

DEFER flag, 23 
DETACH macro, 26 
Detached jobs 

Controlling use of, 23, 47 
Declaring number of, 20 
Start-up command files, 26 

DEVDEF macro, 13 
VM handler, 32 
XL handler, 33 

Device Driver SLP Files, 107 
Device handlers 

-117-

and .CTIMIO requests, 37 
and .TIMIO requests, 37 
building, 33 
DD patch, 107 
DEVDEF macro, 13 
DM patch, 107 
DX patch, 107 
DY patch, 107 
Files included in distribution, 

1 
FSM patch, 108 
Patch file checksums, 35 
required patches, 34 
restrictions, 36 
size table, 115 
Sysgen requirements, 31 
TJ patch, 108 
TM patch, 108 
TS patch, 108 
Unsupported, 36 
use of PAR 1, 36 
use of PAR 5 and 6, 36 
Use of queue element, 36 
VM, 31, 83 
XL, 32 



Index 

Device Spooling 
See Spooling 

Devices to be spooled, 15 
DFLMEM parameter, 6 
Dial-up lines 

PHONE flag, 24 
TIMOUT parameter, 12 

DINSPC parameter, 20 
Directory Cache Display, 95 
Directory caching, 79 

affect on system size, 114 
MAXCSH parameter, 12 
NMFCSH parameter, 12 

DL Device handler patch, 110 
DL11 support, 22 

Interrupt vectors, 22 
Status registers, 22 

DM Device handler patch, 107, 111 
DMA parameter, 13 
DOTSPC parameter, 20 
DTSUB DIBOL callable subroutines, 

1 
DX device handler patch, 107, 111 
DY device handler patch, 107, III 
DZ11 support, 21 
Echo control 

DEFER flag, 23 
ECHO flag, 22 

ECHO flag, 22 
EDIT, 12 
EDITOR parameter, 12 
EL handler, 36 
Error logging support 

Device handlers, 31 
Error messages 

system, 103 
system startup, 99 

ETX/ACK protocol, 25 
Example 

Line definitions, 27 
Execution states, 59 
Extended memory mapping 

EXTMCH parameter, 7 
MEMSIZ parameter, 7 

EXTMCH parameter, 7 
File access control 

ACCESS command, 41 
File access security, 39 
File size 

Limiting, 11 

Files 
Max number of shared files, 16 
RAD50 specification, 4, 19 

FILTIM obtaining file creation time, 
1 

FLAGS macro, 22, 27, 43 
FORM flag, 23 
Form-feed control 

FORM flag, 23 
FSM device handler patch, 108, 111 
FTSUB FORTRAN callable subroutines, 

1 
Generating a system, 3 
Handlers. See Device handlers. 
High-priority execution quantum, 

8 
HIMEM parameter, 5 
HIPRCT parameter, 10 

optimizing, 76, 77 
Hold mode of spooling, 15 
Holding spool files, 15 
I/O channels 

Max open to shared files, 16 
I/O completion quantum, 9 
I/O mapping, 13, 14 

affect on system size, 114 
I/O optimization, 76 

Data caching, 78 
Device spooling, 78 
Execution overlap, 76 

I/O queue elements, 36 
I/O rundown 

IOABT parameter, 7 
In-line interrupt service routines, 

36 
INIABT parameter, 7 
Initialization control 

INIABT parameter, 7 
Input buffer size 

Default, 20 
Interactive job scheduling, 60 

INTIOC parameter, 10 
QUAN1 parameter, 9 
QUAN1B parameter, 9 
QUAN1C parameter, 9 

Interprogram communication, 17 
affect on system size, 114 
MAXMC parameter, 17 
MAXMSG parameter, 17 
MSCHRS parameter, 17 

-118-



Interrupt processing, 64 
Interrupt vectors 

Real-time support, 18 
INTIOC parameter, 10 

optimizing, 72, 73 
IOABT parameter, 7 

needed for VTCOM, 33 
ISAM files 

Optimizing with data caching, 
16 

Job Execution Status Display, 89 
Job scheduling 

RIPRCT parameter, 10 
Job swapping, 64 
K52, 12 
KED, 12 
LC flag, 23 
LD handler, 36 
LU~I~ parame~er, 8 
Lead-in character 

TSLICH parameter, 12 
LINDEF macro, 21, 22, 27 
Line Definition Block (LDB), 21 
LINEND macro, 21, 27 
Linking TSX-Plus, 28 
LINPR~ macro, 24, 27 
Listing account status, 48 
Locking a program to a line, 40 
Locking records 

See Shared files, 16 
Log-off command files, 40 
Logical disks 

ACCESS command j 42 
Enabling use of, 8 

LOGON facility, 44 
LOGON sav file, 1 
Low priority job time-slice 

QUAN3 parameter, 9 
Lower-case character control 

LC flag, 23 
MAPIO parameter, 13 
MAPIOP parameter, 13 
Max memory a job can use, 5 
MAXCSH parameter, 12 
MAXFIL parameter, 11 
~XMC parameter, 17 
MAXMSG parameter, 17 
MAXSEC parameter, 11 

MAXSF parameter, 16 
MAXSFC parameter, 16 
Memory allocation 

DFLMEM parameter, 6 
HIMEM parameter, 5 
MEMSIZ parameter, 7 

Memory management support 
and device handlers, 31 

Memory residency control 
CORTIM parameter, 10 

MEMSIZ parameter, 7 
and VM handler, 31 

Message communication 
See Interprogram communication 

MIOBSZ parameter, 14 
MIONBF parameter, 14 
MOUNT command 

use with ACCESS command, 42 
MSCHRS parameter, 17 
Multiplexor support, 21 

LINPRM macro, 24 
MUXDEF macro, 21 

MUXDEF macro, 21 
MXLBLK parameter, 16 
MXSPAC parameter, 12 

Index 

New authorization file format, 51 
NMFCSH parameter, 12 
NODET flag, 23 
Non-swapping system generation, 

6 
NONDMA parameter, 13 
NOVLN flag, 23 
NRMFLG parameter, 24 
NUMDC parameter, 16 

optimizing, 79, 96 
Object modules in distribution, 

2 
Operator privilege, 43 

.PEEK and .POKE, 43 
Access to SYS and TSX files, 43 
Granting of, 43 
Granting to an account, 47 
PRIV flag, 24 
Real-time facilities, 43 
Restricted commands, 43 
SYSMON program, 85 
TSAUTH program, 43 
Use of TSAUTH program, 43 

Operator's console 
Specification of, 22 

-119-



Index 

Optimizing system parameters, 69 
Organization of the system, 53 
OTRASZ parameter, 20 
Output buffer size 

DOTSPC parameter, 20 
Output reactivation count, 20 
Overview of the system, 53 
PAGE flag, 23 
Paper-tape mode 

TAPE flag, 22 
PAR 1 use by device handlers, 36 
PAR 5 use by device handlers, 36 
PAR 6 use by device handlers, 36 
Parity control for DZ11, 25 
Password specification, 47 
Patch file checksums, 35 
PD handler, 36 
Performance monitor, 19, 75 

affect on system size, 114 
PMSIZE parameter, 19 
TSXPM program, 1 

PHONE flag, 24 
PLAS 

affect on system size, 114 
Region swap file name, 5 
Specifying file size, 6 

PMSIZE parameter, 19 
PPN specification, 46 
PRIDEF parameter, 10, 59 
PRIHI parameter, 10 

job scheduling, 58 
PRILOW parameter, 10 

job scheduling, 58 
Priority 

and job scheduling, 58 
controlling maximum allowed, 42, 

47 
Default value, 10 
Fixed high priorities, 10 
Fixed low priorities, 10 
Virtual job reduction, 11 

PRlV flag, 24, 43 
Privilege 

Operator, 43 
PRIVIR parameter, 11, 59 
Project-Programmer specification, 

46 
QBUS processors 

BUSTYP parameter, 6 

QTSET flag, 24 
QUANO parameter, 8 

optimizing, 74 
QUAN1 parameter, 9 

optimizing, 72, 73 
QUAN1A parameter, 9 

optimizing, 76, 78 
QUAN1B parameter, 9 

optimizing, 72, 74 
QUAN1C parameter, 9 

optimizing, 72, 74 
QUAN2 parameter, 9 

optimizing, 72, 74 
QUAN3 parameter, 9 

optimizing, 74 
Queue elements, 36 
Queued Message Display, 92 
R command 

fLOCK switch, 40 
RAD50 file specification, 4, 19 
Reactivation count 

For TT output, 20 
Real-time support, 18 

affect on system size, 114 
Interrupt completion routines, 

65 
Interrupt processing, 64 
Interrupt service routines, 64 
Operator privilege, 43 

Record locking 
See Shared files 

Resetting account statistics, 50 
Resident run-time systems 

See Shared run-time systems 
Restricted keyboard commands, 43 
RSFBLK parameter, 5 
RT-11 version 4 device handlers 

DD patch, 109 
DL patch, 110 
DM patch, 111 
DX patch, 111 
DY patch, 111 
FSM patch, 111 
TJ patch, 111 
TM patch, 112 
TS patch, 112 

RTDEF macro, 19 
RTVECT parameter, 18 
Run command 

fLOCK switch, 40 

-120-



SCOPE flag, 22 
Security of file access 

See system security, 39 
SEGBLK parameter, 6 
SET CACHE command, 80 
SET LOGOFF command, 40 
SET MAXPRIORITY command, 42 
SET SIGNAL command, 71 
SETSIZ command file, 1, 37 
SETSIZ program, 1, 37, 71 
Shared files, 16 

affect on system size, 114 
Data caching, 16 
MAXSF parameter, 16 
MAXSFC parameter, 16 
MXLBLK parameter, 16 
NUMDC parameter, 16 

Shared run-time systems, 19 
affect on system size, 114 
RTDEF macro, 19 

Single Line Editor 
affect on system size, 114 
Enabling use of, 8 

Size of spool file, 15 
Size of system, 113 
SL 

see Single Line Editor 
SLEDIT parameter, 8 
SLP files 

Contents of, 107 
Files included in distribution, 

2 
Use of, 35 

SLP files for RT-ll version 4 
Contents of, 109 

SPLBLK parameter, 5 
Spool file name 

Specifying, 5 
SPOOL macro, 15 
Spooling, 15 

affect on system size, 114 
Back-up blocks, 16 
Devices, 15 
Hold mode, 15 
Number of buffers, 15 
Number of devices spooled, ,~ 

Number of spooled files, 15 
Spool file size, 15 

START flag, 23 
Start-up command file 

CMDFIL macro, 26 
Start-up command files, 39 

Associating with user, 47 
Controlling listing of, 40, 44 
Interaction, 44, 47 
Use with LOGON program, 44 

Start-up of lines, 23 
Starting TSX-Plus, 28 
Stop bits for DZll, 25 
Swap file name 

Specifying, 5 
SWAPFL parameter, 6 
Swapping of jobs, 64 
SWDBLK parameter, 5 
SYSMON Dynamic Display Utility, 

85 
CPU Modes display, 94 
Creating and running, 85 
Creating SAV file, 28 
Data Cache Display, 97 
Directory Cache Display, 95 
Enabling use, 18 
Job Execution Status Display, 

89 
Message Queue Display, 92 
Operator privilege, 85 

Index 

Shared File Data Cache Display, 
96 

System Status Display, 87 
Terminal Status Display, 91 
User times display, 93 

SYSODT reI file, 1 
System generation, 3 
System I/O mapping 

see I/O mapping 
System overview, 53 
System security, 39 

Start-up command files, 39 
System size calculation, 113 
System Status Display, 87 
System tuning, 69 
Tab character handling 

TAB flag, 23 
TAB flag) 23 
TAPE flag, 22 
TBLDEF macro, 20 
TECO, 12 
Terminal Status Display, 91 

-121-



Index 

Terminal type 
Diablo, 25 
Specification of, 25 

Time-out support 
Device handlers, 31 

Time-sharing lines, 20 
BUFSIZ macro, 25 
CMDFIL macro, 26 
DEFER flag, 23 
ECHO flag, 22 
Example of, 27 
FLAGS macro, 22 
FORM flag, 23 
LC flag, 23 
LINDEF macro, 21 
Line definition block, 21 
LINPRM macro, 24 
NODET flag, 23 
NOVLN flag, 23 
Number of, 20 
NUMFLG parameter, 24 
PAGE flag, 23 
PHONE flag, 24 
PRIV flag, 24 
QTSET flag, 24 
SCOPE flag, 22 
START flag, 23 
TAB flag, 23 
TAPE flag, 22 
TBLDEF macro, 20 
Terminal type, 25 
Total number supported, 20 

times display, 93 
TIMOUT parameter, 12 
TJ device handler patch, 108, 111 
TM device handler patch, 108, 112 
TRANSF program, 32 
TRMTYP parameter, 25 
TS device handler patch, 108, 112 
TSAUTH program, 45 

Authorize command, 46 
Charge command, 49 
Command summary, 46 
Exit command, 50 
Kill command, 48 
List command, 48 
Operator privilege, 43 
Reset command, 50 
Usage command, 49 

TSAUTH sav file, 1 
TSGEN module 

Assembling, 4, 28 
Setting parameters in, 5 

TSGEN source file, 1 
TSLICH parameter, 12 
TSLNK3 command file, 1 
TSODT object file, 1 
TSODT relocatable file, 1 
TSXDB sav file, 1 
TSXLNK and TSLNK3 command files, 

28 
TSXLNK command file, 1 
TSXPM sav file, 1 
TSXUCL program, 29 

data file size, 8 
TSXUCL sav file, 1 
TSXUCL.TSX, 8 
TT buffer sizes 

BUFSIZ macro, 25 
DINSPC parameter, 20 
DOTSPC parameter, 20 

TT output reactivation 
OTRASZ parameter, 20 

Tuning the system, 69 
Twenty-two bit addressing 

EXTMCH parameter, 7 
UCL parameter, 8 
UCLMNC parameter, 8 
UCLORD parameter, 8 
UNIBUS processors 

BUSTYP parameter, 6 
Unsupported device handlers, 36 
Usage information, 49 
Usage statistics, 49 
User Command Linkage 

TSXUCL program, 29 
UCL parameter, 8 
UCLMNC parameter, 8 
UCLORD parameter, 8 

User defined commands 
see User Command Linkage 

User names 
Duplicate, 46 
Specification in TSAUTH, 46 

User-defined commands 
Maximum number, 8 
Processing order, 8 

Virtual lines 
Controlling use of, 23, 47 

-122-



Declaring number of, 20 
Max number of - MAXSEC, 11 
Priority reduction, 11 

Virtual-line signal character, 12 
VLSWCH parameter, 12 
VM handler, 83 

installing, 31 

VTCOM program, 32 
Wild cards 

Explicit/Implicit, 12 
WILDFL parameter, 12 
X-oN/X-OFF processing 

PAGE flag, 23 
TAPE flag, 22 

XL handler, 32 
installing, 33 

-123-

Index 


