July 1978

This manual is directed to the TRAX application designer. This person is
responsible for studying the functional specification of a proposed system
and developing an appropriate technical design. The application designer
may have one of several titles — system analyst, analyst/programmer, chief
programmer. If you are responsible for selecting an approach for an
application or if you must make technical design decisions while developing
a TRAX application, you should read this manual.

TRAX

Application Designer’s Guide
Order No. AA-D328A-TC

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

OPERATING SYSTEM AND VERSION: TRAX 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

First Printing, August 1978

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright @ 1978 by Digital Equipment Corporation

The postage-prepaid READER’S COMMENTS form on the last page of this document requests the user’s
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS-10

8/78 - 14

CHAPTER 1
1.1
1.2
13
14
1.5
1.6
1.7
1.8
19
1.10
1.11

CHAPTER 2
2.1
2.2
2.3

CHAPTER 3
3.1
3.2

33
34
3.5
3.6
3.6.1
36.2

CHAPTER 4

4.1
4.1.1
4.1.1.1
41.1.2
4.1.13
41.14
4.1.1.5
4.1.2
4.1.2.1
4122
4123
4124
4.2
4.2.1
42.2
42.3

CONTENTS

...

FORMS AND TRANSACTIONPROCESSINGot iiiiii i,
TRAX APPLICATION TERMINALS i
DISTRIBUTED DATAPROCESSING 0.t
DATAMANAGEMENT SYSTEM ittt
RELIABILITY e
LANGUAGES . . . i et e e e

THE TRAXSAMPLE APPLICATIONt iiiiinnennnnn.
THEBUSINESSPROBLEM i,
THE SAMPLE APPLICATION ADDRESSES THE BUSINESS PROBLEM
THE EXAMPLESINTHISMANUAL,

AN INTRODUCTION TO TRANSACTIONPROCESSORS
ASAMPLE TRANSACTION ettt e e
IMPLEMENTING THE SAMPLE TRANSACTION ON SYSTEMS OTHER
THAN TRAX . e e e e e ettt e iieeee e
IMPLEMENTING THE SAMPLE TRANSACTIONONTRAX
FORMS ARE IMPORTANT TO TRANSACTION PROCESSORS
IMPORTANT TRANSACTION PROCESSORTERMS
A TRANSACTIONPROCESSORATWORK ottt
The Components Involved @i iiianennnnn
TheSequence of Events ittt it iieennnnns

TRANSACTION PROCESSING PATHS ANDTHEIRCONTROL
FUNDAMENTALS: STATIONS ANDMESSAGES i
N7 15 103+ J

Link Master and Link Slave Stations
Mailbox Stationsttt e e
Messages e e e e e e e
Exchange Messagesttt i e e
Response Messagesoiiii i itine i e e
Report Messagesttt i i e e e e e
Mailbox Messageso vttt it i it e e e e e,
THE TRANSACTION DEFINITION it ineinnnnnn
Exchange Label it it ieeieiann
Form Name e
Routing List i it i e e e et et e

iii

4.2.4
425
426
427
428
4.3

4.3.1
432
433
434
435
44

44.1
442
443
444
4.4.5
44.6
4.5

CHAPTER 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

CHAPTER 6
6.1
6.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.6
6.7
6.8

CONTENTS (CONT.)

Page
The NOWAIT Optionttt ittt itieeennennenenenn 4-8
The REPEAT Optionttiiittiininneenenenneennennns 4.9
Subsequent ACtionttt e e 4.9
Exchange TimeLimit00ttt innerennnnnnnnnnnn 4-10
General Transaction Parameters iiiuineunnn.. 4-10
THE EFFECTS OF TERMINAL FUNCTIONKEYS 4-10
The AFFIRMKey it it it ettt ie i e 4-11
The STOP REPEAT Keyottt iieie e enennnannnns 4-13
The CLOSE Keyttt ittt ettt et eeanennnnns 4-13
The ABORTKey e et ettt et e e e, 4-13
TheUser Function Keysiiiiintininieneneneneennennens 4-13
THE RESPONSE MESSAGES it e it iie e, 4-13
The PRCEED Messageo it ittt ittt et iee e et eennn e 4-14
The STPRP T Message cuiinn et ineeneeeenaeeenenneannnans 4-15
The TRNSFR Messageo it ittt ittt teieaeee e ennennenns 4-15
The CLSTRNMessagettt ittt ittt ieananeenannnns 4-15
The REPLY Messageo v it ittt ttit ittt tneeeenineeanennens 4-16
The ABORT Message oot ii ittt it teeaennannnanns 4-17
AN EXAMPLE OF TRANSACTIONPROCESSINGPATHS 4-17
FORMS AND THE APPLICATION TERMINAL LANGUAGE 5-1
THE PURPOSE AND SCOPE OF THE APPLICATION TERMINAL LANGUAGE 5-1
PREPARING A FORMDEFINITIONWITHATL 5-1
KINDSOFFORMS it i ittt i 5-2
FORMS AND FIELDS it ettt et e i eaaann 5-2
ATLLANGUAGE ELEMENTS i it ieiiae e 5-3
STATEMENT GROUPS ittt ettt eaeaneannen 5-5
STATEMENT ORDERttt ettt ieaneenanen, 5-6
COMMENTSIN FORMDEFINITIONSt iiiiiiiiiennnn. 5-6
SHORTHAND NOTATION it ettt 5-7
ATLANDFORMDESIGNttt ittt tnenneeeeannns 5-8
ATYPICALFORMDEFINITION et e e e ieeaeens 5-8
TRANSACTIONSTEPTASKS it it i it e eeennens 6-1
THE PURPOSE OF TSTS ittt e et et et e 6-1
GENERALSTRUCTUREOF ATST ittt it i i eaeaanens 6-2
PROGRAMMING A TST ittt ittt ettt eiaae ey 6-3
Input Parameters iiiieinn e teneeeetnrnaennns 6-3
SystemCalls0ttt 6-6
DEBUGGING A TST ittt ittt it teeae e eian e, 6-6
Stand-alone Debuggingttt i e 6-6
Debugging in a Transaction Processorci i nn. 6-7
Traced Operation in a TransactionProcessor 6-7
INSTALLING A TST ittt ittt e ettt eieeeaaeaaeennans 6-8
TST Station Parametersttt ittt ittt eeeeeeneannns 6-8
The TST TaskImage i i it 6-8
EXECUTING ATSTttt ittt ettt ettt 6-8
APPLICATION FILEACCESSFROM TSTSo ittt i i e enn 69
STUDYING A TYPICAL TST it it ittt e ettt eaenaan 69

iv

CHAPTER 7
7.1
7.2

CHAPTER 8
8.1
8.2
83
8.4
8.5
8.6
8.6.1
8.6.2
8.6.3
8.7
8.7.1
8.8
8.8.1

CHAPTER 9
9.1

9.1.1
9.1.2
9.1.3
9.2

9.2.1
922
9.23

CHAPTER 10
10.1
10.1.1
10.1.2
10.1.3
10.14
10.2
10.2.1
10.2.2
102.3
103
10.3.1
10.3.2
103.3

CHAPTER 11
11.1

11.1.1
11.1.2

CONTENTS (CONT.)

Page
PRESERVING TRANSACTION INSTANCECONTEXTc..... 7-1
THE TRANSACTION SLOT ittt it it it et eaeeneaaenns 7-1
CONTEXT REQUIREMENTSOF FILEACCESS iitinrinnenn. 7-3
APPLICATION DATA FILES it i et iinenaneennns 81
RMS . e e e e e e e e 8-1
FILE ACCESS FROM TSTS it ittt i it eeeeneaasenns 82
WORK FILES ittt it ettt ee e teaanannnn 83
RECORDLOCKING ittt et tee et taaeanaeeanans 8-3
STAGING i it et e et e e e e 84
DATA FLOW DURING FILE ACCESSOPERATIONS 8-5
DataFlowDuringaReadttt ieinerenennnns 8-5
Data Flow During an Unstaged Updatecoiueeun. ... 8-5
Data Flow DuringaStaged Update RPN 8-5
JOURNALING ittt ittt teeteeee e teaeeneeananens 8-6
ReconstructingJournals i e e e 89
LOGGING ...ttt ittt e ie ittt e 89
Inspecting and Analyzing LogEntrdes 89
INITIATING TRANSACTION INSTANCES iiriennnnn.. 9-1
INITIATING TRANSACTION INSTANCES FROM AN APPLICATION
TERMINAL . .. i i ettt e e e e 9-1
Terminals That Can Invoke Only One Transaction 9-1
Terminals That Can Execute Several Transactions 9-1
Terminals That Require UserSign-On e, 9-2
INITIATING TRANSACTION INSTANCES IN OTHERWAYS 94
Spawned Transactions it ii ittt it it 94
Support Environment Programs i, 94
Other Transaction Processorst 9-5
SECURITY, RELIABILITY, ANDPERFORMANCE 10-1
SECURITY . .. i it it ettt cansanaean s 10-1
Application Terminals and Support Terminals e 10-1
Work Classesand Signing Onttt nnennnss 10-1
Terminals Running a Single Transaction, 10-2
Loggingt i i e e s e e 10-2
RELIABILITY it ittt ittt ittt eteaneananeanscnnans 10-2
Exchange Recovery ittt ittt i it eeiean e 10-2
Crash RecOVerYttt it iiiet i ieeionacanenananonnnas 10-3
DataFile Recovery ittt ittt teaenenanenn 10-3
PERFORMANCE e ettt ettt 10-3
Record LocKingoi ot ittt ittt it e et et e et it ie e 104
Internal System Design e et e i e 104
Cachingttt ittt ettt tenenaanaeanneeens 104
TRANSACTION PROCESSORS AND DISTRIBUTED PROCESSING 11-1
INTERFACE BETWEEN TRANSACTION PROCESSORS AND
SUPPORT ENVIRONMENT ittt ittt iteeenenennnnaann 11-1
Path Initiated by the Transaction Processor i 11-1
Path Initiated by a Support Environment Program 113

PART 2

CHAPTER

CHAPTER

CHAPTER

CHAPTER

11.2
11.2.1
11.2.2
1123
11.2.4
11.3

12
12.1
12.1.1
12.1.2
12.2
12.2.1
12.2.2
12.2.3
1224
12.2.5
12.2.6

13

13.1
13.2
133
13.4

14

14.1
14.1.1
14.1.2
14.1.3
14.2
14.2.1
14.2.2
14.2.3
14231
14.2.3.2
14233
14.3
14.4
14.4.1
14.4.2
144.3

15

15.1
15.2
153

CONTENTS (CONT.)

Page
INTERFACE BETWEEN TWO TRANSACTIONPROCESSORS 114
Master and Slave Transaction Processors 114
How the Interface Works ittt 114
Cooperation Between Masterand Slave 11-7
Linksand Sublinks i 11-7
INTERFACE WITH NON-TRAXSYSTEMS i, 11-10
REVIEWING BUSINESS ANALYSISTECHNIQUES 12-1
STUDYING BUSINESS ACTIVITIES i, 12-1
Studying Business Procedures i it 12-1
Studying Business Data Storage e e et e e e e 122
DEVELOPING SYSTEM FUNCTIONAL SPECIFICATIONS 122
SYStemM SCOPE . . . ittt e e e e e e e 122
Fundamental System Alternatives ceeee e 12-3
Specifying Transaction Processing Functions 12-3
Specifying Batch Processing Functions 12.3
Specifying Data Storage Requirements ieeneen.. 12-3
Specifying System Reliability Requirements 124
AN INTRODUCTION TO TRAXTECHNICALDESIGN 13-1
DESIGN OF USER-SYSTEM CONVERSATION, 13-1
PROCESSING DESIGN i it et ettt e 132
APPLICATION RELIABILITY ISSUES i, 13-2
STEPS IN THE TRAXDESIGNPROCESS oo, 13-3
DESIGNING THE OVERALL STRUCTURE OF ATRANSACTION 14-1
TRANSACTION STRUCTUREDIAGRAM i 14-1
An Example Transaction it iiiiiiiiineenns 14-1
Diagram Symbols i e e i e 14-2
TransactionControl Flow i 14-6
OVERLAPPED PROCESSING ittt ennn 14-6
Overlap via Response Messages 14-6
Overlapviathe NOWAIT Option oo i, 14-7
Restrictions on Overlapped Processing 14-7
No Communication with Terminal during Overlapped Processing 14-8
No Overlap Possible if Exchange Recovery Selected 14-8
Restriction on the Durationof Overlap 14-8
TRANSACTIONDATASTRUCTURES 14-8
TRANSACTION ACCESS SECURITY TECHNIQUES 14-14
Terminal-Based Access.ottt ittt i i e 14-14
User-Based ACCeSS . . vv oottt it ittt ettt e e e e e 14-14
AccessControl Design e e e e e e e e 14-15
SEVERAL TRANSACTION DESIGNEXAMPLES 15-1
THE APPLICATIONPROBLEM i, 15-1
ASIMPLETRANSACTIONDESIGN ittt e e e 15-1
AN ALTERNATIVE DESIGN WITHONLY ONEEXCHANGE 154

154
15.5
15.6
15.7
15.8

CHAPTER 16
16.1
16.2
16.2.1
16.2.2
16.2.3
16.3
16.4
16.4.1
16.4.2
16.5

CHAPTER 17
17.1
17.2
17.3
17.4
17.5
17.6
17.6.1
17.6.2
177

CHAPTER 18
18.1
18.1.1
18.1.2
18.1.3
18.2
18.2.1
18.2.2
18.3
18.3.1
18.3.2

CHAPTER 19

191
192
19.3
19.3.1
19.3.2
19.3.3
19.3.3.1
19.3.3.2

CONTENTS (CONT.)

Page
THE EFFECT OF THE REPEATOPTION 15-8
ALLOWING THE USER TO BROWSE THROUGHTHEFILE 1510
IMPROVING THE BROWSING CAPABILITY i 15-10
BROWSINGON TWO INDEXES it ettt i et eeeeaenn 15-11
ERROR MESSAGES e e et ee e 15-18
DOCUMENTING THE TRANSACTIONDESIGNc.cc0.... 16-1
STANDARDIZING TRANSACTION COMPONENTS 16-1
DEFINING STATIONS e e e e e et e 16-1
Terminal Stationsttt i it e e e e 16-1
ST Station e e e e e e e 16-2
Special Station Types ittt e e e 16-5
WORK CLASSES AND USER AUTHORIZATIONS, 16-5
TRANSACTIONDEFINITIONS e e e e 16-8
Overall Transaction Parameters 0ttt 16-8
Exchange Definitions i 16-13
TRANSACTION DOCUMENTATION ittt ieee e 16-14
DESIGNING FORMS ittt ittt et et et etenaenanns 17-1
REVIEWING THE FUNCTIONSOF ENTRY FORMS 17-1
THEBASIC FORM LAYOUT it ettt e e et eeaennn 17-1
INITIAL FIELD VALUES i e it e e et it et eneees 172
BUILDING THE EXCHANGEMESSAGE i 174
DESIGNING REPLIES ittt et e eeeeaa e 174
SPECIAL PURPOSE FORMS i i e e e e e 174
Output-Only (Report) Forms 174
Transaction Selection Forms i et 17-5
WRITING THE FORM DEFINITIONS i e it e i eee e 17-5
EXAMPLESOF FORMDESIGN ittt it i, 18-1
THE RELATIONSHIP BETWEEN THE TRANSACTION ANDITSFORMS 18-1
Requirement forTwoForms 18-1
Characteristicsof the First Form, 18-1
Characteristics of the Second Form 184
DESIGNING THE FIRST FORM it et i ie e 18-7
DesignPoints e e 18-7
The Finished Form Definition 18-12
DESIGNING THE SECOND FORM ittt iieiiieann 18-12
DesignPoints e e 18-12
The Finished Form Definition i, 18-22
DESIGNING AND SPECIFYING TSTS ittt ittt iaeeeaerans 19-1
REVIEWING TST OPERATION it it i eieaean 19-1
CHOOSING A PROGRAMMING LANGUAGE it 19-2
DESIGNING FOR OPTIMUM TST PERFORMANCE 19-2
Programming Language Considerationsottt 19-2
File Access Considerationsttt i inineinneenneennnns 19-4
Minimizing Access Conflictsin Shared Files 19-4
The Durationof Record Locks it nnnnn.. 19-4
Avoiding Access Conflictsttt e e 19-5

vii

19.34
19.34.1
19.34.2
19.34.3
19.34.4
194
19.5

CHAPTER 20

20.1
20.2
20.3

CHAPTER 21

21.1
21.2
21.3
214
21.5
21.5.1
21.5.2
21.5.3
21.6
21.6.1
21.6.2
21.6.3
21.7
21.8
21.9
21.10
21.11

CHAPTER 22

22.1
22.2

CHAPTER 23

23.1

23.1.1
23.1.2
23.1.3
23.14
23.1.5
23.1.6

.........

CONTENTS (CONT.)

Page
Solutions to Possible Bottlenecks i L. 19-6
Allowing Multiple Copies of TSTs i, 19-6
Adjusting TST Prionityttt ittt ittt tanennnns 19-7
Designing Transactions with Overlapped Processing 19-7
Designing Transactions with Background Processing 19-7
DOCUMENTINGTHETSTDESIGN it 19-8
CODING STANDARDS AND DEVELOPMENT TECHNIQUES 199
TSTDESIGNEXAMPLES i iai i iiann 20-1
THE RDCUST TSTo e i it e e i e 20-1
THEVALIDC TST i i e e et et e e e e 20-12
THE REWRIT TST i e et e eiaea 20-20
DESIGNING ANDSPECIFYINGFILESt 21-1
FILEDESIGNPREREQUISITES 21-1
DATARECORDING FORMATttt i i 212
CODES . .. e e e e e e 212
RELATIONSHIPS BETWEEN FIELDS iiinen.. 21-3
COMPUTING FIELD ANDRECORDSIZES it iiien 214
Large Records ittt iei i 214
Occasionally-Used Fields 214
Variable Record Lengthsin Relative Files 214
POTENTIAL RECORDUSEPROBLEMS 0iiiiinnn.n. 214
High Activity on Particular Records 21-5
Large WorkingSet of Records L i 21-5
Record Locks of Long Duration 21-5
CHOOSING A FILE ORGANIZATION it 21-5
CALCULATING FILESIZES e e 21-6
FILE RELIABILITY AND RECOVERY e 21-6
CHECKING FILEPERFORMANCE 217
DOCUMENTINGTHEFILEDESIGN 217
AFILEDESIGNEXAMPLE ittt 22-1
DESIGN CONSIDERATIONS e e 22-1
DESIGN DOCUMENTATION e e e 222
THE COMPLETE TRANSACTION PROCESSOR DOCUMENTATION 23-1
THE TRANSACTION PROCESSOR DEFINITION SHEET 23-1
Transaction Documentation i, 23-2
Form Documentation it i, 232
TST Documentationttt et innesnoenaneenennn 23-2
File Documentation ittt inneennnns 23-2
Station Documentationttt 232
Access Security Documentationt 232
... Index-1

PART 1

FIGURE

PART 2

FIGURE

31
32
33
34

35
36
4-1
42
43
5-1
7-1
8-1
82
83
11-1
112
113
114
115
116
117

14-1
14-2
143
144
145
14-6
15-1
152
153
154
155
156
15-7
158
159
16-1
162
163
164
16-5
166
16-7
168
169

FIGURES

Page
First Form of Change Customer Transaction00eeterneeannn 32
Second Form of Change Customer Transaction-c0c0u... 32
Implementation of Sample Transaction System Other than TRAX 3-3
Implementation of Sample Transaction TRAX using a TRAX Transaction
5 (0T T T) 35
Application Terminals & Support Terminals 39
A Transaction Processorat Work. it ananns 3-13
Relationship Between Response Messages and Exchange Messages 4-6
Effects of Terminal FunctionKeys:. ..ttt inrennnnn 4-12
An Example of Transaction ProcessingPathsc.civvee... 4-18
ATL Statement Syntax Diagramt iiienenn. 54
ATransaction Slot it i e e e 7-2
FlowofDataDuringRead ittt innnennnnn 8-6
Flow of Data During Nonstaged Update, 8-7
Flow of Data During Staged Updatettt euernnn. 8-8
Interface Between a Transaction Processor and the Support Environment 11-2
Interface Initiated by a Transaction Processorc.cuveereeernnnn 11-3
Interface Initiated by a Support Program 115
Interface Between Two TransactionProcessors 11-6
Interconnection of Multiple TRAX Systemsc.cceieteeennenns 11-8
Linksand Sublinksttt ettt iiieneratnenansanas 118
Duplexed Linksand Sublinksciitiirinteeenroennennnn 119
ATransaction Structure Diagram i i i 144
Specification Sheet for Exchange Messagesot enennnnn 149
Specification Sheet for Transaction Workspace cve v i e ennans 14-10
Specification Sheet for Response Message vuunn... 14-11
Specification Sheet for Report Messagettt nn. 14-12
Specification Sheet for Mailbox Message0t . 14-13
A Simple Transaction Designttt ineienraneanans 152
A Transaction Where Each Exchange is Entered OnlyOnce 15-5
A Transaction Having Only One Exchange, 15-6
A Transaction Where Each Exchange is Entered Twice 15-7
Usingthe REPEAT Option ittt ieienanns 159
Allowingthe Userto Browse ittt ittt ieieieenennencans 15-12
Substitute REPLY Message for REPEAT Optionc.civeueeeennnn. 15-14
Browsing with TwoIndexes0ttt iiemnnennnennns 15-16
Adding Error Messagesto Figure 15-8 it 15-19
Terminal Station Specification Sheet 16-3
TST Station Specification Sheetttt nnnn.. 164
Master Link Station Specification Sheet 16-6
Special Purpose Station SpecificationSheett inan.. 16-7
Work Class Specification Sheet i, 16-9
User Authorization SpecificationSheet 16-10
Transaction SpecificationSheet i 16-11
Transaction Specification Sheet Continuation 16-12
System Workspace Worksheet00ttt ennnnnnn 16-15

FIGURE

17-1
18-1
182
18-3
184
185
186
18-7
18-8
189
19-1
192
20-1
20-2
20-3
204
20-5
206
20-7
21-1
212
22-1
222
223
23-1
232

FIGURES (CONT.)

Page
Video Terminal Forms SpecificationSheetc........ 17-3
Structure of Change Customer Transaction 182
Exchange Message for Exchange 1, 18-5
Reply Message for Exchange 1 0 . i, 18-6
PRCEED Message forExchange 1 i iiiiinon.. 18-8
Exchange Message forExchange 2 189
REPLY Message 1 for Exchange 2t enreenennnnn. 18-10
REPLY Message 2 forExchange 2t innenn. 18-11
Sketchof First Exchange Form 18-13
Sketch of Second Exchange Form 18-21
Data Available toa TST i ittt i teneeeaeannn 19-3
TST SpecificationSheetttt it ieieeennnn 19-10
READTST Specification Sheetttt tinennannnn 20-2
Description of RDCUST TST Purpose and Processing 20-2
VALIDC TST Specification Sheet et et e e e 20-12
Description of VALIDC TST Purpose and Processing 20-12
Transaction Workspace Format for Change Customer Transaction 20-13
WRITE TST Specification Sheett eennnnennn. 20-20
Description of REWRIT TST Purpose and Processing 20-20
Record Layout Sheet ittt it ittt teneennnnnann 21-8
File Definition Sheet ittt it ittt 219
Descriptionof Customer File 0t innnenn 22-2
Record Layout Sheet it iiinrinnennnns 22-3
File Definition Sheet for Customer File 224
Blank Transaction Processor SpecificationSheet. 23-3
Completed Transaction Processor Specification Sheet 234

PREFACE

This manual is directed to the TRAX application designer. This person is responsible for studying
the functional specification of a proposed system and developing an appropriate technical design.
The application designer may have one of several titles — system analyst, analyst/programmer,
chief programmer. If you are responsible for selecting an approach for an application or if you
must make technical design decisions while developing a TRAX application, you should read

this manual.

This manual presents the structure and operation of TRAX transaction processing applications.

The manual has two main parts:

Part One. Chapters 2 through 11 present general concepts and facilities of the TRAX sys-
tem. This Part gives an application designer the background needed to develop a business

application — what TRAX is, and what it can do.

Part Two. Chapters 12 through 23 describe the procedure an application designer follows
when designing a TRAX business application. This Part presents methods and techniques
for the design process and provides worksheets for many phases of the design process.

You can get details on the TRAX support environment and other specific technical topics by

consulting these TRAX reference manuals:

TRAX Application Programmer’s Guide

TRAX Application Terminal Language (ATL) Reference Manual
TRAX Support Environment User’s Guide

TRAX System Manager’s Guide

TRAX System Generation Manual

TRAX SORT Reference Manual

TRAX DATATRIEVE User’s Guide

TRAX BASIC-PLUS-2 Language Reference Manual
TRAX BASIC-PLUS-2 User’s Guide

TRAX COBOL Language Reference Manual
TRAX COBOL User’s Guide

DEC EDITOR Reference Manual

TRAX Linker Reference Manual

AA-D329A-TC
AA-D330A-TC
AA-D331A-TC
AA-D332A-TC
AA-D335A-TC
AA-D346A-TC
AA-D347A-TC
AA-D336A-TC
AA-D337A-TC
AA-D338A-TC
AA-D339A-TC
AA-D347A-TC
AA-D342A-TC

PART ONE

Introduction to TRAX Concepts and Facilities

CHAPTER 1
INTRODUCTION TO TRAX

TRAX is a computer system specially designed to meet the requirements of business transaction
processing.

Here are some of its features:

® On-line terminals suitable for transaction processing as well as management information
systems (MIS)

Excellent response time and throughput characteristics

A system of modest size that can be tailored to the business organization

Facilities for a network of systems, permitting distributed data processing (DDP)

A sophisticated data management system called RMS

Reliable, recoverable data processing — complete with journals, audit trails, and (when
necessary) transaction restart

A choice of two standard, high-level languages: ANSI-74 COBOL and DIGITAL’s
BASIC-PLUS-2

® Unattended batch processing

The rest of this chapter is a brief description of TRAX features and their application to business
data processing.

1.1 THE TRANSACTION

A transaction is the exchange of information, money, or goods between two or more parties. You
execute a transaction when you withdraw money from your bank account, purchase gasoline with
a credit card, leave a forwarding address with the post office, or make a plane reservation.

Sometimes, a transaction involves several interactions between parties. For example, in a store you
might see something that does not have a marked price. If you are interested, you first ask the
price, and then perhaps decide to purchase the item. This transaction has two interactions between
yourself and the storekeeper; with TRAX we would call this a two-exchange transaction.

Transactions are basic to business. And although electronic data processing has been used for many
years to process and record transactions, most processing is done after the fact, using written
records of the original transactions. In comparison, TRAX is designed to process transactions as
they occur.

1.2 WHAT IS A TRANSACTION PROCESSING SYSTEM?

A transaction processing system is an on-line system for processing business transactions. Even
though it is an on-line system, a transaction processing system does not necessarily process trans-
actions as they occur. Transactions can still be recorded manually or by other automated means
and then entered into the transaction processing system.

1-1

Introduction to TRAX

More and more, though, business is realizing the benefits of having a real-time transaction proc-
essing system available at the time the transaction occurs. Paperwork can be eliminated, and the
system always contains up-to-date data.

A real-time transaction processing system can check entered data immediately. Errors can be
caught and corrected promptly while the customer is available for questioning and the user has
the transaction in mind.

This approach, real-time transaction processing, demands a reliable system with backup and audit
trail capabilities, because paperwork has been eliminated.

1.3 RESPONSE TIME AND THROUGHPUT

Transaction processing also demands good response time. This means that the transaction proc-
essing system must record the transaction in an amount of time that will not annoy or frustrate
the transaction’s participants . . . one of whom will often be an impatient customer.

On the other hand, adequate throughput refers to the system’s capability of keeping up with its
workload — that is, being able to process data quickly enough to keep it from backing up.

The portions of TRAX that handle on-line transaction processing are designed for maximum
throughput and optimum response times. These system characteristics are important to any appli-
cation designer. The design methods by which these are accomplished are discussed in later chap-
ters of this manual.

1.4 FORMS AND TRANSACTION PROCESSING

Most businesses make extensive use of forms. They do this because forms are more convenient
than blank paper. Forms structure a task by specifying the information needed; and they save
writing effort by preprinting routine information. An order blank is a typical form. A good order
blank is easy to fill out, because it lets the customer know what information is needed — a catalog
page number, a shipping and handling charge, and the like.

Not only is the order blank more convenient for the customer, it speeds the processing of the
order. Firms that use preprinted order blanks can usually process orders faster than firms that
do not, because the form helps staff members to collect complete, sequenced information.

TRAX makes extensive use of the “forms” concept. In fact, all communication between applica-
tion terminal users and the system is done with forms. Within the system, the user is the
“customer” and the system is the “salesperson.”” But the effect is the same: the system does
not have to “interview” the user. TRAX displays a predefined form and leaves the user to fill it
out. Until the user is finished, TRAX is not involved in the user data entry. Only when the form
has been completed does TRAX begin to process the user’s data.

1.5 TRAX APPLICATION TERMINALS

The efficiency of TRAX forms is greatly enhanced by the microprocessor-based terminals that

are used with the system. These terminals receive complete forms from TRAX, display them,

and assure that the user enters data correctly to those forms. With these terminals, TRAX is
freed from monitoring user input. No central system support is needed from the time the empty
form is sent to the terminal until the time the correctly completed form is returned to the system.

1-2

Introduction to TRAX

TRAX is the first system to support this terminal, the VT62. The VT62 provides a variety of
screen display methods and user data entry checks, all under the control of its resident micro-
processor. In addition, it offers features not generally available in terminals of its type:

® Synchronous data communication protocol for maximum data transmission reliability
and speed

Multi-drop capability to allow several terminals to be connected to a single data com-
munication line

Attached (but completely independent) hard-copy printers

Editing keys to allow the user to edit the contents of data entry fields

Function keys that can be enabled and sensed by application programs

Internally generated error messages for common data entry errors

Full numeric keypad

You can find more about the VT62 terminal and its forms-display capabilities in the TRAX
Application Terminal Language Reference Manual.

1.6 DISTRIBUTED DATA PROCESSING

Distributed data processing (DDP) is the technique of adapting to business organizations a number
of small, widely dispersed data processing stations, rather than a big centralized data processing
systems. DDP enables the manager to support his operational area with an appropriate data proc-
essing system, while relying on other departments’ data processing systems where necessary.

TRAX is well suited for distributed data processing applications for several reasons:

® TRAX handles inter-system transactions, as well as transactions originated from terminals.

® TRAX provides extensive inter-system communication facilities.

® TRAX systems are moderate size — large enough to accommodate impressive processing
power yet small enough to be deployed outside traditional data processing centers.

In fact, the microcomputers inside the VT62 application terminals represent the first level of a
distributed data processing configuration: some processing is done within the terminal itself,

1.7 DATA MANAGEMENT SYSTEM

A system that lacks a sophisticated data management system cannot be effectively used for business
applications. If a good data management system does not exist, you must build it before applica-
tion implementation can proceed.

For most business applications, this means support for at least three major kinds of files:
® Sequential files

® Relative-record (random) files
® Indexed files

1-3

Introduction to TRAX

Indexed file structures are the most powerful and convenient for programmers to access; they are
generally the most often used kind of file in business applications. For maximum flexibility in
business applications, indexed files should permit:

® Multiple or alternate indexes (that is, cross-reference indexes)
® Retrieval of a series of records in sequential key order
® Random retrievals of specific records

TRAX provides all of these features and more through DIGITAL’s business-oriented data manage-
ment system, RMS.

One more data management feature is mandatory in any transacation processing system: the
ability for many users to share access to common data files. Here, TRAX provides such features
as a record-locking capability, automatic retry of retrievals on locked records, the ability to access
locked records in a read-only fashion, and more. Taken together, these features allow many dif-
ferent users to work in the same files with minimum interaction.

1.8 RELIABILITY
As transaction processing techniques are adopted, two things begin to take place:

® An increasing proportion of business records are recorded on magnetic media within
the transaction processing system

® A decreasing proportion of business records remain on paper or other tangible, hard-
copy media.

This means that many transaction processing systems carry data that are unavailable from any
other source. Even if data are available from other sources, conversion and replacement may not
be economically feasible. The loss of this data might be disastrous to a business, so you must
assure that the data on your transaction processing system are safe.

Data safety means:

o Unauthorized access must be prohibited.
® Authorized access to sensitive data must be logged.
® (Catastrophic system failures must not risk massive data loss.

NOTE
In many applications, any data loss — however
slight — cannot be permitted.

Even if a system catastrophe does not cause loss of data, the unavailability of a transaction proc-
essing system may cause problems. If the system is unavailable, the business may not be able
to function.

Several other system reliability requirements are:

® Proven hardware reliability
® Quick recovery from system catastrophes

Introduction to TRAX

® Ability to reconfigure a system or divert work to other systems
® Fault detection and measurement facilities that detect faults before they turn to disaster

TRAX provides you with the facilities you need to satisfy these system requirements.

1.9 LANGUAGES

Most application designers try to program their business applications in an accepted, high-level
language, using as many of the language’s standard features as possible and avoiding system-
dependent features where feasible. This approach:

Minimizes training of your application programmers

Makes hiring additional qualified programmers easier

Allows new programmers to adapt to the resulting programs with minimal confusion
Develops better programs with programmers of average skill

Makes testing and debugging easier.

TRAX provides you with your choice of two high-level languages that have been popular for
business applications: COBOL and BASIC-PLUS-2. Both languages are straightforward extensions
of their industry counterparts.

COBOL-11 conforms closely to the standards of ANSI-74 COBOL, except for a few features
required by the architecture of TRAX. These changes have been held to a minimum, and TRAX
allows a COBOL programmer to work easily with the COBOL he knows. In particular, the methods
that TRAX uses to control application terminals avoid many problems often created when COBOL
is used with interactive devices. With TRAX, data coming from and going to application terminals
resembles fixed-length records from ordinary data files — something that COBOL handles
extremely well.

BASIC-PLUS-2 has always been strong in on-line applications. Its interactive debugging sessions
speed the programmer’s work. The version of BASIC-PLUS-2 supplied with TRAX builds on the
strengths of BASIC, while adding features that are important in business applications: longer
mnemonic variable names, data structures for input/output operations, and improved
commenting facilities.

Choose a language according to your preference and the background of your programming staff.
Either choice gives you a strong, flexible language for a transaction processing environment.

1.10 OVERNIGHT PROCESSING

Business applications require occasional overnight or other batch-oriented processing. Files
must be reorganized and backed up, printed reports must be run, and other activities must be
accomplished with minimum human intervention.

These activities are best handled with a batch processing facility, where predetermined sequences
of operations are performed on request or on a periodic schedule. A good batch processing system
keeps a log of batch processing events, runs with minimum human intervention, and reacts
appropriately to faults and error conditions during a batch run.

1-5

Introduction to TRAX

TRAX provides these capabilities and more. Several batch processors can operate at once, working
from a common work queue or separate queues. Printing despoolers allow work to be optimally
scheduled among printer units. And assignable device names allow complete operator flexibility

in setting up each batch run.

1.11 HOW DOES TRAX DO ALL THIS?
A TRAX system has several elements:

A kernel (an underlying operating system) provides rudimentary peripheral device support,
memory allocation, and scheduling services.

A support environment is used for nontransaction processing: batch processing and on-line
programming, debugging, and system management. Programmers and operators sitting at
support environment terminals have access to a general-purpose time-sharing environment
which is not available to application terminals. The multi-user nature of this environment
allows quicker program development and permits program development to proceed in
parallel with application operation.

A transaction processor handles each set of on-line application terminals that runs a particu-
lar application. A transaction processor is a set of software modules and tabular specifica-
tions that can process a predefined set of transactions, and makes these transactions avail-
able to users at application terminals by predefined access rules.

A TRAX system can have several transaction processors defined. Each can be started
or stopped as desired. Depending on the size and capacity of the system, two transaction
processors may be active concurrently.

The support environment and the transaction processors are kept separate by the TRAX kernel.
Programming and system management terminals can access only the support enviornment;
application terminals can access only an assigned transaction processor. This separation provides
superior system security and allows each part of the system to be optimally deisgned for its
primary purpose.

To design and build an efficient transaction processing system, you must concentrate on the con-
struction of an appropriate transaction processor — and this is what the remainder of this manual
will cover.

1-6

CHAPTER 2
THE TRAX SAMPLE APPLICATION

Throughout this manual and other TRAX manuals, you find examples of business applications.
These are drawn from a prototype business application supplied with each TRAX system. This
prototype application is called the TRAX Sample Application.

2.1 THE BUSINESS PROBLEM
The TRAX Sample Application is designed to solve a paperwork problem for a moderately large
wholesale distribution business specializing in collectable American coins.

The system supports other processing and the associated invoicing and payment cycle. It also assists
certain other company operations such as maintaining an up-to-date customer list.

The coin firm is called the TRAX Coin Corporation. It deals primarily with retailers rather than
individual collectors. Most sales are made on credit; that is, the ordered coins are shipped with an
invoice for payment. Most business is done by mail or over the phone, but customers also buy coins
over the counter.

TRAX Coin Corporation has several order handling policies they intend to keep even after the new
system is installed:

® Orders are accepted for coins that are not presently in stock, and TRAX Coin then tries to
acquire the specified coins from its suppliers. Items in this status are called “back-ordered.”

® [fonly a few items on an order are back-ordered, the remainder of the order is shipped
right away. But partial quantities of any item are never shipped.

® When replacement stock is received, back-orders are given priority over current orders.
That is, orders are always filled on a first-come, first-served basis for each item.

® Invoices are sent after each shipment. The balance on the invoice is due when received.

® A single order can, of course, have several shipments. (This will occur for any order that
has a back-ordered item.) Each of these shipments is accompanied by a separate invoice;
each invoice covers only the coins in that shipment.

® The balance for each invoice is carried in TRAX Coin Corporation books until it is paid.
If payments are received without specific instructions, the funds are applied against the
oldest invoices first.

® The TRAX Coin Corporation keeps a journal of invoices and payments received.

Figure 2-1 shows the order processing cycle from the time the order is received until corresponding
invoices are paid. This is the cycle that the new system is meant to support.

2-1

The TRA X Sample Application

2.2 THE SAMPLE APPLICATION ADDRESSES THE BUSINESS PROBLEM

The functions of the TRAX Sample Application correspond with the manual functions shown in
Figure 2-1. The system handles the following activities, significantly reducing the manual
paperwork:

Order entry

Miscellaneous functions, such as checking stock availability and price
Printing multi-part order paperwork

Keeping the back-order file

Activating back-order paperwork when new stock arrives

Keeping the invoice file

Keeping the payments journal

Keeping related master files, such as the customer file and the inventory file

The Sample Application supports a large proportion of its processing in an on-line transaction-
processing mode. That is, the company personnel assigned to many of the tasks listed here are given
conversational terminals attached to the system, and they enter data through those terminals as
they go about their task. The system records the data they enter, and it occasionally takes other
actions such as printing order paperwork.

In addition to on-line transaction-oriented processing, the Sample Application also needs some off-
line batch processing.! This is periodic processing that needs no human intervention — such as file
reorganization and backup.

The Sample Application uses the following data files:

® Customer File. This file provides expanded customer names, addresses, and related infor-
mation by a unique customer identification number. It is used so that the customer’s full
name and address need not be included in other files.

® Order and Invoice File. This file contains complete information on each order:
— General order information, such as the customer identification number, order data,

and shipping instructions

— Each order line item, including quantity and price
— A record of each invoice issued for the order

® Inventory File. This file contains a record of each stock item carried by TRAX Coin
Corporation. The file carries data such as quantity on hand, price, stock number, and
description.

® Payments File. This file records payments received and the invoices to which they are
applied.

® Back-Order File. This file records items that are in ‘““back-order” status.

(If you study the Sample Application carefully, you will see that the order and invoice file really
is two data files for technical design reasons: the main order and invoice file, containing the data
listed before, and an order access file that serves as a cross-reference to relate all of the data for a
given order.)

INot supplied with the TRAX distribution list.

| @ The TRAX Sample Application
=

Order taker
writes up order

File copy for backorders

X\\ \,— Packing list copy

—a——— File copy for invoicing
~— invoicing copy

Credit department
mails invoice,

\ / files second copy

\V
/B Warehouse fills orders,

~@———— marks back-ordered
merchandise O (e]
a
a
&
L) Customer
Packer checks ;avy;ce
——— order, seals carton,
and breaks apart
paperwork
=]
Q
Q
S IIE) Y]
PRY s 3mmnnisems e
Wt
LU T
| ice fil [V)
nvoice file copy
~f
Invoice copy Backorder clerk
~— writes up backorders Credit department
' when stock arrives records payment
\ against invoice and
. Backorder copy also in
Goods and packing to file if required payments journal
list to customer

Figure 2-1 TRAX Coin Corp. Order Processing Cycle

. 2-3/2-4

The TRAX Sample Application

2.3 THE EXAMPLES IN THIS MANUAL
The examples in this manual are taken from the group of four on-line transactions used to maintain
the customer file. These transactions are:

® Add Customer. Inserts a new customer record into the customer file.

® Change Customer. Changes data in a customer record.

® Delete Customer. Marks a customer record obsolete, so that a subsequent file reorganiza-
tion will remove it.

® Display Customer. Displays the data in a customer record or a sequence of customer
records.

Although these functions are only a small subset of the entire TRAX Sample Application, they
provide enough examples of situations in which an application designer is required to make impor-
tant decisions.

CHAPTER 3
AN INTRODUCTION TO TRANSACTION PROCESSORS

By now you know that a TRAX transaction processor supports on-line transaction-oriented proc-
essing and consists of a collection of tabular specifications and software modules.

Before you begin to design applications with TRAX, you must learn more details about trans-
action processors and how they operate. First, though, you will probably find it helpful to have
an overview of how a transaction processor works and how this method of on-line processing
differs from others.

3.1 A SAMPLE TRANSACTION
A sample transaction that changes customer records is used as an example throughout this chap-
ter. This transaction involves a two-step conversation with a terminal user each time it is executed.

® First, the transaction asks for the identification number of the customer whose data is
going to be changed (Figure 3-1). The user enters an identification number, the corres-
ponding record is retrieved from the customer file, and the transaction moves to the
second step.

® Second, the data from the file is displayed (Figure 3-2). The user is permitted to change
whatever data he likes. When he is done, the final version of the data is checked for con-
sistency and replaced in the customer file.

This is the overall structure of the transaction. There are of course several additional path varia-
tions in actual use, to permit error messages and corresponding error recovery procedures.

3.2 IMPLEMENTING THE SAMPLE TRANSACTION ON SYSTEMS OTHER THAN TRAX
To implement the sample transaction on an interactive business sytem other than TRAX, you
would probably use the technique shown in Figure 3-3. This figure shows several terminals, each
associated with its own copy of a transaction program.

If a user at terminal 2, for instance, wants to execute this sample transaction, he needs a copy of
the appropriate program from the program library. Within this program would be enough code
to support the functions of asking for a customer identification number, reading the record from
the customer file, displaying it, helping the user edit the data, checking the final data values, and
rewriting the data into the customer file.

If other terminals wish to execute the same transaction, each needs its own copy of the same
program. Further, each of the programs is “active” for the duration of its own transaction —
even though the program spends most of its time ‘“‘waiting™ for the user to finish typing his input.

3.2 IMPLEMENTING THE SAMPLE TRANSACTION ON TRAX
Implementing this transaction on TRAX is entirely different.

3-1

An Introduction to Transaction Processors

Figure 3-1 First Form of Change Customer Transaction

Figure 3-2 Second Form of Change Customer Transaction

32

Routines

>>>>>>>

WWWWW

VVVVVV

VVVVVV

WWWWW

Terminal 1

Terminal 2

Terminal 3

An Introduction to Transaction Processors

To implement the sample transaction under TRAX, you would construct a transaction processor.
You would include in the processor the necessary programs for reading the customer record, vali-
dating the new data, and writing the modified record back into the file. Although this may sound
similar to the usual method of implementing on-line business sytems, there are two important
differences:

® The programs are never directly associated with any given terminal; rather, each program
is capable of communicating with all terminals that are associated with the transaction
processor.

® The programs are never directly associated with any given transaction; rather, any program
can process part of any transaction.

This means that application programs no longer “control’ either a terminal or a transaction.
Instead, they become a generally available resource to be invoked whenever necessary. The control
of transaction execution rests with two other components of a transaction processor:

1. Sets of tabular specifications composed by you when you set up a transaction processor.
They determine the sequence of programs used at any stage in the execution of a
transaction.

2. System software modules provided with TRAX and customized to the requirements of
each transaction processor. They interpret the tabular specifications and manage the
activities of the transaction processor accordingly.

Figure 3-4 shows how a transaction processor might handle the sample transaction. When a user
at terminal 2 enters a customer identification number, this information is sent to the first program
(called RDCUST), so that the corresponding customer record can be read (Step @ in Figure 3-4).
This program is selected by the transaction processor according to a predefined list of programs
that specify the processing for this particular transaction.

The RDCUST program reads the record and sends the data back to the terminal (Step @). The
RDCUST program is now free to process other data from other terminals.

When the data is displayed at the terminal, the user can change the data as he wishes. He then
sends it back to the transaction processor. The transaction processor consults the list of programs
used by this transaction and forwards the user’s data to the VALIDC program (Step @). When

this program assures that the data is valid, it terminates. The transaction processor sends the same
data to the REWRIT program (Step @). This program rewrites the updated data into the customer
file. A confirming message is then sent to the terminal signaling the end of the transaction.

34 FORMS ARE IMPORTANT TO TRANSACTION PROCESSORS

Terminal conversation in a transaction processor is strictly forms oriented. This means that all
conversation between a transaction processor and an application terminal is accomplished via pre-
defined specifications. These specifications are called form definitions.

Terminals are controlled by system software modules that are part of each transaction processor.
These system software modules use form definitions that you have prepared. The form definitions
describe the displays that must be presented and the rules for user data entry. These specifications
are forwarded to TRAX application terminals at the proper time, and the specifications are inter-
preted and executed by microprocessors inside each terminal. In this way, terminals can be effec-
tively controlled during data entry without an active application program to control them.

3-4

An Introduction to Transaction Processors

RDCUST VALIDC REWRIT
N
~
/ 9 N / And on to)
l , Data from N I nnnnnnn gram
fileto \
\ terminal \ ’ / .
\ \\ eﬂ o fFlnal
t
Customer ID \ \ l tzv: gram / m rrs::
progam "\, | T
AN ~ \\\ e
' v
N \ -
~) e

Figure 34 Implementation of Sample Transaction TRAX using a TRAX Transaction Processor

3-5

An Introduction to Transaction Processors

The conversation at an application terminal follows this sequence:

1. A form is displayed according to its definition.
The user enters data in predefined fields or edits data already in those fields. During this
process, he must conform to the data entry rules that are part of the form definition.

3. The user presses a function key, which sends the data to the transaction processor.

4. The transaction processor takes one of two actions after processing the data:

It may direct the user to another form, and this series of steps is repeated using the new
form;or

It may direct changes to the current form and the series of steps repeat for the modified
form. The transaction processor can only select modifications that are defined and
included in the form definition.

This approach differs significantly from a typical conversational approach where questions appear
one by one on the terminal screen and are answered as they appear.

Each form available to a transaction processor is defined by a form definition. This definition
specifies the appearance of the form and the placement of fields and captions. It also specifies:

How data coming from a preceding program is interpreted and included in the display
Where and how the user enters data to the screen

Which function keys the user employs

What data is assembled from the user entries and sent to subsequent programs

Where and how error messages (and other form modifications) are displayed

In summary, then, forms are important to transaction processors because they are the means by
which the transaction processor communicates with its terminals. Application programs cannot
communicate directly with terminals and are not active when communication takes place. To
design workable transaction processors, you must think exclusively in terms of a forms-oriented
conversation between application programs and the transaction processor.

3.5 IMPORTANT TRANSACTION PROCESSOR TERMS

It is time to introduce some important transaction processor terms. These terms refer to compo-
nents of a transaction processor or to the transaction processor’s unique methods of handling
transactions.

® A Transaction is a generalized procedure for the exchange of information, money, or goods.
It does not refer to the details of any particular act of exchange.
® A Transaction Instance is a specific execution of a transaction.

For example, the procedure for buying a coin involves a sequence of actions, both for the customer
and for the salesman. This sequence of actions is a Transaction. But when a specific customer
buys a specific coin, this is a Transaction Instance. The Transaction is the sequence of actions by
which business is transacted; a Transaction Instance is a specific case in which a transaction is
executed.

So, if the manager of a coin shop talks about how to sell a certain kind of coin, we would say he
was discussing a Transaction. On the other hand, if he talks about a particular customer and the
specific coins that the customer recently purchased, we would say he was discussing a Transaction
Instance.

3-6

An Introduction to Transaction Processors

Maintaining a distinction between these two terms is important to you. You must be comfortable
with their meanings.

® An Application Terminal is a terminal that is served by a transaction processor; that is, it
is a terminal used for transaction processing.

The connection between an Application Terminal and a transaction processor is made when
the transaction processor is started. In effect, a transaction processor “‘seizes” a speci-

fied set of terminals when it begins execution (such as the beginning of the business day).
These terminals cannot be used for another purpose until the transaction processor is
stopped. But once stopped, the transaction processor releases its terminals and these
terminals may be seized by any other transaction processor that subsequently begins
execution.

Terminals that have access to the support environment of a TRAX system are called
Support Environment Terminals, even though a user may be running an application-related
program. That program would be a stand-alone support environment program; it would
not be related to a transaction processor; and the terminal would not be considered an
Application Terminal.

Application Terminals are handled by TRAX in a way different from support environment
terminals. You can see this in the communication methods used with Application Termi-
nals: synchronous communication lines, multi-drop configurations, and formal line pro-
tocol. None of these are possible with support environment terminals. The distinction
between Application Terminals and support environment terminals is made during the
configuration and sysgen processes, and a single terminal cannot be used for both the
support and application programs.

This distinction between Application Terminals and support environment terminals
improves system security (Section 10.1.1).

Figure 3-5 shows the distinction between Application Terminals and support environment
terminals. This figure shows a large TRAX system, with two transaction processors and
on-line application development proceeding at the same time. Notice that some of the
application terminals are not attached to any active transaction processor; these terminals
cannot access the support environment. For these terminals to be placed in service, one
of the two active transaction processors must be stopped and another started.

Application Terminals can be either video displays or hard copy devices. The video dis-
plays are used only as interactive (that is, transaction processing) devices; hard copy
devices are used only as unattended output-only printers.

In the output-only mode of operation, a terminal receives and prints data for any trans-
action instance. In the interactive mode of operation, a terminal is associated with a given
transaction instance until that transaction instance terminates.

® An Exchange. A transaction often requires several steps — that is, several interactions —
between the transaction’s participants. Each of these interactions is called an Exchange.

To understand this, let’s return to the example of the coin firm. The purchase of a coin
is frequently a three-exchange transaction.

1. You ask the clerk to recite the list of coins available in the category that interests you.

2. After listening to the list, you may ask to buy a coin.

3. Finally, after being given the coin, you pay for it. The clerk returns your change with
a receipt.

An Introduction to Transaction Processors

Each Exchange, then, is an interaction between the party requesting service (you) and the
server (the coin store clerk). In a transaction processor, each Exchange is an interaction
between the terminal user and the transaction processor. The terminal user enters data;
the transaction processor processes it and usually returns an answer to the user.

A Transaction Step Task (TST) is an application program within a transaction processor.
It is really a subroutine that helps process various transactions. A TST is not a complete,
stand-alone program for it does not have control of the transactions it participates in.

In the coin store example, the clerk is like a TST. The clerk receives something (a question,
an order, or some money) from the customer, takes some action, and then returns some-
thing else (information, a coin, or change and a receipt) to the customer.

Notice something important about this example: the clerk can handle several customers
at the same time. While you are selecting a coin, another customer can be asking about

coins, ordering, or paying for his purchase. In fact, if you had the clerk to yourself, you
would be wasting his time while you select a coin.

We can extend this example to illustrate transactions involving two or more TSTs in one
exchange. Although the clerk serves customers by himself, he may have a cashier to take
customer money and wrap purchases. When you buy a coin, both the clerk and the cashier
become involved. The clerk handles the first exchange (where you ask questions) and the
second exchange (where you buy a coin). But the third exchange (where you pay for a
coin and receive change and a receipt) requires the participation of the cashier.

Notice that both the clerk and the cashier can handle other orders between the steps (or
Exchanges) of your order, even if other customers are looking at or buying different
merchandise. Both the clerk and the cashier approach their jobs one task at a time. This
same characteristic applies to TSTs within a transaction processor.

A Message is the data structure that elements of a transaction processor use to communicate
with each other. For example, data must be sent from an application terminal to one or
more application programs (TSTs) for processing. The data are sent to the TST in Messages.

There are many different kinds of messages that can be sent within a transaction processor.
They are classified by their purpose and destination. The two most frequently used kinds
of messages are exchange messages and response messages.

— Exchange Messages are messages that travel from an application terminal to a series
of TSTs; they carry data entered by the user.
— Response Messages are messages generated by TSTs and directed to the user’s terminal.

In the coin example, your questions, requests, and money represent exchange messages;
the clerk’s answers are response messages.

A Station receives messages for a component of a transaction processor. The Station serves
the same purpose as the “in-box” on your desk, constantly ready to receive messages. In
the same way that an “‘in-box” keeps you from being interrupted by arriving mail, a Station
keeps its transaction processor component from being interrupted by arriving messages.
The Station buffers the messages and releases them one at a time as needed.

There are many kinds of stations. The two most frequently used kinds of stations are
terminal stations and TST stations.

— Terminal Stations receive messages that are directed to their terminals. Each Applica-
tion Terminal has its own Terminal Station.

— TST Stations receive messages that have been directed to their TSTs. Each TST has its
own TST Station.

3-8

67¢

Application Terminals

e N

Terminals attached
to transaction processor A

Terminals attached
to transaction processor B

UL T

Application
Terminal Handler

Unattached
terminals

Kernel

[1

Transaction
Processor
A

Transaction
Processor

B

Figure 3-5 Application Terminals & Support Terminals

Operating System

Support environment
terminal

Support

Environment
Terminal Handler

%r

Support
Environment

S40SSII0LJ UOLIODSUDL] O] UOIIONPOLIU] UY

An Introduction to Transaction Processors

Stations are supported by system software within the transaction processor, and each type
of station requires special support. For example, messages arriving at Terminal Stations
must be interpreted according to a specific forms definition before they can be passed to
the terminal. Messages arriving at a TST station require the TST to be loaded into memory
and executed. Other types of stations require different processing support.

A Routing List is the list of stations to which an exchange message is addressed. An
exchange message can have several addresses, and it visits each station on its Routing List
in turn. Usually, these stations are TST stations.

An exchange message is the only message that can have a Routing List. All other messages
have a single address.

Routing lists for the exchange message of a transaction are specified in the definition of
the transaction. By consulting this definition, the transaction processor knows where to
send the exchange message.

In addition, the Routing List for any exchange message can be modified by any TST that
processes that message. This applies only to a single exchange message and does not affect
other similar exchange messages belonging to other transaction instances. This facility
allows customized exchange message routing under program control.

A Form is a data structure presented through an application terminal that is an interface
between the user at that terminal and the transaction processor.

In other words, a Form is a fill-in-the-blanks display. If a user wishes to send data to the
system, he fills in fields on a form and sends the form to the system. If the system wishes
to send data to the user, it fills in fields on a form and sends the form to the user’s Applica-
tion Terminal. One Form can be used to send data in both directions with careful design —
for instance, a user can ask a question using certain fields on a form and the system can
answer using other fields on the same form.

A Form Definition tells a transaction processor how to present and handle each different
form. Besides describing the position and size of each field on the form, a Form Defini-
tion also:

— Describes the attributes of each field, including its appearance, behavior, and the
characters that can be entered :

— Describes the way that the data entered by the user is formatted into an exchange
message for routing to TST stations

— Describes the terminal function keys the user may use after filling out the form

— Describes the ways that the form can be modified, such as in response to a user data
entry error

Every exchange normally has its own Forms Definition. These definitions are identified
by unique names and are kept in a special file within the transaction processor. The defini-
tions are consulted each time data arrives from an Application Terminal and each time a
message arrives at a terminal station.

A Transaction Definition sets the structure of each of the transactions a transaction proc-
essor can handle. The Transaction Definition specifies parameters such as:

— How many exchanges comprise the transaction

— What form definition is used with each exchange

— Where each exchange message is routed

— In what sequence exchanges are executed

— Whether specialized reliability or recovery procedures, such as exchange recovery,
are needed

3-10

An Introduction to Transaction Processors

In the chapters ahead, you will see how a terminal user or a TST programmer can alter the
course of a transaction — that is, change the sequence of events from that specified in the
transaction definition. As you study those techniques, remember that the structure of the
transaction always starts with the Transaction Definition; the techniques you read about
can only alter a pre-existing transaction structure within certain prescribed limits.

NOTE
In most cases, these structure modification
techniques are not necessary and should not
be used.

A Transaction Workspace is a scratch area associated with each transaction instance. Two
terminals executing the same transaction have different Transaction Workspaces, as would
two executions of the same transaction from the same terminal. The Transaction Work-
space can be accessed by every TST that becomes involved in the processing of the corres-
ponding transaction instance.

The Transaction Workspace is different from an exchange message: The exchange message
is regenerated for each new exchange, using fresh input from the user; the Transaction
Workspace is available throughout the life of a Transaction Instance. Its data content
remains unchanged unless explicitly modified by a TST. This is a valuable method of
transferring information between the TSTs that process the Transaction Instance, both
between TSTs in the same exchange and between TSTs in different exchanges.

3.6 A TRANSACTION PROCESSOR AT WORK
Now let’s return to the sample transaction introduced in Section 3.3: the Change Customer trans-
action that allows a terminal user to update a record in the Customer File.

3.6.1 The Components Involved
These transaction processor components play a part in the execution of the Change Customer
transaction:

® Terminals and Terminal Stations. Figure 3-6 shows three terminals, each with its own

terminal station. The number of terminals is not important. As you follow this example,
though, remember that all the terminals are likely to be active in a system, not just one
terminal. Imagine what each step of the transaction would be like with transactions from
other terminals underway.

Transaction Step Tasks and Their Stations. Each of the programs shown in Figure 3-6 is,
of course, a TST. Every TST has its own station. The functions of the three TSTs are:

RDCUST — To read a customer record and pass it to the user’s terminal
VALIDC — To validate the new data submitted by the user
REWRIT — To rewrite the updated customer record into the customer file

Forms and Form Definitions. The Change Customer transaction has two exchanges and
requires two forms. The functions of the two forms are:

CHCUSI — To let the user specify the customer whose record is to be read for possible
update

CHCUS2 — To display the old customer data, allow the user to enter new data, and
return the new data to the transaction processor.

An Introduction to Transaction Processors

The transaction definition is stored in the transaction processor’s Transaction Definition
File, with the definitions of other transactions handled by the transaction processor.

There is, in addition, one component of the transaction processor that is not shown in Figure 3-6:
the set of system software modules that manage many of the transaction processor’s internal
operations. Master copies of these system software modules are supplied with each TRAX system,
and the generation of a transaction processor includes making customized copies of each of them.
It is these modules that interpret forms definitions, transaction definitions, and the other specifi-
cations that guide the operation of a transaction processor.

Communication between the terminals and TSTs require exchange messages and response mes-
sages. These messages, shown in Figure 3-6 as arrows flowing between stations, are:

® Exchange Messages (shown as solid arrows) contain data derived from the user’s input
and are generated according to specifications contained in the corresponding form defini-
tion. The messages are routed to one or more TST stations for processing.

® Response Messages (shown as dashed arrows) originate with TSTs and are directed to the
terminal that sent the exchange message.

3.6.2 The Sequence of Events
The Change Customer transaction causes the following sequence of events:

1. The Transaction Begins. The user selects this transaction from a menu or list of trans-
actions. This process is described in Chapter 9.

2. Displaying the First Exchange’s Form. The first exchange begins with the display of a
form. The form is specified in the transaction definition, and the form definition itself
can be found in the form definition file.

3. First User Input. The user responds to this form by entering a customer identification
number and pressing the ENTER key.

4. Exchange Message Constructed. System software within the transaction processor takes
this input and formats it into an exchange message according to the specifications in the
form definition.

5. Exchange Message Routing. The transaction processor consults the transaction definition
to find which TST (or TSTs) the exchange message should be routed to. In this case, the
message is routed only to the RDCUST TST.

6. Processing by RDCUST TST. The exchange message waits at the TST station until a copy
of the TST is available to process it. The TST then reads the specified customer record
from the file.

7. Generation of Response Message. Having read the record, the TST generates and sends a
response message containing the data from the customer record. The TST selects the
proper response message so that the transaction processor moves to the next exchange
of the transaction.

8. The Second Exchange. The second exchange is entered because the response message
from the previous exchange directed that this occur. The second exchange displays the
old customer data and asks the user to edit it.

9. Displaying the Second Exchange’s Form. The process by which this form is displayed
makes use of the data returned in the first exchange response message. (That is how the
old customer data is transferred from the file to the terminal screen.) The form defini-
tion specifies the manner in which the data from the previous response message is used.

3-12

An Introduction to Transaction Processors

Transaction Processor

Customer
File

Transaction /

Definition
File

WRITE Program

VERIFY Program

READ Program

RDCUST VALIDC REWRIT

TST J)
) _— T T >
Statlom ~ g\gssage 2 ~

oO—
o—

F L7
orm N, 3
Definition \o’{, &
© <
ANCA]
w /

File

Terminal
Station

Terminal 3

Terminal 1 Terminal 2

Figure 3-6 A Transaction Processor at Work

3-13

10.

11.

12.

13.

14.

15.

16.

17.

18.

An Introduction to Transaction Processors

Second User Input. The user’s input in the second exchange is not necessarily a data
entry operation; the existing data might be edited slightly — or not at all.

Exchange Message Constructed. When the user presses the ENTER key, the data is
formatted into an exchange message according to specifications in the form definition.
All customer data is included in this exchange message, even if it has not been changed
by the user.

Exchange Message Routing. The transaction processor again checks the transaction
definition to see where the exchange message should be routed. In the second exchange,
the message is routed sequentially to two TSTs. First, the VALIDC TST checks the data,
and then the REWRIT TST writes the updated record in the file.

Processing by VALIDC TST. As in the first exchange, the exchange message may have to
wait at the TST station. Eventually, it is processed. When this TST terminates, the trans-
action processor forwards the exchange message to the second station on the routing list.
Processing by REWRIT TST. Again, the exchange message may have to wait at the
corresponding TST station. After writing the customer data into the customer file,

this TST generates and sends a response message.

Generation of Response Message. This response message contains no data but informs
the user that the update has been accomplished.

Response Message Arrives at Terminal Station. When the response message arrives at the
terminal station, it causes a confirmation message (previously encoded as part of the form
definition) to be displayed. It also unlocks the AFFIRM key on the terminal.

User Presses AFFIRM Key. Assoon as he sees the confirmation message, the user presses
the AFFIRM key, ending the transaction instance. The terminal screen returns to the
first form of the transaction, awaiting another execution of the same transaction.

User Returns to Transaction Selection Screen. If he does not wish to execute another
change transaction, the user presses the CLOSE key to return to the transaction menu.

3-14

CHAPTER 4
TRANSACTION PROCESSING PATHS AND THEIR CONTROL

The principal difference between TRAX and other systems is that TRAX does not have contin-
uously active application programs to guide each user’s on-line processing. In a TRAX transaction
processor, each user’s interactive processing is influenced by many system components. These
system components interact to determine the way any transaction instance proceeds.

This chapter examines these influences and the way they interact.

4.1 FUNDAMENTALS: STATIONS AND MESSAGES

At the lowest level, the sequence of processing applied to any transaction instance depends on the
content of a series of messages, the stations where these messages are directed, and what happens
at each station when the message is processed.

4.1.1 Stations
A station in a transaction processor holds messages until they can be processed.

Stations are strictly first-in, first-out facilities. The message that arrives first will be processed first.

There are several different kinds of stations; they are distinguished by the kind of message
processing facility they serve. The different kinds of stations are:

® Terminal Stations. These stations receive messages for their particular application
terminals.

® TST Stations. These stations receive messages addressed to a particular TST.

® Batch Submit and Batch Slave Stations. These stations handle messages destined for, or
coming from, the support environment.

® Link Master and Link Slave Stations. These stations handle messages destined for, or
coming from, other transaction processors — perhaps on other computer systems.

® Mailbox Stations. These stations store messages for TSTs until they are called.

Each station serves a message processing facility. Only TST stations serve application modules.
Others serve system software modules that manage the transaction processor. For instance,
terminal stations serve the system software modules that interpret forms definitions and
communicate with application terminals. TST stations, of course, serve TSTs.

As you work with transaction processors, you may find it convenient to mentally combine
stations with their respective message processing facilities and use the term “‘station’ to apply to
the combination. This simplifies the discussion. For example, you could say:

“Then, the exchange message is sent to the TST station XYZ, which looks up the part
number in the part file.”

Transaction Processing Paths and Their Control

Of course, this statement is not strictly true; the station’s purpose is to receive, store, and forward
the message; it is the TST itself that eventually looks up the part number in the part file. Thisis a
subtle distinction, however, and usually unimportant. Accordingly, the distinction will only be
maintained in this manual where it is significant. Otherwise, you will see the term ‘‘station”
applied loosely to both the station proper as well as the message processing facility that it serves.

An important step in creating a transaction processor is specifying its set of stations. Once they
are specified, a TRAX utility program calied STADEF is used to install the list of stations in the
transaction processor. Determining the proper set of stations is discussed in Part Two of this
manual; the procedures used with the STADEF utility program are described in the TRAX
Application Programmer’s Guide.

The following sections explain some of the special characteristics of different stations.

4.1.1.1 Terminal Stations — Terminal stations receive messages directed to their terminals by
TSTs. For interactive terminals, response messages alter the screen display. For output-only
terminals, the messages contain data to be printed.

Messages arriving at a terminal are always interpreted according to a form definition. The form
definition guides the terminal-handling software as it processes the message.

The parameters needed to define a terminal station are discussed in Section 16.2.

4.1.1.2 TST Stations — TST stations receive exchange messages and wait for their TSTs to
process them. Most exchange messages come from terminal stations, but other transaction
processor components can originate transaction instances and, consequently, generate exchange
messages.

Earlier, you read that stations operate on a first-in, first-out basis. It is important to realize that
this FIFO rule applies only to the TST station, and not to the processing of the messages by the
TST proper. Each TST station can serve multiple copies of a TST, and different copies may
process messages with varying speed.

The number of TST copies that can be active at once is specified when the station is defined.
When a TST finishes processing an exchange message, the TST is given another exchange message
from its station. If no messages are waiting at the station, the TST copy is deactivated.

While they are processing exchange messages, TSTs can also generate messages. These messages
are attributed to the corresponding TST station. For example, when a TST spawns a new
transaction instance that transaction instance and its exchange message are attributed to the
TST station. The TST station name is returned when some other TST issues a system call asking
for the source of the spawned exchange message.

The parameters required to define a TST station are discussed in Section 16.2. You can find more
about TSTs and how to program them in:

® Chapter 19 of this manual
® The TRAX Application Programmer’s Guide

Transaction Processing Paths and Their Control

4.1.1.3 Batch Submit and Batch Slave Stations — You will only use these stations if some of
your transactions need to communicate with the support environment. For information about
these stations, consult Chapter 11.

4.1.1.4 Link Master and Link Slave Stations — You will only use these stations if some of
your transactions need to communicate with other transaction processors — either those running

on the same computer or on remote computers. For information about these stations, consult
Chapter 11.

4.1.1.5 Mailbox Stations — Mailbox stations hold messages that are deposited and retrieved by
TSTs. There is no restriction on which TSTs can deposit or retrieve messages. Messages can be
sent to mailbox stations across exchanges of a transaction instance, between two transaction
instances of the same type, or between two unrelated transactions.

Like other stations, mailbox stationsi operate on a first-in, first-out basis. This means that a
transaction instance that deposits a message in a mailbox station and then retrieves a message from
that station may not get its own message. TSTs cannot wait for a message to arrive at a mailbox
station. If a message is not present, TSTs receive an error code and they continue execution.
TSTs can determine the number of messages in a mailbox station before asking for a message.

The contents of a mailbox station is stored on disk and is not affected by system shutdown. The
contents of a mailbox station is therefore available when the system begins operation again.

The parameters required to define a mailbox station are discussed in Section 16.2.

4.1.2 Messages

Messages are the data structures through which components of a transaction processor communi-
cate with each other. So far, you have been introduced to two kinds of messages: exchange
messages and response messages. There are four different kinds of messages used by transaction
processors:

® Exchange Messages
® Response Messages

There are six varieties of response messages:

"PRCEED
STPRPT
TRNSFR
CLSTRN
REPLY
ABORT

® Report Messages
® Mailbox Messages

43

Transaction Processing Paths and Their Control

4.1.2.1 Exchange Messages — An exchange message is usually originated by an interactive
application terminal. It contains data entered by the terminal user, and it is directed to a series of
TST stations (or possibly other stations) that must process the data it contains.

An exchange message is the only kind of message that can have a routing list — that is, a list of
several destination stations. Other messages have only one destination. Exchange messages are
routed sequentially to the designated destination stations; when a station has processed the
message, it is sent to the next station on the routing list.

The routing list of an exchange message has an influence on the sequence of processing steps
applied to a user’s input. The user input is only seen by those stations listed in the exchange
message routing list, and the processing done by the various stations must be applied in the correct
order. This way, the routing list acts as the top level of control for transaction processing.
Essentially, it prescribes a series of subroutines that are called to process the contents of the
message.

The initial routing list for each exchange message comes from the appropriate transaction defini-
tion. The definition gives a different routing list for each exchange message in each transaction.

But once the exchange message is constructed and dispatched, any TST that processes the
message can change the routing list. These changes, made with TRAX system calls, do not affect
the original routing list in the transaction definition. They affect only the routing list of the
exchange message being processed at that moment. The changes can be additions, deletions, or
complete erasures of the routing list.

In addition, a TST can change the content as well as the routing of an exchange message. The new
content will be seen by all “downstream’ stations on the routing list — that is, those stations to
which the message has not yet been routed. This technique is necessary for any of the batch

or link stations, because they require a special exchange message format that is probably best
generated by a TST “upstream” from the batch or link station. (For details on batch and link
stations, see Chapter 11.) In most other cases, avoid designing TSTs that change the content of
exchange messages, transaction processors using such designs are difficult to debug. The transac-
tion workspace is meant to be used as a scratch area, and you should use it for that purpose in
preference to the exchange message.

An exchange message survives until it has been processed by the last station on its routing list.
When the final station has finished with it, the exchange message is purged from the transaction

Processor.

Remember that only one exchange message can exist for a transaction instance at one time. This
restriction becomes important in several design instances.

4.1.2.2 Response Messages — A response message is generated by a TST and directed back to
the application terminal station that issued the exchange message that the TST is processing.

44

Transaction Processing Paths and Their Control

Remember that a TST is only activated to process an exchange message; this means that any active
TST must be working on an exchange message. This exchange message is associated with a
transaction instance and the terminal station that originated the transaction instance. This is the
station to which the TST’s response message is always directed. (In fact, a TST does not even
direct response messages to specific terminals — the transaction processor automatically directs
each response message to the appropriate terminal station.)

The response message tells the terminal user the outcome of the exchange message processing and
directs the transaction processor to a new exchange. The precise exchange chosen depends on the
type of response message sent by the TST as well as certain details of the transaction definition.
The six response messages, the relevant transaction definition parameters, and their combined
effects are discussed in Section 4.4

Response messages, unlike exchange messages, have a single destination station — the terminal
station that issued the associated exchange message.

The transaction processor expects (with one exception) one response message for each exchange
message. So, if an exchange message is processed by a series of TSTs, only one of these TSTs
should issue a response message. Additional response messages will cause the transaction instance
to be aborted. (The exception occurs with the NOWAIT option described later in Section 4.2.4.
When this option is used, no response messages are allowed.)

What happens if the TST that issues the response message is not the last station on the exchange
message routing list? This situation is shown in Figure 4-1. Here, an exchange message is routed
to three TST stations. The second of the three sends the response message, leaving one station to
process the exchange message. The following things happen:

® Sending the response message does not terminate TST2. This TST can continue to
execute.

® The response message is generated and dispatched as soon as TST2 issues the appropriate
system call. For a time, both the exchange message and the response message exist.

® Sending the response message does not erase TST3 from the exchange message routing
list. The exchange message continues to TST3 as soon as TST2 terminates.

® In parallel with the progress of the exchange message, the response message arrives at the
proper terminal station. The arriving message triggers a display action at the terminal,
allowing the user to see a new screen display. The message is then discarded.

® The user proceeds to enter data to the new form as if the processing for the first exchange
had been completed.

® Meanwhile, the exchange message is finally processed by TST3 and discarded.

Interleaving user conversation and exchange message processing in this way is a form of parallel
processing and can result in complex transaction designs. Most transaction processing situations can
be handled in a straightforward way by requiring the last TST for an exchange message to send the
response message before it terminates. Alternatively, if you want an earlier TST to send a

response message (for instance, one containing an error message), be sure that your TST erases all
“downstream” TSTs from the exchange message routing list. The issuing TST therefore becomes
the last in the routing list, and you will again have a simple nonoverlapped processing arrangement.
Do not attempt overlapped processing designs until you are familiar with transaction processors

and their operation.

Transaction Processing Paths and Their Control

wWww
TST 1
T Exchange
| ENTER |

Message
TST 2 \

Response

Message
TST3

- - o w- - = - -
D TR S ——
- eer e . = o - em -

To Next Exchange
| ENTER r -

Figure 4-1 Relationship Between Response Messages and Exchange Messages

4.1.2.3 Report Messages — Report messages send data to an output-only application terminal
where the data is printed. Report messages are always sent by TSTs and are always directed to a
terminal station associated with an output-only terminal. (There is no way to print data at an
interactive application terminal, if that terminal did not initiate the transaction instance in question.
There is no way to involve more than one interactive terminal in any given transaction instance.)

Remember that everything printed, displayed, or entered at an application terminal is controlled by

a form definition. This is true for output-only terminals, and each page printed at an output-only
terminal is printed in the format prescribed in a form definition.

4-6

Transaction Processing Paths and Their Control

The report message consists of two parts:

1. It specifies the form that controls the format of the printed output.
2. It contains the data to be inserted on the form during the printing process.

Constant data can be included as part of the form definition; only the variable data need be
included in the report message itself.

Each report message must contain data to fill a page of output. Several report messages cannot be
combined to fill a single form.

A single output-only terminal station can receive report messages from a variety of TSTs. Pages
from the output-only terminal will be interleaved without regard for transaction instance, and
your transaction processor design must allow for this.

4.1.2.4 Mailbox Messages — Mailbox messages allow communication between two transaction
instances or a method of data batching for later processing.

Mailbox messages are generated by TSTs and can only be sent to mailbox stations. Mailbox
messages may have any data content. They wait at mailbox stations on a strict first-in, first-out
basis until another TST asks for them.

4.2 THE TRANSACTION DEFINITION

Transaction definitions associate exchanges, forms, routing lists, and other transaction parameters
to give an overall framework to a transaction. Each type of transaction that a transaction processor
handles needs a definition.

Parameters specified in a transaction definition are not binding. Many parameters depend not only
on the transaction definition, but also on the message content or particular terminal function keys.
It is the interaction of all these factors that determines how any transaction instance proceeds.

The transaction definition provides a framework in which the other elements can be applied.

A transaction definition divides a transaction into exchanges. For each exchange, it specifies:

A name for the exchange

The form to be used

A routing list for the exchange message

Optional selection of the NOWAIT option (explained next)
Optional selection of the REPEAT option (explained next)
What will happen when the exchange is completed

A time limit for the exchange

Transaction definitions for a transaction processor are kept in one file, called the transaction
definition file. Definitions are entered into this file with a utility program called TRADEF, which
executes in the support environment of the TRAX system. The TRADEF utility program serves as
an editing and listing facility for transaction definitions as well as a means of entering them.

4-7

Transaction Processing Paths and Their Control

4.2.1 Exchange Label

The exchange label is a short name (up to six characters) that identifies the exchange within the
transaction definition. A TST can use this label, for instance, when it wants the transaction
processor to transfer to a specific exchange without regard to the other transaction definition
parameters.

4.2.2 Form Name v

This transaction definition parameter specifies the form to be displayed during the exchange. Most
transactions are initiated from interactive terminals. For these transactions, the content of the
exchange messages are derived from user input, and this input can only occur under the control of
a form.

Only one form can be displayed during any exchange. The only modifications that are permitted
to the basic form display are those defined within the form definition itself.

Transactions initiated by other than interactive terminals do not need forms. These alternative
transaction initiation techniques are explained in Chapter 9.

4.2.3 Routing List
The transaction definition contains a routing list for each exchange. This routing list is assigned
to the exchange message when it is generated.

NOTE
The content of the exchange message is specified
by the form definition used for the exchange: the
routing of the exchange message is specified by
the transaction definition.

Once an exchange message is generated, addressed, and sent, its routing list may be changed by any
TST that processes it. Such a change affects only that particular exchange message and does not
affect the master routing list in the transaction definition.

Most transaction processing requirements can be met easily without having TSTs change the
routing lists of exchange messages. A good design allows TSTs only to remove entries from the
routing lists and then possibly only all entries at once. That is, you should be able to design most
transaction processors so that the only changes made to routing lists are deletions of remaining
destinations — a cancellation of further routing. More complex or varied changes are likely to
result in a transaction processor whose structure and operation is more difficult to understand.

4.2.4 The NOWAIT Option

A transaction processor normally waits for a response message in answer to each exchange message.
Until the response message is received, the user’s terminal cannot proceed to the next conversational
step — either to a new exchange or to another cycle through the current exchange.

The NOWAIT option tells the transaction processor that a response message is not coming for an
exchange message. The transaction processor therefore proceeds to the next conversational step as
soon as the exchange message is constructed and dispatched, and the TSTs that process the exchange
message cannot send a response message.

Transaction Processing Paths and Their Control

This option is not often used. It is included in the transaction definition for exchanges where no
response message is necessary. It might be profitably used, for example, for “blind data entry” —
that is, data entry to a file without any edit checks or error messages. The absence of edit checks
and error messages makes response messages unnecessary; and, in such instances, the NOWAIT
option can be used to improve transaction response times.

4.2.5 The REPEAT Option

The REPEAT option, when used, indicates that an exchange should be repeated. This loop is
repeated until an appropriate terminal function key or response message instructs otherwise.
(Terminal function keys and specific response messages are described in Sections 4.3 and 4.4,
respectively.)

The REPEAT option causes each repeated execution of the exchange to begin with a fresh copy of
the exchange form. All modifications that occurred during the previous execution of the exchange
are removed, along with any user-entered data.

This option might be used in a transaction that enters orders to an order file. Such a transaction
might consist of three exchanges:

® A preliminary exchange that would collect general order information: customer name,
address, ship-to address, and so forth.

® An exchange that would collect individual order lines — that is, each execution of the
exchange would allow the entry of one order line: quantity, stock number, price,
description, and so forth.

® A final exchange that would verify the order, calculate the total price, and accept payment.

The middle exchange in this transaction would probably use the REPEAT option. It should be
repeated until the terminal operator tells the system that all order lines have been entered. Ways in

which a terminal operator or a TST could signal an end to the repeated exchange are discussed in
Section 4.3.2.

4.2.6 Subsequent Action

The transaction processor needs to know what to do when an exchange (including repeat cycles,
if any) has been completed. The parameter that provides this information for each exchange is
called the subsequent action parameter. Three choices are possible:

e NEXT. This indicates that the next exchange in the transaction definition should begin.

o FIRST. This indicates that the current transaction instance is to be terminated; and the
form from the first exchange of the transaction then is to be displayed so that the terminal
user can begin another transaction of the same type.

o INITIAL. This indicates that the current transaction instance is to be terminated. After
this, the transaction selection menu (or other initial operating mode defined for the
terminal) is to be displayed. (Transaction selection forms and initial operating modes refer
to what an application terminal displays when it is idle; these terms are discussed in detail
in Section 9.1.)

Transaction Processing Paths and Their Control

In the order entry example in Section 4.2.5, the subsequent action parameter would probably be
set as follows for each exchange:

® In the first exchange, the parameter is set to NEXT.

® Similarly, in the second exchange, the parameter is set to NEXT. This parameter would
only come into play, however, when the REPEAT-option loop had been terminated.

® In the third exchange, the parameter could be set either to FIRST or INITIAL. The former
would be appropriate if the user were likely to begin another order; the latter if the user
were likely to choose another transaction.

4.2.7 Exchange Time Limit

A time limit (in minutes) is provided for each exchange so that the transaction cannot “hang”
indefinitely. There are several things that can cause a transaction to ‘““hang’’ or suspend itself in an
exchange — for instance, the lack of a response message where one is needed. There can also be
run-time problems, such as an extreme delay during communication with another transaction
processor.

The time specified in the time limit starts when the user presses a user function key. If the time
limit expires before a response message has been received, the transaction is aborted.

4.2.8 General Transaction Parameters
Besides the parameters listed before, which apply to each exchange, the transaction definition also
includes some parameters that apply to the transaction as a whole:

® Transaction Name. Each transaction is identified with a short name (up to six characters).

® Exchange Recovery. Exchange recovery is a technique for reprocessing exchanges after
certain error conditions. The transaction definition specifies whether the transaction
supports exchange recovery. Exchange recovery is fully described in Section 10.2.1.

® Message Logging. Exchange messages and other messages sent during the transaction can
be logged to the system journal device if desired.

® Data Structure Sizes. The size of the largest exchange message, the size of the transaction
workspace, and the size of the system workspace must all be specified in the transaction
definition. (The system workspace is explained in Chapter 7.)

4.3 THE EFFECTS OF TERMINAL FUNCTION KEYS
Video display application terminals have ten function keys:

System Function Keys
AFFIRM
STOP REPEAT
CLOSE
ABORT

User Function Keys
ENTER
DOT (.)
0

1
2
3

4-10

Transaction Processing Paths and Their Control

These keys cannot be used either to enter or edit data on a form. Instead, they are used to initiate
some action once all data entry and editing have been completed.

There are two groups of function keys:

e System Function Keys do not cause an exchange message to be constructed. A terminal
user avoids exchange processing by pressing one of these keys. Depending on the transac-
tion definition in use and the exact key pressed, these keys can either send the user to
another exchange or terminate the transaction instance.

® User Function Keys do cause an exchange message to be constructed from the user input.
The exchange message is then routed to processing stations (usually TSTs) by the routing
list specified in the transaction definition. All the keys in this group have an identical
function; they only differ by the legend on the key cap. This legend (or a substitute
legend, if desired) can be included in the exchange message, so the TSTs can determine
which key was struck.

The terminal function keys in both groups {except the ABORT function key) can be enabled and
disabled in the course of a transaction. This enabling and disabling is under the control of form
definitions. The form definition specifies the keys to be enabled when the form is first displayed
and specifies how keys are to be enabled and disabled for each reply definition. (Reply definitions
are explained in Section 4.4.5.)

The ABORT key is always enabled.

Function keys can be pressed only when the transaction processor is expecting input from the
user’s terminal. For example, the user could press a function key while he is completing a form; he
could not press a function key after he has pressed ENTER and his exchange message is being
processed. This is also true for the ABORT key — it cannot abort exchange message processing
that is already in progress.

Figure 4-2 summarizes the effect of each terminal function key. Note that all the user function
keys are treated as a single type of key, because they each have the same effect on the flow of a
transaction.

4.3.1 The AFFIRM Key

The AFFIRM key interacts with two parameters in the transactlon definition: REPEAT/
NOREPEAT and subsequent action.

® When the AFFIRM key is pressed, the transaction processor first tests the REPEAT/
NOREPEAT parameter for the current exchange. If this parameter is set to REPEAT,
the terminal screen is erased and the exchange is repeated. If set to NOREPEAT, the
transaction processor tests the second parameter, subsequent action.
® The subsequent action parameter can have one of three values:
NEXT. If this value is found, the transaction processor moves the user to the next
exchange in the transaction definition. If there is no “next exchange,” the transac-
tion processor acts as if the INITIAL value had been chosen.
FIRST. If this value is found, the transaction processor ends the current transaction
instance. Then the user is brought back to the first exchange of the same transaction
for another execution.

4-11

Transaction Processing Paths and Their Control

Build and send

exchange message

\

PV, V.Y VY V) S—
V%244 4% .4 Y SE——
User
Function Keys o
AFFIRM
STPRPT T
CLOSE S A
ABORT
4
Yes Repeat No
Exchange -
?
l

NEXT

Last
Exchange

Subsequent
Action
?

FIRST

INITIAL

Terminate this
transaction
instance
abnormalty;
return to
transaction
menu screen or
other initial
terminal
operating mode.

Erase screen;
repeat the
exchange.

Go to
next
exchange
in
transaction
definition.

Terminate this
transaction
instance;
return to first
exchange and
prepare for
another
execution of
the same
transaction.

Terminate this
transaction
instance;

return to
transaction
menu screen

or other

initial terminal
operating mode.

Figure 4-2 Effects of Terminal Function Keys

4-12

Transaction Processing Paths and Their Control

— INITIAL. Like FIRST, this value causes the transaction to be terminated. But the
user is taken to the terminal’s transaction selection menu or other initial operating
mode. The user can then select a new transaction.

4.3.2 The STOP REPEAT Key

The STOP REPEAT key is similar to the AFFIRM key. The difference is that the STOP REPEAT
key never causes the REPEAT/NOREPEAT parameter in the transaction definition to be tested.
The exchange is always treated as if that parameter were set to NOREPEAT.

The STOP REPEAT key uses the subsequent action parameter as the AFFIRM key does.

4.3.3 The CLOSE Key

The CLOSE key terminates the transaction instance. The user is returned to the terminal’s
transaction selection menu or other initial operating mode. The user can then select another
transaction.

4.3.4 The ABORT Key

The ABORT key terminates the transaction instance with an “abnormal’ status. This means that
certain statistics are recorded, and staged file updates that are pending for the transaction instance
are not done. The user is returned to the terminal’s transaction selection menu or other initial
operating mode. The user can then select a new transaction.

The ABORT key is unique in that it is the only function key that cannot be disabled. The user
may press it at any time that his keyboard is unlocked.

4.3.5 The User Function Keys

The user function keys (ENTER, DOT, 0, 1, 2, and 3) have an identical effect on the flow of the
transaction: they cause an exchange message to be constructed from the form, and the exchange
message is routed to the appropriate list of stations.

User function keys are enabled and disabled in the same way as system function keys. Usually,
the ENTER key is left enabled and the others are disabled. Additional user function keys can
be enabled if a TST must be able to distinguish between two or more user data entry actions.

User function keys indicate a user’s choice between several alternatives. Several user function keys
can be enabled, and the user chooses one by pressing it. If the form designer has included the
identifier of the function key in the exchange message, the TSTs that process the exchange
message can tell which key was pressed.

The user must press the Shift key when he presses a user function key. (The user function keys are
part of the numeric keypad when the Shift key is not pressed.) The ENTER Kkey is an exception.
The ENTER key does not need a Shift key.

4.4 THE RESPONSE MESSAGES

Response messages are TST answers to exchange messages. During normal transaction processing,
each exchange message is answered by one response message. The response message is sent by one
of the TSTs that processes the exchange message, and it is sent to the terminal station that initiated
the exchange message.

4-13

Transaction Processing Paths and Their Control

Response messages serve two purposes:

® They can contain data that the TSTs have generated during the processing of the exchange
message. For example, if an exchange message contained a customer identification
number, the corresponding response message might contain that customer’s record in a
Customer file.

® They can give instructions to the transaction processor to move to a specific exchange.

It is the second function — controlling movement between exchanges — that we cover next.

In most cases, response messages alone do not determine which exchange is executed next. Like
function keys, they interact with two parameters in the transaction definition. The final choice of
an exchange depends on both the specific response message and the two transaction definition
parameters.

There are six different kinds of response messages.

PRCEED
STPRPT
TRNSFR
CLSTRN
REPLY
ABORT

These response messages can be distinguished by their instruction to the transaction processor
concerning the next exchange to be executed.

Each message can include data that the TST wishes to send to the terminal. The data included in
the message does not alter the effect of the message; that is, the data cannot affect which exchange
is executed next. The data can only be used to construct the destination exchange’s form. The
effect of the message is determined by the kind of message the TST chooses to send.

4.4.1 The PRCEED Message

The PRCEED message is the kind of response message most commonly used by TSTs. When a TST
sends this message, the exchange executed next depends on two transaction definition parameters:
REPEAT/NOREPEAT and subsequent action.

® The transaction processor first checks the REPEAT/NOREPEAT parameter for the current
exchange. If the REPEAT parameter is set, the terminal screen is erased and the current
exchange is executed again. If the NOREPEAT parameter is set, the second transaction
definition parameter is checked.
® The second parameter can have one of three values:
If the parameter is set to NEXT, the next exchange in the transaction definition is
executed. If there is no ““next exchange™, the transaction processor acts as if the
INITIAL value was present instead.
If the parameter is set to FIRST, the current transaction instance is terminated. Then,
the first exchange of the same transaction definition is begun as a new transaction
instance.

4-14

Transaction Processing Paths and Their Control

— If the parameter is set to INITIAL, the current transaction instance is terminated. But,
instead of preparing to execute the same transaction again, the transaction processor
returns the terminal to its initial operating mode. This will probably be a transaction
selection menu, and the user can choose a new transaction.

If a PRCEED response message contains application data, that data is used with the newly selected
exchange form definition to build the form.

4.4.2 The STPRPT Message

The STPRPT response message is like the STOP REPEAT terminal function key: it ignores the
REPEAT/NOREPEAT option in the transaction definition. In other respects, the STPRPT message
is similar to the PRCEED message.

4.4.3 The TRNSFR Message

The TRNSFR response message allows a TST to override the transaction definition parameters and
select the exchange to be executed next. This type of response message is useful when a TST must
choose among two or more possible successor exchanges to the current exchange. The parameters

in the transaction definition allow only two alternatives upon completion of each exchange —
termination of the current transaction instance, or the execution of the next exchange in the
transaction definition. If you need a transaction that can take several alternative paths out of an
exchange, you must use the TRNSFR message in your transaction design to overcome this limitation.

When a TST issues a system call to send a TRNSFR response message, it must specify an exchange
name. This name, which corresponds to the short name (or label) given to an exchange in the
transaction definition, identifies the exchange to be executed. The transaction instance transfers
execution to this exchange, no matter where the exchange may be in the transaction definition.

If a TST chooses an exchange name that happens to be the first exchange in the transaction
definition, a new transaction instance is #ot begun. The same transaction instance continues, just
as if the chosen exchange were elsewhere in the transaction definition.

NOTE
This is a different effect from the interaction
between a PRCEED message and a FIRST
parameter in the transaction definition, where a
new transaction instance would begin.

If a TRNSFR response message contains application data, that data is used with the form definition
from the specified exchange to build a form at the user’s terminal.

4.4.4 The CLSTRN Message

The CLSTRN response message causes the current transaction instance to be terminated. The
terminal reverts to its initial operating mode, which will probably consist of a transaction selection
menu. The user can then choose a new transaction.

4-15

Transaction Processing Paths and @r_C;n trol

If a CLSTRN response message contains application data, that data is used with the form definition
for the terminal’s initial operating mode. That is, if the terminal’s initial operating mode consists
of a transaction selection menu, the application data is available to the definition of that form and
may be included when the form is displayed at the terminal. Similarly, the application data is
available to the form definition of the first form of the designated transaction, if that is the
terminal’s initial operating mode. (Initial operating modes are described in Chapter 9.)

4.4.5 The REPLY Message

The REPLY response message indicates that the user should remain in the current exchange. But
before the user is allowed to enter data to the exchange form, the form will be modified as defined
in the form definition.

REPLY response messages are typically used to return error messages and similar data to the
terminal. The REPLY response message tells the user to “‘try again’ with different input data. If
‘he enters different data, it will be processed like his first entries.

Each form definition can contain one or more reply definitions. Each reply definition specifies
several modifications that might be applied to that form. Some aspects of a form can be modified
by a reply, such as:

® The text displayed in any field
® The set of function keys that are enabled
® The position of the terminal cursor

Yet, some aspects of a form are *“frozen” when a form is first displayed and cannot be changed by
areply:

® The size of a field

® The data entry rules for a field

® The mode in which a field is displayed (such as, black-on-white)
® The rules for assembling an exchange message

Reply definitions are given identifying numbers in the form definition. A TST specifies the
appropriate identifying number when it issues the system call that sends the REPLY response
message.

When the REPLY response message is received at the terminal station, the form modifications
specified in the specified reply definition are made. The user is then allowed to enter data and/or
press any of the enabled function keys. If the user presses a user function key, an exchange message
is constructed exactly as during the first cycle through the exchange. That exchange message is
given the same routing list, and the exchange processing begins again with the new exchange message.

If a REPLY response message contains application data, that data is used with the specified reply

definition from the current form. Thus, the data is available to the reply definition and may be
displayed on the form as part of the reply modifications.

4-16

Transaction Processing Paths and Their Control

For example, a reply definition for error messages might specify that 80 characters of text are to be
taken from the REPLY response message and placed in a field on the form. A TST could then
invoke this reply definition by sending a REPLY response message. The message would have to
specify the proper reply definition number, as well as 80 characters of error message text.

4.4.6 The ABORT Message
The ABORT response message is similar to the REPLY response message. The difference is that

after the reply definition is applied to the form, any function key struck by the user acts like an
ABORT function key.

This message enables a TST to inform the user of the reasons for the ABORT condition and lets
the user read the informational message before the terminal reverts to its initial operating mode.

Do not confuse the ABORT response message with the TABORT system call. The TABORT call
aborts the transaction instance immediately, and the user’s terminal reverts to its initial operating
mode without any possibility of an informational message. Consult the TRA X Application
Programmer’s Manual for further information about the TABORT system call.

4.5 AN EXAMPLE OF TRANSACTION PROCESSING PATHS
Let us return to the change customer transaction we have been using for an example in previous
chapters.

Figure 4-3 shows how the transaction is divided into exchanges and shows the form and TSTs for
each exchange. The arrows are possible processing paths.

Two things about the processing flow in Figure 4-3 deserve special attention:

1. Figure 4-3 shows two response messages during the processing of the second exchange.
One message displays a data input error message, and the other displays a confirmation
message. Only one of these messages is sent during each execution of the transaction.
If the VALIDC TST decided that a data field was invalid, it would send an error message
and remove the REWRIT TST from the routing list of the exchange message. However,
if the VALIDC TST found no problems with the data, it would rot send the error
message, and the REWRIT TST wouid send the confirmation message to end the
transaction.
2. At the end of the second exchange (after the confirmation message has been displayed)
two function keys are enabled: The AFFIRM and the CLOSE keys. (The ENTER key
has been disabled.) These two function keys have these effects:
® The AFFIRM key takes the user back to the beginning of the transaction so that
another customer record can be changed.

® The CLOSE key takes the user to the transaction selection menu, so that another
transaction can be chosen.

Both keys end the current transaction instance.

You may have noticed that there is no provision in the first exchange for a nonexistent customer
identification number or an invalid input format. As an exercise, you may want to add a transac-
tion processing path to the diagram for this kind of error message. What kind of response message
will the TST send? Will the TST include application data in the message? If so, what will this data
be? What will have to be added to the first exchange’s form definition to process this message
properly?

4-17

Transaction Processing Paths and Their Control

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR
TRANSACTION NAME

EXCHANGE NAME

[sfa[mlr]c]E]
(clrlefc]u]s]
fc[nlele]x]1]
lc[rlcfuls]1]

pace [L1] oF

START

aCLOSE
To transaction
selection form

FORM NAME
CONVERSATION I MESSAGES [PROCESSING
INITIAL DISPLAY
Ask for
customer
number
Display REPLY
error -
Response message contains
message
error message text
-<+—ERROR
Read
Allow user ENTER custZ?ner To
to enter Exchange message contains record CHGEX2
customer number customer number
ATEND: [] - REPEAT — NEXT — WAIT
~ NOREPEAT []-FRsT []-~NowaiT
[]-mimaL

Figure 4-3 An Example of Transaction Processing Paths

4-18

Transaction Processing Paths and Their Control

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR | S JA[M[PL[E]

TRANSACTION NAME

EXCHANGE NAME

clnfe]c]u]s]
[c]r]ee[x]2]
[c]H]c]uls]1]

PAGE . OF DE

. Only enabled when form is first displayed and after reply 1.

FORM NAME
CONVERSATION l MESSAGES l PROCESSING
INITIAL DISPLAY

Display
_FROM customer
CHGEXY record

Display

error REPLY ‘
message Response message contains
error message text
Display REPLY
confirmation -
message Response message contains
no data
--—ERROR
L Verify
r data
oK
/
ENTER erte'new
CLOSE Allow user - data into
- ; 10 edit data Exchange message contains file
To transaction customer data
selection form a __...—_.—j
_LAFFIRM
hl To first exchange
ATEND: [] - REPEAT [- NexT [X] - waiT
~NOREPEAT — FIRST []-n~owarT
— INITIAL

0 Only enabled after reply 2.

Figure 4-3 An Example of Transaction Processing Paths (Cont.)

4-19

CHAPTER 5
FORMS AND THE APPLICATION TERMINAL LANGUAGE

This chapter explains important forms characteristics and introduces the language you will use to
write form definitions. At the end of the chapter, there is a form definition for an example
transaction.

5.1 THE PURPOSE AND SCOPE OF THE APPLICATION TERMINAL LANGUAGE
The Application Terminal Language (ATL) is the language you will use to write form definitions.
You can express every aspect of form design and usage with ATL. This includes:

® The layout of the form as it appears on the user’s terminal

® The rules for how the user fills out the data fields on the form, including special
restrictions for characters entered in each field and rules for field justification

® The function keys that the user uses at various points in the conversation

® The format of the response messages, if any, that supply data while the form is being
generated at the user’s terminal

® The format of the exchange message constructed from the data the user enters

® The modification to the form on instruction from a TST

® Special form options, such as whether the form is to be designated as a transaction
selection menu

Because ATL is a specification language, you will probably find it convenient to write form
definitions yourself rather than ask an application programmer to write them. It will not take you
long to learn ATL. In fact, you may find that writing your own form definitions saves you
significant paperwork, because once you prepare a form definition, the ATL compiler (see

Section 5.2) generates most of the documentation your application programmers need — even
mockups of each form, drawn to scale!

5.2 PREPARING A FORM DEFINITION WITH ATL
ATL is a compiled language. This means that there is an ATL compiler, and the compiler
processes your source file into an encoded form definition that the transaction processor can use.

Creating an ATL source file is like creating a source file for any TRAX language. You use a
support environment terminal and the EDIT program. Follow your preference about creating your
source file: you can write the definition on paper and enter it at a terminal, or you can sit at the
terminal and enter the definition as you develop it. The relative simplicity of ATL, as well as the
power of the EDIT program when run from a video display terminal, makes either method

feasible.

Once you prepare a source file, you must compile it. The ATL utility program does this for you.
This utility program also manages the form definition files. You can use the ATL utility program
to see what forms have been installed or to delete forms from the system, as well as to compile
and install new forms.

5-1

Forms and the Application Terminal Language

When you use it to compile a form definition, the ATL utility program will do this:

® Scan your source file, checking your ATL statements for validity and consistency

® Generate an encoded form definition that can be used by a transaction processor

® Generate printed output that documents the compilation process and selected form
parameters

The ATL utility program provides options that allow you to print all, part, or none of the
compilation output and to install the finished form definition in a transaction processor form
definition file.

5.3 KINDS OF FORMS
You can use the Application Terminal Language to define three kinds of forms:

® Entry Forms. These forms are used at the beginning of each exchange to collect data from
the user. Your transaction processor will probably have more of this form than any other.
The names of these forms appear in transaction definitions.

® Transaction Selection Forms. These are the “menu’ forms that let a user choose the
transaction he wishes to execute. As such, they are never part of the definition of any
transaction. Instead, a terminal can be assigned one of these transaction selection forms,
and the form will be displayed between transactions. Usually, these forms collect one
item of data: the name of the chosen transaction.

® Report Forms. These forms are used to print data at output-only application terminals.
Like transaction selection forms, they are never part of a transaction definition. Instead,
each report message containing data to be printed also specifies a report form that
determines the format to be used. Unlike the other two forms, report forms are never used
interactively: that is, they never collect data from a terminal user. So, they never generate
exchange messages and use only a small proportion of the ATL language facilities.

Even though only one type of form (the entry form) ever becomes part of a transaction definition,
all three forms are kept in the transaction processor’s form definition file. Within the file, they are
identified by a short name (up to six characters in length) that is assigned when they are placed in
the file. This six-character name is used to access forms within the transaction processor.

5.4 FORMS AND FIELDS
A form is composed of fields. Each field is a defined, contiguous area of the screen that has
predefined characteristics.

Fields may not overlap one another; in other words, each character position on the screen or page
may belong to only one field.

Any area of the screen or page that is not part of a field cannot contain application data.
There are five kinds of fields in ATL:
® Two fields, DISPLAY and PROMPT, are used to display information for the user.

® Two other fields, MENU and INPUT, are used to collect information from the user.
® The last field, PRINT, is used to print information on a hard-copy device.

Forms and the Application Terminal Language

Fields can continue from the end of one line to the beginning of the next line. This is considered
a “contiguous” field, and the field uses the two lines as one long line.

5.5 ATL LANGUAGE ELEMENTS

The statement is the fundamental grammatical unit in the Application Terminal Language. There
are twelve statements in ATL. Each statement begins on a new source line, and has a unique
statement keyword.

A statement keyword is often followed by one or more statement parameters. These parameters
provide additional information about the statement’s desired effect. Parameters are separated from
the statement keyword by the equal symbol (=) and from each other by commas.

Following the statement keyword and the optional statement parameters, there may also be one
or more clauses. Each clause modifies the effect of its associated statement.

Each clause has a clause keyword (by which it is recognized) and perhaps one or more clause
parameters (which specify the effect desired). Like statement keywords and statement parameters,
clause keywords and clause parameters are separated from each other by an equal symbol (=), and
the clause parameters are separated from each other by commas.

A typical ATL statement is shown here. Note the statement components:

Connector
Statement
Keyword Statement
/Parameters
INPUT = 5,20
LENGTH =15
CLEAR = "X"

ATTRIBUTES = REQUIRED

LABEL = NAMEO1
Clause / \Clause

Keyword Parameters

Connector

5-3

Forms and the Application Terminal Language

The format of this statement is arbitrary; the format shown was selected for easy reading. The
only format restriction is that the statement keyword (INPUT) must begin on a new line.

Figure 5-1 might help you see the general syntax rules for ATL statements. This figure shows
which ATL language elements follow one another. As long as you follow the arrows in a forward
direction, any path through this diagram will describe a legal ATL statement. (Of course, specific
ATL statements make further restrictions upon syntax.)

New
Line

{

Statement Statement
Keyword Parameter

\

Clause
Keyword

Clause
Parameter

!
End
of
Statement

Figure 5-1 ATL Statement Syntax Diagram

5-4

Forms and the Application Terminal Language

You might find it helpful to take the typical ATL statement shown before and verify that it is
legal according to the syntax diagram in Figure 5-1.

5.6 STATEMENT GROUPS

Remember, a form definition serves many purposes. Each aspect of a form must be specified in the
form definition; and each specification must be handled by a separate group of one or more kinds
of ATL statements.

These groups are listed in Table 5-1, with the ATL statements for each group. You can learn more
about these statements and how they are used in the ATL Language Reference Manual.

Table 5-1 ATL Statements (Grouped by Purpose)

Usage
Transaction
Entry Selection Report
Group Purpose Keyword Forms Forms Forms
A Define General Form
Parameters FORM X X X
B Define Fields on Screen INPUT X X
PROMPT X X
DISPLAY X X
MENU X X
C Define Fields on Report PRINT X
D Define Exchange Message MESSAGE X !
E Define Reply Actions REPLY X 2
F Compiler Directives DEFAULT X X X
REPEAT X X X
REND X X X
END X X X

Ipossible in special circumstances
2These replies are not activated by a TST; they are used for error messages during transaction selection

5-5

Forms and the Application Terminal Language

5.7 STATEMENT ORDER
Because ATL is a specification language and not an algorithmic language, the order in which
statements appear in the definition is generally unimportant.

There are, however, five instances where the order of statements becomes important:

® Each form definition should begin with a FORM statement and must end with an END
statement.

® The INPUT statement (Group B, Table 5-1) defines a field so the user can enter data. The
user’s cursor advances from INPUT field to INPUT field in the order these fields are defined
in the form definition.

® The placement of DEFAULT statements (Group F) is important, because these statements
affect only those statements that follow them in the form definition.

® The placement of REPEAT and REND statements (Group F) is important, because they
affect only those statements between them.

® The placement of statements that use the dot symbol (.) in statement or clause parameters
is important, because the value of this symbol depends on preceding statements. The dot
symbol is explained in Section 5.9.

Although statement order is generally not important to the ATL compiler, you should organize
your form definitions in sections conforming to statement Groups A through E in Table 5-1.
Statements in group F, of course, must be scattered throughout the form definition.

This way, you will have distinct sections within each form definition corresponding to the
different purposes of a form. For example, one section might define the fields and where they
appear, another section might define the format of the exchange message, and so forth. This
makes your form definition easy to understand and maintain.

You can preserve these distinct sections of the form definition even if you use the REPEAT and
REND statements. (These statements allow you to define a series of related fields, or other

aspects of a form, without having to enter separate specifications for each field. To preserve the
distinct sections of the form definition, use several REPEAT/REND pairs: one pair in the section
that defines ficlds; another in the section that defines the exchange message; and perhaps another

in the section that defines the effect of replies. You could define the fields, their position in the
exchange message, and their modifications during replies in a single REPEAT/REND sequence — but
you would have to abandon separate form definition sections.

Use multiple REPEAT/REND sequences without worrying about their effect on system performance.
REPEAT/REND sequences are only a compiler shorthand, and they do not result in statement
loops that are executed at run time!

See the ATL Language Reference Manual for details on REPEAT/REND.

5.8 COMMENTS IN FORM DEFINITIONS

Comments are a valuable part of form definitions. Consequently, ATL allows you to insert
comments in a form definition at any point in the source file. These comments help document
the application and simplify maintenance of the form definition.

5-6

Forms and the Application Terminal Language

Begin each comment with an exclamation point (!). The ATL compiler ignores source text
beginning with an exclamation point. (This does not include exclamation points within text
literals.) After an exclamation point, the ATL compiler resumes scanning text at the next source
file line.

5.9 SHORTHAND NOTATION
ATL allows two shorthand notations to reduce bulk in your source files and to speed the process
of writing form definitions.

1. REPEAT and REND Statements (Section 5.7) allow you to avoid repetitious sections of
a form definition. Enter a portion of a repetitious section, and the compiler expands it
for you when the form definition is compiled.

2. The Dot Symbol (.) allows you to have a numeric parameter behave in a sequential
manner. For example, the position of an INPUT statement might be better expressed as
“two spaces to the right of the last field” rather than as an exact row and column
position. You can use the dot symbol in two places:

a. Group B and C Statements. You may use the dot symbol in both the row and column
parameters of Group B and C statements. When used in a line-number parameter, the
dot symbol stands for the line on which the previous field was placed. When used in
a column-number parameter, it stands for the first column to the right of the previous
field.

b. The REQUEST Function. The REQUEST function is the ATL construct that you
use to retrieve data from a response message. You may use the dot symbol as the
first parameter of this function; it specifies the byte position in the response message
where the data is to be found. In this case, the dot symbol stands for the first byte
of the response message immediately after the last data accessed by the REQUEST
function. Successive REQUEST functions can retrieve sequential fields from a
response message by using the dot symbol together with explicit field lengths as the
second REQUEST parameter.

Whenever you are allowed to use the dot symbol, you can combine it with a numeric offset either
plus or minus. For instance, to indicate the line below the previous field, the parameter .+1 might
be used.

Several examples of the dot symbol are listed here.

INPUT = .,20 An INPUT field on the same line as the
previous field, but beginning at column 20

DISPLAY = .+2,1 A DISPLAY field two lines down from the
previous field, beginning at the left margin

PROMPT = .,. A PROMPT field immediately to the right
of the previous field

VALUE = REQUEST (.,6) Retrieves a 6-character data field from
a response message, beginning at the end
of the previously retrieved data field

5-7

Forms and the Application Terminal Language

WRITE = FLDO1,REQUEST(.+10,25) Retrieves a 25-character data field from a
response message, beginning 10 characters
after the end of the previously retrieved
data field

5.10 ATL AND FORM DESIGN
ATL is a simple language, but that does not limit the forms it can define. Good form design is

a challenge, and it is an exercise in human factors and aesthetics as well as a technical activity.
When your application is installed, the forms are its most visible component. And, mediocre form
design takes its toll in user productivity and morale. With this in mind, be sure to spend the
necessary effort and time to design suitable forms for your application.

5.11 A TYPICAL FORM DEFINITION
A typical form definition begins on page 5-9. It is the form from the second exchange of the

change customer transaction.

As you recall, this form displays the old values from a customer record and allows the user to edit
those values. The new values are then sent back to the system in an exchange message.

This form has two defined replies:

Reply 1: This reply displays error messages received from TSTs. The enabled function keys
are not changed, so the user can edit the data he has entered and send it again.

Reply 2: This reply is used only after the new customer data has been written in the

customer file. It displays a confirmation message for the user and adjusts the
function keys so that the user can press only the AFFIRM key.

5-8

Forms and the Application Terminal Language

!t**ii*ﬁi*t*i*t***t*tt*ttt!titttttttttt**ii*t***ttt***i**t*tt***
] Defimition of form CHCUS?

!

[} The second form for tne Change Customer transaction

!

! This form displays the selected customer master file record
! and allows the user to change the dats conteimed in {t,
1 The changed data {s them sent back to the system in an

! exchange message,

!
I*tt*t*tt*t*t**itttﬁﬁt*ttii*titii*iitt***ik**t******ttit***ii***

l**itﬁ*it*****ti**ii***i*tt**t*titi*ﬁi*ttﬁtti***i**titiiiti**ﬁ*t

!
! Group A Statements = Define General Parameters
i
ltitii**i***tt***i*ttitﬁﬁ**ﬁ***t*ti***i**t****t*******tt********t
DEFAULT
ENABLE = AFFIRM
ENABLE = CLOSE
CLEAR = ®» v
FURM
SPLIT=8 {8 limes of display area
1*ii**iii*tttitiitlt*i*t**itit******t*t**tt***iﬁttit**tt*ti*ii**
i
) Grounb B Statements = Defirmre Fields on Screen
{
[P TS 2R EXXZEE2Z SRS RERSSR SR AR 2RSSR RSS2SR 222 RS REZ SR 24
L £ I 3 it i it it ittt ittt Ittt i ittt i it it it it i it i i

These are the apolication fields

The two error text fielags are uses to display error
messages contained {m response messages

- Sw B S O e o S

"
"
(]
"
“
"
"
1]
"
"
1]
"
"
L[]
1]
1]
"
"
L]
L]
"
"
"
n
L1}
"
n
"
1]
"

1]

1]

1

]

]

]
n

DISPLAY = 3,12

VALUE = "Customer Master File Subsystem = [hange Customer Transaction"

LENGTH = 60
ATTRIBUTE = REVERSE,NOBLANK

DISPLAY = 5,1
LABEL = REPLY,TEXT,A
LENGTH = g@

DISPLAY = 6,1

LABEL = REPLY,TEXT,B
LENGTH = 8@

5-9

Forms and the Application Terminal Language

PROMPT = 1,1
VALUE = "Customer Numbepr"

INPUT = ,,20
LABEL = CUST,NO
VALUE = REQUEST(,06)
ATTRIBUTE = REVERSE,NOMODIFY

PROMPT = ,+1,1
VALUE = "Customer Name"

INPUIT 2 ,,20
LABEL = CUST ,NAME
LENGTH = 308
VALUE = REQUEST(,,30)
ATTRIBUTE = REQUIRED,REVERSE

PROMPT = ,+42,1
VALUE = "Address"

INPUT

.'2@

LABEL = ADDRESS,A
LENGTH = 30

VALUE = REBUEST(,,37)
ATTRIBUTE = REVERSE

INPUT = ,+1,20
LABEL = ADDRESS,B
LENGTH = 30
VALUE = REQUEST(,,32)
ATTKRIBUTE = REVERSE

INPHT = ,+1,20
LABEL = ADDRESS,C
LENGTH = 32
VALUE = REGUEST(,,39)
ATTRIBUTE = REVERSE

PROMPT = ,+1,1
VALUE = "Z21IP Code"

INPUT = ,,45
LABEL = ZIP,COCDE
LENGTH = §
VALUE = REQUEST(,+5)
ATTRIBUTE = REVERSE,NUMERIC,FULL

PROMPT = ,+1,1
VALUE = "Telephone"

PROMPT = ,,20
VALUE = "("

INPUT & .4,
LABEL = TEL,AREA,CODE
LENGTH = 3
VALUE = REGUEST(,,3)

ATTRIBUTE = TAB,REVERSE,NUMERIC,FULL

5-10

Forms and the Application Terminal Language

PFO"PT = ol
VALUE = ") "

INPUT 2 44,
LABEL = TEL,EXCHANGE
LENGTH = 3

VALUE = REQUEST(,.,3)
ATTRIBUTE = TAB,REVERSE,NUMERIC,FULL

PROMPT = ,,,
VALUE = "=

INPUT =2 4,
LABEL = TEL,EXTN,NO
LENGTH = 4
VALUE = REQUEST(,,u4)
ATTRIBUTE = REVERSE,NUMERIC,FuLL

PROMPT = ,+2,1
VALUE = "Attention"

INPUT = ,,20
LABEL = ATTENTION
LENGTH = 22
VALUE =3 REQUEST(,,22)
ATTRIBUTE = REVERSE

PROMPT = 42,1
VALUE = "Credft Limit (S)"

INPUT = ,,20
LABEL = CREDIT,LIMIT
LENGTH = {2
VALUE = REGUEST(,,12)
CLEAR = "@"
ATTRIBUTE = RIGHT,REVERSE,SIGNED

This is a prompt field that tells the user what

function keys may be used, The content of this field
may be changed by reply definitions (see below) if those
reply definitions change the enmabled function keys,

= G- P= = Om o P O

PROMPT = 15,1
LABEL = KEY,PROMPT
LENGTH = 8@
VALUE = "Function Keys: ",
"ENTER to ref{le customer record, ",
"CLOSE to auit without filing"
ATTRIBUTE = REVERSE

5-11

Forms and the Application Terminal Language

IS 22222222222 R Rl i il Rt At R]

l

! Group D Statements = Defime Exchange Message
i
l*ﬁtiﬁi****t*ti*itit*t*itiii****tt*tii*tttttttit*ti*****t*t
MESSAGE = |

VALUE =

CUST,NO,

CUST,NAME,

ADDRESS, 4,

ADDRESS B,

ADDRESS,C,

21P,C0ODE,

TEL AREA,CODE, TEL,EXCHANGE, TEL ,EXTN,NO,

ATTENTION,

CREDIT,.LIMIT
l*i***t****t*t*******i**i*ﬁi***i*ﬁ**t*t*ﬁi*!t****ﬁt**iﬁi***
{

! Group E Statements = Defime Replies
!

‘**t**ﬁi****titttttit***ti*i*ti*tt**iitt*t**ii****t*t*****i

Reply | (s affirmative reply?

{
{
{
]
! Enable AFFIRM Key

! Pisable all other function keys

} Wwrite "TRANSACTION COMPLETE"™ on screen

i Erase 0ld fumctiom key message

! Wwrite new functior key message

! write agsigned Customer Nymber on screen
i write Reply Number {nto screem header

|
|

REPLY = |
ENABLE = AFFIRM
DISABLE = ENTER

WRITE = REPLY,TEXT,A," x*xx TRANSACTION COMPLETE %wx"®
WRITE = KEY,PROMPT,FILL(" ",8d)
WRITE = KEY,PROMPT,"Function Keys: AFFIRM to proceed”
l8==:==========
!
! Reply 2 i{s the reply for validation error messages
i
! Write 2 B@=character error messages onto screen
! write reply numper into screen header
i
‘l3:============================2238========================
REPLY = 2

WRITE s REPLY,TEXT,A, REQUEST(1,82)
WRITE 3 REPLY,TEXT,B, REGUEST(81,82)

END

5-12

CHAPTER 6
TRANSACTION STEP TASKS

This chapter explains how transaction step tasks (TSTs) are written, compiled, debugged, and
finally installed as part of a transaction processor.

6.1 THE PURPOSE OF TSTS

TST stations are usually responsible for the application-related processing in a transaction processor.
Other stations play primarily ‘“‘overhead” or “housekeeping’ roles — managing terminals, storing
messages, transmitting data to other transaction processors. It is typically the TST stations in a
transaction processor that do the application processing — checking user input, calculating results,
reading records from files, updating files.

As you know from earlier chapters, a TST accomplishes this by accepting an exchange message
that contains data to be processed and returning a response message that contains results of that
processing. Each TST in a transaction processor has a predefined purpose and applies a specified
sequence of processing steps to an arriving exchange message. The definition of each transaction
determines which TSTs are activated to process that transaction’s exchange messages.

While processing an exchange message, TSTs typically take one or more of these actions:

® [f the transaction instance has originated at an application terminal, the exchange message
contains user input. The TST can validate this input and perhaps edit it to packed rather
than display format.

® The TST retrieves the data file records needed to process the transaction instance. Fre-
quently, the retrieved records are then placed in the transaction workspace so that sub-
sequent TSTs access them easily.

® The TST applies logical and arithmetic calculations to the data in the exchange message
and also to the data retrieved from files. The results of these calculations are placed in the
transaction workspace, if necessary, for the benefit of subsequent TSTs.

® The TST updates data files. It updates records read by previous TSTs, as well as records
that it has read itself.

® The TST controls the progress of the transaction instance by altering the contents of the
exchange message, the routing list, or the exchange that will be executed next. In circum-
stances that warrant it, the TST terminates the transaction instance.

® The TST creates, writes in, or reads from work files. Work files are not part of the appli-
cation’s permanent data file set but are temporary files used by transaction instances.

® The TST deposits messages at a mailbox station and retrieves messages left at mailbox
stations.

® The TST spawns other transaction instances. That is, the TST itself initiates new trans-
action instances with exchange messages of its own construction. These spawned transac-
tion instances have a life of their own, separate from the transaction instance the TST is
processing at the time.

® The TST sends data to an output-only terminal to be printed.

® If it is processing a transaction instance initiated by a user at an application terminal, the
TST sends data to the terminal for display.

6-1

Transaction Step Tasks

6.2 GENERAL STRUCTURE OF A TST
The central element in a TST is an application program. This program can be written in your
choice of three languages:

e COBOL
e BASIC-PLUS-2
® MACRO-11

NOTE
MACRO-11 is not recommended for applications.

You can find more about these languages in the corresponding TRAX language reference manual.

The application program is written as a subroutine. That is, the program has the same structure
that it would have if you were going to call it from a mainline program written in the same language.

As a subroutine, the application program must accept two parameters: an exchange message data
structure and a transaction workspace data structure. Each time the TST is activated, the trans-
action processor will provide a pair of parameters — an exchange message and its corresponding
transaction workspace.

The entry point in this application program (that is, the instruction at which execution must
begin) must always be called TSTEP. This stands for “7'ST Entry Point” and marks the place

in the program where the transaction processor will start execution. For COBOL and BASIC-
PLUS-2, this means that the program must be called TSTEP as well, because these languages

use the same name for the entry point in the compiled code as for the name of the entire module.
You will have to use comments in each program to identify the program, and the “official’” pro-
gram name must be TSTEP.

NOTE
The term ““program name’ in the preceding
paragraph applies to the name declared in the
program itself. For example, it refers to the
name used in the PROGRAM-ID clause of a
COBOL program. This is the name that must
always be declared as TSTEP. The source
file where the program’s source code resides
and the task image file where the executable
program image resides can be given any name
you wish.

The central application program in each TST can have separately compiled subroutines if you wish.
The languages that you can use to write subroutines will depend on the capabilities of the language
you have chosen for the central program. For example, COBOL programs can have subroutines
written in MACRO-11; but MACRO-11 programs cannot have subroutines written in COBOL. For
further information about a language’s restrictions on separately compiled subroutines, consult

the appropriate language reference manual.

Transaction Step Tasks

A TST in its ready-to-execute state is a task image. As such, it will contain additional code besides
the compiled application program and its subroutines. These additional support routines serve
several purposes:

® Initialization when the TST is first activated

® Support for special transaction processor functions, such as the system calls available to
TSTs

® Linkage to RMS, the TRAX file access subsystem

® Linkage to run-time support for the programming language

For system efficiency and memory conservation, each TST task image does not contain copies of
all supporting routines. Instead, a single set of support routines (called the 75T library) is kept in
the transaction processor. Each TST then contains only the minimum linkage routines, and the
TST library is connected to the TST task image by memory mapping techniques when the TST is
activated. This results in smaller TST task images, quicker TST task loading from disk, and lower
memory requirements for a running transaction processor.

6.3 PROGRAMMING A TST

You will find that programming a TST is similar to any programming project in the language you
have selected. You must remember, of course, to provide the two input parameters to your TST;
and you must familiarize yourself with the system calls that TSTs use to interact with the trans-
action processor. Other than these two considerations, coding TSTs is straightforward.

6.3.1 Input Parameters
The application program you write for a TST is a subroutine, and this subroutine has two input
parameters: the exchange message and the transaction workspace for a transaction instance.

These parameters are passed by name and not by value. This means that the master copy of these
data structures is passed to the application program; if the application program changes data in
either of the two data structures, the changes will be seen by the TSTs that subsequently receive
them.

In addition, the data structures are passed without moving them in memory. That is, an exchange
message does not move from TST to TST; it remains in a fixed memory location and the TSTs are
“connected” to it by memory mapping techniques. This means that the TST must use specific
language constructs to access these parameters:

® In COBOL, the linkage is accomplished through the LINKAGE section of the DATA
division and the USING clause of the PROCEDURE division.

The data structures for both input parameters are defined in the LINKAGE section, and
they are given data names so they can be referenced in the rest of the program.

Then the USING clause names the two data structures. The first data name designates
the data structure that will be used to access the exchange message; the second, the trans-
action workspace.

Once this linkage is set up, the COBOL programmer can access the exchange message and
transaction workspace without concern for special techniques.

The following example shows fragments of a COBOL TST, illustrating the LINKAGE
section and the USING clause.

Transaction Step Tasks

IDENTIFICATION DIVISION.

PROGRAM-ID TSTEP.

DATA DIVISION.

01

<Ol

\

(LINKAGE SECTION.

EXCHANGE-MESSAGE.
03 FIELD-1 USAGE COMP-3

.

WORKSPACE.
03 WKSPC-FIELD-1 USAGE DISPLAY

.

WORKING-STORAGE SECTION.

PIC 999V99.

PIC X(20).

. USING
. Clause

N

ﬁ \
PROCEDURE DIVISION USING EXCHANGE-MESSAGE, WORKSPACE.
FIRST-PARAGRAPH.

-

LAST~-PARAGRAPH.

EXIT PROGRAM.

Transaction Step Tasks

® In BASIC-PLUS-2, the linkage is accomplished with enhancements to the language features
normally used when writing subroutines.

Instead of starting his program with the SUBROUTINE statement, a BASIC-PLUS-2 pro-
grammer starts a TST with a special TST statement. This statement declares the program
a TST, assigns the mandatory name TSTEP to the program, and designates the two manda-
tory parameters: the exchange message and the transaction workspace.

If the programmer wishes to break the exchange message into component fields for easier
programming, he uses one or more MSGMAP statements. The MSGMAP statement is simi-
lar to the MAP statements used to break a record into component fields, except the
MSGMAP statement operates on the exchange message rather than a record in a file.

Or, if the programmer wishes to break the transaction workspace into component fields
for easier programming, he uses one or more WRKMAP statements. The WRKMAP state-
ment is similar to the usual MAP statement, except the WRKMAP statement operates on
the transaction workspace rather than a record in a file.

Finally, the programmer ends his program with the TSTEND statement rather than the
END statement.

Once these conventions are satisfied, the TST programmer accesses fields in the exchange
message and the transaction workspace by using the variable names declared in the
MSGMAP and WRKMAP statements.

Here are portions of a BASIC-PLUS-2 TST, illustrating these conventions.

100 TST TSTEP (MSG.SPACES$,WRK.SPACES)
200 MSGMAP

EM.CUSTOMER. RECS =36
210 MSGMAP

EM.CUSTOMER.NO$S =6

EM.CUSTOMER.NAMES =30
300 WRKMAP

TEMP1$ =10

TEMP2S$ =25

(BODY OF PROGRAM)

.

32767 TSTEND

Transaction Step Tasks

® In MACRO-11, the parameters passed are not the data structures themselves, but addresses
where those data structures may be found. The data structures are mapped into the TST
address space before the TST is activated, and the address parameters are always 16-bit
addresses within the TST address space.

You can find more information about MACRO-11 TST programming techniques in the
TRAX Application Programmer’s Guide.

6.3.2 System Calls

A TST must use a TRAX system call whenever it undertakes some action which is not supported
directly by the language in which the TST is programmed. These actions are primarily control
functions for the transaction processor: adding or deleting stations on routing lists; sending response,
mailbox, or report messages; asking for information about the state of the system or the current
transactior instance. Each of the available system calls is discussed in the TRAX Application
Programmer’s Guide.

The language you use to write a TST will affect the way in which the system calls are programmed:

® In COBOL, the CALL verb is used with its USING clause. The parameter following the
CALL verb is a data name or character string containing the name of the routine being
called. Following this comes the USING clause, which lists each of the parameters being
passed to or from the routine.

® In BASIC-PLUS-2, the CALL verb is used with its BY REF clause. The parameter follow-
ing the CALL verb is the name of the routine being called. This is followed by the BY
REF clause, which lists each of the parameters being passed to or from the routine.

NOTE
A routine name is coded directly into the CALL
statement; the routine name is #ot held in a
string variable or string constant as with COBOL.

6.4 DEBUGGING A TST

Unlike programs written for other systems or for use in the support environment of a TRAX system,
TSTs are not invoked directly from a terminal. TSTs execute in a ““background” mode without
direct connection to application terminals. This means that programmers have to use a different
technique to test and debug TSTs they write.

TRAX provides three debugging techniques for TSTs. These techniques are presented here as they
would probably be used during the testing of a newly written TST. The methods are:

® Stand-alone debugging
® Debugging in a transaction processor
® Traced operation in a transaction processor

6.4.1 Stand-alone Debugging

For rudimentary debugging, the programmer must build a stand-alone task image containing the
TST and necessary support software: RMS access methods, TST library modules, support routines
(the Object Time System or OTS) for the programming language, and so forth.

Transaction Step Tasks

These modules are included in the task image because the task image will be debugged in the sup-
port environment and not under the supervision of a transaction processor. The task image must
therefore be self-supporting.

During this phase of debugging, the TST cannot receive exchange messages and system workspaces
from the transaction processor nor can it send messages to other transaction processor components.
Instead, the programmer prepares a file containing test exchange messages and workspaces, and any
messages sent by the TST are saved for the programmer’s inspection. Similarly, any calls the TST
makes to the TST library will be noted and logged for the programmer’s inspection; but the calls
will have no other effect in most cases.

The programmer can use the features of his programming language to assist the debugging process.
For instance, he will be able to use BASIC-PLUS-2’s extensive breakpoint and variable inspection
facilities.

6.4.2 Debugging in a Transaction Processor

Once the TST begins to function on a rudimentary level, it can be installed in a transaction proc-
essor for in-place testing. This involves the building of a new task image, because many of the
modules that were included in the stand-alone task image are no longer required. The modules
will be provided by the transaction processor via memory-mapping techniques.

In this phase of debugging, the TST becomes an operating part of the transaction processor; but it
still retains a connection to a support environment terminal so the application programmer can
inspect the TST operation.

The TST is activated in the usual way when exchange messages arrive at its TST station. When it

is activated, a breakpoint previously set within the TST activates the support environment termi-
nal. The programmer can step through the TST as it processes the newly arrived exchange message.
Now, all file accesses and system calls can have their proper effect, because the TST has been
installed as part of the transaction processor.

For this phase of debugging, then, there will be two terminals involved with the TST: the applica-
tion terminal that provides the exchange message the TST is processing and the support environ-
ment terminal the programmer will use to debug the TST.

6.4.3 Traced Operation in a Transaction Processor

A third debugging technique is sometimes useful to debug TSTs as they operate in a transaction
processor. This technique involves a trace log, which records significant events as they occur in
the transaction processor.

In this technique, no support environment terminal is involved. The transaction processor runs on
its own, without outside intervention. But a special option is invoked that causes the transaction
processor to record each event: messages being sent, system calls being isssued, and so forth.

After some period of traced operation, the transaction processor can be stopped and the trace log
inspected. Typically, the trace log is most useful in finding system-integration problems — that
is, problems with interaction between TSTs rather than problems isolated in one TST.

Transaction Step Tasks

6.5 INSTALLING A TST
Installing a TST involves two separate procedures:

® Making sure the TST station has the proper parameters
® Making sure the TST task image is built correctly

6.5.1 TST Station Parameters

The parameters you assign to a TST station will have a direct and significant effect on the way
the TST behaves. For example, you can specify the maximum number of executing copies of the
TST that can be active at one time. Your choice of this parameter will affect the performance
(and perhaps the correct operation) of the TST.

The TST station parameters and their effects on TST operation are discussed further in
Section 16.2.

6.5.2 The TST Task Image

TST task images are built with the TSTBLD utility program. This program can build the different
task images required for normal TST operation as well as the three modes of TST debugging. When
a TST is installed, you must be sure that the task image has been constructed so that it is compat-
ible with the way you will be installing and using it.

The TRAX Application Programmer’s Guide tells how to use the TSTBLD utility program.

6.6 EXECUTING A TST

Once installed in a transaction processor, a TST remains idle until an exchange message arrives at
its TST station. The TST’s location on the system disk is remembered, though, so that the TST
task image can be located quickly when it must be activated.

When an exchange message arrives, the transaction processor attempts to start the TST. However,
there may be several obstacles:

® There may be too many active copies of this TST already. If so, the new exchange message
will have to wait.

® The TST task image may not be in memory. If so, an area of memory must be allocated
and the image read from disk.

® Even if an area of memory is available, there may be a TST of higher priority waiting to
be activated. If thisis the case and if that TST will fit into the available memory, it will
be given priority and the other TST will have to wait.

In most situations, though, none of these obstacles will be present. The maximum-copies limit
will not be exceeded, and a TST task image will be in memory from a previous execution of that
TST. The TST can therefore be activated promptly and can begin to process the exchange message.

Once a TST has been started successfully, it runs as a separate task under the TRAX kernel oper-
ating system. It runs independently of and parallel to the management services of the transaction
processor. The TST is run as a non-checkpointable task, which means that it will run to comple-
tion without being interrupted or swapped out of memory. The only pauses in its execution will be
those necessary to handle its system calls and input/output operations.

Transaction Step Tasks

6.7 APPLICATION FILE ACCESS FROM TSTS
Although application programmers use normal programming language verbs to read and write
application data files, the requirements of shared file access and transaction processor architecture

make the flow of data different from that in a stand-alone program. This topic is discussed in
Chapter 8.

6.8 STUDYING A TYPICAL TST

Perhaps the best way to gain a familiarity with TSTs and their use is to study an existing TST.
You can find examples of TSTs programmed in various languages in the TRAX Application
Programmer’s Guide.

CHAPTER 7
PRESERVING TRANSACTION INSTANCE CONTEXT

A stand-alone program provides its own context: values stored in its own program variables let the
stand-alone program know what has been done and what must be done. In a transaction processor,
a TST’s working storage cannot be used for this purpose; each TST executes only a short time, and
many different TSTs execute as part of a single transaction instance.

This means that the transaction processor must maintain enough information for each transaction
instance so that TSTs and system support modules that work on that transaction instance can tell
what has happened previously. This information is called the transaction instance context.

A discussion of transaction instance context must center on two subjects:

® The transaction slot
® Context requirements for file access by TSTs

7.1 THE TRANSACTION SLOT

The transaction instance slot, or transaction slot for short, is the primary repository of context
information. Each transaction instance has a transaction slot, and it contains three principal kinds
of data:

1. It contains the current exchange message for the transaction instance.
2. It contains the transaction workspace for the transaction instance.
3. It contains the system workspace for the transaction instance.

The exchange message and transaction workspace have been discussed in earlier chapters. The
third section of the transaction slot, the system workspace, is introduced here for the first time.
The transaction processor uses this section of the transaction slot to keep context information it
needs to support the transaction instance.

If a copy of the transaction slot is made immediately after a new exchange message has been
constructed and before the first TST begins to process that exchange message, this copy can be
used as a checkpoint to restart the transaction instance. This is possible because the transaction
slot at that moment completely defines the state of the transaction instance.

When you specify exchange recovery for a transaction, you are asking the transaction processor
to do exactly this. With exchange recovery, each time an exchange message is built the entire
transaction slot is written to a disk file. Should anything go wrong during the processing of the
exchange message, a TST can request that this copy be read back from the disk so that processing
can start again. Except for updates to unstaged files, this restart will be transparent to the user at
the terminal. (Exchange recovery is discussed in detail in Section 10.2.1.)

7-1

Preserving Transaction Instance Context

Figure 7-1 shows a transaction slot.

The transaction workspace and system workspace are of constant size; they are allocated according
to parameters in the transaction definition.

The exchange message, of course, can be of varying size. The exchange message area in the
transaction slot, however, is of constant size; the transaction slot is allocated to hold the largest
exchange message used by the transaction. Smaller exchange messages will fill only a part of the
space allocated.

As you know, the exchange message and transaction workspace are accessible to the TST
programmer in a read/write manner. The system workspace is never accessible to a TST program-
mer; it is accessible only to system support software within the transaction processor.

The transaction slot also plays a role in transaction journaling. When a transaction uses journaled
files, the transaction slot is written to the journal device as each transaction instance finishes. This
records the state of the transaction instance at the end of transaction execution and provides

a record of the transaction instance. If a TST updates a file that is supposed to be journaled, a
copy of each updated record is placed in the system workspace. When the transaction slot is
written to the journal device, these copies of the updated records will be written too. A record of
file updates is therefore maintained via the transaction slot. (Journaling is described in detail in

Section 8.7.)
Current Exchange
Exchange Message Message
Area
Transaction These.two segments are
Workspace -.——— gccessible to
TST programmer
System This segment is
Workspace ~&—jaccessible only to
TRAX system software

Figure 7-1 A Transaction Slot

7-2

Preserving Transaction Instance Context

7.2 CONTEXT REQUIREMENTS OF FILE ACCESS

Although it is TSTs that read, lock, and update records in data files, a transaction processor cannot
associate these activities with the TSTs that actually do them. Instead, the activities must be
associated with the transaction instances whose exchange messages are being processed.

An example may clarify this point. In the Change Customer transaction we have been using for

an example, a TST in the first exchange must read and lock a record in the customer file. A TST
in the second exchange will subsequently update that record and release the lock. In an ordinary
system using stand-alone programs, only the program that issues a read and a lock can subsequently
issue the update. This is insufficient for a transaction processor, since two programs executing

at different times must cooperate to achieve the update: one to read and lock the record, the
other to update it.

The need for extensive context in file operations is more evident when we look closely at the TST
that reads and locks records. This TST is not serving one application terminal alone; it will process
exchange messages coming from many terminals for many different transaction instances. The
fact that the TST has locked a record for one user does not mean that it will access that same
record for another user; in fact, the opposite is true: it must not access a record for a second user
if it has read and locked that same record for a previous user.

For these reasons, TRAX transaction processors keep track of file access operations by transaction
instances rather than by TSTs. This is possible because the file access operations are handled by a
central file access facility within the transaction processor, and it is this facility that operates the
file access and locking mechanisms.

7-3

CHAPTER 8
APPLICATION DATA FILES

A carefully designed, efficient set of data files is a necessity in any transaction processing
application. Poor file design will have many effects on such an application, from poor performance
to total loss of data. This chapter discusses the TRAX facilities for file access from TSTs and
presents design considerations that you must analyze when you design data files.

8.1 RMS

RMS is a data management system that is available for several operating systems on the PDP-11
family of processors. It provides extensive facilities for the reading, writing, and insertion of
records in many file organizations.

Application data file access under TRAX is done through RMS. This provides file structures that
are compatible between transaction processors and support environment programs and also
permits the transfer of data files between a TRAX system and other operating systems that
support RMS.

On TRAX systems, RMS provides access to three main categories of files:

® Sequential files. Sequential files are accessed by starting with the first record in the file
and proceeding to subsequent records. These files are good choices if an entire file is to
be processed at one time or if the records are arranged in the file in the order they will
be needed. (If individual records must be found at random within the file, another file
organization would be better.)

® Relative Files. In these files, each record is identified by a number. The first record in
the file is labeled “‘one,” the next “two,” and so forth. Records may be retrieved from
such a file by specifying record numbers. Any record may be retrieved with low overhead,
as long as its record number is known. This file is a good choice for retrievals and updates,
so long as some scheme can be devised to calculate the record numbers. These files can
also be read sequentially, like a sequential file.

® Indexed Files. This type of file is the most flexible file organization supported by TRAX.
Each indexed file has one or more indexes, and each index enables the programmer to
retrieve any record from the file once its index entry is known. For example, if a list of
customers were placed in an indexed file, any customer’s record could be retrieved once
its customer number was known.

The efficiency of retrieval varies from file to file within this group, depending on factors
such as record size, index entry size, and file activity patterns.

Indexed files can have one or more indexes. Each index has an entry for every record in
the file, so different indexes provide different ways of finding the same records. For
example, a customer file might have two indexes: one by customer number and another
by customer last name.

8-1

Application Data Files

The first index is called the primary index. Each record must have a unique entry in the
primary index; it is this entry that identifies the record within the file. In our example,
the index by customer number would be the best choice for the primary index.

Other indexes are called secondary indexes. The entries in these indexes need not be
unique; that is, several records in the same file can have identical entries. For example,
in a customer file the last name index would be a secondary index, and the file organiza-
tion would allow several customers to have identical last names.

Records in an indexed file can be retrieved in two ways:

— By akey value in a specified index

— Sequentially, beginning with a previously retrieved record and proceeding according
to the index used for the previous retrieval.

For example, we could retrieve a specific customer record from the customer file by

specifying a customer number. Having done that, we could retrieve additional customers

in customer number order.

Indexed files are good choices where random retrievals are necessary and record numbers
(such as would be needed with a relative file) would be hard to calculate. They are also
the best choice in situations requiring record insertion between existing records. But in
situations where one of the other organizations will suffice, they would be a better choice
because they will generally be more efficient.

For a detailed discussion of the features and capabilities of RMS, consult the RMS-11 reference
manuals.

8.2 FILE ACCESS FROM TSTS
Each of the TRAX programming languages has its way of accessing RMS files:

® For COBOL and BASIC-PLUS-2, this interface consists of the language’s standard file
access verbs. That is, the application programmer can use the usual file access statements
and clauses.

® For MACRO-11, a set of macro instructions is provided that generate the proper
subroutine calls for linkage to RMS.

Tasks that use RMS to access files must include RMS support code in their task image. In a TRAX
transaction processor, most of the RMS support code is kept in the transaction processor’s common
area. This minimizes code that must appear in each TST’s task image. Only simple linkage

routines appear in the TST, while the bulk of RMS remains in a separate task that supports all

TSTs at one time. The simple linkage routines are inserted in each TST task image (if required)

by the TSTBLD utility program.

For a detailed discussion of the interface between a specific programming language and RMS or

for details of the linking procedures required for RMS, consult the appropriate language user
manual and language reference manual.

8-2

Application Data Files

8.3 WORK FILES
When a designer thinks of files and file access, he is usually thinking of permanent data files that
are accessed and updated by many simultaneous users.

In many applications, another type of file is also required. This file, called a work file, is created
and used by a single user in the course of a transaction instance. A transaction, for example,
might require a large scratch area in which to assemble user input. If enough room is not available
in the transaction workspace, a file could be used instead. This file would be created for the
transaction instance, used as a scratch area, and then destroyed upon transaction termination.

Transaction processors allow TSTs to create, access, and delete work files much the same as
permanent data files. Work files must conform to special rules, however:

® Work files must be defined with the FILDEF utility, just as permanent files are defined.
Part of the definition declares the file to be a work file.

® When a work file is defined, it is given a logical file name and a physical file specification.
The file specification, however, does not include a version number. Fach time a work file
is created, a new physical file is generated having a unique version number.

® After the first TST in a transaction instances creates a work file, other TSTs accessing that
logical file will have access to the same physical file. In other words, only one physical
work file of a given logical name can be created by a transaction instance.

® A TST cannot access any work file that its current transaction instance did not create.

® A TST can discover the file specification (including version) of a work file it is accessing
by issuing an appropriate system call. (See the TRAX Application Programmer’s Manual
for further information.)

® After discovering the file specification for a work file, a TST can pass that specification to
a support environment program through the usual interface methods (Chapter 11).

® The TST programmer uses the usual language verbs to create and delete work files.

8.4 RECORD LOCKING

For proper operation of a multi-user transaction processing system, some means of controlling
access to individual records in shared files is essential. Without this control, users might attempt
to update the same record simultaneously, and the effect of at least one of the updates could be
lost.

TRAX transaction processors implement this control with a record lock facility. Any TST can
lock a record for the transaction instance it is processing. When it does, access by any TST
processing a different transaction instance (including even that same TST, if it subsequently begins
to process another transaction instance) will be restricted. The restriction is removed when that
TST or another TST, again processing the same transaction instance, explicitly releases the lock,
or when the transaction instance terminates.

Depending on your specifications for a particular file, the restriction imposed by a lock is either:
® No TST processing another transaction instance can read or update the locked record, or

® No TST processing another transaction instance can update the locked record — but any
TST can read the record.

83

Application Data Files

Remember that the lock is imposed for the transaction instance and not for the TST itself. This
allows one TST to read and lock a record, and a second TST in a later exchange to update and
unlock the record for the same transaction instance. Conversely, the first TST cannot access the
locked record for another transaction instance even though it locked the record for the first
transaction instance.

Record locks are enforced and arbitrated by system software within the transaction processor.
This means that access conflicts between TSTs in the same transaction processor will be correctly
handled; but it also means that there is no way of resolving access conflicts between TSTs in two
transaction processors or between a TST and a support environment program. For this reason,
only a single transaction processor or a single support environment program can have update access
to an RMS file at one time.

The application programmer controls the locking and unlocking of records by using LOCK and
UNLOCK clauses in file access statements.

If a TST encounters a locked record, the unsuccessful file access operation will be retried after a
short period. (This period is specified when the file is defined.)

If the record remains locked after the second try, the file access statement will return an error
code. If the transaction was defined to include exchange recovery, and if the transaction instance
has no outstanding record locks from other exchanges, the TST can issue an exchange recovery
request to restart the processing of the exchange. This will release all the locks currently held by
the transaction instance, and the exchange processing will start over.

8.5 STAGING

Staging is the delay of inserts, deletes, and updates to a file until the transaction instance requesting
them terminates. TRAX supports staging, and each file used by a transaction processor must be
specified as staged or unstaged.

® Staged Files. Staged files are files where update operations are automatically postponed
until the transaction instance that requested them terminates normally.
® Unstaged Files. Unstaged files are files where update operations take effect immediately.

The principal benefit of staging is that staged operations will not be applied against a file if the
transaction instance that requested them terminates abnormally — that is, if it aborts. An aborted
transaction instance will have no effect on staged files, because the operations it has requested have
not been done on the file.

Staging usually lengthens the time that records are locked. This is necessary because the records
must remain locked until they are updated, not just until the update request has been made by a
TST. In other words, the transaction processor must prolong a record lock during the time an
update is being delayed. In some cases, this prolonging of record locks may be significant; in any
event, you must consider this effect whenever you specify a staged file.

Application Data Files

Because staging separates the request for an update operation from its execution, staging may
confuse some application programmers unless you are careful to explain the use of staged files.
You must explain that if a programmer updates a record in a staged file, there is 7o way to release
the lock on that record before the transaction instance terminates. This includes explicit “‘release-
lock” statements in the\programming language. However, explicit “‘release-lock’ statements will
take effect, even on staged files, if the record in question has only been read and not updated.

Staged records take considerable space in the system workspace. Each staged record (that is, a
record destined for a staged file) is saved in the system workspace until the end of the transaction
instance. The staging of a large number of records during any transaction instance will require the
definition of a correspondingly large system workspace, with a corresponding increase in the
memory requirements of the transaction processor.

For efficient use of a system’s memory, you should design transactions that stage a predictable
number of records. This way, your system workspaces will always be as small as practicable, and
they will be used to their greatest capacity.

8.6 DATA FLOW DURING FILE ACCESS OPERATIONS

When a TST issues a file access instruction, the flow of control and data is different from many
other systems. This flow has been carefully designed to optimize flexibility, efficiency, and
compatibility with other systems. As an application designer, a knowledge of this flow will help
you to design more efficient files and file access procedures.

8.5.1 Data Flow During a Read

Figure 8-1 shows a typical flow of data during a simple RMS read operation requested by a TST.
In this example, assume that a TST has requested a read operation and the data is to be placed in
the transaction workspace. The read operation would proceed as follows:

® The TST makes the file read request; that is, an appropriate READ statement is
encountered in the program.

® Linkage routines included in the TST task image handle the read request and transmit it
to the transaction processor.

® The transaction processor system software includes a copy of RMS, and the request is
given to the appropriate module.

® The RMS module reads the record from the file, using its own work buffers.

® When the record has been read and deblocked, it is copied into the designated destination
buffer — in this case, the transaction workspace.

8.5.2 Data Flow During an Unstaged Update

Figure 8-2 shows the data flow that occurs when a TST requests an update operation on an
unstaged file. The data flows exactly the reverse of the “read” example in Section 8.5.1, traveling
from the source data structure to the file through the actions of the TST, the TST’s resident
linkage routines, and the common RMS code. The source data structure in this example is the
transaction workspace but it could be any data structure in the TST.

8.5.3 Data Flow During a Staged Update

Figure 8-3 shows the data flow that occurs when a TST requests an update operation on a staged
file. Like the previous example, the source of the data is the transaction workspace, although it
could be any other data structure in the TST.

8-5

Application Data Files

Transaction Slot

Exchange
Message

Transaction
Workspace

[

System
Workspace

As you can see, the data flows from the source data structure to the file in two steps:

® In the first step, the TST issues the update request with an appropriate language statement.
The TST’s resident linkage routines pass the request to the transaction processor, as with
the other examples. But the transaction processor notices that the file in question must be
staged, and so the data is not given to RMS to be written in the file. Instead, it is saved
temporarily in the transaction instance’s system workspace. The TST is given a successful

Linkage

Routines

/

Transaction
Processor
System
Software

~l_RMms

Figure 8-1 Flow of Data During Read

return code, as if the record had been written in the file.

® The second step occurs when the transaction instance terminates normally. When this
happens, the transaction processor takes each record saved in the system workspace and
gives it to RMS to be written in the file. This process is invisible to the TSTs in the

transaction instance; they were not aware that the record was staged.

If a transaction instance terminates abnormally (that is, it is aborted for some reason), the second
step never happens. The updates to the file are never applied, and the transaction instance has no

effect on the staged files.

8.7 JOURNALING

For those applications that require a record of data file updates, or that require the reconstruction

of certain data files after a system crash, TRAX provides a journaling facility.

Application Data Files

Transaction Slot

Exchange Transaction System
Message Workspace Workspace

Linkage

\ Routines .
\ Transaction

\ Processor
N System

TST ~
\ Software

. _RMS

Z

Figure 8-2 Flow of Data During Nonstaged Update

The mechanism of this journaling facility is simple and efficient. As you know, the transaction slot
contains a complete picture of the state of its corresponding transaction instance. It contains the
most recent exchange message, the transaction workspace, and the system workspace. As you have
read, the system workspace contains all records that are destined for staged files. TRAX can
therefore achieve a complete journaling facility in the following manner:

® Any file that is to be journaled is automatically staged. All updated records destined for
this file will therefore be kept in the system workspace pending successful termination of
the transaction instance.

® The transaction slot is written to a journal device at the end of the transaction instance,
before staged records are written in their respective files. This preserves status information
about the transaction instance at its termination. This includes, of course, copies of all
staged records.

When you specify a transaction processor’s files, you must specify whether each file is to be
journaled or not. Each journaled file will automatically be staged (Section 8.5) so that updated
records destinated for that file will appear in the system workspace at transaction instance
termination.

Because of the staging requirement for journaled files, an aborted transaction instance has no effect

on journaled files. The transaction has aborted before the journal entries could be made. The
journal thus agrees with the actual updates to journaled files.

8-7

Application Data Files

Transaction Slot

Exchange Transaction System
Message Workspace Workspace
%)
P
©
N

Linkage

Routines .\

\ J[Transaction \l
]

\\\ , Processor
TST [M~{_Stept A System /

Software/ /

RMS

d

Figure 8-3 Flow of Data During Staged Update

Journal entries are only made for those transaction instances that make at least one update to a
journaled file. Other transaction instances do not have their transaction slot journaled when they

terminate.

Journal entries are written in the native mode of the journal device. That is, the journal data is
written without logical file strﬁcture_: other than that provided by the hardware itself. This is to
ensure the maximum device reliability; a logical file structure on the journal device would open
the possibility of data loss should that file structure be corrupted.

The operator of a TRAX system can specify a primary and a secondary journal device:

® The Primary Journal Device is used first. When it is full, the system will shift automatically
to the secondary journal device, if one has been designated. Otherwise, transaction
processing will stop, while the journal device is taken off-line and another tape or disk

mounted.

® The Secondary Journal Device stands ready to relieve the primary journal device when it
becomes full. The secondary journal device accepts journal entries until it is full, then the
primary device again takes over.

Both magnetic tape and disk devices may be used for the journaling devices. While it is designated
as a journaling device, a device cannot be used for any other purpose.

8-8

Application Data Files

8.7.1 Reconstructing Journals

A special utility program, RECOVR, is provided with each TRAX system. This utility program
can reconstruct application data files, given a backup copy of that data file and all journals from
that point to the time of a crash. It reads through the journals, locates the updated records in the
system workspace of each transaction slot, and applies the updates.

8.8 LOGGING
A TST can write data into the system journal independently of the automatic journal entries made
by the transaction processor. This process is called logging.

Log entries can have any format desired by the application programmer. When a log entry is
ready, the TST must issue the appropriate system call. The log entry will be saved in a buffer and
when there are enough log entries to warrant setting the journal device in motion, the blocked log
entries will be written as a single journal entry.

8.8.1 Inspecting and Analyzing Log Entries

A special utility program, SHOLOG, is provided with each TRAX system as an aid to the inspection
and analysis of log entries. This utility program reads a journal, selects specified log entry classes,
and prints or displays them.

Log entries can be useful for system debugging and as an audit trail of system operation. When
used for system debugging, log entries can provide a record of when TSTs are activated; they

can also record any data that the TST programmer thinks might be helpful. When used as an audit
trail, log entries can record the relevant data for each execution of a sensitive transaction.. If
properly done, logging can thus ensure that the transaction cannot be executed without creating

a record of its execution.

CHAPTER 9
INITTATING TRANSACTION INSTANCES

Little has been said so far about how transactions are invoked — that is, how transaction in-
stances are initiated.

There are several methods by which transactions can be invoked. Most of these involve application
terminals, but there are methods that allow transactions to be invoked without any terminal. This
chapter describes all of these methods.

9.1 INITIATING TRANSACTION INSTANCES FROM AN APPLICATION TERMINAL
Most transaction instances will be initiated from application terminals. This section describes the
three methods by which this can be done.

9.1.1 Terminals That Can Invoke Only One Transaction

When a transaction processor is defined, some terminals are defined so that they execute only one
transaction. When no transaction instance is active, the terminal displays the form from the first
exchange of its transaction.

The display presented at a terminal when it is not involved in a transaction instance is called the
initial operating mode of the terminal.

When you define a terminal station within a transaction processor, you must specify an initial
operating mode for its associated terminal. If you specify a transaction definition as an initial
operating mode, that terminal executes only that transaction and displays the form from the
first exchange of the transaction when the terminal is idle.

A user initiates a transaction instance from this terminal by filling in the displayed form and send-
ing the data to the system. An instance of the transaction is then underway.

When the transaction instance terminates, the terminal reverts to a display of the form from the
first exchange of the transaction.

9.1.2 Terminals That Can Execute Several Transactions
This class of terminals can initiate any of a group of transactions. The transactions will be available
to each user that sits at the terminal.

To get a terminal to operate in this way, you must specify a form definition as the initial operating
mode when you define the terminal station. This form definition must include the SELECT clause
in its FORM statement, thus designating one of the fields on the form to contain the selected trans-
action name. Such a form is called a transaction selection form, because its purpose is to collect the
name of a transaction from the user.

The transaction selection form will not be part of any transaction definition. It is displayed when-
ever the terminal is idle (that is, whenever a transaction instance is not active at that terminal).

9-1

Initiating Transaction Instances

To invoke a transaction from such a terminal, the user must fill in the name of the desired transac-
tion on the transaction selection form. This will be the short name (six characters or less) by which
the transaction definition is known within the transaction processor. (If the form is defined with
Menu fields instead of Input fields, the user may select one of the displayed transaction names
rather than type in the transaction name.)

Each of these terminals is restricted to a list of transactions. These are the only transactions that
can be executed from the terminal, irrespective of the transaction names listed on the transaction
selection form or entered by the user.

A terminal is assigned this restriction list by specifying a work class for the terminal. A work class
is a list of transactions, identified to the transaction processor by logical name of six or fewer
characters. The terminal’s work class is assigned when its terminal station is defined.

So, for example, a terminal might be assigned to work class CLASS2. If this work class contained
the names of three transactions — ADDCUS, CHGCUS, and DYPCUS — these would be the trans-
actions accessible from that terminal. Other transactions would not be accessible, whether or not
they were listed on a transaction selection form or entered by the user.

In certain circumstances, you may want a transaction selection form to collect data in addition to
the transaction name. You can do this by adding ordinary Input fields to the transaction selection
form and using them to define an exchange message. If the transaction selection form generates an
exchange message, this exchange message will be used for the first exchange of the selected transac-
tion and that exchange’s form will not be used.

In any case, once the transaction name has been entered or selected, the user sends it to the system.
Except in the one situation described above, the system responds by displaying the form for the
first exchange of that transaction.

The transaction instance will begin as soon as the user fills in this first form and sends the data to
the system.

When the transaction instance ends, the transaction definition may specify either FIRST or
INITIAL as the subsequent action. (See Chapter 4 for more information about transaction defini-
tions and the subsequent action parameter.) If the parameter is FIRST, the terminal will display
the first form again and prepare for another instance of the same transaction. If the parameter is
INITIAL, the terminal will display the transaction selection form and the cycle will begin again.

9.1.3 Terminals That Require User Sign-On

This class of terminals can execute only a limited set of transactions until a user identifies himself
to the system with a user identification and password. This process of identification is called
signing on.

NOTE
The process of signing on, which involves an ap-
plication terminal user and an application termi-
nal, is not related to the procedure by which op-
erating or programming staff identify themselves
at support terminals. The latter process uses a
different set of identifying codes and passwords.

9-2

Initiating Transaction Instances

This kind of terminal can be in any of three states:

o Idle, Signed Off. In this state, there is no transaction instance active at the terminal and a
user has not identified himself to the system.

® Idle, Signed On. In this state, the terminal still does not have a transaction instance active,
but a user has identified himself to the system.

® Executing a Transaction Instance. In this state, the user has selected a transaction and is
executing it.

In the first state, idle but signed off, the terminal behaves in a manner identical to the terminals
described in Section 9.1.2. The transaction selection form and the terminal’s work class govern
the set of transactions that can be executed. If a user selects a transaction that is permitted by
the work class, the terminal moves directly to the third state — executing a transaction instance —
without passing through the second state.

In most cases, the only transaction you will include in the terminal’s work class is the SIGNON
transaction. This transaction and all its supporting TSTs are supplied as part of each TRAX system.
When the user executes this transaction, he is asked to enter a user identification and password. If
he does this correctly, he will become signed on and the terminal will enter the second state.

While the terminal is in the second state, the terminal’s work class does not apply. Instead, the user
will have his own work class or classes, and he will be allowed to execute any transaction listed in
those work classes. He will be able to execute these transactions even if the original terminal work
class would have prohibited them.

The same transaction selection form remains on the screen after the user has signed on. The termi-
nal has only one transaction selection form, and this form is used in both the first and second
states — Idle and Signed Off, and Idle and Signed On. Only the applicable work classes change.

In either the first or second states, users initiate transaction instances just as was described in
Section 9.1.2. The user chooses one of the available transactions by entering a transaction name or
selecting its name on a menu; then the transaction processor displays that transaction’s first form.
The transaction instance begins when the user fills out the first of the transaction’s forms and sends
it to the system.

When a transaction instance terminates, the same two subsequent action parameters apply as in
Section 9.1.2. If the parameter is set to FIRST, the same transaction is executed again. If the
parameter is set to INITIAL, the transaction selection form will be displayed. In either case, the
terminal will revert to the same state (signed on or signed off) that it was in before the transaction
instance was begun.

If a user has signed on but wishes to leave the terminal, he executes the SIGNOF transaction. The
SIGNOF transaction is also supplied with each TRAX system. When it is executed, the terminal
reverts to the first state (idle but signed off) and the terminal’s work class again applies.

NOTE
The terminal’s work class must include the SIGNON
transaction, and each user’s work class must include
the SIGNOF transaction. Otherwise, the terminal
will not operate properly.

9-3

Initiating Transaction Instances

9.2 INITIATING TRANSACTION INSTANCES IN OTHER WAYS
Besides application terminals, there are three other ways of initiating transaction instances.

9.2.1 Spawned Transactions

A TST may initiate a transaction instance while processing an exchange message. This procedure,
called spawning, creates a new and independent transaction instance. The original transaction
instance (the one whose exchange message was being processed) continues.

The TST supplies an exchange message when it spawns the new transaction instance. The instance
is limited to a single exchange.

The TST that spawns a transaction instance does not wait for the spawned transaction instance to
terminate, and so the spawned transaction instance may not return a response message to the TST.

Spawning a transaction is a useful technique in a variety of situations. For example, a transaction
might be spawned to execute a series of processing steps that require significant time. In this way,
the user’s terminal is not tied up for a long period.

9.2.2 Support Environment Programs

A program running in the support environment initiates a transaction instance in much the same
way as a TST. As with transaction instances spawned by a TST, these transaction instances are
limited to a single exchange. The exchange message for that exchange is supplied by the support
environment program at the time it initiates the transaction instance.

Each active transaction instance initiated by a support environment program uses a slave batch
station. This station serves the same purpose as a terminal station for transaction instances initi-
ated by an application terminal. The number of transaction instances that can be simultaneously
initiated by support environment programs depends on the number of slave batch stations in the
transaction processor.

Because of the slave batch stations, transaction instances initiated through such stations may send
response messages back to their source stations. These response messages are forwarded to the
support environment program that initiated the transaction instance.

The support environment program is suspended while the transaction instance executes and is
activated again when the response message is returned.

This technique is useful when a support environment program (a batch program, for example) must
acquire some data via a transaction in a transaction processor. The technique also allows a support
environment program to print data on a transaction processor’s output-only terminals by activating
an appropriate transaction.

Data communication between a transaction processor and programs in the support environment is
discussed in detail in Chapter 11.

9-4

Initiating Transaction Instances

9.2.3 Other Transaction Processors

Another transaction processor, either within the same TRAX system or in another system, may re-
quest that a transaction instance be initiated. This technique is used to advantage, for example, in
a distributed processing network. Each node of the network initiates transactions in other nodes.
Transaction instances initiated in this way can have multiple exchanges. For each exchange, the
initiating transaction processor supplies an exchange message. -

Each exchange message is fed to a slave link station in the second transaction processor. The slave
link station serves the same purpose as terminal stations, initiating each exchange and waiting for
the corresponding response message.

When the response message is received, it is forwarded to the initiating transaction processor. That
transaction processor terminates the transaction instance or sends another exchange message.

The number of slave link stations in a transaction processor determines how many transaction in-
stances can be initiated at one time by remote transaction processors. The number of slave link sta-
tions associated with each remote transaction processor determines how many transaction instances
that remote transaction processor can initiate at one time in the local transaction processor.

This technique is useful where one transaction processor acquires data held by another transaction
processor, perhaps in a remote system. For example, a transaction on a local transaction processor
may permit users to display inventory data. This may require the local transaction processor to
interrogate several remote transaction processors to determine the inventory at remote locations.
This technique can also be used to post local work to remote files or to print data on remote
output-only terminals.

Data communication between transaction processors is covered in detail in Chapter 11.

9-5

CHAPTER 10
SECURITY, RELIABILITY, AND PERFORMANCE

Tight security, excellent reliability, and good performance are requirements in most transaction
processing systems. In previous chapters, you learned many of the characteristics that help TRAX
applications meet these requirements. In this chapter, these characteristics are reviewed and their
contribution to system security, reliability, and performance is discussed. Several more features of
TRAX are introduced that also contribute to satisfactory transaction processing.

10.1 SECURITY
A secure system is one where each user is restricted to the functions he is meant to use and can
only access the data he is meant to see.

Several TRAX features contribute to the security of transaction processing applications built on it.

10.1.1 Application Terminals and Support Terminals

The most serious breach of system security occurs when a user gains unauthorized access to the
operating system and its terminal commands. In TRAX, this is unauthorized access to the support
environment. If a user gains access to the support environment, he can instruct the system to copy
data files, alter programs, and even alter or halt the operating system itself.

TRAX prevents this by keeping application terminals and their machine interfaces strictly and
physically separate from support environment terminals and their machine interfaces. Once the
system has been properly generated and communication lines properly installed, it is impossible for
an application terminal to gain access to the TRAX support environment. To do so would require
the physical reconnection of the terminal to a different communication line and machine interface.

Everything that occurs at application terminals is under the control of transaction definitions and
form definitions. Any function that has not been defined as a transaction simply cannot be exe-
cuted from an application terminal.

This places TRAX apart from other on-line systems where a single terminal serves as both a pro-
grammer’s console and an application terminal. In those systems, users can often “‘escape’ from
an application program and use the programmer’s system command language. This is impossible
under TRAX, because an application terminal has no control over the system.

Security against unauthorized access depends only upon the physical security surrounding a sys-
tem’s support terminals, their communication lines, and their machine interfaces. If physical
access to these components is not allowed, security of the operating system and application pro-
grams is assured.

10.1.2 Work Classes and Signing On

Any application is likely to have transactions that need some security arrangement. For instance,
a transaction that displays a customer’s credit records should be more restricted than one that

10-1

Security, Reliability, and Performance

displays outstanding orders. This means that some users should be allowed access to a transaction,
while others should be denied access.

Chapter 9 discussed work classes, how they are assigned to particular terminals, and how they are
assigned to particular users. These work classes, together with the SIGNON and SIGNOF transac-
tions supplied with each TRAX system, give you the tools you need to implement almost any
transaction security arrangement.

And, once these restrictions are in place, they cannot be defeated from an application terminal
because of the distinction between application and support environment terminals. To change
the work class assigned to a terminal or a user, someone must first gain access to a support envi-
ronment terminal. Even the privileged, knowledgeable system programmer can not make such
changes from an application terminal.

10.1.3 Terminals Running a Single Transaction
Chapter 9 also described a terminal restricted to a single transaction. No other transactions could
be executed from that terminal, no matter how privileged or knowledgeable the user.

This feature is useful for terminals in insecure locations. A terminal placed in a bank lobby, for
example, might allow customers to check their account balances. This terminal could be con-
nected to a system that has sensitive customer data and privileged transactions. But so long as the
initial operating mode of the bank lobby terminal limits that terminal to the one transaction, no
breach of system security can occur. In fact, not even the system designer himself could defeat
the security restrictions of the bank lobby terminal.

10.1.4 Logging

Although it will not prevent unauthorized access, the logging facility described in Section 8.8 can
be used by an application programmer to record each use of a transaction and therefore detect
unauthorized use.

The log entries are written on the system journal device and cannot be accessed from an application
terminal.

10.2 RELIABILITY
A reliable system is available when needed, and its data loss is infrequent.

Several TRAX features contribute to the reliability of applications, in addition to the recognized
reliability of the PDP-11 processors on which it runs. Some of these features are outlined in the
following paragraphs.

10.2.1 Exchange Recovery
Because a picture of each transaction instance is maintained in its corresponding transaction slot
(see Chapter 7), TSTs can recover from certain errors during the processing of an exchange.

If you specify exchange recovery for a transaction, the transaction slot will be copied to disk at
the start of each exchange. Then this information can be used (at a TST’s request) to restart the

transaction instance from that point. For example, a long-term record lock encountered by a TST
could prompt the TST to restart the exchange.

10-2

Security, Reliability, and Performance

Exchange recovery is invisible to the user at an application terminal, except that response times
may be slightly extended during exchange recovery attempts.

10.2.2 Crash Recovery
System software errors and hardware errors can cause a TRAX system to crash. When this occurs,
the system is automatically reinitialized in the following way:

1. The operating system kernel restarts itself if necessary.

2. Each transaction instance that was active at the time of the crash is terminated. The
effect on a transaction instance is the same as if an ABORT key had been pressed at
the moment of the crash. These effects will vary depending on whether or not the
transaction uses exchange recovery and whether it accesses staged or unstaged files.

3. Unstaging is completed for each transaction instance that was in the process of unstaging
when the crash occurred.

4. The transaction processors that were active at the time of the crash are restarted.

5. The application terminals attached to each active transaction processor are reinitialized.
They will be placed in the same state as when the transaction processor is first started.
That is, each terminal will display either the first form of a transaction or a transaction
selection form. At those terminals that require user sign-on, users must re-enter their
identification codes and passwords.

Crash recovery is a feature that you select or decline for each transaction processor. If selected, it
adds a slight overhead to transaction processing to maintain the transaction status table. The
effectiveness of crash recovery depends on your use of two other TRAX facilities, staging and
exchange recovery.

10.2.3 Data File Recovery
Rarely, a system interruption destroys application data files. This kind of failure is typically a
severe hardware failure, such as a head crash on a disk.

In failures of this sort, it is imperative that data loss be held to a minimum and that the manual
effort of reconstructing data be limited. The TRAX data file journaling facility, described in
Section 8.7, meets this requirement. Using a backup copy of a data file and journals that repre-
sent the processing against that file since the time of the backup, a TRAX system can automati-
cally recreate the data file as it appeared immediately before the failure.

The effectiveness of this facility depends on your file design and the selection of journaling for
appropriate files. Journaling a file introduces a slight overhead in the processing of transactions.

10.3 PERFORMANCE
A system that performs well processes transactions quickly enough to accommodate workload
and quickly enough to satisfy its users.

Several TRAX features contribute to performance in applications built upon it: some are outlined
here. Good performance, of course, depends on good application design, as well as the facilities of
the operating system.

10-3

Security, Reliability, and Performance

10.3.1 Record Locking

TRAX enforces file access on a record basis. A transaction instance can lock one record in a file,
while allowing other transaction instances access to other records. This contributes to system per-
formance by reducing the effects of interaction between transaction instances.

10.3.2 Internal System Design

Many design features of TRAX were selected for their beneficial effect on system performance.
For example, the messages that travel from station to station in the transaction processor do not
really move in a physical sense; they remain in one area of system memory and they are
““attached” to various processing modules by memory mapping techniques. This procedure (which
is transparent to the application programmer) is more complex than moving the data from place to
place, but it improves system efficiency.

10.3.3 Caching
TRAX transaction processors make effective use of the available disk access capability through
caching, which is the intermediate storage of disk-resident data in buffer areas.

With the caching technique, a data structure fetched from disk is not discarded when it is no
longer needed. It remains identified in a buffer. If the data structure is needed later and is still
in the buffer, the buffer copy is used instead of reading the data structure from the disk.

When data structures are written, they are updated on the disk and in the buffer. The cached
copy of the data structure and the disk-resident copy therefore match at all times.

Data structures are purged from the buffer as space is needed for other data structures. This
purging is done according to a least-recently-used algorithm, so the data structures purged are
least likely to be needed soon.

The caching technique applies to most data structures on the disk. These include:

Transaction definitions

Form definitions

Data file records

Data file indexes

Messages needing long-term storage
Transaction slots

TST task images

10-4

CHAPTER 11

TRANSACTION PROCESSORS AND
DISTRIBUTED PROCESSING

As you have read, transaction processors are well adapted for centralized on-line transaction process-
ing applications. But the architecture of transaction processors also permits interfacing them to
systems and subsystems for various kinds of distributed processing.

Interfacing a transaction processor to other systems or subsystems demands that you have a clear
understanding of transaction processors. Distributed processing is a more advanced technique than
the design of a simple, stand-alone transaction processor. For this reason, interfacing to other sys-
tems and subsystems has not been discussed in earlier chapters.

Three interfaces are possible between a transaction processor and other systems or subsystems:

1. Aninterface between a transaction processor and the support environment of the TRAX
system where it runs

2. Aninterface between two transaction processors, either running on the same TRAX sys-
tem or on two TRAX systems

3. Aninterface between a transaction processor running on a TRAX system and a similar
subsystem running on a different operating system

This chapter discusses the general capabilities of these interfaces. Consult the TRAX Application
Programmer’s Guide and the TRAX Support Environment User’s Guide for details about the ex-
change message formats, the support environment features, and the success and failure codes for
each operation.

11.1 INTERFACE BETWEEN TRANSACTION PROCESSORS AND SUPPORT ENVIRONMENT
Figure 11-1 shows a TRAX system. This system has a transaction processor and a support environ-
ment. Within the support environment is a batch processor utility program and an application pro-
gram (perhaps controlled by a different batch processor or a support environment terminal.)

There are two possible interface paths between a transaction processor and the support environ-
ment (Figure 11-1): one path isinitiated by the transaction processor and the other by the support
environment application program.

11.1.1 Path Initiated by the Transaction Processor
The interface shown in the upper portion of Figure 11-1 shows a path initiated by the transaction
processor.

Transaction Processors and Distributed Processing

TRAX System

Transaction Processor Support Environment

Work Request

Batch
./ Processor

I Success Code ___ {/

-\—Yansaction ReQUeSt

Support
Program

Figure 11-1 Interface Between a Transaction Processor and the Support Environment

A transaction processor’s only method of interface with the support environment is the submission
of batch processor requests. (For information about batch processors, see the Introduction to
TRAX and the TRAX Support Environment User’s Guide.) This is a unidirectional interface; the
support environment can return only a simple success code indicating that a request has been
accepted.

The interface is accomplished via a submit batch station in the transaction processor and the queue
manager utility program in the support environment. When an exchange message is routed to a
submit batch station, the station looks for a legal SUBMIT command. (SUBMIT commands to
enter batch or work requests are normally issued at a support environment terminal.)

The command is passed to the queue manager in the support environment, and the queue manager
checks the validity of the command before entering the work request on the work queue. The
queue manager passes a success code to the submit batch station, which places it in the exchange
message. The success code indicates whether the work request has been successfully entered. (See
more about the success code in the TRAX Application Programmer’s Guide.) This code is usually
inspected by a “downstream’ TST where the exchange message is subsequently routed. Figure 11-2
shows the process.

NOTE
The success code does not indicate that the work
request has been executed, only that it has been
entered in the queue.

11-2

Transaction Processors and Distributed Processing

Transaction Processor Support Environment

File to

Work Request
in
Exchange Message

Submit
Batch
Station

Work o Batch

Queue Processor

Y 4 Queue
o\de\ Manager

Success Code
in
Exchange Message

Processing Steps:
° Work request arrives at a submit batch station in the form of an exchange message.
e Submit batch station forwards request to the support environment queue manager.
o Batch command file is located and placed in corresponding queue.
° Success or failure code is returned to submit batch station.
e Success or failure code is placed in exchange message, and exchange message is
passed to next processing station.
° Some time later, file works its way to head of batch processor queue and is processed.

Figure 11-2 Interface Initiated by a Transaction Processor

It may be some time before the request is processed; in fact, the support environment batch
processor may not be running when the request is entered. The transaction processor waits only
for the successful entry of the request in a queue, not for its execution.

11.1.2 Path Initiated by a Support Environment Program

The interface in the lower portion of Figure 11-1 shows a path initiated by a program in the support
environment. This could be a program run at a support environment terminal or by a batch proces-
sor in the support environment.

This is a bidirectional interface. The support environment program requests that a transaction be
executed in the transaction processor. The program awaits the results of the transaction, which are
returned in a response message and then forwarded to the support environment program. This inter-
face contrasts with that in Section 11.1.1, where the transaction processor could not wait for results
from the support environment processing.

11-3

Transaction Processors and Distributed Processing

The support environment program makes the transaction initiation request by using a system call.
At the end of the transaction instance, up to 24 bytes of the response message generated by one of
the transaction TSTs are returned to the calling program.

Support environment programs may initiate only single-exchange transactions. The exchange mes-
sage provided by the support environment program must be formatted properly for the transaction
TSTs.

A support environment program can initiate the same transactions that can be initiated from an
application terminal; when initiated from the support environment, form names in the transaction
definition are ignored.

The process is shown in Figure 11-3. The station in the transaction processor that receives the ex-
change message contents from the support environment program, routes the exchange message to
the processing stations, and forwards the response message to the support environment is called
the source station. For these transactions, a slave batch station is always the source station. The
maximum number of transaction instances initiated from the support environment that can be
executing in a transaction processor at once depends on the number of slave batch stations in that
transaction processor. Each transaction instance occupies one slave batch station during its
execution.

11.2 INTERFACE BETWEEN TWO TRANSACTION PROCESSORS

The interface between two transaction processors is similar whether the transaction processors re-
side on the same TRAX system or on two remote systems. Two remote systems require a physical
communication link; two transaction processors on the same TRAX system require a logical com-
munication link. The only difference between the two situations is the planning and installation
of the physical communication network.

11.2.1 Master and Slave Transaction Processors

The interface between two transaction processors requires one transaction processor to initiate
transactions in a second transaction processor and to receive the results. The first transaction
processor is called the master transaction processor; the second, the slave transaction processor.

The terms “master” and “‘slave” are not fixed designations. Each of the pair of transaction proces-
sors can initiate transactions in the other. Therefore, both can be “master” or “slave.” It is only
in a request for transaction initiation that the terms ‘“‘master’ and *‘slave” have any significance.

11.2.2 How the Interface Works

Figure 114 shows how this interface works. In the master transaction processor, an exchange
message arrives at a master link station. This station is associated with an external transaction
processor, either:

® A local transaction processor having a logical communication link to the master transac-
tion processor, or

® A remote transaction processor having a physical communication link to the master trans-
action processor.

The exchange message arrives at the master link station with control information and the text of

an exchange message that is to be processed in the slave transaction processor. The master link
station extracts the embedded exchange message and transmits it to the slave transaction processor.

11-4

Transaction Processors and Distributed Processing

Support Environment Transaction Processor

Slave Batch
Station

Processing
Station

/ Exchange
Message

Support

Program .
Processing

Station

Processing
Station

Processing Steps:

o Support program issues a call which includes the text of an exchange message. The
transaction processor selects a slave batch station which will act as the source station for
the exchange message.

0 A transaction instance is initiated through the selected slave batch station, and the
specified exchange message is routed to the list of stations named in the transaction
definition.

e One of the processing stations (usually the last) issues a response message addressed to the
source station.

o The response is forwarded to the support program.

Figure 11-3 Interface Initated by a Support Program

In the slave transaction processor, the extracted exchange message serves as the basis of an exchange.
This could be the first (and possibly only) exchange of a newly initiated transaction instance, or it
could be the second or subsequent exchange of a previously initiated transaction instance.

In the slave transaction processor, a slave link station is the source station for the exchange. That
is, a slave link station is allocated (or retained, if this is a subsequent exchange) as the source sta-
tion for the exchange message and the forwarding agent for the response message. The active
number of transaction instances executing in a slave transaction processor initiated by master
transaction processors depends on the number of slave link stations in that transaction processor.

When the exchange processing in the slave transaction processor is finished, a slave transaction
processor TST sends a response message. This message returns to the slave link station in the slave
transaction processor, which reformats and forwards the message to the master link station in the
master transaction processor.

Transaction Processors and Distributed Processing

Master
Transaction Processor Slave Transaction Processor

Transaction Initiation

Request begbé 5298
. @S5 -~ .
in Exchange < @@,/’ Processing
Message le ,§?’/ Station
S
. X/
Transaction wi \

\nitiation Request
Aabhbibhh

Master Processin
Link Link SsIng
. . Station
Station Station

Response Message .
(5 %
Reply Placed

n
Exchange Message

Processing
Station

Processing Steps:

o An exchange message arrives at a master fink station in the master transaction processor
containing a transaction request for another transaction processor.

a The transaction initiation request is forwarded to the siave transaction processor, and a

slave link station is assigned to initiate the transaction instance. (If the request is to

continue a previous transaction instance, an initiating station will have already been

assigned).

The exchange message embedded in the request is extracted and circulated to the

appropriate stations in the slave transaction processor.

One of the stations which processes the exchange message (usually the last one) directs

a response message to the initiating station.

The response message is forwarded to the master transaction processor.

The master link station in the master transaction processor places the response in the

exchange message of the original transaction instance and sends the exchange message

to its next destination.

Figure 114 Interface Between Two Transaction Processors

The master link station places the returned data in the original exchange message in the master
transaction processor, and the transaction instance in the master transaction processor routes that
exchange message to its next destination.

Meanwhile, the transaction instance in the slave transaction processor either is terminated or is
suspended awaiting another exchange message from the master transaction processor. If it is
terminated, its slave link station is released; if it is suspended awaiting further exchanges, its slave
link station is retained. The suspended slave link station is accessible only to the transaction in-
stance in the master transaction processor that allocated it, and the slave transaction instance is
aborted if the master transaction instance aborts or terminates normally while the slave link station
is allocated.

11-6

Transaction Processors and Distributed Processing

11.2.3 Cooperation Between Master and Slave

You have probably noted that this interface method can handle multi-exchange transactions in the
slave transaction processor. The progress of the slave transaction is controlled by its transaction
definition (as defined in the slave transaction processor) and the control information interpreted
by the master link station. This control information serves much like application terminal function
keys, interacting with the applicable transaction definition to determine the progress of the trans-
action instance.

The master and slave transaction instances cooperate so that the exchange messages are supplied at
the proper times and are processed in the proper way. Mismatched messages and processing cause
trouble; the design of both master and slave transactions is critical. Extreme situations are handled
by the respective transaction processors; for example, the automatic abort of a slave transaction
instance if the master transaction instance aborts. But the mundane and subtle aspects of trans-
action cooperation are handled with transaction definitions and TST processing logic.

The control parameters in the master exchange message are important to this cooperation. They
are described in the TRA X Application Programmer’s Guide.

11.2.4 Links and Sublinks
The data path between a master transaction processor and any of its slave transaction processors is
called a link. A link includes a master link station within the master transaction processor.

The link is divided into one or more sublinks. While the links are permanent, sublinks are created
and dissolved as transactions initiate and terminate in the remote transaction processor. Each
sublink has a master link station at the master end, a slave link station at the slave end, and a
logical data path between them.

Each remotely initiated transaction instance requires a slave link station and its corresponding sub-
link for the duration of the transaction instance. This includes the time between exchanges in the
slave transaction processor, when that transaction processor awaits another exchange message from
the master transaction processor.

Both links and sublinks are logical data paths; many links and their sublinks share a physical data

communications facility. Each communication line between systems is point-to-point; multi-drop
lines are not supported to join multiple TRAX systems. The interconnection of three TRAX sys-
tems requires three communication facilities, as shown in Figure 11-5.

Figure 11-6 shows two transaction processors on different TRAX systems. The figure shows a
master link station in the left transaction processor, and two slave link stations in the right trans-
action processor. The left transaction processor, processor A, initiates up to two concurrent
transaction instances in processor B with this arrangement. Transaction processor B can not
initiate transaction instances in processor A;it can only respond to transaction requests made by
processor A.

Transaction Processors and Distributed Processing

Point-to-point
Communication
Line

Point-to-point
Communication
Line

Point-to-point
Communication
Line

System 2 System 3

Figure 11-5 Interconnection of Multiple TRAX Systems

TRAX System A TRAX System B

Transaction Processor 1 Transaction Processor 2

Physical Data
Communication

Facility
Y S

/—\

Link — 7

Sublink]

Q

Slave Link Station

@ Master Link Station

Figure 11-6 Links and Sublinks

11-8

Transaction Processors and Distributed Processing

TRAX System A TRAX System B

Transaction Processor 1 Transaction Processor 2

Physical Data
Communication
Facility

/’_\

ELink

~ Sublink

N

AL

Master Link Station

Slave Link Station

90

Figure 11-7 Duplexed Links and Sublinks

Figure 11-7 shows a duplexed arrangement where each transaction processor acts as a “master’
transaction processor and initiates transaction instances in the other. Each transaction processor
has a master link station, a link to the other transaction processor, and a pool of two slave link
stations in the opposite transaction processor. Both links operate at the same time; that is, each
transaction processor has active transaction instances processing in the other processor
simultaneously.

The configuration of links, sublinks, and physical data communication facilities is determined in
two steps:

® When the TRAX operating system is generated, the physical communication lines are con-
figured. These communication lines are given identifiers for the second step.

® When the stations for a transaction processor are defined, the STADEF utility program will
ask questions about each master and slave link station. The answers to these questions de-
termine how the transaction processors will be connected, which physical communication
lines (if any) are used by the transaction processor, and how many links exist on those com-
munication lines.

See the TRAX Support Environment User’s Guide for information about how to define master and
slave link stations using the STADEF utility program.

11-9

Transaction Processors and Distributed Processing

11.3 INTERFACE WITH NON-TRAX SYSTEMS
TRAX transaction processors also interface with one non-TRAX system: a CICS application run-
ning on an IBM processor.

An application running under CICS operates much the same as a TRAX transaction processor, and
this similarity makes interface possible. The CICS application receives input records from peripheral
devices and processes them, generating one set of output records for each input record. This is
similar to the way TRAX processes exchange messages and generates response messages.

TRAX treats a CICS application as a slave transaction processor, allowing TRAX master transaction
processors to initiate transactions in the CICS application.

Several restrictions apply for this interface, when compared to the normal master-slave relationship
between two TRAX transaction processors:

® A sublink, in TRAX terminology, corresponds to a device/control-unit address in IBM
terminology. The appropriate parameters in each system are selected so that they corre-
spond, and both systems know how many sublinks (DCU addresses) are active at one time.

® TRAX acts like IBM model 3270 terminal units for the CICS application. This applies only
to the network architecture and device addressing, however. TRAX system software will not
generate or process any 3270 control codes; this must be done by application TSTs.

® CICS does not support multi-exchange transactions, and therefore all transactions have only
one exchange.

® CICS never acts as a master transaction processor and never originates transactions in the
TRAX system.

Interfaces to CICS applications require special communication line configurations and station

definitions. Configurations are described in the TRAX Svstem Generation Manual and the TRAX
Support Environment User’s Guide (see the STADEF utility program).

11-10

PART TWO

Building a TRAX Application

CHAPTER 12
REVIEWING BUSINESS ANALYSIS TECHNIQUES

Before you design an application to run under TRAX, you must analyze the business environment that the applica-
tion will serve. This chapter presents the analysis steps that you should perform. These are:

1. Identifying business activities

a. Studying business procedures

b. Studying data storage requirements
2. Developing system functional specifications
Specifying system scope
Choosing between fundamental system alternatives
Specifying transaction processing functions
Specifying batch processing functions
Specifying data storage capabilities
Specifying system reliability requirements

N o A

12.1 STUDYING BUSINESS ACTIVITIES
Your first task is to study the business activities that your automated system is to serve. This means that you must
become familiar not only with computers and data processing, but also with the business operation itself.

Your study concentrates on two topics:

® The business procedures
® The business data kept, and how it is used

12.1.1 Studying Business Procedures
This portion of your study concentrates on activities and decision-making. It tells you how, why, and when certain
business activities take place.

For example, an analysis of the business procedures in a wholesale distribution business (like that in the TRAX
Sample Application) might answer these questions:

How do orders arrive?

How are picking lists generated for the warehouse staff?

Are credit checks made and, if so, on what basis?

How does the warehouse staff locate goods in the warehouse?

Is there a separate packing staff, or do the pickers in the warehouse pack the goods too?
Is the contents of each order double-checked by anyone?

How are customers billed?

How are backorders handled?

Will partial orders be shipped if one or more items are unavailable or back ordered?
How is stock procured from suppliers? What initiates orders for more stock?

How is inventory managed?

What procedures are used to accept incoming stock from suppliers?

How are invoices for incoming stock approved and paid?

Does the firm have catalogs? How are they mailed?

12-1

Reviewing Business Analysis Techniques

12.1.2 Studying Business Data Storage
To determine an application’s data storage requirements, study the transient information the business uses each day
and the permanent information it must keep on file.

Each business activity requires information. Your task is to determine the information needed by each business
activity, and then find the common set of information needed for all business activities.

For example, an analysis of the data storage requirements of the TRAX Sample Application would attempt to
answer these questions:

@ s the business using centralized files or distributed files? If distributed files, are they duplicates, or are
certain data kept in different places?

What different kinds of information does the business need?

What data elements are in each kind of information — for instance, what data elements are included in a
customer file?

Which data elements appear in varying numbers or in varying sizes?

What is the total quantity of data required?

How quickly must the business retrieve each piece of information?

Which data elements are used for computation? Which for decision making? And which are only displayed
for general information?

Which data elements are part of the business’s official records?

Which data elements have access restrictions or other security requirements?

Is there a journal for accesses to certain data elements?

How frequently is the data updated? Are there journals for these updates?

How is data retrieved? For instance, are customer data retrieved by customer number, last name, or some
other index?

How long are data kept?

® Who decides when data can be discarded and on what basis?

12.2 DEVELOPING SYSTEM FUNCTIONAL SPECIFICATIONS

After you have studied the operation of the business, design a system that will address the business’s need for auto-
mation. You do this primarily from the point of view of the business’s requirements, although you must always
keep in mind the limits of technical feasibility.

The result is a functional specification for the proposed system. A functional specification describes what the
proposed system will do, but not sow the system will be implemented. This does not mean that you can ignore
technical feasibility; you should always have a feasible method in mind for accomplishing anything you propose in a
functional specification. But, for the moment, the technical implementation of the system is not of interest. You
must propose and document a system from a business point of view, so that you can prove its utility and receive
authorization to proceed with its implementation.

The functional specification should cover these topics:

System scope

Fundamental system alternatives
Transaction processing functions
Batch processing functions

Data storage requirements
System reliability requirements

12.2.1 System Scope

First determine the scope of the proposed system. Often, you will not be automating the entire business. Many
manual methods are adequate. Your analysis should identify the business areas that need automation now and in
the immediate future. These areas should be confirmed by the business management.

122

Reviewing Business Analysis Techniques

Having chosen the system scope, try to stay with it. Build the originally-proposed system first; then add features
later if it seems desirable. This will help you to meet development schedules.

12.2.2 Fundamental System Alternatives

You are planning a TRAX system for transaction-based, on-line processing. But, like most applications, your system
will probably need some off-line or batch processing. One of the steps in a functional specification is choosing
whether each business activity will be supported by on-line or off-line processing.

On-line processing is not always the best alternative. Many processes are schedule-oriented, that is, they are done at
regular intervals with little human intervention. These are natural choices for off-line or batch processing.

Hybrid processing is also possible. For instance, you can use on-line processing to place data in a file, and off-line
processing to print a report using that data.

12.23 Specifying Transaction Processing Functions
TRAX supports on-line functions with transactions. You must develop detailed functional specifications for each
transaction. This involves the following design specifications:

The purpose and function of the transaction — how it corresponds to manual business functions
The information collected from its user

The data retrieved from and stored in permanent data files

The calculations done or decisions made

The information presented to the user or to others

The transaction volume expected and the speed with which the transaction must be executed
Requirements for logging, journaling, and other security issues

12.2.4 Specifying Batch Processing Functions
The batch processing portions of the proposed system must also be specified.

NOTE
Because batch processing represents a more traditional
form of data processing — one with which most readers
will be familiar — the batch processing portion of a
business application is not discussed in great detail in
this manual.

As you specify the batch portion of your system, you will be considering these issues:

The purpose and function of each batch processing sequence (or stream)

The source and format of the data

The schedule that controls the processing, or other initiating event that controls it
The processing that must be done

The destination and format of output

The volume of data to be processed, and the time available for processing it.

12.2.5 Specifying Data Storage Requirements
Specify the data storage requirements of your application by outlining the set of data files needed to support the
on-line and batch processing activities.

The file structures available under TRAX are:
® Sequential files

® Relative-record files
® Indexed-sequential files with multiple indexes

12-3

Reviewing Business Analysis Techniques

You can develop a functional file design by using these basic file structures. The most important design issues at
this stage are the generic types of data to be stored and their methods of retrieval. Calculations of specific field and
record sizes, recording methods, and other detailed technical decisions should be left until the detailed design phase.

Also consider such things as the performance impact that multiple on-line users will have on your file design, and the
impact your file design will have on the throughput and response times of each transaction. Compare these perfor-
mance estimates to the throughput and response time requirements you have determined from your business
analysis. Resolve any conflicts.

12.2.6 Specifying System Reliability Requirements

System reliability requirements may or may not be important in your functional specification. Some applications
are not sensitive to reliability issues; others are particularly sensitive. When specifying system reliability require-
ments, consider these questions:

Must the system be “up” most of the time?

What is the penalty if it is “down” ?

How much effort is it worth to improve reliability, thereby reducing “down” time?

How essential and valuable is the data in the system’s files?

If files are destroyed by system accident, to what extent must they be reconstructed?

How much time and effort can be invested in file reconstruction?

How much system time (or user time) should be invested on an ongoing basis — that is, during system
operation — to reduce reconstruction time and effort?

124

CHAPTER 13
AN INTRODUCTION TO TRAX TECHNICAL DESIGN

Three aspects of TRAX application design are significantly different compared to other implementation
environments:

® The conversation between the system and its on-line users
® The sequence of processing applied to on-line user input
® Issues relating to system reliability and recovery of on-line processing results

For this reason, the remainder of this manual concentrates on the detailed technical design of the on-line portion of
a TRAX application. These techniques will be new even to the seasoned application designer. If you need help with
the off-line or batch portions of your application, review the TRAX Support Environment User’s Guide (Order No.
AA-D331A-TC) and perhaps a text on the design of batch processing systems.

The remainder of this manual will continue to use terms and concepts introduced in Part One of this manual. For

example, the term “transaction processor” denotes the portion of the finished system that handles the on-line

processing for the application. If you are not comfortable with these terms, stop from time to time to review the
-TRAX capabilities discussed in Part One.

13.1 DESIGN OF USER-SYSTEM CONVERSATION
As described in Part One of this manual, a TRAX application converses with its terminal users through forms.
Forms are a transaction processor’s only interface with its on-line users.

The extensive use of forms has an impact on both the system and its users:

® For the system, forms allow efficient processing. The user’s completion of a form is similar to reading a
unit record from a card reader or a record from a file. All data is received with a single operation.

® For the user, it is often easier to enter data when all data entry fields are available than respond to ques-
tions one at a time.

The concept of forms-oriented conversation affects TRAX application designs. Your application must collect a
complete record of information from a user, rather than individual fields.

Two TRAX system concepts work together to determine the flow of user conversation:

o [Form definitions specify the characteristics of each form. The form definitions are kept in a form defini-
tion file where they are available to the transaction processor.

® Form sequence depends on the definition of each transaction, as well as the actions taken by TSTs and the
terminal operator’s use of function keys.

When you design the user conversation for a transaction, you should begin with a mental image of the conversation

process. Starting from this mental image, adjust the form definitions, the transaction definition, and the transac-
tion’s TSTs to achieve the desired sequence.

13-1

An Introduction to TRAX Technical Design

Many TRAX concepts interact closely during the execution of a transaction, and their interaction affects the flow
of user conversation significantly. Here are examples of such interactions:

® The response messages sent by TSTs must agree with the transaction definition and its form definitions.
® Form definitions are a primary means of controlling the use of terminal function keys. Terminal func-
tion keys, especially the system function keys, significantly affect the flow of conversation.

13.2 PROCESSING DESIGN

With traditional implementation environments, one application program collects data through conversation with
the user and then processes that data. But because TRAX uses forms to converse with the user, the application
program (now called a TST) is free to concentrate on data processing rather than data acquisition.

The processing applied to a user’s data in a TRAX application depends on three hierarchical factors:

1. At the highest level, processing depends on the sequence of exchanges executed within the transaction.
This sequence is controlled by the transaction definition, which can be overridden by TST response
messages and by the user via function keys.

2. At the middle level, processing for an exchange depends on the TST station routing list for the exchange
message. The original routing list comes from the transaction definition, but the routing list can be
modified by any TST processing the exchange message.

3. At the lowest level, processing at a TST station depends on each TST’s programmed sequernce of
operations. In addition to controlling the flow of logic within the TST itself, a TST can alter the routing
list for the exchange message being processed, sending it to a different series of stations; and the TST
can also alter the sequence of exchanges for the transaction, directing execution of a particular exchange
in the transaction definition regardless of the sequence specified in the definition.

An important phase in designing a TRAX application is partitioning its processing: partitioning the application
into transactions; partitioning the transactions into exchanges; and partitioning the exchanges into the individual
stations in the routing lists.

Separation of data processing from user conversation has many benefits. It helps structure the application design
process. It simplifies application programs. And it improves system efficiency, because the user conversation

is managed by resident system code. Since more time is generally spent in conversation than in processing, the
time that application programs are in use is reduced.

This division between data processing and user conversation implies a formal interface between them. To accom-
plish this, TRAX uses exchange messages (a way for user input to be sent to processing programs) and response
messages (a way for results and instructions to be returned to the user). As you design TRAX transactions, pay
close attention to the content and timing of these messages.

Most of the stations that process exchange messages are TST stations. The processing done at these stations is
specified when the corresponding TST is programmed. There are other stations, however, that may also process
exchange messages. These stations (discussed in Part One of this manual) support such activities as communica-
tion with batch processing and communication between two transaction processors. The processing at these sta-
tions is done by software supplied with TRAX, and no additional code need be developed to use these stations.

13.3 APPLICATION RELIABILITY ISSUES
Designing a good on-line application for multiple users is a challenge. Multiple users must not interfere with each
other, and the work processed by the application must be recorded so that it is not lost if the system fails.

TRAX has many features and facilities to assist you in implementing these necessary aspects of on-line applications.

Staging, journaling, logging, exchange recovery, and crash recovery were presented in Part One of this manual.
You should have a good understanding of these terms before proceeding with a TRAX application design.

132

An Introduction to TRAX Technical Design

However, TRAX can only offer capabilities. You must select from the available options and configure your applica-
tion appropriately.

Experienced designers of commercial applications know that there are no “good” or “bad” solutions, only tradeoffs
and compromises. Applications constructed under TRAX are no exception: one attractive feature can adversely
impact another. Many times, the inclusion of all optional system features is the worst design strategy.

For instance, TRAX supports a sophisticated staging mechanism where file updates may be delayed until successful
transaction completion. This feature is invaluable to you when transactions terminate unsuccessfully, and you wish
them to have no effect on data files. The staging mechanism, however, extends the time that records are locked
and therefore unavailable to other transaction instances. It also increases the size of the transaction’s system work-
space. By selecting the staging option to improve application reliability, you increase multiple-user interference —
users lock each other out of data records and compete for available memory.

The final effect of these system reliability features depends on your design of the user conversation and processing
portions of the application. For instance, if one transaction overlaps conversation with data processing, exchange
recovery may not have the effect you desire.

As another example, consider the common practice of placing a control record at the front of a data file. This
record might carry the next available customer number, as it does in the TRAX Sample Application. Adding a cus-
tomer to the file requires that this control record be read, updated, and written before the new customer record can
be inserted.

Such a record usually has high access frequencies, because adding customer records to the file requires access to the
control record first. It is important, therefore, that each user read and update the record in the minimum time so
that other users can access it.

But consider what happens if the staging facility is selected for this file. Once the control record is read and locked
by a user, it cannot be unlocked until the entire transaction has been completed. If this process were to have other
exchanges with their associated user interaction, considerable time might elapse before the record is unlocked.

The result would certainly be unacceptable response time.

13.4 STEPS IN THE TRAX DESIGN PROCESS
Designing a TRAX application involves two principal activities:

1. Designing files to support the application’s data storage requirements
2. Designing transactions and batch processing streams to support the application’s processing requirements

File design for TRAX is like file design for other commercial, multi-user systems. This design process focuses on
the structure of the files and the problems of shared access to those files.

Processing design for TRAX is significantly different from other systems, particularly for on-line or transaction-
oriented processing. Design focuses on the transaction structure and the transaction components: transaction
definitions, forms, station definitions, TST specifications, and so forth. These components, which are all inter-
related, must be assembled to provide the desired transaction behavior.

File design and processing design usually proceed in parallel. As the content and structure of files are refined, trans-
action designs must be adjusted; as transactions are refined, file designs must be adjusted.

Processing design topics are covered in Chapters 14 through 20. File design topics are covered in Chapters 21 and

22. The topics are discussed in this order because the processing topics will be new to most readers, while the file
topics will be familiar to many.

133

CHAPTER 14
DESIGNING THE OVERALL STRUCTURE OF A TRANSACTION

This chapter describes procedures for designing the overall structure of a transaction. It covers these major topics:

Transaction structure diagrams
Overlapped processing

Transaction data structures
Transaction access security techniques

The transactions identified during your preliminary analysis must be considered individually, and appropriate
technical designs must be developed for each of them. Under TRAX, the implementation of each transaction will
involve:

® An overall structure relating the user interactions, processing descriptions, and decision paths during
transaction processing

® A detailed specification of each interaction with the user

® A detailed specification of each processing step that is required to process the data entered by the user

The first item, the overall structure of the transaction, is the best place to begin.

14.1 TRANSACTION STRUCTURE DIAGRAM

When you design TRAX transactions, you should develop diagrams that show the elements of a transaction and how
they interact during transaction execution. These diagrams are called transaction structure diagrams. You should
develop one for each transaction in your application.

When you develop these diagrams, try to concentrate on two goals:

® A working transaction design. That is, doublecheck your work against the material in Part One of this
manual to make sure that the transaction can be implemented under TRAX and that it will operate as you
intended.

® A sensibly organized and easy-to-use transaction. That is, imagine what it would be like to execute your
transaction from an application terminal.

Your finished diagram should reflect both these aspects of transaction design — technical feasibility as well as ease of
use.

14.1.1 An Example Transaction
The Change Customer transaction from the Sample Application provides a good example of a transaction structure
diagram.

This transaction reads a record from the customer file and allows a terminal user to change the record and replace it.
The processing steps in the transaction are:

1. When the transaction begins, the user is shown a form on which he enters the number of the customer
whose record is to be changed.

2. The user either presses the CLOSE key, terminating the transaction, or enters a customer number as
requested. If the customer number is entered to the form, the user presses the ENTER key.

14-1

Designing the Overall Structure of a Transaction

Processing begins to locate and read the specified record.

If the record is not found, the user is so advised. The form is left on the screen, including the
user’s input, and the user either presses the CLOSE key or tries a new customer number. In other
words, the user is returned to Step 1.

If the record is located, the user sees a new screen display showing the data from the record.

The user then either presses the CLOSE key, terminating the transaction, or he alters the displayed
data and presses the ENTER key.

If the user alters the data and presses the ENTER key, processing begins to place the modified data
in the file. This processing is done in two stages — data validation and then file update.

14.1.2 Diagram Symbols

A transaction structure diagram can show all of the important components of a transaction design. Figure 14-1
shows a transaction structure diagram for a typical transaction, the change customer transaction from the TRAX
Sample Application.

These components of a transaction design can be shown on a transaction structure diagram:

Exchange Boundaries. Each page of the diagram represents one exchange. Each page is labeled for the
exchange it represents.

Exchange Activities. There are two principal activities within each exchange: terminal conversation and
exchange message processing. The former is shown on the left portion of the page; the latter, on the
right.

Initial Display of Form. The initial display of the form is shown by a “video display” symbol. The
symbol contains a description of the form’s purpose or effect.

Reply Definitions. Each reply definition is represented by another “video display” symbol. Each

reply symbol contains a description of the reply’s purpose or effect, and is labeled with the appropriate
reply number. Arrows designating REPLY messages pass through the appropriate reply symbol and then
to the exchange’s user action symbol.

User Action. After the initial display of the form and each reply, the terminal user must take one of
two actions:

— Press a system function key. This causes an immediate transfer to a new exchange specified by a
combination of the transaction definition and the key used.

NOTE
Certain of these keys can also cause the transaction in-
stance to be terminated.

— Enter data and then press the ENTER key or some other user function key. This creates an exchange
message and sends it to the stations on the exchange routing list.

The user action symbol (there can be only one in each exchange) shows the point where the exchange
awaits the user action. The arrows leading from this symbol show the various function keys the user can
press, and what happens when he presses each.

System function keys and user function keys are treated differently in a transaction structure diagram
because they have different effects:

— System function keys repeat the exchange, enter a new exchange, or terminate the transaction
instance. Each key is shown by a single arrow, usually directed to the margin of the page with an
annotation of the key’s effect. Each arrow is labeled with the name of its function key.

— User function keys generate an exchange message and cause it to be routed to a series of processing
stations. All enabled user function keys therefore share a common series of arrows on the transaction
structure diagram. This series of arrows represents the path of the exchange message. It begins at

14-2

Designing the Overall Structure of a Transaction

the user action symbol and proceeds through the processing stations on the exchange routing list.
The segment of the arrow between the user action symbol and the first processing station should
be labeled with the names of the enabled user function keys.

Because some function keys may be enabled or disabled by a reply definition, some function key arrows
may require footnotes explaining the circumstances in which the user may employ them. For example,

a function key arrow might carry a footnote explaining that the key is only enabled after the invocation
of Reply 1.

Processing Stations. These symbols, at the right side of the diagram, show the stations that receive

the exchange message; usually they represent TST stations. Each symbol represents a separate station.
TST Actions. TSTs may take several actions in processing an exchange message. These actions are shown
in the transaction structure diagrams as arrows originating from within the TST, in addition to the
exchange message arrows. When a TST takes an action, exchange message processing is not necessarily
terminated; the TST can take an action and still process the exchange message.

The TST actions that can appear on a transaction structure diagram are:

— Response message to activate reply. 1f the TST modifies the present screen display and allows the
terminal user to take another action, it must send a REPLY response message. This message is
shown as an arrow coming from the TST to a reply symbol on the left side of the same exchange.
The arrow is annotated to explain the purpose and content of the REPLY message and the reply
number it will invoke.

— Response message to begin a new exchange. A TST can send several kinds of response messages to
cause the user’s terminal to proceed to a new exchange. These messages are:

PRCEED
STPRPT
TRNSFR

These messages are also represented on the diagram as arrows coming from the issuing TST. The
arrows proceed to the margin of the page and are labeled with the destination exchange’s exchange
label. Each arrow should be annotated with the message purpose, content, and message type.

— Response message to terminate the transaction instance. A TST can send two kinds of messages
that terminate the transaction instance:

1. A CLOSE message terminates the transaction instance immediately. This message is represented
by an arrow pointing to the margin of the page, with an annotation for the message and its
effect. (This will usually be a return to the transaction menu.)

2. An ABORT message is similar to a REPLY message and is drawn like that message.

— Report Messages. 1f a TST must print data on an output-only terminal, it sends a report message
with the data to that terminal’s station. This action is shown by an arrow from the issuing TST to
a standard flowchart “document” symbol at the right side of the page. The arrow is labeled with
the report’s purpose, content, and destination station name.

— Mailbox messages. If a TST must deposit data in a mailbox station, it sends a mailbox message to
that mailbox station. When a TST interrogates a mailbox to see how many messages it contains or
retrieves a mailbox message from a mailbox, a TST issues the appropriate library call. The mailbox
is represented by a standard flowchart “transmittal tape” symbol and the flow of mailbox messages
by suitable arrows.

® FExchange Parameters. The effect of response messages and function keys depends to an extent on two

parameters in each exchange of the transaction definition: the REPEAT parameter and the subsequent
action parameter. These parameters are shown at the bottom of Figure 14-1 (Sheet 1 of 2), so that the
correct paths for response messages and function keys can be determined and easily verified.

14-3

Designing the Overall Structure of a Transaction

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR

TRANSACTION NAME

EXCHANGE NAME

FORM NAME

[s]afmir]L]E]

[c[n]c]c]u]s]

[cln]elelx]1]

[clnlcufs[1]

pace L11] oF

START

wCLOSE
To transaction
selection form

CONVERSATION I MESSAGES l PROCESSING
INITIAL DISPLAY

Ask for

customer

number

Disp!

'SPy) REPLY
error -
Response message contains
message
error message text
~+——Error
I
Read
Allow user ENTER customer To
to enter Exchange message contains record CHGEX2
customer number customer number
ATEND: [] - REPEAT ~ NEXT - WAIT
— NOREPEAT []-FimsT []-nowaiT
] - mNnimaL

Figure 14-1 A Transaction Structure Diagram

14-4

Designing the Overall Structure of a Transaction

TRANSACTION PROCESSOR
TRANSACTION NAME
EXCHANGE NAME

FORM NAME

TRANSACTION STRUCTURE DIAGRAM

[sla[m[p]L]E]
[c[H]e]c]uls]

[c[H]e]e]x]2]

[cinlclu[s]2]

pace [12] or [T2]

CONVERSATION l MESSAGES PROCESSING
INITIAL DISPLAY
e Display
Tom
CHGEXT customer
record
Display
error REPLY
message Response message contains
error message text
Display
confirmation REPLY _
message Response message contains
no data
~— Error
L - Verify
ﬁ data
oK
Write new
CLOSE Allow user ENTER data into
- - : Exchange message contains 1
To transaction to edit data file
selectign form customer data
QAFFIRM Ia
" To first exchange
L
ATEND: [] - REPEAT [- NExT - WAIT
— NOREPEAT ~ FIRST [] - NowarT
(] - mNITIAL

o Only enabled when form is first displayed and after reply 1.

o Only enabled after reply 2.

Figure 14-1 (Cont.) A Transaction Structure Diagram

14-5

Designing the Overall Structure of a Transaction

Stop here to be sure that you can identify the following transaction components in Figure 14-1:

Two exchanges

Three TSTs

The entry point from the transaction menu

Exit points from the transaction

The conversation and processing phases of each exchange

The path of the exchange message in each of the two exchanges

The initial display of each exchange’s form

The reply defined in the first exchange’s form definition

Two replies defined in the second exchange’s form definition

The point in each exchange where the user must enter data or press a function key

The function keys enabled in each exchange

A REPLY response message for errors in the first exchange’s processing phase

The PRCEED response message that causes the transition between the first and second exchanges
A REPLY response message for errors in the second exchange’s processing phase

A REPLY response message that causes a transaction completion message to be displayed on the
terminal screen

14.1.3 Transaction Control Flow

Three kinds of arrows on a transaction structure diagram are important: those representing exchange messages,
response messages, and the effects of system function keys. These components of a transaction determine the
transaction’s flow of control — that is, the sequence in which steps of the transaction are executed.

As you construct transaction structure diagrams, be sure that these three kinds of arrows conform to TRAX trans-
action processor architecture. Make sure, too, that your arrows reflect your specifications for the REPEAT and
subsequent action parameters. For example, if an AFFIRM key is shown going to the next exchange via the NEXT
option, a PRCEED message must be shown as having the same destination.

Be sure you understand why each step of the transaction will occur the way you designed it. You cannot throw
together a flowchart of a transaction without regard for the rules of transaction processor architecture and expect
that transaction to work properly under TRAX. Your design must consider from the outset the capabilities of
transaction processors.

Refer to Part One of this manual when you have specific questions about transaction processors and their
capabilities.

14.2 OVERLAPPED PROCESSING

In typical transaction designs, response messages are sent by the last TST in each exchange’s routing list shortly
before the TST terminates. This causes the transaction instance to alternate user conversation and TST processing.
First, the user enters data; then the system processes it; the user enters more data; and so forth.

It is possible, however, to overlap user conversation with the processing of exchange messages. In certain circum-
stances, this technique can improve a transaction’s apparent response time. On the other hand, it is easy for an
application designer to unintentionally overlap the conversation and processing phases of two exchanges by choos-
ing the wrong timing for response messages or the wrong transaction definition parameters. A good understanding
of the concepts in overlapped processing helps you to choose situations where it may be useful. It also helps you
appreciate how transaction processors work, even if you never use overlapped processing in your transaction designs.

14.2.1 Overlap via Response Messages

One method of overlapped processing results from the distinction between when a TST sends a response message
and when the TST terminates execution. Any TST in a routing list can send the response message; this is inde-
pendent of the TST termination and other TSTs that must still process the exchange message.

14-6

Designing the Overall Structure of a Transaction

By sending a response message, a TST releases the user’s terminal for another conversational phase. The response
message can:

Invoke a reply and invite further data entry on the same form

Repeat the exchange, using a new copy of the form

Transfer to a new exchange and display the exchange’s form

Terminate the transaction instance, and follow with the display of the transaction’s first form
Terminate the transaction instance, and follow with the display of a transaction menu

If a response message is sent before exchange message processing is finished, the remaining processing phase of that
exchange and the conversational phase of the new exchange proceed in an overlapped or parallel fashion.

You might use this technique in transactions where the user enters data that must be written into a file. Data
entered this way usually has two processing steps:

1. The data entered by the user is checked for accuracy and consistency. If the user has made any errors,
the processor stops and an error message is generated.

2. If the data is acceptable, it is written into the file. By this point, the only errors that can occur are system
or hardware errors; while they may abort the transaction, the user cannot correct or avoid them.

The user is interested only in the results of the first processing step. If the data passes the consistency checks, the
user can enter the next set of data. Meanwhile, the previous set of data can be written into the file.

You can get this effect under TRAX by sending the response message as soon as the data is successfully checked,
leaving the same TST or another TST to continue processing in parallel with the conversatonal phase of the next
exchange.

14.2.2 Overlap via the NOWAIT Option

If you wish to completely overlap exchange message processing with the conversational phase of the next exchange,
TRAX allows a second overlap technique: the NOWAIT option in the transaction definition. If you specify this
option for an exchange, the transaction processor will not wait for a response message from a TST before allowing
the user’s terminal to proceed to the conversational phase of the next exchange. The transfer will happen as soon
as the exchange message is constructed.

You can only use this technique in transactions where a user enters data that can be written into a file without
programmed edit checks. This mode of operation is frequently called “blind data entry.” By using the NOWAIT
option, you can design transactions with the best response times. But remember, the user receives no feedback
for the data he enters.

NOTE

The NOWAIT option is not equivalent to having the

first TST in the routing list send an immediate response
message. Before a TST can send a response message, it
must begin to process the corresponding exchange mes-
sage. This means that if the exchange message waits in
the TST’s station queue, the response message will be de-
layed and optimum response times will not be secured.

14.2.3 Restrictions on Overlapped Processing
There are three restrictions on overlapped processing.

1. No further communication is possible between TSTs and application terminals once overlap begins.

2. Overlapped processing cannot be achieved in transactions for which exchange recovery is selected.
3. There is a restriction on the duration of overlap.

14-7

Designing the Overall Structure of a Transaction

14.2.3.1 No Communication with Terminal during Overlapped Processing — Remember that a series of TST's
can issue only one response message to each exchange message. This means that when you use a response message
to achieve overlap, no further response messages are possible as part of that exchange. When you use the NOWAIT
option, you must not allow the exchange message processing to issue any response messages whatsoever.

This restriction makes sense in another important way. As soon as a TST issues a response message or a NOWAIT
option is encountered, the display on the terminal screen is modified and the user’s keyboard is unlocked. Further
response messages — even if the transaction processor allowed them — would be pointless, because the old form
that collected the exchange message data is no longer on the terminal screen. Response messages would disturb
the terminal user as he worked on the new form.

14.2.3.2 No Overlap Possible if Exchange Recovery Selected — Overlapped processing cannot be achieved if
you select exchange recovery for the transaction. Overlapped processing can cause the user and the transaction
processor to be at two different points in the transaction definition. Exchange recovery is impossible when two
such asynchronous events must be recorded and preserved. To avoid this problem, TRAX transaction processors
delay messages issued by TSTs until the processing phase is completed. So even if you attempt overlapped proc-
essing in exchange-recovery transactions, no overlap occurs. Instead, you are using up storage space in the trans-
action processor to hold the delayed messages.

14.2.3.3 Restriction on the Duration of Overlap — A final restriction involves the extent of overlap between
processing phases and conversational phases. Only one exchange message can exist for a transaction instance at a
time. Therefore, if a user has begun overlapped conversation, the processing phase for the subsequent exchange
cannot begin until the processing phase for the previous exchange ends. To have two processing phases active
for a single transaction instance would require two exchange messages.

If a user completes an overlapped conversational phase before the previous exchange’s processing phase has com-
pleted and he presses the ENTER key or other user function key to transmit the entered data to the transaction
processor, the transaction processor will not accept the data until the prior processing phase terminates. The trans-
action processor remembers that the user tried to send data and automatically interrogates the terminal later to
acquire the data. No additional user action is required. But the transaction instance cannot proceed until the
prior processing phase ends.

14.3 TRANSACTION DATA STRUCTURES

Once you diagram the flow of each transaction, the next step is to lay out the data structures to be passed between
elements of the transaction processor when the transaction is executed. You must determine the size and contents
of the following data structures:

® [Exchange Messages. Each exchange needs an exchange message format. Remember, the exchange
message carries information entered by the user or derived from the form displayed on the user’s ter-
minal. If you allow the terminal user to choose between more than one user function key, you must
reserve space in the exchange message for the identifier of the selected key. This is the way a TST deter-
mines which user function key was used.

® Transaction Workspace. You must specify a transaction workspace format that will satisfy all exchanges
of the transaction. The workspace should accommodate all data passed between the TSTs that work on
the transaction.

® Response Messages. You must specify the format of each of the response messages the TSTs can send.
Some response messages need not contain any data other than the required parameters for the corre-
sponding library call; in many cases, the call itself is sufficient. But if a response message contains data
which will be displayed on the user’s terminal, the format of this information must be specified.

® Other Messages. 1f any TSTs in the transaction send report or mailbox messages, these must also be
specified.

Each of these data structures should be defined on specification sheets similar to those shown in Figures 14-2
through 14-6.

14-8

Designing the Overall Structure of a Transaction

EXCHANGE MESSAGE SPECIFICATION SHEET

Transaction Processor DE:D
Transaction Name EDID:
Exchange Label []:ED:D

Field No. Starting Byte Length (Bytes) Contents

© 0 N OO AN =

N N N RN N N = = 2 3 e o 3 e e -
g A W N = O © 00 N O O s W N = O

Figure 14-2 Specification Sheet for Exchange Messages

149

Designing the Overall Structure of a Transaction

TRANSACTION WORKSPACE SPECIFICATION SHEET

Transaction Processor I:Dm
Transaction Name EEDID

Field No. Starting Byte Length (Bytes) Contents

© 0O N OO O AW N -

N N N N N N = = @ 49 o a a «a a 4o
A H W N = O © 0o N O 0O~ W N = O

Figure 14-3 Specification Sheet for Transaction Workspace

14-10

Designing the Overall Structure of a Transaction

RESPONSE MESSAGE SPECIFICATION SHEET

Transaction Processor m
Transaction Name (ITTTTT]
Exchange Label EDIDj

Type of Message El — REPLY (Activates reply no. I_—_ED)
(] - PRCEED
[[]—sTPRPT
[] - CLSTRN

D — ABORT (Activates reply no. Dj:])
[] — TRNSFR (Toexchange[T | [[[]

Field No. Starting Byte Length (Bytes) Contents

O 00 N O O P W N =

RN N RN RN =2 = a0 o 2 S g a a -
a & W N =2 O © 0O N O 0 d W N = O

Figure 14-4 Specification Sheet for Response Message

14-11

Transaction Processor
Transaction Name

Report Form Name

Designing the Overall Structure of a Transaction

REPORT MESSAGE SPECIFICATION SHEET

LLITTT]

[TTTTT]
(LITTT]

Field No.

Starting Byte

Length (Bytes)

Contents

© 00 N o AW N -

NN N N N KN = = 29 @ o a o a e e
a A W N = O © 0 N O O &~ W N = O

Figure 14-5 Specification Sheet for Report Message

14-12

Transaction Processor

Mailbox Station Name

Sending Transaction Name

Receiving Transaction Name

Designing the Overall Structure of a Transaction

MAILBOX MESSAGE SPECIFICATION SHEET

(ITTTT]
(ITTTT]
(TTTIT] st LIIITTT]
[(TTTTTJ st (LTI

Field No.

Starting Byte

Length (Bytes) Contents

© 00 N OO O RAeWw NN -

NN N N N N = = m a ca e e e e -
A WN =2 O © 0N s W NN = O

Figure 14-6 Specification Sheet for Mailbox Message

14-13

Designing the Overall Structure of a Transaction

The system workspace should also be considered at this time. You need not specify its exact size or format, but
you should consider what data structures the transaction processor will have to store in the system workspace.

If your transaction design places unreasonable demands upon the system workspace, such as staging a large number
of lengthy records, system performance may suffer and you should redesign the transaction. The size required

for the system workspace is computed in the transaction design documentation process described in Chapter 16.

14.4 TRANSACTION ACCESS SECURITY TECHNIQUES
When you design each transaction, you must consider which users or classes of users are to be allowed access to it.
In many commercial applications, this consideration is as important as the operation of the transaction itself.

Two techniques are available to control access to TRAX transactions:

1. Terminal-Based Access. Anyone using a particular terminal (or a particular dial-up port) is allowed
access to a common set of transactions. With this technique, a user does not identify himself to the
system.

2. User-Based Access. The set of transactions available from any particular terminal or dial-up port depends
on the user requesting access. With this technique, each user identifies himself to the system when he
begins work at a terminal and informs the system when he leaves the terminal.

Both of these access control techniques depend on work classes, which are defined sets of transactions. Work
classes are described in Chapter 9.

14.4.1 Terminal-Based Access
Terminal-based access can be implemented either with or without a transaction selection form:-

® If more than one transaction is to be available from the terminal, a transaction selection form is needed
to allow the user to make his choice. The terminal should also be assigned a work class that specifies
which transactions the terminal can execute.

® If only one transaction is to be available, the transaction selection form and work class are unnecessary;
the terminal always displays the first form of its only transaction when it is idle.

14.4.2 User-Based Access
User-based access is implemented with the following special transaction processor components, supplied with each
TRAX system generation kit:

® A SIGNON transaction that identifies the user to the system

® A SIGNOF transaction that informs the system that the user is leaving the terminal

® Utility programs that maintain the AUTOEEF file, which contains the names and attributes of the system
users.

Those terminals that require user identification must be assigned to the SIGNON work class. This work class must
contain the SIGNON transaction. It can also contain other transactions you wish to be accessed from such terminals
without further user identification.

At least one of each user’s work classes must include the SIGNOF transaction. When a user executes this trans-

action, the terminal reverts to its original SIGNON work class. Another user can subsequently identify himself
with the SIGNON transaction.

14-14

Designing the Overall Structure of a Transaction
14.4.3 Access Control Design
Use a two-step process to select access control techniques.
1. Divide the application’s permanent terminals, dial-up ports, and users into groups by access
requirements.

2. Select groups of transactions appropriate for each.

You may find that terminal-based access techniques are adequate, or that user-based access techniques are ade-
quate. Usually, a combination is best.

14-15

CHAPTER 15
SEVERAL TRANSACTION DESIGN EXAMPLES

This chapter provides several examples of the transaction structure diagram as you might use it to design a trans-
action. The chapter begins with a simple transaction design and progresses to sophisticated design.

15.1 THE APPLICATION PROBLEM

The transaction described in this chapter is the Display Customer transaction from the TRAX Sample Application.
This transaction is one of several that are used to maintain a customer master file for the application. The purpose
of the transaction is to allow users to inspect the contents of the customer master file.

The customer master file is an indexed file whose primary index is the customer number. The file also has a
secondary index by customer name.

Besides the fields of primary and secondary indexes, the file has the following fields:

® Address

Street

City

State Code

Zip Code

Full Telephone Number
Contact Name

Credit Limit

Current Balance
Purchases to Date
Next Order Number
Next Payment Number

152 A SIMPLE TRANSACTION DESIGN
Figure 15-1 illustrates, perhaps, the simplest transaction design that solves the application problem.

The transaction requires two exchanges, because the transaction requires the entry of a customer identification
number before that record can be shown on the terminal screen.

1. The form for the first exchange collects a customer number from the user, and the customer number
is sent as an exchange message to a TST. This TST reads the specified record and returns the data
from the record as a response message.

The response message is a PRCEED message and the subsequent action for the exchange is NEXT,
so the transaction moves to the second exchange.

2. This exchange displays the customer data from the response message and solicits a function key from
the user. This gives the user time to read the displayed data.

There is no processing for the second exchange. After reading the data, the user presses the AFFIRM
function key if he wishes to see a new customer record.

During the conversation phase of both exchanges, the CLOSE function key is enabled. Pressing this key ter-
minates the transaction and returns the user to the appropriate transaction selection screen.

15-1

TRANSACTION PROCESSOR

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION NAME

EXCHANGE NAME

FORM NAME

[s[a[m[p]L]E]

[olr¥Icluls]

lofp]v]efx]1]

lofrlcluls[1]

pace L11] or

START

__CLOSE
" To transaction

selection form

CONVERSATION | MESSAGES PROCESSING
INITIAL DISPLAY
Ask for
customer
number
Read

ENTER customer PRCEED >

User enters Generates exchange message d Response message

customer number containing customer number recor contains customer

record
ATEND: [] - REPEAT - NEXT - WAIT
~ NOREPEAT [] - FtRsT [[] - NnowaIT
[]-miTiAL

Figure 15-1 A Simple Transaction Design

15-2

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR | S[A[M{PJL[E]

TRANSACTION NAME [pfr]v]c]uls] PAGE OF
EXCHANGE NAME [ofr]¥[e[x]2]

FORM NAME [o]lrlcluls]2]

CONVERSATION l MESSAGES l PROCESSING

From
DPCUS1

- CLOSE
To transaction
selection form

INITIAL DISPLAY

Display
customer
record

N ONE

Await

_LAFFIRM

user action
To first exchange
Ak
ATEND: [] - REPEAT [- nexr ~ WAIT
~ NOREPEAT — FIRST []- NowaIT

D — INITIAL

Figure 15-1 (Cont.) A Simple Transaction Design

153

Several Transaction Design Examples

Conversation and processing are not overlapped in this design: both exchanges use the WAIT option rather than
NOWALIT, and the TST in the first exchange’s processing waits until its processing is done before sending the re-
sponse message.

Neither exchange uses the REPEAT option;each is executed once during the transaction.

The subsequent action for the first exchange is NEXT, indicating that when a PRCEED response message is received,
the transaction should move to the conversation phase of the next change.

The subsequent action for the second exchange is FIRST. This indicates that when the user presses the AFFIRM
key in response to the second exchange, the transaction instance will be terminated. After the current transaction
instance is terminated, the transaction processor will display the form from the first exchange and prepare for
another instance of the same transaction. If we were to select instead a subsequent action of INITIAL, the
AFFIRM key would still terminate the transaction — but the transaction processor would display the appropriate
selection form instead of the first form for the transaction. If the user is expected to execute several of these trans-
actions in a row, the FIRST option is more appropriate; if the transaction is normally executed only once, then the
INITIAL option is more appropriate.

An implementation of this transaction would require two forms and one TST. The second exchange does not need
a TST, because no processing is required. The exchange exists only to allow a function key to be pressed when the
displayed data has been read.

153 AN ALTERNATIVE DESIGN WITH ONLY ONE EXCHANGE

The transaction design shown in Figure 15-1 has two exchanges. The user interaction which collects the customer
number is in one exchange, and the user interaction which displays the data and confirms that the data has been
read is in a second exchange.

Figure 15-2 shows the result of this transaction design: alternating conversation and processing, where the con-
versation phase and processing phase of each exchange are entered exactly once.

Figure 15-3 shows an alternative transaction design using a single exchange. However, two user interactions are
still possible, because the conversational phase of the exchange is entered twice during each execution of the
transaction.

1. During the first entry, the user enters a customer number and presses the ENTER key.
2. During the second entry, the user presses the AFFIRM key to acknowledge that the data has been read.

Between these two entrances to the conversational phase, there is a processing phase where a TST reads the selected
record. The data from this record is returned in a REPLY response message, rather than in the PRCEED response
message used in Figure 15-1. The REPLY message causes the transaction to re-enter the conversational phase of
the exchange, rather than proceed to the next exchange of the transaction.

The REPLY message activates a defined reply in the form definition and supplies the customer data used by that
reply definition. The reply definition designates the positions on the screen where the data will be displayed.

Figure 154 shows the result of this transaction design. Where the simple design in Figure 15-1 resulted in alter-
nating conversational and processing phases for each exchange, the design for a single exchange in Figure 15-3 results
in a looping flow where each conversational phase is visited twice and each processing phase, once.

The transaction designs shown in Figures 15-1 and 15-3 appear almost identical to a user at an application terminal.

The only apparent difference between the two designs is that in the simple design (Figure 15-1), the entrance to the
second exchange causes the terminal screen to be erased and a new form to be constructed. This is always the case

154

Several Transaction Design Examples

Exchange 1 /

Conversation Processing

-

Exchange 2
Conversation / Processing
y
(e
__—/'
Exchange 3
Conversation / Processing

L —

s

Figure 152 A Transaction Where Each Exchange is Entered Only Once

155

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR
TRANSACTION NAME

EXCHANGE NAME

BnNnnG
[l IvIclvls]
P e[x][7]
[olelcluls]T]

pace [11] or [11]

° Enabted only on nitial form display

e Enabted only after reply

FORM NAME
CONVERSATION | MESSAGES PROCESSING
INITIAL DISPLAY
Ask for
_START | customer
number
REPLY_1__
Display
customer HEPLY -
data Response message contains
customer record
REPLY
1
Read
ENTER customer
«CLOSE User enters Exchange message contains cord
:Te::_:nsazu:: customer number customer number recor
S non i
AAFFIRMl |e
To first exchange
L
ATEND: [] - REPEAT [- nNext — WAIT
— NOREPEAT — FIRST [] - nowarT
[]-NnTiAL

Figure 15-3 A Transaction Having Only One Exchange

15-6

Several Transaction Design Examples

Exchange|1
]

Conversation/ A\Processing

[

Exchange|2

\

Conversation /_\ Processing

[~_

Exchangd 3

Conversation / "\Processmg

Figure 154 A Transaction Where Each Exchange is Entered Twice

15-7

Several Transaction Design Examples

when a new exchange is entered. In contrast, the simple exchange design in Figure 15-3 does not erase the screen;
activating a reply affects only those fields named in the reply definition. (In fact, activating a reply is the only way
the conversational phase of an exchange can be re-entered without erasing and redisplaying the exchange form.)

Although the single-exchange design (Figure 15-3) achieves economy by reducing the number of forms required,
this savings may have undesirable side effects. For example, the single-exchange design gives you considerably less
flexibility in the ways you can change the screen display between the first and second steps of the transaction.
Remember that the characteristics of each field are determined when a form is first displayed; from that time on,
the content of the field may be changed by replies but the field’s characteristics cannot be changed. Because the
design in Figure 15-3 uses only one form (using replies as a substitute for a complete second form) the character-
istics of each field must remain the same during the transaction instance. For instance, if a.field is displayed in
reverse video in the first step of the exchange, it must remain in reverse video for the second step.

An implementation of the single exchange transaction requires one form and one TST. The form, however, must
have a reply definition so that a REPLY response message containing customer data can display that data in the
appropriate fields of the form. The REPLY message must also disable the ENTER key, which was enabled on the
first entrance to the conversational phase, and enable the AFFIRM key for use during the second entrance to the
conversational phase. It is the enabling and disabling of function keys that allows the exchange to operate differ-
ently for these two entrances.

154 THE EFFECT OF THE REPEAT OPTION

The single-exchange transaction design shown in Figure 15-3 activates a transaction instance each time a customer
record is displayed. This happens because the exchange definition specifies NOREPEAT and the subsequent action
parameter specifies FIRST. Therefore, the user’s terminal is set for the execution of a new transaction instance
after each display operation is finished.

Consider what happens when this transaction design is modified by substituting REPEAT instead of NOREPEAT
in the definition of the exchange. This change is shown in Figure 15-5.

To the user, this transaction design is identical to that shown in Figure 15-3. The only difference is in the system’s
handling of the transaction.

With the specification of REPEAT, the AFFIRM key no longer terminates the transaction instance and prepares
for another. Instead, the AFFIRM key continues the same transaction instance with another execution of the ex-
change just completed. The exchange starts from the beginning, with a fresh copy of the exchange form.

It must be emphasized that the user sees the same screen display in Figures 15-3 and 15-5, after pressing the
AFFIRM key. The difference is that in Figure 15-3 a transaction instance terminates and another is ready to begin;
in Figure 15-5, the transaction instance continues. This distinction is invisible to the user, and affects only the
application design, its implementation, and its execution within the system.

Some effects of the continuing transaction instance are:

Staged records continue to be staged and are not written to the files.
Staged records continue to be locked.

No journaling occurs at this time.

The same transaction workspace continues to be used.

None of these effects is important in the display customer transaction, because that transaction does not use record
locking or updating and uses no transaction workspace. In other transactions, however, these effects are important.

15-8

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR | S|A[M[P]L]E]

TRANSACTION NAME [o]p]¥[c]u]s] PAGE OF
EXCHANGE NAME (ofp]v]e[x]1
FORM NAME lofrlclufs]]
CONVERSATION l MESSAGES l PROCESSING
INITIAL DISPLAY
Ask for
_START| customer
number
REPLY__]
Display
customer QEPLY
data Response message contains
customer record
REPLY
REPLY
1
Read
ENTER custeoamer
CLOSE User enters Exchange message contains
" To transaction customer number customer number record
selection form
AAFFIRMI Io
To first exchange
L
AT END: - REPEAT [] - NexT - WAIT
[] - NOREPEAT - FIRST [] - nowaIT
[] - NimaL
0 Enabled only on initial form display ’ Enabled only after reply

Figure 15-5 Using the REPEAT Option

159

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR | S [A[M[P]L[E]

TRANSACTION NAME [ofep[¥[c]uls] PAGE EII] OF
EXCHANGE NAME [ofrP[¥[e[x]1]

FORM NAME [olr[culs]1]

CONVERSATION | MESSAGES l PROCESSING

INITIAL DISPLAY

Ask for
customer
number

START

Read
User enters ENTER customer PRCEED |
_CLOSE Generates exchange message record Response message
- contains customer
To transaction customer number containing customer number reco”;

selection form

ATEND: [] - REPEAT - NEXT - WAIT
- NOREPEAT [[]-FirsT [] - NnowaiT
[]- AL

Figure 15-6 Allowing the User to Browse

15-12

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR | S|A[M[PTLTE]

TRANSACTION NAME [ofr]¥[c]uls] PAGE OF
EXCHANGE NAME lofr[¥[e[x]2]
FORM NAME lofrlcluls]2]
CONVERSATION I MESSAGES I PROCESSING
INITIAL DISPLAY
Display
From customer PRCEED
DPCUS1 record Response message contains
customer record
]
Await ENTER - Read
< CLOSE i Exchange message contains no data next record
To transaction user action
selecml;n form
__STOP REPEAT
To first exchange
AT END: ~ REPEAT [] - nexT — WAIT
[] - NOREPEAT - FIRST [] - nowarT
[]-NmaL

Figure 15-6 (Cont.) Allowing the User to Browse

15-13

Several Transaction Design Examples

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR | S|A[M[P]L]E]

TRANSACTION NAME [p]r]v[clu]s] PAGE OF
EXCHANGE NAME [o]r]v[e[x]1]

FORM NAME (ofrfcluls]1]

CONVERSATION | MESSAGES I PROCESSING

INITIAL DISPLAY

Ask for
customer number
or name

START

Read correct

User enters ENTER customer PRCEED -
«CLOSE customer number Exchange message contarns record Response message
To transaction or name customer number and name fields contains customer
selection form record
AT END: [] — REPEAT ~ NEXT - WAIT
~ NOREPEAT []-FIRsT []-nowaIT
[]-NiTIAL

Figure 15-8 Browsing with Two Indexes

15-16

Several Transaction Design Examples -

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR | ST A[M[P]L]E]

TRANSACTION NAME Mllib’j_sl PAGE OF

EXCHANGE NAME [o]r]v]e]x]2]
FORM NAME [o]rfclu]s]2]
CONVERSATION I MESSAGES I PROCESSING
INITIAL DISPLAY
Display
From | customer
DPCUST
record
Display
customer REPLY -
Response message contains
record
customer record
1
ENTER Read next
aCLOSE Await Exchange message contains no data - record for
To transaction user action correct key-
selection form
_AFFIRM

To firit exchange

ATEND: [] - REPEAT [- NExT ~- WAIT
— NOREPEAT — FIRST] - nowart
[]-mNimac

Figure 15-8 (Cont.) Browsing with Two Indexes

15-17

Several Transaction Design Examples

158 ERROR MESSAGES
Error messages are required in the preceding designs before they can be used in a commercial application. Consider
the previous example with error messages included. This final design is shown in Figure 15-9.

Error messages are almost always implemented with REPLY response messages, because the user must usually
correct his input and enter it again.

The text of an error message can be generated in three ways:

1. The text can be specified as the VALUE clause in the definition of a DISPLAY field. (This field should
not include the NOBLANK option.) Naming this field in the WRITE clause of a REPLY definition
causes the text to be displayed. The text is automatically removed from the screen when another reply
is activated.

2. The text can be specified directly in the WRITE clause of a REPLY statement. In this way different
messages can be made to appear in a field depending on the activated reply definition.

The field is usually a DISPLAY field without the NOBLANK option, so the message is erased when
another reply is activated. But if you wish, the error message can appear in any field and in either
the display or forms area of the form.

3. The error message text can be inserted into the response message by a TST and moved to a field on
the screen by a REQUEST keyword in the WRITE clause of a REPLY definition. This method gives
the TST programmer flexibility in specifying error message text, but it makes the documentation of
error messages more important — they are no longer in the form definition.

Method 1 requires as many fields on the screen as there are different error messages. Method 2 can place several
alternative messages in the same field, but it requires a separate reply definition for each different message text.
Method 3 requires only a single field and a single reply definition to handle an unlimited variety of error messages.

The design in Figure 15-9 uses Method 3.

The form used by the first exchange in Figure 15-9 must therefore have a reply definition added. This reply is
activated by a TST, via a REPLY response message, in instances where the specified record cannot be located or
read.

The form used by the second exchange has a reply definition, but it is inappropriate for the display of error
messages. It treats the incoming REPLY message as a data record and divides it in fields to be displayed on the
screen. A second reply is defined in this form to handle the error message. It is activated in situations like an
end-of-file condition, where there are no further records for display.

15-18

TRANSACTION PROCESSOR

TRANSACTION NAME

EXCHANGE NAME

FORM NAME

Several Transaction Design Examples

TRANSACTION STRUCTURE DIA

(slafmfrfL]e]

[ofp]v[c]uls]

lofrfv]elx]]

[o]p[clu]s[1]

GRAM

pace L 11] of

CONVERSATION

MESSAGES

PROCESSING

INITIAL DISPLAY

Ask for
customer number
or name

START

Display
error

REPLY

message

Response message contains
error message

~+— Error

Read correct

User enters ENTER o customer PRCEED -
:C';oofinsac"on customer number Exchange message contains record Response message
selection form or name customer number and name fields coma s costomer
ATEND: []~ REPEAT ~ NEXT ~ WAIT
— NOREPEAT []-FiRrsT []-nNowarT
[]-mTtAaL

Figure 159 Adding Error Messages to Figure 15-8

15-19

Several Transaction Design Examples

TRANSACTION PROCESSOR

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION NAME

EXCHANGE NAME

[s[a[m[P[L]E]
[o]p[v[c]u]s]
[o]P[¥]e]x]2]
o[p[clus]2]

PAGE OF

FORM NAME
CONVERSATION I MESSAGES l PROCESSING
INITIAL DISPLAY

Display
From | customer
DPCUS1

record

Display

customer REPLY .
record Response message contains
customer record
Display
error - RERPLY -
message esponse message contains
error message
~a— Error
Read next

Await ENTER > record for

«CLOSE user action Exchange message contains no data correct key
To transaction
selection form
__AFFIRM
T To first exchange
AT END: [] - REPEAT [J - nExT — WAIT
— NOREPEAT — FIRST []-nowarT
[]-mimiaL

Figure 159 (Cont.) Adding Error Messages to Figure 15-8

15-20

CHAPTER 16
DOCUMENTING THE TRANSACTION DESIGN

16.1 STANDARDIZING TRANSACTION COMPONENTS

After laying out the overall flow of each transaction and defining transaction data structures, it is time to compare
the transactions you have designed. The object of this comparison is to identify similarities between transactions.
Similarities sometimes allow transaction components to be used for several transactions or portions of one com-
ponent to be used in another component.

Similarities are found often in these transaction components:

® TSTs. Frequently, a portion of a TST is useful in another TST. Using the copying features of the TRAX
text editor or the programming language can often save significant programming effort. See Section 19.5.

® Forms. Sometimes parts of a form can be used in two or more transactions. This is likely when several
transactions operate on the same set of data — for instance, a set of data maintenance transactions oper-
ating on a master file. Such a set probably includes add, change, delete, and display transactions for the
basic data record. With careful design, the forms for these transactions can share a considerable portion
of their form definitions.

® Data Structures. Consistent data structures save considerable development time and make software main-
tenance easier. For example, standardizing data structures such as exchange messages and response
messages allows their declarations in form definitions and TSTs to be coded once and used many times.
This is such a time-saver that it helps to add filler fields to some data structures to make them compatible-
with others, and therefore sharable without modification.

Carefully document your list of required transaction processor components. You will refer to this list frequently
as the implementation proceeds.

Give each form a six-character name. This name identifies the form within the transaction processor, so be care-
ful to select meaningful mnemonic names.

Each TST and its corresponding TST station should also be assigned a six-character name. (You can use the same
name to identify both the TST and its station as long as the name ends with a letter.) Again, attempt to select
meaningful mnemonic names.

16.2 DEFINING STATIONS
Next, you must define the set of stations needed by the transaction processor.

Usually, you will have two types of stations in your transaction processor: terminal stations and TST stations.
Occasionally, you may have other types of stations.

162.1 Terminal Stations
Your transaction processor needs a terminal station for each application terminal it serves. This rule also holds

for clustered or multi-dropped terminals. Each terminal device, video display or printer, requires a station.

Use the form shown in Figure 16-1 to define the terminal stations. This form can later be used to enter the ter-
minal station definitions to the transaction processor via the STADEF utility program.

16-1

Documenting the Transaction Design

For each terminal station, you must make the following design decisions:

1.

Station Name. You must choose a station name (up to six characters) that uniquely identifies the station
within the transaction processor. If you need a series of terminal stations with similar characteristics, you
may use a station name of four characters and two asterisks — for instance, TERM**. The STADEF
utility program expands this dummy name to a set of terminal station names by replacing the asterisks
with a series of 2-digit numbers.

Device Name. You must associate a terminal device identifier with the station you are defining. A ter-
minal device identifier of up to six characters is assigned to each attached application terminal during the
TRAX system generation. The designated terminal will be served by this terminal station.

Device Type. If the terminal station is to initiate transactions, choose BOTH. If it is to print reports
produced by transactions executed at other terminals, choose QUTPUT.

. System Messages. If you want operating system messages (such as operator broadcast messages) to appear

on this application terminal, enter YES.

Work Classes (Interactive Terminals Only). The work class you assign to this terminal determines the
set of transactions that can be executed from the terminal. Definition of work classes is discussed in
Section 16.3.

. Initial State (Interactive Terminals Only). You may choose one of two displays to be used when the

terminal is idle:

® If you wish the terminal to display the first form of a transaction, choose the TRANSACTION option
and enter the name of the transaction. This will be the only transaction executable from the terminal.

® If you wish the terminal operator to select from a list of transactions, choose the INITIAL FORM
option and enter the name of a transaction selection form. Be sure the names of transactions displayed
on the transaction selection form agree with the transactions the terminal’s work class allows.

The work class and initial state options for interactive terminals are important because they affect system security.
Refer to Part One of this manual for a description of your choices and their effects.

16.2.2 TST Stations

Your transaction processor will need one station for each TST. If you allow multiple copies of a TST to execute at
the same time, multiple station definitions are not necessary. Instead, use the “Number of Active Copies” parameter
discussed later in this section.

Use the form shown in Figure 16-2 to define the TST stations. This form can later be used to enter the TST station
definitions to the transaction processor via the STADEEF utility program.

For each TST station, you must make the following design decisions:

1.

2.

Station Name. Choose a station name that identifies the station within the transaction processor. These
names may be up to six characters and must end with a letter.
Task Image File Specification. Enter the name of the task image file that contains the TST’s executable
task image. The task image file need not exist at this time; just assign the name that will be used when
the TST is coded and linked. The file specification can contain a device name, a UIC, a filename and ex-
tension, and a version number if desired. (See TRAX Support Environment User’s Guide for discussion
of file specifications.) If you do not enter portions of the file specification, the following default speci-
fications will be used:

Device: SY:

UIC: [1,300]

Extension: .TSK

Version: Latest

16-2

€91

Transaction Processor Name: D:EEED

TERMINAL STATION SPECIFICATION SHEET

Device System

Station Name Device Name Type Messages Work Class Run A Dedicated Transaction?
[LT T T [P T 11 [:] — BOTH D — YES m DYes — Transaction Name: m
D — OQUTPUT E] - NO D No — Initial Form Name: EDIID
L] I] CITTrriIg D — BOTH D — YES D:D:I__—]:] DYes~Transaction Name: DI]:D:]
D — OUTPUT D - NO DNo — Initial Form Name: D:D:I__]:]
L] L1 |] D - BOTH D — YES m D Yes — Transaction Name: m
D — OUTPUT [_—_] - NO D No — Initial Form Name: ED:D:D
LTI T L RN] -BoTH []-ves (TTITT11] (] Yes — Transaction Name: [| | [[|]
[] - output []-w~o [JNo — Initial Form Name: [[| [| [|
l_l] l l J T LTI 11 E] — BOTH D - YES m DYes—Transaction Name: EED:E:D
D — OUTPUT D - NO D No - Initial Form Name: D:]:D:l:]
[D — BOTH [:] - YES m [:] Yes — Transaction Name: EI:DID
[] - output []-no []No — Initial FormName: [| |] | |]
] I | D - BOTH D - YES m D Yes — Transaction Name: ED:]:D___-]
D - OUTPUT [:] - NO D No — Initial Form Name: m
[TTIT1] [IIIIT] [J-com [J-ves [TTITT] [ves— TranssctionName: [T T T T]
[]-outrut []-no []No — tnitial Form Name: [[[| []
[(TTLI1] C(IIIT1] [som [J-ves [TTTTTJ [Jves— TronsoctionName: [T T T [T
[] - outeut []-w~o [INo — Initial FormName: [1 [|] |]
I I l D - BOTH [:] - YES D:E[:ED D Yes — Transaction Name: m
[] - output []-no []No — Initial Form Name: [] | [[]

Figure 16-1 Terminal Station Specification Sheet

USISa(F UOIIIDSUDL] Y3 SULTUIWNIO

Documenting the Transaction Design

TST STATION SPECIFICATION SHEET

Transaction Processor Name: m

R I S—— Ao sty
(I OO0 OO oo ke 0o E]]:;Zs
(11117 O OO0 ik B—YES

O
I (I OO0 00O IO s00d oo Sves

o
I T 00 OO I s g—:zs
(I 11]) OO OO)i e o 8—;?
(1111 OO0 OO0 O g g—ves

~NO
T O (OO o . O g:;?
(I OO0 OO oo %::‘Zs
(1110 OO OO) O T L0 O %:;ZS
(I 1] O] O) sl %—:Zs
(1110 010 {0 O OO ke 0 g:;zs
(1110 (I OO I s g Og-ves

o
1O 00 Oo{0o O] i oorsc E]]:;ZS
O OO0 O OO0 O M B::Zs
(TTIT1] (IO OO0 .0l 0J g—ves

~no

Figure 16-2 TST Station Specification Sheet

16-4

Documenting the Transaction Design

3. Station Priority. The normal priority of a TST station is 128. You may choose another priority; larger
priority numbers indicate higher TST priority and vice-versa. When TSTs are waiting for execution, the
transaction processor activates the TST of the highest priority among those which can be satisfied by the
available resources. Once they are activated, TSTs are not interrupted until they terminate of their own
accord. You must keep this scheduling rule in mind as you modify TST priorities to adjust transaction
processor behavior.

4. Number of Active Copies. Specify the maximum number of copies of a TST that can be active at a time.
Multiple copies are only activated if there are a sufficient number of exchange messages arriving to keep
multiple copies busy. If you specify a large number of copies, exchange messages will not have to wait at
the TST station before TST copies are activated to process them. But you may want to specify a single
copy, if you want to exchange messages to be processed one at a time or if multiple TSTs might
encounter such bottlenecks as contention for memory or contention for data file records.

5. Serially Reusable. This choice depends on the programming language selected for the TST and how
your programmers use features of that language. If you tell the transaction processor that a TST is seri-
ally reusable, it may not fetch a fresh copy of the TST task image to begin processing each exchange
message. This means that a serially reusable TST must completely initialize its own variables and data
structures. Variables and data structures that are initialized only when the TST is linked do not allow a
TST task image to be reused.

A problem often develops with COBOL programmers because they do not realize that VALUE IS
clauses in the DATA DIVISION of their programs are initialized at link time, rather than execution time.
To ensure that a COBOL program is serially reusable, the programmer should only use VALUE IS
clauses for data items that are never changed during program execution. COBOL programmers should
use MOVE statements at the start of the PROCEDURE DIVISION to initialize data items that may be
changed during program execution.

BASIC-PLUS-2 variables are automatically initialized to zeros and null strings at execution time rather
than link time. BASIC-PLUS-2 programs are therefore always serially reusable.

16.2.3 Special Station Types
Besides terminal and TST stations, you may need special purpose stations:

® Batch Submit or Batch Slave Stations. 1f your transaction processor needs an interface to TRAX batch
processing facilities, you must define batch submit or batch slave stations. '

® Master Link or Slave Link Stations. If your transaction processor must exchange data with other trans-
action processors, you must define some master link or slave link stations.

® Mailboxes. If your transaction processor needs facilities for the deposit and recall of mailbox messages,
you must define one or more mailbox stations.

Part One of this manual provides you with additional-details concerning these special types of stations. If you
require any master link stations, define them on the form shown in Figure 16-3. If you require any slave link
stations, submit or slave batch stations, or mailbox stations, define them on the form shown in Figure 16-4. This
data can then be entered via the STADEF utility program, just as for the other station types.

16.3 WORK CLASSES AND USER AUTHORIZATIONS
When you define each interactive terminal station (Section 16.2.1), you specify one of three initial states:

1. If only one transaction is to be executed from the terminal, you specify the name of that transaction.

2. If anyone at the terminal is to be allowed access to a common set of transactions, you specify two
things: the name of a transaction selection form and the name of a work class.

3. If various people sitting at the terminal are to be allowed access to different sets of transactions, you
specify the same two parameters. But the terminal’s work class must be SIGNON and one of the trans-
actions permitted by the SIGNON work class (possibly the only available transaction) must be the
SIGNON transaction.

16-5

Documenting the Transaction Design

Transaction Processor Name: m

Station Name

MASTER LINK STATION SPECIFICATION SHEET

Connected to
Slave Link Type

Number of
Sublinks

LTI

D — Node Name:

[] - Local
[]-1Bm

Slave TP Name
Slave TP Name

Line Number

EEEREN

D - Node Name:

E] — Local

Slave TP Name
Slave TP Name

Line Number

[] —18m
D — Node Name:
[1 - Local
[]-18m

Slave TP Name
Slave TP Name

Line Number

D — Node Name:

D — Local
] -18m

Slave TP Name
Slave TP Name

Line Number

D — Node Name:

[] - Loca
[]-18M

Slave TP Name
Slave TP Name

Line Number

D — Node Name:

D — Local
] -8m

Slave TP Name
Slave TP Name

Line Number

D — Node Name:

I:] — Local
[J-8m

Slave TP Name
Stave TP Name

Line Number

I:] — Node Name:

D — Local

Slave TP Name
Slave TP Name

Line Number

[] -18Mm
E] — Node Name:
[] - Local
[]-18m

Slave TP Name
Slave TP Name

Line Number

D — Node Name:

D — Local

Slave TP Name
Slave TP Name

Line Number

[] —Bm
D — Node Name:
D — Local
[]~18m

Slave TP Name
Slave TP Name

Line Number

Figure 16-3 Master Link Station Specification Sheet

16-6

Documenting the Transaction Design

SPECIAL PURPOSE STATION SPECIFICATION SHEET

Transaction Processor Name: D:I]:D:]

Station Name Station Type

m D — MAILBOX — Max. Message Size: [:D:D bytes (Must be 64—8192).
[J -stave Link
[] - susmiT BATCH
[] -sLAavE BATCH

ED:D]:] D — MAILBOX — Max. Message Size: I:I:]___Ij bytes (Must be 64—8192).
[] -stAve Link
] -~ susmIT BATCH
[] - sLAve BATCH

(LI TT1T1] [0 - MAILBOX - Max. Message Size:[| | |] bytes (Must be 64-8192).
[] - sLAvE Link
] - suBmIT BATCH
] - sLAVE BATCH

CT1IT1 [J - MAILBOX — Max. Message Size:[_| | | | bytes (Must be 64-8192).
[[] - sLAVE LINK
[] - susmiT BATCH
[] -stave BaTcH

EEI:I:D___] [J - MAILBOX — Max. Message Size: [:III:I bytes (Must be 64—8192).

[] -stave Link
[] -susmiT BATCH
[] - sLAVE BATCH

BERRRE [~MAILBOX — Max. Message Size:[_ | | | | bytes (Must be 64-8192).
] -sLAve LInk
[] - susmiT BATCH
[1 - sLAve BaTCH

CII1T11mMl [] - MAILBOX — Max. Message Size:[| | |] bytes (Must be 4—8192).
[] - sLave Link
[J - susmiT BATCH
[] - stAve BaTcH

(LIT1TIT] [] - MAILBOX - Max. M size:[T |]] bytes (Must be 64—8192).
[J - stAvE Link
[} - susmiT BATCH
[- stave BaTcH

Figure 164 Special Purpose Station Specification Sheet

16-7

Documenting the Transaction Design

If you used the second option, you must define the work classes that you assigned to the terminals.

If you used the third option, you must define the SIGNON work class assigned to idle terminals, the user identi-
fiers and passwords used by the SIGNON transaction, and the work classes assigned to each user.

Use the specification sheet shown in Figure 16-5 to define work classes. List all of the transactions defined in the
transaction processor down the left side of the sheet. List the work classes you wish to define across the top. Then
place an “X” in the appropriate row and column to indicate the transactions included in each work class. The data
on this sheet can be entered later into the WORDEF utility program, which installs it in the transaction processor.

Use the specification sheet shown in Figure 16-6 to define user identifiers and passwords and to assign work classes
to each user. This specification sheet is similar to the work class form in Figure 16-5, except you must enter user
identifiers and passwords on the left and work classes across the top. Again, place an “X” in the appropriate row
and column to indicate users who can access each work class. A user can access at most 64 work classes. This
data can later be entered into the transaction processor via the AUTDEF utility program.

16.4 TRANSACTION DEFINITIONS
Now that the components of each transaction are defined, you can assemble the transaction definitions that provide
an overall framework.

To define a transaction within a transaction processor, you must supply the data itemized in Figure 16-7. Use one
of these specification sheets to define each transaction.

There are two parts to the transaction definition sheet. The first part asks you to specify parameters for the entire
transaction. In the second part, you define each of the exchanges for the transaction. (If your transactions have
more exchanges than can be defined on this sheet, use the continuation sheet shown in Figure 16-8.)

The data on these sheets is entered into the transaction processor via the TRADEF utility program.

16.4.1 Overall Transaction Parameters
Refer to the upper portion of Figure 16-7. On this part of the sheet, you must specify the following transaction
parameters:

1. Transaction Name. You must assign a six-character name to the transaction. This name will appear on
transaction selection screens, and users will select transactions with these names. Transaction names
must be unique within the transaction processor.

2. Exchange Recovery. Specify YES if you want the transaction to use exchange recovery. (Exchange
recovery is discussed in Part One of this manual.) Remember that exchange recovery has side effects:

® System overhead increases during the execution of the transaction.
® Messages generated by TSTs are delayed until an exchange’s processing phase terminates.
e Staged files are usually required.

Use exchange recovery only after you fully understand its benefits and side effects.

3. Log Exchange Messages. Specify YES if you wish the transaction processor to record each exchange
message from this transaction as a log entry in the system journal. You can use this feature for system
debugging and as an audit trail during system operation.

4. Log Independent Messages. Specify YES if you wish to log response, mailbox, and report messages.
You can use this feature for system debugging and as an audit trail during system operation.

5. Maximum Size of Exchange Message. Determine this parameter by inspecting the transaction data
structures you have prepared. Select the largest exchange message in the transaction and record its
length here.

6. Transaction Workspace Size. Enter the size of the workspace that you defined for this transaction.

16-8

Documenting the Transaction Design

WORK CLASS SPECIFICATION SHEET

Transaction Processor Name: Dj:D:D

Work Class Names

Transaction Name

Figure 16-5 Work Class Specification Sheet

169

Documenting the Transaction Design

USER AUTHORIZATION SPECIFICATION SHEET

Transaction Processor Name:

Work Class Names

1

Password

User Identifier

HEEEEEEEEEEEE

HNEEREpEENEEN

pEEREEE

LIT i1

e e —d] e —] o

S I T) SRS) S) TS e I S B e B e B S A

—1] 11 M
NOABEARAR
llllllll
L —] —]] — —
llllll.lr[
ILLL [[[[[
— e — — — —
minisisinimlis —
el e B o o B e
]~ — —
_I.l.l.l lllll
[[[[[[[[

Figure 16-6 User Authorization Specification Sheet

16-10

Documenting the Transaction Design

TRANSACTION SPECIFICATION SHEET

Transaction Processor Name:

Transaction Name:

Exchange Recovery?

Log Exchange Messages?

Log Other Station Messages?

Maximum Size of Exchange Message:

Transaction Workspace Size:

System Workspace Size
(Calculate according to formula on
worksheet — “Calculating the system

workspace”’.)

Transaction Slot Size Calculation:

Divide Exchange Message Size by 64 and round up:

CIITITTT1]
(ITIITT]
[]-YEs
[]-YEs
[]- YEs
[T T Joytes
U T T T Jbytes

[]-nO
[]-nNo
[]-no

[:[:l:[:] (64-byte blocks)

DID blocks

Divide Transaction Workspace Size by 64 and round up: D:ED blocks

D___D:] blocks

Enter System Workspace Size:

Add to find Transaction Slot Size:

Exchange
Label

[T 17 blocks

NOTE: A Transaction Exchange Definition should be prepared for each exchange associated with the transaction you
have just defined.

TRANSACTION EXCHANGE DEFINITIONS

Form Name

Destination
Station List

Wait Repeat

Subsequent
Action

Time
Limit

LITTTT]

LLTITTT]

LITTTT]

[:]WAlT [_]rePeaT

(T T TT1T] [CJnowarr []norepeat

|:| INITIAL
D FIRST
L—_] NEXT

L—_l:] MINS

LITTTT]

LLTITT]

[Jwair []rerear
[Jnowart []noRepEAT

D INITIAL
[:] FIRST
l:lNEXT

[:D MINS

Figure 16-7 Transaction Specification Sheet

16-11

Documenting the Transaction Design

TRANSACTION EXCHANGE DEFINITIONS

Exchange Destination Subsequent Time
Label Form Name Station List Wait Repeat Action Limit
[(TLITIO C11 [11 L1 | [Jwarr [Jrepear O wmaL []mins

CITITT]

[Inowair []norepeaT

D FIRST
[JnexT

[Jwar []repear

[Jnowair []norepeaT

D INITIAL

D FIRST
D NEXT

D:] MINS

LLIIT1]

(ITTTT]

[Jwarr []repear
[Jnowarr []norepeaT

D INITIAL
D FIRST
[Inext

ED MINS

[Jwarr []repear
[Jnowair []norepeaT

[]mnimiac
|:] FIRST
[JnexT

[:DMINS

(ITT1TT]

[Jwair []repeat
{Inowarr [Jnorepeat

[Imimac
D FIRST
[:] NEXT

ED MINS

Figure 16-8 Transaction Specification Sheet Continuation

16-12

Documenting the Transaction Design

7. System Workspace Size. A system workspace is necessary only if your transaction uses exchange recovery
or staged files. This is the area where the transaction processor keeps messages and updated data base
records until successful exchange or transaction completion. Compute the system workspace size using
the worksheet shown in Figure 16-9. Then enter the result here.

16.4.2 Exchange Definitions
Refer to the lower portion of Figure 16-7. In this part of the specification sheet, you must define the exchanges
that make up the transaction. For each exchange, you must specify:

1. Exchange Label. You must give each exchange in the transaction a unique label. This name must be
unique within the transaction but may be identical to exchange names in other transactions. TST pro-
grammers use these labels to select successor exchanges.

2. Form Name. Most transactions are initiated from application terminals, and most exchanges in these
transactions must have a form. If the exchange you are defining needs a form, enter the six-character
name of the form.

Exchanges do not need a form in the following circumstances:

® None of the exchanges in a transaction need form names if the transaction is initiated only by source
stations other than application terminal stations — for instance, by a TST.

The first exchange of a transaction does not need a form name if the transaction selection forms
supply exchange messages and if the exchange is not entered from within the transaction.

3. Routing List. Enter the list of stations to which the exchange message must be sent. Each time the
exchange is executed, its exchange message is assigned this routing list. The routing list may subse-
quently be changed by the TSTs that process that message.

4. WAIT Option. The normal selection for this option is WAIT, meaning that a response message is
expected from one of the TSTs processing the exchange message. Be sure you thoroughly understand
this option before selecting NOWAIT.

5. REPEAT Option. This is one of two important options that determine which exchange follows the
exchange being defined. This option is tested when the terminal operator presses an enabled AFFIRM
key or when a TST sends a PRCEED response message. If you specify REPEAT, the exchange is fol-
lowed by another execution of the same exchange.

6. Subsequent Action. This is the second of the two options mentioned before. You have three choices
for the subsequent action option:

® NEXT selects the next exchange in the transaction definition as the successor to this exchange.

® FIRST terminates the transaction after the current exchange is finished. Then the transaction
processor prepares to execute the transaction again by displaying the form from the first exchange.

® INITIAL also terminates the transaction after the current exchange is finished, but the transaction
processor causes the terminal to revert to its initial state. As you recall, this may vary depending
on the definition of the corresponding terminal station.

This option is tested in the following four cases:

® When a terminal user presses an enabled AFFIRM key and the REPEAT option is not specified.

@ When a tegminal user presses an enabled STOP-REPEAT key, regardless of whether the REPEAT
option is specified.

@ When a TST issues a PRCEED response message and the REPEAT option is not specified.

® When a TST issues a STPRPT response message, regardless of whether the REPEAT option is
specified.

16-13

CHAPTER 17
DESIGNING FORMS

Once you determine the overall structure of the transactions in your application, you can design the forms for the
transaction.

Before you begin designing TRAX forms, you should review the information in Chapter S and read the ATL
Language Reference Manual.

Remember that design requirements will vary depending on the purpose of the form and the terminal where it will
be used. Entry forms, transaction selection forms, and report forms require different design.

This chapter covers several factors involved in designing a form:

The functions of entry forms
Basic form layout

Initial field values

Building the exchange message
Designing reply definitions
Special purpose forms

17.1 REVIEWING THE FUNCTIONS OF ENTRY FORMS
Entry forms are the most complex kind of form to design. This is because they must serve many purposes during
transaction execution:

They must provide a functional, pleasing design that allows the user to enter and read information easily.
They must accept data in response messages and include this data in the display for the user.

They must build exchange messages in a specified format from data entered by the user.

They must accept reply messages that instruct them to alter the data displayed for the user and change
the function keys available to the user.

Sections 17.1 through 17.6 discuss issues that will help you satisfy these requirements for entry forms.

17.2 THE BASIC FORM LAYOUT
Your first step is to devise a basic layout of fields on the form. These fields may be either data entry fields or
prompt fields. You must consider not only the fields’ positions and sizes, but also their attributes.

Details of typographic layout and field positioning are important, just as with ordinary forms. A form is more
readable and easier to use with careful graphic design.

Don’t become entranced with cleverness. Clever forms design sometimes leads to better forms, but more often it
leads to complex forms that are harder to understand and use. Clever arrangements of fields, for example, are
counterproductive if they do not correspond with the user’s train of thought as he enters data. Default rules are
worse than none if the user cannot remember them. A reduction of user keystrokes may be detrimental to overall
productivity if the design requires more thought from the clerical user.

17-1

Designing Forms

Field attributes are powerful tools for controlling user data entry. Among other things, you can:

Protect fields against data entry, or open them to data entry.
Require entries in certain fields or make them optional.
Restrict the characters that can be entered in a field.

Cause a field to be right- or left-justified.

You should arrange data entry fields so that frequently used fields are near the top of the form and optional fields
are near the bottom; otherwise the user must skip past unused fields to reach required fields further down the form.

Make sure that each data entry field is visible to the user. It is difficult to enter a field that is indistinguishable from
its surroundings and whose position and size are unclear. TRAX has three ways of making fields visible:

1. Reverse Video. TRAX video display terminals can display fields in either white-on-black or black-on-
white. The black-on-white style is called “reverse video.” Designating data entry fields as reverse video
fields makes them visible without introducing other data editing complications.

2. The CLEAR Character. A CLEAR character fills the field when the form is first displayed. It is also
placed in the field (or in a portion of the field) when the user employs a DELETE-type editing key. Thus
the CLEAR character effectively marks the position and size of the field. Periods, hyphens, and under-
score characters are excellent choices for use as a CLEAR character. (Remember, though, that any
CLEAR characters remaining in the field when the exchange message is built are included in the message,
and the exchange’s TSTs must edit them out.)

3. Initial Values. You might also use initial values to mark a field’s size and position. Text inserted in a field
as an initial value, though, is not replaced on the screen when the user uses a DELETE-type editing key.
Initial values override any CLEAR character that you may have defined for a field.

When you are satisfied with your basic form design, sketch it on the specification sheet shown in Figure 17-1. This
sheet gives you a grid the size of a video terminal screen, with the rows and columns labeled for reference.

At the top of the sheet, fill in the name of the form. Mark the box labeled ““‘Initial Display” to distinguish this sheet
from ones you may later create for replies.

The sheet also includes questions such as the set of function keys to be enabled, whether the terminal warning bell
should be sounded when the form is first displayed, positioning of the cursor, and so forth. Check the appropriate
“enabled” or “‘disabled’”” boxes for the function keys, and fill in the other parameters where required.

17.3 INITIAL FIELD VALUES
Many fields must contain text when the form is first displayed. This text is called ““initial field values™ and can come
from two sources:

1. Form Definition. Text can originate in the form definition, as either literal text or built-in variable data
items recognized by ATL. The latter include the name of the terminal station being used, the transaction
being used, the time of day, and so forth. Text specified in this way is always displayed without
modification,

2. Response Message. Text can originate in the response message that causes the form to be invoked. For
instance, a PRCEED response message from a preceding exchange could contain data destined for display
as part of the current form. The format of these response messages was discussed in Section 14.2.1.
During forms design, you must decide where this data is to be placed on the form. This placement is done
on a field-by-field basis.

NOTE
The second option is only available in exchanges entered
as a result of a response message — not in exchanges
entered as a result of a system function key.

17-2

€Ll

Split:

Lines
Display
Area

Transaction Processor: Dj:D:D D — Initial Display

FORM SPECIFICATION SHEET

(]~ Repty Number [T 1] Form Neme: [T T T T 1]

2 3 4 5

] 6 7 8
0

81910]112|314]5/6[7]8[9{0f 1]2{3]4/5|6|7!8]|9]01 1] 2|3[4|5|6|7(8{9[0|1[2|3]4|5

(3)]
[=2)
~J
(=]
©

910[1{2[3]4/5|6|7|8[9|0]1]2[3]4

—_
OO OO |NID U8 [WIN [—

—
—

Y [P [N RPN (Y BN Y
00 S OO | BIWIN

]

[
S|

NI NY
S O

Bell: Rung for ED:D periods

System Function Keys

Cursor: Positioned at field [| | ABORT]

CLOSE []
AFFIRM L]
STOPREPEAT []

Use blue ink to give instructions, field types etc.
Use red ink to show actual text that appears on screen

Enabled Disabled

oo

User Function Keys

ENTER]]
KEYDOT []]
KEY00 [] []
KEYO1 (] []
KEY02 L]]
KEY03]]

Enabled Disabled

Figure 17-1 Video Terminal Forms Specification Sheet

SULLO] SutuSisaq

Designing Forms

17.4 BUILDING THE EXCHANGE MESSAGE
Working from your exchange message layout (Figure 14-2), decide which fields on the form are the sources of the
data in the exchange message.

Not all the data in the exchange message needs to come from fields entered by the user. You may also include the
following data in the exchange message:

® Text in protected fields (that is, those not accessible to the user)

® Literal text coded into the form definition

® Identifiers assigned to user function keys

® ATL built-in variable data items such as those discussed in Section 17.3.

17.5 DESIGNING REPLIES

Replies are a powerful, flexible feature of TRAX forms. Chapter 14 discussed the role of replies in a transaction
structure. Having already devised a transaction structure diagram for each of your transactions, you know the
replies each form needs, Now you must decide the details of how each reply operates.

Identify the replies in each form by number. You may use any numbers you wish, but it is better if you use low
reply numbers. (The space occupied by a form definition depends, to a small extent, on the Aighest reply number
you use in that form.) You should also define as few replies in each form as possible. Replies significantly increase
the size of a form definition.

A response message invoking a reply can carry data supplied by the sending TST. (Message format is discussed in
Section 14.3.) Specify where this data is to be placed on the form. This placement can only be done on a field-by-
field basis.

A reply can also cause literal text or ATL built-in data items to be written in specific fields. If you wish this, you
must include it in your reply design.

You may document a complex reply by drawing the form as it will appear after the reply is activated. Use another
form specification sheet like the one you used to sketch the original form (Figure 17-1). Complete the extra infor-
mation fields at the bottom of the sheet. At the top of the sheet, label your sketch as a reply and fill in the reply
number.

17.6 SPECIAL PURPOSE FORMS
The design of special purpose forms is similar to those we have just discussed. Special considerations are presented
in the following sections.

17.6.1 Output-Only (Report) Forms
Output-only (report) forms print data on a printer. The data is sent to the printer’s station as a report message, with
a specification of the form to be used.

Definitions of output-only forms usually have two sections:

1. Definitions for each field
2. Specifications for the portion of the report message used to fill each field

Output-only forms have no data entry fields and never generate exchange messages. Consequently, they never have
replies. Their role is to take data from the incoming report message and print it in the format specified.

174

Designing Forms

17.6.2 Transaction Selection Forms
Transaction selection forms are used to select a transaction. These forms are never part of a transaction, although
they can collect data for the first exchange of a transaction.

Transaction names are usually presented in a set of menu fields for user selection. Alternatively, you can designate
one of the fields on each transaction selection form where the user can enter the transaction name.

Transaction selection forms do not usually generate exchange messages. For special purposes, however, you can
add ordinary data entry fields to a transaction selection form, and use these fields to generate an exchange message.
If you do this, the first form in the chosen transaction is skipped: the exchange message generated by the trans-
action selection form is used in the processing phase of the first exchange.

17.7 WRITING THE FORM DEFINITIONS
When you have made the design decisions discussed in Sections 17.2 through 17.6, you are ready to write the form
definitions.

Remember the form roles (Section 17.1) and write your form definitions so that they have a clearly defined section
for each of those roles. This simplifies enhancement and maintenance of the forms.

When you compile each form with the ATL utility program, the compiler output includes much of the application
documentation you need for the development effort. For example, the compiler prints the formats of exchange and
response messages, as well as a mockup of the form as initially displayed and after each reply. This output saves you
a significant documentation effort.

Once you are satisfied with a form definition, subsequent adjustments can be left to application programmers.

17-5

CHAPTER 18
EXAMPLES OF FORM DESIGN

This chapter presents two examples of form design. These two forms are taken from the change customer trans-
action in the TRAX Sample Application.

These examples are based on the following design documentation for that transaction:

® The overall transaction structure Figure 18-1

® The format of the first exchange’s Figure 18-2
exchange message

® The format of the first exchange’s Figure 18-3
REPLY response message

® The format of the first exchange’s Figure 18-4
PRCEED response message

® The format of the second exchange’s Figure 18-5
exchange message

® The format of the second exchange’s Figure 18-6
first REPLY response message

® The format of the second exchange’s Figure 18-7

second REPLY response message

18.1 THE RELATIONSHIP BETWEEN THE TRANSACTION AND ITS FORMS
The relationship between the transaction and its form is shown in the transaction structure diagram, Figure 18-1.

18.1.1 Requirement for Two Forms
The most important relationship is the requirement for two forms. Notice that the transaction has two exchanges;
it will therefore need two forms. These two exchanges and their corresponding forms serve the following purposes:

1. The first exchange asks the user to identify the customer whose record is to be read from the file and
presented for change. The form for this exchange asks for a customer identification number.

2. The second exchange presents the existing data for the customer, allows the user to inspect and modify
this data, and then places the updated data in the file. The form for this exchange must display the
data retrieved by the first exchange and then allow the user to change the data.

An inspection of the transaction structure diagram can determine further characteristics of these two forms.

18.1.2 Characteristics of the First Form .
The transaction structure diagram (Figure 18-1) shows four characteristics of the first form:

1. No initial values must be retrieved from a response message.

2. The ENTER and CLOSE keys are enabled.

3. Areply is required for displaying an error message.

4. An exchange message and a response message must be defined.

The first form does not require initial values for its fields. That is, the data displayed on the first form does not
depend on the results from prior processing.

18-1

Examples of Form Design

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR
TRANSACTION NAME
EXCHANGE NAME

[sfafmlp]i]E]
[ciH[c]c]uls]
[c]H]e]e[x]1]

clnfcfuls]1]

pace [[1] or [I2]

FORM NAME
CONVERSATION I MESSAGES l PROCESSING
INITIAL DISPLAY
Ask for
START customer
number
Displ
splay REPLY
error - -
Response message contains
message
error message text
-+——Error
|
Read
Allow user ENTER - customer To
«CLOSE to enter Exchange message contains record CHGEX2
To transaction stomer numbe: customer number
selection form customer r
ATEND: [] - REPEAT — NEXT - WAIT
— NOREPEAT []-FiRsT [] - nowarr
] -NmAaL

Figure 18-1 Structure of Change Customer Transaction

18-2

Examples of Form Design

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR | S[A[M[P[L[E]

TRANSACTION NAME [clH]e]c[u]s] pace [12] or [[2]
EXCHANGE NAME lclHlc]e[x]2]
FORM NAME [clnfc]u]s]2]
CONVERSATION I MESSAGES I PROCESSING
INITIAL DISPLAY
. Display
TOom
CHGEXI customer
record
Display
error REPLY
message Response message contains
error message text
Display
confirmation REPLYR .
message esponse message contains
no data
~— Error
N Verify
H data
OK
Write new
Allow user ENTER data into
aCLOSE Exch "
T trareaction to edit data xchange message contains fite
lection form customer data l
L AFFIRM J e
7 To firs! exchange
[
AT END: [] - REPEAT [J - NexT — WAIT
— NOREPEAT - FIRST [] - nowarT
[J-mimac
. Only enabled when form is first displayed and after reply 1. . Only enabled after reply 2.

Figure 18-1 (Cont.) Structure of Change Customer Transaction

18-3

Examples of Form Design

RESPONSE MESSAGE SPECIFICATION SHEET

Transaction Processor mﬁ
Transaction Name

Exchange Label

Type of Message — REPLY (Activates reply no. EDZ])
[] - PRCEED
[[]-sTereT
[] -cLsTRN

D — ABORT (Activates reply no. Dj___])
[C] ~ TRNSFR (Toexchange [T [[[[)

Field No. Starting Byte Length (Bytes) Contents

-
-—

80 Error Message (Part One)
81 80 Error Message (Part Two)

C © 0O N O U S W N

NN NN NN == e o e e e e e e e
Qo & W N =2 O © 0O N O 0 b W N -

Figure 18-3 Reply Message for Exchange 1

18-6

Examples of Form Design

processing phase. The text of the displayed message is always the same and can be specified as part of
the reply definition. It is necessary, however, for this second reply to disable the ENTER and CLOSE
keys and enable the AFFIRM key.

The second form must process or generate four messages:

1.

2.

3.

4,

The response message from the prior exchange (Figure 18-4) provides the data displayed in the form’s data
entry fields. This message contains the set of fields from the customer file.

The exchange message generated by the form (Figure 18-5) contains the same data after it has been up-
dated by the user.

The response message for the first reply (Figure 18-6) is like that in the first form: two 80-character

error message lines, or 160 total characters.

The response message for the second reply (Figure 18-7) contains no data.

18.2 DESIGNING THE FIRST FORM
The first form of the change customer transaction is simple. This section discusses some design points and then pre-
sents the finished form definition.

18.2.1 Design Points
A sketch of the form’s layout is shown in Figure 18-8. Note the following design features:

The application name and transaction name appear on the form. The user can easily determine what is
going on at a terminal displaying the form.
Fields are provided for error messages. When you design forms, you must decide if you have room for

an error message field opposite each data entry field or if one error message field can serve the entire form.
The data entry field has a prompt. Avoid abbreviations unless lack of space requires them. The abbre-
viations you do use should be standard so their meaning is clear. Most abbreviations are understandable
without the period, which takes up space. But you may find apostrophes (*) useful: the abbreviation
“pay’t,” for instance, is clearer than “payt”. If you use upper- and lower-case prompts (Figure 18-8),

your forms will be easier to read.

The prompt is separated from the data entry field by one or more spaces. Use two spaces if you can, be-
cause that keeps the prompt from appearing to run into the data entry field.

The data entry fields are displayed in reverse video so that their position and size are clear. (Other methods
of marking the position and size of the data entry fields can also be used (Section 17.2). It is usually
preferable to highlight the data entry field in reverse video rather than the caption. The caption is read
easily without highlighting.

Function keys and their effect are explained to the user. In Figure 18-8, the function key message is some-
what lengthy. In other applications, brief messages may suffice. But interactive forms should have some
function key explanation for the user.

The form has proportion and attractive design.

Other design features are annotated in Figure 18-8:

The sketch indicates that this is the initial display of the form. It is distinguished from other sketches
of the form that show the effects of replies.

The enabled function keys are checked.

If the terminal bell is to sound when the form is displayed, the duration of the sound (in bell periods) is
shown on the sheet.

18-7

Examples of Form Design

RESPONSE MESSAGE SPECIFICATION SHEET

Transaction Processor ﬂ
Transaction Name C

Exchange Label

Type of Message ‘:l — REPLY (Activates reply no. [:D:])
— PRCEED
[]-sTrreT
[]-cLsTRN

[:l — ABORT (Activates reply no. I:lj:])
[[] - TRNSFR (Toexchange [| | [[|)

Field No. Starting Byte Length (Bytes) Contents
1 1 6 Customer Number
2 7 30 Customer Name
3 37 30 Address Line One
4 67 30 Address Line Two
5 97 30 Address Line Three
6 127 5 Zip Code
7 132 3 Telephone Area Code
8 135 3 Telephone Exchange
9 138 4 Telephone Extension
10 142 20 Attention — Of
11 162 12 Credit Limit (9,999,999.99)
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Figure 18-4 PRCEED Message For Exchange 1

18-8

Transaction Processor
Transaction Name

Exchange Label

Examples of Form Design

EXCHANGE MESSAGE SPECIFICATION SHEET

[S[A[M[P]LE]
c

Field No. Starting Byte Length (Bytes) Contents
1 1 6 Customer Number
2 7 30 Customer Name
3 37 30 Address Line One
4 67 30 Address Line Two
5 97 30 Address Line Three
6 127 5 Zip Code
7 132 3 Telephone Area Code
8 135 3 Telephone Exchange
9 138 4 Telephone Extension
10 142 20 Attention — Of
11 162 12 Credit Limit (9,999,999.99)
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Figure 18-5 Exchange Message for Exchange 2

189

Examples of Form Design

RESPONSE MESSAGE SPECIFICATION SHEET

Transaction Processor ﬂ
Transaction Name H C

Exchange Label

c

Type of Message — REPLY (Activates reply no.)

[] - PrceeD
[] -sTpreT
[] -CLSTRN

D — ABORT (Activates reply no. D:]:])
[] - TRNSFR(Toexchange[[[[[[

Field No.

Starting Byte Length (Bytes) Contents

QO W W N T AW N =

NN N N N N = = m e ea s
[, I T N B N R s N o B I =2 R & 1 T O R N

1 80 Error Message (Part One)
81 80 Error Message (Part Two)

Figure 18-6 REPLY Message 1 for Exchange 2

18-10

Examples of Form Design

RESPONSE MESSAGE SPECIFICATION SHEET

Transaction Processor mﬂﬂ
Transaction Name c

Exchange Label

Type of Message — REPLY (Activates reply no.)
[] - prceeD
[]—sTPRPT
[] -cLsTRN

D — ABORT {Activates reply no. [:E]:])
r__] — TRNSFR (To exchange m)

Field No. Starting Byte Length (Bytes) Contents

—_

— N O N E -

O O W N O U »d W N

Figure 18-7 REPLY Message 2 for Exchange 2

18-11

Examples of Form Design

TRAX FOWKMS DEFINITION (V1,2)

Trans, Proc, Name: SaMPLE Device: vTe2 Page L=}
Form namet C=Cust Lengtht 24 82100 PM 1P=Jyl=78

0 0 e 0000 PR EPR PR 00T 0P NP ErTR ORI RIRNOtRREIePROIDIOCOOOIRENEOEINOEONOITEESOEPRIDPDORRBTITGISEOEOTRY)
IRXZZ2R 222X RS2 2 SRS RRER SRR 2222222222222 2sd]

}
Detimition of form CHCUS!
The first form for the (Change Customer transaction

In this form, the system asks the user for a customer ID

!
!
|
l
!
| number 80 that the desired customer record car be read
!

!

[2332 X 22 202232 22X A2 R 22222222222 2R3 X0 22222222222 22}

IS R A TR A R R R R A R R SRR R332 2222222220222}

1
{ Group A Staterents = Define General Parameters
!
ltt**tﬁit*ttttﬁiﬁttﬁtti***ttttitititiii*titQt**t*t***ﬂ'i**itti'*i
DEFAULTY

CLEAR = " "

ENABLE = CLOSE
FURM

SPLITn8 18 lipes of display asrea
lttb*ttﬁl*itiit*tit*tttitttiit**tt*tt*ttttit*t*'ttﬁi*ii*ﬁittitﬁl
)
i Grour B Stgtements = Defimre Fields on Screen
[}

R X R R T R R R R R R e R RS RSS2 222222 222)]
|SSeES2383E33 S EEEEE 2 ESrE Iz IS CEIEICEESEIR IR IEICSSESEESEEEZZEEEN

These are the apeplication fields

H
!
[l The two error text fields are used to display error
! messeges contaimed {n response messages

H

!

DisPLAY & 3,12
VALUE = "Customer Master File Subsystem = Change Customer Transaction”
LENGTH = 60
ATTRIBUTE = REVERSE,NOBLANK

DiSPLAY = S,
LABEL = REPLY,TEXT,A
LENGTH = 802

DISPLAY = ¢,
LABEL = REPLY,TEXT,B
LENGTH = 80

PRO™PT = §,1]
VALUE = "Customer Number"

INPUT = ,,20

18-14

Examples of Form Design

THax FURMS DEFINITION (V1,2)

Trars, Proc, MName: SamP| ¢ tevice: vT4h2 Page L=2
Form mame: r=CusSl Lengtn: 24 223922 PM {@e«Jyl=T78
I A ENFS A NN ENENENENEENNENNENRNNENENNNENEEENENEENENNENEESEEENNEENEENEENENNEEENEENEENEENEEEE N NN NN EN NEENENEN NN NI

LABEL = CuST,:.0

LENGTH = &

CLEAR = "at

ATTRIBUTE ® REVERSE,RIGHT

n
"
"
"
1]
"
]
"
o
(1]
n
"
[]
"
"
[{
"
"
"
L]
“
"
]

SEE SIS SISS =SS SS2SES22S8SS2232332283

This is a ororpt fiela that tells the user what

furction keys may be used, The content of this field
may nte changeo by reply cdefinfitions (see below) {f those
reply definitions chanae the enabled function keys,

- P B S P B S B

n
]
"
"
"
"
]
"
1]
"
n
n
n
u"
1]
n
(L]
L]
1]
n
H
(1]
1]
un
[]
n
"
"
"
1]
N
"
]
"
i
(]
[]
[
[
L
"
"
"
"
]
"
"
[}

PROMPT = 15,1
LABEL = KEY,PROMPT
LENGTH = 80
VALUE = "Furctiom Keyst ",
"ENTER to fetch customer record, "o
"CLUSE to auit fumction"
ATTRIBUTE = REVERSE

IR 23222222 2 2222 R R R R R R R R S

]
] Group D Statements = Define Exchange Messsge
l
!ttﬁi*ittt*t**itﬁtitit*iitttttiiit*iitit*itti*ii*tt**ittttt
MESSAGE = |

VALUE =

CUST NO

ltttt*i*t*ttt*ﬁittiit*ttttttttt*t*t*ittt't*tt*i*ittii***'ii
1
[} Group E Statemerts = Define Replies
}

llﬂﬁ**ﬂtit**tttiii*ttt**ttii*t*ﬁi*ttt*iiiﬁittﬁt*itttttt*tiﬁ
ICI!I.IS.SIII:!S88828828833882328=lIIZSSSSIBSSSSSSISISSIIII
)
} Reply 2 is the reply for vali{dation error messages
!
H Write 2 8@=character error messages ONto screen
! write reply number into screen header
!
3llllllit!lllzselllllII8388:'888'28SISISSSIISISIISISSIISSIll
REPLY 8 2

WRITE = REPLY,TEXT,A, REGUEST(!,80)

WRITE s REPLY,TEXT,B, REQUEST(81,80)

END

18-15

Examples of Form Design

TPAX FORMS CEFINITION (Vi,0)
Tramns, Proc, Namep SAMPLF Devicet vTs2 Page F=3
Form namet CHCUS 1 Lerath; 24 02100 PM {PeJul=78

Exchange Message Lavout

Lenoths 6 bytes
FIELD DISPL, LENGTH DESCRIPTION
"
LY Y L L Ly XL LA E ARl R YR LYY Rl iy i Xl 2Eryr 2 22 2 XY ry X 75 X17.]
1 i (] CUST,NO
Trax FORAMS QEFINITION (Vi€)
Trars, Proc, hame: SaMPLE Pevice: vTee Page F=4
Foprm name: rRCUS! Lengths 24 22100 PM 10=Jul=78

C PP 20 P TP PRSI ERI RN O OO REEOREPPPTOIITEEDPRCNONN PP RONOPS RN IRNNPOPROOOPONRPRRPRNRRIPINRY

REPLY # | Messsae Layout (Length = @)
REPLY # 2 tessage Layout (lLength 3 16i)

FIELD DISFL, LENGTH DESCRIPTION

]
1 i a9 REPLY.TEXT,A
2 81 14 REPLY,TEXT,B

18-18

Examples of Form Design

TRAX FOGRMS OEFINITION (V1,0)
Trans, Proc, Name: SAMPLE Devices vT62 Page 8=f
Form~ names CHCUS! Length: 24 023100 PM 10eJyl=78

PSRV QP OO 02RO RPIETIRNERPIOPORPIORPBURENNSCECRPRPRIBROCRROOSPPOOOQRRIIONRORRRONRORNTSCISQREOTPOTOY
INITIAL SCREEN PRESENTATION

1111111111222222222233333333334444U4444455555555556666666666T7T7TT777T77778

1234507898123“56789a123456789w12345678921234567592123456769012305678001230567690

Customer raster File Subsystem = Change Customer Transaction

Customer Numter PeEaCY

Fumetion Keys: ENTER to fetech customer record, CLOSE to quit function

12345678901234567890123456789212345678901234567890123456789012345678904234567899
1111111111222222222233333333334444444444555555555566666666667T7777777778

Keys enabledt ENTER ABORT CLOSE

18-19

Examples of Form Design

TRAX FURMS GLEFINITION (V1,0)
Trears, Proc, hNamej SELIFLE NPevices vTah2 Page 8=2
Form name: CHCUSL Lengths 24 02102 PM 108=Jul=78

9029000002800 C0RPTARRICRRPQTRNRRRARERNRERRtOPRPsOREOSsORRRRPORCRRIESROROROROTRCORTPRROCOIOETBRORRDOOY

IMITIAL SCREEN AFTER APPLYING REPLY # 2

11111111112222222222333333333344444404U044555555555566666666667T7T777777778
1230456789012345676972123456789¢12345678901234567891123456789012345678901234567890

Customer Master File Subsvstem = Change Customer Transaction

X AT P P P L R R L Y L R PR R R R I R P PR R YA SRR R R PR YT R P Y Y Xy)

IR L L T e P R R P Y P R R L Y P R L R L Y PP R R LY Y YT P PR Y Y YY)

Customer number wgaeae

Funetion Keyst ENTER to fetch customer record, CLOSE to quit fumction

1234567899123456789212345678921234567891012345678902123456789212345678901234567892
111111111122222222223333333333444444444455555555556666666666T7T7T77777778

Keys arableo! ENTER ABORT CLOSE

18-20

1281

FORM SPECIFICATION SHEET
Transaction Processor: [STA[M]P]L]E] ~ Initial Display D — Reply Number [| [] Form Name: [C[H]C]U]S] 2]

split: 0] 2 3 4 5 6 7 8
1]2]3]4{516{7]8910[1]2]|314]5/6|7/8[9{0{ 1] 2{314|5[6]7|8/9|0} 1]2(3]4|5]6]|7(8]|9]0{ 1[2{3]|4]|5/6|7!8]|9]0] 1[2[3]45[6]7|8[9]0|1[2|3]4|5/6]7(8|9[0]1]|2|3|4/5{6|7|8|9]0
8 1
Lines 2
Display 3 c /LE BlU ey8r Ty oM
Area 4
5
o -
8
9 0,
10 D r
1n
12 £99
13
14
15 { £
16 £ rq -
17
18 17
19
200 (7 {
21
22
23 C : A F/Fosos oo, | ecioSe Tol Qulirr [(LY NG
4 LI
System Function Keys User Function Keys
Bell: Rung for [ID___] periods Enabled Disabled Enabled Disabled
Cursor: Positioned at field ABORT] ENTER D
CLOSE [] KEYDOT []
AFFIRM] KEY00 []
STOPREPEAT [] KEYO1 []
. o o KEY02]
Use blue ink to give instructions, field types etc.
Use red ink to show actual text that appears on screen KEYO03 D

Figure 18-9 Sketch of Second Exchange Form

u3isa(q wio.] fo sapduinxyg

Examples of Form Design

18.3.2 The Finished Form Definition
Here is the finished definition of the second form, as it is printed by the ATL utility program.

TwhAx FCORAES DEFINITION (V1,2)

Trars, Proc, nName: SAMPLE Lbevice; VvT62 Page L={
For~ mame} cwCUS2 Lengths 24 B2124 PM 1Q=Jyle=78

29200000 000 9NN RNITIRENIEIPROPONRSPIEOEOIRPRNERQPOeEOROORRNRRBRNIONCORONEOPRORQOERRPINTSE
lﬁ**iti**t*itttﬁ*t***ti*ti*tttit*tiitQ***ﬁ*t**&l*ii*t*tit*t*ii**

i
Definition of form (WCuS2

The secons form for the Change Customer transactijon
and allows the user to change the data contained {n {t,

The changeo ocata is them semt back to the system in an

!
!
!
!
! Tnis form displays the selected customer master fi{le record
l
|
1 exchanrqe message,

)

!

I Z233 2222222222222 2aRARZERERERERRERA 2222222222 220223}

R332 222 222 R 2L a2 A0 R i 2 st il i s 22220]

! Group A Statements = Defime General Parameters
]
PR AR A AR A AR AR AR R AR AN R AR AR AR AR AR RANRR AN AN RN RARANRAN AR AR R AR
DEFAULTY
ENABLE = AFFIRM
ENABLE = CLOSE
CLEAR = " "
FURM
SPLITs8 18 lines of display areas

l*it*ﬁt*i**t**i*t****i*ttttttﬁtﬁi*tttt*t*tt*ti*'****t*i***.ttﬁit
!

} Group B8 Statements =~ Define Fields om Screen

!

R RN R AR AR R AR R R TR AN RN AR AR AR ARN AN AR R AR RN AN RO PR R AR RAN RS
|22 3EES S EESESSE S ES S EEESIESSIIISSSESEISIIEZISEESSEEEIZASER

!
These are the application fields

|
{
! The two error text fields are used to display error
i messages contained in respOnse messaQes

|

!

DISPLAY = 3,12
VALUE = "Customer Master File Subsystem = Change Customer Transesction"
LENGTH = 62
ATTRIBUTE = REVERSE,NOBLANK

DiSPLAY = 5,1
LABEL = REPLY,TEXT,A
LENGTH & 80

DISPLAY = 6,1
LABEL = REPLY,TEXT,8
LENGTH = 80

PROMPT = 1,1

18-22

Examples of Form Design

TRAX FORS CGEFINITION (Vi,0)

Trars, Proc, nName! SAMPLE Devices vTe2 Page L=2
Form nmames CrCUS2 Lenqtng 24 02124 PM 1@=Jul=T78

90RO 03 8000000000000 CRNECENORORRC0ERRRRPOCRIRTSOIOPNOODRDOEOSTRSTINTIOITEREOCTPOEORTRT0RTSBTECOPOOTRYD

VALUE = "Customer Nymber"

INPUT = ,,20
LABEL = CUST,NO
VALUE 8 REGUEST(,.6)
ATTRIBUTE = REVERSE,NOMODIFY

PROMPT 3 ,¢1.1
VALUE = "Customer Name"

INPUT =& ,,20
LABEL 3 CUST NAME
LENGTH = 3R

VALUE = REGUEST(,,3%)
ATTRIBUTE ® REOUIRED,REVERSE -

PRO™PT = 42,1
VALUE = "Adoress"

INPUT & ,,20
LABEL = ADDRESS,A
LENGTH = 32
VALUE = REQUEST(,,37)
ATTRIBUTE = REVERSE

INPUT =& ,¢1,22
LABEL = ADDRESS,B
LENGTH = 32
VALUE = REQUEST(,,32)
ATTRIBUTE = REVERSE

INPUT & 41,20
LABEL = ADDRESS,C
LENGTH = 32
VALUE = REGUEST(,,302)
ATTRIBUTE = REVERSE

PROMPT = ,+1,1
VALUE = "ZIP Code"

I“PUT = *’ 05
LABEL = ZIP,CODE
LENGTH = S
VALUE = REGUEST(,,S)
ATTRIBUTE = REVERSE,NUMERIC,FULL

PROMPT & ,+1,1
VALUE = "Telephone"

PROMPT a ,,20
VALUE = " ("

INPUT 3 ,,

LABEL = TEL,AREA,COCE
LENGTH = 3

18-23

Examples of Form Design

TRAN FORMS OEFINITION (Vi,0)

Trans, Proc, Name; SaMPLE Devices vT62 Page Le3
Form names CrCUS2 Lengths 24 82124 PM 10=Jul=78
00000000 NN ORRERO0CSPRE RO RUETSIOENORIEDNTOPOEORPTRRREECRINNOROIOEYIYOEOPOEOETPRTRTIOIEOeRTPRROIROCOOQTERROPTSTRROER0S
VALUE = REQUEST(.s3)
ATTRIBUTE = TaR,REVERSE,NUMERIC,FULL

PROMPT L XN
VALUE = ") "

INPUT 2 ,,
LABEL = TEL, EXCHANGE
LENGTH & 3
VALUE = REQUEST(,,3)
ATTRIBUTE = TAB,REVERSE,MUMERIC,FULL

PPO"PT = el
VALUE s "l

INPUT = ,,
LABEL = TEL,EXTN,ND
LENGTH = 4
VALUE = REQUEST(,,4)
ATTRIBUTE = REVERSE,NUMERIC,FULL

PROMPT & ,+2,1
VALUE = "Attention"

INPUT & ,,20
LABEL = ATTENTION
LENGTH = 20
VALUE 8 REQUEST(,,29)
ATTRIBUTE = REVERSE

PROMPT = ¥yl
VALUE = "Credit Limit ($)"

INPUT = ,,20
LABEL = CREDIT,LIMIT
LENGTH = 12
VALUE = REQUEST(,,12)
CLEAR =& "g"
ATTRIBUTE = RIGHT,REVERSE,SIGNED

|23 EE2EZ2EBE2Z SIS SES ST SEEXESESZEISISES3ISSSSSZTZSSIITTISISESS

1} This is a prompt field that tells the user what

] function keys may be used, The content of this field

] may be chamgeo by reoly cefinitions (see below) {f those
1 reply definitions change the enabled function keys,
)
)

PROMPT & 15,1
LABEL = KEY, PROMPT
LENGTH = 80
VALUE = "Fumction Keyst: ",
"ENTER to refi{le customer record, ",
"CLOSE to aquit without filing”

18-24

Examples of Form Design

TRAL FUS™S DEFINITION (V1,0)

Tramns, Proc, Name! S&MFLE Devicey vTé2 Page L=~4
Fopm namel cHCLS2 Lemgths 24 P2:24 PM 1B8=Jul=T8

000300900 P S0 TORPIROCRCES PR RNRENEONCOO 00 CEROCEOROENOOTNDRORRROOIRNENRESOROETROIBSOOROITOSRIIROOONTRE

ATTKRIBUTE = LEVERSE

li*****tﬁ*t*t***ﬁ**tu*tii**t**t**ﬁ**tt**it*titt**it***tttt*
!

H Group D Staterenrnts = Lefine Exchsnge Message

l

R I I R R R R R R R R R R R RSS2 2 222 22]ss)

MESSAGE = 1
VALUE =

cusT, 0,
CusST,NAME,
ADDRESS,A,
ADDRESS,8,
ACDRESS.C,
21P,CCDE,
TEL,AREA ,CCDE, TEL .EXCHANGE, TEL,EXTN,NO,
ATTENTION,
CREDIT.LIMIT

]*i**tii***ttttttttittiittttt**t**t*t**tti*tt*tﬁ**tt*tttt!t
i

! Group E Statements ~ Define Repliies

1

1S322 2223 2228 2R 2 R RS2 220222222 R 2R 22 2s R
IR EEEER I3 SIS ST IR S S S S SESS S SSESSESSSISESESSSSSIISEES

Reply | {8 affirmative reply:

H
H
i
1 Enable AFFIRM Key

H Disable all other function keys

! write "TRANSACTION COMPLETE" on screen

1 Erase 0ld function key message

] Hrite new function key message

! Write assigned Customer Number ON screen
] Write Reply Number {nto screen header

i
!

REPLY = |
ENABLE = AFFIRM
DISABLE = ENTER
WRITE ® REPLY,TEXT,A," exw TRANSACTION COMPLETE wwn"
WRITE = KEY,PROMPT,FILL("™ *,80)
WRITE s KEY ,PROMPT,"Funetion keyst AFFIRM to proceed"

Reply 2 s the reply for val{cation error messages

l

{

} write 2 8P=character error messages onto screen
! write reply mnumper into screen header

}

18-25

Examples of Form Design

TRAX FORMS CEFINITION (V1,0)

Trers, Proc, hameir SaMPLE Cevicer vT62 Page L=5
Fopm namei cHeuse Length: 24 02124 PM 12d=Jyl=78
I N R R E RN N N N N N N N RN E R A NN RN RN N
|Ezszzzszse2ssszs=sssssc=c s oSS SSsSss=ssS3ssssssss=s=ssss=se

REPLY = 2

WRITE = REPLY,TEXT,A, REWUEST(1,84)
wRITE = REPLY,TEXT,8, REQUEST(81,80)

EnD

Trad FORMS DEFINITION (V1,¢)
Trars, Proc, tamve; Sua¥PLE Cevice: vTe2 Page Fw]
Form nmame: chreusz Lengtht 24 02124 PM 10=Jyl=78

TR P e PO NN E TP PO RO N0 SN PRI ORPS PPN CE PO PO ENIROIEPONIOROSOREORONRERPSOORPDOOORTCRONY

General Form Parareters

Trarmrsactior orocessor: SAMFLE

For~ mare: cHCLS2

Length of Cisplav Area: R lines

Lenoth of Forrs hrea: 1S 1ines

Numker of error lines: 1 Yine ® 1ime 24
Disrlay wiotht B¢ columnrs

11 INPUT Fielos Leclared
11 PROMPT Fielas Ceclared
3 DISPLAY Fielcs Ceclared

@ MENY Fields Declared
Maxiymum length of MENL fieldas: 4
Lenoth of Exchange messaqe! 173

Higrest Defimed REPLY #: 2

No Tramsaction SELECTion mace with this form

Funetion KEYS enablea ong
Initieal Screeny ENTER ABQORT AFFRM CLOSE
REPLY » 1t ABGRT AFFR™ CLOSE
REPLY » 21 ENTER ABORT AFFRM CLOSE

No KEYCAPg defimed for this form

18-26

Examples of Form Design

TRAX FOxmS DEFINITION (V1.4)

Trans, Proc, Name:r SAMPLE Devices VTe2 Page F=2
Fop» name: cHCUS?2 Lengths 24 2124 PM 1@=Jyl=78

00 000 00000 RQ PR RORER0PPCOR el iontacoutent oot el iorReoOrsrecneneesiIeseonooney

INPUT Field Declerations

Standaro eattributest ALL,LEFT,NOTAB,NOFULL,NOREQUIRED
MODIFY, NORMAL, ECHO

FLD ROW COL LNG CLEAR {ABEL (ATTRIBUTES)
» ¥ # CHAR
---.---.-....----.--.-------.------..-.--.----..-..-------.--.-.'..--..---...--.
1 1 2 6 " " CUST,NO (NOMODIFY,REVERSE)
2 2 28 3a " " CUST,NAME (REQUIRED,REVERSE)
3 4 20 3o LI ADDRESS, A (REVERSE)
4 s 20 3¢ "o AODRESS,8 (REVERSE)
5 6 20 3¢ LI ADDRESS,C (REVERSE)
6 T 45 5 wom 21P,CODE (NUMERIC,FULL,REVERSE)
7 8 2t 3 2w TELL.AREA,CODE (NUMERIC,TAB,FULL,REVERSE)
8 8 26 3 won TEL JEXCHANGE (NUMERIC,TAB,FULL,REVERSE)
9 8 30 4 non TELLEXTN,NO (NUMERIC,FULL,REVERSE)
10 12 20 2@ "o ATTENTION (REVERSE)
11 12 2@ 12 "d" CREDIT.LIMIT (SIGNED,RIGHT,REVERSE)

PROMPT Field Declaretions

Stafdard Attrifbutest NORMAL

FLD ROW COL LNG LABEL (ATTRIBUTES)
] # ¥
LY T L L L L L L L LR L L L L LA LRI d Tl L LAY idr Iy ry il Iy Pyl I XTIt}
1 { 1 15
e 2 1 13
3 4 1 7
4 7 1 8
-] 8 1 9
6 8 20 1
7 8 24 2
8 8 29 {
9 10 1 9
10 12 1 16
11 15 1 89 KEY PROMPT (REVERSE)

DISPLAY Field Declarations

Standerd attributest NORMAL, BLANK

FLD ROw COL LNG LABEL (ATTRIBUTES)
] L 4 ¥
LI P 1 2 0 B B 2 L AL 0 L0 XA LAALA LAl LA AdArL Lt IEL LI XA X LY 1y it It 1]
1 3 12 6@ (REVERSE, NOBLANK)
e S 1 8¢ REPLY,TEXT,A

18-27

Examples of Form Design

TRAx FORMS DEFINITION (Vi,2)

Trars, Proc, Name: SAHMPLE Devicer vT&2 Page Fe3

Form mamet CHCUS2 Length: 24 023124 PM {Q=JylesT78

'.'.....'......’.l-'l'........'."'l.'..lI..'....'.Cl...'.....‘.....'..‘..'.....
6 t 8w REPLY,TEXT,R

TRAX FORMS DEFINITION (V1,2)

Trans, Proc, Namet SaMPLE Device: VTe2 Page F=d4
Form mame} cHCUS2 Lengtht 24 02324 PM {2eJul=T8

Exchange Megssage Layout

Lemqths 173 bytes

FIELD DISPL, LENGTH DESCRIPTION

I I YT T T X X LR R LR & L R X XX LA 2 B R YR L L X d Yy yry Ty Pt 22 s i1 Xl f17.1.]
1A 1 [CUST.NO
18 7 30 CUST NAME
1C 37 32 ADDRESS, A
1D 67 12 ADDRESS,B
1E 97 v ADDRESS,C
1F 127 S Z1P,CODE
16 132 3 TEL,AREA,CODE
1H 135 3 TELL.EXCHANGE
11 138 4 TEL.EXTNGNO
1J 142 20 ATTENTION
1K 162 12 CREDIT,LIMIT

18-28

. Examples of Form Design

TRAX FORMS DEFINITION (V1,0)
Trans, Proc, Nemes SAMPLE Devicet VT62 Page F=S5S
Form nameg CHCUS? Lengths 24 82124 PM {B8=Jyi=T78

900900 RNLRERNOIRRP0PCOPPPRRPRROONRORIPPRRRORORCRORBREORPISDOQORIRDOCOIOCEPROENOEOCOOOODRDIPTEOTDE

Inftial Screen Request Messsge Layout

Lengtht 173 bytes

p1seL, LENGTH DESCRIPTION

1 b CUST,NOD

7 39 CUST.NAME
37 LT ADDRESS, A
67 3e ADDRESS,B
97 30 ADDRESS,C
127 5 Z1P,CODE
132 3 TEL,AREA,CODE
135 3 TEL,EXCHANGE
138 4 TEL,EXTN,NO
142 ee ATTENTION
162 12 CREDIT,LIMIT

TRAX FORMS DEFINITICN (V1,8)

Trans, Proc, Namet SAMPLE Devicet vTe2 Page F=b
Fopm namet CHCUS2 Lengtht 24 02124 PM 1QeJyle=T78

REPLY # | Message Layout (Length = @)
REPLY # 2 Message Layout (Lenrgth = 169)
FIELD DISPL, LENGTH DESCRIPTION
)

1) 8o REPLY,TEXT,A
2 81 8a REPLY,TEXT,B

18-29

Examples of Form Design

Tsax FOs¥S CEFINITION (vi,¢)
Trars, “rcc, icamet S534P|¢ sevicer VTe2 Pege 8»1
Fopr maves CrCus2 Lenath: 24 223124 PM 18eJyl=78

Ql'.'.-.tovunntnottoult'lo:.lcc.-tul.o00.-ttovs0‘t.olt..l.....o'.!"'.f'.'l'..'l

INITT8 SCREEN PRESENTATION

1111111111222222222233333333334044444448465555555555666666066677777T7777178
12305678912345A789. 1234S67890123456TR92123456789012345678901234567890123456789¢2

LR Y L R R R R R R R PR R A PR R TP R R AR R R LR R R R D L L 2 L L ¥ 2 ¢ Y }

Customer “aster Filje Subsyster = Change Customer Transaction

Customer Number tie=te
CU.QOMQP Nare ‘v rancracencvusecsvwcasesamd)
Address dfrevosnansnesrrssecasennenad)

¢¢ocvanvuvsracvavsersrsesensedP

dtenocrnavsveassesesrvaonene dd

Z1P Code PO
Telephone {(+44) ++evttes
Attention déeccnvanvonavassn bt

Creait Limit (%) jenccannansd

Fumetion Keys: ENTER to refile customer record, CLOSE to quit without filing

123456789212345678921234567892123456769:12345678991234557890123456789012345678%0
111111111122222222223333333333444444448405555555555666666666677T7T7T77778

Keys enableaqa? ENTER ABORT AFFRM CLOSE

18-30

Examples of Form Design

TRAX FORMS DEFINITION (Vi,0)

Trans, Proc, neames SAMPLE Devices V762 Page $=2
Form names cHCus2 Lengths 24 02124 PM 10=Jul=T78

00 2 0000000000009 S0RRRRRORC00RIRERRINORTRNOIROEROOPPPPRONDRORORRTNCRRRROTSTORPOSREORROTRRYTIRY

IMITIAL SCREEN AFTER APPLYING REPLY # |

111111111122222222223333333333444U4404444555555555566666666667TTTTTTT778
123456789112345678921234567890123456789212345678921234567890123456T7890123456789¢0

Customer Master File Subsystem = Change Customer Transaction

k TRANSACTION COMPLETE wsa»

Customer Number ttemrs
Customer Name dbvcevensvecencanresrasuecenneanhd
‘ddﬁ." tbavnoncscrsnoronscscacnuwnwnasdd

Yéovrascvesnencosnsavsucnvessad P

dbuvonnoonsnrnorennsvsesvennndd

21IP Code temt e
Telephone (+¢+) +44=49¢e
A!'.H!'OH t¢envansevevrccnnndd

Creait Limit (S$) ttonnsnnnvsd

Funetion Keyst AFFIRM to proceed

123456789p91234567890123456789n1234567890123456789012345678901234567890123456789¢
11111111112222222222333333333344444444445555555555666666666677777777778

Keys enmnabledt ABORY AFFRM CLOSE

18-31

Examples of Form Design

Teex Flw-3 TEFLIHITION (vig9)
Trars, Proc, “are: SHoteire revices vTs2 Page 8»3
Fore mave: CHbLRe Lenaths 24 22124 PM 1@=Jul=78

IR NN NN NN NN NN NNENER RN NN NN NN NN NN N A A N N NN R NN NN NNNN]

I“77Tal 3C~EEw aFTE~ APPLYING RERPLY & 2

1113111111222222222238333333333440d444444555555555566666666667T777777778
1230546789::1230506759 123450739 1123456787:1234567897123u456789412345678901234567890

Customer t'agster File Subsvstem = Change Customer Transaction

LA Z AL L L L R I R R L L A R R L R Y P R P T P Y Y PR R YT Y P Y P P P A Y T Y DT R

LR AL XL L L R R R R LR R R L P R R R Y R P P R P P P R P R R R R L D P P PR P Y Y Y YN

Cug*omer ~umber csmmbd
Cu.fomer Name f0-------.-.---.-.-,----.---Q*
Add'!!S Pitevnnsnssensnnvesenaenessvaedd

XX L R P R R T P P P R L L L s

Ptervrenncserrossssrseasaweswadd

ZIP Coge temdy
Telephane (++4) ++t=td e
Attention i cnswcvevenvansd P

Creait Limit (%) 4teecacacsss

Funetion Keya: E~TEF to refile custorer recorcd, CLOSE to auit without filing

123456789,12345678G92123uS67809,:12345078912345678901234567891123456789012345678%90
111111111122222222223333333333444udUdUuysS555555555666666666677T77T777778

Keys erabied: ELTE~ 4RV AFFR*™ CLUSE

18-32

CHAPTER 19
DESIGNING AND SPECIFYING TSTS

During the transaction design process, you tentatively divided your application processing into TSTs. Now you
must add further design details to each TST, so that an application programmer can implement it.

As you proceed with this detailed design, you may find that your tentative set of TSTs is inadequate. If this hap-
pens, decide on a better set of TSTs, and correct the design to reflect the changes. Then continue with the detailed
TST design procedure described in this chapter.

This chapter discusses important considerations to remember during the detailed TST design:

TST operation

TST programming languages and their capabilities
TST performance

TST design documentation

TST coding standards and development techniques

19.1 REVIEWING TST OPERATION
Before we continue with TST design concepts, let’s review: what is a TST and how does it operate?

A TST is a program associated with a TST station. When an exchange message arrives at that station, the TST
processes the exchange message.

The sources of data available to the TST during this processing are shown in Figure 19-1. When it is activated, the
TST is given two data structures: the exchange message and the corresponding transaction workspace. These two
parameters are passed to the TST as subroutine parameters, and the TST is programmed to receive them in that
form,

During processing, the TST has access to these additional sources of data:

® The TST can read or write application data files.

® The TST can send report messages to output-only terminal stations, thus producing hard-copy reports.

® The TST can deposit mailbox messages in a mailbox station or can retrieve mailbox messages from a
mailbox station.

® The TST can issue programmed calls to discover certain attributes of the transaction instance it is
processing.

As you can see, these sources (or destinations) can cross transaction instance boundaries. For example, a message
deposited in a mailbox can be picked up by another TST processing a different transaction instance’s exchange
message; data read from application data files can be placed there by some other transaction instance.

However, three data structures used by the TST are only accessible during the rest of the same transaction instance:

o If the TST issues a response message, it affects subsequent processing of the transaction instance.

® The exchange message, modified by the TST, passes to subsequent stations in the processing phase of the
current exchange.

® The fransaction workspace, also modified by the TST, is passed to subsequent TSTs in the current and
following exchanges of the transaction instance.

19-1

Designing and Specifying TSTs

When a TST begins processing an exchange message, it has no “memory”’ of prior processing other than the contents
of the transaction workspace. It behaves like a newly loaded and initiated program. As a result, TST designs fall
into a style where each TST has a small system “perspective”; that is, it has a well delineated purpose and uses a
small, formal set of inputs and outputs. Further, most TSTs have only small processing path variations in them; they
apply substantially the same processing to each exchange message they process.

Remember these TST characteristics as you design your own TSTs. Your finished application will perform better if
you use TST characteristics to advantage.

19.2 CHOOSING A PROGRAMMING LANGUAGE
TRAX provides two application programming languages:

e COBOL
® BASIC-PLUS-2

Both of these languages can be used to program TSTs. You should choose the language that you and your applica-
tion programmers are most familiar with,

Once you have selected a programming language, study its reference manual. If you are familiar with the language,
you can design TSTs that are easier to program and that perform well.

If you or your application programmers are not familiar with either of the languages, refer to the Software Product
Descriptions (SPDs) and language reference manuals for both COBOL and BASIC-PLUS-2. Choose the language that
fits the background and experience of your programming staff.

Although TRAX allows you to program TSTs in different languages for the same application, you should select a
single language for your TSTs, Multiple languages make system documentation difficult, and application program-
mers using different languages have difficulty communicating.

19.3 DESIGNING FOR OPTIMUM TST PERFORMANCE
The following aspects of a TST design are particularly important:

Making the best use of a programming language
Making the best use of file access methods -
Minimizing access conflicts in shared files
Avoiding bottlenecks

19.3.1 Programming Language Considerations
There are two aspects of a language that you must consider when designing TSTs:

1. Convenience depends on how easily a language expresses a concept or procedure,
2. Efficiency depends on how quickly a language executes a set of statements, and the proportion of system
resources the language requires to execute those statements.

Before you design TSTs, identify those aspects of your chosen language that are convenient to use and efficient. Try
to design TSTs so that your application programmers can use convenient and efficient language features. Try to
avoid situations where application programmers have to use awkward or inefficient aspects of the language.

If you are unsure of a language’s convenience or efficiency after studying the Language R eference Manual and User’s
Guide, develop some test cases and analyze the results.

19-2

Designing and Specifying TSTs

EXCHANGE TRANSACTION
MESSAGE WORKSPACE

MAILBOX DATA
STATIONS FILES

TST

CALL

SYSTEM CALLS
TRANSACTION ATTRIBUTES, HARD COPY
TIME OF DAY, ETC. REPORTS VIA

REPORT MESSAGES

RESPONSE EXCHANGE TRANSACTION
MESSAGE MESSAGE WORKSPACE

C——>)y

INPUTS FROM DATA USED OR OUTPUTS USED
TRANSACTION GENERATED BY LATER IN TRANSACTION
INSTANCE TST INSTANCE

Figure 19-1 Data Available to a TST

19-3

Designing and Specifying TSTs

19.3.2 File Access Considerations
The discussion in Section 19.3.1 also applies to file access techniques. Study RMS carefully. Determine which file
access operations you will be using and their relative cost in system overhead.

The design of file access techniques is crucial to a commercial application. Poor performance in commercial applica-
tions is frequently caused by a file access bottleneck. Disk drives are a heavily used system resource, and you do not
want to waste that resource with inefficient design techniques.

Avoid the temptation to use the simplest RMS file structures and then ask your application programmers to imple-
ment more complex file structures based upon them. You will often lose more in performance than you gain. If
you need an indexed file structure, use an RMS indexed file structure.

An example helps to illustrate the importance of file access design. Assume your application calls for an indexed
file, and a transaction must retrieve two records from this file. The records are neighbors in index sequence, except
that there may be one record between them. How do you design this file access?

A straightforward technique is to use two RMS READ operations, each specifying a key for one of the two records.
This works — but RMS must search twice through the index structure to find two records that are close neighbors.

A better technique is to locate the second record with one or two sequential read operations after the first record is
found. This operation is more efficient than a second search through the file’s index structure.

19.3.3 Minimizing Access Conflicts in Shared Files

To allow shared access to application data files, TRAX TSTs lock specific records in those files. Any TST that
attempts to access a record locked by another transaction instance creates an access conflict. The TST is not given
access until a TST processing the other transaction instance unlocks the record.

Avoiding repeated or lengthy access conflicts is important to application design. You must pay careful attention to
the TSTs that access files as well as to the design of the files themselves.

19.3.3.1 The Duration of Record Locks — The duration of a record lock depends on other things besides the
design of the TST. Files configured with staging or journaling prolong record locks until the end of each transaction
instance, instead of releasing the records after they are unlocked or updated. This creates access conflict.

Records are locked on behalf of the transaction instance the TST is processing, rather than for the TST itself. This
means that record locks can remain in force for three different periods:

1. Withina TST. Records can be locked by a TST and then unlocked by the same TST before it terminates
execution. This record lock rarely impacts system performance, because there is minimal delay between
the locking of the record and its release. Unless the TST becomes snared in an endless computational loop,
nothing interrupts it and the record is unlocked in timely fashion.

NOTE
This does not apply if the file is staged or journaled; see
the NOTE in item 3.

2. Within an Exchange. Records can be locked by a TST and unlocked by another TST in the same
exchange. This record lock has greater impact on system performance, because a delay is always possible
in the startup of the second TST. This TST could have other exchange messages queued at its station,
and several seconds (or minutes) could elapse until the exchange message is processed. Meanwhile, the
record remains locked.

194

Designing and Specifying TSTs

NOTE
If the file is staged or journaled, the second TST may
not unlock the record; it may remain locked until the
end of the transaction instance. See the NOTE in
item 3.

3. Across Exchanges. Records can be locked by a TST, and then unlocked by another TST in a subsequent

exchange. This situation has an extreme impact on system performance, because the record remains
locked during the intervening exchanges. The time required to complete an exchange depends on how fast
the user completes the form and transmits it to the system; in some situations, this could take many
minutes or even hours.

NOTE
Delay is often introduced where the file is defined with
staging or journaling options. If a TST updates and then
attempts to unlock a record in such a file, the record
remains locked until the end of the transaction instance.
If this involves intervening conversational phases of other
exchanges, serious access conflicts can occur because of
lengthy delays.

19.33.2 Avoiding Access Conflicts — If your design locks a record across several exchanges and this extended
lock results in unacceptable access conflict, there are several things you might do.

1.

2.

Select a file definition option which allows other TSTs to read a locked record but not lock or update it.
This option allows some transactions to display record data while another updates it. See Section 21.11.
Add a field to the record and use this field as an application-level record lock or record status indicator.
This design uses the RMS record locking facility to protect the record only while it is read and the

status field changed and rewritten. At all other times, RMS considers the record to be unlocked. Each
application program must then check the record status flag before using data from the record to see if
some other application program is using the record.

Although this technique is useful, watch for these pitfalls:

® This method relies on application programmers to inspect the record status field each time a record

is read.

® This method increases the number of file accesses, since the record status byte must be updated.
® This method can result in records appearing to be permanently locked should an application program

abort without restoring the status indicator.
Restructure the transaction or the file to avoid the difficulty.

For instance, a common design technique uses an applicaton file with a control record in addition to its
data records. In a customer file, this control record might contain the next available customer number.
It would be consulted each time a new customer is added to the file and then incremented so that the
next customer is assigned the next identification number.

Although you may not have an access conflict problem with the customer records in this file, you would
probably have a problem with the control record. This record is read, locked, and updated by each
transaction instance that adds a new customer to the file. Each transaction instance must keep this
record locked for the shortest possible time, because the time the record is locked has a significant effect
on the throughput and response times of the application.

19-5

Designing and Specifying TSTs

Consequently, your design should put the updating process (reading, locking, updating, unlocking) in one
TST. This minimizes the time the control record is unavailable to other transaction instances. The
updating of this control record must never be spread across two or more exchanges; and you should avoid
spreading it across two TSTs in the same exchange whenever possible.

Be sure to consider the effects of staging and journaling. If the file in the previous example were staged
or journaled, one of two situations would arise:

e If the control record update occurred in the last exchange, the situation would be marginally acceptable
because the end of the transaction (the actual unlocking and updating) occurs soon after the reading
and locking.

® [f there were intervening exchanges between the point where the control record was locked and the end
of the transaction instance, you would have to redesign the file or the transaction. For example, the
control record might be removed from the file and placed in a separate file which is neither staged nor
journaled.

193 4 Solutions to Possible Bottlenecks

Every application has potential bottlenecks. Bottlenecks are places in the application where much processing is done
by a relatively small group of processing entities. Work backs up at bottlenecks when the application is pushed to its
performance limit.

Bottlenecks have two detrimental effects on an application:

1. Increased Response Time, Bottlenecks may degrade response times at the user’s terminal. That is, the user
waits an excessively long time during the execution of a transaction.

2. Reduced Throughput. Bottlenecks may also reduce the total work the application can do in a given time
period. That is, the application may not process work as fast as it is entered by users.

As you design around possible bottlenecks, remember which symptom you are trying to avoid — degraded response
times or reduced throughput. Focusing on one of these two symptoms is important, because most techniques for
avoiding bottlenecks trade one symptom for the other.

The rest of this section discusses several techniques that can be used to avoid bottlenecks:

Allowing multiple copies of TSTs

Adjusting TST priorities

Designing transactions with overlapped processing
Designing transactions with background processing

1934.1 Allowing Multiple Copies of TSTs — TRAX allows you to specify the number of TST copies that can
execute at the same time. You can set this number to one, so that arriving exchange messages process one by one.
Or, you can set this parameter to a higher number and allow several exchange messages to process in parallel.

With multiple TST copies, you can solve bottlenecks stemming from TST execution times; that is, bottlenecks that
arise because a TST cannot process exchange messages fast enough.

To use this technique effectively, you must be certain that:
® TST execution speed is the problem and not other program-delaying factors such as file access conflicts.

® Adequate resources are available to execute the copies of the TST without new conflicts such as conten-
tion for main memory or the central processor (CPU).

19-6

Designing and Specifying TSTs

The number of TST copies you allow will vary by the severity of the bottleneck and the system resources available.
For a severe bottleneck, you might set the parameter to a high number; but if many multiple copies cause problems
in the application, you might limit the parameter to a relatively small number — say two or four.

19342 Adjusting TST Priority — Another way of solving a TST bottleneck is to adjust the priority with which
that TST is executed.

Like the multiple-copies method (Section 19.3.4.1), this method is best for correcting bottlenecks stemming from
TST execution speed. Increasing the priority of a TST usually does not expedite its file accesses; the only effect
of an increased priority is in contention for main memory and other TST startup resources.

Remember: when you raise the priority of one TST, you do so at the expense of another. You cannot raise the
throughput of your application by adjusting TST priorities; you can only adjust the relative throughput of various
transactions.

193.4.3 Designing Transactions with Overlapped Processing — Section 14.2 describes the technique of oyer-
lapping the processing phase of one exchange and the conversational phase of the text. This technique often
improves the transaction response time seen by the user, but it cannot improve the throughput capability of the
application as a whole.

As you design the TSTs in those transactions that use overlapped processing, remember where they appear in the
transaction: are they executed before the exchange response message is sent or during the overlapped processing
after the message is sent? TSTs executing during the overlapped portion of an exchange must conform to special
restrictions, notably the restriction against issuing a response message.

Make sure that you understand the difference between sending a response message and terminating the TST.
Once you understand the consequences of each, communicate this understanding to your application programmers.

By using the overlapped processing technique, you can design transactions where the user’s conversation proceeds
ahead of the processing of his last input. But this overlap is limited to one conversational cycle. If the original
exchange’s processing is not finished when the user’s second set of input is ready, he cannot go to a third set of
input. He must wait until the processing of the first input is complete and the processing of the second set begins.

19.3.4.4 Designing Transactions with Background Processing — If one of your transactions demands extended
overlap or user entry of all data without waiting for processing to begin or terminate, you must use a background.
processing technique.

This technique divides a transaction into two parts:

1. An online transaction initiated by the user collects data and stores it temporarily.
2. A special transaction or a series of one or more support environment programs processes the stored data
later.

One use of the background-processing technique spawns a separate transaction instance to process the data. To
do this, you must design two transactions:

1. In the on-line transaction that converses with the user to collect data, one TST issues a system call to
spawn the second transaction. The collected data can be passed in the spawned exchange message, in
a mailbox message, or in a file.

2. The TSTs in the second transaction retrieve the data and then process it. These TSTs cannot converse
with the user and are restricted to a “background” environment.

19-7

Designing and Specifying TSTs

TST Name:

Input Object Modules:

Language:

Is there a resident OTS for the language?

Debug Mode?

TST SPECIFICATION SHEET
[(ITTTT I« 1
e —
(O)T T T LTI
T (O) O T T . 0T
[[] —cosoL

[] —sAsicpLus-2
[] —™Acro-11

[] —ves
J -no
[] =No

D — Transaction Processor (Device: I:ED 1)
D — Standalone {Initializing Module: m)

TST Name:

Input Object Modules:

Language?

Is there a resident OTS for the language?

Debug Mode?

(ITTTT 1« 1

) mm——
T I T LTI 0T
T T T L T L.
[] —cosoL

[[] -sAsic-PLUS-2
(] —macro-11

[] —Yes
(] —-no

[o
[___J — Transaction Processor (Device: D:[:] ;)
D — Standalone (Initializing Module: ED:]:ED)

TST Name:

Input Object Modules:

Language:

Is there a resident OTS for the language?

Debug Mode?

(ITTT T < 1

prmm——
(T T T) T). 1
(T T O LI Tk
[] —cosoL

[1 —BAsIC-PLUS-2
[T —mAcro-1

[] -YEs
|:] —NO
D — No

l:] — Transaction Processor (Device: D:D :)
[] - standalone {initializing Module: CITIrr

Figure 19-2 TST Specification Sheet

19-10

CHAPTER 20
TST DESIGN EXAMPLES

Three examples of TST design are presented in this chapter. Each example includes the documentation an applica-
tion designer would supply to the application programmer as well as the source code that the programmer would
generate. The source code is included so you can compare the design specifications with the finished TST.

The three TSTs in these examples are from the change customer transaction in the TRAX Sample Application.
This transaction’s forms were discussed in Chapter 18. The transaction structure diagram for this transaction is

shown in Figure 18-1; it is normally included in the documentation for the programmer, although it is not reproduced
in this chapter.

NOTE
The transaction structure diagram (Figure 18-1) calls. for
records to be locked across exchange boundaries. This'is
acceptable because in this application conflicts over cus-
tomer records are unlikely. In a complex application, a
more sophisticated approach to record sharing is neces-

sary.

20.1 THE RDCUST TST
Together with the transaction structure diagram (Figure 18-1) the following figures comprise the documentation
needed by an application programmer to write the RDCUST TST.

o RDCUST TST Specification Sheet Figure 20-1
® Description of RDCUST TST Purpose and Processing Figure 20-2
® Exchange Message Format Figure 18-2
® REPLY Message Format Figure 18-3
® PRCEED Message Format Figure 184
® Customer Record Format _ Figure 22-1

The finished TST is shown on pages 20-3 through 20-11.

20-1

TST Design Examples

TST SPECIFICATION SHEET

TST Name: [RID[CJus[T]«€ 1
’—/‘
Input Object Modules: [ST¥[J:{ (T 17).[310l0]] (RIBICIULSIT]. [TISTK); []
EEEaaniann|eeaaenisnninn
Language: — COBOL

[] -BasicpLUS-2
[[] —MAcro-11

Is there a resident OTS for the language? — YES
[0 -no
Debug Mode? — No

D — Transaction Processor (Device: L_1_1 1)
[] - Standalone (Initiatizing Module: LI T T T [1)

Figure 20-1 READ TST Specification Sheet

The RDCUST TST is the only TST in the first exchange of the change
customer transaction. It receives the identification number of a
customer via the exchange message and attempts to read the corre-
sponding record from the customer file.

If the read operation is successful, the TST formats the data into
punctuated display format (that is, ready for display on the terminal
screen) and sends it back in a PRCEED response message.

If the read operation is not successful, the TST returns an error
message in a REPLY response message. This message is sent as reply 1.

Figure 20-2 Description of RDCUST TST Purpose and Processing

20-2

Examples of Form Design

TRAX FORMS DEFINITION (V1,2)

Trans, Proc, nemes SAMPLE Uevices vTs2 Page S=2
Fopm names crCus2 Lergth: 24 22324 PM 10=Jyl=T78

SO IR OPN RO OPOINNSOCSRIQPE O EIPRIEEEDOEIPREDNOODDIEPEIPEREOOPEOOOCEROUTSIESPIOIERNOEO0ETOTREEOYS

IMITIAL SCREEN AFTER APPLYING REPLY # |

111111111122222222223333333333444U44444455555555556666666666TTTTTTTT7T78
123456789191234567892123456789012345678921234567890123456789012345678901234567890

LA X L L L L L L3 B 2 LR XL L LA RALLEYLELLEYL LRI XYL YL X 82 R X1 0 L0 02 2 2 X Lo 00 0l X 1Y 11X]

Customer Master Fi{le Subsystem =~ Change Customer Transaction

#fxk TRANSACTION COMPLETE wew

Customer Number ttemtd
cu,tom.p Name e csoncensscoeessebenvadd
Aadp..‘ PPmenoossransncncsesncnnenendé

Pétovocsevasnuscsesesveneseseadd

¢tfeveavenevnrncrrsanovenesanad

21P Code temtd
Telephone (¢4+) ¢++osdes
Attention ttencenvevencccnersdd

Creait Limit (98) téonccnannsd

Funetion Keyst AFFIRM to proceec

123456789p123456789p123456789p1 234567899123“56789¢123456759012345678901230567690
111111111122222222223333333333444444444455555555556666666666T77777717778

Keys enmabledt ABORT AFFRM CLOSE

18-31

Examples of Form Design

Tves FO=-3 TEF]IOLTION (vi¢)

Trars, Preoc, “are: bHu'fPir revices vTs2 Page S=»3
Foepr naves {82 Lenqth: 24 d2124 PM {@=Jyul=78

[B NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NNNNK]

I-7T1al B3C~EE* 6FTE~ APPLYING HEPLY 2 2

11111111112227£2£2223333333333444d44U44445555555555660666666667T7777777778
1230C67859:2123u50759 123450739 11234567891 234567897123456789¢1234567890212345678%0

Customer ragster File Subsvstem = Change Customer Transaction

I EZ AL E DL P L R R R Y PP P P Y P P P Y Y P P T YT Y P Y PP Y T T Y P Y Y)

LA AL L Y Y R R R Y R P P R P P PR T P S P Y PP PR P Y Y PP Y Y R Y Y P Y Y XX

Cus*omer ~umber cpmmt s
CUlfcmer ~name tinroenecosnenssrnnenasssevswdd
AGOFQSS IR R Y R P P P Y Y R

diévancvunnneoveraecscseneseesoendd

$tevovooarerrnaerenounnuwessadd

ZIP Coce PPN
Telephone ($44) +4+4=4449

Attention Piwmsnnmcwrremsne

Creait Limit (%) dPtomcncnany

Fumnetion Keya: ETEF to refile custorer recorcr CLUSE to auit without filing

123uS6789.123456786G2123456789:123450789:1234567892123456789p12345678921234567898
111111111122222222223333333333844444dUdU44555555555566666666667T777777778

Keys eratledg: ELTE= 4RURT AFFR™ CILUSE

18-32

CHAPTER 19
DESIGNING AND SPECIFYING TSTS

During the transaction design process, you tentatively divided your application processing into TSTs. Now you
must add further design details to each TST, so that an application programmer can implement it.

As you proceed with this detailed design, you may find that your tentative set of TSTs is inadequate. If this hap-
pens, decide on a better set of TSTs, and correct the design to reflect the changes. Then continue with the detailed
TST design procedure described in this chapter.

This chapter discusses important considerations to remember during the detailed TST design:

TST operation

TST programming languages and their capabilities
TST performance

TST design documentation

TST coding standards and development techniques

19.1 REVIEWING TST OPERATION
Before we continue with TST design concepts, let’s review: what is a TST and how does it operate?

A TST is a program associated with a TST station. When an exchange message arrives at that station, the TST
processes the exchange message.

The sources of data available to the TST during this processing are shown in Figure 19-1. When it is activated, the
TST is given two data structures: the exchange message and the corresponding transaction workspace. These two
parameters are passed to the TST as subroutine parameters, and the TST is programmed to receive them in that
form.

During processing, the TST has access to these additional sources of data:

® The TST can read or write application data files.

® The TST can send report messages to output-only terminal stations, thus producing hard-copy reports.

® The TST can deposit mailbox messages in a mailbox station or can retrieve mailbox messages from a
mailbox station.

® The TST can issue programmed calls to discover certain attributes of the transaction instance it is
processing.

As you can see, these sources (or destinations) can cross transaction instance boundaries. For example, a message
deposited in a mailbox can be picked up by another TST processing a different transaction instance’s exchange
message; data read from application data files can be placed there by some other transaction instance.

However, three data structures used by the TST are only accessible during the rest of the same transaction instance:

o If the TST issues a response message, it affects subsequent processing of the transaction instance.

® The exchange message, modified by the TST, passes to subsequent stations in the processing phase of the
current exchange.

® The transaction workspace, also modified by the TST, is passed to subsequent TSTs in the current and
following exchanges of the transaction instance.

19-1

Designing and Specifying TSTs

When a TST begins processing an exchange message, it has no “memory” of prior processing other than the contents
of the transaction workspace. It behaves like a newly loaded and initiated program. As a result, TST designs fall
into a style where each TST has a small system “perspective”; that is, it has a well delineated purpose and uses a
small, formal set of inputs and outputs. Further, most TSTs have only small processing path variations in them; they
apply substantially the same processing to each exchange message they process.

Remember these TST characteristics as you design your own TSTs. Your finished application will perform better if
you use TST characteristics to advantage.

19.2 CHOOSING A PROGRAMMING LANGUAGE
TRAX provides two application programming languages:

e COBOL
e BASIC-PLUS-2

Both of these languages can be used to program TSTs. You should choose the language that you and your applica-
tion programmers are most familiar with.

Once you have selected a programming language, study its reference manual. If you are familiar with the language,
you can design TSTs that are easier to program and that perform well.

If you or your application programmers are not familiar with either of the languages, refer to the Software Product
Descriptions (SPDs) and language reference manuals for both COBOL and BASIC-PLUS-2. Choose the language that
fits the background and experience of your programming staff.

Although TRAX allows you to program TSTs in different languages for the same application, you should select a
single language for your TSTs. Multiple languages make system documentation difficult, and application program-
mers using different languages have difficulty communicating.

19.3 DESIGNING FOR OPTIMUM TST PERFORMANCE
The following aspects of a TST design are particularly important:

® Making the best use of a programming language
® Making the best use of file access methods

® Minimizing access conflicts in shared files

® Avoiding bottlenecks

19.3.1 Programming Language Considerations
There are two aspects of a language that you must consider when designing TSTs:

1. Convenience depends on how easily a language expresses a concept or procedure.
2. Efficiency depends on how quickly a language executes a set of statements, and the proportion of system
resources the language requires to execute those statements.

Before you design TSTs, identify those aspects of your chosen language that are convenient to use and efficient. Try
to design TSTs so that your application programmers can use convenient and efficient language features. Try to

avoid situations where application programmers have to use awkward or inefficient aspects of the language.

If you are unsure of a language’s convenience or efficiency after studying the Language R eference Manual and User’s
Guide, develop some test cases and analyze the results.

192

EXCHANGE
MESSAGE

Designing and Specifying TSTs

TRANSACTION
WORKSPACE

MAILBOX
STATIONS

CALL

DATA
FILES

TST

SYSTEM CALLS
TRANSACTION ATTRIBUTES,
TIME OF DAY, ETC.

RESPONSE
MESSAGE

HARD COPY
REPORTS VIA
REPORT MESSAGES

EXCHANGE
MESSAGE

TRANSACTION
WORKSPACE

INPUTS FROM
TRANSACTION
INSTANCE

I Y g

DATA USED OR OUTPUTS USED
GENERATED BY LATER IN TRANSACTION
TST INSTANCE

Figure 19-1 Data Available to a TST

19-3

Designing and Specifying TSTs

19.3.2 File Access Considerations
The discussion in Section 19.3.1 also applies to file access techniques. Study RMS carefully. Determine which file
access operations you will be using and their relative cost in system overhead.

The design of file access techniques is crucial to a commercial application. Poor performance in commercial applica-
tions is frequently caused by a file access bottleneck. Disk drives are a heavily used system resource, and you do not
want to waste that resource with inefficient design techniques.

Avoid the temptation to use the simplest RMS file structures and then ask your application programmers to imple-
ment more complex file structures based upon them. You will often lose more in performance than you gain. If
you need an indexed file structure, use an RMS indexed file structure.

An example helps to illustrate the importance of file access design. Assume your application calls for an indexed
file, and a transaction must retrieve two records from this file. The records are neighbors in index sequence, except
that there may be one record between them. How do you design this file access?

A straightforward technique is to use two RMS READ operations, each specifying a key for one of the two records.
This works — but RMS must search twice through the index structure to find two records that are close neighbors.

A better technique is to locate the second record with one or two sequential read operations after the first record is
found. This operation is more efficient than a second search through the file’s index structure.

19.3.3 Minimizing Access Conflicts in Shared Files

To allow shared access to application data files, TRAX TSTs lock specific records in those files. Any TST that
attempts to access a record locked by another transaction instance creates an access conflict. The TST is not given
access until a TST processing the other transaction instance unlocks the record.

Avoiding repeated or lengthy access conflicts is important to application design. You must pay careful attention to
the TSTs that access files as well as to the design of the files themselves.

19.3.3.1 The Duration of Record Locks — The duration of a record lock depends on other things besides the
design of the TST. Files configured with staging or journaling prolong record locks until the end of each transaction
instance, instead of releasing the records after they are unlocked or updated. This creates access conflict.

Records are locked on behalf of the transaction instance the TST is processing, rather than for the TST itself. This
means that record locks can remain in force for three different periods:

1. Within a TST. Records can be locked by a TST and then unlocked by the same TST before it terminates
execution. This record lock rarely impacts system performance, because there is minimal delay between
the locking of the record and its release. Unless the TST becomes snared in an endless computational loop,
nothing interrupts it and the record is unlocked in timely fashion.

NOTE
This does not apply if the file is staged or journaled; see
the NOTE in item 3.

2. Within an Exchange. Records can be locked by a TST and unlocked by another TST in the same
exchange. This record lock has greater impact on system performance, because a delay is always possible
in the startup of the second TST. This TST could have other exchange messages queued at its station,
and several seconds (or minutes) could elapse until the exchange message is processed. Meanwhile, the
record remains locked.

194

Designing and Specifying TSTs

NOTE
If the file is staged or journaled, the second TST may
not unlock the record; it may remain locked until the
end of the transaction instance. See the NOTE in
item 3.

3. Across Exchanges. Records can be locked by a TST, and then unlocked by another TST in a subsequent

exchange. This situation has an extreme impact on system performance, because the record remains
locked during the intervening exchanges. The time required to complete an exchange depends on how fast
the user completes the form and transmits it to the system; in some situations, this could take many
minutes or even hours.

NOTE
Delay is often introduced where the file is defined with
staging or journaling options. If a TST updates and then
attempts to unlock a record in such a file, the record
remains locked until the end of the transaction instance.
If this involves intervening conversational phases of other
exchanges, serious access conflicts can occur because of
lengthy delays.

19332 Avoiding Access Conflicts — If your design locks a record across several exchanges and this extended
lock results in unacceptable access conflict, there are several things you might do.

1.

2.

Select a file definition option which allows other TSTs to read a locked record but not lock or update it.
This option allows some transactions to display record data while another updates it. See Section 21.11.
Add a field to the record and use this field as an application-level record lock or record status indicator.
This design uses the RMS record locking facility to protect the record only while it is read and the

status field changed and rewritten. At all other times, RMS considers the record to be unlocked. Each
application program must then check the record status flag before using data from the record to see if
some other application program is using the record.

Although this technique is useful, watch for these pitfalls:

® This method relies on application programmers to inspect the record status field each time a record
is read.

® This method increases the number of file accesses, since the record status byte must be updated.

® This method can result in records appearing to be permanently locked should an application program
abort without restoring the status indicator.

Restructure the transaction or the file to avoid the difficulty.

For instance, a common design technique uses an applicaton file with a control record in addition to its
data records. In a customer file, this control record might contain the next available customer number.
It would be consulted each time a new customer is added to the file and then incremented so that the
next customer is assigned the next identification number.

Although you may not have an access conflict problem with the customer records in this file, you would
probably have a problem with the control record. This record is read, locked, and updated by each
transaction instance that adds a new customer to the file. Each transaction instance must keep this
record locked for the shortest possible time, because the time the record is locked has a significant effect
on the throughput and response times of the application.

19-5

Designing and Specifying TSTs

Consequently, your design should put the updating process (reading, locking, updating, unlocking) in one
TST. This minimizes the time the control recerd is unavailable to other transaction instances. The
updating of this control record must never be spread across two or more exchanges; and you should avoid
spreading it across two TSTs in the same exchange whenever possible.

Be sure to consider the effects of staging and journaling. If the file in the previous example were staged
or journaled, one of two situations would arise:

e If the control record update occurred in the last exchange, the situation would be marginally acceptable
because the end of the transaction (the actual unlocking and updating) occurs soon after the reading
and locking.

e If there were intervening exchanges between the point where the control record was locked and the end
of the transaction instance, you would have to redesign the file or the transaction. For example, the
control record might be removed from the file and placed in a separate file which is neither staged nor
journaled.

1934 Solutions to Possible Bottlenecks

Every application has potential bottlenecks. Bottlenecks are places in the application where much processing is done
by a relatively small group of processing entities. Work backs up at bottlenecks when the application is pushed to its
performance limit. '

Bottlenecks have two detrimental effects on an application:

1. Increased Response Time. Bottlenecks may degrade response times at the user’s terminal. That is, the user
waits an excessively long time during the execution of a transaction.

2. Reduced Throughput. Bottlenecks may also reduce the total work the application can do in a given time
period. That is, the application may not process work as fast as it is entered by users.

As you design around possible bottlenecks, remember which symptom you are trying to avoid — degraded response
times or reduced throughput. Focusing on one of these two symptoms is important, because most techniques for
avoiding bottlenecks trade one symptom for the other.

The rest of this section discusses several techniques that can be used to avoid bottlenecks:

Allowing multiple copies of TSTs

Adjusting TST priorities

Designing transactions with overlapped processing
Designing transactions with background processing

1934.1 Allowing Multiple Copies of TSTs — TRAX allows you to specify the number of TST copies that can
execute at the same time. You can set this number to one, so that arriving exchange messages process one by one.
Or, you can set this parameter to a higher number and allow several exchange messages to process in parallel.

With multiple TST copies, you can solve bottlenecks stemming from TST execution times; that is, bottlenecks that
arise because a TST cannot process exchange messages fast enough.

To use this technique effectively, you must be certain that:
® TST execution speed is the problem and not other program-delaying factors such as file access conflicts.

® Adequate resources are available to execute the copies of the TST without new conflicts such as conten-
tion for main memory or the central processor (CPU).

19-6

Designing and Specifying TSTs

The number of TST copies you allow will vary by the severity of the bottleneck and the system resources available.
For a severe bottleneck, you might set the parameter to a high number; but if many multiple copies cause problems
in the application, you might limit the parameter to a relatively small number — say two or four.

1934.2 Adjusting TST Priority — Another way of solving a TST bottleneck is to adjust the priority with which
that TST is executed.

Like the multiple-copies method (Section 19.3.4.1), this method is best for correcting bottlenecks stemming from
TST execution speed. Increasing the priority of a TST usually does not expedite its file accesses; the only effect
of an increased priority is in contention for main memory and other TST startup resources.

Remember: when you raise the priority of one TST, you do so at the expense of another. You cannot raise the
throughput of your application by adjusting TST priorities; you can only adjust the relative throughput of various
transactions.

193.4.3 Designing Transactions with Overlapped Processing — Section 14.2 describes the technique of over-
lapping the processing phase of one exchange and the conversational phase of the text. This technique often
improves the transaction response time seen by the user, but it cannot improve the throughput capability of the
application as a whole.

As you design the TSTs in those transactions that use overlapped processing, remember where they appear in the
transaction: are they executed before the exchange response message is sent or during the overlapped processing
after the message is sent? TSTs executing during the overlapped portion of an exchange must conform to special
restrictions, notably the restriction against issuing a response message.

Make sure that you understand the difference between sending a response message and terminating the TST.
Once you understand the consequences of each, communicate this understanding to your application programmers.

By using the overlapped processing technique, you can design transactions where the user’s conversation proceeds
ahead of the processing of his last input. But this overlap is limited to one conversational cycle. If the original
exchange’s processing is not finished when the user’s second set of input is ready, he cannot go to a third set of
input. He must wait until the processing of the first input is complete and the processing of the second set begins.

19.3.4.4 Designing Transactions with Background Processing — If one of your transactions demands extended
overlap or user entry of all data without waiting for processing to begin or terminate, you must use a background.
processing technique.

This technique divides a transaction into two parts:

1. An on-line transaction initiated by the user collects data and stores it temporarily.
2. A special transaction or a series of one or more support environment programs processes the stored data
later.

One use of the background-processing technique spawns a separate transaction instance to process the data. To
do this, you must design two transactions:

1. In the on-ine transaction that converses with the user to collect data, one TST issues a system call to
spawn the second transaction. The collected data can be passed in the spawned exchange message, in
a mailbox message, or in a file.

2. The TSTs in the second transaction retrieve the data and then process it. These TSTs cannot converse
with the user and are restricted to a “background” environment.

19-7

Designing and Specifying TSTs

This technique for background processing affects system performance like the simpler overlap technique (Section
19.3.4.3): the apparent response times are improved for the user, but the overall throughput of the application
cannot be improved.

Remember, too, that a design that allows the user to enter data faster than it can be processed seriously affects
application performance during busy periods. Be sure that this artificially high processing load does not exceed your
application’s processing capacity and create performance problems greater than those you are trying to avoid.

19.4 DOCUMENTING THE TST DESIGN

To document a TST design, write a specification for the processing flow. Because of the modular nature of TSTs
and the corresponding “perspective” (Section 19.1), you can describe processing for many TSTs in one or two
paragraphs. Such a specification, together with the relevant transaction structure diagram, is all that is normally
needed.

Some detailed documentation of TST processing may be required. A customer invoicing transaction, for example,
may require precise accounting procedures and methods for interest calculation. In these situations, you will
naturally supply formulas or detailed flowcharts of the relevant program segments. Remember: application
programmers are more comfortable with concepts described in algorithms, rather than in the formal language of
mathematics.

For instance, if a TST must compute an average (or mean), you should not write documentation for the application
programmer that looks like this:

n
S
S S where, X, is the nth list element and
n M is the mean of the list X, ..., X,

M

It is better to communicate concepts like these in algorithms:

“Determine the mean (or average) of the list of account balances by computing the sum of the balances
and then dividing the sum by the number of balances in the list.”

In general, you should not draw more than one uncrowded page of flowchart to describe any TST. (There are
exceptions, of course, for detailed computational procedures.) Any TST requiring more than one page of flowchart
should normally be divided into two or more TSTs, and the design of each transaction using that TST should be
modified to reflect the change.

Besides the processing flow documentation, you should give your application programmers documentation for
relevant transaction data structures. This includes exchange messages, response messages, other messages, and the
transaction workspace. Also include record layouts for each data file record accessed.

Be sure the application programmer knows what to do with these data structure formats. Be sure he knows when to
use working storage within his program for the storage of temporary results and when to place those results in the
transaction workspace instead. And be sure he knows which structures are initialized to known values and which
have unspecified contents when his TST begins execution.

Be careful to document situations where the TST alters data in the exchange message or transaction workspace for

processing at other stations. These data modifications will be important for proper operation of the transaction and
must be implemented to agree with your design.

198

Designing and Specifying TSTs

To minimize confusion, you should avoid changes to exchange messages except where necessary. Use the trans-
action workspace for communication between processing stations, not the exchange message. Then your application
programmers will access the exchange message in a read-only manner, and some application errors might be avoided.

Finally, include a TST specification sheet as a cover sheet for each TST documentation package (Figure 19-2). This
sheet shows the TST name, the associated TST station, and other parameters such as the maximum number of exe-
cuting copies and the execution priority. The application programmer uses this information when the TST and its
corresponding station are installed in the transaction processor.

19.5 CODING STANDARDS AND DEVELOPMENT TECHNIQUES

As the application designer, with responsibility for the successful implementation of an application, you should do
more than generate functional designs for each of the application TSTs. Take additional steps to ensure that the
TSTs can be implemented quickly, easily, and accurately. You can do this by suggesting coding standards and
development techniques in your TST design documentation.

Coding standards are rules of style for the programmer to use when writing programs. There are nearly infinite ways
to write a program. But only a few result in programs that are clear, easy to understand, and operationally correct.

Clear expression is of major importance in a commercial application program. Business requirements change fre-
quently, often faster than a data processing system can be changed. An obscure program takes more time and effort
to modify; and there is less chance that the modification will work properly.

Coding standards for your application programmers might include the following topics:

Conventions for naming data items

Guidelines for commenting programs

Guidelines for segmenting programs into elements like sections, paragraphs, and subroutines

Language features that should not be used

Guidelines for formatting program source text, like indentation and use of tabs

Guidelines for the treatment of complex conditional statements such as nested IF-THEN-ELSE statements
Hints for obtaining the maximum execution efficiency in the selected language

Carefully devised coding standards go hand in hand with optimum development techniques. The on-line debugging
features of BASIC-PLUS-2, for example, are most productive when your programmers have coded their programs in
a clear and straightforward style.

Development techniques you may want to suggest include:

® Developing program segments or subroutines which can be included in the source code of several TSTs.
(In COBOL, you can do this with the COPY statement or by using the text editor to include the selected
source text. In BASIC-PLUS-2, you can use the APPEND command or the text editor.) This technique is
particularly useful for transaction data structures (exchange message, response message, and transaction
workspace formats).

® Creating a “skeleton” program containing program overhead items. This is often useful when there are
several TSTs superficially similar but with somewhat different processing procedures. This includes major
headings for program sections, source code normally the same in all programs, and perhaps the definitions
of working storage variables and record formats for files. Each time a programmer begins work on a new
TST, he can take a copy of this “skeleton’ and then fill in the segments which are unique to his program.

Used appropriately, these techniques can significantly improve programmer productivity. They are most efficient,
of course, when they are used with sensible coding standards.

1999

Designing and Specifying TSTs

TST Name:

Input Object Modules:

Language:

Is there a resident OTS for the language?

Debug Mode?

TST SPECIFICATION SHEET
ITTTT 1« 1
mem——m—
(O (T, T T T T T 0]
[O,) (O . O 0]

[] -cosoL
[[] —s8AsIcPLUS-2
[] —™mAcro-11

] -ves
L] -no

[-
D — Transaction Processor (Device: [1 |] :)

D — Standalone {Initializing Module: ED:EI:E])

TST Name:

Input Object Modules:

Language?

Is there a resident OTS for the language?

Debug Mode?

(ITTTT]« 1

prmm—~——
(T) (T LT T]
{1
[] —cosoL

[] -BASsICPLUS-2
(] - macro-11

[] —YEs
[] -n~o

[1 e
l:] — Transaction Processor {Device: D:[:] :)
[] - standalone (Initializing Module: [_T_T T 1 T 1

TST Name:

Input Object Modules:

Language:

Is there a resident QTS for the language?

Debug Mode?

[(TTTTT 1« |

pm—e—
OO T T
O,) OO T Tk O]

(] —coseoL
(1 —seaAsic-PLUS2
(] —mAcRo-11

[] -Yes
[] —nNoO
D — No

[[] — Transaction Processor (Device: (T)
I:] — Standalone (Initializing Module: ':ED:D:I)

Figure 19-2 TST Specification Sheet

19-10

CHAPTER 20
TST DESIGN EXAMPLES

Three examples of TST design are presented in this chapter. Each example includes the documentation an applica-
tion designer would supply to the application programmer as well as the source code that the programmer would
generate. The source code is included so you can compare the design specifications with the finished TST.

The three TSTs in these examples are from the change customer transaction in the TRAX Sample Application.

This transaction’s forms were discussed in Chapter 18. The transaction structure diagram for this transaction is
shown in Figure 18-1; it is normally included in the documentation for the programmer, although it is not reproduced
in this chapter.

NOTE
The transaction structure diagram (Figure 18-1) calls.for
records to be locked across exchange boundaries. This'is
acceptable because in this application conflicts over cus-
tomer records are unlikely. In a complex application, a
more sophisticated approach to record sharing is neces-

sary.

20.1 THE RDCUST TST
Together with the transaction structure diagram (Figure 18-1) the following figures comprise the documentation
needed by an application programmer to write the RDCUST TST.

® RDCUST TST Specification Sheet Figure 20-1
® Description of RDCUST TST Purpose and Processing Figure 20-2
® Exchange Message Format Figure 18-2
® REPLY Message Format Figure 18-3
® PRCEED Message Format Figure 184
® Customer Record Format , Figure 22-1

The finished TST is shown on pages 20-3 through 20-11.

20-1

TST Design Examples

TST SPECIFICATION SHEET

TST Name:

Input Object Modules:

Language:

Is there a resident OTS for the language?

Debug Mode?

[RD[CIU[S]T = ,

rmm—~—
[SI¥I J:{ (1 _17].(3[ele] | (RIBICIUISIT]. [FTSIK):]
snnianniaan]aeenaniseninn
- COBOL

[[] -BAsicpLUS-2
[] - wmacro-1

— YES
[] -n~o

o
D — Transaction Processor (Device: L1 1)
r__] — Standalone (Initializing Module: I:D:D:D)

Figure 20-1

READ TST Specification Sheet

customer transaction.

If the read operation

The RDCUST TST is the only TST in the first exchange of the change

customer via the exchange message and attempts to read the corre-
sponding record from the customer file.

If the read operation is successful, the TST formats the data into

punctuated display format (that is, ready for display on the terminal
screen) and sends it back in a PRCEED response message.

message in a REPLY response message. This message is sent as reply 1.

It receives the identification number of a

is not successful, the TST returns an error

Figure 20-2 Description of RDCUST TST Purpose and Processing

20-2

TST Design Examples

COROL 3,75 SRCe~DCUST,CHL:7 13=JUL=78 {2:11@234v PAGE 001

CMD*ROCUST,rDCUST=RICUST/TST
IPEMNT: 19412t

2P0l IPE"TIFICATION QIVISIOrn,

@C‘@Aa IR 2 R R R R LR R RS RS RRARRS X2 RSS2SR RS20 R2d 222 R 202222 K
m0dl * *
amaad * TS§T DESCRIPTION *
arevs * *
A”PRe I AR AR KRR AN AR KRR N RN AR AR R AR AN R AR AR AR AR AR AA A AR AR RNRAR
uee7 *

7”908 * TST NAMED ®RDCUST

ARQ09 *

ovein * TRANSACTIO~s CHGCUS = CHANGE CUSTOMER RECORD

orQ1 *

amei2 * FUNCTIOnN: THIS TST ACCEPTS A CUSTOMER NUMBER SUPPLIED
emeyl * 8Y THE TERMINAL OPERATOR AND USES IT TO FETCH
e * DESIRED RECORD FROM THE CUSTOMER MASTER FILE,
ene1s * NREN IT FINDS IT, THE DATA IS FORMATTED AND SENT
290216 * TO THE SECOND EXCHANGE BY USE OF A PROCEED
one1y * HESSAGE,

AnQ18 *

2nQ19 * FILES? CUSTOMER MASTER FILE "CUSTOM,DAT®

2ngeo *

grpel * INPUT FCORMg CHCUS1 = SUPPLY CUSTOMER NUMBER TO FETCH RECORD
anpe2 *

en@2l * CUTPUT FORM: (CHCUS2 = DISPLAY AND EDIT CUSTOMER DATA,
onp24 *

gme2s *

eang2e *

on27 2y e R R R SR IR]
0v028
corOL 3,05 SRCEIRDCUST,CRL:7 13=JUL=78 123110142 PAGE 002
27029 IR R AR AR NNk A R AN AR A AR R AN R RN RN R AR RN R AR RN AR AR AR AR A RN SR
ane3Q *
Anell * THE *
gnal3e » ®
2»033 * IDCENTIFICATION DIVISION *
And3y * "
AmRA35 bd *
27236 I 222 R R R R R R R e R Y X 2 R R T Y T 2 R Y
2ma37

2nQ38 PROGrAM=ID, TSTEP,

27039 DATE«.COMPILED, TODAY,

20040

20-3

TST Design Examples

coRQL, 3,05 SRC:rDCULST, Crl ;7 13=JUL=78 12112340 PAGE 233

Aol I} VA2 2R R 2R RS SRR R 2R 22 RAR 2 AR RS2 2 a2 2220 td]]
2ng42 *
ana43 * T HE L
37044 * "
R4S * ENVIRDInN™ENT DIVISION *
enade * L]
onpay * *
ene48 AR E AR KRR R R AN R AR KA RR AR A AR TR R AR N RN AR RN R ARA RN N RRRR R KRR
@anau9

arasg 13=JUulL=78 ,

22051 ENVIRONMENT OIVISION,

ares2 CONFIGURATION SECTIOw,

an@s3 SCURCE=CUMPUTER, PDP=i1,

oves54 GBJECT=COMPUTER, PDP=1},

pm@sSsS

anesSe AR AR AR AR F R AR AR R AR AN AR AR AR R A RARNRRANNR RN R RRRA AR RN RN AR
avRAs? * *
2Pas58 * INPLULT=0UTPUT SECTION *
enese * *
27060 AR A RN AR RN R R R AR R AN N AR AN RN RN AR AP ANR A RRRNR AR A AR RRRANRARNARR
" 1" I- 3}

orge2 INFUT-OUTPUT SECTION,

27@63

gnas64 FILE=CONTROL,

2nB65

2rR66 SELECT CUSTOM ASSIGN TO "CUSTOM,DAT®

eep67 ORGANIZATION IS INDEXED

pe068 ACCESS #ODE IS DYNAMIC

2ne69 RECORD KEY IS CuSTOMER=NUMBER

pea70 ALTERNATE RECORD KEY IS CUSTOMER=NAME WITH DUPLICATES
enavy FILE STATUS IS CUSTOMER=FILE=STATUS,

ga@ve

204

coroL

ana7l
enevy
ApTs
ArBT 6
e»e77
Anp78
arere
negae
o7e8l
aneae
ner283
2rOBU
ANges
22286
ene8?
anpnas
@ar 286
proon
angal
Ppn392
2n293
20P94
gr09s
2ne9e
on@a9?
20098
27099
eniee
griey
grige
02123
feniodu
gei1es
0106
enia7
LY 1]
gni@e
eniio
gnity
geyie
gny13
eei114
ge1is
oniie6
evi17
gni18
eo119
goiep
ewi2l
gei2e
gei123
eni24
ge12s
geieé
eni127
ee128
ee129
en130

3.5

IST Design Examples

SPCew{CUST , CrbL:7 13«JuUL=78 12:1Qt402 PAGE 284

22X 22222222 322222 X222 23 22222222223 2X22232X22221223223
* 1
* THE *
* *
* foa T A P IVISION *
* *
* |
12 2 2 F 2R B E R Z R 222 RS R SR R R 2 ZRE 22232222233 X X222 S22 2 223

DATa DIVISICH,

KRN RN R AR A R R A AR AR R AT R RN RN AR AN AN RN RN A ARRR RN R AR R A RRN RN RN

* -
* FITLE SECTION *
* *

(22 E RS2SRSS 2222222222222 22232222238 222 222282222822 8222}
FILE SECTICHM,
FD CUSTUM
L2BEL RECCRDS ARE STANDARD
VALUE QF ID IS CUSTOM=CHANNEL=NUMBER
DATA WECCRD 1S CUSTOMER=FILE-RECORD,

81 CUSTOMER-FILE=RECOKRD,

23 CUSTOMER=NUMBER PIC X(6),

¢3 CUSTUMER=NANME PIC X(3@),

23 ADDRESS=LINE=} PIC X(3@),

23 ADDRESS=LINE=2 PIC X(33),

?3 ADDRESS=LINE=3 PIC X(32),

¢3 ADORESS«=ZIP=CODE PIC 9(%5),

23 TELEPHONE=NUMBER PIC 9(12),

33 ATTENTION=LINE PIC x(2®),

23 CREDIT=_IMIT=AMOUNT PIC 9(1@)V99,
#3 CURRENT=BALANCE PIC 9(10)Vv99,
23 PURCHASES=YTD PIC 9(18)V99,
93 NEXT«ORDER=SEQUENCE=NUMBER PIC 9(4),

23 NEXT=PAYMENT=SEQUENCE=NUMBER PIC 9(4),

AR AR AR N AR AR R AR RN AR TR RRARRNNAR AR AR AR RN RAARN RN RN

* *
» WORXKING=STORAGE SECTION *
* *

R I I e e R T T R T Y T
WORKING=STORAGE SECTION,

R e T e]

* FILE CHANNELS "

(IR E R R S22 R 2222 22 R A X0 2 28 a8 22 022 1)]

@] CUSTOM=CHANNEL=NUMBER PIC x(11)
VALUE IS "CUSTOM/Cwel%,

20-5

COoROL

emi31
em132
133
2n134
ar13sS
87136
27137
gn138
Br139
gatde
Bmiat
er142
Ar143
eniuy
An145S
aniue
aniar
LB YY)
peiu9
paise
gri151
pn1Se
am1S3
egnisSd
aniss
er1S6
evis7
@r158
gni159
aArnibo
peibg
gri62
27163
07164
@n16S
pe166
Pn167
ari68
@n169
anire

B.ES

SRCinDCUST,CELST

TST Design Examples

13=Jul~78

128102340 FPAGE @25

[2222222 2 RS 2R R RS2 R SR R R R NSRS 222222 2222222222 222 RS)

* F1uE

ST AT US

W A MES

*

I ZE IR N AR R R R R R R RS RS AR 2SS R2 SRS 2222222222022

ol FILE=STATUS=

?1 CUSTUMER=FIJL

~ R0

E=STATUS

PIC XX,

PIC XX,

AR AR R A AR R R RN N AR AR AR KA AR AR A NN R IR AR AR R IR AR R RN AR AR AN

* MES S A

G €

ARGUMENTS

I 2222223 2232 32 RS S22 2222 X22 223 2RSSR SRS SRR3R 22 2 28}
PIC 9999 COMP,

@1 BUFFER«SIZE
71 STATUSewCROS

v3 STATUSew
73 STATUSew

#1 REPLY=HUMBER

vl PRUCEED=“ESS

ORD=1
GRDO=2

AGE=BUFFER,

v2 FRv=CUSTOMER=FILE=RECORD,

23
23
vl
@v3
23
23
23
r3
23
¢l REPLY-MESSAG

©3 REPLYeME
¢3 REPLY=FI

RMeCUSTOMER=NUMBER
RHeCUSTOMER=NAME
RMeADDRESS=L INE=]
RMe ADDRESS=L INE=2
RMeADDRESS=L INE=3
RMeACDRESS=ZIP«CODE
RM=TELEPHONE=NUMBER
RM=ATTENTIONeL INE

QM-CREDIT-LIMIT-AMOUNT

E=BUFFER,
SSAGE=TEXT
LLER

PIC S9(4) COMP,
PIC 89(4) COmP,

PIC 89(4) COMP,

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC x(8@),
PIC Xx(18)

VALUE I8 "F{le Status wWord: ",

@3 RMB=FSw
43 RMS=FILE

=NAME

20-6

PIC X(2),
PIC Xx(60),

X(e),

X(38),
X(38),
Xx(3ej,
X(3e),
9(s),

9(10),
x(ae),

PIC 2,212,221,99,

TST Design Examples

LorOL 3,¢8 SRCEIRDCUBT 4L 37 13=JuUL=78 {2t1224» PAGE 206
2”171 EX R IR R R R s T R X R R TR R L
ar172 * *
r173 * LI NK AGE SECTION *
art{T4 * *
Zs’.“l7s 22 R R R EEZZZ SRS RER RS RS SZASS NS IS SRSS RSS2SR R X222 2
w176
177 LINKAGE SECTIOM,
72178
Ar179 12X 2T ME S S AGE L2222
ari182
27181 el EXCHANGE=ESSAGE,
ani82
pnis3 w2 EreliPUTeFLURM=CHCUSY,
2n184
an185 w3 EMeCUSTOMER«NUMBER PIC X(6),
2»186
an187
o188 LA AR W OR K S P ACE LR L
on189
geion 91 TRANSACTIOw=WwORKSPACE,
en19}
gwri92
gni93 w2 wWS=CUSTOMER-FILE=RECORD,
0a194
Pn198 V3 WwS=CUSTOMER=NUMBER PIC x(6),
ani19e6 23 wS=CUSTOMER=NAME PIC Xx(30),
22197 v3 wS=ADDRESS=[INE=] PIC x(32),
P»198 23 #S~ADDRESS~LINEw? PIC x(30),
27199 3 wS=ADDRESS=LINE=] PIC x(3@2),
272009 A3 wSeADDRESS=ZIP=CODE PIC 9(S),
Qe2od 43 wWS-TELEPHONE=~NUMBER PIC 9(12),
en2ae ¥3 WS=ATTENTIONeLINE PIC x(2@),
en2e3 ¢3 wS=CREDIT=_IMIT=AMOUNT PIC 9(1!IV99.
go2ady 23 wWS=CURRENTeBALANCE PIC 9(108)Vv99,
pn2es #3 WS=PURCHASES=YTD PIC 9(12)V99,
aP206 ?3 WSeNEXT=ORDER«SEQUENCE=NUM PIC 9¢4),
gvee? 23 wWSeNEXTePAYMENT«SEQUENCE=NUM PIC 9¢4),
on208
g0209 AR AR AN R AR RN RN AN A AR R R TN AR AN AR AR RN AN RN RRAR R RN AR R RRRRR AR RN
pe210 * *
pe211 L T HE "
gm212 * *
omelld * PROCEDURE DIVISTION L
eo214 * »
omeis Ty I I T R R R R R R R R R R I R e R R R RS R R RS 222221
po21é
00217 PROCEDURE DIVISION USING EXCHANGE=MESSAGE, TRANSACTION=WORKSPACE,
ge218
peelse DECLARATIVES,
gee20 T I A R I I T s I IS
00221 L I=0 ERROR STATUS RETURN SECTION *
gnee2? L "
LY}] * THIS SECTION IS INVOKED AFTER THE OPERATING SYSTEM -
@e224 * HAS DETECTED SOME FORM OF =0 ERROR, THE FILE=STATUS w
onges * WORD 18 EXAMINED BY THE ROUTINE, AND AN APPROPRIATE *
g9226 * ERROR MESSAGE IS FORMATTED AND PLACED INTO THE REPLY
go22? * MESSAGE BUFFER, THE GO TO SELECTS THE DESIRED ACTION «
on228 * THAT FOLLOWS, TWO CASES CURRENTLY EXIST, THE REPLY L]

20-7

TST Design Examples

COROL 3,05 SXCSANCUST, CBLYT7 13=-JUL=78 (211€142 PAGE 207

pr229 * HESSAGE wmICr RESTARTS THE CURRENT EXCHANGE AND SHOWS w
pr23e * THE ERRCONEOUS DATA UM THE OPERATOR’S SCREEN, AND THE =
gr23y * ABRORT REPLY MESSAGE WHICH CAUSES THE CURRENT TRANSACTew
w232 * TuN 1O RE ARQORTED wHEN & SEVERE ERROR IS ENCOUNTERED =
an23% * arD KECCVERY IS IMPQOSSISLE, *
GV’ZSU 1 2222222222323 2232223332222 32X 2222233322323 2222322223221 1)]
r23s

gu23e I=0=ERRONK SECTION,

n237 USE AFTER STaNDAXD ERROR PROCEODURE ON CUSTOM,

Qn23e CHECK=FLE=STATUS=CODE,

27239

pveue “AYE CUSTUMER=FILE=STATUS TQ FILE=STATUS=WORD,RMB=FSNW,
gnaay FOVE " Logical File Names CUSTOM «CH3" 71O

ov24e FMBeF JLE=NAME,

pra43

gn244y IF FILE=STATUS=AORD IS EQUAL TO "i@"

Pr245S MOVE "Reached End=of=Fi{le"

gn24e 1O REPLY=MESSAGETEXT

ar2u? GO TO SENDeREPLY=MESSAGE,

2r248

er249 IF FILE=STATUS=WORD IS EQUAL TO m2i"

Qu2se MCVE "Primary Key Seauence Error on WRITE"

2n2sy TO REPLY=MESSAGE=TEXT

r2se GO TO SENDeABORT~MESSAGE,

oam2s3

2n254d IF FILE«STATUS=WORD IS EQUAL TO me2"

@v2ss MOVE "Duplicete Key Error"

9256 TO REPLY=MESSAGE=TEXT

en2s? GO TO SEND=ABORT=MESSAGE,

on2ss

29259 IF FILE=STATUSenwORD IS EQUAL TO ®23"

en260 MOVE "No Record Exists under that Key"

po2s!l 70 REPLY=MESSAGE=TEXT

"1 LY GO TO SEND=REPLY=MESSAGE,

00263

ar26u IF FILE«STATUS=WORD IS EQUAL TO ®24"

08265 MOVE "Boundary Error on Write Statement”

or266b TC REPLY=MESSAGETEXT

ge267 GO TO SEND=ABORT-MESSAGE,

en268

on269 IF FILE=STATUS=WORD IS EQUAL TO "3@"

en27e MOVE "Unspecif{ed I/0 Error"

on271 TO REPLY«MESSAGE=TEXT

gne7e GO TO SEND=ABORT«MESSAGE,

o2273

pe274 1F FILE=STATUS=WORD IS EQUAL TO "34"

en27s MOVE "Permanent Boundary Error on WRITE Statement”
ee27e TO REPLY*MESSAGE=TEXT '
an271? GO TO SEND=ABORTeMESSAGE,

en278

@aner9 IF FILE=STATUS=wWORD IS EQUAL TO "og"

pn280 MOVE "F{le locked by anothepr task"

pe281 TO REPLY=MESSAGE=TEXT

pn282 GO TO SEND=REPLY=MESSAGE,

on283

gn284y IF FILE=STATUS=w(ORD IS EQUAL TQ "92"

2n285 MOVE "The Record you wanted {»

Pn286 - " locked by another user, You may press CLOSE to exit,

20-8

LOROL

anea7
V288
37289
aAn299
are9t
ane9e
Qw293
on29y
pn295
27296
82297
27298
An299
anlee
em3ay
ar3a2
¥9n3al
ar30d
223e5
27306
2m327
an3a8
2n3a9
an31a
2am311
en34ie
27313
pel3ty
gn3i1sS
Rr31é
21317
on318
on3Le
onl32o
fnl2y
onl2e
em323
pn32u
gn3es
pn326
ee327
pn3es
om329
en330
on33y
on332
2n333
eo334
ee335
on33s
20337
20338
27339
Pu34e
2034y
29342
29343
on344

cOosoL

29345
28346
02347
oe348

3.,v3

3,05

TST Design Examples

SECredcusT.CoL? 13=JUL=7R 1211us4¢ PAGE 808
" or you rey vait anc cress ENTER to try sgain,”

TO REPLY=*£SSAGE=AUFFE,
50 TO SE~DeREFLY=rESSAGE,

1% FILE=STATuS=raI%D 15 EQual TG "93"

vl "WEARITE or DELETE attempteo without prior

"4t AL peimg rerformea,"
15 REPLY=MESSAGE=TEXT
60 TQ SEND=REPLY=“ESSAGE,

IF FILE=STATYSen{IRC IS EwUAL TO "Qqut
~JVE "Improper cperstion attempted"
TC RELPLY®MESSAGE=TEXT
L TC SEXND=ARQORT=MESSAGE,

IF FILFPe3T2TUS=wURD IS byijAL TG "9ST

~QvE "Allocation Failure = Mo space on device"

TC REPLY=MESSAGE=TEXT
LY Te SENO=aBORT«MESSAGE,

IF FILE=STATUS=vQRC IS ERUAL TU "9eY

“OVE "NOo buffer space = SAME AREA slready in use"

TG REPLY=MESSAGE=TEXT
G TO SEND=ABOKRT=MESSAGE,

IF FILE=STATUS=WORD IS EGuAL TQ "Q7v
MCVE "Uneble to fimo file nameds"
TO REPLY=MESSAGE=TEXT
GO TOQ SEnND=ABORT-MESSAGE,

IF FILE=STaTuS~wORD IS ERUAL TQ %qan
“OVE "Frror while attempting to CLOSE fi{le,"
TO REPLY=MESSAGE=TEXT
GO TO SEND=ABORTeMESSAGE,

MOVE "UNKNOWN I=0 ERKOR" TQ REPLY=MESSAGE=TEXT
MOVE FILE=STATUSeWORL TO RMBeFSW,
GO TO SEND=ABORT=MESSAGE,

SENU=REPLY=MESSAGE,

MOVE 16® TO BUFFER=SIZE

MOVE 2 TU REPLY=NUMBER

CALL "REPLY" USING
REPLY=MESSAGE=BUFFER,
BUFFER=SIZE,
REPLY=NUMBER,
STATUS=WJRDS,

GO TO ENU=ERROR=SECTION,

SEND=ABORTeMESSAGE,
MOVE 162 TO BUFFER=SIZE

MOVE 2 TO REPLY=NUMBER
CAaLL "ABORT" USING

REPLY=MESSAGE=BUFFER
BUFFER-S[ZE
REPLY=NUMBER
SRCIRDCUST,CBLp? 13=JULe78 12112140 PAGE @09
STATUS«wORDS,

ENDO~ERROReSECTION,
END DECLARATIVES,

20-9

CoRrOL

Pnr349
2e350
an3st
an352
an3s3
7354
an3ssS
2”356
am3s57
gr3Sa
pr359
er3e
pe361
7362
07363
ar364
2» 365
an3es
pn367
”368
27369
2n3718
n3714
w372
Qu373
ge374
en37s
29376
en377
m378
en379
gelap
Pm381
ge382
gn383
2n384
en385
9386
0387
gn388
22389
2r390
02391
pm392
Pn393
Bn39y
00395
an39¢6
9n397
pn398
28399
ge400
LYK
LY
en403
ondd
29405
pr4oe

3,69

TST Design Examples

SRCIRCCUST . CxL 37 13«JUL=78 12110140 PAGE 010

VA2 R Z 2R R 2 R R R 2 22 SRR 222 SRR RS22 RS R2R]}

*
*
&*

MalnN PRUCESSING ROUTINE

»
*
®

I L E R 2RSS AR R RS2 S RSS2 2R 222022 R R 20 RS]

MAJN=TST=ROUTINE SECTION,

READ=CUSTOMER=RECORD,

“QVE "g4" TO FILE=STATUS=KORD,

UPEN INPUT CUSTOM™,
IF CUSTOMER=FILE=STATUS IS GREATER THAN "@9"
GO TO END=PROGRAM,

IF EmmCUSTUMER=NUMEER 1S > "2000020"
GO TO KEY=DK,
“OVE 162 TO BUFFER=SIZE,
MOVE "You Specified am Invalid Customer ID #"
T0 REPLY«MESSAGE=BUFFER,
m»OVE 2 YO REPLY=NUMBER,
CALL "REPLY" USING REPLY*MESSAGE=~BUFFER,
BUFFER=SIZE,
REPLY=NUMBER,
STATUS=WORDS,
GO TO END=PROGRAM,

KEY'CK-

MOVE EM=CUSTOMEReNUMBER TO CUSTOMER=NUMBER,

READ WITH LOCK CUSTOM RECORD,

IF CUSTOMER=FILE=STATUS IS EQUAL TO "92" AND
FILE=STATUS=wORD IS EQUAL TO "@@" GO TO LOCKED=RECORD,
IF CUSTOMER=FILE=STATUS IS GREATER THAN mQ9"

GO TO END=PROGRAM,

MOVE CUSTOMER=FILE=RECORD TO WS«CUSTOMER=FILE=RECORD,

MOVE CUSTOMER=NUMBER TO RM=CUSTOMEReNUMBER,

MOVE CUSTOMER=NAME TO RM=CUSTOMER=NAME,

MOVE ADDRESS=LINE=] TO RM=ADDRESSelLINE={,

MOVE ADDRESSe=LINE«2 TO RM=ADDRESS«LINE~2,

MOVE ADDRESS#LINE=3 TC RM=ADDRESS=LINE=3,

MOVE ADDRESS=ZIP«CODE TO RMeADDRESS=ZIP=CODE,

MOVE TELEPHONE«NUMBER TO RM=TELEPHONE=NUMBER,

MOVE ATTENTIONeLINE TO RMeATTENTION=LINE,

MOVE CREDITeLIMIT=AMOUNY TO RM=CREDIT=LIMIT«AMOUNT,

MOVE 173 TO BUFFER=SIZE,

CALL "PRCEED"™ USING PROCEEDeMESSAGE=BUFFER,
BUFFER=SIZE,
STATUS=WORDS,

GO TO END=PROGRAM,

LOCKED=RECORD,

MOVE "The Recora vyou wanted {s

20-10

TST Design Examples

comOL 3,05 SRCIRDCUST,CBL17 13=JUL=78 12310840 PAGE 011
or407 - " locked by another user, You may press CLOSE to exit,
PP408 - " or you may wait and press ENTER to try again,"
geuQ9 TO REPLY=MESSAGE=BUFFER,

20410

LB EY mMOVE 160 TO BUFFER=SIZE,

Bmgye MOVE 2 TO REPLYeNUMBER,

en413

LY CALL "REPLY"™ USING

#9415 REPLY=MESSAGE=BUFFER,
gedls BUFFER=SIZE,

gedly REPLY=NUMBER,

poule STATUS=WORDS,

8n419

cOosOL 3,05 SRCIRDCUST,.CBL1T 13=JUL=78 128121402 PAGE 012
An420 22y R R A R Y Y e s R R X2 2224222¢%]
pey2y * *
o422 * END PROGR AN SECTION .
Pn423 - *
Gﬂaza LA Z SRR R0 R 2 2 2220222232232 23232 322222222]
gedes
pe42e6 END=PROGRAM-SECTION SECTION,

BauR?

ge4es ENC=PROGRAM,
1Pl

gnule EXIT PROGRAM,

20-11

TST Design Examples

20.2 THE VALIDC TST
Together with the transaction structure diagram (Figure 18-1), the following figures comprise the documentation
needed by an application programmer to write the VALIDC TST.

® VALIDC TST Specification Sheet Figure 20-3
® Description of VALIDC TST Purpose and Processing Figure 204
® Exchange Message Format Figure 18-5
® REPLY Message Format Figure 18-6
® Transaction Workspace Format Figure 20-5

The finished TST is shown on pages 20-14 through 20-19.

TST SPECIFICATION SHEET

TST Name: IIE (

U S
Input Object Modules: [sIY[J:[(1111, (3[0l0] | (VIATL [T o]] (FTSIKL (1]
munijaaniann]aensanisNNinn
Language: — COBOL

[] -BAsicPLUS-2
[[] —mAcro-11

Is there a resident QTS for the fanguage? —~ YES
O -no
Debug Mode? — No

D — Transaction Processor (Device: D:D 1)
[] — standalone (lnitializing Module: DIEED)

Figure 20-3 VALIDC TST Specification Sheet

The VALIDC TST is the first of two TSTs in the second exchange of
the change customer transaction. It receives the updated customer data
via the exchange message and checks the data entered by the user for
consistency and proper format. During this process, the TST moves the
data from its punctuated form in the exchange message to its non-
punctuated form in the transaction workspace. From there, the second
TST writes it back into the file.

If there is a format error in the user data, the VALIDC TST issues a
REPLY response message containing an error message. This message is
sent as reply 1. The VALIDC TST then deletes the second TST from
the exchange routing list (assuring that incorrect data is not written
into the file) and terminates.

Figure 204 Description of VALIDC TST Purpose and Processing

20-12

TST Design Examples

TRANSACTION WORKSPACE SPECIFICATION SHEET

Transaction Processor Bmﬂﬂ
Transaction Name EIB

Field No. Starting Byte Length (Bytes) Contents
1 1 6 Customer Number
2 7 30 Customer Name
3 37 30 Address Line One
4 67 30 Address Line Two
5 97 30 Address Line Three
6 127 5 Zip Code
7 132 10 Telephone Number
8 142 20 Attention — Of
9 162 12 Credit Limit (9(10)v99)
10 174 12 Current Balance (9(10)V99)
11 186 12 Purchases Y-T-D {9(10)V99)
12 198 4 Next Order Sequence Number
13 202 4 Next Payment Sequence Number
14
15
16
17
18
19
20
21
22
23
24
25

Figure 20-5 Transaction Workspace Format for Change Customer Transaction

20-13

TST Design Examples

LoRNL 3,5 sRCtvalLIvC,CrLe S 13=Jul=«78 12114226 PAGE 401

CMDeVALJLC, v 2L Cavoel TOC/TST
INENT: 190122 .

U Jol el 1T TIFICaTINr DIVISLON,

ARPRD I R R R e RS RSS2 2 Y]
Jupgal * *
AuFaL * TST 2 ES§CRIPTION "
PGS % *
AAJAn IS R RS R R R LR R R R R R R TSR R RS X2 2]
enp a7 *

P70y8 * TST as-g3 validC

d72AL9 *

LRIV E B * TRaNSACTIG~: CHENGE CUSTOMER RECORD (CHGCUS)

Pnall *

prg12 * FuUnCTICN: ACCEPT INPUYT ODATA REFLECTING TERMINAL OPER=
Ara1y * ATGR?S EDIT OF 91D CUSTOMER RECORD DATA,
ereld * PERFOR™S EDITING ON DECIMAL FIELDS, AND
ara1s * PERFORMS ERRCR CHECKING 0On KNOWN FIELD

erRe16 ® STRUCTURES, VALIDATED AMD EDITED DATA IS
aeey7 * PLACED In THE wORKSPACE FOUR LATER PROCESSING
27018 * BY THE "REARIT" TST wWhICH UPDATES THE

27219 * CuSTO~Er MASTER FILE,

aueze *

gre2l * [MFUT FCR™: (r~CUS2 = CHANGE CUSTOMER DATA #2 = EDIT RECORD
are2e *

21p23 x GUTPUT FORw: NOKE = EXCEPT REPLIES IN CASE OF ERROR,
onazu *

an@es KA R AR kN kA A kAR N R RN AR T AR R AR R IR AR R AN AR RN RN R A RN AR N A N R AR AR ARR
onpce

gre27

20-14

LOROL

Qry2R
ARU29
aneldp
Aareldl
are32
orelly
Arerdy
amre3s
anral3e
are37
nupla
rnep39

coRrOL

Ardue
[1d'd'S
ArAue
27043
pr2ad
aureus
Araue
2mau7
AnpL8
anpy49
auasa
Pvest
gamase
An@s3
27US4y
Aress

3,75

3.75%

IST Design Examples

Televar T .C,0nledS 13=JuyLe78 12314326 PAGE Q02

/R AR AR R E R AR AR AN AN AR R AR AR A AN R AR AN AR AT RN ARNRR SRR AN RNk

* *
* "
* *
* 1 8~ T1F1CATITION vIVISION *
" *
* *
* *

AR AR R AN RN R A AN RN AR AR RN AR KRR AR AR RN IR AN AR kR Ak
FRi,GRA»=]1d, TSTEP,
CHTRE=CCMPILED, TUDAY,
SHTtvALINC,Ci LS | 13=JulL=78 12314226 PAGE 003
T T e T T E R P AR T T P P T I T
T HE

" *
™ *
* *
» BN /4 I R ONMENT DI VISION *
» *
* *
* %

L R 22 RS R SRS PR R R RS R RSS2 22222222220 R]

13=-Juti=78 ,
EXvTRONMENT LIVISIOAN,
CONFIGLRATION SECTIOH,
SOURCE=COMPUTER, POP=it,
URJECT=COMPUTER, PDP=11l,

20-15

COROL

27256
amns7
21UAs58
@res9
arpez
ArA61
arpe2
27263
gnaed
araes
an@aes
anper
P68
2”969
2na70
ere71
aee7e
22073
gea7d
are7s
2R 76
ene7?
2np78
aua7e
o080
AvR81L
or082
ores3
ovesy
or285
anp8é
ovue8?
P88
Prmp89
podoe
Bvp91
ene9e
er@93
ore9y
ome9s
20096
aArQ9?
onpe9s

3,05

TST Design Examples

SPCsvaLIvCc,CuL;sS 13=JUL=78 12314326 PAGE 004

AZE AR R XY 2 R R 2 R R R N T S NS XS 22SRS S22 222 22222 2
* *
* T HE »
* *
* C AT A OI Vv I1ISION "
* *
* w
ttttt*ittttttt**tttt****tt*tlt*iitttt**tt**tt**i*i*ittﬁ***tf

DeTs 2IvIS1ON,

(282 XS AR RS2 22222222 R 222222 222222 22 28]

* *
" » kK]I NGewSTORAGE SECTTION "
* *

(2R 2SR 22S2sR Rt tRRRR222222 22 2222282022222 2 R 2R

WORKING=STGURAGE SECTION,

IR R R RS 22 SRR SRR R AR 220222 SRR 2220222 R 220ttt

* MESSAGE ARGUMENTS *
AR X222 SRS 2RSSR AR 2R R 2RSSR RS2 2220222222322]
61 BUFFEReSIZE PIC 9999 COMP,

A1 STATUS=WORCS,

73 STATUS=wQRD=} PIC 89(4) COMP,
23 STATUS=WORD=2 PIC $9(4) COMP,
@1 FEPLY«NUMBER PIC S9(4) COMP,
2] REPLY-MESSAGE=BUFFER PIC X(160),
#1 FORMAT-BUFFER PIC §9(12)v9(e)

SIGN LEADING SEPARATE CHARACTER,

@1 FORMATBUFFER=LENGTH PIC 9(3) COMP
VALUE IS 12,

21 FORMATeSTATUS PIC 9(3) COMP,

20-16

corOL

Pm099
enion
gri21}
er1ae2
arigl
1. BY’1]
eni1@s
eatade
aniay
@gnio8
gr1@9
peiio
en1i1
eni12
on113
eei14
gm11s
amile
ev11?
ea118
@99119
enizo
ent2}
pel2e
emiel
pri2d
pwi12s
pni2e
pei2?
em128
en129
pnile
2913}
m132
ge133
22134
Pn13%
pn136
o0137
ge138
eni139
gold4o
gol4l
ert42
ee143
om144
Pa14S
LAY

3.25

SRCIVALIDC,CBL:S

TST Design Examples

13«JuUL=78 128314126 PAGE 205

Ik Rk A AR kRN AR R A RNN RN A AT ARRA R RN R RN A RAR AN NR IR AN RARNS

*
*
»

LI NKAGE SECTION

*
»
*

(1222 SR e AR A RS SSS 222 RS2 R A2 2 22X 2 22t]]

LINKAGE SECTION,

213 L]
¥l EXCHANGE=MES
P2 EM=INPUT

¢3
23
23
23
a3
23
63
23
43

Rk

MES S AGE
SAGE,
«FORM=CHCUSZ2,

EMaCUSTOMER=NUMBER
EMaCUSTOMER=NAME
EM=ADDRESS=L INE=]
EMesADDRESSeLINE=?
EMmADDRESS=LINE=3
EM=ADDRESS«ZIP=CODE
EMeTELEPHONE=NUMBER
EMeATTENTION=L INE
EMaCREDITe{ IMIT=AMOUNT

» 0 RKSPACE

21 TRANSACTION=WORKSPACE,

P2 WS=CUSTOMER=FILE=RECORD,

o3
03
03
23
23
e3
03
23
23
©3
23
23
23

WS=CUSTOMER=NUMBER
WSeCUSTOMER=NAME
W8eADDRESS=LINE=]
W8=ADDRESS=LINE=2
WS=ADDRESS=LINE=3
WS=ADDRESS=Z1P=CODE
WS=TELEPHONEwNUMBER
W8=ATTENTION=_INE
WSeCREDITe IMIT=AMOUNT
WS=CURRENT=BALANCE
WS=PURCHASES=YTD
#3=NEXT=0RDER=SEGUENCE=NUM
WSeNEXT=PAYMENT=SEQUENCE=NUM

20-17

L84 2 1]

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(6),

x(30),
x(30),
x(30),
x(3e),
x(8),

x(i®),
x(29),
x(12),

LA 2 2]

PIC
PIC
21
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
RPIC
PIC

x(e),
x(38),
x(ia),
x(3e),
x(3e),
9¢(s),
9(10),
X(28),
9(18)Ve9, |
9(18)V99,
9(18)V99,
9(4),
9C4),

TST Design Examples

LoROL 3,25 SFCrvalLIDC,CkLS 13=JulL=78 12114126 PAGE 006
pwn1ay IR ARk AR R AR RN RN I AR AR RARRR RN R RN AR RN AR R AN ANRA A AR R AN ARRRNNRAR
om148 * *
ar149 » T HE "
enise * *
P21S51 * PROCEDURKE DI VISION *
nr152 * *
am183 1 2 SRR 2 s R R R R R PR R 2R S SRS 2S RSS2SR 222228
en154
An1SS PPOCEDURE DIVISION USING EXCHANGE-MESSAGE, TR‘NSACTION-WORKSPAGE.
Pn156
en1s57 MAINeTSTeROQUTINE SECTION,
an1s8 Exam]NE=FIELDS,

Pn1s9

2m160 MOVE SPACES TO REPLY=MESSAGE=BUFFER,

pe161 mMOVE ZERQ TGO BUFFER=SIZE,

an162

2n163 IF EM=CUSTOMER=NUMBER IS EQUAL TO

ani64 wS=CUSTOMER=NUMBER GN TO KEY=OK,

Pe165 BAD=KEY,

2n166 MOVE 160 TO BUFFER=SIZE,

29167 MOVE "Inmncorrect Valuye imn Customer Number Field"

@m168 70 REPLY=MESSAGE=BUFFER,

or169 GO TO BAD=DATA,

oni7e

ee17 KEY=0K,

gei72 MOVE EMeCUSTOMER-NUMBER TO wS«CUSTOMER=NUMBER,

2v173

gni174 MOVE EMeCUSTOMER=NAME TO wWS«CUSTOMEReNAME,

er17sS

po17e6 mOVE EMaiDDRESS=LINE=1{ TO wSeADDRESS=LINE=i,

2177 MOVE EMeADDRESS=LINE=2 TO WS=ADDRESSeLINE=2,

po178 MOVE EMeADDRESS=LINE=3 TO WS=ADDRESS=LINE=3,

2n179 MOVE EMeADDRESS=ZIP=CODE TO WS=ADDRESS«ZIP=CODE,

gmige

eei181 IF EMeTELEPHONE=NUMBER IS » 9999969999

20182 OR EM«TELEPHONE=NUMBER IS8 < @,

on183 MOVE "TELEPHONE NUMBER INCORRECT" TO

goi8d REPLY=MESSAGE=BUFFER,

o185 MOVE 162 TO BUFFER=SIZE,

oni186 G0 TO BAD=DATA,

eoi87

ge188 MOVE EMe«TELEPHONE=NUMBER TO wSeTELEPHONE=NUMBER,

2189

eeiso MOVE EMeATTENTION=LINE TO WS=ATTENTION=LINE,

peioy

gng92 2 T R R R R R e R E I A R s R R R T R R TR A S X YR 2232222 2 2]
00193 * "
ge194 " STRNUM IS A SUBPROGRAM THAT STRIPS EDITING *
ge19S L] CHARACTERS FROM A DOLLAR AMOUNY FJIELD, *
gmi9e6 " THE RESULTING NUMBER IS FOUND IN THE FIELD »
en197 * NAMED IN THE SECOND ARGUMENT, IN THMIS CASE, "
eni198 " FORMAT=BUFFER "
ge199 L *
oe2po AR A RN R AN RN AR AN RN R AR AR R AR AR AR AN RN R AN RRAN RN AN RRRRANARANNR
pmgel

g0202 CALL "STRNUM" USING EM=CREDIT=LIMIT=AMQUNT,

om2e3 FORMAT=BUFFER,

pe204 FORMAT=BUFFER=LENGTH,

20-18

TST Design Examples

COROL 3,45 SROsvALTUC,ChL S 13=JUL=78 12:14:26 PAGE Q@7
3245 FORMAT=STATUS,

pr2de

duer7 Gy E FURaTeBUFFER TU «“S«CREDIT=LIMIT=AMQOUNT,

Pm227 371 POSSToLE HIGK OWGER PECEIVING FIELD TRUNCATION,

2P22T P37¢ PGSSIHLE L0~ URDFr WECEIVING FIELLD TRUNCATIUN,

av2re GO Ty EwlebRQGITL",

N9

RugiQ bal=DATA,

Qrett

LI 3T CaLL "SALLRY" USING STATUS=wORDS,

2r213 MOGVE 2 TO KERPLYe™MUMRER,

pe2id CaLl "RERLY™ USING REPLY-MESSAGE=RUFFER,

ani1s BUFFEReSIZE,

an2le REPLY=NUMBER,

ernet7 STATUS=wQORDS,

2n218
COoRQOL 3,v5 SRUIVALTDC,CRL3S 13=JUl=78 12114126 PAGE 048
29219 A XA R R R R s R R R R R Y R R R R 2 R R R R X2 X222 2222232220]
pr22e * *
Au221 " E o~ oD PR UGR AM SECTIOAON *
pegee * *
9(4223 (A ZE3 2222222222 R 22222222 22322 222223223222 X222 2232223 F)
Bn224

2v22% ENC=PRCGRA=SECTION SECTION,

am226

em»227 ENDePROGRAM,

gn228

Jn229 EXIT PROGRAM,

20-19

TST Design Examples

20.3 THE REWRIT TST
Together with the transaction structure diagram (Figure 18-1), the following figures comprise the documentation
needed by an application programmer to write the REWRIT TST.

® REWRIT TST Specification Sheet Figure 20-6
® Description of REWRIT TST Purpose and Processing Figure 20-7
® Transaction Workspace Format Figure 20-5
® Customer Record Format Figure 22-1
® REPLY Message Format Figure 18-7

The finished TST is shown on pages 20-21 through 20-29.

TST SPECIFICATION SHEET

TST Name: [RIETW[R[1 7]« 1

e ~—
Input Obiect Modules: (SI¥T_1:{ [117).[3]eTo] | (RIEWIRL 7). [FISIK; 1]
T{ OO)OI Tk
Language: - COBOL

[] -sasic-pLUS-2
[[] —macro-11

Is there a resident OTS for the language? - YES
O -no
Debug Mode? — No

[:] — Transaction Processor {Device: CIT11,
[] - Standalone (Initializing Modute: L [T T T 1J)

Figure 20-6 WRITE TST Specification Sheet

The REWRIT TST is the second of two TSTs in the second exchange
of the change customer transaction. It receives the verified customer
data via the transaction workspace and writes this data in the customer
file.

After writing the data in the customer file, the REWRIT TST sends a
confirmation message as a REPLY response message containing no text
which invokes reply 2.

The TST aborts the transaction if it encounters an error condition
during the file writing operation.

Figure 20-7 Description of REWRIT TST Purpose and Processing

20-20

TST Design Examples

LOROL 3,15 SRC:PE~~IT, CALsY 13=Jul=78 12216124 PAGE 081

CHMDREWRIT,REARITERE“<IT/TST
IDEMTSY 1943122

areal IDENTTIFICATTION DIVISION,
AR L2 R R R R R e R R R R R R R R 2 S SR 22 22220 2
20223 x *
hnearu * TS 7T DESCR I PT]I ON *
eaeas * *
kel o BT L2 R T I R R IR L R R Y S R T R T)
2nga7 *
2uevs * TST nAMES HEeR]IT
22209 *
aunple * TRANMSACTIOng (HGCUS = CHANGE CUSTOMER RECORD,
arg1l *
anale * FUSCTTIGONMS TIS TST TAXES THE INFORMATION FROM FORM CHCUSZ
ovo13 » THaT HAS REE VALIUATED 8Y THE TST "VvALIDC"
27014 * &N UPDATES THE CUSTUOMER MASTER FILE WITK
Q1S * THE EDITEC CUSTGMER RECORD,
geete *
aneL7 * FILESS CUSTOMER “ASTEKR FILE "CUSTOM,DAT"
gnels b
onA1e * INPUT FORwMY CHCUS2 = AFTER IT HAS BEEN PROCESSED BY vaLIDC,
ano2a *
gee2y ® QUTPuUT FORMy CHCUS2 = REPLY #1 = TXN COMPLETE,
eveze * REPLY #2 » ERROR ON I=0 OPERATION,
ovp23l *
gup24 AR AR AR R NN R A AR R RN AR R RN RN R AR AR AN AR A A AR RAR R AR R AR RN R AR AN
qun2s
qeR2e

LOROQL 3,45 SQACERFRIT CiL g4 13«JuL=78 12316124 PAGE 0Qu2
na27 Ik T kAt AR R R A NN RN RN AR ARNN IR IR AR AR R R AR AR AR ARk
onez2s * d
amg29 * T H E *
A1A30 * *
pra31 * I DENTITIF I CATION DI VISION *
2vaAle * *
82033 * *
"]l LY’} AR RN R AR AR A ARk R A AR NN AR R AR NI R AR AR AR AN AR AN AR N NN
An03S :
orale PROGRAM=ID, TSTEP,
37037 DATE=COMPILED, TULAY,
0ra38

20-21

TST Design Examples

LOROL 3,85 SRCEIRE»HIT,ChL2d 13«JJUL=78 12816224 PAGE 203
avalQ A2 22222 2 X R R R R R A R e R R R R R 2222222222222 R 2Rl
Ar@4e * *
peradl * T HE *
e7a42 * *
R4l * EN YV I 2~ 0ONMENT U I VISION *
prady * L]
Angds ” "
RrA46 12 R N R R R R R E R R R R e R R 2R LS
pveyt
enp48 13=JUL=78 ,
ana49 ENVIRONMENT DIVISION,

352 CONFIGURATICN SECTION,

2rasSt SCURCE=COMRPUTER, PDF=11,

er@ase OBJECT=COMPUTER, POP=11,

2r@sS3

2vosdy I T R R R R Y F R R R R R R R Y R 2222 RS2 22T
2»@ss hd *
PrQSs * INPUT=0UTPUT SECTION *
gues7 * L
PneS8 (22 2 R R R R R e R R R e e R e e R 2 2SI 22 2
82359

anp6e INPUTQUTPUT SECTION,

Ango6 !

22062 FILE=CONTROL,

02263

Peoéy SELECT CUSTOM ASSIGN TO "CuUSTOM,DAT"

onQges ORGANIZATION IS8 INDEXED

Qud66 ACCESS MODE IS DYNAMIC

onde7 RECORO XEY IS CUSTOMER=NUMBER

orQRe68 ALTERNATE RECORD KEY IS CUSTOMEReNAME WITH DUPLICATES
ange69 FILE STATUS IS CUSTOMER=FILE=STATUS,

gep70

20-22

Lo=oL

arary
angre
ar273
peinta
@wa7s
are76
an277
7278
ene79
prese
gngsy
ono82
evwp8l
praBy
[LdX-1
aerp86
Qee87
gepas
aees9
2na9a
pre9
ore9e
pep9l
eore9d
press
owR9e
eep9y
ovees
orp9e
grioe
pri01
ev1ae
o103
2vi04
an105
onieé
enin?
o»108
2ni1e9
onitoe
T IRE!
get112
oni1l
eetia
eni115%
geité
ee117
[LEBY.]
geiie
ornice
eni2y
gni22
on12l
ori24
ge12s
ge12é6
en327
ge128

3.25

TST Design Examples

SRC2-F RIT,Coisd 13=JUL=7% 12816324 PAGE ¢4
2 2R X A R R R R R R R R R R R RS S gy
T H F

4 *
* *
* w
" OOA T A J I VIS ON *
* *
* *
L E 2 ERER R R SRR Z R SRR RRSR SRR R RS2SRRSR X222 22X 2Ratii K]

UATA PIVISIC~,

(222222 EZEEE AR RS R 2222 RRRAR SRR 222t R 2]

* . *
* FILE SECTION *
* *

AR AR AR AR AR AR AR R AR ARRRAR AR AR AR A
FILE SECT]ON,
FD CUSTOM

LABEL RECGRDS ARE STANDARD

VALUE OF I0 IS CUSTOMeCHANNEL=NUMBER

DATA RECGRD IS CUSTOMeFILE~RECORD,

21 CUSTUM=FILE=RECORD,

¢3 CUSTOMEReNUMEER PIC X(6),

3 CUSTOMEReNAME PIC x(38),

¢3 ADDRESS=LINE=i PIC x(3@).

3 ADCRESSe|INE=? PIC X(32),

¢3 ADCRESS=LINE=3] PIC x(38),

3 AQDRESS=21P=CORE PIC 9(S),

3 TELEPHMONE«NUMBER PIC 9(12),

23 ATTENTION=LINE PIC x(29),

¢3 CREDIT»LIMIT=AMOUNT PIC 9(102)Vv99,
¥3 CURRENTeBALANCE PIC 9(108)V99,
¢3 PURCHASES~YTC PIC 9(12)Vv99,
23 MNEXT=0ORDER=SEQUENCE=NUMBER PIC 9(4),

€3 NEXT=PAYMENT«SEQUENCE=NUMBER PIC 9(4),

AR RS AR R RS R R 22 R s 22 2 2 8 A R A2 2232 22 2]}

]]
” Kk ORXING=S8STORAGE SECTION]
L4 1]

L T e RS e R P I T T
WORKING=STORAGE SECTION,
L T e T P T P T e L TR T e

* FILE CHANNELS]
L T T e T T Y T L T

@1 CUSTOM=CHANNEL=NUMBER PIC X(11)
VALUE IS "CUSTOM/CHi3",

20-23

corOL 3,05

27129
gnile
on131
892132
gu133
ee134
ge135S
go136
2n137
2oy38
gei39
gnyup
gviday
gei4e
ev143
eel1d44
8?14S
pvidé
ee147
ge148
on149
erisSe
on1514
an1se
ee153
ee154
go1ss
ge156

TST Design Examples

SRCIRE~RIT,CBL3Y 13«JUL=78 12316124 PAGE 005
AR AR R R AR AR AR R AR AR R AR RN R AR RN AR AR AR AR AN TR AR RN R AR R

* FI1LE STATUS NAMES "
(RS2 2 2 R AR AR 222X 2R R 22222222222 2208288 2R 2]

@1 FILE=STaTUS=wORD PIC XX,
@1 CUSTOMER=FILE=STATUS PIC XX,

32222 RAR S AR 2222 R 023X 222 2 0220033220222 1]

* M ESSAGE ARGUMENTS b
L I T R e T P R T T I T T
@1 BUFFEReSIZE PIC 9999 COMP,

21 STATUS=WORDS,

@3 STATUSeWORD=1 PIC S9(4) COMP,

@3 STATUS=WORD=2 PIC 89(4) cOMmP,
21 REPLY=NUMBER PIC 8S9(4) comp,
21 REPLY=-MESSAGE=BUFFER,

¢3 REPLY=MESSAGETEXT PIC Xx(80),

83 REPLYeFILLER PIC x(18)

VALUE IS "File Status word: ",
@3 RMB=FSW PIC X(2),
23 RMBe=FILEeNAME PIC X(60),

20-24

COROL

awisy
om158
22159
P»162
eni6}
go162
pmiel
pr164
2”165
00166
gnrie7
072168
on169
oni170
gei71
gei7e
oni73
ee174
en17s
enivé
ee177
gnive
ae179
27180
enid
om182
eni83
or184
eny8S
or186
pei87
ge188
eniae
gnise
priog
pei9e
2o193
n194
80195
oni9é6
eng97
20198
oni99
ge200
eegol
pe202
20ael
peaed
pe208
pngoe
gs207

3,5

SRCIREURIT,Crl 4

TST Design Examples

13=JuL=78 12116124 PAGE @06

VA2 e R R R R R PSS S SR 22 2 A A2 222 22222 d])

*
*
*

LI NKAGE SECTION

*
*
L

AR AR R RNk Ak KRR AR R AN R AN AR AR AR R AR A RN A AR AN R AN AR AR AR AR RN,

LINKAGE SECTION,

112212
21 EXCHANGE=MES
42 EM=INPUT

3
e3
23
7”3
23
a3
23
23
23

whkhk

@1 TRANSACTION=

@2 WS8=(CUSTO

B3
23
23
23
23
23
83
23
e3
23
23
23
3

MESSAGE
SAGE,
=FORM=CHCUS?2,

Ex=CUSTOMER=NUMBER
EM=CUSTOMER=WNAME
EMeADDRESS=LINE=1
EMeADDRESS=LINE=2
EM=ADDRESS=LINE=]
EM=ADDRESS=ZIP=CODE
EM=TELEPHONE=NUMBER
EM=ATTENTIONeLINE
EMwCREDITeL IMIT=AMOUNT

wW ORKSPACE

WORKSPACE,

MeFILE=RECORD,

WS=CUSTOMER=NUMBER
WS=CUSTOMER=NAME
WS=ADDRESS=_ INE=|
WS=ADDRESS«LINEe?2
WS=ADDRESS«LINE=3
WS=ADDRESSZIP=CODE
WSeTELEPHONE=NUMBER
WS=ATTENTIONeLINE
WSeCREDIT= IMIT=AMOUNT
WS=CURRENT@BALANCE
WSePURCHASES=YTD
WSeNEXT=ORDER=SEQUENCE=NUM
WS=NEXT=PAYMENT«SEQUENCE=NUM

20-25

L2 2 22

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

x{e),
X{308)
x(32),
X(32),
X(3@),
9(S),
9(10),
X(202),
x(12),

kREAR

PIC
PIC
PIC
PIC
PIC
rIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(6),
x(38),
xX(32),
x(3ey,
X(38),
9(S),
9(10),
X(20),
9(10)Vve9,
9(10)v99,
9(10)Ve9,
9¢(4),
LIT PN

TST Design Examples

COrRCL 3,85 SRLIRE+RIT,CixL ;4 13=JuUL =78 12216824 PAGE @@7
dm2v8 VR R e e R A R R R F 2 RS SRR 2SR R 2 2]
a7 209 *
20212 * T 4 E *
am21 * *
are12 * P& 0CEDUJURE CI1vISsSION *
In213 * *
Qfﬂz‘“ 2 R AR R 2 2332223223223 3222222232222 X3 X222 82 X222 2 2 2 2 J
pm215
er21é6 PROCEDURE DIVISIOM USING EXCHANGE=MESSAGE, TRANSACTION«WORKSPACE,
ee17 QECLaRATIVES,
areli8 I R R R R R R S R SRS RS RSS2SR 22222222 2 20 24
grei9 * I=0 ERRQK STATUS RETURN SECTION L
gnele * *
grael * THIS SECTIO= IS INVOKEL AFTER THE OPERATING SYSTEM "
ar2ee * MAS PETFCTE(D SO“E FURM 0OF le0 ERROK, THE FILE=STATUS *
am223 * #“CGRD IS EXAMIGED BY THE PQUTINE, ANMD AN APPROPRIATE *
pr224 * ERROR MESSAGE IS FORMATTED AND PLACED INTO THE REPLY =
dr2es * “ESSAGE RUFFER, THE GO TO SELECTS THE DESIRED ACTION »
pena2e * THAT FOLLUAS, TwO CASES CURRENTLY EXIST, THE REPLY *
am227 * MESSAGE whICH RESTARTS THE CURRENT EXCHANGE AND SHOwS #
pgm228 * THE ERRONFOUS DATA ON THE OPERATUR’S SCREEN, AND THE »
anaae * ARORT REPLY MESSAGE wHICH CAUSES THE CURRENT TRANSACT=w
pgee3e * ION TO HE ARORTED wHEN A SEVERE ERRGR IS ENCOUNTERED =
2am231 * AnD RECAOVERY 1S IMPOSSISBLE, *
30232 2 R R 2 223223222222 0 22X 2222 222222222 028222 2
ar233
pe23d I=C=ERROR SECTION,
20235 USE AFTER STANDARD ERROR PROCENURE ON CUSTOM,
ee236 CHECK=FILE=STATUS=CODE,
Pn237
em238 IF CUSTCMER=FILE=STATUS IS GREATER THAN "p1"
gm23s MOVE CUSTOMER=FILE=STATUS TO FILE=STATUS«WORD,RMB=FSW,
ou24e
en241 MOVE " Logical File Nameg CUSTOM =CH3" TO
ar4e KMBesFILE=NAME,
gn243
emad4d IF FILE=STATUS=WCRD IS EQUAL TO "tie@"
gr24S MOVE "Reached Emd=ofwFile"
pe2d4eé TO REPLY=MESSAGE~TEXT
ona47 GO TO SEND=REPLY=MESSAGE,
Pnaus
[L LY IF FILE=STATUS=WORD IS EQUAL TO ®21¥
gmes5e MOVE "Primary Key Seauence Error on WRITE"
gmasy TO REPLYWMESSAGE=TEXT
gnase GO TO SEND=ABORT=MESSAGE,
gn253
enasy IF FILE=STATUS=WORD IS EQUAL TO "22"
aness MOVE "Durlicate Key Error"
gnase 70 REP|LY=MESSAGE=TEXT
P02%7 GO TO SEND=ABORT=MESSAGE,
pz2ss
pe2%9 IF FILE=STATUS=WORD IS EQUAL TO "23*
2060 MOVE "No Record Exists under that Key"
geasl TO REPLYSMESSAGE=TEXT
80262 GO TO SENDeREPLY=MESSAGE,
99263
ge264 IF FILE=STATUS=WORD IS EQUAL TO "24"
0026% MOVE "Boundary Error on Write Statement"

20-26

TST Design Examples

coreL 3,¢5 SKCOgwF - PIT L= ;6 | 3=iuL=78 12316124 PAGE 048
2rzé66 19 "W YeESSAGE=TEYY

ANERT Gil T StEvetdIxT=*ESSLGE,

7268

A7 268 IF FILE=STAT'S=r Ry IS EJUAL TO "3e®

are7e +OVE "Unspeci{fiea 1/0 Error”®

271 TO REPLYm™ESSAGE=TEXT

an272 GO T{ SEMD=OBORT=MESSAGE,

27273

or274 IF FILE=STATUS=wRE IS EJUAL TO "34M

Ar278 “UvE "Fepmanenrt Soumdary Error on WRITE Statement™
ar276 TU REPLY=MESSAGF=TEXT

272717 GO TU SEnND«ABCRT=MESSAGE,

gm278

an279 IF FILE«3TAT . iSew(R({: IS EQUAL TG "ot

@289 wOvE "Fi{le locked by amother task"

pr2ay TO ReEPLY*MESSAGETEXT

pm282 62 TL SEMD=REPLY=MESSAGE,

P728% '

pr284 IF FILE«STATUSew Dkl IS EJUAL TQ "92%

@r28%s “0vFE "Record locked by another task"

pr286 TQ REPLY*MESSAGE=TEXT

27287 GN TO SEND=REP_LY=«MESSAGE,

ar288

pr289 JFE FILE=STATUS=%0ORC IS ESUAL TC “"o3"

2n299 »OVE "REWRITE or CELETE attempted without porior
em291 "READ meing performed,”

an292 TQ REPLY=MESSAGE=TEXT

22293 G0 TG SEND=REP| Y=MESSAGE,

82294

2m29s IF FILE=3TATUS«wCRE IS EQUAL TOC "oyt

872296 ~OvE "Imoroper ovceration attempted”

pe297 TG REPLY=H4ESSAGE=TEXT

Pn298 50 10 SEND=ABORT=MESSAGE,

a#299

2302 IF FILE=STATLS=wGRD IS EJUAL TO "os*

7321 “0VE "Allocatfor Fajlure = No space on device"
pnla2 TG REPLY=MESSAGE=TEXT

en3el G2 TO SEND«ABORT=MESSAGE,

or304

27325 IF FILE=STATUS=wGRC IS EQUAL TO "9s"

an3ae AQVE "No buffer space = SAME AREA slready {n use®
gn3a7 TO REPLY=MESSAGE=TEXT

gn3ps8 GO TC SEAND®ABORTeMESSAGE,

om329

27310 IF FILE=STATUSewORD IS EJUAL TO "9t

22341 MOVE "Unable to find file named:"

ga3y2 TO REPLY~MESSAGE=TEXT

87313 GO TO SEND=ABORTeMESSAGE,

en314

272315 IF FILE=STATUSenwORD IS EJUAL TO "9a"

en31s MOVE "Error while attempting to CLOSE fi{le,"
e2317 TO REPLY*MESSAGE«TEXT

ge31s GO TO SENDeABORT=MESSAGE,

22319

87320 MOVE "UNKNOWN JeQ0 ERRORY TO REPLYMESSAGE-TEXT
09321 MOVE FILEeSTATUSewURD TO RMBeFSW

pm322 GO TO SEND=ABORT-MESSAGE,

27323

20-27

TST Design Examples

CorROL 3,25 SRCIRE#RIT,C3Ls4 13«JUL=78 12316124 PAGE @@a9
pr 324 SEND=REPLY=MESSAGE,

272325

27326 4OVE 162 TG BUFFFReSIZE

av327 40vE 2 TC YEPLY=NUMBER

pn328 CaLL "REPLY" USING

ar329 REPLY=MESSAGE=BUFFER,
ee33p RUFFER«SIZE,

2n33y REPLY=NUMBER,

an332 STATUS=wWNRDS,

333 GO TC END=ERROR=SECTION,

7334

a7335 SEND=ABQRT=~FSSAGE,

872336

n337 MOVE 162 TC RQUFFER=SIZE

ar33g MOVE 2 T2 REPLY=NUMBER

gn339 CapLl "AS0RT" USING

27340 REPLY-MESSAGE=BUFFER
gr341 BUFFERSIZE

eel42 REPLY=NUMBER

P34l STATUS=WORDS,

344 ENDeERROR=SECTION,

27345 END DECLARATIVES,

an34é

20-28

CORrROL

enr347
ar348
21349
p»352
p7351
27352
P*353
Ar3Sy
e%3s5
3“356
2”357
an358
@v3s9
27360
2”361
22362
2an363
Ar364
ar36S
oan3eé
anle7
IR YY)
en369
an370
an374
em372
27373
2m374
ee37S
er376
enl77
An378
an379
en380
92381
enlse
20383
an38y
en385
anl38e
anlay
2”388

3,85

TST Design Examples

SRCIRE-RIT,CrL:HY 13=JUL=78 12116324 PAGE @10

Rk AR N A R Rk AN R AR R T R AR AN RN A ARR R AR R RN RN AR AR ARk

*

*
&

MAIN PROCESSING ROUTINE

w
*
*

(2222222 RAR RS R RRRARR 22222222 2 22 X220 A2t E]

MAIN=TSTeRQOUTIVE SECTIUN,
REWRITE=CUSTGYER=RECORD,

OPEN TeD CUSTCH,
IF CUSTOMER-FILE~STATUS IS GREATER THAN "@Q9"
60 TO ENCePROGRAM,

MOVE wWSeCUSTUMERP=NLMBER TO CUSTOMEReNUMBER,

REYRITE wITH UNLOCK CLISTOM=FILE=RECORD
FROM WS=CUSTCMeFILEeRECORD,

IF CUSTCHER=FILF«STATUS IS GREATER THAN "pg"
GO TO END=PROGRAYM,

MOVE § TO REPLY=NUMBER
MOYE SPACES T0 REPLY-MESSAGE=BUFFER
MOVE @ TO BUFFER=SIZE,
CaLL "REPLY" USING REPLY-MESSAGE=BUFFER,
3UFFER=SIZE,
REPLY=NUMBER,
STATUS=W(QRDS,

LA XA AR R R AR 2R R 2 2R 222 2R 2 22222 2 8]

L
]
*

END PROGRAM SECTION

w
*
]

LAA S AL AR R AR 222 R 2R 22222 222220222222 R0 2]]

END=PROGRAM«SECTION SECTION,

END=PROGRAM,

EXIYT PROGRAM,

20-29

CHAPTER 21
DESIGNING AND SPECIFYING FILES

Files are an important part of commercial data processing systems. Most commercial systems maintain a large
volume of data, and many have a large number of inquiries and updates against that data. In many applications,
file design is by far the most important determining factor in the system’s performance. For these reasons,
on-line commercial applications require the utmost care in file design.

File design is, of necessity, intertwined with other system design steps. For example, you must have some idea
of the files needed in your application before you can design transactions. And conversely, you must have
some idea of the transactions in your application before you can design files.

This manual cannot provide a complete course in the effective design of files for on-line commercial applications.
If you are not experienced in this kind of file design, you might find it helpful to consult a text on the subject.
But to assist you in designing and specifying TRAX files, this chapter discusses the following specific topics:

File design prerequisites

Data recording formats

Codes

Relationships between fields
Computing field and record sizes
Potential record usage problems
Choosing a file organization
Calculating file sizes

File reliability and recovery
Checking file performance
Documenting file design

21.1 FILE DESIGN PREREQUISITES
Chapter 12 summarized the systems analysis steps you must take before attempting a detailed file design.

These are:

1. Business Data Requirements. You must study the items of data that your business application requires
you to store in files.

2. Data Groupings. You must understand the groups in which the data are stored and retrieved. For
example, an outstanding balance might be associated with a customer, an order, or an invoice.

3. Data Item Size. You must understand the size and composition of each data item.

4. Data Quantity. You must understand how many of each data item must be kept in the application
files.

5. Access Patterns. You must understand how data items are commonly retrieved. For example, a group
of customer data items might commonly be retrieved either by name or by customer number.

6. Data Security Issues. You must know which system users should be given access to a data item and which
should not. For instance, a customer’s credit rating should be inaccessible from an order-taker’s terminal
but accessible from the credit manager’s terminal.

7. Performance Issues. You must understand the business environment and the proposed application

design so that you can predict where file access problems may occur and where these problems would be
serious.

21-1

Designing and Specifying Files

21.2 DATA RECORDING FORMAT

Study the data recording formats available in your programming language. COBOL, for instance, allows computa-
tional and display data items. BASIC-PLUS-2 allows string variables and binary numeric variables. In either
language, a numeric quantity can be expressed in both forms; but each language limits what the programmer can
expect with a given data format. '

By using the display or string data formats, you usually sacrifice computational speed and space. But you gain
data portability and easy file maintenance. These data formats are character-oriented; their meaning does not
depend on variations of machine architecture, and they can be read by programs written in different languages
and run on different machines.

By using computational or binary data formats, you usually gain computational speed and compactness; but you
may lose data portability and easy file maintenance. These formats often limit your application to one particular
language or machine.

Sometimes, a single overriding concern dictates the format you must use. For example, a system with a large
data base may require a compact data recording format. On the other hand, a system that uses several program-
ming languages or one that communicates data to other systems may require maximum portability of data. The
first system should use computational or binary data formats; the second system, string or display formats.

In the absence of overriding application requirements, use the data recording format that is most convenient in
your programming language.

If you decide on a substantial number of binary-format data fields, remember that your application programmers
will have to construct file dump utility programs to inspect the files and debug their application programs.
Alternatively, your programmers may find the DATATRIEVE language useful in inspecting and debugging data
files. (See TRAX DATATRIEVE User’s Guide, AA-D347A-TC.)

21.3 CODES
Where a data field can have only a few possible, known values you can use codes instead of a complete value.
Using such codes saves significant file space.

For example, a customer file may require a field describing each customer’s relationship with the business.
Although the relationships might be expressed in words such as SHOPKEEPER, COLLECTOR, and MAILORDER-
OPERATOR, it would be more sensible to list the relationships and develop a compact code to be placed in the
file instead.

Do not adopt a coding scheme without careful thought. Code schemes can have significant problems that
adversely affect the performance or reliability of the application.

® [Excessive Rigidity. Code schemes must allow expansion and adjustment. For example, a code that
starts with seven values may have fifteen within a few months. If you only allow space in your file for
single-digit codes, you must soon reorganize the file for two digit codes. Plan ahead and you can avoid
this problem.

® Code Interpretation for Users. Although you may find codes attractive because they save file space,
they may be considerably less attractive to your application’s users. Where possible, you should allow
users to enter information in its uncoded form. Only within the application programs and data structures
should you rely exclusively on the code values.

® Vulnerability of Coded Data. Coded data is useless if the relationship between the codes and their
meanings is lost or altered. Further, changing the meaning of code instantaneously affects each record
carrying that coded value.

21-2

Designing and Specifying Files

For example, a customer record might carry a coded field specifying the discount that a customer is
allowed. If a discount class is made more liberal and the same identifying code is kept, customers with
that code immediately benefit from the revised discount policy.

This is often the intended effect. But what happens to records of old orders? Order records may carry
references to discount codes. If so, the revised discount policy will be associated with old orders as well
as with current and future orders. This could cause confusion if an old order were subsequently the sub-
ject of a customer inquiry. The company’s staff would be hard put to justify the original discount amount
which had, in fact, been correctly computed according to the discount policy then in effect.

214 RELATIONSHIPS BETWEEN FIELDS

The files you design for your application will probably have relationships between fields. This means that certain
fields contain data that refers to other fields or records. For example, a record describing an order has a customer
identification number. Such a number refers to a record in the customer file containing the full name and address
of the customer.

Minimize the relationships between fields when designing your application files. Each new relationship complicates
other aspects of file design, such as updates to shared files and reliability after system outages.

There are two important kinds of inter-field relationships:

1. Logical relationships are based on the names or values of related fields. A logical relationship indicates
that a set of information is related by name to a second set of information.

2. Physical relationships are based on the place or location where related information is found. A physical
relationship indicates that a set of information is related to a second set of information which is found
in a specified place.

For example, an invoice record could be related to a customer record in two ways:

1. A logical relationship could be introduced by placing a customer number in the invoice record. This
customer number represents a logical relationship because it specifies who the invoice belongs to, rather
than where the owner’s name can be found.

2. A physical relationship could be introduced by placing a record number in the invoice record. This
record number would represent a physical relationship because it specifies where we can find the name
of the customer who owns the invoice, rather than who the customer is.

A logical relationship does not rely upon a file’s internal structure or a record’s position on a storage device. A file
with a logical relationship can be moved from place to place, and the relationship is not destroyed. The order of
records in the file can change (assuming that the file’s logical structure remains intact) and the relationships are

still valid. However, more time is required to access data through a logical relationship, because the logical relation-
ship must be reduced to a physical relationship by consulting the file’s index or other logical structure.

Physical relationships have faster access speeds, which is their principal attraction. Physical relationships can be
disrupted by moving a file or by restructuring it to allow additional records. Two common file operations — file
reorganization and file backup — can disrupt physical relationships. Trouble arises when a set of files is restored
from backup media, and the files were not originally backed up on the same date: that is, they are of different
generations. It takes special care to design physical relationships so that situations such as these do not destroy
the proper relationships between fields,

Try to use logical relationships first, and then resort to physical relationships only where the need for better per-
formance has been proven. Important application characteristics such as stat;ility, reliability, maintainability,
flexibility, and ease of operation are more easily attained with logical field relationships. Do not needlessly
sacrifice these objectives for performance.

21-3

Designing and Specifying Files

21.5 COMPUTING FIELD AND RECORD SIZES
To compute field and record sizes:

1. Group your application fields into records.
2. Determine each field size.
3. Compute each record size by summing its field sizes.

To determine the size of each data field, study the data recording techniques of your programming language. (Con-
sult the applicable programming language reference manual.) When you compute the size of each record, include
space for growth in the number of fields in the record.

Next, look at the record lengths. These situations are potential problems, and you should redesign your records
to avoid them where possible:

® Large records
® QOccasionally-used fields
® Variable record lengths in relative files

21.5.1 Large Records

Records with more than 150 bytes are large records. Although RMS handles records up to several thousand bytes
long, you gain several advantages by dividing the data into smaller records. For instance, if different users require
access to different subsets of data, you could form these subsets into separate records. Then one user could read
(and lock, if necessary) one set of data while another has similar access to the other set. Besides reducing access
conflicts, this arrangement allows each program to devote less space to record buffers.

If you need large records, devote extra attention to later phases of the file design. Large records make efficient
blocking and deblocking difficult, and poor file design wastes large amounts of space as logical record boundaries
conflict with physical device block boundaries. Large records also require more buffer space in each TST, as well
as more space in the transaction’s system workspace if they are staged.

21.5.2 Occasionally-Used Fields

If a record has many fields that are only occasionally filled with data, the record will contain a lot of wasted space.
Divide such records into two or more segments, each a record itself. One record will contain the fields which are
always filled ; others contain those fields which are used occasionally. These latter records need not be placed in
the file if the corresponding data is not present, and you may save considerable space.

Occasionally-used fields also require you to devise a data value which, when placed in the field, indicates that the
field contains no data. Select a value that does not correspond with a valid data value that might appear in the
field.

21.5.3 Variable Record Lengths in Relative Files

When a relative file is constructed, each record slot is allocated the same length; if you use records of different
lengths, you must allocate the size of the largest record. If the record lengths differ significantly and, especially,
if there are more short records in the file than long ones, considerable file space is wasted.

21.6 POTENTIAL RECORD USE PROBLEMS
Be careful when you group fields into records. You can create design or performance problems.

Consider the ways that the application’s transactions access the records you defined. Watch for these potential
problems:

® High activity on particular records

® A large working set of records
® Record locks of long duration

214

Designing and Specifying Files

21.6.1 High Activity on Particular Records
When one or more transactions read a common record, the access volume to that record is high. This reduces
system performance and degrades response times. Adapt your design to compensate for this increased volume.

21.6.2 Large Working Set of Records
The set of records needed by a transaction is called its record working set. A transaction that must access (and
perhaps lock) a large number of records simultaneously may cause problems:

® Other transactions may not access the records

® The transaction instance requires a large record buffer space, either in TSTs or in the transaction
workspace

® If any records are staged or journaled, additional buffer space is required in the transaction instance’s
system workspace.

A different allocation of data fields between records may reduce a transaction’s record working set to manageable
proportions.

21.6.3 Record Locks of Long Duration

Problems arise if a transaction locks records for a lengthy period. If the record is not accessed heavily, there may
be no problem. But you may have a serious problem if the records locked for long periods are also those with high
access volumes.

Study the time that each record is locked to see whether that period of time creates conflicts with other applica-
tion users. Remember that updates to staged and journaled files do not unlock records until the end of each
transaction instance.

Remember, too, that any lock duration that involves user interaction must be assumed to be lengthy.

If you discover potential record locking problems, restructure your files to eliminate them. For example, if journal-
ing or staging are the cause of the problem, segregate data into two or more files: place data to be journaled or
staged in one file and place less sensitive data in another.

A control record at the front of a master file is often used to indicate the next available serial number or the num-
ber of records in the file. If the data in such a file is staged or journaled, serious problems can develop. This con-
trol record is usually a high-access record, and staging or journaling extends the time any transaction instance locks
it. Place the control record in a different file (unstaged, of course) to avoid this problem.

21.7 CHOOSING A FILE ORGANIZATION
After grouping fields into records, you must select a file organization to store and retrieve records efficiently.

Most files used in commercial applications are either sequential files or indexed files. Sequential files are useful for
data that is not accessed randomly from on-line transactions; work files, history files, and log files fall in this
category. Indexed files are indispensable for on-line random access situations. You may also find that relative-
record files are useful in on-line random access situations where physical field relationships are appropriate. (See
Section21.4.)

The design of sequential files presents no special difficulty. However, the design of each indexed file deserves
attention on two levels:

1. Functional design. This involves decisions such as the number of indexes and the composition of each

index. Keep the number of indexes for each file to a minimum. Each additional index means overhead
when a record is.added or deleted.

21-5

Designing and Specifying Files

You began this process during the business analysis described in Chapter 12. Now, you must polish
the functional design and see that it is adequate for the additional design you have since done.

2. Technical design. For this, you need to study RMS carefully with your files in mind. RMS is a flexi-
ble data management system with many parameters that you can vary as you design each file. These
parameters are important, because each affects the performance of the finished file.

21.8 CALCULATING FILE SIZES
Now you can calculate the size of your data files. This calculation must consider:

The size of each type of file record

The number of each type of file record

Wasted space for such things as blocking factors and inter-record gaps on magnetic tape
Space for indexes

Space for application growth

woH W -

You should provide for application growth in two ways:

1. Leaving space in each record to add new data fields.
2. Increasing file size for future records.

With your detailed RMS file design, you can calculate the space wasted for blocking and deblocking disk-based
files. There is no wasted space on magnetic tape, but the space taken by inter-record gaps must be considered.

When you have calculated the size of each file, check that each file physically fits on its designated disk device
or tape reel. If it does not fit, you must partition it. This is done in two ways:

1. The record layout can be partitioned and a portion put in each of two or more files. This creates twice
as many records as in the original file, but each record is proportionally shorter than before. This
method requires extra overhead space to store duplicate indexes for the extra files.

2. The file can be partitioned so that half of the records are placed in each of two files. The record layout
is not changed. This method requires no additional index overhead space. If the original file contained
multiple indexes, though, you must choose one index to govern the file division. When accessing by
that index, TSTs will know which file to consult. But when accessing by other indexes, they will have
to consult both files since they will not know beforehand which file may contain the desired record;
this may create a performance or buffer space problem.

219 FILE RELIABILITY AND RECOVERY
You laid the groundwork for file security in your design for application files by selecting a design that allows
orderly shared access and by avoiding inter-field relationships.

Earlier in the previous chapter, you read some of the advantages that can be gained by segregating data into two or
more files when they might fit in one. File reliability is often gained as well. If you segregate updated fields from
those referenced in read-only fashion, you accomplish several things:

® Only the file containing updated data need be locked when accessed. This reduces access conflicts.

® Only that file need be staged or journaled. This reduces the time and buffer space needed for these
functions.

® Only that file need be reconstructed after a system outage. This reduces the time needed to recover
from a system outage.

Judicious use of the TRAX staging and journaling capabilities make recovery easier and quicker after a system

outage. But remember the impact these options have on system performance; do not choose them without
considering the tradeoffs involved.

21-6

Designing and Specifying Files

It is time to think about the operational aspects of your application design, such as file backup schedules. Journaled
files can be reconstructed if a backup for the files exists along with a complete set of journals for the period between
the backup and the system outage. The generation and preservation of these backups and journals require carefully-
devised operations schedules and policies.

The time needed to reconstruct a file from journals is proportional to the time between the last backup and the sys-
tem outage. A recent backup has fewer journals to process and therefore requires less recovery time. Too many
backups interfere with normal system operation; too few make recovery a lengthy process.

21.10 CHECKING FILE PERFORMANCE
Once you have a detailed design for your application files, consider whether the design provides the performance
the application demands.

Approach this from two points of view:

1. Search for files or records that may cause a bottleneck. To do this, concentrate on each file in turn;
imagine the pattern of access requests made on the file by the application transactions.

2. Search for transactions that may not provide acceptable response times. To do this, study each trans-
action and estimate the time required for the transaction file accesses. Allow time for delayed access to
records with high access volumes.

If you have a borderline case, set up a benchmark test on a TRAX system. You need not program the entire appli-
cation or even an entire transaction. But you can set up files, fill them with dummy data, and then run tests to see
how long each set of accesses takes.

21.11 DOCUMENTING THE FILE DESIGN
When you have a satisfactory file design, document the design so that application programmers can implement it.
This documentation should have at least four items for each file:

1. File Description. Prepare a one-page description summarizing the purpose of the file, the types of records
it contains, what these records represent, how the records are indexed, and other such descriptive
information.

2. Record Layouts. Prepare arecord layout sheet (Figure 21-1) for each different record format used in the
file.

3. File Definition Sheet. Prepare a file definition sheet (Figure 21-2) that specifies the way the transaction
processor should access the file.

You may wish to code the record layouts yourself in the selected high-level programming language. The program
fragments defining the record layouts can then be used by each application programmer as part of his programs.
This saves programming time and promotes standard definitions for each record, as well as standard data names for
each field in the record.

In addition to the documentation for each file, consider drawing a diagram or chart to show how the files are inter-
related. Such a chart helps an application programmer, especially if access paths involve retrievals from a series of
files. These linked access paths are hard to visualize.

Transaction Processor:

File Description:

Logical Filename:

This is Record Format:

Logical Record Length:

Physical Record Length:

Designing and Specifying Files

RECORD LAYOUT SHEET

CLITTT]

[ITITT]
[:D of I:D
[TT1]
[II:D (Tape Only)

Field No.

Starting Byte

Length {Bytes) Contents

Data Type

o © 00 N O g A W N =

N N N N N = =2 a a2 o —a = «—a «a -
AW N = O © 0 N O O & W N =

N
[&)]

Figure 21-1 Record Layout Sheet

21-8

Designing and Specifying Files

FILE DEFINITION

Part One

Transaction Processor Name:

Logical Filename:

RMS File Specification:

Work File?

Is This an Indexed File?

LITTTT]
(ITTTT]
O O) L s e

[[]— Yes (Go to Part Two)
[]— No (Continue with next question)

[]— Yes: No.ofKeys [[]
Maximum Key Length ED:]

[]- No: Sequential or Relative File

Maximum Concurrent File Accesses? I:D

Read-Only?

Fast Deletions?

Lock Interval

Read Access to Locked Records?

Journal?

Staged File Updates?

[]- Yes
[]-No
[]- Yes
[[1-No
[T seconds

[]— Yes

[]—No

[[]— Yes (Go to Part Two)

[]—- No (Continue with next question)
[]— Yes

[]-No

Part Two

Description of File Contents:

File Channel Assignment

Assigned 1/0 Channel Number

(1]

Figure 21-2 File Definition Sheet

219

CHAPTER 22
A FILE DESIGN EXAMPLE

This chapter discusses the design of the customer file from the TRAX Sample Application and presents the set
of file documents that would be given to the application programmer.

22.1 DESIGN CONSIDERATIONS
Functional requirements dictate that the customer file carry these data items:

Customer number

Customer name

Customer address (three 30-character lines)
Customer ZIP Code

Telephone number (including area code)
Attention line (20 characters for ATTN:)
Credit limit

Current balance

Purchases year-to-date

Next order sequence number

Next payment sequence number

The data is recorded as display or string variables, so that data can be exchanged between TSTs written in COBOL
and BASIC-PLUS-2.

NOTE
Using different programming languages in the same ap-
plication is normally avoided. Both languages are used
in the Sample Application for demonstration purposes,
hence the data format requirement.

No filler space is left in the record because no expansion of the number of fields is anticipated.
The file is indexed. The primary index is by customer number, and there is a secondary index by name.

There are no inter-field relationships from a record in this file to another file. However, other files in the Sample
Application contain customer numbers creating logical relationships to records in this file.

None of the information in this file is amenable to coding. (The postal ZIP code is entered directly by the user
and is not evaluated or interpreted by the system in any way.)

The file is shared by many users executing a variety of transactions. However, few users update customer records;
most just read data from them. Significant access conflict is unlikely.

The first record in the file (customer number 000000) is a control record that contains the next available customer
number, since customer numbers are assigned by the application. Although this record might become a bottleneck
if large numbers of customers were added, a problem is not anticipated with the expected volume of customer
additions.

22-1

A File Design Example

Because of the low volume of changes to this file, it is not staged or journaled. In the case of a system failure,
any lost work can be re-entered manually from existing documents.

22.2 DESIGN DOCUMENTATION
The following design documentation is the set of documents an application programmer needs to create and access
the customer file in the TRAX Sample Application.

® File Description Figure 22-1
® Record Layout Figure 22-2
® File Definition Sheet Figure 22-3

The customer file supplies data for individual customers. Each record
in the file represents one customer. It is indexed by customer number
(primary index) and customer name (secondary index).

There is only one record format used in the customer file. The record is
205 bytes long; no space is left for record expansion.

The first record in the customer file (customer number 000000) is a
control record containing the next customer number. This number is
contained in the Credit Limit Amount field of the record layout. When
used in this manner, the Credit Limit field has no assumed decimal
point.

The customer file is not staged or journaled.

Figure 22-1 Description of Customer File

22-2

Transaction Processor:

File Description:

Logical Filename:

This is Record Format:

Logical Record Length:

Physical Record Length:

[S[A[M[P[LE]

A File Design Example

RECORD LAYOUT SHEET

Customer Master File ([350,227] CUSTOM.DAT)

[clu[s]T][o[m]
[T]of [1]

[[2]o]s]

ED:D {Tape Only)

Field No. | Starting Byte Length (Bytes) Contents Data Type
1 1 6 Customer Number
2 7 30 Customer Name
3 37 30 Address Line One
4 67 30 Address Line Two
5 97 30 Address Line Three
6 127 5 Zip Code
7 132 10 Telephone Number
8 142 20 Attention — Of
9 162 12 Credit Limit (9(10)V99)
10 174 12 Current Balance (9(10)V99)
n 186 12 Purchases Y-T-D (9(10)V99)
12 198 4 Next Order Sequence Number
13 202 4 Next Payment Sequence Number
14
15
16
17
18
19
20
21
22
23
24
25

Figure 22-2 Record Layout Sheet

22-3

A File Design Example

FILE DEFINITION

L

* Part One

Transaction Processor Name:

Logical Filename:

RMS File Specification:

Work File?

Is This an Indexed File?

Maximum Concurrent File Accesses?

Read-Only?

Fast Deletions?

Lock Interval

Read Access to Locked Records?

Journal?

[s[A[m[P[L]E]
[c[u]s]T[o]M]

[SI¥[[(3[&I0].[2I2]7] | [C[uIS[TIoIm]. [BIATT]: (1]

E] — Yes (Go to Part Two)

— No (Continue with next question)

[x]— Yes: No. of Keys [2]

Maximum Key Length
[J- No: Sequential or Relative File
[I4]
[]- Yes
[X]- No
[]- Yes
[X]- No
[12] seconds
[]- Yes
— No

[]— Yes (Go to Part Two)

[X]— No (Continue with next question)

Staged File Updates? []- Yes
[X]— No
r Part Two

File Channel Assignment

One record for each customer

Description of File Contents:

Assigned 1/0 Channel Number

[18]

Figure 22-3 File Definition Sheet for Customer File

224

CHAPTER 23

THE COMPLETE TRANSACTION PROCESSOR
DOCUMENTATION

In Chapters 12 through 22, you designed a transaction processor.

This chapter summarizes the documentation needed by the application programmers who construct the transaction
processor. This documentation is the basis for future system maintenance and enhancements.

23.1 THE TRANSACTION PROCESSOR DEFINITION SHEET

One final specification sheet, the transaction processor definition sheet, remains to be completed. It describes the
overall characteristics of your application. Your application programmers will need this information to generate
the transaction processor.

A blank transaction processor definition sheet is shown in Figure 23-1. This sheet asks for the following infor-
mation:

1. Transaction Processor Name. Assign an abbreviated name (no more than six characters) to identify your
transaction processor. This name must be unique from other transaction processor names on your system.

2. Maximum Number of Transaction Types. Supply the maximum number of different transactions to be
defined and supported by this transaction processor. If you expect to add a number of transaction defi-
nitions in the future, include them in the number you specify.

3. Maximum Number of Concurrent Transaction Instances. Enter the number of transaction instances the
transaction processor must handle simultaneously. Users attempting to begin transaction instances that
exceed this number must wait until some other transaction instance finishes. Be sure to include trans-
action instances spawned by TSTs and initiated by batch or link stations, as well as those initiated by
application terminals.

4. Maximum Number of Application Terminals. Enter the number of application terminals supported by
the transaction processor. This number should agree with the number of terminal stations you have
defined (or the number you expect in the future).

5. Maximum Number of User TSTs. Enter the number of different TSTs supported by this transaction
processor. Again, if you expect new TSTs to be added soon, enter the projected number. Do not count
any TST more than once, even if you will have multiple copies of a TST executing at once.

6. Maximum Number of Master Link Stations. Enter the number of master link stations that your trans-
action processor needs.

7. Maximum Number of Slave Link Stations. Enter the number of slave link stations your transaction
processor needs to communicate with master link stations in other transaction processors.

8. Maximum Size of Receive Link Message. 1f you are including slave link stations, enter the largest link
message that any slave link station can receive from a master link station in another transaction proc-
essor. Otherwise, leave this space blank.

9. Maximum Number of Submit Batch Stations. Enter “1”” if your transaction processor submits work
to the system’s batch processors; enter “0” if it does not.

10. Maximum Number of Slave Batch Stations. Enter the number of slave batch stations the transaction
processor needs to initiate transaction instances at the request of support environment programs.

11. Maximum Number of Mailbox Stations. Enter the number of different mailbox stations used by the
transaction processor.

12, Maximum Number of Application Data Files. Enter the number of different application data files
accessed by the transaction processor. This is the total number of different files, not the number ac-
cessed concurrently.

23-1

The Complete Transaction Processor Documentation

13. Maximum Size of Transaction Slot. This parameter is derived from three other parameters that you have
calculated for each transaction:

Exchange message size
Transaction workspace size
System workspace size

To calculate the maximum size of the transaction slot, you must consider each transaction in turn. For
each transaction, take the three parameters listed and divide each by 64. Round each result to the next
higher integer. Then add the three rounded results. Do this for each transaction, and then pick the
transaction with the greatest result. Enter this result on the transaction definition form.

14. Automatic Crash Recovery. Select whether or not your transaction processor includes automatic crash
recovery.

Figure 23-2 shows a completed transaction processor definition sheet. This form represents a small transaction
processor having only the four Customer file transactions discussed in this manual.

23.1.1 Transaction Documentation
For each transaction, you should have:

1. A transaction structure diagram
2. A transaction definition sheet

23.1.2 Form Documentation
You should have a form definition for each form used by the transaction processor. This includes entry forms,
transaction selection forms, and report forms.

23.1.3 TST Documentation
For each TST, you should have:

A description of the TST purpose and a summary of its processing

A TST specification sheet :

A layout sheet for the exchange message the TST will process

Layout sheets for response messages, report messages, and mailbox messages that the TST manipulates
A layout sheet for the transaction workspace that the TST uses

Layout sheets for the data file records that the TST uses

Perhaps, flowcharts or formulas that define complex processing

Nounkwh=

23.1.4 File Documentation
For each file, you should have:

A file description
Record layouts

A file definition sheet
RMS file parameters

el

23.1.5 Station Documentation
For each station, you should have completed a section of a station definition sheet.

23.1.6 Access Security Documentation

You should have completed sheets defining work classes, as well as sheets defining users and their access to work
classes.

23-2

The Complete Transaction Processor Documentation

TRANSACTION PROCESSOR SPECIFICATION SHEET

Transaction Processor Definition: |1 [[| | |

Transaction Processor Name: [[[| | [|

Maximum number of transaction types: (0—64)
Maximum number of concurrent transaction instances: (0—64)
Maximum number of application terminals: (0—64)
Maximum number of user TSTs (0—256)
Maximum number of master link stations: (0—10)
Maximum number of slave link stations: (0—64)

Maximum size of receive link message:

Maximum number of submit batch stations:

Maximum number of slave batch stations:
Maximum number of mailbox stations:
Maximum number of application data files:
Maximum transaction slot size:

Automatic crash recovery:

L]
[T]
CTT]
[LT]
1]
L]

(0-4096) [[T 1]

(0—1)
(0—-16)
(0—10)

(0—64)

o
117
EEN
[T

(1—8192) [T T 1 blocks

[] - YES

[]-NO

Figure 23-1 Blank Transaction Processor Specification Sheet

23-3

The Complete Transaction Processor Documentation

TRANSACTION PROCESSOR SPECIFICATION SHEET

Transaction Processor Name: BIBEE

Maximum number of transaction types:

Maximum number of concurrent transaction instances:
Maximum number of application terminals:

Maximum number of user TSTs

Maximum number of master link stations:

Maximum number of slave link stations:

Maximum size of receive link message:
Maximum number of submit batch stations:
Maximum number of slave batch stations:
Maximum number of mailbox stations:
Maximum number of application data files:
Maximum transaction slot size:

Automatic crash recovery:

(0-64) (4]
(0—96) []a]

(0—256) [T 14
(0—256)
(0-10) [To]

(0—64) [I9]
(0—4096) [1 [To]

(0—1) (9]
(0-16) (I To]
(0—10) (T To]
(0—64) CIT7]
(1-8192) blocks
[] - YES - NO

Figure 23-2 Completed Transaction Processor Specification Sheet

234

ABORT,
key,4-13
message, 4-17, 14-3
Aborted transactions,
staging, 84
Access,
conflicts, 194
control, 14-14, 14-15
terminal-leased, 14-14
transaction, 14-14
user-based, 14-14
Action,
subsequent, 49,4-14,16-13
TST, 14-3
user, 14-2
AFFIRM key, 4-11,16-13
Analysis techniques
Business, 12-1
APPEND command, 199
Application data files, 8-1
Application terminal language, 5-1
Application terminals, 1-5, 3-7, 10-1
ATL,
comment rules, 56,5-7
compiler, 5-1
dot symbol, 5-7
form design, 5-7
language elements, 5-3
request function, 5-7
shorthand example, 5-8
shorthand notation, 5-7
statement groups, 5-5
statement order, 5-6
syntax, 54
utility program, 5-1,17-5
Attributes, field, 3-10,17-1
AUTDEEF utility program, 168
Audit trails, 168
log entries, 89
Authorizations,
user, 16-5

Background processing, 19-7
Backup, file, 21-7

BASICPLUS-2, 6-2
Batch processing, 12-3
batch slave station, 4-1,4-3
Batch station,
submit, 11-2,23-1
slave, 114,23-1
batch submit station, 4-1, 4-3
BOTH, 16-2
Bottlenecks, 194
Browsing, 15-10
Business,
Analysis techniques, 12-1
Activities, 12-1
procedures, 12-1
BY REF clause, 6-6

Caching, 104
CALL verb, 6-6
Clause,
BY REF, 6-6
keyword, 5-3
parameters, 5-3
using, 6-3, -6
VALUE, 15-18
WRITE, 15-18
CLEAR Character, 17-2
CLOSE key, 4-13
message, 14-3,16-14
CLSTRN message, 4-15
COBOL, 6-2
linkage techniques, 6-3
Codes, 21-2
Coding standards, 199
Command,
SUBMIT, 112
APPEND, 199
Comment rules,
ATL, 56,57
Compiler,
ATL,5-1
Context requirements for
file access, 7-1,7-3
Control, Access, 14-14, 14-15
Control flow, transaction, 14-6

Index-1

INDEX

Index

Conversation, user system, 13-1 Entry forms, 5-2,17-1
Copy statement, 199 Entry point,
Crash recovery, 10-3, 232 TST, 6-2
overhead, 10-3 Environment programs,
support, 94
Data files, Environment, support, 1-6
application, 8-1 Error messages, 15-18
Data file recovery, 10-3 Exchange, 14-2
Data management system, 8-1 definition, 16-13
Data processing, distributed, 1-3 label, 4-8, 16-13
Data recording format, 212 message, 38,4-3,6-2,7-1,7-2, 142, 148,
Data storage requirements, 122, 12-3 168,174
Data structure, sizes, 4-10 recovery, 4-10,7-1,84,10-2,10-3, 168
transaction, 14-8 time limit, 4-10, 16-14
DATATRIEVE, 212
Debugging, Field attributes, 3-10, 17-1
stand-alone, 6-6 reverse video, 17-2
support terminals, 6-6 CLEAR character, 17-2
techniques, 6-6 initial values, 17-2
transaction processor, 6-7 Field relationships, 21-3
TST, 6-6 Field sizes, 214
Defining stations, 16-1 Fields, 52
Definition, display, 15-18
exchange, 16-13 kinds of, 5-2
forms, 34, 3-10,3-11,5-1,13-1,17-5 occasionally-used, 214
REPLY,4-16,142,15-18 File,
transaction, 3-10, 3-13,4-7, 10-1, 168 backup, 21-7
Development techniques, 199 documentation, 21-7
Design, organization, 21-5
file, 21-1 performance, 21-7
forms, 17-1 recovery, 21-6
processing, 132,133 reliability, 21-6
file, 13-3 File, access,
transaction examples, 15-1 context requirements, 7-1,7-3
TST, 19-1 from TSTs, 8-2
Device, Files,
identifier, terminal, 16-2 access, TST, 6-8
name, 16-2 data flow, 8-5
type, 162 design, 13-3,21-1
DISPLAY field, 15-18 indexed, 8-1
Distributed data processing, 1-3 journal structure, 8-8
Distributed processing, 11-1 locks, 7-3
Dot symbol, multiple indexes, 8-1
ATL,5-7 (see indexed files)
Documentation, relative, 8-1
transaction, 16-14 scratch, 8-3
TST, 19-18 sequential, 8-1
Duplexed links, 119 shared, 194
specifications, 8-3, 16-2
END statement, 6-5 staged, 84
ENTER, 4-13 unstaged, 84
key, 14-2 work, 6-1, 8-3

Index-2

FIRST parameter, 49,4-11,4-14,16-13

Flow,

file data, 8-5
Flowchart, 19-8
Form definitions, 17-5
Format, data recording, 21-2
Forms, 13-1

ATL,57

definition, 34, 3-10, 3-11,5-1,10-1, 13-1

design, 5-1,17-1
entry,52,17-1
layout, 17-1
name, 4-8,16-13
output-only, 174
report, 52,174
sequence, 13-1
special purpose, 174
transaction selection, 52, 16-13
Function keys, 4-10
system, 142
user,4-11,174
Function,
keys system, 4-11
Functional specifications, 12-1, 12-2

General transaction parameters, 4-10

Identifier,
terminal device, 16-2
Image,
task, 6-3
Indexed files, 8-1
primary, 82
secondary, 8-2
INITIAL
display, 14-2
FORM option, 16-2
parameter, 49, 4-13,4-15,16-3
field values, 17-2
operating mode, 4-16,9-1,10-2
state, 16-2, 16-5
Initiating transaction instances, 9-1
In-place testing, 6-7
Input parameters, 6-3
Installing a TST, 6-8
Instance, transaction, 36, 158,23-1
Interfield relationships, 21-3
Interleaving, 4-5
Internal system design, 104

Index

Journal device, 7-2
Journal,
device, 8-8
file structure, 8-8
primary device, 8-8
reconstructing, 89
secondary device, 8-8
system, 16-8
Journaling, 8-6,-7, 158, 21-6
staging, 8-7
transaction, 7-2
transaction slot, 8-7

Kernel, 1-6
Key,
ABORT, 4-13
AFFIRM, 4-11, 16-13
CLOSE, 4-13
ENTER, 142
function, 4-10
shift, 4-13
STOP REPEAT, 4-13, 15-10,16-13
terminal function, 4-10
user function, 4-13,14-2,174
Keypad,
numeric, 4-13
Keyword,
clause, 5-3
REQUEST, 15-18
statement, 5-3

Language,
application terminal, 5-1
ATL elements, 5-3
BASIC-PLUS-2, 6-2
DATATRIEVE, 21-2
MACRO-11, 6-2
program, 19-2
Layout, form, 17-1
Library,
TST, 6-3
Linkage techniques,
COBOL, 6-3
MACRO-11, 6-6
Linkage section, 6-3
Link master station, 4-1,4-3,23-1
Link slave station, 4-1, 4-3, 23-1
List, routing, 3-10, 44,4-8, 6-1, 16-13
Locking,
record, 8-3, 104

Index-3

Locks,
record, 7-3, 194, 21-5
file, 73

Log entries,
audit trails, 89, 168
inspecting and analyzing, 89
system debugging, 8-9

Log,
trace, 6-7

Logging, 89,10-2
message, 4-10

Logical filenames,
work files, 8-3

Logical relationships, 21-3

MACRO-11,6-2
linkage techniques, 6-6
Mailbox,
message, 4-7
station, 4-1,4-3,6-1,23-2
Management system,
data, 8-1
Mapping,
memory, 6-3
MAP statement, 6-5
Master link station, 23-1
Memory, mapping, 6-3
Message,
ABORT, 4-17, 14-3
CLOSE, 143
CLSTRN, 4-15,16-13
error, 15-18
exchange, 38,4-3,6-2,7-1,7-2,148,16-8,174
logging, 4-10
mailbox, 4-7, 14-3
PRCEED, 143, 16-13
REPLY,4-16, 142,154, 15-10
report, 4-6, 14-3
response, 3-8,4-3,44,4-13,14-3, 14-8
STPRPT, 4-15, 14-3,16-13
system, 16-2
TRNSFR,4-15, 143
Modes,
record locks, 8-3
Multiple Copies, 19-6
Multiple indexes,
See Indexed Files, 8-1
MSGMAP statement, 6-5

Index

Name, form, 4-8,16-13
Name,
device, 16-2
station, 16-2
transaction, 4-10
NEXT parameter, 49, 4-11, 4-14, 16-13
NOBLANK option, 15-18
Numeric keypad, 4-13
NOWALIT Option, 4-8
NOREPEAT, REPEAT/, 4-11, 4-14

Operating mode,
initial, 4-16,9-1,10-2
Option
INITIAL FORM, 16-2
NOBLANK, 15-18
NOWAIT, 48, 16-13
REPEAT, 49,1538, 15-10, 16-13
TRANSACTION, 16-2
WAIT, 16-13
OUTPUT, 16-2
Output-only forms, 174
Overlapped processing, 4-5, 14-6, 19-7
restrictions, 14-7

Parallel processing, 4-5
Parameters,

clause, 5-3

exchange, 14-3

FIRST,49,4-11,4-14,16-13

general transaction, 4-10, 16-8

initial, 4-14

INITIAL, 49, 4-13,4-15,16-13

input, 6-3

NEXT,49,4-11,16-13

REPEAT, 14-3

subsequent action, 14-3
Paths, transaction processing, 4-1
Performance, 10-1, 10-3

TST, 192
Physical relationships, 21-3
PRCEED message, 14-3,16-13
Primary,

index, 8-2

journal device, 8-8
Processing, 4-5

background, 19-7

design, 13-2

Index-4

Processing (Cont.)
distributed, 11-1
overlapped, 4-5, 14-6, 19-7
parallel, 4-5
stations, 14-3

Processing system,
transaction, 1-1

Processor,
transaction, 1-6
definition sheet, 23-1
documentation, 23-1
name, 23-1

Program,

ATL utility, 5-1,17-5
AUTDEEF utility, 16-8
languages, 19-2
“skeleton,” 199
STADEF utility, 16-1,16-2,16-5
TRADEEF utility, 168
TSTBLD, 68
WORDEEF utility, 16-8
Program name, 6-2

Queue manager, 11-2

Real-time transaction
processing, 1-2
Reconstructing journals, 89
Record,
locks, 7-3,8-3, 104,194,215
exchange recovery, 84
modes, 8-3
staging, 84
sizes, 214
variable lengths, 214
working set, 21-5
Records,
large, 214
staged 158
Recovery,
crash, 10-3,232
exchange, 10-3,104,7-1, 168
file data, 10-3
RECOVR, 89
Relationships,
field, 213
interfield, 21-3
logical, 21-3
physical, 21-3
Relative files, 8-1
Reliability, 10-1,10-2, 132

Index

RMS, 8-1
support code, 8-2
REPEAT/NOREPEAT, 4-11, 4-14
REPEAT option, 4-9, 15-8, 15-10, 16-13
REPEAT parameter, 14-3
Reply definitions, 4-16, 14-2,15-18
REPLY message, 4-16, 14-2, 154, 15-10
Report
message, 4-6, 14-3
forms, 52,174
Request function,
ATL,57
REQUEST keyword, 15-18
Reply, 174
numbers, 174
Response
message, 3-8,4-3,44,4-13, 14-3, 14-8,
time, 12, 19-6
Reverse video, 17-2
Routing list, 3-10,44,4-8,6-1,16-13
changes, 44

Sample Application,

TRAX, 2-1
Scratch files, 8-3
Secondary journal device, 8-8
Security, 10-1, 14-14
Selection form,

transaction, 9-1, 9-3, 17-5
Sequential files, 8-1
Shared files, 194
Shift key, 4-13
SHOLOG, 89
Shorthand notation,

ATL,5-7
Signing on, 10-1
SIGNOF transaction, 9-3, 10-2
SIGNON transaction, 9-3, 10-2, 16-5
Sizes,

data structure, 4-10
Skeleton program, 19-9
Slave batch station, 94, 11-2, 114, 23-1
Slave link station, 9-5, 23-1
Slot, transaction, 7-1, 23-2
Source station, 114
Spawned transactions, 6-1,94
Special purpose forms, 174
STADEEF utility program, 16-1, 16-2, 16-5
Staged,

files, 84

records, 15-8

Index-5

Index

Staging, 84, 10-3, 13-3,21-6 Support,
aborted transactions, 10-3 debugging terminals, 6-6
journaling, 8-7 environment, 1-6
record locks, 10-3 environment programs, 94
system workspace, 8-5 environment terminals 3-7
Stand-alone debugging, 6-6 Syntax,
Statement, ATL,54
ATL groups, 5-5 System
END, 6-5 alternatives, 12-3
keyword, 5-3 call, 6-6
order, 56 conversation, user, 13-1
MAP, 6-5 debugging, log entries, 8-9
MSGMAP, 6-5 design, internal, 104
parameters, 5-3 function key, 4-11, 14-2
SUBROUTINE, 6-5 journal, 16-8
TST, 65 messages, 16-2
TSTEND, 6-5 reliability, 124
WRKMAP, 6-5 scope, 122
Station, 3-8, 4-1 staging, 8-5
batch slave, 4-1,4-3 TABORT, 4-17
batch submit, 4-1, 4-3 Workspace, 7-1, 14-14, 169
defining, 16-1
link master, 4-1,4-3 TABORT system call, 4-17
link slave, 4-1,4-3 Task,
mailbox, 6-1, 6-3,23-2 image, 6-3, 6-8
master link, 23-1 image fill specification, 16-2
name, 162 transaction step (TST), 3-8, 6-1, 6-8
priority, 16-5 Terminal,
processing, 14-3 based access, 14-14
slave batch, 94, 23-1 application, 1-5,3-7, 10-1
slave link, 9-5,23-1 device identifier, 16-2
source, 114 function keys, 4-10
submit batch, 23-1 station, 3-8, 4-1,4-2, 16-1
terminal, 38,42, 16-1 support environment, 3-7
TST,38,4-1,4-2,68,14-3,16-2 Testing
STOPREPEAT key, 4-13,15-10,16-13 in-place, 6-7
STPRPT message, 4-15,14-3,16-13 Throughput, 12, 19-6
Structure, transaction, 14-1 Time limit, 4-10
diagram, 14-1 exchange, 4-10, 16-14
Submit, Trace log, 6-7
batch station, 11-2,23-1 Traced TST operation, 6-7
command, 112 TRADEEF utility program, 168
Subroutines, Transaction,
compiled separately, 6-2 access, 14-14
statement, 6-5 data structures, 14-8
Subsequent action, 49,4-11,4-14,16-13 control flow, 146
parameter, 14-3 debugging, 6-7
Support code, definition, 3-10, 4-7, 10-1, 16-8
RMS, 82 design examples, 15-1

Index-6

documentation, 16-14
documentation, 16-14
initiating instances, 9-1
instance, 36, 158
context, 7-1
concurrent, 23-1
journaling, 7-2
name, 4-10,16-18
processing, 12-3
paths, 4-1
real-time, 1-2
system, 1-1
processor, 1-6
definition sheet, 23-1
documentation, 23-1
name, 23-1
selection forms, 52,16-13,17-5
SIGNOF, 9-3
SIGNON, 9-3,16-5
slot, 7-1,8-7,23-2
spawned, 6-1,94
step task (TST), 38, 6-1
structure, 14-1
types, 23-1
workspace, 6-1,6-2,7-2, 14-8
TRAX technical design, 13-1
TRAX Sample Application, 2-1
TRNSFR message, 4-15, 14-3
TST
access to transaction slot, 7-2
actions, 14-3
BASIC-PLUS-2, 6-2
COBOL, 6-2
debugging, 6-6
design, 19-1
documentation, 19-8
entry point, 6-2
execution, 68
file access, 6-8,8-2
input parameters, 6-3
installing, 6-8
library, 6-3
MACRO-11,6-2
operation, 19-1
traced, 6-7
performance, 192
priority, 16-5, 19-7
purpose, 6-1
number of active copies, 16-5
serially reusable, 16-5

Index

TST (Cont.)
statement, 6-5
station, 3-8, 4-1,4-2, 14-3
station parameters, 6-8
structure, 6-2
task image, 6-8
TSTBLD utility program, 6-8
TSTEND statement, 6-5
TSTEP, 6-2

Unstaged files, 84
User,
authorizations, 16-5
action, 14-2
based access, 14-14

function keys, 4-11,4-13,14-2,17-4

system conversation, 13-1
Using clause, 6-3, 6-6
Utility program,
ATL, 5-1
AUTDEF, 168
TSTBLD, 68
STADEF, 16-1, 16-2,16-5
TRADEF, 16-8
WORDEF, 168

Value Clause, 15-18
Verb,
CALL, 6-6
Version numbers,
work files, 8-3
Video, reverse, 17-2
VT62,1-3

WAIT option, 16-13
WORDEEF utility program, 16-8
Work,

CLASS,9-2,9-3,10-1, 16-2

SIGNON, 16-5

files, 6-1, 8-3

file specifications, 8-3

logical filenames, 8-3

rules, 8-3

version numbers, 8-3
Working storage, 19-8
Workspace,

system, 7-1, 148, 169

transaction, 6-1, 6-2,7-1, 14-4, 15-8, 168, 198

WRITE clause, 15-18
WRKMAP statement, 6-5

Index-7

TISUdE CUI WUy IS 1mne.,

Trax Application
Design Guide
AA-D328A~TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

ooOoooao

Other (please specify)

Name Date

Organization

Street

City State Zip Code
or

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

