DPV11 serial synchronous interface user guide

•

医肾上腺 网络小子科学士 一道的现在分词

.

Copyright © 1980 by Digital Equipment Corporation

All Rights Reserved

The material in this manual is for informational purposes and is subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGITAL's DECset-8000 computerized typesetting system.

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts:

DIGITAL	DECsystem-10	MASSBUS
DEC	DECSYSTEM-20	OMNIBUS
PDP	DIBOL	OS /8
DECUS	EduSystem	RSTS
UNIBUS	VAX	RSX
DECLAB	VMS	IAS
		MINC-11

网络小学校学校 化合理检测器 化合理检测器 化分子管理检测器 化合理试验 化合理试验 化合理机

CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1	SCOPE	1-1
1.2	DPV11 GENERAL DESCRIPTION	1-1
1.3	DPV11 OPERATION	
1.4	DPV11 FEATURES	1-2
1.5	GENERAL SPECIFICATIONS	1-2
1.5.1	Environmental Specifications	1-2
1.5.2	Electrical Specifications	1-3
1.5.3	Performance Parameters	
1.6	DPV11 CONFIGURATIONS	1-3
1.7	EIA STANDARDS OVERVIEW	1-3

CHAPTER 2 INSTALLATION

2.1	INTRODUCTION	
2.2	UNPACKING AND INSPECTION	2-1
2.3	PRE-INSTALLATION REQUIREMENTS	2-1
2.4	INSTALLATION	
2.4.1	Verification of Hardware Operation	2 - 7·
2.4.2	Connection to External Equipment/Link Testing	2-8
2.5	TEST CONNECTORS	

.

CHAPTER 3 REGISTER DESCRIPTIONS AND PROGRAMMING INFORMATION

3.1	INTRODUCTION	
3.2	DPV11 REGISTERS AND DEVICE ADDRESSES	
3.3	REGISTER BIT ASSIGNMENTS	3-2
3.3.1	Receive Control and Status Register (RXCSR)	3-2
3.3.2	Receive Data and Status Register (RDSR)	3-2
3.3.3	Parameter Control Sync/Address Register (PCSAR)	3-2
3.3.4	Parameter Control and Character Length Register (PCSCR)	3-2
3.3.5	Transmit Data and Status Register (TDSR)	3-2
3.4	DATA TRANSFERS	
3.4.1	Receive Data	
3.4.2	Transmit Data	
3.5	INTERRUPT VECTORS	3-21

CONTENTS (Cont)

Page

APPENDIX A DIAGNOSTIC SUPERVISOR SUMMARY

A.1	INTRODUCTION	
A.2	VERSIONS OF THE DIAGNOSTIC SUPERVISOR	A-1
A.3	LOADING AND RUNNING A SUPERVISOR DIAGNOSTIC	A-1
A.4	SUPERVISOR COMMANDS	A-3
A.4.1	Command Switches	A-4
A.4.2	Control/Escape Characters Supported	A-4
A.5	THE SETUP UTILITY	A-5

APPENDIX B USYNRT DESCRIPTION

APPENDIX C IC DESCRIPTIONS

C.1	GENERAL	C-1
C.2	DC003 INTERRUPT CHIP	C-1
C.3	DC004 PROTOCOL CHIP	C-3
C.4	DC005 BUS TRANSCEIVER CHIP.	C-3
C.5	26LS32 QUAD DIFFERENTIAL LINE RECEIVER	C-6
C.6	8640 UNIBUS RECEIVER	C-6
C.7	8881 NAND	C-6
C.8	9636A DUAL LINE DRIVER	C-6
C.9	9638 DUAL DIFFERENTIAL LINE DRIVER	C-6

APPENDIX D PROGRAMMING EXAMPLES

GLOSSARY

ILLUSTRATIONS

Figure No.	Title	Page
1-1	DPV11 System	1-1
2-1	DPV11 Jumper Locations	
2-2	H3259 Turn-Around Test Connector	
2-3	RS-423-A with H3259 Test Connector	2-10
2-4	H3260 On-Board Test Connector	
3-1	DPV11 Register Configurations and Bit Assignments	
3-2	Receive Control and Status Register (RXCSR) Format	
3-3	Receive Data and Status Register (RDSR) Format	
3-4	Parameter Control Sync/Address Register (PCSAR) Format	3-11
3-5	Parameter Control and Character Length Register	
	(PCSCR) Format	
3-6	Transmit Data and Status Register (TDSR) Format	
A-1	Typical XXDP+/Diagnostic Supervisor Memory Layout	A-2

ILLUSTRATIONS (Cont)

Figure No.	Title	Page
B-1	Terminal Connection Identification Diagram	
	(2112517-0-0 Variation)	B-2
B-2	5025 Internal Register Bit Map (2112517-0-0 Variation)	B-3
C-1	DC003 Logic Symbol	C-1
C-2	DC004 Simplified Logic Diagram	C-4
C-3	DC005 Simplified Logic Diagram	C-7
C-4	26LS32 Terminal Connection Diagram and Terminal	
	Indentification	C-9
C-5	8640 Equivalent Logic Diagram	C-10
C-6	8881 Pin Identification	C-10
C-7	9636A Logic Diagram and Terminal Identification	C-11
C-8	9638 Logic Diagram and Terminal Identification	C-12

TABLES

Table No.

Title Page

.

Page

2-1	Configuration Sheet	
2-2	Vector Address Selection	
2-3	Device Address Selection	
2-4	Voltage Requirements	
2-5	H3259 Test Connections	
3-1	DPV11 Registers	
3-2	Receive Control and Status Register (RXCSR) Bit	
	Assignments	3-5
3-3	Receive Data and Status Register (RDSR) Bit Assignments	
3-4	Parameter Control Sync/Address Register (PCSAR)	
	Bit Assignments	
3-5	Parameter Control and Character Length Register	
	(PCSCR) Bit Assignments	
3-6	Transmit Data and Status Register (TDSR) Bit Assignments	3-17
C-1	DC003 Pin/Signal Descriptions.	
C-2	DC004 Pin/Signal Descriptions	C-5
C-3	DC005 Pin/Signal Descriptions	C-8
	· - ·	

v

날 때 것 않았습니? 말 알 가지요?

 Base 18
 Description
 Base

 11
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

This manual is intended to provide an introduction to the DPV11 Interface and present the information required by the user for configuration, installation and operation.

It contains the following categories of information.

- General description including features, specifications, and configurations
- Installation
- Programming

The manual also contains four appendixes which include diagnostic information, integrated circuit descriptions, and programming examples.

The DPV11 Field Maintenance Print Set (MP00919) contains useful additional information.

The resolution is the first second second and the last first in the second se second sec second s Second se Second sec

一切,我们们不可以是这些你,这些好意志,我们就能把了了

.

计可能性的 增加输入的 化合物化 化合物化物化合物化物化合物 自己的复数形式 计算法分析 医鼻

- stands is an 👘 🖉

。 经审查公司 一部分子 一百万万 一部 11 新口加州人 化加加油 化化化 一百万的 化试验检试验检 计特殊分配数据 电计算机 化偏子器 化离子器 化合物 化合物 化合物 化合物 化合物 化合物

CHAPTER 1 INTRODUCTION

1.1 SCOPE

This chapter contains introductory information about the DPV11. It includes a general description, and a brief overview of the DPV11 operation, features, general specifications, and configurations.

1.2 DPV11 GENERAL DESCRIPTION

The DPV11 is a serial synchronous line interface for connecting an LSI-11 bus to a serial synchronous modem that is compatible with EIA RS-232-C interface standards and EIA RS-423-A and RS-422-A electrical standards. EIA RS-422-A compatibility is provided for use in local communications only (timing and data leads only). The DPV11 is intended for character-oriented protocols such as BISYNC, byte count-oriented protocols such as DDCMP, or bit-oriented data communication protocols such as SDLC. The DPV11 does not provide automatic error generating and checking for BISYNC.

The DPV11 consists of one double-height module and may be connected to an EIA RS-232-C modem by a BC26L-25 (RS-232-C) cable.

The DPV11 is a bus request device only and must rely on the system software for service. Interrupt control logic generates requests for the transfer of data between the DPV11 and the LSI-11 memory by means of the LSI-11 bus. (Figure 1-1 shows the DPV11 system.)

Figure 1-1 DPV11 System

1.3 DPV11 OPERATION

The DPV11 is a double-buffered program interrupt interface that provides parallel-to-serial conversion of data to be transmitted and serial-to-parallel conversion of received data. The DPV11 can operate at speeds up to 56K b/s.* It has five 16-bit registers which can be accessed in word or byte mode. These registers are assigned a block of four contiguous LSI-11 bus word addresses that start on a boundary with the low-order three bits being zeros. This block of addresses is jumper-selectable and may be located anywhere between 160000_8 and 177776_8 . Two of these registers share the same address. One is accessed during a read from the address, the other during a write to the address. For a detailed description of each of the five registers, refer to Chapter 3. These registers are used for status and control information as well as data buffers for both the transmitter and receiver portions of the DPV11.

1.4 **DPV11 FEATURES**

Features of the DPV11 include:

- Full-duplex or half-duplex operation
- Double-buffered transmitter and receiver
- EIA RS-232-C compatibility
- All EIA RS-449 Category I modem control
- Partial Category II modem control to include incoming call, test mode, remote loopback, and local loopback
- Program interrupt on transitions of modem control signals
- Operating speeds up to 56K b/s (may be limited by software or CPU memory)
- Software-selectable diagnostic loopback
- Operation with bit-, byte count-, or character-oriented protocols
- Internal cyclic redundancy check (CRC) character generation and checking (not usable with BISYNC)
- Internal bit-stuff and detection with bit-oriented protocols.
- Programmable sync character, sync insertion, and sync stripping with byte count-oriented protocols.
- Recognition of secondary station address with bit-oriented protocols.

1.5 GENERAL SPECIFICATIONS

This paragraph contains environmental, electrical, and performance specifications for the DPV11.

1.5.1 Environmental Specifications

The DPV11 is designed to operate in a Class C environment as specified by DEC Standard 102 (extended).

Operating Temperature	5° C (41° F) to 60° C (140° F)
Relative Humidity	10% to 90% with a max. wet bulb temperature of 28° C (82°
	F) and a min. dew point of 2° C (36° F)

* The actual speed realized may be significantly less because of limitations imposed by the software and/or CPU memory refresh.

1.5.2 Electrical Specifications

The DPV11 requires the following voltages from the LSI-11 bus for proper operation.

+12 V at 0.30 A max. (0.15 A typical) +5 V at 1.2 A max. (0.92 A typical)

The interface includes a charge pump to generate a negative voltage required to power the RS-423-A drivers.

The DPV11 presents 1 ac load and 1 dc load to the LSI-11 bus.

1.5.3 Performance Parameters

Performance parameters for the DPV11 are listed as follows.

Operating Mode	Full or half-duplex
Data Format	Synchronous BISYNC, DDCMP, and SDLC
Character Size	Program-selectable (5–8 bits with character-oriented protocols and 1–8 bits with bit-oriented protocols)
Max. Configuration	16 DPV11 modules per LSI-11 bus
Max. Distance	15 m (50 ft) for RS-232-C. 61 m (200 ft) for RS-423- A/RS-422-A (Distance is directly dependent on speed, and 200 ft is a suggested average. See RS-449 specifica- tion for details.)
Max. Serial Data Rates	56K h/s (May be less because of software and memory

refresh limitations.)

1.6 DPV11 CONFIGURATIONS

There are two DPV11 configurations, the DA and the DB.

DPV11-DA

Unbundled version consists of:

M8020 module

DPV11 Maintenance Reference Card (EK-DPV11-CG)

DPV11-DB

Bundled version consists of: M8020 module H3259 turn-around connector BC26L-25 cable DPV11 User Manual (EK-DPV11-UG) DPV11 Maintenance Reference Card (EK-DPV11-CG) LIB kit (ZJ314-RB) Field Maintenance Print Set (MP00919)

Turn-around connectors, cables and documentation may be purchased separately.

1.7 EIA STANDARDS OVERVIEW (RS-449/RS-232-C)

The most common interface standard used in recent years has been the RS-232-C. However, this standard has serious limitations for use in modern data communication systems. The most critical limitations are in speed and distance.

For this reason, RS-449 standard has been developed to replace RS-232-C. It maintains a degree of compatibility with RS-232-C to accommodate an upward transition to RS-449.

The most significant difference between RS-232-C and RS-449 is in the electrical characteristics of signals used between the data communication equipment (DCE) and the data terminal equipment (DTE). The RS-232-C standard uses only unbalanced circuits, while the RS-449 uses both balanced and unbalanced electrical circuits. The specifications for the types of electrical circuits supported by RS-449 are contained in EIA standards RS-422-A for balanced circuits and RS-423-A for unbalanced circuits. These new standards permit much greater transmission speed and will allow greater distance between DTE and DCE. The maximum transmission speeds supported by RS-423-A and RS-423-A circuits vary with cable length; the normal speed limits are 20K b/s for RS-423-A and 2M b/s for RS-422-A, both at 61 m (200 feet).

Another major difference between RS-232-C and RS-449 is that additional leads are needed to support the balanced interface circuits and some new circuit functions. Two new connectors have been specified to accommodate these new leads. One connector is a 37-pin Cinch used in applications requiring secondary channel functions. Some of the new circuits added in RS-449 support local and remote loopback testing, and stand-by channel selection.

1-4

CHAPTER 2 INSTALLATION

2.1 INTRODUCTION

This chapter provides all the information necessary for a successful installation and subsequent checkout of the DPV11. Included are instructions for unpacking and inspection, pre-installation, installation and verification of operation.

2.2 UNPACKING AND INSPECTION

The DPV11 is packaged in accordance with commercial packing practices. Remove all packing material and verify that the following are present.

M8020 module H3259 turn-around connector BC26L-25 cable DPV11 User Manual (EK-DPV11-UG) LIB kit (ZJ314-RB) Field Maintenance Print Set (MP00919)

Inspect all parts carefully for cracks, loose components or other obvious damage. Report damages or shortages to the shipper immediately, and notify the DIGITAL representative.

2.3 PRE-INSTALLATION REQUIREMENTS

Table 2-1 (Configuration Sheet) provides a convenient, quick reference for configuring jumpers.

Driver	Normal* Configuration	Alternate* Option	Description	
Terminal Timing	al W1 to W2	Not connected	Bypasses attenuation resistor. Jumper must be removed for cer- tain modems to operate properly.	

Table 2-1 Configuration Sheet

(W3-W11) Interface Selection Jumpers

IIIAN D. C. A.C. S.C.

Input Signals	Normal* Configuration	Alternate* Option	Description
SQ/TM (PCSCR-5)	W5 to W6		Signal quality
		W7 to W6	Test mode
DM (DSR) (RXCSR-9)	Not connected	W10 to W9	Data mode return for RS-422-A

*Normal configuration is typically RS-423-A compatible. Alternate option is typically RS-422-A compatible.

2-1

(W3-W11) Interface Selection Jumpers (Cont)

Output Signals	Normal* Configuration	Alternate* Option	Description
SF/RL (RXCSR-0)	W3 to W4		Select frequency
		W5 to W3	Remote loopback
Local	W8 to W9	Not connected	Local loopback
Loopoack	Not connected	W8 to W11	Local loopback (alternate pin)

(W12-W17) Receiver Termination Jumpers

Receiver	Normal* Configuration	Alternate* Option	Description
Receive Data	Not connected	W12 to W13	Connects terminating resistor for
Send Timing	Not connected	W14 to W15	KS-422-A compationity
Receive Timing	Not connected	W16 to W17	l an

(W18-W23) Clock Jumpers

Function	Normal* Configuration	Alternate* Option	Description
NULL MODEM CLK	W20 to W18	an a	Sets NULL CLK MODEM CLK to 2 kHz.
		W21 to W18	Sets NULL MODEM CLK to 50 kHz.
Clock Enable	W19 to W21 W22 to W23	W19 to W21 W22 to W23	Always installed except for factory testing.

(W24-W28) Data Set Change Jumpers

Modem Signal Name	m Signal Normal* Alternate* Configuration Option		Description			
Data Mode (DSR) Clear to Send	W26 to W24 W26 to W25	Not connected Not connected	Connects the DSCNG flip-flop to the respective modem status signal for transition detection.			
Incoming Call	W26 to W27	Not connected	Note: W26 is input to DSCNG flip flop			
Receiver Ready (Carrier Detect)	W26 to W28	Not connected	PM (DSR) (2XCSR-9)			

*Normal configuration is typically RS-423-A compatible. Alternate option is typically RS-422-A compatible. 2-2

Table 2-1 Configuration Sheet (Cont)

Device Address Jumpers

GND	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3
W29	W31	W30	W36	W33	W32	W39	W38	W37	W34	W35

NOTE

The address to which the DPV11 is to respond is daisy-chain jumpered to W29 (GND).

Vector Address Jumpers

D8	D7	D6 D5	D4	D3	Source
W43	W42	W41 W40	W44	W45	W46

NOTE

Vector address to be asserted is daisy-chain jumpered to W46.

NOTE

Table 2-1 shows the recommended normal and alternate jumpering schemes. Any deviation from these will cause diagnostics to fail and require restrapping for full testing and verification. It is recommended that customer configurations that vary from this scheme not be contractually supported.

Prior to installing the DPV11, perform the following tasks.

1. Verify that the following modem interface wire-wrap jumpers are installed (Figure 2-1).

W26 to W25 to W24 to W28 to W27 W22 to W23 and W19 to W21 W18 to W20 W5 to W6 W3 to W4 W8 to W9 W1 to W2

This is the normal/RS-423-A shipped configuration. Some of these jumpers may be changed when the module is connected to external equipment for a specific application. The NULL MODEM CLK is set to 2 kHz as shipped.

- 2. Based on the LSI-11 bus floating vector scheme or user requirements, determine the vector address for the specific DPV11 module being installed and configure W40 through W46 accordingly (Table 2-2).
- Based on the LSI-11 bus floating address scheme or user requirements, determine the device address range for the DPV11 module and configure W30 through W39 accordingly (Table 2-3). Devices may be physically addressed starting at 160000 and continuing through 177776; however, there may be some software restrictions. The normal addressing convention is as shown in Table 2-3.

Figure 2-1 DPV11 Jumper Locations

nared in any 1961 Cost a connegation of antiput of a contention of the second reaction of the second second

2-4

Table 2-2 Vector Address Selection

DPV11 (M8020) VECTOR ADDRESSING

NSB		-													LSB
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0		an Anna an Anna An Anna Anna Anna	JUM	PERS	and an		1/0	0	· 0

	JUMPER NUMBER	W43	W42	W41	W40	W44	W45	VECTOR ADDRESS
			×	×				200
\$ 			ÎŶ	\mathbf{x}			Y	300
	이 사람이 가지 않는		Ŷ	Ŷ		~		310
			I Û			l û		320
			I Q	≎	v	^		330
			l 🗘	1 🗘	$\hat{\mathbf{v}}$			340
					Û	v		350
					$\hat{\mathbf{C}}$	$\hat{\mathbf{C}}$		360
A		V	^	^	^	^	^	370
	-	^				6-03		400
		^		X				500
				4. AN				
6		X	X					600
								eee to see the
		X	X	X				700
<u>8</u> . 1								
é.		4.48.2						
						A grant the		

"X" INDICATES A CONNECTION TO W46. W46 IS THE SOURCE JUMPER FOR THE VECTOR ADDRESS JUMPERS ARE DAISY CHAINED.

NDICATES & CONNECTION CONST.

MK 1341

Table 2-3 Device Address Selection

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
1	1	1	+	e or Nergers	12 (2) 		JUN	IPERS			Andre and	-	0	0	
					1			 	1)) •	 				
j N		R R	W31	W30	W36	W33	W32	W39	W38	W37	W34	W35] Al		E SS
	95 F G		an thu	and the								X	-	76001	0
									1999 - 1999 -		x	×	-	76003	0
						and the second sec		j.		X X		x		76004	0
							2 - 2 -			х	х		-	76006	0
						Net the second se			x	Х	X	×		76007 76010	0 0
					i v €		A. A								
						andra. He		X						76020	0
								X	x				-	76030	0
						- 8 - 2 - 2	X						-	 76040	0
															•
							х		X				7	76050	0
							x	X					7	76060	0
						Б Ц	x	x	x				-	76070	0
						4									
			×.		1. 1. miles	×						2	7	/6100(0
			S. and S.) - a di sunse caracteria. La constanteria	х	an The second second The second second The second se				i i sa sa Sa sa sa			7	6200	0
			1. N.	A(C) (j	X	X		an Maranat	9166 20	n an an Tha sta	ar ∦ti gista		7	 6300(0
				v									_		~

GROUND. JUMPERS ARE DAISY CHAINED.

DPV11-XX (M8020) DEVICE ADDRESSING

MK-1339

2.4 INSTALLATION

The DPV11 can be installed in any LSI-11 bus-compatible backplane such as H9270. LSI-11 configuring rules must be followed. Proceed with the installation as follows. For additional information refer to PDP-11/03 User Manual EK-LSI11-TM or LSI-11 Installation Guide EK-LSI11-IG.

1. Configure the address and vector jumpers at this time if they have not been previously done (Paragraph 2.3).

WARNING Turn all power OFF.

2. Connect the female Berg connector on the BC26L-25 cable to J1 on the M8020 module [†] and plug the module into a dual LSI-11 bus slot of the backplane.

CAUTION

Insert and remove modules slowly and carefully to avoid snagging module components on the card guides.

- 3. Connect the H3259[†] turn-around connector to the EIA connection on the BC26L-25 cable. The jumper W1 on the H3259 turn-around connector must be removed.
- Perform resistance checks from backplane pin AA2 (+5 V) to ground and from AD2 (+12 V) to ground to ensure that there are no shorts on the M8020 module or backplane.
- 5. Turn system power on.
- 6. Check the voltages to ensure that they are within the specified tolerances (Table 2-4). If voltages are not within specified tolerances, replace the associated regulator (H780 P.S.)

Voltage	Max.	Min.	Backplane Pin
+5 V	+ 5.25	+4.75	AA2
+12 V	12.75	+11.25	AD2

Table 2-4 Voltage Requirements

2.4.1 Verification of Hardware Operation

The M8020 module is now ready to be tested by running the CVDPV* diagnostic. Additional information on the DPV11 diagnostics is contained in Appendix A. Proceed as follows.

NOTE

The * represents the revision level of the diagnos-

- tic.
- 1. Load and run CVDPV*. Three consecutive error-free passes of this test is the minimum requirement for a successful run. If this cannot be achieved, check the following.

Board seating Jumper connections Cable connection Test connector

If a successful run is still unachievable, corrective maintenance is required.

2. Load and run the DEC/X11 System Exerciser configured to test the number of DPV11s in the system.

Each DEC/X11 CXDPV module will test up to eight consecutively addressed DPV11s.

CXDPV uses a software switch register. Refer to the DEC/X11 Cross-Reference (AS-F055C-MC) for switch register utilization.

[†] If a BC26L-25 cable and H3259 turn-around connector are not available, an on-board test connector (H3260) can be ordered separately. See Paragraph 2.5.

The DEC/X11 System Exerciser is designed to achieve maximum contention with all devices that make up the system configuration. It is within this environment that the CXDPV module runs. Its intent is to isolate DPV11s which adversely affect the system operation.

For information on configuring and running the DEC/X11 System Exerciser, refer to *DEC/X11 User Manual* (AS-F0503B-MC) and *DEC-X11 Cross Reference* (AS-F055C-MC).

2.4.2 Connection to External Equipment/Link Testing

The DPV11 is now ready for connection to external equipment.

If the DPV11 is being connected to a synchronous modem, remove the H3259 connector and install the EIA connection of the BC26L-25 cable into the connector on the modem.

Configure jumpers W1-W28 in accordance with operating requirements (Table 2-1).

Load and run DCLT (CVCLH*) if a full link is available. This will check the final configuration and isolate failures to the CPU, the communications link, or the modem.

If the connection to external equipment uses RS-422-A, the user must provide the cable and test support.

2.5 TEST CONNECTORS

The only test connector provided with the DPV11 is the H3259 turn-around connector (Figure 2-2). Table 2-5 and Figure 2-3 show the relationship between pin numbers, signal names and register bits when the H3259 is connected by means of the BC26L-26 cable to the M8020 module.

From				To		
Signal Name		Pin No. H3259	Pin No. J1	Pin No. J1	Pin No. H3259	Signal Name
SEND DATA	· · · · · · · · · · · · · · · · · · ·	2	F	J	3	RECEIVE DATA
REQUEST TO (RTS) (RXCSR	SEND -2)	4	V	BB&T	5&8	CLEAR TO SEND (CTS)(RXCSR-13), RECEIVER READY (RR) (RXCSR-12)
LOCAL LOOP (LL) (RXCSR-3	BACK	18		Z	6	DATA MODE (DM) (RXCSR-9)
SELECT FREQ LOOPBACK (SF/RL) (RXC)/REMOTE SR-0)	23/21	RR/MM	ММ/С	21/25	SIGNAL QUALITY/ TEST MODE (SQ/TM) (PCSCR-5)
NULL MODEN	1	24	L	N&R	15&17	RCV CLOCK TX CLOCK
DATA TERMII READY (DTR) (RXCSR-1)	NAL	20	DD	x	22	INCOMING CALL (IC) (RXCSR-14)

Table 2-5 H3259 Test Connections

The following accessories are available for interfacing and may be ordered separately.

- BC26L-X cable. Available in lengths of .3, 1.8, 2.4, 3.0, 3.6, 6.1, and 7.6 meters (1, 6, 8, 10, 12, 20 and 25 feet). When ordering, the dash number indicates the desired cable length in feet; e.g., BC26L-25 or BC26L-1.
- H3259 cable turn-around connector
- H856 Berg connector. Includes H856 Berg connector and 40 pins. Crimping tools are available from:

Berg Electronics, Inc. New Cumberland, PA 17070

H3260 on-board test connector (includes RS-422-A testing)

The H3260 on-board test connector (Figure 2-4) may be used to test the M8020 circuitry in its entirety. RS-422-A circuitry is not tested with the H3259 cable turn-around connector. The H3260 on-board test connector is shipped configured for testing RS-422-A. It may be configured to test RS-422-A or RS-423-A as follows.

RS-422-A		RS-423-A

W1-W2 out W3-W6 installed W1-W2 installed W3-W6 out

The connector is installed into J1 with the jumper side up.

Since the H3260 on-board test connector does not test the cable, it is recommended that the DPV11 be tested with a turn-around connector at the modem end of the cable if possible.

Figure 2-3 RS-423-A with H3259 Test Connector

ار از میشود میرد و میرود از م از میرود از م میرود از می

a se de la companya d Esta de la companya d Esta de la companya d

경제 이 가지 않게 주말했다. 제품 가지 않는

1.1-1

CHAPTER 3 REGISTER DESCRIPTIONS AND PROGRAMMING INFORMATION

3.1 INTRODUCTION

This chapter describes the bit assignments and programming considerations for the DPV11. Some typical start and receive sequences for both bit- and character-oriented protocols are included.

3.2 DPV11 REGISTERS AND DEVICE ADDRESSES

The five registers used in the DPV11 are shown in Table 3-1. Note that two of the registers (PCSAR and RDSR) have the same address. This does not constitute a conflict, however, because the PCSAR is a write-only register and the RDSR is a read-only register. These five registers occupy eight contiguous byte addresses which begin on a boundary where the low-order three bits are zero, and can be located anywhere between 160000g and 177776g.

Register Name	Mnemonic	Address	Comments
Receive Control and Status	RXCSR	16xxx0	Word or byte* addressable. Read/write.
Receive Data and Status	RDSR**	.16xxx2	Word or byte* addressable. Read-only.
Parameter Control Sync/Address	PCSAR**	16xxx2	Word or byte addressable. Write-only. [†]
Parameter Control and Character Length	PCSCR‡	16xxx4	Word or byte addressable. Read/write.
Transmit Data and Status	TDSR**	16xxx6	Word or byte addressable. Read/write.

Table 3-1 DPV11 Registers

* Reading either byte of these registers, clears data and certain status bits in other bytes. See Paragraphs 3.3.1 and 3.3.2.

** Registers contained within the USYNRT.

† It is not possible to do bit set or bit clear instructions on this register.

[‡]The high byte of this register is internal to the USYNRT.

The DPV11 uses a universal-synchronous receiver/transmitter (USYNRT) chip which accounts for a large portion of the DPV11's functionality. The USYNRT provides complete serialization, deserialization and buffering of data to and from the modem.

Most of the DPV11 registers are internal to the USYNRT. Only the receiver control and status register (RXCSR) and the low byte of the parameter control and character length register (PCSCR) are external.

NOTE

When using the special space sequence function, all registers internal to the USYNRT must be written in byte mode.

3.3 REGISTER BIT ASSIGNMENTS

Bit assignments for the five DPV11 registers are shown in Figure 3-1. Paragraphs 3.3.1-3.3.5 provide a description of each register using a bit assignment illustration and an accompanying table with a detailed description of each bit.

3.3.1 Receive Control and Status Register (RXCSR) (Address 16xxx0)

Figure 3-2 shows the format for the receive control and status register (RXCSR). Table 3-2 is a detailed description of the register. This register is external to the USYNRT.

NOTE

The RXCSR can be read in either word or byte mode. However, reading either byte resets certain status bits in both bytes.

3.3.2 Receive Data and Status Register (RDSR) (Address 16xxx2) Figure 3-3 show the format for the receive data and status register (RDSR). It is a read-only register and shares its address with the parameter control sync/address register (PCSAR) which is write-only. Table 3-3 is a detailed description of the RDSR.

NOTE

The RDSR can be read in either word or byte mode. However, reading either byte resets data and certain status bits in both bytes of this register as well as bits 7 and 10 of the RXCSR.

3.3.3 Parameter Control Sync/Address Register (PCSAR) (Address 16xxx2) The parameter control sync/address register (PCSAR) is a write-only register which can be written in either byte or word mode. Figure 3-4 shows the format and Table 3-4 is a detailed description of the PCSAR. This register shares its address with the RDSR.

NOTE

Bit set (BIS) and bit clear (BIC) instructions cannot be executed on the PCSCR, since they execute using a read-modify-write sequence.

3.3.4 Parameter Control and Character Length Register (PCSCR) (Address 16xxx4)

The parameter control and character length register (PCSCR) can be read from or written into in either word or byte mode. The low byte of this register is external to the USYNRT and the high byte is internal. Figure 3-5 shows the format and Table 3-5 is a detailed description of the PCSCR.

3.3.5 Transmit Data and Status Register (TDSR) (Address 16xxx6)

The format for the transmit data and status register (TDSR) is shown in Figure 3-6 and Table 3-6 is a detailed description. The TDSR is a read/write register which can be accessed in either word on byte mode with no restrictions. All bits can be read from or written into and are reset by Device Reset or Bus INIT except where noted.

RXCSR 16XXX0 READ/WRITE

Figure 3-1 DPV11 Register Configurations and Bit Assignments (Sheet 1 of 2)

MK-1506

PCSCR 16XXX4 READ/WRITE

15	14	13	12	11	10	9	8	12
DS · CNG	IC	CTS	RR	RX ACT	RSTA'' RY	DM	SFD	

• THIS BIT IS RESET BY READING EITHER BYTE OF THIS REGISTER.

** THESE BITS ARE RESET BY READING EITHER BYTE OF RSDR.

MK 1327

Bit	Name	Description
15	Data Set Change (DSCNG)	This bit is set when a transition occurs on any of the following modem control lines:
		Clear to Send
	来 均能的有限的合理系统。	Data Mode Beceiver Boody
		Incoming Call
	ti Ann airth Ann airt Súige.	Transition detectors for each of these four lines can be disabled by removing the associated jumper.
		Data Set Change is cleared by reading either byte of the RXCSR or by Device Reset or Bus INIT.
	2892 이상10년 1월 2일을 보였다. 1992 - 1993 - 1994 - 1994 1994 - 1995 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994	Data Set Change causes a receive interrupt if DSITEN (bit 5) and RXITEN (bit 6) are both set.
14	Incoming Call (IC)	This bit reflects the state of the modem Incoming Call line. Any transition of this bit causes Data Set Change bit (bit 15) to be
		asserted unless the Incoming Call line is disabled by removing its jumper. This bit is read-only and cannot be cleared by soft- ware.
13	Clear to Send (CTS)	This bit reflects the state of the Clear to Send line of the modern Any transition of this line on the Clear to Send line of the
	sector i spicification i successione de la constant i successione de la constant de la c	15) to be set unless the jumper enabling the Clear to Send signal is removed.
なぜもいた		Clear to Send is a program read-only bit and cannot be cleared by software.
12	Receiver Ready	This bit is a direct reflection of modem Receiver Ready lead. It
	(RR)	indicates that the modem is receiving a carrier signal. For exter- nal maintenance loopback, this signal must be high. If the line is open, RR is pulled high by the circuitry.
	n na destructure och atsante	Any transition of this bit causes Data Set Change (bit 15) to be asserted unless the jumper enabling the Receiver Ready signal is removed.
		Receiver Ready is a read-only bit and cannot be cleared by software.
87 (1) (1) 1 (1)	Receiver Active	This bit is set when the USYNRT presents the first character of
5 88° 4	(RXACI)	a message to the DPV11. It remains set until the receive data path of the USYNRT becomes idle.
	di se segli siddolf av Jope Alexandra (operator sonte)	Receiver Active is cleared by any of the following conditions: a terminating control character is received in bit-oriented protocol mode; an off transition of Receiver Enable (RXENA) occurs; or

Table 3-2 Receive Control and Status Register (RXCSR) Bit Assignments

 (\Box)

#

Table 3-2 Receive Control and Status Register (RXCSR) Bit Assignments (Cont)

Bit	Name	Description analysic off
nt generation († 1990) generation († 1990) generation († 1990) generation († 1990)	li an teorem z tracent	Receiver Active is a read-only bit which reflects the state of the USYNRT output pin 5.
10	Receiver Status Ready (RSTARY)	This bit indicates the availability of status information in the upper byte of the receive data and status register (RDSR). It is set when any of the following bits of the RDSR are set: Receiver End of Message (REOM); Receiver Overrun (RCV OVRUN); Receiver Abort or Go Ahead (RABORT); Error Check (ERRCHK) if VRC is selected.
	48 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Receiver Status is cleared by any of the following conditions: reading either byte of the RDSR; clearing Receiver Enable (bit 4 of RXCSR); Device Reset, or Bus Init.
	·····································	When set, Receiver Status Ready causes a receive interrupt if Receive Interrupt Enable (bit 6) is also set.
	an Doministra formation Primite Characteristic	Receiver Status Ready is a read-only bit which reflects the state of USYNRT pin 7.
9 m ya an 9 m ya an 1 m ya an	Data Mode (DM) (Data Set Ready)	This bit reflects the state of the Data Mode signal from the modem.
	-al and cantors and can's fill which which and we have a can	When this bit is set it indicates that the modem is powered on and not in test, talk or dial mode.
	e Maria de la composición de	Any transition of this bit causes the Data Set Change bit (bit 15) to be asserted unless the Data Mode jumper has been removed.
		Data Mode is a read-only bit and cannot be cleared by software.
8 900 8 00 100 2 10000	Sync or Flag Detect (SFD)	This bit is set for one clock time when a flag character is de- tected with bit-oriented protocols, or a sync character is de- tected with character-oriented protocols.
	, inis plantin ach raith sea Tacht rann nit cathgeolder	SFD is a read-only bit which reflects the state of USYNRT pin 4.
7 2880-92	Receive Data Ready (RDATRY)	This bit indicates that the USYNRT has assembled a data char- acter and is ready to present it to the processor.
	enno un cultur cesar 1923 accesar la comencia da come	If this bit becomes set while Receiver Interrupt Enable (bit 6) is set, a receive interrupt request will result.
	n son an son a son a son an	Receive Data Ready is reset when either byte of RDSR is read, Receiver Enable (bit 4) is cleared, or Device Reset or Bus INIT is issued.
	n permenenta nationecen a 1 e a cara de Eldin (19 Edinado portos Loureitos Loureitos	RDATRY is a read-only bit which reflectes the state of US- YNRT pin 6.

Bit	Name	Description
6	Receiver Interrupt Enable (RXITEN)	When set, this bit allows interrupt requests to be made to the receiver vector whenever RDATRY (bit 7) becomes set.
	n an	The conditions which cause the interrupt request are the asser- tion of Receive Data Ready (bit 7), Receive Status Ready (bit 10), or Data Set Change (bit 15) if DSITEN (bit 5) is also set.
		RXITEN is a program read/write bit and is cleared by Device Reset or Bus INIT.
5	Data Set Interrupt Enable (DSITEN)	This bit, when set along with RXITEN, allows interrupt requests to be made to the receiver vector whenever Data Set Change (bit 15) becomes set.
	n e de la filme de la company. En la companya de la	DSITEN is a program read/write bit and is cleared by Device Reset or Bus INIT.
4	Receiver Enable (RXENA)	This bit controls the operation of the receive section of the US- YNRT.
		When this bit is set, the receive section of the USYNRT is en- abled. When it is reset the receive section is disabled.
		In addition to disabling the receive section of the USYNRT, re- setting bit 4 reinitializes all but two of the USYNRT receive registers. The two registers not reinitialized are the character length selection buffer and the parameter control register.
3	Local Loopback (LL)	Asserting this bit causes the modem connected to the DPV11 to establish a data loopback test condition.
		Clearing this bit restores normal modem operation.
		Local Loopback is program read/write and is cleared by Device Reset or Bus request to Send is program read/write and is cleared by Device Reset or Bus INIT.
2	Request to Send (RTS)	Setting this bit asserts the Request to Send signal at the modem interface.
		Request to Send is program read/write and is cleared by Device Reset or Bus INIT.
1	Terminal Ready (TR) (Data Terminal Ready)	When set, this bit asserts the Terminal Ready signal to the modem interface.
		For auto dial and manual call origination, it maintains the estab- lished call. For auto answer, it allows handshaking in response to a Ring signal.

Table 3-2 Receive Control and Status Register (RXCSR) Bit Assignments (Cont)

Bit	Name	Description
0	Select Frequency or Remote Loopback (SF/RL)	This bit can be wire-wrap jumpered to function as either select frequency or remote loopback. When jumpered as select fre- quency (W3 to W4), setting this bit selects the modem's higher
		frequency band for transmission to the line and the lower fre- quency band for reception from the line. The clear condition se- lects the lower frequency for transmission and the higher fre- quency for reception.
		When jumpered for remote loopback (W5 to W3), this bit, when asserted, causes the modem connected to the DPV11 to signal when a remote loopback test condition has been established in the remote modem.
		SF/RL is program read/write and is cleared by Device Reset or Bus INIT.

Table 3-2 Receive Control and Status Register (RXCSR) Bit Assignments (Cont)

Figure 3-3 Receive Data and Status Register (RDSR) Format

Table 3-3	Receive	Data an	d Status	Register	(RDSR)) Bit	Assignments
-----------	---------	---------	----------	----------	--------	-------	-------------

Bit	Name	Description				
15 Error Check (ERR CHK)		This bit when set, indicates a possible error. It is used in con- junction with the error detection selection bits of the parameter control sync/address register (bits 8-10) to indicate either an				
		error or an all zeros state of the CRC register.				
		With bit-oriented protocols, ERR CHK indicates that a CRC error has occurred. It is set when the Receive End of Message bit (RDSR bit 9) is set.				
	a an	With character-oriented protocols ERR CHK is asserted with each data character if all zeros are in the CRC register. The processor must then determine if this indicates an error-free				

Bit	Name	Description
		message or not. If VRC parity is selected, this bit is set for every character which has a parity error.
	(1993年) 이 바라이 (1993年) 1993年(1995年) - 1997年) 1997年(1997年) - 1997年)	ERR CHK is cleared by reading the RDSR, clearing RXENA (RXCSR bit 4), Device Reset or Bus INIT.
14–12	Assembled Bit Count (ABC)	Used only with bit-oriented protocols, these bits represent the number of valid bits in the last character of a message. They are all zeros unless the message ends on an unstated boundary. The bits are encoded to represent valid bits as shown below.
ant ou d		14 13 12 Number of Valid Bits
		00All bits are valid001One valid bit010Two valid bits011Three valid bits100Four valid bits101Five valid bits110Six valid bits110Six valid bits111Seven valid bits
		These bits are presented simultaneously with the last bits of data and are cleared by reading the RDSR or by resetting RXENA (bit 4 of RXCSR).
11	Receiver Overrun (RCV OVRUN)	This bit is used to indicate that an overrun situation has oc- curred. Overrun exists when the data buffer (bits 0-7 of RDSR) has not been serviced within one character time.
		As a general rule, the overrun is indicated when the last bit of the current character has been received into the shift register of the USYNRT and the data buffer is not yet available for a new character.
		Two factors exist which modify this general rule and apply only to bit-oriented protocols.
		The first factor is the number of bits inserted into the data stream for transparency. For each bit inserted during the for- matting of the current character, the controller's maximum re- sponse time is increased by one clock cycle.
		The second factor is the result of termination of the current message. When this occurs, the data of the terminated message which is within the USYNRT is not overrunable. If an attempt is made to displace this data by the reception of a subsequent message, the data of the subsequent message is lost until the data of the prior message has been released.

Table 3-3 Receive Data and Status Register (RDSR) Bit Assignments (Cont)

Table 3-3	Receive Data and	Status Reg	ister (RDSR)	Bit A	ssignments	(Cont)
-----------	-------------------------	------------	--------------	-------	------------	--------

Bit	Name	Description
10	Receiver Abort or Go Ahead (RABORT)	This bit is used only with bit-oriented protocols and indicates that either an abort character or a go-ahead character has been received. This is determined by the Loop Mode bit (PCSAR bit 13). If the Loop Mode bit is clear, RABORT indicates reception of an abort character. If the Loop Mode bit is set, RABORT indicates a go-ahead character has been received.
	ing the state of the second	The setting of RABORT causes Receiver Status Ready (bit 10 of RXCSR) to be set.
		RABORT is reset when the RDSR is read or when Receiver Enable (bit 4 of RXCSR) is reset.
	ang de Dest Ber Line	The abort character is defined to be seven or more contiguous one bits appearing in the data stream. Reception of this bit pat- tern when Loop Mode is clear causes the receive section of the USYNRT to stop receiving and set RSTARY (bit 10 of RXCSR). The abort character indicates abnormal termination of the current message.
		The go-ahead character is defined as a zero bit followed by sev- en consecutive one bits. This character is recognized as a normal terminating control character when the Loop Mode bit is set. If Loop Mode is cleared this character is interpreted as an abort character.
9	Receiver End of Message (REOM)	This bit is used only with bit-oriented protocols and is asserted if Receiver Active (bit 11 of RXCSR) is set and a message is ter- minated either normally or abnormally. When REOM becomes set, it sets RSTARY (bit 10 of RXCSR).
		REOM is cleared when RDSR is read or when Receive Enable (bit 4 of RXCSR) is reset.
8	Receiver Start of Message (RSOM)	Used only with bit-oriented protocols. This bit is presented to the processor along with the first data character of a message and is synchronized to the last received flag character. Setting of RSOM does not set RSTARY (RXCSR bit 10).
	 State of the state of the state	RSOM is cleared by Device Reset, Bus INIT, resetting Receiver Enable (RXCSR bit 4), or the next transfer into the Receive Data buffer (low byte of RDSR).
7-0	Receive Data Buffer	The low byte of the RDSR is the Receive Data buffer. The se- rial data input to the USYNRT is assembled and transferred to the low byte of the RDSR for presentation to the processor. When the RDSR receives data, Receive Data Ready (bit 7 of RXCSR) becomes set to indicate that the RDSR has data to be picked up. If this data is not read within one character time, a data overrun occurs.
	1997 - 1997 - 1998 - 1999 -	The characters in the Receive Data buffer are right-justified with bit 0 being the least significant bit.

15	14	13	12	11	10	9	8
ΑΡΑ	PROT SEL	STRIP SYNC	SEC ADR MDE	IDLE	ER	RDETS	SEL
		19 A. A. A.					and the second state of th

MK-1330

Table 5 4 Autometer Control Sync/Address Register (PCSAR) Bit Assignme	it Assignmen	Bit	(PCSAR)	Kegister	Address	Sync/	Control	rarameter	Table J-4
--	--------------	-----	---------	----------	---------	-------	---------	-----------	-----------

Bit	Name	Description
15	All Parties Addressed (APA)	This bit is set when automatic recognition of the All Parties Ad- dressed character is desired. The All Parties Addressed charac- ter is eight bits of ones with necessary bit stuffing so as not to be confused with the abort character.
		Recognition of this character is done in the same way as the sec- ondary station address (see bit 12 of this register) except that the broadcast address is essentially hardwired within the receive data path. The logic inspects the address character of each frame for the broadcast address. When the broadcast address is recognized, the USYNRT makes it available and sets Receiver Start of Message (bit 8 of RDSR).
		If the broadcast address is not recognized, one of two possible actions occurs.
	n on production of the second state of the second states second states of the second states second states of the second states of the second states of the second states second states of the second s	1. If the Secondary Address Select mode bit (bit 12) is set, a test of the secondary station address is made.
	an an airtí an stéin ta stáit an an an Stéine an Stáineacht an Stáite Stéine Airtíseacht an Stáite Stáite Stéineacht	2. If bit 12 is not set or the secondary station address is not recognized, the receive section of the USYNRT renews its search for synchronizing control characters.
14	Protocol Select (PROT SEL)	This bit is used to select between character- and byte count-ori- ented or bit-oriented protocols. It is set for character- and byte count-oriented protocols and reset for bit-oriented protocols.
13	Strip Sync or Loop Mode (STRIP SYNC)	This bit serves the following two functions. 1. Strip Sync (character-oriented protocols) – In character-ori- ented protocols, all sync characters after the initial synchro- nization are deleted from the message and not included in the CRC computation if this bit is set. If it is cleared, all sync char- acters remain in the message and are included in the CRC com- putation.

3-11

Bit	Name	Description				
		2. Loop Mode (bit-oriented protocols) – With bit-oriented pro- tocols, this bit is used to control the method of termination. If it is set, either a flag or go-ahead character can cause a normal termination of a message. If it is cleared, only a flag character can cause a normal termination.				
12	Secondary Address Mode (SEC ADR MDE)	This bit is used with bit-oriented protocols when automatic rec- ognition of the secondary station address is desired. If it is set, the station address of the incoming message is compared with the address stored in the low byte of this register. Only messages prefixed with the correct secondary address are presented to the processor. If the addresses do not compare, the receive section of the USYNRT goes back to searching for flag or go-ahead				
		characters.				
	an a	When SEC ADR MDE is cleared, the receive section of the USYNRT recognizes all incoming messages.				
11	Idle Mode Select	This bit is used with both bit- and character-oriented protocols.				
anta anta 1910 - Anta 1910 - Anta 1910 - Anta 1910 - Anta 1910 - Anta	(IDLE)	With bit-oriented protocols, IDLE is used to select the type of control character issued when either Transmit Abort (bit 10 of TDSR) is set or a data underrun error occurs. If IDLE is set, flag characters are issued. If IDLE is clear, abort characters are issued.				
		With character-oriented protocols, IDLE is used to control the method in which initial sync characters are transmitted and the action of the transmit section of the USYNRT when an under- run error occurs. IDLE is cleared to cause sync characters from the low byte of PCSAR to be transmitted. When IDLE is set, the transmit data output is held asserted during an underrun er- ror and at the end of a message.				
10-8	Error Detection Selection (ERR DEL SEL)	These bits are used to determine the type of error detection u on received and transmitted messages. In bit-oriented protoc the selection is independent of character length. In charac and byte count-oriented protocols, CRC error detection is able only with 8-bit character lengths. The maximum charac length for VRC is seven. The bits are encoded as follows.				
		10 9 8 CRC Polynomial				
	and a state of the second s	0 0 0 $x^{16+x^{12}+x^5+1}$ (CRC CCITT) (Both CRC data registers in the transmit and receive sections are set to all ones prior to the computation.)				
	an Service - Alberton Antoine - Antoine - Antoine	0 0 1 $x^{16}+x^{12}+x^5+1$ (CRC CCITT) (Both CRC data registers set to all zeros.)				

Table 3-4 Parameter Control Sync/Address Register (PCSAR) Bit Assignments (Cont)
Bit	Name	Description	
		0 1 0	Not used
		0 1 1	$x^{16}+x^{15}+x^2+1$ (CRC 16) (Both CRC registers set to all zeros.)
	tinger processerer at second	1 0 0	Odd VRC Parity (A parity bit is attached to each transmitted character.) Should be used only in character-oriented protocols.
		1 0 1	Even VRC parity (Resembles odd VRC except that an even number of bits are generated.)
		1 1 0	Not used.
		1 1 1	All error detection is inhibited.
7–0	Sync Character or Secondary Address	The low byte of l character-oriente for bit-oriented p	PCSAR is used as either the sync character for ad protocols or as the secondary station address protocols.
		The bits are right 0.	-justified with the least significant bit being bit

Table 3-4 Parameter Control Sync/Address Register (PCSAR) Bit Assignments (Cont)

EXTERNAL TO THE USYNRT

	6	5	4	3	2	1	0
RSVD	TX INT EN	SQ/TM	TXENA	MM SEL	TB EMTY	тхаст	RESET

INTERNAL TO THE USYNRT

15	14	13	12	11	10	9	8
TRANS	MITTER	ENGTH	EXADD	EXCON	RECEIN	ER	ENGTH

MK 1325

Figure 3-5 Parameter Control and Character Length Register (PCSCR) Format

Bit	Name	Description
15-13	Transmitter Character Length	These bits can be read or written and are used to determine the length of the characters to be transmitted.
		They are encoded to set up character lengths as follows.
		15 14 13 Character Length
		0 0 0 Eight bits per character
		1 1 1 Seven bits per character
		1 1 0 Six bits per character
		1 0 1 Five bits per character (bit-oriented protocol only)
		1 0 0 Four bits per character (bit-oriented protocol only)
		0 1 1 Three bits per character (bit-oriented protocol only)
		0 1 0 Two bits per character (bit-oriented protocol only)
		0 0 1 One bit per character (bit-oriented protocol only)
		These bits can be changed while the transmitter is active, in which case the new character length is assumed at the com- pletion of the current character. This field is set to a character length of eight by Device Reset or Bus INIT. When VRC error detection is selected, the default character length is eight bits plus parity.
12	Extended Address Field (EXADD)	This bit is used with bit-oriented protocols and affects the ad- dress portion of a message in receiver operations. When it is set, each address byte is tested for a one in the least significant bit position. If the least significant bit is zero, the next character is an extension of the address field. If the least significant bit is one, the current character terminates the address field and the next character is a control character.
		EXADD is not used with Secondary Address Mode (bit 12 of PCSAR).
		EXADD is read/write and is reset by Device Reset or Bus INIT.
11	Extended Control Field (EXCON)	This bit is used with bit-oriented protocols and affects the con- trol character of a message in receiver operations. When EX-

Table 3-5 Parameter Control and Character Length Register (PCSCR) bit Assign	egister (PCSCR) Bit Assignments	Register	Length	Character	and	Control	Parameter	ble 3-5	T۶
--	---------------------------------	----------	--------	-----------	-----	---------	-----------	---------	----

Table 3-5 Parameter Control and Character Length Register (PCSCR) Bit Assignments (Cont)

Bit	Name	Description
		CON is set it extends the control field from one 8-bit byte to two 8-bit bytes.
		EXCON is not used with Secondary Address Mode (bit 12 of PCSAR)
		EXCON is read/write and is reset by Device Reset or Bus INIT.
10-8	Receiver Character Length	These bits are used to determine the length of the characters to be received.
		They are encoded to set up character lengths as follows.
		10 9 8 Character Length
		0 0 0 Eight bits per character
		1 1 1 Seven bits per character
		1 1 0 Six bits per character
		1 0 1 Five bits per character
		1 0 0 Four bits per character (bit-oriented protocols only)
		0 1 1 Three bits per character (bit-oriented proto- cols only)
		0 1 0 Two bits per character (bit-oriented protocols only)
		0 0 1 One bit per character (bit-oriented protocols only)
7	Reserved	Not used by the DPV11
6	Transmit Interrupt Enable (TXINTEN)	When set, this bit allows a transmitter interrupt request to be made to the transmitter vector when Transmit Buffer Empty (TBEMTY) is asserted. Transmit Interrupt Enable (TXIN- TEN) is read/write and is cleared by Device Reset or Bus INIT.
5	Signal Quality or Test Mode (SQ/TM)	This bit can be wire-wrap jumpered to function as either Signal Quality or Test Mode.
		When jumpered for signal quality (W5 to W6), this bit reflects the state of the signal quality line from the modem. When as- serted, it indicates that there is a low probability of errors in the received data. When clear it indicates that there is a high proba- bility of errors in the received data.

Table 3-5 Parameter Control and Character Length Register (PCSCR) Bit Assignments (Cont)

Bit	Name	Description
		When jumpered for the test mode (W6 to W7), this bit indicates that the modem has been placed in a test condition when as- serted. The modem test condition could be established by assert- ing Local Loopback (bit 3 of RXCSR), Remote Loopback (bit 0 of RXCSR) or other means external to the DPV11.
	a an	When SQ/TM is clear, it indicates that the modem is not in test mode and is available for normal operation.
		SQ/TM is program read-only and cannot be cleared by soft-ware.
4	Transmitter Enable (TXENA)	This bit must be set to initiate the transmission of data or con- trol information. When this bit is cleared, the transmitter will revert back to the mark state once all indicated sequences have been completed. TXENA should be cleared after the last data character has been loaded into the transmit data and status reg- ister (TDSR). Transmit End of Message (bit 9 of TDSR) should be asserted when TXENA is reset (if it is to be asserted at all) and remain asserted until the transmitter enters the idle mode. TXENA is connected directly to USYNRT pin 37. It is a read/write bit and is reset by Device Reset or Bus INIT.
3	Maintenance Mode Sclect (MM SEL)	When this bit is asserted, it causes the USYNRT's serial output to be internally connected to the USYNRT's serial input. The serial send data output line from the interface is asserted and the receive data serial input is disabled. Send timing and receive timing to the USYNRT are disabled and replaced with a clock signal generated on the interface. The clock rate is either 49.152K b/s or 1.9661K b/s depending on the position of a jumper on the interface board.
	an farange an an an tao	Maintenance mode allows diagnostics to run in loopback with- out disconnecting the modem cable.
		MM SEL is a read/write bit and is cleared by Device Reset or Bus INIT. When it is cleared, the interface is set for normal op- eration.
2	Transmitter Buffer Empty (TBEMTY)	This bit is asserted when the transmit data and status register (TDSR) is available for new data or control information. It is also set after a Device Reset or Bus INIT.
		The TDSR should be loaded only in response to TBEMTY being set. When the TDSR is written into, TBEMTY is cleared.
	n an Garlon (1777) gan s a daoine anns às an Ch	If TBEMTY becomes set while Transmit Interrupt Enable (bit 6 of PCSCR) is set, a transmit interrupt request results.
n unan Altan (1997) Altan (1997)		TBEMTY reflects the state of USYNRT pin 35.

Table 3-5 Parameter Control and Character Length Register (PCSCR) Bit Assignments (Cont)

Bit	Name	Description
1	Transmitter Active (TXACT)	This bit indicates the state of the transmit section of the US- YNRT. It becomes set when the first character of data or con- trol information is transmitted.
	1997年1月1日(1997年1月1日)) 1月1日第一日第一日第一日 1月1日(1997年1月1日)	TXACT is cleared when the transmitter has nothing to send or when Device Reset or Bus INIT is issued.
		TXACT reflects the state of USYNRT pin 34.
0	Device Reset (RESET)	When a one is written to this bit all components of the interface are initialized. It performs the same function as Bus INIT with respect to this interface. Modem Status (Data Mode, Clear to Send, Receiver Ready, Incoming Call, Signal Quality or Test Mode) is not affected. RESET is write-only; it cannot be read by software.

Figure 3-6 Transmit Data and Status Register (TDSR) Format

Table 3-6 Transmit Data and Status Register (TDSR) Bit Assignments

Bit	Name	Description
15	Transmitter Error (TERR)	This is a read-only bit which becomes asserted when the Trans- mitter Buffer Empty (TBEMTY) indication has not been ser- viced for more than one character time.
		When TERR occurs in bit-oriented protocols, the transmit sec- tion of the USYNRT generates an abort or flag character based on the state of the IDLE bit (PCSAR bit 11). If IDLE is set, a flag character is sent. If it is reset, an abort character is sent.
an an Gertainte Airte an an		When TERR occurs in character-oriented protocols, the state of the IDLE bit again determines the result. If IDLE is set, the transmit serial output is held in the MARK condition. If it is cleared, a sync character is transmitted.

Table 3-6 Transmit Data and Status Register (TDSR) Bit Assignments (Cont)

Bit	Name	Description
	en andre statistica de construction de la construction	TERR is cleared when TSOM (TDSR bit 8) becomes set or by Device Reset or Bus INIT.
in and		Clearing Transmitter Enable (PCSCR bit 4) does not clear TERR and TERR is not set with Transmit End of Message.
14-12	Reserved	Not used by the DPV11
	Transmit Go Ahead (TGA)	This bit, when asserted, modifies the bit pattern of the control character initiated by either Transmit Start of Message (TSOM) or Transmit End of Message (TEOM). TSOM or TEOM normally causes a flag character to be sent. If TGA is set, a go-ahead character is sent in place of the flag character.
		TGA is only used with bit-oriented protocols.
10	Transmit Abort (TXABORT)	This bit is used only with bit-oriented protocols to abnormally terminate a message or to transmit filler information used to es- tablish data link timing.
		When TXABORT is asserted, the transmitter automatically transmits either flag or abort characters depending on the state of the IDLE mode bit. If IDLE is cleared, abort characters are sent. If IDLE is set, flag characters are sent.
9	Transmit End of Message (TEOM)	This control bit is used to normally terminate a message in bit- oriented protocol. It also terminates a message in character-ori- ented protocols when CRC error detection is used. As a second- ary function, it is used in conjunction with the Transmit Start of Message (TSOM) bit to transmit a SPACE SEQUENCE. Re- fer to the TSOM bit description (bit 8 of this register) for infor- mation regarding this sequence.
		With bit-oriented protocols, asserting this bit causes the CRC information to be transmitted, if CRC is enabled, followed by flag or go-ahead characters depending on the state of the Transmit Go Ahead (TGA) bit. See bit 11 of this register.
	 Second and the second se	With character-oriented protocols, asserting this bit causes CRC information, if CRC is enabled, to be transmitted followed by either sync characters or a MARK condition depending on the state of the IDLE bit. If IDLE is cleared, sync characters are transmitted.
		The character following the CRC information is repeated until the transmitter is disabled or the TEOM bit is cleared.
신다. 19월 21월 - 19일		A subsequent message may be initiated while the transmit sec- tion of the USYNRT is active. This is accomplished by clearing the TEOM bit and supplying new message data without setting

Table 3-6 Transmit Data and Status Register (TDSR) Bit Assignments (Cont)

Bit	Name	Description
		the Transmit Start Of Message bit. However, the CRC charac- ter for the prior message must have completed transmission.
8	Transmit Start of Message (TSOM)	This bit is used with either bit- or character-oriented protocols. As long as it remains asserted, flag characters (bit-oriented pro- tocols) or sync characters (character-oriented protocols) are transmitted.
		With bit-oriented protocols, a space sequence (byte mode only) of 16 zero bits can be transmitted by asserting TSOM and TEOM simultaneously provided the transmitter is in the idle state and Transmit Enable is cleared. This should not be done during the transfer of data, and must only be done in byte mode.
		NOTE When using the special space sequence function, all registers in- ternal to the USYNRT must be written in byte mode.
		Normally at the completion of each sync, flag, go-ahead or Abort character, the TBEMTY indication is asserted. This al- lows the software to count the number of transmitted charac- ters. In certain applications, the software may elect to ignore the service of the Transmitter Buffer Empty (TBEMTY) indication. Normally during data transfers, this would cause a transmit data late error. The TSOM bit asserted suppresses this error and provides the necessary synchronization to automatically transmit another flag, go-ahead or sync character.
7–0	Transmit Data Buffer	Data from the processor to be transmitted on the serial output line is loaded into this byte of the TDSR when Transmitter Buf- fer Empty (TBEMTY) is asserted. If the transmitter buffer is not loaded within one character time, an underrun error occurs. The characters are right-justified, with bit 0 being the least sig- nificant bit.

3.4 DATA TRANSFERS

Paragraphs 3.4.1 and 3.4.2 discuss receive and transmit data transfers as they relate to the system software.

3.4.1 Receive Data

Serial data to be presented to the DPV11 from the modem enters the receiver circuit and is presented to the USYNRT. Recognition by the USYNRT of a control character initiates the transfer. When a transfer has been initiated, a character is assembled by the USYNRT and then placed in the low byte of the receive data and status register (RDSR) when it is available. If the RDSR is not available, the transfer is delayed until the previous character has been serviced. This must take place before the next character is fully assembled or an overrun error exists. Refer to the description of bit 11 in Table 3-3 for more details on Receiver Overrun.

Servicing of the RDSR is the responsibility of the system software in response to the Receive Data Ready (RDATRY) signal. This signal is asserted when a character has been transferred to the RDSR. The setting of RDATRY would also cause a receive interrupt request if Receive Interrupt Enable (RXITEN) is set. The software's response to RDATRY is to read the contents of the RDSR. At the completion of this operation, the new information is loaded into the RDSR and RDATRY is reasserted. This operation continues until terminated by some control character. The upper byte of the RDSR contains status and error indications which the software can also read.

The DPV11 will handle data in bit-, byte count- or character-oriented protocols.

With bit-oriented protocol, only flag characters are used to initiate the transfer of a message. Information inserted into the data stream for transparency or control is deleted before it is presented to the RDSR. This means that only data characters are available to the software. The first two characters of every message or frame are defined to be 8-bit characters and the USYNRT will handle them as such regardless of the programmed character length. All subsequent data is formatted in the selected character length. When CRC error detection is selected, the received CRC check characters are not presented to the software, but the error indication will be presented if an error has been detected.

If the secondary address mode is implemented, the first received data character must be the selected address. If this is not the case, the USYNRT will renew its search for flag or go-ahead characters. Refer to the description of bit 12 of the PCSAR in Table 3-4.

With byte count- or character-oriented protocols, two consecutive sync characters are required to synchronize the transfer of data. The sync characters used in the message must be the same as the sync character loaded by the software into the low byte of the parameter control sync/address register (PCSAR). If leading sync characters subsequent to the initial two syncs are to be deleted from the data stream, the Strip Sync bit (bit 13) must also be set in the upper byte of the PCSAR. The character length of the data to be received should also be set in bits 8, 9, and 10 of the parameter control and character length register (PCSCR). Sync characters and data must have the same character length and only characters of the selected length will be presented to the receive buffer. Sync characters following the initial two will be presented to the buffer and included in the CRC computation unless the Strip Sync bit is set. If vertical redundancy check (VRC) parity checking is selected, the parity bit itself is deleted from the character before it is presented to the buffer.

3.4.2 Transmit Data

System software loads information to be transmitted to the modem into the transmit data and status register (TDSR). This does not ordinarily include error detection or control character information. Loading of the TDSR occurs in response to the Transmitter Buffer Empty (TBEMTY) signal from the USYNRT. The character length of information to be transmitted is established by the software when it loads the transmit character length register (bits 13, 14, and 15 of the PCSCR). The default length of eight is assigned when the transmit character length register equals zero. The length of characters presented to the TDSR should not exceed the assigned character length. When the information in the TDSR is transmitted, the TBEMTY signal is again asserted to request another character. The setting of TBEMTY also causes a transmit interrupt request if Transmit Interrupt Enable is set.

Byte count- or character-oriented protocols require the transmission of synchronizing information normally referred to as sync characters. The sync characters can be transmitted when Transmit Start of Message (TDSR bit 8) is set. This happens in one of two ways depending on the state of the IDLE bit (PCSAR bit 11). When the IDLE bit is cleared, the sync character is taken directly from the common sync register (PCSAR bits 7–0). The sync register would have been previously loaded by the software. If the IDLE bit is set, the sync character must be loaded into the TDSR by the software when it is to be transmitted. If multiple sync characters are to be transmitted, the TDSR must only be loaded with the first one of the sequence. This character will be transmitted until data information is loaded into the TDSR. The TBEMTY signal is asserted at the end of each sync character but the TSOM signal allows it to be ignored without causing a data late error. With bit-oriented protocols, the USYNRT automatically generates control characters as initiated by the software and inserts necessary information into the data stream to maintain transparency.

Typical programming examples in bit- and byte count-oriented protocols appear in Appendix D.

3.5 INTERRUPT VECTORS

The DPV11 generates two vector addresses, one for receive data and modem control and the other for transmit data.

The receive and modem control interrupt has priority over the transmit interrupt and is enabled by setting bit 6 (RXITEN) of the receiver control and status register (RXCSR).

If bit 6 of the RXCSR is set, a receiver interrupt may occur when any one of the following signals is asserted.

- Receive Data Ready (RDATRY)
- Receive Status Ready (RSTARY)
- Data Set Change (DAT SET CH)

The signal DAT SET CH only causes an interrupt if bit 5 (DSITEN) of the RXCSR is also set.

It is possible that a data set change interrupt could be pending while a receiver interrupt is being serviced, or the opposite could be true. In either case, the hardware ensures that both interrupt requests are recognized.

NOTE

The modem status change circuit interprets any pulse of two microseconds or greater duration as a data set change. This ensures that all legitimate transitions of modem status will be detected. However, on a poor line, noise may be interpreted as a data set change. Software written for the DPV11 must account for this possibility.

A transmitter interrupt request occurs if Transmit Interrupt Enable (TXINTEN) is set when Transmit Buffer Empty (TBEMTY) becomes asserted.

가 제가 및 가능하게 가지 않는 것을 가지 않는 것을 가지 않는 것을 하는 것이 같다. 또는 가지 않는 것이 가지 않는 것이 가지 않는 것이 같다. 같은 것은 한동물에 가지 못 한당하는 것이 가지 않는 것은 것이 있는 것이 같이 있는 것이 같다. 같은 것이 같이 있는 것이 같이 같이 있는 것이 같이 같이 같이 같이 같이 같이 같이 있다. 한당한 것이 가지 않는 것이 있는 것이 같이 없다. 같이 있

正义,"你们来说起的来来来。""我我的"""。 他们,你不是你们的你,你们们不是你的你,你不是你?""你不是你?""你不是你,你你不是你?"你说,"你你你你?"你你,你你 你们你你?""我我们

ta a Aserbary, 1985 Barra a Stara Maria a Santa Barra Aserbara a Santa Ray Ray a Santa Santa a Santa

(4) A set of a set of the set

A second s

가 가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이 가지 않는 것이 있다. 이 가지 않는 것이 있는 것이 가 이 가지 않는 것이 같은 것이 같은 것이 같은 것이 있다. 것이 같은 것이 같이 같

1.1.1.1.1

APPENDIX A DIAGNOSTIC SUPERVISOR SUMMARY

A.1 INTRODUCTION

The PDP-11 diagnostic supervisor is a software package that performs the following functions.

- Provides run-time support for diagnostic programs running on a PDP-11 in stand-alone mode
- Provides a consistent operator interface to load and run a single diagnostic program or a script of programs
- Provides a common programmer interface for diagnostic development
- Imposes a common structure upon diagnostic programs
- Guarantees compatibility with various load systems such as APT, ACT, SLIDE, XXDP+, ABS Loader
- Performs nondiagnostic functions for programs, such as console I/O, data conversion, test sequencing, program options

A.2 VERSIONS OF THE DIAGNOSTIC SUPERVISOR

File Name	Environment	
HSAA **.SYS	XXDP+	
HSAB **.SYS	APT	
HSAC ** .SYS	ACT/SLIDE	
HSAD **.SYS	Paper Tape (Absolute Load	der)

In the above file names, "**" stands for revision and patch level, such as "A0".

A.3 LOADING AND RUNNING A SUPERVISOR DIAGNOSTIC

A supervisor-compatible* diagnostic program may be loaded and started in the normal way, using any of the supported load systems. Using XXDP+ for example, the program CVDPVA.BIN is loaded and started by typing .R CVDPVA.

The diagnostic and the supervisor will automatically be loaded as shown in Figure A-1 and the program started. The program types the following message.

> DRS LOADED DIAG.RUN-TIME SERVICES CVDPV-A-0

* To determine if diagnostics are supervisor-compatible, use the List command under the Setup utility (see Paragraph A.5.).

XXDP+ / DIAGNOSTIC SUPERVISOR MEMORY LAYOUT

MK-2216

Figure A-1 Typical XXDP+/Diagnostic Supervisor Memory Layout

DIAGNOSTIC TESTS UNIT IS DPV11 DR>

DR> is the prompt for the diagnostic supervisor routine. At this point a supervisor command must be entered (the supervisor commands are listed in Paragraph A.4).

Five Steps to Run a Supervisor Diagnostic

1. Enter Start command.

When the prompt DR> is issued, type:

STA/PASS:1/FLAGS:HOE <CR>

The switches and flags are optional.

2. Enter number of units to be tested.

The program responds to the Start command with:

UNITS?

At this point enter the number of devices to be tested.

3. Answer hardware parameter questions.

After the number of devices to be tested has been entered, the program responds by asking a number of hardware questions. The answers to these questions are used to build hardware parameter tables in memory. A series of questions is posed for each device to be tested. A "Hardware P-Table" is built for each device.

4. Answer software parameter questions.

When all the "Hardware P-Tables" are built, the program responds with:

CHANGE SW?

If other than the default parameters are desired for the software, type Y. If the default parameters are desired, type N.

If you type Y, a series of software questions will be asked and the answers to these will be entered into the "Software P-Table" in memory. The software questions will be asked only once, regardless of the number of units to be tested.

5. Diagnostic execution.

After the software questions have been answered, the diagnostic begins to run.

What happens next is determined by the switch options selected with the Start command, or errors occurring during execution of the diagnostic.

A.4 SUPERVISOR COMMANDS

The supervisor commands that may be issued in response to the DR> prompt are as follows.

- Start Starts a diagnostic program.
- Restart When a diagnostic has stopped and control is given back to the supervisor, this command restarts the program from the beginning.
- Continue Allows a diagnostic to continue running from where it was stopped.
- Proceed Causes the diagnostic to resume with the next test after the one in which it halted.
- Exit Transfers control to the XXDP+ monitor.
- Drop Drops units specified until an Add or Start command is given.
- Add Adds units specified. These units must have been previously dropped.
- Print Prints out statistics if available.
- Display Displays P-Tables.
- Flags Used to change flags.
- ZFLAGS Clears flags.

All of the supervisor commands except Exit, Print, Flags, and ZFLAGS can be used with switch options.

A.4.1 Command Switches

Switch options may be used with most supervisor commands. The available switches and their function are as follows.

• ./TESTS: - Used to specify the tests to be run (the default is all tests). An example of the tests switch used with the Start command to run tests 1 through 5, 19, and 34 through 38 would be:

DR> START/TESTS : 1-5 : 19 : 34-38 <CR>

• ./PASS: - Used to specify the number of passes for the diagnostic to run. For example:

DR > START/PASS : 1

In this example, the diagnostic would complete one pass and give control back to the supervisor.

- ./EOP: Used to specify how many passes of the diagnostic will occur before the end of pass message is printed (the default is one).
- ./UNITS: Used to specify the units to be run. This switch is valid only if N was entered in response to the CHANGE HW? question.
- ./FLAGS: Used to check for conditions and modify program execution accordingly. The conditions checked for are as follows.

:HOE -Halt an error (transfers control back to the supervisor)

:LOE - Loop on error

:IER – Inhibit error reports

:IBE – Inhibit basic error information

:IXE - Inhibit extended error information

:PRI – Print errors on line printer

:PNT - Print the number of the test being executed prior to execution

:BOE – Ring bell on error

:UAM - Run in unattended mode, bypass manual intervention tests

:ISR - Inhibit statistical reports

:IOU – Inhibit dropping of units by program

A.4.2 Control/Escape Characters Supported

The keyboard functions supported by the diagnostic supervisor are as follows.

• CONTROL C (\uparrow C) – Returns control to the supervisor. The DR> prompt would be typed in response to CONTROL C. This function can be typed at any time.

- CONTROL Z ([†]Z) Used during hardware or software dialogue to terminate the dialogue and select default values.
- CONTROL O (10) Disables all printouts. This is valid only during a printout.
- CONTROL S (\uparrow S) Used during a printout to temporarily freeze the printout.
- CONTROL Q (†Q) Resumes a printout after a CONTROL S.

A.5 THE SETUP UTILITY

Setup is a utility program that allows the operator to create parameters for a supervisor diagnostic prior to execution. This is valid for either XXDP+ or ACT/SLIDE environments. Setup asks the hardware and software questions and builds the P-Tables.

The following commands are available under Setup.

List – list supervisor diagnostics Setup – create P-Tables Exit – return control to the supervisor

The format for the List command is:

LIST DDN:FILE.EXT

Its function is to type the file name and creation date of the file specified if it is a revision C or later supervisor diagnostic. If no file name is given, all revision C or later supervisor diagnostics are listed. The default for the device is the system device, and wild cards are accepted.

The format for the Setup command is:

SETUP DDN:FILE.EXT=DDN:FILE.EXT

It reads the input file specified and prompts the operator for information to build P-Tables. An output file is created to run in the environment specified. File names for the output and input files may be the same. The output and input device may be the same. The default for the device is the system device and wild cards are not accepted.

en ander son de la servicie de la servicie de la company de la servicie de la servicie de la servicie de la se La servicie definition de la servicie de la servici

and the second second

الم أن المان المحلول المحلول المن المحل عن المحل عن المحلول المحلول المحلول المحلول المحلول المحلول المحلول الم المحلول المحاولة المحلول المحلول

APPENDIX B USYNRT DESCRIPTION

5025 Universal Synchronous Receiver/Transmitter (USYNRT)

The data paths of the USYNRT provide complete serialization, deserialization and buffering. Output signals are provided to the USYNRT controller to indicate the state of the data paths, the command fields or recognition of extended address fields. These tasks must be performed by the USYNRT controller.

The USYNRT is a 40-pin dual-in-line package (DIP). Figure B-1 is a terminal connection (identification) diagram.

Data port bits DP07:DP00 are dedicated to service four 8-bit wide registers. Bits DP15:DP08 service either control information or status registers. The PCSCR register is reserved. (See Figure B-2.)

Purchase Specification 2112517-0-0 provides a detailed description of the 5025 USYNRT.

Figure B-1 Terminal Connection Identification Diagram (2112517-0-0 Variation)

DP15	14	13	12	11	10	9	8
ERR CHK	ASSY	BIT ACC	DUNT	OVER RUN	ABORT OR GA	REOM	RSOM
R/O	R/O	RO	RO	RO	RO	RO	RO
1						nt og skalen og skalen Britsen og skalen Friske og skalen	
7	6	5	4	3	2	1	DP00
4					1		1
9							
R/O	R/O	R⊬O	RO	RO	R/O	RO	RO
a La generation de la second	a jan ang	a star i se		· · · · · · · · · · · · · · · · · · ·	RDSR		ADRO
	ی کار کار ایک ایک ایک ایک ایک ایک ایک ایک ایک ایک				n an Arrange An Arrange an Arrange Arrange		n an an 1997 an
15	14	13	12	11	10	9	8
TERR				TGA	TABORT	TEOM	TSOM
R/O				RW	RW	RW	RW
		n an		an an ann a' saoireachta a sta an			
7	6	5	4	3	2	1	0
		2	TX D	АТА ———			
R/W	: R/W	R/W	R.W	RW	R/W	R/W	R/W
					TDSR		

MK-1502

15	14	13	12	11	10	9	8
•	CCP + MODE	LOOP + STRIP	SEC ADRS MODE	IDLE SEL	← EF	R TYPE S	SEL
1990 - Rothinson March 1997 - An		STINC	R.O.	D.O.	02	01	00
(การแรกของการและเพราะ	R/O	R/U	R/O	R/0	R/O	R/O	R/O
7	6	5	4	3	2	1	0
-			 ^{-T} OR'' ^T R	X RX SYNI X SEC ADF	c RS		•
R/W	R/W	R/W	R/W	R/W	R/W	R 'W	R/W
			A			.	ADR4
						1	
15	14	13	12	11	10	9	8
	DĂTA LEN	SEL	EXADD	EXCON	RX D	ATA LEN	SEL
02	01	00			02	01	00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	
-							
7	6	5	4	3	2	1	0
4			RESE	RVED			
						. 10	
							1

MK-1503

Figure B-2 5025 Internal Register Bit Map (2112517-0-0 Variation) (Sheet 2 of 2)

APPENDIX C IC DESCRIPTIONS

C.1 GENERAL

This appendix contains data on the LSI-11 chips and some of the unusual ICs used by the DPV11. The other ICs are common, widely-used logic devices. Detailed specifications on these chips are readily available, and hence are not included here.

C.2 DC003 INTERRUPT CHIP

The interrupt chip is an 18-pin DIP device. It provides the circuits to perform an interrupt transaction in a computer system that uses a "pass-the-pulse" type arbitration scheme. The device provides two interrupt channels labeled A and B, with the A section at a higher priority than the B section. Bus signals use high-impedance input circuits or high-drive open-collector outputs, which allow the device to directly attach to the computer system bus. Maximum current required from the V_{cc} supply is 140 mA.

Figure C-1 is a simplified logic diagram of the DC003 IC. Table C-1 describes the signals and pins of the DC003.

MK 0164

C-1

Table C-1 DC003 Pin/Signal Descriptions

Pin	Signal	Description
	VECTOR H	Interrupt Vector Gating Signal – This signal gates the appropri- ate vector address onto the bus and forms the bus signal BRPLY L. Not used in the DPV11.
2	VEC RQSTB H	Vector Request B Signal – When asserted, this signal indicates RQST B service vector address is required. When negated, it indicates RQST A service vector address is required. VECTOR H is the gating signal for the entire vector address; VEC RQST B H is normally bit 2 of the address.
3	BDIN L	Bus Data In – THE BDIN signal always precedes a BIAK signal.
4	INITO L	Initialize Out – This is the buffered BINIT L signal used in the device interface for general initialization.
5	BINIT L	Bus Initialize – When asserted, this signal brings all drive lines to their negated state (except INITO L).
6	BIAKO L	Bus Interrupt Acknowledge – This signal is the daisy-chained signal that is passed by all devices not requesting interrupt service (see BIAKI L). Once passed by a device, it must remain passed until a new BAIKI L is generated.
7	BIAKI L	Bus Interrupt Acknowledge – This signal is the processor's re- sponse to BIRQ L true. This signal is daisy-chained such that the first requesting device blocks the signal propagation while nonrequesting devices pass the signal on as BIAKO L to the next device in the chain. The leading edge of BIAKI L causes BIRQ L to be unasserted by the requesting device.
8	BIRQ L	Asynchronous Bus Interrupt Request – The request is generated by a true RQST signal along with the associated true Interrupt Enable signal. The request is removed after the acceptance of the BDIN L signal and on the leading edge of the BAIKI L sig- nal, or the removal of the associated interrupt enable, or due to the removal of the associated request signal.
17 10	RQSTA H RQSTB H	Device Interrupt Request Signal – When asserted with the en- able A/B flip-flop asserted, this signal causes the assertion of BIRQ L on the bus. This signal line normally remains asserted until the request is serviced.
16 11	ENA ST H ENB ST H	Interrupt Enable – This signal indicates the state of the inter- rupt enable A/B internal flip-flop which is controlled by the sig- nal line ENA/B DATA H and the ENA/B CLK H clock line.

Table (C-1	DC003	Pin/Signal	Descripti	ons (Cont)

Pin	Signal	Description
15 12	ENA DATA H Enb data h	Interrupt Enable Data – The level on this line, in conjunction with the ENA/B CLK H signal, determines the state of the in- ternal interrupt enable A flip-flop. The output of this flip-flop is monitored by the ENA/B ST H signal.
14 13	ENA CLK H Enb Clk H	Interrupt Enable Clock – When asserted (on the positive edge), interrupt enable A/B flip-flop assumes the state of the ENA/B DATA H signal line.

C.3 DC004 PROTOCOL CHIP

The protocol chip is a 20-pin DIP device that functions as a register selector, providing the signals necessary to control data flow into and out of up to four word registers (8 bytes). Bus signals can directly attach to the device because receivers and drivers are provided on the chip. An RC delay circuit is provided to slow the response of the peripheral interface to data transfer requests. The circuit is designed such that if tight tolerance is not required, then only an external 1K \times 20 percent resistor is necessary. External RCs can be added to vary the delay. Maximum current required from the V_{cc} supply is 120 mA.

Figure C-2 is a simplified logic diagram of the DC004 IC. Signal and pin definitions for the DC004 are shown in Table C-2.

C.4 DC005 BUS TRANSCEIVER CHIP

The 4-bit transceiver is a 20-pin DIP, low-power Schottky device for primary use in peripheral device interfaces, functioning as a bidirectional buffer between a data bus and peripheral device logic. In addition to the isolation function, the device also provides a comparison circuit for address selection and a constant generator, useful for interrupt vector addresses. The bus I/O port provides high-impedance inputs and high-drive (70 mA) open-collector outputs to allow direct connection to a computer's data bus. On the peripheral device side, a bidirectional port is also provided, with standard TTL inputs and 20 mA tri-state drivers. Data on this port is the logical inversion of the data on the bus side.

Three address jumper inputs are used to compare against three bus inputs and to generate the signal MATCH. The MATCH output is open-collector, which allows the output of several transceivers to be wire-ANDed to form a composite address match signal. The address jumpers can also be put into a third logical state that disconnects that jumper from the address match, allowing for "don't care" address bits. In addition to the three address jumper inputs, a fourth high-impedance input line is used to enable/disable the MATCH output.

Three vector jumper inputs are used to generate a constant that can be passed to the computer bus. The three inputs directly drive three of the bus lines, overriding the action of the control lines.

Two control signals are decoded to give three operational states: receive data, transmit data, and disable.

C-4

Table C-2 DC004 Pin/Signal Descriptions

Pin	Signal	Description
1	VECTOR H	Vector – This input causes BRPLY L to be generated through the delay circuit. Independent of BSYNC L and ENB H.
2 3 4	BDAL2 L BDAL1 L BDAL0 L	Bus Data Address Lines – These signals are latched at the assert edge of BSYNC L. Lines 2 and 1 are decoded for the select out- puts; line 0 is used for byte selection.
5	BWTBT L	Bus Write/Byte – While the BDOUT L input is asserted, this signal indicates a byte or word operation: asserted = byte, unasserted = word. Decoded with BDOUT L and latched BDAL0 L, BWTBT L is used to form OUTLB L and OUTHB L.
6	BSYNC L	Bus Synchronize – At the assert edge of this signal, address in- formation is trapped in four latches. While unasserted, this sig- nal disables all outputs except the vector term of BRPLY L.
7	BDIN L	Bus Data In – This is a strobing signal to effect a data input transaction. BDIN L generates BRPLY L through the delay circuit and INWD L.
8	BRPLY L	Bus Reply – This signal is generated through an RC delay by VECTOR H, and strobed by BDIN L or DBOUT L, and BSYNC L and latched ENB H.
9 1	BDOUT L	Bus Data Out – This is a stobing signal to effect a data output transaction. Decoded with BWTBT L and BDALO, it is used to form OUTLB L and OUTHB L. BDOUT L generates BRPLY L through the delay circuit.
11	INWD L	In Word – Used to gate (read) data from a selected register onto the data bus. It is enabled by BSYNC L and strobed by BDIN L.
12 13	OUTLB L OUTHB L	Out Low Byte, Out High Byte – Used to load (write) data into the lower, higher, or both bytes of a selected register. It is en- abled by BSYNC L and the decode of BWTBT L and latched BDAL0 L. It is strobed by BDOUT L.
14 15 16 17	SELO L SEL2 L SEL4 L SEL6 L	Select Lines – One of these four signals is true as a function of BDAL2 L and BDAL1 L if ENB H is asserted at the assert edge of BYSNC L. They indicate that a word register has been selected for a data transaction. These signals never become asserted except at the assertion of BSYN L (then only if ENB H is asserted at that time) and, once asserted, are not negated until BSYNC L is negated.
18	RXCX H	External Resistor Capacitor Node – This node is provided to vary the delay between the BDIN L, BDOUT L, and VECTOR H inputs and BRPLY L output. The external resistor should be tied to V_{cc} and the capacitor to ground. As an output, it is the logical inversion of BRPLY L.

C-5

Table C-2 DC004 Thi/ Signal Descriptions (Cont)				
Pin	Signal	Description		
19	ENB H	Enable – This signal is latched at the L and is used to enable the select of	ne asserted edge of BSYNC utputs and the address term	
		of BRPLY L.	-	

DC004 Pin/Signal Descriptions (Cont)

Maximum current required from the V_{cc} supply is 100 mA.

Figure C-3 is a simplified logic diagram of the DC005 IC. Signal and pin definitions for the DC005 are shown in Table C-3.

C.5 26LS32 QUAD DIFFERENTIAL LINE RECEIVER

The 26LS32 line receiver is a 16-pin DIP device. Terminal connections are shown in Figure C-4.

C.6 8640 UNIBUS RECEIVER

The 8640 is a quad 2-input NOR. Its equivalent circuit is shown in Figure C-5.

C.7 8881 NAND

The 8881 is a quad 2-input NAND. The schematic and pin identifications are shown in Figure C-6.

C.8 9636A DUAL LINE DRIVER

The 9636A is an 8-pin DIP device specified to satisfy the requirements of EIA standards RS-423-A and RS-232-C. Additionally, it satisfies the requirements of CCITT V.28, V.10 and the federal standard FIPS 1030.

The output slew rates are adjustable by a single external resistor connected from pin 1 to ground.

The logic diagram and terminal identification are shown in Figure C-7.

C.9 9638 DUAL DIFFERENTIAL LINE DRIVER

The 9638 is an 8-pin DIP device specified to satisfy the requirements of EIA RS-422-A and CCITT V.11 specifications.

The logic diagram and terminal identification are shown in Figure C-8.

C-7

Pin	Signal	Description
12 11 9 8	BUS 0 L BUS 1 L BUS 2 L BUS 3 L	Bus Data – This set of four lines constitutes the bus side of the transceiver. Open-collector output; high-impedance inputs. Low $= 1$.
18 17 7 6	DAT0 H DAT1 H DAT2 H DAT3 H	Peripheral Device Data – These four tri-state lines carry the inverted received data from BUS (3:0) when the transceiver is in the receive mode. When in transmit data mode, the data carried on these lines is passed inverted to BUS (3:0). When in the disabled mode, these lines go open (high impedance). High = 1.
14 15 16	JV 1 H JV 2 H JV 3 H	Vector Jumpers – These inputs, with internal pull-down resist- ors, directly drive BUS (3:1). A low or open on the jumper pin causes an open condition on the corresponding BUS pin if XMIT H is low. A high causes a one (low) to be transmitted on the BUS pin. Note that BUS 0 L is not controlled by any jumpr input.
13	MENB L	Match Enable – A low on this line enables the MATCH output. A high forces MATCH low, overriding the match circuit.
3	МАТСН Н	Address Match – When BUS $(3:1)$ matches with the state of JA $(3:1)$ and MENB L is low, this output is open; otherwise, it is low.
1 2 19	JA 1 L JA 2 L JA 3 L	Address Jumpers – A strap to ground on these inputs allows a match to occur with a one (low) on the corresponding BUS line; an open allows a match with a zero (high); a strap to V_{ec} disconnects the corresponding address bit from the comparison.
5 4	XMIT H REC H	Control Inputs – These lines control the operational of the trans- ceiver as follows.
		REC XMIT
		 0 0 DISABLE: BUS and DAT open 0 1 XMIT DATA: DAT to BUS 1 0 RECEIVE: BUS to DAT 1 1 RECEIVE: BUS to DAT
		To avoid tri-state overlap conditions, an internal circuit delays the change of modes between Transmit data mode, and delays tri-state drivers on the DAT lines from enabling. This action is independent of the disable mode.

 Table C-3
 DC005 Pin/Signal Descriptions

1. INPUT A	16. POSITIVE SUPPLY VOLTAGE (V _{CC})
3 OUTPUT A	14. INPUT B
5. OUTPUT C	13. OUTPUT B 12. ENABLE
6. INPUT C 7. INPUT C	
8 GROUND	9. INPUT D

MK-1340

C-9

Figure C-5 8640 Equivalent Logic Diagram

NOTE. NUMBERS IN () DENOTE TERMINAL NUMBERS.

TERMINAL IDENTIFICATION

WAVESHAPE CONTROL (RISE AND FALL TIME)
 INPUT A
 INPUT B
 POWER AND SIGNAL GROUND
 NEGATIVE SUPPLY VOLTAGE
 OUTPUT B
 OUTPUT A
 POSITIVE SUPPLY VOLTAGE (V_{CC})

Figure C-7 9636A Logic Diagram and Terminal Identification

TERMINAL IDENTIFICATION

POSITIVE SUPPLY VOLTAGE
 CHANNEL 1 INPUT
 CHANNEL 2 OUTPUT
 SUPPLY AND SIGNAL GROUND
 CHANNEL 2 INVERTED OUTPUT
 CHANNEL 2 NON INVERTED OUTPUT
 CHANNEL 1 INVERTED OUTPUT
 CHANNEL 1 NON INVERTED OUTPUT

MK 1324

Figure C-8 9638 Logic Diagram and Terminal Identification

APPENDIX D PROGRAMMING EXAMPLES

Two examples are included in this appendix. The first is an example for bit-oriented protocols, and the second is an example for byte count-oriented protocols.

These are only examples and are not intended for any other purpose.

.TITLE DPV11 -- DPV-11 DDM FOR BIT ORIENTED PROTOCOLS .IDENT /X00/ ់ ; COPYRIGHT (C) 1980 BY ; DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. EXAMPLE OF AN APPLICATION RSX-11M BIT ORIENTED DPV-11 DEVICE DRIVER *** NOTE - THIS IS NOT A RUNNING DRIVER ; ; .MCALL HWDDF\$, \$INTSX, \$INTXT, MDCDF\$, CCBDF\$, TMPDF\$, ASYRET, SYNRET ; DEFINE THE HARDWARE REGISTERS HWDDFS CCBDF\$; DEFINE THE CCB OFFSETS ; DEFINE THE MODEM CONTROL SYMBOLS MDCDF\$; DEFINE LINE-TABLE TEMPLATE OPERATORS TMPDFS ; DEVICE CHARACTERISTICS DEFINED IN -D.DCHR-: ; HALF-DUPLEX LINE INDICATOR (WORD #0)DC.HDX = 000001; PROTOCOL SELECTION FIELD DC.PRT = 000007 (WORD #1) ; MULTI-POINT CONFIGURATION (WORD #1) DC.MPT = 000010 ; MULTI-POINT SECONDARY MODE (WORD #1) DC.SEC = 000020; STATION ADDRESS IS 15 BITS DC.ADR = 000040(WCRD #1) ; SDLC PRIMARY STATION DC.SPS = 000013 (COMPOSITE) ; SDLC SECONDARY STATION (COMPOSITE) DC.SSS = 000033; DEVICE STATUS FLAGS DEFINED IN -D.FLAG-; DD.ENB == 001 ; IF ZERO, LINE HAS BEEN ENABLED ; IF ZERO, LINE HAS BEEN STARTED DD.STR == 002 ; -- (UNUSED) --CF.EOM DD.EOM == -- (UNUSED) --CF.SOM DD.SOM = = ; ; TRANSMIT ABORTED DUE TO UNDERRUN DD.ABT == 020 ; TRANSMIT SYNC-TRAIN REQUIRED DD.SYN = = CF.SYN ; TRANSMIT LINE TURN-AROUND REQUIRED DD.TRN == CF.TRN ; TRANSMITTER READY FOR NEXT FRAME DD.ACT == 200DD.DIS == DD.ENB!DD.STR ; INITIAL STATUS = DISABLED, STOPPED ; [SEL Ø] -- MODEM CONTROL BITS ; DATA SET CHANGE DSCHG = 100000 ; RING INDICATOR DSRING = 040000; CLEAR TO SEND DSCTS = 020000 ; CARRIER INDICATOR $DSCARY = \emptyset 1 \emptyset \emptyset \emptyset \emptyset$; MODEM READY 001000 DSMODR = ; DATA SET INTERRUPT ENABLE DSITEN = 000040 ; DATA SET LOOPBACK = DSLOOP 000010 ; REQUEST TO SEND = 000004 DSRTS = ØØØØØ32 ; DATA TERMINAL READY DSDTR ; SELECT FREQUENCY OR REMOTE LOOPBACK DSSEL = 000001 ; [SEL Ø] -- RECEIVER CONTROL BITS ; RECEIVER ACTIVE RXACT = 004000 RXSRDY = 002000 ; RECEIVER STATUS READY

D-2

RXFLAG = 000400 ; RECEIVER FLAG DETECT RXDONE = 000200 ; RECEIVER DONE RXITEN = 000100 ; RECEIVER INTERRUPT ENABLE RXREN = 000020 ; RECEIVER ENABLE ; [SEL 2] -- RECEIVER STATUS INPUTS ; RXERR = 100000 ; RECEIVER CRC ERROR RXABC = 070000 ; RECEIVER ASSEMBLED BIT COUNT RXBFOV 010000 ; RECEIVER BUFFER OVERFLOW (SOFTWARE ERROR) = RXOVRN 004000 ; RECEIVER DATA OVERRUN RXABRT = 002000 ; RECEIVED ABORT RXENDM = 001000 ; RECEIVED END OF MESSAGE RXSTRM = 003400 ; RECEIVED START OF MESSAGE [SEL 2] -- MODE CONTROL OUTPUTS DPAPA = 100000 ; ALL PARTIES ADDRESSED DPDECM = 040000 ; DDCMP / BISYNC OPERATION DPSTRP = 020000 ; STRIP SYNC OR LOOP MODE DPSECS = 010000 ; SDLC / ADCCP SECONDARY STATION SELECT DPIDLE 004000 = ; IDLE MODE SELECT DPCRC = 3*400 ; USE CRC 16 ERROR DETECTION DPADRC = 000377 ; STATION ADDRESS OR SYNC CHARACTER INPRM = DPSTRPIDPCRC ; INITIAL STARTUP PARAMETERS ; [SEL 4] -- TRANSMITTER STATUS AND CONTROL ; TCLEN 150000 ; TRANSMIT CHARACTER LENGTH EXADD = 310300 ; EXTENDED ADDRESS FIELD EXCON = 004000 ; EXTENDED CONTROL FIELD RCLEN = 003400 ; RECEIVE CHARACTER LENGTH TXITEN = 000100 ; TRANSMITTER INTERRUPT ENABLE TXREN = ; TRANSMITTER ENABLE 000020 IAMXT = C00013 ; MAINTENANCE MODE SELECT TXDONE = 000004 ; TRANSMITTER DONE TXACT 000302 ; TRANSMITTER ACTIVE TXRES = 000001 ; DEVICE RESET [SEL 6] -- TRANSMITTER OUTPUT CONTROLS TXLATE = 100000 TRANSMITTER DATA LATE (UNDERRUN) ; TXGO = 004000 ; TRANSMITTER GO AHEAD TXABRT = 002000 ; TRANSMITTER ABORT TXENDM = 001000 ; TRANSMIT END OF MESSAGE TXSTRM = 000400 ; TRANSMIT START OF MESSAGE ; PROCESS DISPATCH TABLE SDXPTB:: .WORD \$SDASX ; TRANSMIT ENABLE .WORD \$SDASR ; RECEIVE ENABLE (ASSIGN BUFFER) .WORD \$SDKIL ; KILL I/O ENABLE

D-3

; CONTROL ENABLE

.WORD

\$SDCTL

```
.WORD
                 $SDTIM
                                 ; TIME OUT
        .SBTTL $SDPRI -- RECEIVE INTERRUPT SERVICE ROUTINE
;+
; FUNCTION:
;
        THE DEVICE INTERRUPT IS VECTORED BY THE HARDWARE TO THE
        DEVICE LINE TABLE. THE '$SDPRI' LABEL IS ENTERED VIA A
;
        CALLING SEQUENCE IN THE LINE TABLE AT OFFSET 'D.RXIN'.
:
; ON ENTRY:
          R5 = ADDRESS OF 'D.RDBF' IN THE LINE TABLE
        \emptyset(SP) = SAVED R5
        2(SP) = INTERRUPTED PC
;
        4(SP) = INTERRUPTED PS
; OUTPUTS:
;
        R5 = ADDRESS OF 'D.RDB2' IN THE LINE TABLE
;
        D.RVAD = RECEIVER STATUS BITS FROM CSR [SEL 2]
;
; -
$SDPRI::
                                 ;;; SAVE REGISTERS
        MOV
                 R3,-(SP)
                 R4, -(SP)
        MOV
                                  ;;; ...
                                  ;;; GET CHARACTER AND FLAGS
        MOV
                 Q(R5) + , R4
                                  ;;; DON'T WORRY ABOUT ASSEMBLED BIT COUNT
        BIC
                 #RXABC,R4
    .IF DF M$$MGE
                                  ;;; SAVE CURRENT MAP
        MOV
                 KISAR6,-(SP)
                                 ;;; MAP TO DATA BUFFER
        MOV
                 (R5) + KISAR6
    .IFTF
                                  ;;; DECREMENT BUFFER BYTE COUNT
        DEC
                 (R5) +
                                  ;;; BUFFER OVERFLOW - POST COMPLETE
                 DPRBO
        BMI
                                  ;;; GET CSR+2 ADDRESS
        MOV
                 2(R5),R3
                                  ;;; ERROR OR END-OF-MESSAGE ?
        BIT
                 \#RXSRDY, -(R3)
                                  ;;; YES - POST RECEIVE COMPLETE
        BNE
                 DPRCP
                                  ;;; STORE CHARACTER IN RECEIVE BUFFER
        MOVB
                 R4, @(R5) +
    .IFT
                                  ;;; RESTORE PREVIOUS MAPPING
        MOV
                 (SP)+,KISAR6
    .IFTF
                                  ;;; ADVANCE BUFFER ADDRESS
        INC
                 -(R5)
                                  ;;; RESTORE REGISTERS
        MOV
                 (SP) + , R4
        MOV
                 (SP) + R3
                                  ;;; ...
                                  ;;; EXIT THE INTERRUPT
        $INTXT
                                  ;;; BUFFER OVERRUN HAS OCCURRED
DPRBO:
                 #RXBFOV,R4
                                  ;;; SET (SOFTWARE) ERROR INDICATOR
        BIS
                                  ;;; END-OF-MESSAGE OR ERROR INDICATION
DPRCP:
    .IFT
```

D-4
. Ei	MOV NDC	(SP)+,KISAR5 ;;; RESTORE PREVIOUS MAPPING
	MOV MOV BIC MOV MOV	R4,(R5)+;;; SAVE STATUS FLAGS IN 'D.RVAD'(R5)+,R4;;; GET CSR+2 ADDR + POINT TO 'D.RPRI'#RXITEN,-(R4);;; CLEAR RECEIVER INTERRUPT ENABLE(SP)+,R4;; RESTORE R4 SO '\$INTSV' IS HAPPY(SP)+,R3;; AND R3
;	STN12V	;;; DO A TRICKY \$INTSV (R5 SAVED BUT NOT R4)
;;	CHECK F	OR ERRORS, POST RECEIVE COMPLETE, ASSIGN NEW BUFFER
	MOV MOV ADD SUB CLR	R3,-(SP);; SAVE AN ADDITIONAL REGISTER(R5),R4;; CCB ADDRESS TO R4 (R5 POPPED)#D.RCNT-D.RCCB,R5;; BACK UP TO THE RESI DUAL COUNT(R5)+,C.CNT1(R4);; COMPUTE RECEIVED FRAME BYTE COUNTR3;; SET R3 FOR COMPLETION STATUS
	BIC BEQ ASR ASR MOVB MOV BCC INC CALL BR	<pre>#61777,(R5)+ ;; ANY ERRORS REPORTED ? 40\$;; NO POST RECEIVE COMPLETE O.K(R5) ;; SHIFT ERROR INDICATORS (R5)+ ;;TWO PLACES RIGHT -(R5) ;; SHIFT 'RXABRT' INTO C-BIT (R5)+,R3 ;; USE INDICATORS AS TABLE INDEX RCVERR-2(R3),R3 ;; R3 NOW = CCB STATUS FLAGS 40\$;; FRAME NOT ABORTED - POST COMPLETE D.RABT-D.RDB2(R5) ;COUNT NUMBER OF ABORTED FRAMES RBFUSE ;; RE-INITIALIZE WITH THE SAME BUFFER 60\$;; RE-ENABLE INTERRUPTS FOR NEXT FRAME</pre>
405:	BIS MOV CALL MOV CALL BCS TST BMI	C.STS(R4),R3 ;; INCLUDE RE-SYNC STATUS, IF ANY R3,-(SP) ;; SAVE STATUS REPORTED TO DLC SDDRCP ;; POST RECEIVE COMPLETE (SP)+,R3 ;; RECOVER COMPLETION STATUS RBFSET ;; ASSIGN NEW CCB TO THE RECEIVER DREXIT ;; FAILED - LEAVE RECEIVER INACTIVE R3 ;; WAS AN ERROR REPORTED TO DLC ? DRCLRA ;; YES - DISABLE RCVR FOR RE-SYNC
60\$: DREXIT·	MOV BIS	-(R5),R3 ;; RECEIVER CSR [SEL 2] TO R3 #RXITEN,-(R3) ;; RE-ENABLE RECEIVER INTERRUPTS
	MOV RETURN	(SP)+,R3 ;; RESTORE REGISTER R3 ;; EXIT TO THE SYSTEM

;+

; DRCLRA:

; ; ;

> ; ;

;

;

MOMENTARILY RESET 'RXREN' FLAG IN ORDER TO FORCE RECEIVER RE-SYNCHRONIZATION. THIS IS REQUIRED FOR ANY ERROR WHICH TERMINATES THE RECEIVE OPERATION IN MID-FRAME.

; ON ENTRY:

R5 = ADDRESS OF 'D.RCCB' IN THE LINE TABLE

```
R4 = ADDRESS OF 'C.STS' IN THE NEWLY-ASSIGNED CCB
;
      (SP) = SAVED R3 VALUE
;
DRCLRA:
            -(R5),R3
                                   ;; RCVR CSR ADDRESS [SEL 2] TO R3
       MOV
                                  ;; RESET RCVR ENABLE FOR RE-SYNC
       BIC
            #RXREN,-(R3)
                                  ;; SET RE-SYNC IN CCB 'C.STS'
       BIS
              #CS.RSN, (R4)
                                  ;; RE-ENABLE THE RECEIVER
       BIS
              #RXREN!RXITEN,(R3)
                                    ;; RESTORE R3 AND EXIT
       BR
              DREXIT
       .SBTTL $SDPTI -- TRANSMIT INTERRUPT SERVICE ROUTINE
;+
; FUNCTION:
;___
       THE DEVICE INTERRUPT IS VECTORED BY THE HARDWARE TO THE
;
       DEVICE LINE TABLE. THE '$SDPTI' LABEL IS ENTERED VIA A
;
       CALLING SEQUENCE IN THE LINE TABLE AT OFFSET 'D.TXIN'.
;
       ONCE FRAME TRANSMISSION IS INITIATED, EACH INTERRUPT IS
       HANDLED BY THE ROUTINE ADDRESSED VIA THE 'D.TSPA' WORD.
;
;
; ON ENTRY:
;
         R5 = ADDRESS OF 'D.TCSR' IN THE LINE TABLE
       \emptyset(SP) = SAVED R5
;
       2(SP) = INTERRUPTED PC
       4(SP) = INTERRUPTED PS
;
; ON EXIT:
;
      R5 = ADDRESS OF 'D.TCCB' IN THE LINE TABLE
;
;-
$SDPTI::
      MOV
              R4,-(SP)
                            ;;; SAVE R4
                            ;;; CHE TRANSMITTER CSR ADDRESS
            (R5) + , R4
       MOV
                           ;;; POINT TO [SEL of + TEST UNDERRUN
       TST
              (R4) +
                            ;;; GO TO CORRECT STATE PROCESSOR
       JMP
             @(R5)+
                         ______
     _ _ _ _ _ _ _ _ _
; -
                            MONITOR CSR FOR 'CLEAR TO SEND' ;
       CURRENT STATE =
;
;- - - -
          _ _ _ _ _ _
                          - :
TISCTS:
              #DSCTS,-6(R4)
                                     ;;; IS 'CLEAR TO SEND' ACTIVE YET ?
       BIT
                                     ;;; YES - START TO SEND THE FRAME
       BNE
              TISIFL
              #DD.SYN,D.FLAG-D.TCNT(R5) ;;; SYNC-TRAIN REQUIRED ?
       BITB
                                     ;;; NO -- SEND FLAGS UNTIL 'CTS'
              TISIFX
       BEO
                                     ;;; START + END SENDS SYNC STRING
              #TXSTRM!TXENDM,(R4)
       MOV
       BR
              TISEXT
      ;-
                            SEND INITIAL FRAME 'FLAG'
       CURRENT STATE =
;
    -----
                          ______
TISIFL:
       MOV
              #TISTRT,-(R5) ;;; NEXT STATE = SEND ADDRESS BYTE
TISIFX:
       MOV
             #TXSTRM,(R4) ;;; SEND AN SDLC FLAG CHARACTER
```

TISEXT

BR

;-_ _ _ _ _ _ _ _ _ _ _ CURRENT STATE = SEND ADDR BYTE FOLLOWING 'FLAG'; TISTRT: DEC (R5) ;;; DECREMENT COUNT FOR ADDR BYTE D.TADC-D.TCNT(R5), (R4) ;;; SEND ADDR, CLEAR 'TXSTRM' MOV MOV #TISDAT,-(R5) ;;; NEXT STATE = DATA TRANSFER BR TISEXT - - - - - -____ . - - - - - - - - - - - - -CURRENT STATE = TRANSFER FRAME DATA BYTES - -: ; ; _ _ _ _ _ _ _ _ _ _ _ _ _____ TISDAT: BMI TISLAT ;;; UNDERRUN - ABORT AND RE-TRANSMIT DEC (R5)+ ;;; DECREMENT DATA BYTE COUNT BMI TISEND ;;; ALL DONE - SEND END-MSG SEQUENCE .IF DF M\$\$MGE MOV KISAR6,-(SP) ;;; SAVE CURRENT MAPPING MOV (R5)+,KISAR6 ;;; MAP TO THE TRANSMIT BUFFER .IFTF INC (R5) ;;; ADVANCE THE BUFFER ADDRESS @(R5)+,(R4) MOVB ;;; NEXT CHARACTER TO BE SENT .IFT MOV (SP)+,KISAR6 ;;; RESTORE PREVIOUS MAPPING . ENDC TISEXT: ;;; COMMON LEVEL-7 INTERRUPT EXIT MOV (SP)+,R4 ;;; RESTORE R4 \$INTXT ;;; EXIT INTERRUPT SERVICE CURRENT STATE = DATA BYTE-COUNT EXHAUSTED TISEND: MOV #TXENDM,(R4) ;;; TRANSMIT END-OF-MSG SEQUENCE INC -(R5) ;;; ADJUST R5 AND CLEAR 'D.TCNT' #TISFLG,-(R5) MOV ;;; NEXT STATE = IDLE FLAGS (ASSUMED)
;;; TEST FOR LINE TURN-AROUND
;;; NO -- IDLE THE LINE WITH FLAGS D.FLAG-D.TSPA(R5) ASLB BPL TISEXT MOV #TISPAD, (R5) ;;; YES - SEND PADS, THEN DISABLE BR TISEXT ; CURRENT STATE = SEND 'ABORT' AS PAD AFTER 'FLAG'; ; ;- - -TISPAD: #TISCLR,-(R5) ;;; RESET THE DEVICE FLAG BYTE
#TXABRT.(R4) CLRB D.FLAG-D.TCNT(R5) MOV ;;; NEXT STATE = SEND SECOND PAD ;;; SET 'TXABRT' TO SEND A PAD MOV #TXABRT,(R4) BR TISEXT ;-- - - - - - - - --; CURRENT STATE = SEND SECOND 'ABORT' AS PAD ; ; - - - - - - - - - - -TISCLR: MOV #TISRTS,-(R5) ;;; NEXT STATE = DROP 'REQUEST TO SEND'

TISCLX:	MOV BIC BR	#TXABRT,(R4) #TXREN,-(R4) TISEXT	;;; SETUP ;;; DISABI	TO SEND ANOTHER 'ABORT' CHAR LE THE TRANSMITTER	2
; ;;	CURRENT	STATE =	DROP REQUE	EST TO SEND + EXIT	
TISRTS:	BIT BEQ BIC BR	#DC.HDX,D.DCHR-D TISDON #DSRTS,-5(R4) TISDON	.TCNT(R5)	;;; HALF-DUPLEX CHANNEL ? ;;; NO LEAVE 'RTS' ACTIVE ;;; DROP 'REQUEST TO SEND' L ;;; POST TRANSMIT COMPLETE	: .INE
;				;	
TISLAT:	MOV MOVB INC BR	#TISDON,-(R5) #DD.ABT,D.FLAG-D D.TURN-D.TSPA(R5 TISCLX	.TSPA(R5))	<pre>;;; NEXT STATE = RE-TRANSMIT ;;; THIS FRAME WAS ABORTED ;;; COUNT THE ERROR EVENTS ;;; SEND PAD, DISABLE TRANSM</pre>	IITTER
;;	CURRENT	STATE =	IDLE FLAGS	S BETWEEN FRAMES ;	
TISFLG:	MOV MOVB	#TXSTRM,(R4) #DD.ACT,D.FLAG-D	.TCNT(R5)	;;; CLEAR 'TXENDM', IDLE FLA ;;; TRANSMITTER IS ACTIVE	GS
;	CURRENT	STATE =	POST COMPL	LETE OR RE-TRANSMIT ;	
TISDON:	ADD BIC MOV \$INTSX	#D.TPRI-D.TCNT,R #TXITEN,-(R4) (SP)+,R4	5 ;;; ADJU ;;; DISA ;;; RES1 ;;; '\$IN	UST LINE TABLE POINTER ABLE 'TXDONE' INTERRUPTS TORE R4 FOR PRIORITY DROP NTSV' W/O R4 SAVED (POPS R5)	
	MOV MOV CLR BITB BNE TST BNE CLR CALL MOV BEQ MOV	R3,-(SP) (R5),R4 (R5)+ #DD.ABT,D.FLAG-D TRSTRT D.KCCB-D.TCBQ(R5 CKILLT R3 \$DDXMP (R5),R4 TREXIT (R4),(R5)	.TCBQ(R5)) ;; SET CON ;; POST TF ;; FIRST C ;; NONE TF ;; REMOVE	;; SAVE AN ADDITIONAL REGIST ;; ACTIVE CCB ADDRESS TO R4 ;; THIS CCB IS NO LONGER ACT ;; WAS THE FRAME ABORTED ? ;; YES - SETUP RE-TRANSMISSI ;; TRANSMIT KILL IN PROGRESS ;; YES - RETURN CCB'S TO THE MPLETION STATUS = SUCCESS RANSMIT COMPLETE TO THE DLC CCB ON SECONDARY CHAIN HERE - TRANSMITTER IDLE CCB FROM SECONDARY CHAIN	ER IVE ON ? DLC
;	CURRENT	STATE =	START UP F	FRAME TRANSMISSION	
TRSTRT:	CLR	(R4)	;;	; CLEAR CCB LINKAGE WORD	

MOV R4, -(R5);; SETUP AS THE ACTIVE CCB TST - (R5) ;; SKIP BACK OVER 'D. TPRI' ADD #C.FLG1,R4 ;; POINT TO THE CCB BUFFER FLAGS (R4), D.FLAG-D.TPRI(R5) ;; SAVE FLAGS FOR LEVEL-7 USE BISB BICB #DD.ABT, D.FLAG-D.TPRI(R5) ;MAKE SURE 'ABORT' FLAG IS OFF MOV -(R4), D.TCNT-D.TPRI(R5) ;; SET TRANSMIT BYTE COUNT CLR -(R5) ;; INITIALIZE 'D.TADC' WORD MOV -(R4), -(R5);; SET TRANSMIT BUFFER ADDRESS .IF DF M\$\$MGE -(R4), -(R5)MOV ;; SET TRANSMIT BUFFER RELOCATION MOV KISAR6,-(SP) ;; SAVE THE CURRENT APR6 MAPPING MOV (R5) + , KISAR6;; MAP TO THE TRANSMIT BUFFER .IFTF MOVB @(R5)+,(R5);; MOVE ADDRESS BYTE TO 'D. TADC' .1FT MOV (SP)+,KISAR6 ;; RESTORE PREVIOUS APR6 MAPPING . ENDC ADD #D.TSPA-D.TADC,R5 ;; BACK UP TO STATE PROCESSOR CELL TSTB D.FLAG-D.TSPA(R5) ;; IS THE TRANSMITTER READY NOW ? BPL 20\$;; NO -- ENABLE IT, THEN START MOV #TISTRT,(R5) ;; INITIAL STATE = SEND ADDR BYTE BR 40\$;; ENABLE INTERRUPTS AND EXIT 20\$: MOV -2(R5), R3;; TRANSMITTER CSR [SEL 4] TO R3 BIS #DSRTS, -4(R3);; ASSERT 'REQUEST TO SEND' BIS #TXREN, (R3) + ;; ENABLE THE TRANSMITTER MOV #TISCTS, (R5) ;; INITIAL STATE = WAIT FOR 'CTS' 403: BIS #TXITEN,@-(R5) ;; RE-ENABLE TRANSMIT INTERRUPTS TREXIT: MOV (SP) + , R3;; RESTORE R3 FROM ENTRY ASYRET ;; EXIT WHEREVER APPROPRIATE, ASYNC ; -- - - - - - - - --; CURRENT STATE = TRANSMIT KILL OR TIMEOUT ; ; ;- --: CKILLT: MOV #CS.ERR!CS.ABO,-(SP) ;; TRANSMIT COMPLETION STATUS CKTTMO: #TXREN,@D.TCSR-D.TCBQ(R5) ;; DISABLE TRANSMITTER BIC MOV (R5), (R4) ;; ADD SECONDARY CHAIN TO PRIMARY CLR (R5)+ ;; CLEAR SECONDARY CHAIN POINTER 20\$: NOW (SP),R3 ;; COMPLETION STATUS TO R3 MOV (R4), -(SP);; NEXT CCB ADDRESS TO STACK CLR (R4) ;; MAKE SURE LINK WORD IS ZERO CALL \$DDXMP ;; POST A CCB COMPLETE W/ERROR MOV (SP) + R4;; NEXT CCB ADDRESS TO R4

;; MORE TO GO - CONTINUE BNE 20\$;; CLEAN STATUS OFF THE STACK TST (SP)+ ;; KILL CCB ADDRESS TO R4 MOV (R5),R4 ;; NONE - RESTORE R3 AND EXIT BEO TREXIT ;; KILL NO LONGER IN PROGRESS CLR (R5) ;; STATUS = SUCCESSFUL CLR R3 CMPB #FC.KIL,C.FNC(R4) ;; KILL-I/O OR CONTROL FUNCTION ? ;; CONTROL - POST IT COMPLETE BNE 405 ;; POST KILL-I/O COMPLETE CALL \$DDKCP ;; RESTORE R3 AND EXIT BR TREXIT ;; POST CONTROL COMPLETE **\$DDCCP** 40\$: CALL ;; RESTORE R3 AND EXIT ΒR TREXIT .SBTTL \$SDASX -- TRANSMIT ENABLE ENTRY ;+ ; FUNCTION: ; '\$SDASX' IS ENTERED (VIA THE DISPATCH TABLE) TO QUEUE A ; CCB CONTAINING AN SDLC FRAME TO BE TRANSMITTED. IF THE ; TRANSMITTER IS BUSY, THE CCB IS QUEUED TO THE SECONDARY CCB CHAIN. IF NOT, THE TRANSMITTER IS ENABLED TO START TRANSMITTING THE NEW FRAME. ; ; ON ENTRY: ; R4 = ADDRESS OF TRANSMIT ENABLE CCB ; R5 = ADDRESS OF DEVICE LINE TABLE PS = PRIORITY OF CALLING DLC PROCESS : ON EXIT: ALL REGISTERS ARE UNPREDICTABLE ; ;-\$SDASX:: ;; SAVE R3 FOR EXIT VIA 'TRSTRT' MOV R3, -(SP);; TRANSMIT CSR ADDRESS [SEL 4] TO R3 MOV D.TCSR(R5),R3 ;; DISABLE TRANSMITTER INTERRUPTS BIC #TXITEN,(R3) ;; POINT TO ACTIVE CCB ADDRESS CELL ADD #D.TCCB,R5 ;; IS THERE AN ACTIVE CCB ? (R5)+ TST ;; NO -- START UP THE TRANSMITTER BEO TRSTRT ;; SAVE POINTER TO FIRST CCB R4,-(SP) MOV ;; COPY THE CCB ADDRESS TO R4 20\$: MOV R5,R4 ;; ADDRESS OF THE NEXT CCB TO R5 MOV (R4),R5 ;; LOOP UNTIL WE FIND THE END 20\$ BNE ;; LINK NEW CCB TO END OF CHAIN (SP) + , (R4)MOV ;; MARK NEW END OF CCB CHAIN 0(R4) +CLR ;; RE-ENABLE TRANSMITTER INTERRUPTS BIS #TXITEN,(R3)

;; RESTORE R3 AND EXIT BR TREXIT

.SBTTL \$SDASR -- RECEIVE ENABLE AFTER BUFFER WAIT

;+ ; FUNCTION:

;

;

; ; ;

;

;

; ;

: ; ; ;

THIS ROUTINE IS CALLED BY THE BUFFER POOL MANAGER WHEN A BUFFER ALLOCATION REQUEST CAN BE SATISFIED, FOLLOWING AN ALLOCATION FAILURE AND A CALL TO '\$RDBWT'.

; ON ENTRY:

R4 = ADDRESS OF CCB AND RECEIVE BUFFER R5 = ADDRESS OF DEVICE LINE TABLE

ON EXIT: ;

;	R5 =	ADDRESS OF	'D.RCCB	IN THE LINE	TABLE
;	R4 =	ADDRESS OF	'C.STS'	IN THE CCB	
;	(SP) =	SAVED VALUE	E OF R3		
; -					

\$SDASR::

ADD	#D.RDB2,R5	;;	POINT TO SECOND RCVR-CSR WORD
CALL	RBFUSE	;;	ASSIGN BUFFER TO THE RECEIVER
BIS	#CS.BUF,(R4)	;;	PREV. ALLOC. FAILURE TO CCB 'C.STS'
MOV	R3,-(SP)	;;;;;	PUSH R3 FOR EXIT AT 'DREXIT', ABOVE
JMP	DRCLRA		RESET AND ACTIVATE THE RECEIVER

;+ ; \$SDSTR -- START UP DEVICE AND LINE ACTIVITY ;-

\$SDSTR::

	BITB BNE	<pre>#DD.ENB,D.FLAG(R5) ;; HAS THE LINE BEEN ENABLED ? 60\$;; NO REJECT THE 'START'</pre>	
	MOV MOV BIS	D.RDBF(R5),R3 ;; RECEIVER CSR ADDR [SEL 2] TO R3 D.STN(R5),(R3) ;; SET ADDRESS BYTE + OPERATING MODE #RXREN,-(R3) ;; ENABLE THE RECEIVER	
	MOV ADD CALL BCS BIS	R5,-(SP);; SAVE LINE TABLE START ADDRESS#D.RDB2,R5;; ADJUST R5 FOR BUFFER ROUTINERBFSET;; ASSIGN A RECEIVE CCB AND BUFFER20\$;; FAILED - START THE TRANSMITTER#RXITEN,(R3);; ENABLE RECEIVER INTERRUPTS	
20\$:	MOV CLRB BIT BNE BIS BR	(SP)+,R5;; RECOVER LINE TABLE STARTD.FLAG(R5);; LINE HAS BEEN STARTED#DC.HDX,D.DCHR(R5);; CHECK THAT ASSUMPTIONCTLCMP;; CORRECT - STARTUP COMPLETE#DSRTS,(R3);; ASSERT 'REQUEST TO SEND' LINDCTLCMP;;AND POST START COMPLETE	E

60\$:	MOV BR	#CS.ERR!CS.DIS,R3 CTLERR	;; STATUS = LINE DISABLED ;; RETURN ERROR W/COMPLETION
DP.NOP: CTLCMP:		;;	CONTROL FUNCTION = NO-OPERATION
CTI FPR.	CLR	R3 ;;	STATUS = SUCCESSFUL
er blikkt	MOV Synret	(SP)+,R4 ;; ;;	RECOVER SAVED R4 VALUE SYNCHRONOUS RETURN
	.SBTTL	\$SDSTP STOP DE	EVICE AND LINE ACTIVITY
;;	' S T O	P' CONTRO	L FUNCTION ;
; \$SDSTP:	MOV MOV CLR	D.RDBF(R5),R3 ;; #DSDTR,-(R3) ;; 4(R3) ;;	RECEIVER CSR ADDR [SEL 2] TO R3 DISABLE RECEIVER, LEAVE 'DSDTR' ACTIVE DISABLE TRANSMITTER
	MOV BEQ CALL	D.RCCB(R5),R4 ;; 20\$;; \$RDBRT ;;	ACTIVE RECEIVE CCB TO R4 NONE THERE - SKIP IT RETURN BUFFER TO THE POOL
20\$:	CLR CLR BISB CALL	D.RCCB(R5) ;; R4 ;; D.SLN(R5),R4 ;; \$RDBQP ;;	NO RECEIVE CCB ASSIGNED CLEAR R4 FOR PARAMETER USE SET SYSTEM LINE NUMBER IN R4 PURGE BUFFER WAIT QUEUE REQUESTS
	BISB TST BEQ	#DD.STR,D.FLAG(R5) D.TCCB(R5) CTLCMP	;; LINE IS NO LONGER STARTED ;; IS THERE AN ACTIVE TRANSMIT CCB ? ;; NO POST CONTROL COMPLETE
	MOV MOVB Asyret	(SP)+,D.KCCB(R5) #1,(R5)	;; SAVE THE CONTROL CCB FOR TIMEOUT ;; MAKE SURE THE TIMER IS ACTIVE ;; RETURN WITH ASYNCHRONOUS COMPLETION
•	.SBTTL	\$SDENB ENABLE	THE LINE AND DEVICE
;;	ENAI	BLE LINE	AND DEVICE
\$SDENB:	:		······································
	MOV BIS	D.RDBF(R5),R3 ;; #TXRSET,2(R3) ;;	RECEIVER CSR ADDRESS [SEL 2] TO R3 RESET THE DEVICE (1-US SINGLE-SHOT)
20\$:	ADD BIT BEQ SWAB BIC BIS BIC	<pre>#D.DCHR+2,R5 ;; #DC.ADR,(R5)+ ;; 20\$;; (R5) ;; #^C<dpadrc>,(R5) ;; #INPRM,(R5) ;; #DC.ADR,-(R5) ;;</dpadrc></pre>	POINT TO CHARACTERISTICS WORD #1 16-BIT STATION ADDRESS ? NO SHOULD BE ALL SET USE THE HIGH-ORDER BYTE IN DPV-11 ;CLEAR HIGH-ORDER BYTE OF 'D.STN' WORD SETUP INITIAL PARAMETERS ADDRESS-SIZE NO LONGER SIGNIFICANT

	CMPB	#DC.SPS,(R5) ;; SDLC F	PRIMARY-STATION MODE ?
	BEQ	40\$;; YES -	FLAGS ARE SETUP AS IS
	CMPB	#DC.SSS,(R5) ;; SDLC S	ECONDARY-STATION MODE ?
	BNE	60\$;; NO	OPERATING MODE INVALID
	BIS	#DPSECS,2(R5) ;; ENABLE	STATION ADDRESS CHECKING
40\$:	BIS	#DSDTR,-(R3) ;; ASSERT	'DATA TERMINAL READY' LINE
	BICB	#DD.ENB,D.FLAG-D.DCHR-2(R	5) ;; LINE IS ENABLED
	BR	CTLCMP ;; POST C	ONTROL FUNCTION COMPLETE
60\$:	MOV	#CS.ERR!CS.DEV,R3 ;; ERRO	R STATUS - INVALID PROTOCOL
	BR	CTLERR ;; POST	CONTROL COMPLETE WITH ERROR
; \$SDDIS:	.SBTTL	\$SDDIS DISABLE THE L	INE
	MOV	#CS.ERR!CS.ENB,R3	;; ERROR CODE IF NOT STOPPED
	BITB	#DD.STR,D.FLAG(R5)	;; IS LINE STATE CORRECT ?
	BEQ	CTLERR	;; NO REJECT THE DISABLE
	MOV	D.RDBF(R5),R3	;; ADDRESS OF RECEIVER CSR [SEL 2]
	CLR	-(R3)	;; DISABLE RECEIVER + TURN DTR OFF
	MOVB	#DD.ENB!DD.STR,D.FLAG(R5)	;; LINE NO LONGER ENABLED
	BR	CTLCMP	;; CLEAR CARRY AND EXIT

•	.SBTTI	L \$SDMSN S	ENSE	MODEM STATUS
;		SENSE M	0 D E	M STATUS
\$SDMSN	::			;
	C L R MOV	R4 D.RDBF(R5),R3	;;;;;	CLEAR R4 FOR RETURN CODES ADDRESS OF RECEIVER CSR [SEL 2]
	BIT BEQ BIS	#DSDSR,-(R3) 20\$ #MC.DSR,R4	;; ;; ;;	IS THE DATA-SET READY ? NO YES - SET INDICATOR IN R4
20\$:	BIT BEQ BIS	#DSRING,(R3) 40\$ #MC.RNG,R4	;; ;; ;;	IS THE PHONE RINGING ? NO YES - SET INDICATOR IN R4
40\$:	BIT BEQ BIS	#DSCARY,(R3) 60\$ #MC.CAR,R4	;; ;; ;;	IS THERE CARRIER PRESENT ? NO POST COMPLETE YES - SET INDICATOR IN R4
60\$:	MOV BR	R4,(SP) CTLCMP	;; ;;	RETURN RESULTS IN (SAVED) R4 POST CONTROL FUNCTION COMPLETE
	.END			

```
.TITLE DPV - BYTE ORIENTED DPV-11 DEVICE DRIVER MODULE
        .IDENT /X00/
; COPYRIGHT (C) 1980 BY
; DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
;
        EXAMPLE OF AN APPLICATION RSX-11M BYTE ORIENTED DPV-11 DEVICE DRIVER
;
;
        .MCALL $INTSX,$INTXT,INHIB$,ENABL$
        .MCALL CCBDF$, TMPDF$, $LIBCL
        .MCALL MDCDF$
        .MCALL CHADF$
                                 ; DEFINE MODEM CONTROL SYMBOLS
        MDCDF$
                                 ; DEFINE THE CCB OFFSETS
        CCBDF$
                                 ; DEFINE LINE TABLE OFFSET MACROS
        TMPDF$
                                 ; DEFINE DEVICE CHARACTERISTICS
        CHADF$
;
; LOCAL SYMBOL DEFINITIONS
;
; TRANSMITTER FLAGS
                                 ; INITIAL TRANSMIT STATUS (HALF DUPLEX)
TINIT= 000010
                                 ; TRANSMIT ENABLE
TXENA= 000020
                                 ; TRANSMIT INTERRUPT ENABLE
TXINT= 000100
                                ; TRANSMIT ACTIVE
; TRANSMIT START OF MESSAGE
TXACT= 000002
TSOM=
        000400
                                 ; TRANSMIT END OF MESSAGE
TEOM=
        001000
; RECEIVE CSR FLAGS
                                 ; RECEIVE ENABLE
RCVEN= 000020
                                 ; RECEIVE INTERRUPT ENABLE
RXINT= 000100
                                 ; RECEIVE CRC CHECK
CRC=
        3*400
                                 ; STRIP SYNC
       020000
SSYN=
                                 ; PROTOCOL SELECTION (BYTE)
PROSEL= 040000
RINIT= RXINT!RCVEN!DTR
INPRM= SSYN!PROSEL!CRC
                                 ; INITIAL RECEIVE STATUS
                                 ; INITIALIZATION FLAGS
; MODEM STATUS FLAGS
                                 ; REQUEST TO SEND LEAD
RTS=
        000004
                                 ; CLEAR TO SEND
        020000
CTS=
                               ; DATA TERMINAL READY
         000002
DTR=
                                 ; DATA SET READY
DSR=
        001000
                                 ; RING INDICATOR
RING=
        040000
; DPV11 DEVICE DRIVER DISPATCH TABLE
                                 ; TRANSMIT ENABLE
$DPVTB::.WORD
                 DPASX
                                 ; RECEIVE ENABLE (ASSIGN BUFFER)
         .WORD
                 DPASR
                                 ; KILL I/O
                 DPKIL
         .WORD
                                 ; CONTROL INITIATION
         .WORD
                 DPCTL
                                 ; TIME OUT
                 DPTIM
         .WORD
```

```
;+
 ; **-$DPVRI-DPV11 RECEIVE INTERRUPT SERVICE ROUTINE
 ;
  THE DEVICE INTERRUPT IS VECTORED TO THE DEVICE LINE TABLE
 ;
 ; BY THE HARDWARE AND THIS ROUTINE IS ENTERED BY A
  'JSR R5, $DPVRI' INSTRUCTION AT THE BEGINNING OF THE LINE
 ;
  TABLE.
 ;
   INPUTS:
 ;
;
         R5 = ADDRESS OF DEVICE LINE TABLE + 4
;
         STACK:
;
         \emptyset(SP) = SAVED R5
:
         2(SP) = INTERRUPTED BIAS
         4(SP) = INTERRUPTED PC
         6(SP) = INTERRUPTED PS
  OUTPUTS:
;
;
; ETC.
; -
$DPVRI::
         MOV
                 R4, -(SP)
                                  ;;; SAVE R4
                  (R5) + , R4
         MOV
                                  ;;; GET ADDRESS OF RECEIVER DATA BUFFER
                 (R4),R4
         MOV
                                  ;;; GET CHARACTER AND FLAGS
         BMI
                 DPRHO
                                  ;;; ANY ERROR IS RECEIVER OVERRUN
         .IF DF M$$MGE
        MOV
                 KISAR6,-(SP)
                                  ;;; SAVE CURRENT MAP
        MOV
                 (R5) + , KISAR6
                                  ;;; MAP TO DATA BUFFER
         . IFTF
        MOVB
                 R4, @ (R5) +
                                  ;;; STORE CHARACTER IN RECEIVE BUFFER
         .IFT
        MOV
                 (SP)+,KISAR6
                                  ;;; RESTORE PREVIOUS MAPPING
        .ENDC
        DEC
                 (R5)
                                  ;;; DECREMENT REMAINING BYTE COUNT
        BEQ
                 DPRCP
                                  ;;; IF EQ RECEIVE COMPLETE
        INC
                 -(R5)
                                  ;;; ADVANCE BUFFER ADDRESS
        MOV
                 (SP)+,R4
                                  ;;; RESTORE REGISTERS
        $INTXT
                                  ;;; EXIT THE INTERRUPT
 EXCEPTIONAL RECEIVE SERVICE ROUTINES
;
 HARDWARE OVERRUN
;
```

;

;

.ENABL LSB #<RCNT-RDBF-2>,R5 ;;; POINT TO COUNT CELL DPRHO: ADD #100001,RFLAG-RCNT(R5) ;;; SET FLAGS TO COMPLETE REQUEST AND MOV ;;; CLEAR RECEIVE ACTIVE ON EXIT #CS.ERR+CS.ROV, RSTAT-RCNT(R5) ;;; SET OVERRUN STATUS MOV RECEIVE BYTE COUNT RUNOUT ; ; ;;; SAVE CRC FLAG AND POINT TO PRIORITY DPRCP: MOV R4, (R5) +RDBF-RPRI(R5), R4 ;;; GET RECEIVE DATA BUFFER ADDRESS MOV ;;; CLEAR RECEIVER INTERRUPT ENABLE BIC #RXINT,-(R4) ;;; RESTORE R4 SO '\$INTSV' IS HAPPY MOV (SP) + , R4;;; DO A TRICKY \$INTSV (R5 PRESAVED BUT NOT R4) \$INTSX SAVE AN ADDITIONAL REGISTER MOV R3,-(SP) ;; POINT TO FLAGS WORD TST (R5) +;; LOAD C-BIT FROM FLAGS (BIT Ø) ASR (R5) +;; IF CS DATA, POST COMPLETION BCS 20\$;; GET PRIMARY CCB ADDRESS MOV (R5),R4 ;; .LIST MEB \$LIBCL HDRA-RPRIM,R5,\$DDHAR,SAV ;; CALL DDHAR THROUGH LINE TABLE .NLIST MEB SAVE 'FINAL SEEN' IN FLAGS (BIT 15 SET) ROR -2(R5);; EXAMINE BYTE COUNT FOR THIS MESSAGE TST R3 ;; IF MI AN INVALID HEADER RECEIVED BMI 10\$;; IF EQ SET TO RECEIVE REST OF HEADER BEO 7\$ 11 ACCOUNT FOR BCC IN CURRENT COUNT #2,R3 ADD ;; R3, RPCNT-RPRIM R5) ;; SAVE DATA COUNT UNTIL HEADER CRC MOV IS CHECKED ;; ;; GET REMAINING HEADER 7\$: MOV #5,R3 MARK DATA IN PROGRESS IN FLAGS (BIT Ø SET) INC -(R5) ;; INCLUDE CURRENT COUNT IN TOTAL COUNT ADD R3,0-(R5) ;; #RCNT-RTHRD, R5 POINT TO CURRENT COUNT ADD ;; SET UP CURRENT BYTE COUNT MOV R3, (R5) ;; MOVE BUFFER ADDRESS PAST BCC INC -(R5) :: .IF DF M\$\$MGE GET ADDRESS OF RECEIVE DATA BUFFER MOV -4(R5), R3;; .IFF ;; GET ADDRESS OF RECEIVE DATA BUFFER MOV -(R5), R3.ENDC FINISH IN COMMON CODE BR REXTØ ::

; INVALID HEADER RECEIVED

;

10\$:	BIT BNE MOV CALL MOV BR	<pre>#CS.MTL,R3 ;; MESSAGE TOO LONG ? 31\$;; IF NE YES, POST COMPLETION (R5)+,R4 ;; RECOVER PRIMARY CCB ADDRESS BUFUSE ;; SET UP THIS CCB AGAIN (CLEARS 'RSTAT') RDBF-RPRIM(R5),R3 ;; SET POINTER TO REC. DAT. BUFF. 40\$;; CLEAR RECEIVE ACTIVE TO FORCE RESYNC</pre>
; ; Post	COMPLET	ION ON RECEIVE COMPLETE
;	R5 = 1	POINTS TO PRIMARY CCB ADDRESS
20\$:	TST BMI MOV	RCNT-RPRIM(R5) ;; IS CRC ERROR FLAG SET ? 25\$;; IF MI, YES - CRC IS VALID #CS.ERR+CS.DCR,R3 ;; ELSE SET CRC ERROR STATUS FOR DLC
25\$:	MOV BEQ ADD SEC	;; GO RETURN BUFFER RPCNT-RPRIM(R5),RCNT-RPRIM(R5) ;; SET REMAINING COUNT 30\$;; NONE SO END OF MESSAGE RPCNT-RPRIM(R5),@RTHRD-RPRIM(R5) ;; SET TOTAL COUNT IN CCB
	ROL INC MOV BR	RFLAG-RPRIM(R5) ;; PUT Q SYNC BACK & MARK NON HEADER RADD-RPRIM(R5) ;; INCLUDE LAST CHAR IN BUFFER RDBF-RPRIM(R5),R3 ;; GET CSR FOR EXIT REXT :: TAKE COMMON EXIT
30\$: 31\$:	CLR MOV BIS CALL MOV CALL BCS BNE	R3 ;; GET GOOD STATUS (R5)+,R4 ;; GET PRIMARY CCB ADDRESS (R5),R3 ;; PICK UP ADDITIONAL STATUS \$DDRCP ;; POST RECEIVE COMPLETION RDBF-RSTAT(R5),R3 ;; GET ADDRESS OF RECEIVE DATA BUFFER BUFSET ;; SET UP NEXT RECEIVE BUFFER REXT1 ;; IF CS NO BUFFER AVAILABLE TURN OFF RECEIVER 40\$;; IF NE CLEAR BECEIVE ACTIVE TO DECEMDE
REXT: REXT0: REXT1:	CLR BIS MOV RETURN	RPCNT-RPRIM(R5) ;; RESET PARTIAL COUNT #RXINT,-(R3) ;; ENABLE RECEIVER INTERRUPTS (SP)+,R3 ;; RESTORE R3 ;; RETURN TO SYSTEM
40\$: ;		;; REF LABEL
; CLEAR	RECEIVE	ACTIVE TO FORCE RESYNC
; ; ;	R3 = ADI $R5 = ADI$	DRESS OF RECEIVE DAT BUFFER DRESS OF 'RPRIM'
DPCRA:	CLR BIC CLR BIS BIS BR	-(R5) ;; CLEAR FLAGS WORD #RCVEN,-(R3) ;; CLEAR RECEIVE ACTIVE FOR RESYNC RPCNT-RFLAG(R5) ;; RESET FARTIAL COUNT #CS.RSN,RSTAT-RFLAG(R5) ;; INDICATE A RESYNC #RINIT,(R3) ;; ENABLE RECEIVER REXT1 ;; FINISH IN COMMON CODE

.DSABL LSB

```
;+
 **-$DPVTI-DPV11 TRANSMIT INTERRUPT SERVICE
;
; THIS ROUTINE IS ENTERED ON A TRANSMITTER INTERRRUPT VIA
; A 'JSR R5, DPVTI' WITH R5 CONTAINING THE ADDRESS OF THE
 DEVICE LINE TABLE OFFSET BY 'TCSR'.
:
; INPUTS:
;
        R5 = ADDRESS OF DEVICE LINE TABLE + 'TCSR'
;
        STACK CONTAINS:
;
        Ø(SP) = INTERRUPTED R5
        2(SP) = INTERRUPTED BIAS
        4(SP) = INTERRUPTED PC
:
        6(SP) = INTERRUPTED PS
; OUTPUTS:
;
; ETC.
;-
        .ENABL LSB
$DPVTI::
                                 ;;; SAVE R4
        MOV
                R4,-(SP)
                                 ;;; GET TRANSMITTER CSR ADDRESS
                 (R5) + , R4
        MOV
                                 ;;; TEST FOR UNDERRUN
                 (R4) +
        TST
                                 ;;; IF MI, UNDERRUN - WAIT FOR TIMEOUT
        BMI
                10$
                 TCNT-TCSR-2(R5) ;;; DECREMENT COUNT
        DEC
                                 ;;; IF EQ, BYTE COUNT RUNOUT
                 20$
        BEQ
        .IF DF
                M$$MGE
        MOV
                KISAR6,-(SP)
                                 ;;; SAVE CURRENT MAPPING
                                ;;; MAP TO DATA BUFFER
        MOV
                 (R5) + KISAR6
        .IFTF
                                 ;;; OUTPUT A CHARACTER
        MOVB
                 Q(R5) + (R4)
        .IFT
                                  ;;; RESTORE PREVIOUS MAPPING
        MOV
                 (SP) + , KISAR6
        .IFTF
                                 ;;; UPDATE BUFFER ADDRESS
        INC
                 -(R5)
                 (SP) + , R4
                                 ;;; RESTORE R4
        MOV
        $INTXT
 TRANSMITTER UNDERRUN
;
```

; DISABLE TRANSMITTER INTERRUPTS AND WAIT FOR A TIMEOUT

; 10\$: BISB #TSOM/400,1(R4) ;;; CLEAR UNDERRUN BIT #TUNST, TSTAT-TCSR-2(R5) ;;; SET STATE TO DISABLE TRANSMITTER-MOV ; TRANSMIT BYTE COUNT RUNOUT ï ; OUTPUT TO STATE PROCESSING ROUTINES: R3 = ADDRESS OF TRANSMITTER CSR ; R5 = ADDRESS OF THREAD WORD CELL ; ; #TPRI-TCSR-2,R5 ;;; POINT TO PRIORITY DATA 20\$: ADD BIC #TXINT,-(R4) ;;; CLEAR INTERRUPT ENABLE MOV (SP)+,R4;;; RESTORE R4 SO '\$INTSV' IS HAPPY \$INTSX ; SAVE WITH R5 ON STACK BUT NOT R4 .IFT MOV KISAR6,-(SP) ;; SAVE CURRENT MAPPING .IFTF MOV R3,-(SP) ;; SAVE AN ADDITIONAL REGISTER TCSR-TSTAT(R5),R3 ;; GET TRANSMITTER CSR ADDRESS MOV CALLR @(R5)+ ;; DISPATCH TO PROCESSING ROUTINE .DSABL LSB ;+ **-DPASX-ASSIGN A TRANSMIT BUFFER ; ; THIS ROUTINE IS ENTERED VIA THE MATRIX SWITCH TO ; ; QUEUE A CCB FOR TRANSMISSION. INPUTS: ; R4 = ADDRESS OF CCB TO TRANSMIT R5 = ADDRESS OF DEVICE LINE TABLE ; OUTPUTS: ; IF THE TRANSMITTER IS IDLE, TRANSMISSION IS INITIATED; OTHERWISE, THE CCB (OR CHAIN) IS QUEUED TO THE END OF THE SECONDARY CHAIN. ; REGISTERS MODIFIED: ; R3, R4, AND R5 ; ; -

DPASX:		·		
	MOV BIC ADD	TCSR(R5),R3 ; #TXINT,(R3) ; #TPRIM,R5 ;	GET TRANSMITTER CSR ADDRESS DISABLE TRANSMITTER INTERRUPTS POINT TO PRIMARY CELL	
	.IFT			
	MOV	KISAR6,-(SP) ;	SAVE CURRENT MAPPING	
	.IFTF			
	MOV TST BNE CALL BIT BEQ MOV BR	R3,-(SP) (R5)+ 10\$ TBSET #TXACT,(R3) STSTR #STSTR,-(R5) WAITI	SAVE R3 PRIMARY ASSIGNED ? IF NE, YES - QUEUE TO SECONDARY SET UP PRIMARY TRANSMITTER ACTIVE ? IF EQ, NO - START IMMEDIATELY SET STATE FOR STARTUP WAIT FOR INTERRUPT	CHAIN
10\$: 20\$:	MOV MOV BNE MOV BR	R4,-(SP) R5,R4 (R4),R5 2Ø\$ (SP)+,(R4) TEXT2	; SAVE POINTER TO FIRST CCB ; COPY POINTER TO CCB ; GET NEXT CCB ; IF NE, KEEP GOING ; LINK NEW CCB CHAIN TO LAST CCB ; FINISH IN COMMON CODE	
;+ ; **-ST ; ;-	STR-STAR	TUP STATE PROCESS	ING	
STSTR:	BIS BIS MOVB	#RTS,-4(R3) #TXENA,(R3) TIMS-TTHRD(R5),T	; ASSERT REQUEST TO SEND ; ENABLE TRANSMITTER IME-TTHRD(R5) ; START TIMER	
;+ ; **-SI ; ;-	CTS-WAIT	FOR CLEAR TO SEN	D STATE PROCESSING	
STCTS:	BIT BNE MOV MOV BR	#CTS,-4(R3) STSYN #STCTS,-(R5) #\$PADB,R4 #TSOM,-(SP) TEXT1	; IS CLEAR TO SEND UP ? ; IF NE, YES - START SYNC TRAIN ; SET STATE FOR CTS ; SET ADDRESS OF PAD BUFFER ; SET TSOM, CLEAR TEOM ; FINISH IN COMMON CODE	
;+ ; **-S1 ; ;-	SYN-SYNC	TRAIN REQUIRED S	TATE PROCESSING	
STSYN:	MOV	#STDAT, -(R5)	; SET STATE FOR DATA	

MOV #\$SYNB,R4 ; SET ADDRESS OF SYNC BUFFER MOV ; SET TSOM, CLEAR TEOM #TSOM,-(SP) BR TEXTØ ; FINISH IN COMMON CODE ;+ **-STCRC-SEND CRC STATE PROCESSING ; ; -.ENABL LSB STCRC: #TEOM,2(R3) BIS ; SEND CRC CALL TPOST ; POST COMPLETION AND SET UP NEXT CCB BNE 10\$; IF NE, NOTHING MORE TO SEND MOV #STDAT, -(R5) ; ASSUME NEXT STATE IS SEND SYNC'S BIT #CF.SYN,C.FLG-C.BUF(R4) ; ARE SYNC'S REQUIRED ? BEQ 20\$; IF EQ, NO - LEAVE ASSUMED STATE #STSYN, (R5) MOV ; ELSE CHANGE STATE TO SEND SYNC'S ΒR 20\$; WAIT FOR CRC TO BE SENT 105: MOV #STIDL,-(R5) ; SET STATE TO IDLE BIC #TXENA,(R3) · ; SHUT DOWN TRANSMITTER 20\$: ; ;+ ; **-WAITI-WAIT FOR INTERRUPT ; ;-#1,TCNT-TSTAT(R5) ; WAIT FOR ONE INTERRUPT WAITI: MOV TIMS-TSTAT(R5), TIME-TSTAT(R5) ; START TIMER MOVB BR TEXT2 ; FINISH IN COMMON CODE ;+ **-STIDL-IDLE STATE PROCESSING ; ; ;-STIDL: BIC #RTS,-4(R3) ; DROP REQUEST TO SEND TST -(R5) 30\$: CLRB TIME-TSTAT(R5) ; CLEAR TIMER BR TEXT3 ; FINISH IN COMMON CODE .DSABL LSB ;+ **-TUNST-TRANSMIT DATA UNDER RUN STATE ; ; RETURN ALL TRANSMIT BUFFERS TO HIGHER LEVEL ; ; -TUNST: ADD #-TTHRD,R5 ;;TIMEOUT EXPECTS DDM LINE TABLE POINTER CLRB (R5) ;;RESET TIMER CALL DPTIM ;;FAKE A TIMEOUT TO RETURN BUFFERS MOV #STIDL, TSEC-TSTAT(R5) ;;SET STATE TO IDLE BR TEXT3 ;;TAKE COMMON EXIT

;+ **-STDAT-DATA STATE PROCESSING ; ;-STDAT: MOV (R5),R4 ; GET ADDRESS OF FLAGS WORD FROM THREAD #C.FLG-C.STS, (R5) ; UPDATE THREAD POINTER ADD TST (R4)+ ; LAST BUFFER THIS CCB ? (BIT 15 SET) BPL 10\$; IF PL, NO CALL TPOST ; POST COMPLETION AND SET UP NEXT CCB 10\$: MOV #STDAT, -(R5) ; ASSUME DATA CONTINUES #CF.EOM,C.FLG-C.BUF(R4) ; SEND CRC FOLLOWING THIS BUFFER ? BIT BEQ 20\$; IF EQ, NO - LEAVE ASSUMED STATE #STCRC, (R5) MOV ; ELSE CHANGE STATE FOR CRC TO BE SENT 20\$: CLR -(SP); CLEAR TSOM, CLEAR TEOM ;+ ; **-TEXTØ-COMMON EXIT ROUTINES ; **-TEXT1-; **-TEXT2-; **-TEXT3-; ;-TEXTØ: MOVB TIMS-TSTAT(R5), TIME-TSTAT(R5) ; START TIMER TEXT1: ADD #TCSR-TSTAT+2,R5 ; POINT TO CURRENT BUFFER CELL .IFT MOV (R4) + , (R5) +; COPY RELOCATION BIAS .IFF TST (R4) +; SKIP OVER RELOCATION BIAS IN CCB .IFTF MOV (R4) + , (R5) +; COPY VIRTUAL ADDRESS MOV (R4),(R5) AND THE BYTE COUNT : .IFT MOV ; MAP TO DATA BUFFER -4(R5), KISAR6 .IFTF BISB 0-2(R5),(SP); BUILD CHARACTER TO OUTPUT INC -2(R5); UPDATE VIRTUAL ADDRESS MOV (SP) + , 2(R3); OUTPUT CHARACTER AND FLAGS ; ENABLE TRANSMITTER INTERRUPTS TEXT2: #TXINT,(R3) BIS TEXT3: MOV (SP) + , R3; RESTORE R3

D-22

.IFT

MOV (SP)+,KISAR6 ; RESTORE PREVIOUS MAPPING .ENDC SEC ; SET C-BIT ASYNCHRONOUS COMPLETION RETURN ; RETURN TO CALLER ;+ **-DPSTR-DEVICE START-UP THIS ROUTINE IS CALLED TO ACTIVATE THE DEVICE. ; ; ;-DPSTR: MOV R4, -(SP); SAVE THE CALLING CCB MOV RDBF(R5), R3; GET RECEIVER DATA BUFFER ADDRESS MOV #\$SYNC+INPRM,(R3) ; SET INITIAL PARAMETERS TST ; POINT TO RECEIVER CSR -(R3)ADD ; POINT TO STATUS WORD #RSTAT,R5 CALL BUFSET ; ASSIGN A PRIMARY CCB (AND BUFFER) BCS 20\$; IF CS GO TO TRANSMITTER CLR -2(R5); CLEAR THE FLAGS WORD MOV #RINIT,(R3) ; INITIALIZE RECEIVER 20\$: MOV #TINIT,4(R3) ; TURN ON TRANSMITTER DPVCH+3-RPRIM(R5),TIMS-RPRIM(R5) ;SET DDM TIME INTERVAL MOVB BIT #1,DPVCH-RPRIM(R5); HALF DUPLEX BNE 30\$; IF NE YES, DONT FORCE FD MODE BIC ; INDICATE FULL DUPLEX #TINIT,4(R3) BIT #CH.MDT,DPVCH+2-RPRIM(R5) ; IS THIS A MULTIPOINT SLAVE? BNE 30\$;YES - DO NOT SET REQUEST TO SEND BIS #RTS,(R3) ; ASSERT REQUEST TO SEND FOR FULL DUPLEX 30\$: MOV (SP) + , R4; RESTORE THE CALLING CCB CLC ; CLEAR C-BIT SYNCHRONOUS COMPLETION RETURN ; RETURN ;+ **-DPSTP-STOP DEVICE ; RETURN OUTSTANDING BUFFERS AND CLEAR TIMERS ; -DPSTP: MOV R4, -(SP); SAVE THE CALLING CCB MOV RDBF(R5),R3 ; GET RECEIVE DATA BUFFER ADDRESS MOV #DTR, -(R3); DISABLE RECEIVER - LEAVE DTR UP CLR DISABLE TRANSMITTER 4(R3) ; MOV RPRIM(R5),R4 ; GET PRIMARY RECEIVER CCB BEQ 10\$; IF EQ, NONE ASSIGNED CALL \$RDBRT ; RETURN BUFFER TO THE POOL 10\$: CLR RPRIM(R5) ; CLEAR PRIMARY POINTER LINE(R5),R4 MOV ; SET SYSTEM LINE NUMBER CALL ; REMOVE ANY WAIT REQUESTS \$RDBQP MOV (SP)+,R4; RESTORE THE SAVED CCB TST TPRIM(R5) ; IS ANYTHING ACTIVE BNE 20\$; YES, SO SAVE FOR TIMEOUT

	CALL BR	\$DDCCP 30\$; NO, SO GIVE THE COMPLETION T ; AND EXIT	NOW
20\$: 30\$:	MOV SEC Return	R4,KICCB(R5)	; SAVE THE CCB FOR LATER ; INDICATE ASYNC ; AND EXIT	

. END

GLOSSARY

Asynchronous Transmission

Transmission in which time intervals between transmitted characters may be of unequal length. Transmission is controlled by start and stop elements at the beginning and end of each character. Also called start-stop transmission.

BDIN

Data Input on the LSI-II bus.

BDOUT

Data Output on the LSI-II bus.

BIAKI

Interrupt Acknowledge.

Bit-Stuff Protocol

Zero insertion by the transmitter after any succession of five continuous ones designed for bitoriented protocols such as IBM's Synchronous Data Link Control (SDLC).

Bits per Second (b/s)

Bit transfer rate per unit of time.

BIRO

Interrupt Request priority level for LSI-11 bus.

BRPLY

LSI-11 Bus Reply. BRPLY is asserted in response to BDIN or BDOUT.

BSYNC

Synchronize – asserted by the bus master device to indicate that it has placed an address on the bus.

Buffer

Storage device used to compensate for a difference in the rate of data flow when transmitting data from one device to another.

BWTBT

Write Byte.

CCITT

Comite Consultatif Internationale de Telegraphie et Telephonie – An international consultative committee that sets international communications usage standards.

Control and Status Registers (CSRs)

Communication of control and status information is accomplished through these registers.

Cyclic Redundancy Check (CRC)

An error detection scheme in which the check character is generated by taking the remainder after dividing all the serialized bits in a block of data by a predetermined binary number.

Data Link Escape (DLE)

A control character used exclusively to provide supplementary line control signals (control character sequences or DLE sequences). These are 2-character sequences where the first character is DLE. The second character varies according to the function desired and the code used.

Data-Phone DIGITAL Service (DDS)

A communications service of the Bell System in which data is transmitted in digital rather than analog form, thus eliminating the need for modems.

DIGITAL Data Communications Protocol (DDCMP)

DIGITAL's standard communications protocol for character-oriented protocol.

Direct Memory Access (DMA)

Permits I/O transfer directly into or out of memory without passing through the processor's general registers.

Electronic Industries Association (EIA)

A standards organization specializing in the electrical and functional characteristics of interface equipment.

Full-Duplex (FDX)

Simultaneous 2-way independent transmission in both directions.

Field-Replaceable Unit (FRU)

Refers to a faulty unit not to be repaired in the field. Unit is replaced with a good unit and faulty unit is returned to predetermined location for repair.

Half-Duplex (HDX)

An alternate, one-way-at-a-time independent transmission.

LARS

Field Service Labor Activity Reporting System.

Non-Processor Request (NPR)

Direct memory access-type transfers, (see DMA).

Protocol

A formal set of conventions governing the format and relative timing of message exchange between two communicating processes.

RS-232-C

EIA standard single-ended interface levels to modem.

RS-422-A

EIA standard differential interface levels to modem.

RS-423-A

EIA standard single-ended interface levels to modem.

RS-449

EIA standard connections for RS-422-A and RS-423-A to modem interface.

Synchronous Transmission

Transmission in which the data characters and bits are transmitted at a fixed rate with the transmitter and receiver synchronized.

V.35

(CCITT Standard) - Differential current mode-type signal interface for high-speed modems.

사람 소설 가 다

一般的人名法 化化学试验 化苯乙基乙基 医小子 医外外外的 法法律的法律法 化化化合物 经收益 化合金

· 승규는 아이는 영향은 것이 전 것이 가지? 것이 이 이 것이 가지?

나는 한테 동안에게 있는 것같이 가지만 하는 것 같아. 위험한 것 같아. 이는 아니는 아니는 것 같아. 정말 가지만 것 같은 것 같아. 이렇게 하는 것같아. 아니는 것 같은 것은 것같은 것이 하는 것이 같아.

and the state of the second state of the secon

DPV11 Serial Synchronous Interface User Guide EK-DPV11-UG-001

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our publications.

What is your general reaction to this manual? In your judgement is it complete, accurate, well organized, well written, etc? Is it easy to use? ____

What features are most useful?_____

What faults or errors have you found in the manual?_____

Does this manual satisfy the need you think it was intended to satisfy?_____

Does it satisfy your needs? _____ Why? _____

Please send me the current copy of the Technical Documentation Catalog, which contains information on the remainder of DIGITAL's technical documentation.

Name	Street	
Title	City	
Company	State/Country	
Department	Zip	
	-	

Additional copies of this document are available from:

Digital Equipment Corporation Accessories and Supplies Group Cotton Road Nashua, NH 03060

Attention Documentation Products Telephone 1-800-258-1710

Order No. EK-DPV11-UG

digital

No Postage Necessary if Mailed in the United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 33 MERRIMACK. NH

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation Educational Services Development & Publishing Continental Blvd. (MK1/2M26) Merrimack, N.H. 03054