Mo’

RT-11 System
User’s Guide
AA-5279C-TC

March 1983

This document describes how to use the RT—11 operating system. It
provides the information required to perform ordinary tasks such as
program development, program execution, and file maintenance by us-
ing RT-11 keyboard commands.

This manual supersedes the RT-11 System User's Guide,
AA-5279B-TC.

Operating System: RT-11 Version 5.0

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts



First Printing, March 1980
Updated, March 1981
Revised, March 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1980, 1981, 1983.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER’S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

clilgliltali g

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem—10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

M22700

e



S

Contents
Page
Preface xi
Part| RT-11 Overview
Chapter 1 System Components
1.1 Hardware . . . . . . . . . . e e e 1-1
1.2 Software. . . . . . . . ... e e e 1-2
1.2.1 Monitors. . . . . . .. e e e e e e e e 1-3
1.2.1.1 Single-Job (8J) Monitor . . . . . .. .. ... ... 1-3
1.2.1.2 Foreground/Background (FB) Monitor . . . . . . . . 1-4
1.21.3 Extended Memory (XM) Monitor . . . . . . . . . .. 1-4
122 DeviceHandlers. . . . . . . . . .. ... ... ....... 1-5
1.2.3 System Utility Programs. . . . . . . . . . . ... .. .... 1-6
1.23.1 Editing. . . . . . . . ... e 1-6
1.23.2 General Purpose . . . . . . .. ... .. ... ... 1-6
1233 Systemdobs . . . . . . .. ... 0L, 1-8
1.2.3.4 Debugging and Patching . . . . . .. .. ... ... 1-8
1235 BATCH . ... ... ... .. .. ... ...... 1-9
1.2.4 Language Processors. . . . . . . . . . . . .. ... .. 1-9
1.3 RT-11 Software Documentation . . . . . . . . . . .. .. ... ... 1-9
1.4 System Services . . . . . . . . ... 1-9
1.4.1 Keyboard Monitor Commands . . . . . . . .. ... .... 1-10
1.42 System Programs . . . . . . . . . . . . 0. 1-10
1.4.3 The Relationship Between Complex Commands and
System Programs . . . . . . . . .. .. ... ... 1-11
1.4.4 The System Macro Library and Programmed Requests . . . . 1-11
14,5 SYSLIB FORTRAN-Callable Subprograms . . . . . . .. . . 1-12
Chapter 2 Program Development
2.1 Using an Editor (EDIT, KED, KEX,ORK52) . . . . ... ... ... 2-1
2.2  Using the Assembler MACRO) . . . . . . . . .. . ... . .... 2-1
2.3 Using the Linker (LINK) . . . . . . . . . .. ... ... ... 2-2
2.4  Using the Debugger (ODT or VD). . . . . . . . . .. ... ... .. 2-2

iii



2.5 Using the Librarian (LIBR) . . . . . . . . . .. .. ... ... ... 2-2
2.6  Using a High-Level Language (FORTRAN, BASIC, or DIBOL) . . . . . 2-3
Part Il System Communication
Chapter 3 System Conventions
3.1 Start-Up Procedure . . . . . . . . . . . ... ... ... 3-1
3.2 DataFormats . . . . . . . . . e e e e e e 3-2
3.3 Device Names . . . . . . . v v v v e e e e e e e e e e e e 3-3
3.4 VFile Namesand FileTypes. . . . . . . . . . . . . ... ... .... 3-4
3.5 Device Structures . . . . . . . . . .. .. e e 3--6
3.6 Special FunctionKeys . . . . . . . . . .. Lo 3-6
3.7 Foreground/Background Terminal YO . . . . . . . . . . ... .. .. 3-9
3.8 Type-Ahead Feature. . . . . . . . . . .. . . .. ... .. ... 3-10
Chapter 4 Keyboard Commands
41 CommandSyntax . . . . . . . . . . ... 0o 4-1
4.1.1 Factoring File Specifications . . . . . . . . . .. ... .. .. 44
4.1.2 File Type Specification. . . . . . . . . ... .. .. ... .. 4-5
4.1.3 Abbreviating Keyboard Commands. . . . . . .. . .. . . .. 4-5
414 Keyboard Prompts. . . . . . . . . ... ... ... 4-5
42 Wildeards . . . . . . . . . e e e e e 4-6
4.3 KEditing Command Lines and Terminal Input. . . . . . . . . . . . .. 4-9
431 TheGOLD Key (PF1) . . . . . . . ... .. ... .... 4-10
432 TheHelpKey PF2) . . . . . . . . . . . . .. ... .... 4-10
4.3.3 MovingtheCursor. . . . . . . . . .. . . ... ... 4-11
4.3.4 Reproduce Last Command Executed . . . . . . . .. .. .. 4-12
4.83.5 Delete Line from Cursor to End of Line . . . . . . . . . .. 4-13
43.6 Restore Last LineDeleted . . . . . . . . . . .. ... ... 4-13
4.3.7 Delete One Character to Left of Cursor. . . . . . . . . . .. 4-13
4.3.8 Switch Positions of Two Characters . . . . . .. .. . ... 4-14
4.3.9 Delete All Characters to Left of Cursor. . . . . . . . . . .. 4-14
4.3.10 Truncate and Execute Command Line . . . . . . . ... .. 4-14
4.3.11 Ezxecute Entire Command Line. . . . . . . . .. . .. ... 4-15
4.3.12 Redisplay Current Line . . . . . . ... .. ... .. ... 4-15
44 IndirectFiles . . . . . . . . . . . . . oo 4-15
441 Creating Indirect Files. . . . . . . . . . . ... ... ... 4-16
4.4.2 Executing Indirect Files . . . . . . . . . . ... ... ... 4-19
443 Start-Up Indirect Files. . . . . . . . . . . . .. ... ... 4-22
4.5 Keyboard Monitor Commands . . . . . . . . . .. ... ... ... 4-22
ABORT . . . . . e e e e e 4-24
ASSIGN . . . . . e e e e e 4-25
B o e e e e e 427
BACKUP . . . . . e e e e e e e 4-28
BASIC. . . . . e e e e 4-31
BOOT . . . . . e e e e e e 4-32
CLOSE . . . . o e e e e e e e e e e e e 4-34
COMPILE . . . . . . . e e s e s e e 4-35

iv



N

N

COPY . . . . . e e 4-42

CREATE . . . . . e e e 4-58
2 4-60
DATE . . . e e e e e e e e 461
DEASSIGN . . . . . . . e e 4-62
DELETE . . . . . . e e e e e e e e 4-63
DIBOL . . . . . . e e e 4-68
DIFFERENCES . . . . . . . o e e e e e e e e s e 4-72
DIRECTORY . . . . . . e e e e e e e e 4-80
DISMOUNT . . . . . o o e e e e e e e e e e s e s 4-92
DUMP. . . . . . e e s e 4-93
E . e 4-98
EDIT . . . . o e e e e e e e e e e e e e 4-99
EXECUTE. . . . . . o o e e e e e e e s e s e s e 4-103
FORMAT . . . . . . . . . i i i i it i e e e 4-113
FORTRAN. . . . . . . o o e s e s e e s e 4-118
FRUN. . . . . e e s e e e e 4-124
GET. . . . e e s e 4-127
GT . . e e e e e 4-128
HELP . . . . . e e e e e e e 4-130
INITIALIZE . . . . . . . o e e e e e e e e e e e e 4-132
INSTALL . . . . . . o o e e e s e e e e e e e 4-138
LIBRARY . . . . . o e e e 4-139
LINK . . . . e e e e e e e e e 4-146
LOAD . . . . o e e e e e e e 4-155
MACRO . . . . . . e e 4-157
MOUNT. . . . . o e e s e e e e 4-163
PRINT. . . . . . e e e e e e e e e e e e 4-165
PROTECT. . . . . . o o e e e e e e e s s e e e e 4-171
R . . e s e 4-175
REENTER. . . . . . . . e e e e e e s e s 4-176
REMOVE . . . . . . e e e e e e 4-177
RENAME . . . . . o o e e 4-178
RESET . . . . . . e e e e e e e e e e e e 4-183
RESUME . . . . . . . i e e e e e e e e e e e 4-184
RUN . . . . e e 4-185
SAVE . . . e e e e 4-187
SET . . . . . e e e e e 4-189
SHOW. . . . o e e e e e e e e e e e 4-207
SQUEEZE. . . . . . . . . e e 4-216
SRUN . . . . o o e e e e e e e e e e e 4-218
START . . . . . o e e e 4-220
SUSPEND. . . . . o i e e e e e s e e e 4-221
TIME . . . . e e e e e e e e 4-222
TYPE . . . . e e s 4-223
UNLCAD . . . . o e s e e e e e e 4-227
UNPROTECT . . . .. . . . . e e e e e e 4-229
4.6 Concise Command Language (CCL) . . . . .. . . .. ... .... 4233

Chapter 5 Indirect Control File Processor (IND)

5.1 Creating an Indirect Control File . . . . . . . . .. ... ... ... 5-1
511 Labels. . . . . . . ... o 5-2



vi

5.2

5.3
5.4

5.5

5.1.2 IND Directives and Keyboard Commands . . . . . . . . . . . 5-3
51.21 IND Directives. . . . . . . . . . . . . . . .. ... 5-3
5.1.2.2 Keyboard Commands. . . . . . .. .. . ... ... 5—4
51.3 Comments. . . . . . . . . . e, 5-5
Executing Indirect Control Files . . . . . . . . . . . ... ... ... 5-6
521 INDOptions. . . . . . . . . . . 5-7
5.2.1.1 Delete Control File Option (/D). . . . . . . . .. .. 5-7
5.2.1.2 Suppress Keyboard Commands Option (N) . . . . . . 5-8
5.2.1.3 Suppress Console Display Option (/Q). . . . . . . . . 5-8
5.2.1.4 Command Tracing Option (/T) . . . . . . . . . . .. 5-8
5.2.2 Passing Parameters . . . . . . . ... ... ... ... 5-8
5.2.3 Nested Indirect Control Files. . . . . . . . . . . . . . .. .. 5-9
5.2.4 Executing Indirect Command Files from Control Files . . . . 5-10 °
Directive Summary . . . . . . . . ... 5-11
Symbols . . . . . . .. 5-16
5.4.1 Local and Global Symbols . . . . . . . .. .. ... .... 5-17
54.2 Logical Symbols . . . . . . . . .. ... ... 5-17
5.4.3 Numeric Symbols . . . . . . . . . . . . . ... ... ... 5-17
5.4.3.1 Defining the Radix of a Numeric Symbol . . . . . . 5-17
5.4.3.2 Numeric Expressions. . . . . . . ... ... ... 5-18
54.4 String Symbols . . . . ... ... L. 5-19
54.5 Special Symbols . . . . . . .. ... L 5-19
5.4.6 Symbol Value Substitution. . . . . . . . . ... .. ... .. 5-22
IND Directives. . . . . . . . . . . . . ... 5-23
5.5.1 Define a Label (label:). . . . . . . . . . . ... ... ... 5-23
5.5.1.1 Label Processing . . . . . . ... . ... ... ... 5-24
5.5.1.2 Direct AccessLabels . . . . . . . . .. ... ... 5-24
5.5.2 Define Logical End of File (/). . . . . . . . . ... ... .. 5-24
55.3 ASK Directive. . . . . . . . . ... .. 5-25
5531 Syntax. . . . . . .. ... 5-25
5532 QuestionDisplay. . . ... ... ... ...... 5-26
5533 Responses . . . . . . .. ... ... ... 5-26
55.4 ASKN Directive. . . . . . . . .. . .. 5-27
5541 Syntax. . . . . . ... 527
5.5.42 DeterminingtheRadix. . . . ... .. ... ... 5-28
5.5.4.3 QuestionDisplay. . . . . . . ... .. .. .... 5--29
5544 Responses . . . . . . .. ... ... ... ..., 5-29
55,5 ASKS Directive . . . . . . . . . . . ... ... 5-30
5551 Syntax. . . . ... ... 5-30
5.5.5.2 Determining the Radix of Range and Timeout
Values. . . . . . . . . . ... 5-32
5,553 QuestionDisplay. . . ... ... ... ...... 5-32
5554 Responses . . . . . . .. .. ... ... 5-32
55.6 Begin Block (BEGIN) . . . . . . .. ... ......... 5-33
5.5.7 Chain to Another File (CHAIN) . . . . . . . .. .. . ... 5-34
55.8 CloseFile (CLOSE) . . . . . . . . . . . . .. ... .... 5-34



N—

5.5.9

5.5.10
5.5.11
5.5.12
5.5.13
5.5.14
5.5.15
5.5.16
5.5.17
5.5.18
5.5.19
5.5.20

5.5.21
5.5.22
5.56.23

5.5.24
5.5.25
5.5.26
5.5.27
5.5.28
5.5.29
5.5.30
5.56.31
5.5.32

5.5.33
5.5.34
5.5.35
5.5.36
5.5.37

Part Il Text Editing

Send Data to File (DATA). . . . . . . . . .. ... ....
Decrement Numeric Symbol (DEC) . . . . . . .. . . . ..
Delay Execution (DELAY). . . . . . .. . .. .. ... ..
Disable Option (DISABLE) . . . . .. ... . ... ....
Display Symbol Table (DUMP) . . . . .. .. .. .. ...
Enable Option (ENABLE). . . . . . . . . .. .. ... ..
EndBlock (END) . . . . . . . . .. ... . ... ...
Delete Symbols (ERASE) . . . . .. ... . ... .. ...
Exit Current Control File (EXIT) . . . . . . . .. ... ..
Call a Subroutine (GOSUB) . . . . . . .. .. .. ... ..
Branch to a Label (GOTO). . . . . . .. ... .. ... ..
Logical Tests. . . . . . . . . . . . . . . . ... ...

5.5.20.1 Test If Symbol Meets Specified Condition (IF) . . .
5.5.20.2 Test If Symbol Is Defined or Not Defined
(IFDF/IENDF) . . .. .. .. ... .. .....
5.5.20.3 Test If Operating Mode Is Enabled or Disabled
(JFENABLED/IFDISABLED) . . . . .. . .. ..
5.5.20.4 Test If Device Is Loaded (IFLOA/IFNLOA) . . .
5.5.20.5 Test If Symbol Is True or False (IFT/IFF) . . . . .
5.5.20.6 Compound Tests . . . . . . . . . .. .. ... ..

Increment Numeric Symbol (INC) . . . . . . . .. ... ..
Branch on Error (ONERR). . . . . . . . . .. .. ... ..
Opening Data Files . . . . . .. . . .. ... .. ... ..

5.5.23.1 OpenFile(OPEN). . . . .. . ... .. .. ...
5.5.23.2 Open File for Append (OPENA) . . . . . . . . ..
5.5.23.3 Open File for Read (OPENR). . . . . . . . . . ..

Parsea String (PARSE) . . . . . . . .. ... ... ....
Purge File (PURGE). . . . . . . .. . .. ... ... ...
Read aRecord (READ) . . . . ... ... .. .. .....
Return from a Subroutine (RETURN) . . . . . .. .. . ..
Set Numeric Symbol to Decimal or Octal (SETD/.SETO) . .
Set Symbol to Logical Value (SETL). . . . . . . . .. . ..
Set Symbol to Numeric Value (SETN) . . . . . .. . .. ..
Set Symbol to String Value (SETS) . . . . .. .. ... ..
Set Symbol to True or False (SETT/SETF). . . . . . . . ..

5.5.32.1 .SETT Directive . . . . . . . . . . . . . . ...
5.5.32.2 .SETF Directive . . . . . . . . . . . .. .. ...

Terminate Processing (STOP) . . . . . . . . . .. ... ..
Test a Symbol (TEST) . . . . . . . . . .. .. .. ... ..
Test for Installed Device (TESTDEVICE) . . . . . . . . ..
Test for File (TESTFILE) . . . . . . . . ... ... ....
Obtain Volume Identification (VOL). . . . . . . . . . . ..

Chapter 6 Text Editor (EDIT)

6.1
6.2
6.3
6.4

Calling EDIT . . . . . . . . . . . . . o v vt e
Modes of Operation . . . . . . . . . . . . . . ...
Special Key Commands . . . . . . . . . .. .. ...
Command Structure . . . . . . . . . . . ... e

5-50

5-560

. 561

5-b1
5-53

5-53
5-b4
5-65

5-55
5-56
5-56

5-56
5-58
5-58
5-59

. 589

5-59
5-60
5-61
5-62

5-62
5-63

5-63
5-64
5-65
5-67
5-67

vii



viii

6.5
6.6

6.7

6.41 Arguments. . . . . . ... e e 6-5

6.42 Command Strings . . . . . . . . . .. . .. ... ... ... 6-6
6.4.3 Current Location Pointer. . . . . . . . . . . . . .. .. ... 6-7
6.4.4 Character- and Line-Oriented Command Properties. . . . . . . 6-7
6.4.4.1 Character-Oriented Commands. . . . . . . . . . .. 6-7
6.4.4.2 Line-Oriented Commands . . . . . .. ... .. .. 6-8
6.4.5 Command Repetition. . . . . . . . .. .. ... ... .... 6-9
Memory Usage. . . . . . . . . . . . . . . e 6-11
Editing Commands . . . . . . . . .. .. .. ... .. 6-12
6.6.1 File Open and Close Commands . . . . . ... .. .. ... 6-12
6.6.1.1 EditRead . ... ... ... ... e e e e e 6-12
6.6.1.2 EditWrite. . . . . . .. .. .. ... ... ... 6-13
6.6.1.3 EditBackup . . ... .. ... .. ........ 6-14
6614 EndPFile. . . . . . . ... ... ... .. .. 6-14
6.6.2 File Input/Output Commands . . . . . .. ... ... ... 6-15
6621 Read. . . . . . . . . .. ... 6-15
6.6.22 Write . . . . . . . . . ... L 6-16
6.6.23 Next. . . . . . . . . . s 6-18
6624 Exit . . . . . . ... ... 6-19
6.6.3 Pointer Relocation Commands . . . . . . . ... ... ... 6-195
6.6.3.1 Beginning . . . . . . .. ... ... ... .. 6-20
6632 Jump ... ... .. ... ... . 6-20
6633 Advance . . . . . . . . .. .. ... 6-21
664 SearchCommands. . . . . . . . . . . . . . . . ... .. 6-22
6641 Get . . . . . . . 622
6642 Find. . . . . . ... .. 623
6.643 Position . . . . . . ... ... ... 624
6.6.5 Text Listing Commands . . . . . .. ... .. ... .... 6-24
6.65.1 List . . . . . .. .. .. s 624
6.65.2 Verify . . . . . . . ... . s 6-26
6.6.6 Text Modification Commands . . . . . . . . .. .. .. .. 6-26
666.1 Imsert . . . .. ... .. .. ... ... ... 6-26
6.66.2 Delete . . . . . . . . .. 6-27
6663 Kill . . . . ... 6-28
6.664 Change . . .. ... .. ... ... ....... 6-29
6.6.6.5 Exchange . . . . .. ... ... ... .. ... 6-30
6.6.7 Utility Commands . . . . . . ... ... .. .. ...... 6-31
6.6.7.1 Save. . . . . . ... 6-31
6.6.72 Unsave. . . . . . . . . .o e 6-32
6.6.73 Macro . . . . . ... .. 6-33
6.6.74 ExecuteMacro. . . . . . . . . . ... . ... .. 6-34
6.6.75 EditVersion. . . .. . . . ... ... .. .... 6-34
6.6.7.6  Uppercase and Lowercase Commands. . . . . . . . 6-35
Display Editor. . . . . . . . . . .. ... oo 6-36
6.7.1 Using the Display Editor. . . . . . .. .. ... ... ... 6-37
6.7.2 Immediate Mode. . . . . . . . . . . . . ... .. ... .. 6-38



6.8
6.9

EDITExample. . . . . . . . . . . . v o v v i 6-39
EDIT Error Conditions. . . . . . . . . . . . .« v v v v v v . 6—40

Appendix A Monitor Command Abbreviations and System Utility
Program Equivalents

Index

Figures

Tables

2-1
4-1
4-2
5-1
6-1

5-4

5-7
5-8
6-1
6-2
6-3
6-—4
6-5
6-6
6-7

Program Development Cycle . . . . . . . . . .. . .. ... ... .. 2-3
Sample Command Syntax . . . . . . . . .. ... 4-3
Format of a 12-Bit Binary Number. . . . . . . . . . . . . ... .. 4-190
Indirect Control File Line Elements . . . . . . . . . .. . ... ... 5-1
Display Editor Format, 12-Inch Screen. . . . . . . . . . . .. . .. 6-36
RT-11 Hardware Components . . . . . . . . . . . . . .. . ... .. 1-2
Permanent Device Names . . . . . . . . . . . .. . ... .. ..., 3-3
Standard File Types . . . . . . . . . . . . ..o 34
Device Structures . . . . . . . . . ..o e e e e 3-7
Special Function Keys . . . . . . . . . . . ... 3-7
Commands Supporting Wildcards . . . . . . . . . . . .. ... ... 4-7
Wildecard Defaults . . . . . . . . . . . .. oo 4-8
Single-Line Editor Function Keys . . . . . . . . . .. .. .. ... 4-11
DIRECTORY Sort Categories . . . . . . . . . . . . . ... .... 4-88
Verification Bit Patterns. . . . . . . . . . . . . . ... ... .. 4-115
FORTRAN Listing Codes . . . . . . . . . . . . . .. ... .... 4-122
Display Screen Values. . . . . . . . . . .. .. ... ... 4-129
Default Directory Sizes . . . . . . . . . . . . . . ... 4-136
Execution and Prompting Sequence of LIBRARY Options. . . . . . . 4-144
Prompting Sequence for LINK Options. . . . . . . . . .. .. ... 4-147
Cross-Reference Sections. . . . . . . . . . . . . ... .. ..... 4-158
.DSABL and .ENABL Directive Summary . . . . . . . .. . .. .. 4-158
.LIST and .NLIST Directive Summary . . . . . . . . . . . . . ... 4-161
SET Device Conditions and Modifications . . . . . . . . . . . . .. 4-190
INDOptions. . . . . . . . . . . o e 5-7
IND Directive Summary . . . . . . . . . . o v v v vt e e e 5-11
Operating Modes. . . . . . . . . . . . . .. .o 5-14
Special IND Characters . . . . . . . . . . . . .. .. ... ... 5-15
" Arithmetic, Logical and Relational Operators . . . . . . . .. . .. 5-16
IND Special Symbols. . . . . . . . . . ... L 5-20
INDOperating Modes . . . . . . . . . .. . .. ... ... 5-40
Errors Intercepted by .ONERR Directive. . . . . . . . . . . . . .. 5-54
EDITKey Commands . . . . . . . . v v v v v v v v e et 62
EDIT Command Categories . . . . . . . . . . . . .. ... ..... 6—4
Command Arguments . . . . . . . . . . ... ..o 6-5
EDIT Commands and File Status . . . . . . . . ... ... . ... 6-15
Write Command Arguments . . . . . . . . . . .. ... 6-17
Jump Command Arguments . . . . . . . . . . . ... 6-20
Advance Command Arguments. . . . . . . . . . . ... ... 6-21

ix



6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15

List Command Arguments. . . . . . . . . . . . .. ... ... .. 6-25

Delete Command Arguments. . . . . . . . . . . .. .. ... ... 6-27
Kill Command Arguments . . . . . . . . . . .. ... ... ... 6-28
Change Command Arguments . . . . . . . . .. .. ... ..... 6-29
Exchange Command Arguments . . . . . . . .. ... ... .... 6-31
Unsave Command Arguments . . . . . . . . . . .. ... ..... 6-32
M Command and Arguments. . . . . . . . . .. .. .. .. .... 6-33

Immediate Mode Commands . . . . . . . . . . . . . . . . .. ... 6-39



_

Preface

This manual describes how to use the RT—11 operating system; it provides
enough information for you to perform ordinary tasks such as program
development, program execution, and file maintenance.

The manual is written for you if you are already familiar with computer
software fundamentals and have some experience using RT-11. If you have
no RT-11 experience, you should first read the Introduction to RT—-11 before
consulting this manual. If you have experience with an earlier release of
RT-11 (this is Version 5), you should read the RT-11 System Release Notes
to learn how RT-11 Version 5 differs from earlier versions. You can also
read the RT-11 System Utilities Manual to learn how to use the RT-11 sys-
tem utilities that perform the keyboard commands described in this manual.

system programming, you should read this manual first and then proceed to
the RT—11 Programmer’s Reference Manual and the RT-11 Software
Support Manual.

The next section, Chapter Summary, briefly describes the chapters in this
manual and suggests a reading path to help you use the manual efficiently.

Chapter Summary

Part I, RT-11 Overview, Chapters 1 and 2, describes the RT-11 operating
system in general. It lists the hardware and software components of the
RT-11 system, describes the monitors, and explains the program develop-
ment process with RT-11.

Part II, System Communication, Chapters 3 through 5, describes system
conventions, such as data formats, physical device names, file naming con-
ventions, and special function key commands. Chapter 4 introduces the key-
board monitor commands that you use to communicate with the monitor and
to perform system jobs. Chapter 5 describes how to use IND, the indirect con-
trol file processor.

Part III, Text Editing, Chapter 6, describes the RT-11 text editor (EDIT)
and shows you how to create and modify files with it.

Appendix A contains a summary of the keyboard monitor commands, their
abbreviations, and their system program equivalents.

xi



Documentation Conventions

xii

A description of the symbolic conventions used throughout this manual fol-
lows. Familiarize yourself with these conventions before you continue
reading.

1. In examples that show user input and computer output, user input is in
red.

2. This manual uses the symbol to represent a carriage return (the
RETURN key), @ to represent a line feed, € for a space, and {8 to repre-
sent a tab. Unless the manual indicates otherwise, terminate all com-
mands or command strings with a carriage return.

3. Terminal and console terminal are general terms used throughout all
RT-11 documentation to represent any terminal device, including
DECwriters and video terminals.

4. To produce certain characters in system commands, you must type a let-
ter key while pressing the control (CTRL) key. For example, while hold-
ing down the CTRL key, type C to produce the CTRL/C character. Key
combinations of this type are documented as €RLO, €R 0), and so on.

5. In discussions of command syntax, uppercase letters represent the com-
mand name, which you must type. Lowercase letters represent a vari-
.able, for which you must supply a value.

Square brackets ([ ]) enclose optional items; you may include the item in
brackets or you may omit it, as you choose.

The ellipsis symbol (...) represents repetition. You can repeat the item
that precedes the ellipsis.

This is a typical illustration of command syntax:
.DELETE[/option...] filespec[/option...]

This example shows that you must type the word DELETE, as shown,
and that you can follow it with one or more options of your choice, but
none are required. You must then leave a space, and supply a file spec-
ification. The file specification can also be followed by one or more
options, but none are required. Here is a typical command string:

,DELETE/QUERY/INFORMATION DLO:MYFILE.FOR



R

Part |
RT-11 Overview

Part I of this manual provides a description of the hardware and software
components that make up the RT-11 operating system, and a summary of
the program development cycle.

Chapter 1 lists all the hardware devices, monitors, utility programs, and
language processors available in the RT-11 computer system. This chapter
also lists the keyboard commands available in RT-11.

Chapter 2 gives a general description of the steps involved in the program
development cycle. This chapter also summarizes the use of the RT-11
librarian and high-level languages.






e

Chapter 1
System Components

RT-11is DIGITAL’s smallest real-time and program development operating
system for the PDP-11 family of minicomputers. This single-user operating
system runs on hardware configurations ranging from the microprocessor-
based PDP-11/03 through the larger PDP-11/44 with cache memory. RT-11
is designed to be small, efficient, reliable, and easy to use.

The RT-11 computer system consists of hardware, software, and documenta-
tion. This chapter describes briefly the components available for you to use
with RT-11.

1.1 Hardware

The hardware components of an RT—11 system are drawn from the following
categories:

e PDP-11, LSI-11, and SBC~11 family computers (except the 11/70 or VAX
computers)

® Printing and video terminals

Core and solid-state memory

Line frequency and programmable clocks

® Random-access mass storage devices

Other peripheral devices

The smallest possible hardware configuration for an RT-11 system must
include a PDP-11, LSI-11, or SBC-11 computer, one terminal, 16K words of
memory, a random-access mass storage device for the system device, and a
system backup device. Larger systems can have a clock, more memory, more
terminals, and more peripheral devices.

Table 1-1 lists specific hardware devices that can make up an RT-11 com-
puter system.

- 1-1



Table 1-1: RT-11 Hardware Components

Device Type Controller Device Name
Card reader CR11 CR11
Clock - KW11-L, KW11-P
DECtape Il data DL11,DLV11 TU58
cartridge
Disk RK11,RKV11 RKO05, RKO5F
RK611 RKO06, RK07
RL11,RLV11,RLV12 RLO1, RLO2
RC11 RC25
RQDX1 RD51
UDA-50 RASO
Diskette RX11, RXV11 RX01
RX211,RXV21 RX02
RQDX1 RX50
Display processor VTil -
VS60 -
VS11 —
Line printer LS11 -
LVi11 LVi11
LP11,LPV11 All LP11-controlled
printers (LP05,
LP25, LP26)
Magtape TM11, TMA11l TU10, TE16
RH11 TJU16, TU45, TVTT?
TS11 TS11, TS05, TU8O
Asynchronous terminal ~ DL11,DLV11 LA120,LA34, LA12,
interface LA100
DZ11,DZV11 LQP02

VT100, VT101,
VT102, VT105,
VT125

1.2 Software

The software components of the RT—11 computer system can be divided into

four general groups:

& Monitors

Device handlers

Utility programs

Language processors

These are described in the following sections.

1-2 System Components



1.2.1 Monitors

An RT-11 monitor is a collection of routines that control the operation of
programs, schedule operations, allocate resources, and perform input and
output. A monitor comprises three major components: RMON (resident mon-
itor); USR (User Service Routine); and KMON (keyboard monitor). The resi-
dent monitor (RMON) is the part of the monitor that is always present in
memory. It is the executive controller for the entire system. The user service
routine (USR) performs operations related to input and output, such as
opening and closing files. The keyboard monitor (KMON) is the interface
between you and the other parts of the system. It contains routines to pro-
cess the keyboard monitor commands, which are your means of performing
common system operations such as loading and running programs, assign-
ing alternate device names, and copying and deleting files.

RT-11 provides three different operating environments that represent com-
promises among size, speed, and capability. Three types of monitors, all con-
taining the main parts described above, supervise the different environ-
ments. These three monitors are the single-job (SJ) monitor, the foreground/
background (FB) monitor, and the extended memory (XM) monitor. The
three environments are upward compatible:

@ The single-job (SJ) monitor supports the basic environment.

® The foreground/background (FB) monitor includes all the support of the
single-job monitor and adds the ability to run more than one job, as well
as some extra features.

® The extended memory (XM) monitor is an extension of the foreground/
background monitor that includes all the foreground/background fea-
tures, plus extended memory capabilities.

1.2.1.1 Single-Job (SJ) Monitor — The single-job monitor, called the SJ moni-
tor, can run one job at a time. It is the smallest of the three monitors. While
the SJ monitor does not offer some of the optional features that the other
monitors have, you can use all the system utility programs, most of the key-
board monitor commands, and many of the programmed requests.

Only 16K words of memory are required for a single-job system, though, and
since the SJ monitor uses approximately 2K words itself, this leaves
approximately 14K words for system utility programs or for your applica-
tion program. The SJ monitor is ideal for real-time applications that require
a high data transfer rate because it services interrupts quickly. In the

airnola inlh anrinanmant nnaovama nan anna 111+ DQW woranda af raormary (110
Biiig1e~jO0 SLVIroiiiieiiy, Prograins an acCess up 10 4o WOras 01 iemory (\up

to 30K words on some LSI-11s).

A version of the SJ monitor, the base-line (BL) monitor, also runs in a mini-
mum configuration of 16K words of memory, but it does not support optional
monitor and device functions. The BL monitor is best suited for very small
hardware configurations, or for larger configurations where the application
requires minimal executive support.

System Components 1-3



1.2.1.2 Foreground/Background (FB) Monitor — The foreground/background
monitor, called the FB monitor, can accommodate two jobs that appear to
run concurrently: a foreground job and a background job. All programs that
run in the single-job environment, including system utility programs and
language processors, can run as background jobs in the foreground/
background environment. The foreground job is the time-critical, real-time
job, and the FB monitor gives it priority over the background job. The FB
monitor can also run system jobs. System job support is a system generation
option which allows you to run up to eight jobs, including the foreground and
background jobs. A foreground/background system requires 16K words of
memory and a system clock.

Quite often, the central processor of a computer system spends much of its
time waiting for some external event to occur. Usually, this event is a real-
time interrupt or the completion of an I/O transfer. The FB monitor lets you
take advantage of the unused processor capacity to accomplish lower prior-
ity work in the background.

Whenever the foreground job reaches a state in which no useful processing
can be done until some external event occurs, the monitor executes the back-
ground job. The background job runs until the foreground job is again ready
to execute. The processor then interrupts the background job and resumes
the foreground job.

In effect, the FB monitor allows a time-critical job to run in the foreground
while less critical work takes place in the background. All the system utility
programs and language processors can run as background jobs in a
foreground/background system, although more than 16K words of memory
may be required. Thus, you can use FORTRAN or KED, for example, in the
background, while the foreground job is collecting, storing, and analyzing
data.

Compared to the SJ monitor, the FB monitor is somewhat larger and has
slightly slower response time. However, it provides support for the
foreground/background environment. In this environment, programs can
access 28K words of memory (up to 30K words on some LSI-11s). Special
keyboard monitor commands link, run, suspend, and resume foreground
jobs. In addition, programmed requests permit a foreground job and a back-
ground job to transmit data to one another. Special system jobs (described in
Part II of the RT—11 System Utilities Manual) run in the foreground/
background environment.

1.2.1.3 Extended Memory (XM) Meonitor — The extended memory monitor,
nallad +ha Vl\'/I manitnr ineliidac a]] t+hao 'Foai'nvoa ef tha FB mnh'ifn*v"

\.aa.u.eu. vilo LN LLIULIILLVUL 110 RuUC o L L viiv  LvAiuvul v VELD ALIU LRI VUL

Throughout this manual, references to the foreground/background environ-
ment also apply to the extended memory environment, unless otherwise
stated.

The XM monitor allows you to use memory configurations larger than the
28K words supported by the SJ and FB monitors. On 18-bit Q-bus and

14 System Components



UNIBUS processors, the XM monitor supports up to 124K words. On 22-bit
Q-bus processors, the XM monitor supports up to 2048K words (2 mega-
words). This permits foreground and background jobs to extend their logical
program space beyond the 32K-word limit imposed by the 16-bit PDP-11
address word to a total of 128K words per job. The XM monitor requires a
system with the Extended Instruction Set (EIS), a KT11 memory manage-
ment unit, and more than 32K words of memory.

Extended memory services, or the ability to use memory mapping, are avail-
able at a variety of levels. For DIBOL users, for example, the mapping to
extended memory is completely transparent. FORTRAN programmers can
use virtual arrays to store large amounts of data in extended memory. A
LINK option permits RT-11 programmers to store overlays in extended
memory instead of on disk, thus increasing an overlaid program’s execution
speed markedly. A virtual .SETTOP programmed request permits a
MACRO-11 program to dynamically allocate buffers in extended memory
without concern for memory mapping. Finally, on the most basic level,
RT-11 provides other programmed requests that MACRO-11 programs can
use to control their own mapping to extended memory. (Keep in mind that
designing an application program to use extended memory this way requires
considerable thought and careful planning. The RT—11 Software Support
Manual and Chapter 11 of the RT-11 System Utilities Manual provide more
detailed information on using extended memory.)

In the extended memory environment, jobs are described as being either
privileged or virtual jobs. Foreground or background jobs that execute in the
foreground/background or single-job environment can also execute in the
extended memory environment as privileged jobs. That is, they use a one-to-
one default mapping from logical virtual to physical memory. Except for jobs
that include interrupt service routines, these privileged jobs need no major
changes to execute properly in the extended memory environment.

1.2.2 Device Handlers

Device handlers are routines that provide the interface to the various hard-
ware devices in the computer system. The handlers drive, or service, periph-
eral devices and control the physical activities on the devices. In RT-11, the
terms device handler and device driver are used interchangeably.

A handler exists for every device the system supports (except for the VT11).
When you reference a device by its physical name, such as DL: for the RLO2
disk, you are actually referring to the name of the device handler for that
peripheral.

Chapter 3 contains a list of all the devices that RT—11 supports, along with
their physical names. If you need to use a peripheral device that is not sup-
ported by RT—-11, you usually must write the handler for it yourself. The pro-
cedure for doing this is documented in the RT—11 Software Support Manual.

System Components 1-5



1.2.3 System Utility Programs

RT-11 provides a number of utility programs to help you develop programs
and perform system housekeeping. The following sections describe these
utilities briefly and refer you to more detailed descriptions in the documen-
tation set.

1.2.3.1 Editing — You use text editors to create and modify source programs
and to maintain files of any ASCII data, such as memos or documentation for
your own application programs. DIGITAL distributes two text file editors
with RT-11, so you can choose the one that best suits your needs and exper-
ience: EDIT and KED. DIGITAL also distributes, but does not support, two
other text editors for RT-11: K52 and TECO.

The RT-11 text editor (EDIT, described in Chapter 6 of this manual) is a
character-oriented editor suitable for hard copy terminals. Its text manipu-
lation commands permit you to make text insertions or changes quickly and
easily. EDIT also has a special mode for VT11 or VS60 graphics display
terminals.

The keypad editors (KED and K52 described in the PDP—-11 Keypad Editor
User’s Guide) are for the video terminals that have the special function key-
pad. The keypad keys control the editing functions. They permit you to posi-
tion a visible cursor anywhere in your text file and make insertions or
changes easily. KED runs on the VT'100 family of terminals, and K52 runs
on VT52 terminals. A virtual keypad editor, KEX, is also available for edit-
ing when running under the XM monitor. You use KEX exactly as you
would KED; see the PDP-11 Keypad Editor User’s Guide for information on
how to use KED.

A subset of the keypad editor, the single-line editor, allows you to edit com-
mand lines and input as you type them by using the PF1-PF4 and cursor
control keys. The single-line editor is described in Section 4.3 of this
manual.

1.2.3.2 General Purpose —RT-11 provides several utility programs that help
you perform maintenance on your system and aid in program development.
You can obtain the services these programs provide by using the keyboard
commands described in this manual, or you can call these programs directly
as described in the RT—11 System Utilities Manual. Each of these programs
is described in greater detail in separate chapters of the RT—11 System
Utilities Manual.

A\Tara

The binary file comparison program (BINCOM) compares two binary files
and lists the differences between them. It can provide a quick way of telling
whether two data files, or output from two versions of a program, are identi-
cal. BINCOM can also produce a file that can be run as an indirect command
file for the save image patch program (SIPP) to patch one file in the binary
comparison so it matches the other.

The backup utility program (BUP) provides an easy way to back up and
restore large files and entire volumes onto several smaller volumes.

1-6 System Components



S

R

The directory listing program (DIR) performs a wide range of directory list-
ing operations and can list details about certain files, such as file names, file
types, and block sizes.

The dump utility program (DUMP) prints all or any part of a file or volume
in octal words, octal bytes, ASCII characters, or Radix—50 characters.

The general device utility program (DUP) performs general device tasks
such as initializing devices, scanning for bad blocks, duplicating device con-
tents, and reorganizing files on the device. It operates only on RT-11 file-
structured devices.

The file exchange utility program (FILEX) transfers files between RT-11
and the following systems, on DECtape and disks: DECsystem—10, PDP-11
RSTS/E, and DOS BATCH. FILEX also transfers files between RT-11 and
other systems on diskettes that use IBM interchange format.

The volume formatting utility program (FORMAT) provides a way to format
RKO05, RK06, and RKO07 disks, and diskettes. It also provides disk verifica-
tion by writing patterns and reading them on each block of your volume.

The logical disk subsetting handler (LD) allows you to assign files as logical
disks. Thereafter you can treat them as if they were separate RT-11
directory-structured volumes.

The librarian utility (LIBR) lets you create and maintain libraries of func-
tions and routines. These routines can be stored on a random-access device
in library files where the linker can reference them and add them to a pro-
gram’s memory image file. You can create object libraries and macro librar-
ies. The latter are used by the MACRO assembler.

The linker utility (LINK) converts a collection of object modules from com-
piled or assembled programs and subroutines into a memory image file that
RT-11 can load and execute. The linker also allows you to:

@ Search library files for subroutines that you specify
@ Produce a load map that lists the assigned absolute addresses
® Set up a disk or memory resident overlay structure for large programs

® Create a symbol table file that lists all the global symbols used in the
program

@ Produce files suitable for execution as foreground jobs

The peripheral interchange program (PIP) is the RT-11 file maintenance

program. It transfers files between devices that are part of the RT-11 sys-
tem, and it deletes and renames files as well.

The resource program (RESORC) lists information about your system
configuration and system generation special features.

System Components 1-7



The source file comparison program (SRCCOM) performs a character-by-
character comparison of two ASCII text files. You can request that the dif-
ferences be listed in an output file or directly on the line printer or terminal
to make sure that edits to a file have been performed correctly. SRCCOM
can also produce a file that is suitable as input to SLP, the source file patch-
ing utility.

1.2.3.3 System Jobs — RT-11 provides three utilities that you can run as
foreground jobs or, if you have enabled system job support through the sys-
tem generation process, as system jobs: the Error Logger, the Queue
Package, and KEX. The Error Logger and the Queue Package run under
both the FB and XM monitors; KEX runs only under the XM mointor. (The
Error Logger also runs under the SJ monitor.) System jobs are described in
more detail in the RT-11 System Utilities Manual.

The Error Logger keeps a statistical record of all I/O transfers for each
device it supports. The Error Logger also records memory parity and cache
errors as they occur. With the Error Logger enabled on your system volume,
you can collect data on each I/O and memory error that occurs. The Error
Logger consists of three programs, a data file, and a handler. This utility is a
special feature; that is, you must enable it through the system generation
process.

The Queue Package transfers files to any valid RT—11 device. The Queue
Package is particularly useful for queuing files for subsequent printing,
although output is not restricted to the line printer. Unlike the Error
Logger, the Queue Package is not a special feature available only through
system generation.

1.2.3.4 Debugging and Patching — These utility programs help you to find,
diagnose, and correct programming errors. Debugging and patching pro-
grams are described in more detail in the RT—11 System Utilities Manual.

The on-line debugging technique (ODT) is an object module that you link
with your program. It helps you debug assembled and linked programs. ODT
can: '

@ Print and change the contents of specified locations
® Execute all or part of the object program

@ Search the object program for specific bit patterns

The object module patch program (PAT) performs minor modifications to
files in object format (output files produced by the FORTRAN compiler or
the MACRO assembler). It can merge several object files into one.

The save image patch program (SIPP) can update programs that were linked
with the RT-11 V4 or V5 linker. It can also update non-overlaid programs
from versions V3 and V3B of RT-11.

1-8 System Components



The source language patch program (SLP) provides an easy way to make
changes to source files. SLP can use an indirect command file created by a
SRCCOM option to make two source files match.

1.2.3.5 BATCH — The batch program (BATCH, described in Appendix A of
the RT—11 System Utilities Manual) is a complete job-control language that
allows RT-11 to operate unattended.

1.2.4 Language Processors

RT-11 supports a number of language processors to help you develop pro-
grams. The Introduction to RT-11 contains detailed information on the dif-
ferences between assembly language and high-level languages. It also offers

guidelines for choosing a programming language and provides demonstra-
tions of MACRO, BASIC, and FORTRAN programs.

The MACRO-11 assembler (see Chapter 12 of the RT-11 System Ultilities
Manual) is part of the RT-11 system. Because MACRO-11 is an assembly
language, it gives you control over the system at the most elementary
However, it may be more difficult to learn and use than any of the high-level
languages.

The high-level languages RT-11 supports are:

e DIBOL
e BASIC
e FORTRANIV

1.3 RT-11 Software Documentation

The software documentation for the RT-11 system consists of the manuals
that document the RT-11 system itself, plus the documentation for any
optional languages or application packages you may have.

The Guide to RT-11 Documentation summarizes the manuals in the RT-11
documentation set. Reading this guide gives you a general picture of the top-
ics covered in the manuals.

To find more specific information, refer to the RT—11 Master Index. This is a
compilation of the indexes of the other RT-11 manuals. It pinpoints refer-
ences by manual name and page number. It also indicates which reference is

it sy qtTan o Pf\“m.—d- on non tha anan

o
the primary source oI inrorimation o1l tile Dycblﬁc uOPIC

1.4 System Services

The RT-11 system provides many services that allow you, for example, to
copy and delete files, to examine locations in memory, to run programs, and
to open and close files. Some of these services are available to you at the con-
sole terminal; others are available to application programs.

System Components 1-9



1.4.1 Keyboard Monitor Commands

The keyboard monitor commands are a set of English-language commands
that permit you to perform common system operations. When you type a
keyboard monitor command at the console terminal, RT-11 responds by per-
forming the operation you specify. The monitor then prompts you for
another command and waits for you to respond. Chapter 4 describes the syn-
tax and function of each of the keyboard monitor commands.

The set of keyboard monitor commands consists of two types of commands:
simple and complex. Simple, or direct, commands are executed directly by
the keyboard monitor, and no other software components are required. The
complete set of simple commands is as follows:

ABORT DEASSIGN GT REMOVE SET UNLOAD
ASSIGN  Deposit INSTALL RESET SRUN

Base Examine LOAD RESUME START

CLOSE FRUN R RUN SUSPEND

DATE GET REENTER SAVE TIME

Complex, or expanded, commands are not executed directly by the keyboard
monitor. Instead, a utility program or language processor is called by the
keyboard monitor to perform the operation. The keyboard monitor expands
the command line piece by piece and translates the command into an R com-
mand followed by a program name and one or more lines of file specifications
and options for that program. When the operation completes, control returns
to the keyboard monitor and it prompts you for another command. The set of
complex commands is as follows:

BACKUP DELETE EDIT LIBRARY RENAME
BASIC DIBOL EXECUTE LINK SHOW

BOOT DIFFERENCES FORMAT MACRO SQUEEZE
COMPILE DIRECTORY FORTRAN MOUNT TYPE

COoPY DISMOUNT HELP PRINT UNPROTECT
CREATE DUMP INITIALIZE PROTECT

1.4.2 System Programs

Another way to obtain services from RT-11 is to invoke system utility pro-
grams or language processors yourself, instead of invoking them indirectly
through the keyboard monitor commands. By using this method you can
obtain all the services provided by the complex keyboard monitor com-
mands. (The only way to obtain the services provided by the simple key-

board monitor commands is to issue those commands.) A limited number of

utility program operations are not implemented through the keyboard mon-
itor. In addition, you must run some of the utility programs directly in order
to use them at all. Programs in this group include the patching and debug-
ging utilities.

1-10 System Components



N /

To invoke a system utility program or a language processor, you run the
appropriate program and specify a combination of file specifications and sin-
gle alphabetic character options. The RT-11 System Utilities Manual
describes how to use the system utility programs and MACRO language pro-
cessor directly. Chapter 1 describes the syntax you use to interact with the
utility programs and language processors. Chapters 2 through 21 contain
detailed information on each program.

You can also invoke the system utility programs and language processors by
using CCL, the concise command language. Section 4.6 of this manual
describes how to use CCL.

1.4.3 The Relationship Between Complex Commands and System
Programs

It is possible to obtain the services provided by the complex keyboard moni-
tor commands by directly running the appropriate system programs. Appen-
dix A of this manual provides a complete list of the keyboard monitor
commands and the system programs they invoke.

The following examples demonstrate two ways of copying a listing of a pro-
gram from the default disk, where it is stored as MYFILET, to the line
printer. The keyboard monitor command to do this is as follows:

+PRINT MYFILEGED

The commands to invoke a utility program, specify the same operation, and
return control to the monitor are:

R PIPED
¥LP:=DK:MYFILE.LSTE
*CTRLD)

(CTRL/C echoes on your terminal as AC.)

So, although there are two ways of obtaining the same services, bear in mind
that the syntax for using the utility programs and language processors is
quite different from the keyboard monitor command syntax. Since the key-
board commands are easy to remember and easy to use, it makes sense to
use them whenever possible.

1.4.4 The System Macro Library and Programmed Requests

The system macro library, called SYSMAC.SML, contains macro definitions
that you can use in MACRO assembly language programs and in device
handlers. You reference the definitions in your assembly language program,
and they expand into lines of source code. These macros can save you consid-
erable programming effort. See the RT—11 Programmer’s Reference Manual.

System Components 1-11



1.4.5 SYSLIB FORTRAN-Callable Subprograms

All of the system subroutine library (SYSLIB) routines are written in
MACRO. They give the FORTRAN programmer many ot the services that
the MACRO programmer can obtain from the system macro library
(SYSMAC.SML). These subprograms can be called from a program written
in any programming language, as long as the program conforms to the FOR-
TRAN calling conventions described in the RT—11 Programmer’s Reference
Manual.

1-12 System Components



N

Chapter 2
Program Development

RT-11 provides several program development aids, including editors, an
assembler, a linker, a debugger, and a librarian. High-level languages, such
as FORTRAN or BASIC, are optionally available.

This chapter describes briefly the program development cycle, which is illus-
trated in Figure 2—1. The Introduction to RT-11 contains a much more thor-

ough treatment of program development including demonstrations of
MACRO, BASIC, and FORTRAN programs.

2.1 Using an Editor (EDIT, KED, KEX, or K52)

You use an editor to create and modify textual material. Text may be the
statements in a source program, or any other ASCII data such as reports or
memos. In this respect, using an editor is analogous to using a typewriter;
you sit at a keyboard and type text. However, the functions of an editor far
exceed those of a typewriter. Once a text file has been created, you can
modify, relocate, replace, merge, or delete text, all by means of editing com-
mands. When you are satisfied with your text, you can save it on a storage
device where it is available for later reference.

2.2 Using the Assembler (MACRO)

Program development does not stop with the creation of a source program.
Since the computer cannot understand any language but machine language,
you need an intermediary program to convert source code into instructions
the computer can execute. This is the function of an assembler.

The assembler accepts alphanumeric representations of PDP-11 instruc-
tions, and produces as output the appropriate machine code, called object
code. You can direct the assembler to generate a listing of both the source
code and binary output, as well as cross-reference listings that are helpful
during the program debugging process. In addition, the assembler is capable
of detecting certain common coding errors and issuing appropriate
warnings.

The assembler’s output is called object output because it is composed of
object, or binary, code. On PDP-11 systems, the object output is called a
module; it contains your source program in the binary language that, when
linked, is executable by a PDP-11 computer.

2-1



2.3 Using the Linker (LINK)

Source programs may be complete and functional by themselves; however,
some programs are written in such a way that they must be used with other
programs or modules to form a complete and logical flow of instructions. For
this reason, the object code produced by the assembler must be relocatable.
That is, assignment of memory locations must be deferred until the code is
combined with all other necessary object modules. The linker performs this
function.

The linker combines and relocates separately assembled object programs.
The output produced by the linker is a load module, the final linked program
that is ready for execution. You can, if you wish, request a load map that dis-
plays all addresses assigned by the linker.

2.4 Using the Debugger (ODT or VDT)

2-2

You can rarely create a program that does not contain at least one error,
either in the logic of the program or in its coding. You may discover errors
while you are editing the program, or the assembler may find errors during
the assembly process and inform you by means of error codes. The linker
may also catch certain errors and issue appropriate messages. Often, how-
ever, it is not until execution that you discover your program is not working
properly. Programming errors may be extremely difficult to find, and for this
reason, a debugging tool, ODT (described in Chapter 18 of the RT-11 System
Utilities Manual), is available to help you find the cause of errors.

ODT allows you to control the execution of your program interactively. With
it, you can examine the contents of individual locations, search for specific
bit patterns, set designated stopping points during execution, change the
contents of locations, continue execution, and test the results — all without
editing and reassembling the program.

Note that it is advisable to test new programs by having them process data
for which results are already known. If the results do not match, you know
you have errors.

Use VDT, the Virtual Debugging Technique, to debug virtual and privileged
jobs in an XM system. You can also use VDT to debug jobs in FB, SJ, and
multiterminal systems. See the RT—11 Software Suppport Manual for more
information on using VDT.

When programs are written and debugged, they are useful to other program-
mers. Often, routines that are common to many programs, such as input and
output routines, or sections of code that are used over and over again, are
more useful if they are placed in a library where they can be retrieved by
any interested user. A librarian provides such a service by allowing creation
of a library file. Once created, the library can be expanded or updated, or a
directory of its contents can be listed.

Program Development



e

2.6 Using a High-Level Language (FORTRAN, BASIC, or DIBOL)

High-level languages simplify your work by providing an alternative
means, other than assembly language, of writing a source program.
Generally, high-level languages are easy to learn. A single command causes
the computer to perform many machine-language instructions. You do not
need to know about the mechanics of the computer to use a high-level lan-
guage. In addition, some high-level languages, such as BASIC, offer a spe-
cial immediate mode that allows you to solve equations and formulas as
though you were using a calculator. You can concentrate on solving the
problem rather than on using the system.

Figure 2-1: Program Development Cycle

{ START ) @

V [

< PAPER LINK

EDIT ERRORS?

SOURCE
FILE

LINK
V " WITH
oDT
ASSEMBLE
or RUN ‘
COMPILE

ERRORS?

NO [YEs

RESULTS NO
oK?

Program Development 2-3






e

Part Il

System Communication

The monitor is the center of RT-11 system communications; it provides
access to system and user programs, performs input and output functions,
and controls foreground and background jobs.

You communicate with the monitor through keyboard commands and pro-
grammed requests. You can use the keyboard commands (described in
Chapter 4) to load and run programs, start or restart programs at specific
addresses, modify the contents of memory, and assign and deassign alter-
nate device names, to name only a few of the functions.

Programmed requests (described in detail in the RT-11 Programmer’s
Reference Manual) are instructions that request the monitor to perform
services. These instructions allow assembly language programs to use the
monitor features. A running program communicates with the monitor
through programmed requests. FORTRAN programs have access to pro-
grammed requests through the system subroutine library (SYSLIB).
Programmed requests can, for example, manipulate files, perform input and
output, and suspend and resume program operations.

Of the three chapters in this part, Chapter 3 describes system conventions
and contains information that helps you get started with RT—11. Chapter 4
introduces the keyboard monitor commands, which are your means of con-
trolling the RT-11 system, and Chapter 5 describes how to use IND, the
indirect control file processor.






N

Chapter 3
System Conventions

This chapter contains information that will help you start using the RT—-11
system. It describes:

@ Start-up procedure

® Data formats

® Physical device names

® File names and file types

® Device structures

@ Special function keys

® Foreground/background terminal I/O
® Type-ahead feature

Before you operate the RT-11 system, you should be familiar with the spe-
cial character commands, file naming procedures, and other conventions
that are standard for the system. These conventions are described in this
chapter.

3.1 Start-Up Procedure

For information on building the system and loading the monitor, refer to the
Introduction to RT-11, to your RT—-11 Automatic Installation Booklet, or to
the RT-11 Installation Guide.

.

When the system is built and you load the monitor into memory, the monitor
prints one of the following identification messages on the terminal:

RT-1184 (8) Uxxaemn
RT-11FB (8) WUxx.nn
RT-11¥M (8) WUxx.nn

The message indicates which monitor (SJ, FB, or XM) is loaded; you specify
that monitor when you install the system. The (S) indicates that the monitor
was created through the system generation process. (The S designation does
not appear with distributed monitors.)

Vxx represents the version and release number of the monitor — for exam-
ple, V05 for Version 5. nn represents the submission number and the patch
level — for example, 01B for number 1.

3-1



As soon as a monitor takes control of the system, it attempts to execute key-
board monitor commands from a start-up indirect command file called
STARTS.COM for the SJ monitor, STARTF.COM for the FB monitor, or
STARTX.COM for the XM monitor. You can place commands in this start-
up file that will perform routine tasks, such as assigning logical device
names to physical devices or setting the current date. If the monitor does not
find the appropriate file, it issues a warning message. (Note that if you do
not want the start-up indirect command file feature, you can disable it dur-
ing system generation or you can apply a software customization.)

After executing the start-up indirect command file, the system prints its
prompt (.) indicating that it is ready to accept commands. Make sure the sys-
tem device is write-enabled.

3.2 Data Formats

The RT-11 system stores data in two formats: ASCII and binary. The binary
data can be organized in many formats, including object, memory image,
relocatable image, and load image.

Files in ASCII format conform to the American Standard Code for
Information Interchange, in which each character is represented by a 7-bit
code. Files in ASCII format include program source files created by the edi-
tor and BASIC, listing and map files created by various system programs,
and data files consisting of alphanumeric characters.

Files in binary object format consist of data and PDP-11 machine language
code. Object files are the files the assembler or language compiler produces;
they are used as input to the linker.

The linker can produce runnable files in one of three formats: memory image
format (.SAV), relocatable image format (REL), or load image format
(.LDA).

A memory image (.SAV) file is a picture of what memory looks like after you
load a program. The file itself requires the same number of disk blocks as the
corresponding number of 256-word memory blocks. A memory image file
does not require relocation and can run in a single-job environment, as a
background program under the FB or XM monitor, or as a foreground vir-
tual job under the XM monitor.

A relocatable image (REL) file is linked as though its bottom address were
1000, but relocation information is included with its memory image. When
A VAo ith +thao WDUI\I or SRU}I onmmand tha fila 1'S raln-

yOu ca}.l thc: § 2 UgL aliy W}.UJ.J. LIICT L1y CULLMILIGLILLy ik L1 & LTy
cated as it is loaded into memory. A relocatable image file can run in a fore-
ground environment.

You can produce a load image (.LDA) file for compatibility with the PDP-11
paper tape system. The absolute binary loader loads this file. You can load
and execute load image files in stand-alone environments without relocating
them.

3-2 System Conventions



R

N Y
e

3.3 Device Names

When you request services from the monitor, you must sometimes specify a
peripheral device. You can specify these devices by means of standard two-

-character device names. Table 3-1 lists each name and its related device. If
you do not specify a unit number (n) for devices with more than one unit, the
system assumes unit 0.

Table 3-1: Permanent Device Names

Permanent Name

I/0O Device

DDn:
DK:

DKn:
DLn:
DMn:
DUn: .

DXn:
D¥Yn:
EL:
LD:
LPp:
LS:

MMn:
MQ:

MSn:
MTn:

NL:
RKn:
SY:

SYn:
TT:
VM:

TU58 DECtape II (n is an integer in the range 0-3)

Default logical storage device for all files (DK: is initially the same
as SY:)

Specified unit of same device type as DK
RLO01, RLO2 disk (n is an integer in the range 0-3)
RKO06, RK07 disk (n is an integer in the range 0-7)

MSCP disk or diskette: RC25 fixed/removable, RD51 fixed, and
RAB80 fixed Winchester disk; RX50 diskette (n is an integer in the
range 0-7)

RX01 diskette (n is an integer in the range 0-3)
RX02 diskette (n is an integer in the range 0-3)
SJ monitor Error Logger pseudodevice

Logical disk subsetting handler pseudodevice
Line printer

Serial line printer (hard-copy output device connected to a DL11
interface)

TJU16/TU45 (industry-compatible) magtape (n is an integer in the
range 0-7)

Message queue pseudodevice for interjob communication under FB
and XM monitors.

TS11/TS05/TU80 magtape (n is an integer in the range 0-7)

TM11/TMA11/TS03/TE16 (industry-compatible) magtape (n is an
integer in the range 0-7)

Null pseudodevice
RKO05 disk cartridge drive (n is an integer in the range 0-7)

Default logical system device; device and unit from which system is
bootstrapped

Specified unit of same device type as SY:
Console terminal keyboard and display (hard-copy or video screen)

Extended memory handler

System Conventions 3-3



In addition to using the permanent names shown in Table 3-1, you can
assign logical names to devices. A logical name takes precedence over a
physical name and thus provides device independence. With this feature,
you do not have to rewrite a program that is coded to use a specific device if
the device becomes unavailable. You associate logical names with physical
devices by using the ASSIGN command. This command is described in
Section 4.5.

3.4 File Names and File Types

You can reference files symbolically by using a name of one to six alphanu-
meric characters (followed, optionally, by a period and a file type of up to
three alphanumeric characters). No spaces or tabs are allowed in the file
name or file type.

The file type generally indicates the format or contents of a file. It is good
practice to conform to the standard file types for RT-11. If you do not specify
a file type for an input or output file, most system programs use or assign an
appropriate default file type. Table 3-2 lists the standard file types used in
RT-11.

Table 3-2: Standard File Types

File Type Meaning
ANS SYSGEN answer file
.BAC Compiled BASIC program
.BAD Files with bad (unreadable) blocks; you can assign this file type whenever

bad areas occur on a device. The .BAD file type makes the file permanent in
that area, preventing other files from using it and consequently becoming

unreadable

.BAK Editor backup file

BAS BASIC sourece file (BASIC input)

.BAT BATCH command file

BLD Command file to execute SYSGEN monitor (MON) and device handler
(.DEV) build files

BUP Backup utility program output file

.CND SYSGEN conditional file

.COM KMON indirect command file, IND indirect control file, or SIPP command
file

.CTL BATCH control file generated by BATCH compiler

.CTT BATCH internal temporary file

.DAT BASIC, FORTRAN, or IND data file

(Continued on next page)

34 System Conventions



e

Table 3-2: Standard File Types (Cont.)

File Type Meaning

.DBL DIBOL source file

.DDF DIBOL data file

.DEV SYSGEN device handler build file

DIF BINCOM or SRCCOM differences file

.DIR Directory listing file

.DMP DUMP output file

.DSK Logical disk file (for use with LD handler)

JFOR FORTRAN IV source file (FORTRAN input)

.LDA Absolute binary (load image) file (optional linker output)

LOG BATCH log file

LST Listing file (MACRO, FORTRAN, LIBR, or DIBOL output)

.MAC MACRO source file (LIBR, MACRO or SRCCOM input)

.MAP Map file (linker output)

.MLB MACRO library output file

.MON SYSGEN monitor build file

.OBJ Relocatable binary file (MACRO or FORTRAN output, linker input, LIBR
input and output)

.REL Foreground job relocatable image (linker output, default for monitor FRUN
and SRUN commands)

SAV Memory image; default for R, RUN, SAVE, and GET keyboard monitor
commands; default for linker output

SLP SLP command file

SML System MACRO library

.S0U Temporary source file generated by BATCH

.STB Symbol table file in object format containing the symbols produced during
link

SYG Monitor and handler files resulting from system generation

.SYS Monitor files and handlers

TBL Monitor device table section created during SYSGEN

TMP ERROUT temporary file

TXT Text file

WRK Temporary work file

System Conventions 3-5



3.5 Device Structures

RT-11 devices are categorized according to two characteristics: their method
of processing information and their physical structure.

All RT-11 devices are either randomly accessed or sequentially accessed.
Random-access devices allow the system to process blocks of data in a ran-
dom order; that is, independent of the data’s physical location on the device
or its location relative to any other information. All disks, diskettes,
DECtape, and DECtape II fall into this category. Random-access devices are
sometimes called block-replaceable devices, because you can manipulate
(rewrite) individual data blocks without affecting other data blocks on the
device.

Sequential-access devices require sequential processing of data; the order in
which the system processes the data must be the same as the physical order
of the data. RT-11 sequential devices are magtape, line printer, and termi-
nal.

File-structured devices are those devices that allow the system to store data
under assigned file names. RT-11 devices that are file-structured include all
disk, diskette, DECtape II, and magtape devices. Non-file-structured
devices, however, do not store files; they contain a single logical collection of
data. These devices, which include the line printer and terminal, are gener-
ally used for reading and listing information.

File-structured devices that have a standard RT-11 directory at the begin-
ning are called RT-11 directory-structured devices. A device directory con-
sists of a series of directory segments that contain the names, lengths, and
dates of the files on that device. The system updates the directory each time
a program moves, changes, adds, or deletes a file on the device. (The RT-11
Software Support Manual contains a more detailed explanation of a device
directory.) RT-11 directory-structured devices include all disks and
DECtapes. Some devices that do not have the standard RT-11 directory
structure, such as magtape, store directory information at the beginning of
each file, but the system must read the device sequentially to obtain all
information about all files.

Table 3-3 shows the relationships among devices, access methods, and
structures.

3.6 Special Function Keys

Special function keys and keyboard commands let you communicate with

the RT-11 monitor to allocate system resources, manipulate memory
images, start programs, and use foreground/background services.

The special functions of certain terminal keys you need for communication
with the keyboard monitor are explained in Table 3—4. In an FB system, the
keyboard monitor runs as a background job when no other background job is
running.

3—6 System Conventions



s

e’

Table 3-3: Device Structures

Structure
Device File Non-file RT-directory Non-RT-directory

Random Access

Disk, diskette X X

DECtape II X X
Sequential Access

Magtape X X

Line printer X

Terminal X

Enter CTRL commands by holding the CTRL key down while typing the
appropriate letter.

Table 3-4: Special Function Keys

Keys

Function

CTRL/A

CTRL/B

CTRL/C

CTRL/E

Valid only after you type the monitor GT ON command and use the display.
CTRL/A, a command that does not echo on the terminal, pages output if you
use it after CTRL/S. The system permits console output to resume until the
screen is completely filled; text currently displayed scrolls upward off the
screen. CTRL/A has no effect if the keyboard monitor command GT ON is not
in effect.

Causes the system to direct all keyboard input to the background job. The FB
monitor echoes B> on the terminal. The system takes at least one line of out-
put from the background job. The foreground or system job, however, has prior-
ity, so the system returns control to the foreground or system job when it has
output. In multiterminal systems, CTRL/B has no effect if the background con-
sole is not shared. CTRL/B directs all typed input to the background job until a
CTRL/F redirects input to the foreground job or a CTRL/X directs input to a
system job. CTRL/B has no effect when used under an SJ monitor or when a
SET TT NOFB command is in effect.

Terminates program execution and returns control to the keyboard monitor.
CTRL/C echoes AC on the terminal. You must type two CTRL/Cs to terminate
execution unless the program to be terminated is waiting for terminal input or
is using the TT handler for input. In these cases, one CTRL/C terminates
execution. Under the FB monitor, the job that is currently receiving input is
the job that is stopped (determined by the most recently typed command,
CTRL/F or CTRL/B). To make sure that the command is directed to the proper
job, type CTRL/B, CTRL/F, or CTRL/X before typing CTRL/C.

Causes all terminal output to appear on the graphics display screen and the
console terminal simultaneously. CTRL/E is valid after you type the monitor
GT ON command and use the display. The command does not echo on the ter-
minal. A second CTRL/E disables console terminal output. CTRL/E has no
effect if GT ON is not in effect.

(Continued on next page)

System Conventions 3-7



Table 3—4: Special Function Keys (Cont.)

Keys

Function

CTRL/F

CTRL/O

CTRL/Q

CTRL/R

CTRL/S

CTRL/U

CTRL/W

CTRL/X

Causes the system to direct all keyboard input to the foreground job and take .
all output from the foreground job. The FB monitor echoes F>> on the terminal
unless output is already coming from the foreground job. If no foreground job
exists, the monitor prints an error message (F'?). Otherwise, control remains
with the foreground job until redirected to the background job (with CTRL/B),
or redirected to a system job (with CTRL/X), or until the foreground job termi-
nates. In multiterminal systems, CTRL/F has no effect if the foreground con-
sole is not shared. CTRL/F has no effect when used under an SJ monitor, or
when a SET TT NOFB command is in effect.

Suppresses terminal output while continuing program execution. CTRL/O ech-
oes as A0 on the terminal. RT-11 reenables terminal output when one of the
following occurs:

1. You type a second CTRL/O.

2. You return control to the monitor by typing CTRL/C or by issuing the
.EXIT request in your program.

3. The running program issues a .RCTRLO or MTRCTO programmed request
(see the RT—11 Programmer’s Reference Manual). RT-11 system programs
reset CTRIL/O to the echoing state each time you enter a new command
string. -

When you are using CTRL/O under the SJ monitor, the system may print an
extraneous character after the monitor echoes the CTRL/O and a carriage
return/line feed.

Resumes printing characters on the terminal from the point printing pre-
viously stopped because of a CTRL/S. CTRL/Q echoes but has no effect under a
multiterminal SJ or FB monitor if a SET TT NOPAGE command is in effect.

Redisplays the current line if you are using the CTRL/W single-line editor.
This function is useful to verify a line you have edited, to verify that your
screen is displaying information correctly, or if another job prints a message on
your screen while you are typing input to the console.

Temporarily suspends output to the terminal until you type a CTRL/Q. CTRL/
S does not echo. Under a multiterminal SJ or FB monitor, CTRL/S is not inter-
cepted by the monitor if TT NOPAGE is in effect.

Cancels the current input line (all characters back to, but not including, the
most recent line feed, CTRL/C, or CTRL/Z). When SL is running, CTRL/U
deletes the current input line. When SL is not running, CTRL/U echoes as AU
followed by a carrage return/line feed at the terminal.

Redisplays the current line if you are using the single-line editor. This func-
tion is useful to verify a line that you have edited, to verify that your screen is
displaying information correctly, or if another job prints a message on your
screen while you are typing input to the console.

Causes the system to prompt you for a job name, then to direct all keyboard
input to the system job you specify. When you type CTRL/X, the system prints
Job? at the terminal. Specify the system job name (or logical job name) of the
system job to which you want to direct input. Specify B or F to direct keyboard
input to the background or foreground job, respectively. If the specified job does

3-8 System Conventions

(Continued on next page)



e

T

Table 3—4: Special Function Keys (Cont.)

Keys Function

not exist, the system prints a question mark (?); otherwise it prints the system
job name at the terminal. Control remains with the specified system job until
the job terminates, or control is redirected to the background job (with CTRL/
B), the foreground job (with CTRL/F), or another system job (with CTRL/X).
CTRL/X has no effect when used with a monitor that does not have system job
support or when a SET TT NOFB commmand is in effect.

CTRL/Z Terminates input when used with the terminal device handler (TT). It echoes
as AZ on the terminal. The CTRL/Z itself does not appear in the input buffer.
Because CTRL/Z is a line terminator, you cannot delete it, once typed. If TT is
not being used, CTRL/Z has no effect.

DELETE  Deletes the last character from the current line and echoes a backslash plus
or the character deleted. Each succeeding DELETE deletes and echoes another
RUBOUT character. The system prints an enclosing backslash when you type a key other
than DELETE. This erasure is performed from right to left up to the beginning
of the current line. If you are using a video display terminal and you have
issued the SET TT SCOPE command, DELETE erases characters with a back-
space, space, backspace sequence. Your corrections appear on the screen; press-

ing the DELETE key does not enclose them with backslash characters.

3.7 Foreground/Background Terminal I/O

Console input and output under the FB monitor are independent functions;
therefore, you can type input to one job while another job prints output. You
may be in the process of typing input to one job when the system is ready to
print output from another job on the terminal. In this case, the job that is
ready to print interrupts you and prints the message on the terminal; the
system does not redirect input control to this job, however, unless you type a
CTRL/B, CTRL/F, or CTRL/X, whichever applies. If you type input to one job
while another has output control, the system suppresses the echo of the
input until the job accepting input gains output control; at this point, all
accumulated input echoes.

If the two jobs are ready to print output at the same time, the job with the
higher job number has priority. For example, in an FB system, the system
prints output from the foreground job until it encounters a line feed. Each
time the system prints a line feed, it checks to see if the foreground job (or, in
a monitor with system job support, any higher priority job) has output; if so,
the system gives control to the highest priority job that is ready to print.

When the foreground job terminates, control reverts automatically to the
background job, or to the highest priority job if you are running system jobs.

System Conventions 3-9



3.8 Type-Ahead Feature

The monitor has a type-ahead feature that lets you enter terminal input
while a program is executing. For example:

+DIRECTORY/PRINTER
DATE

While the first command line is executing, you can type the second line.
Although the system echoes the characters you type immediately after you
type them, the system stores this terminal input in a buffer and uses it when
the system completes the first operation.

If type-ahead input exceeds the input buffer capacity (usually 134 charac-
ters), the terminal bell rings and the system accepts no characters until a
program uses part of the type-ahead buffer, or until you delete characters.
Any input typed after the terminal bell rings is lost. Type-ahead is particu-
larly useful when you specify multiple command lines to system programs.

Note that after you bootstrap any RT—11 monitor, the system does not recog-
nize the type-ahead feature until either the keyboard prompting character
(.) prints or the start-up indirect command file begins executing. If you type
ahead prior to this, the system either ignores or truncates your input.

If you type a single CTRL/C while the system is in this mode, the system
puts CTRL/C into the buffer. The program currently executing exits when it
makes a terminal input request. Typing a double CTRL/C returns control to
the monitor immediately. If you terminate a job by typing two CTRL/Cs, the
system discards any unprocessed type-ahead input.

3-10 System Conventions



S

Chapter 4
Keyboard Commands

Keyboard commands allow you to communicate with the RT—11 system. You
enter keyboard commands at the terminal in response to the keyboard mon-
itor dot (.), and the operating system invokes the appropriate system pro-
grams to service these commands.

This chapter uses some symbolic conventions to describe the monitor com-
mand language. The preface to this manual contains a detailed list of the
symbolic conventions used throughout the manual. You should familiarize
yourself with the symbols and their meaning before reading this chapter.

4.1 Command Syntax

The system accepts commands as either a complete string containing all
information necessary to execute a command, or a partial string. In the lat-
ter case the system prompts you to supply the, rest of the information.
Terminate each command with a carriage return.

The general syntax for a command is:

command[/option...] input-filespec[/option...]
output-filespec[/option...]

or

command[/option...]
promptl? input-filespec[/option...]
prompt2? output-filespec[/option...]

where:
command is the command name
/option represents a command qualifier that specifies the

exact action to be taken. Any option you supply
immediately following the command applies to the
entire command string

promptl prompt2 represents the keyboard monitor prompt for more
information. The keyboard monitor prints an
appropriate prompt only if you omit input and/or
output file or device specifications in the initial
command line. (Note that not all keyboard monitor
commands print prompts, and some print more
than two prompts.)

4-1



4-2

input-filespec represents the file on which the action is to be
taken

/option represents a file qualifier that specifies more
detailed information about that particular file or
action to be taken. Some of the command and file
options are mutually exclusive. You should avoid
using combinations of options that give contradic-
tory instructions to the system. For example:

+DELETE/QUERY/NOWUERY TEST.LST

output-filespec represents the file that is to receive the results of
the operation

/option represents a file qualifier that specifies more
detailed information about that particular file or
action to be taken

You can use a hyphen the end of a line to continue the command to the next
line. However, the entire command line, including wildcard file names and
types and default devices, must include no more than 80 characters. For
example, the following keyboard command copies three input files to the
output file DK:OUTFIL.TXT.

LCORY/CONCATENATE MYFILLTHT sRKOsMYFILZ TRT +~
MYFIL3+THKT DK:OUTFIL.TX

In the alphabetical listing of keyboard monitor commands in Section 4.5,
each command begins with a graphic presentation of the syntax involved
(see Figure 4—1 for an illustration of a typical command). These presenta-
tions provide a ready-reference list of the options that the commands accept,
as well as information that makes the commands easier to use. The follow-
ing list describes the conventions used.

1. Capital letters represent command names or options, which you must
type as shown. (Abbreviations are discussed later in this section.)

2. Lowercase letters represent arguments or variables, for which you must
supply values. For options that accept numeric arguments, the system
interprets the values as decimal, unless otherwise stated. Some values,
usually memory addresses, are interpreted as octal; these cases are noted
in the accompanying text.

w

Square brackets ([]) enclose options; you can include the item enclosed in
the brackets or you can omit it, as you choose. If a vertical list of items is
enclosed in square brackets, you can combine the options that appear in
the list. However, an option set off from the gqthers by blank lines (see
/BOOT and /DEVICE in Figure 4-1) indicates that you cannot combine

that option with any other option in the list.

4. Braces ({}) enclose options that are mutually exclusive. You can choose
only one option from a group of options that appear in braces.

Keyboard Commands



p——

5. It is conventional to place command options (those qualifiers that apply
to the entire command line) immediately after the command. However, it
is also acceptable to specify a command option after a file specification.
File options (those that qualify a particular file specification) must
appear in the command line directly after the file to which they apply.
The graphic representation of each command shows which options are file
qualifiers, and whether they must follow input or output file specifica-

tions.

6. A line such as [NOJQUERY represents two mutually exclusive options:
QUERY and NOQUERY.

7. Underlining indicates default options, that is, the option that the system
uses if you do not specify any choice of action.

Figure 4-1:

Sample Command Syntax

/DEVICE

copy| ((/B0OTL:dev]
IWAIT

/FILES
/WAIT,

input-filespecs| [ /DOS output-filespec| | /DOS

/OWNER:[nnn,nnn] /INTERCHANGE[:size]

/INTERCHANGE

ITOPS /ALLOCATE:size
ISTART:n

JEND:n

/START:n

/POSITION:n

IASCII
/BINARY
/IMAGE
/PACKED
EBEFOHE[:date]
/SINCE[:date]
/DATE[:date]
/NEWFILES
ICONCATENATE
/DELETE
/EXCLUDE
/IGNORE
/INFORMATION
/INOILOG
/MULTIVOLUME
/PREDELETE
/INOJPROTECTION
/INOJQUERY
/[NO]REPLACE
/RETAIN
/SETDATE[:date]
/SLOWLY

/SYSTEM
/VERIFY
/WAIT

A filespec represents a specific file and the device on which it is stored. Its

syntax is:
dev:filnam.typ
where:
dev: represents either a logical device name or a physical device
131aine, which is a two- or three-character name from Table
filnam  represents the one- to six-character alphanumerié name of

the file

Keyboard Commands 4-3




typ represents the zero- to three-character alphanumeric file
type, some of which are listed in Table 3—2

There are two ways to indicate the device on which a file is stored. You can
explicitly type the device name in the file specification:

K1:TEST.LST

You can omit the device name:

TEST.LST

If you omit the device name, the system assumes that the file is stored on the
default device, DK:.

4.1.1 Factoring File Specifications

If you want to specify several files on the same device, you can use factoring.
That is, you can enclose multiple file names in parentheses, as in the follow-
ing example:

DYO:(TEST »A.B),LET

The file specification shown above has the same meaning as and is easier to
use than the next:

D¥O:TEST.LST:DYO:A.LET+DYO:zB.LET

When you use factoring the device name outside the parentheses applies to
each file specification inside the parentheses. Without factoring, the system
interprets each file you specify to reside on DK: (the default device) unless
you explicitly specify another device name.

Factoring is useful for complicated command lines. It is a general method of
string replacement that you can use in many different situations. The fol-
lowing example shows how a command line expands after factoring. Note
that the /SSYSTEM option appears only once in the resulting output line.

Original command line:

+COPY DX:FIL(:2:3).8Y5/8YSTEM RK1l:

Resulting command line (after factoring):

+COPY DX:FIL.BYBDX:FILZ.8YEDX:FIL3,.8YE/8YETEM RK1:

NOTE

The command string that results from the expansion of the
line you enter must not exceed 80 characters. If you use six-
character file names and you also use factoring, it is recom-
mended that you specify only five files in a command line.

4—4 Keyboard Commands



4.1.2 File Type Specification

If you omit the file type in a file specification, the system assumes a default,
depending on which command you issue. The MACRO command, for exam-
ple, assumes a file type of .MAC for the input file specification, and the
PRINT command assumes .LST. Some commands (such as COPY) do not
assume a particular file type, and may assume a wildcard default (see
Section 4.2). If you need to specify a file that has no file type in a command
that assumes a default file type, type a period after the file name. For exam-
ple, to run the file called TEST, type:

+RUN TEST.

In this example, if you omit the period after the file name, the system
assumes a .SAV file type and tries to execute a file called TEST.SAV.

4.1.3 Abbreviating Keyboard Commands

Although the keyboard monitor commands are all English-language words
and therefore easy to use, it can become tedious to type words like
CROSSREFERENCE and ALLOCATE frequently. You can use as abbrevia-
tions the minimum number of characters that are needed to make the com-
mand or option unique. Table A—1 in Appendix A lists the minimum abbre-
viations for the commands and options.

An easy way to abbreviate the commands, and one that is always correct, is
to use the first four characters or the first six characters if the qualifier
starts with NO. For example:

CONCATENATE can be shortened to CONC
NOCONCATENATE can be shortened to NOCONC

The system prints an error message if you use an abbreviation that is not

unique. For example, typing the following command produces an error,
because C could mean COPY or COMPILE.

+C TEBT.LET

4.1.4 Keyboard Prompts

The prompting form of the command may be easier for you to learn if you are
a new user. If you type a command followed by a carriage return, the system
prompts you for an input file specification:

+COPY/CONCATENATE
From®

You should enter the input file specification and a carriage return:

From 7 DX1:(TEST.LSTsTESTA.LST)

Keyboard Commands 4-5



The system prompts you for an output file specification:

To 7

You should enter the output file specification and a carriage return:

To 7 DREZ:TEST.LET

The command now executes.

The system continues to prompt for an input and output file specification
until you provide them. If you respond to a prompt by entering only a car-
riage return, the prompt prints again.

You can combine the normal form of a command with the prompting form,
as this example shows:

+COPY ABC.LST
To 7 DEF.LST

The system always prompts you for information if any required part of the
command is missing.

You can also enter just an option in response to a prompt. The two following
examples are equivalent.

+COPY

From * GHI.MAC/NDLOG
To T GHI.BAK

+COPY

From 7 /NOLOG

From ? GHI.MAC
To * GHI.BAK

4.2 Wildcards

Some commands accept wildcards (% and *) in place of the file name, file
type, or characters in the file name or file type. The system ignores the con-
tents of the wildcard field and selects all the files that match the remaining
fields.

An asterisk (*) can replace a file name:

*,MAC

The system selects all files on device DK: that have a . MAC file type, regard-
less of their name.

An asterisk (*) can replace a file type:

TEST +#

46 Keyhoard Commands



e

The system selects all files on device DK: that are named TEST, regardless
of their file type.

An asterisk (*) can replace both a file name and a file type:

* o, #

The system selects all files on device DK:.

An embedded asterisk (*) can replace any number of characters in the input
file name or file type:

AxB . MAC

The system selects all files on device DK: with a file type of .MAC whose file
names start with A and end with B. For example, AB, AXB, AXYB, etc.,
would be selected.

The percentage symbol (%) is always considered to be an embedded wild-
card. It can replace a single character in the input file name or file type:

A%B.MAC

The system selects all files on device DK: with a file type of . MAC whose file
names are three characters long, start with A, and end with B. For example,
AXB, AYB, AZB, etc., would be selected.

Table 4-1 lists commands that support wildcards.

Table 4-1: Commands Supporting Wildcards

Specification
Command Input File Output File

COPY
DELETE

X

DIFFERENCES
DIRECTORY
HELP

PRINT
PROTECT

RENAME
TYPE

pa K M X

LT T B - B

UNPROTECT

Keyboard Commands 4-7



Note that wildcards work differently with the DIFFERENCES command.
See the description of the DIFFERENCES command in Section 4.5 of this
manual for more information.

For commands that support wildcards the system has a special way of inter-
preting the file specifications you type. You can omit certain parts of the
input and output specifications, and the system assumes an asterisk (*) for
the omitted item. Table 4-2 shows the defaults that the system assumes for
the input and output specifications of the valid commands.

Table 4-2: Wildcard Defaults

Default
Command Input Output
COPY, RENAME *E * ¥
DIRECTORY DK:#* *
PRINT, TYPE * LST
DELETE, PROTECT,
UNPROTECT filnam.*

For example, if you need to copy all the files called MYPROG from DK: to
DX1:, use this command:

+COPY/QUERY MYPROG DXi:
The system interprets this command to mean:

+COPY/QUERY DRK:MYPROG.* Klex,x

The system copies all the files called MYPROG, regardless of their file type,
to device DX1: and gives them the same names.

If you need a directory listing of all the files on device DK:, type the follow-
ing command:

+DIRECTORY

The system interprets this command to mean:

+DIRECTORY DK:#*.%

To list on the printer all the files on device DK: that have a .LST file type,
use this command:

+PRINT DK:

The system interprets this command to mean:

+PRINT  DK:#*,LST

4-8 Keyboard Commands



e

To delete all the files on device DK: called MYPROG, regardless of their file
type, use this command:

+DELETE/NOQUERY MYPROG

The system interprets this to mean:

+DELETE/NODQUERY DK:MYPROG.*

You can use the SET WILDCARDS EXPLICIT command (described in
Section 4.5) to change the way the system interprets these commands.

4.3 Editing Command Lines and Terminal Input

The single-line editor (SL) allows you to change a monitor command line,
CSI string, or other lines you type at the console. Without using SL, there
are only two ways that you can change a line: you can use the delete key to
erase characters to the left of the cursor one at a time; or you can type CTRL/
U, which erases the entire line, and retype the line. With SL, you can edit
parts of a line by moving the cursor to different positions and inserting or
deleting characters.

You can use SL only if you have a VT'100-compatible video terminal; SL is
not available for hard-copy terminals. SL is always available at keyboard
monitor level and for background programs. Refer to the RT—11 Software
Support Manual for information on how to use SL with foreground
programs.

To use SL, you must perform the following steps:

1. Make sure the SL handler is installed. If it is not, type:

+INSTALL SL

If the INSTALL command fails, make sure the characteristics of the SL
handler match those of the current monitor by typing:

+8ET 5L SYSGEN 4

Then type INSTALL SL once again.

2. Allow SL to determine what type of terminal you are using, or tell SL
what type of terminal you are using. It is recommended that you allow SL
to determine your terminal type, by typing:

+5ET SL ASK

If instead you want to specify your terminal type to SL, type:

+SET SL WUTxxx

where xxx represents your terminal type.

Keyboard Commands 4-9



3. You must then enable SL by typing:

+8ET 85L ON

Then, you can use SL functions as you type on the terminal. When you
finish using SL, disable SL by typing the following command:

+8ET 5L OFF

After you have enabled SL, you can edit console input. If you want the abil-
ity to edit responses to prompts printed by the system utilities, you must
issue the .SET SL TTYIN command.

See the SET command in Section 4.5 for more information on these
commands.

The following sections describe the functions you can perform with SL.
Table 4-3 shows the function keys that SL uses. You must perform all edits
before you type a line terminator, such as a carriage return (). Also, you
can use the up-arrow < 1> function to recall the last line.

In the examples, the position of the cursor is indicated by an underline
character.

4.3.1 The GOLD Key (PF1)

The GOLD or PF1 key on a VT'100 performs no function by itself. This key is
always used in combination with another function key to direct SL to perfom
an alternate function.

If you type a function key without first typing the PF1 key, the regular func-
tion is performed. However, if you type the PF1 key and immediately you
type a function key, an alternate function is performed. For example, if you
type only «, the cursor moves one position to the left. However, if you type
the PF1 key immediately followed by « (PF1 «), the cursor moves to the
beginning of the line.

4.3.2 The Help Kev (PF2)

The help or PF2 key provides error message and function key information. If
you press the PF2 key once, SL prints an error message for the last error
that occurred. If you press the PF2 key a second time, SL functions keys are
displayed. Return to the original screen by typing any key except PF2. Note
that any key you type will then perform its single-line editor function.

To help you learn to use SL, you can lock the display of the SL functions keys
on the upper half of your screen by typing the command SET SL LEARN,
then pressing the PF2 key twice (PF2 PF2). You can then use the lower half
of your screen to type and edit command lines. To unlock the display, type
the command SET SL NOLEARN.

4-10 Keyboard Commands



V\\;,/

Table 4-3: Single-Line Editor Function Keys

Key(s) Function

PF1 GOLD prefix key; used with other function keys to perform
alternate function operations

PF2 SL help key

“ Move cursor one character to left

- Move cursor one character to right

PF1 « Move cursor to beginning of line

PF1 - Move cursor to end of line

T Reproduce last line terminated with a carriage return

PF4 Delete line from cursor to end of line

PF1PF4 Restore last line deleted

DELETE Delete one character to left of cursor

PF1DELETE Restore last character deleted

BACKSPACE Trade positions of two characters; character under cursor
switched with character to right

PF1 BACKSPACE Trade positions of two characters; character under cursor
switched with character to left

CTRL/U Deleted all characters to left of cursor

PF1CTRL/U Restore last line deleted

CTRL/R Redisplay current line

CTRL/W Redisplay current line

PF1RETURN Truncate and execute command line

RETURN

Execute entire command line

4.3.3 Moving the Cursor

Use the « key to move the cursor one or more characters to the left. For

example:

+COPY DLO:A.MAC DLL1:B.MBC_ < *

produces:

+COPY DLO:A.MAC DL1:B.MSC

Keyboard Commands 4-11



4-12

Use the » key to move the cursor one or more characters to the right. In the
example below, the cursor is moved from the T in DELETE to the X in DXO0:
by typing the » key four times.

+DELETE DXO:FILE.THT » » + =~

produces:

+DELETE DXO:FILE.,TXT

Instead of moving the cursor to the left one character at a time, you can use
the PF1 and « keys to move the cursor directly to the beginning of a line. For
example:

+«RENAME DYO:FILE.TXT DY1:FILE.BAKEED«

produces:

+RENAME DYO:FILE.TKT DY1:FILE.BAK

Similarly, you can use the PF1 and - keys to move the cursor directly to the
end of a line. In the example below, the cursor is moved from the 1 of
FIL1.MAC to the end of the command line by typing the PF1 key followed by
the » key.

+COPY FILLI.MACFILZ2.MACFIL3.MAC FILES.MACEE) ~

produces:

+COPY FILL1.MAC,FILZ.MACFIL3.MAC FILES.MALC

4.3.4 Reproduce Last Command Executed

Use the up-arrow (1) key in response to the monitor prompt (.) or CSI
prompt (*) to reproduce the last command that you terminated with a car-
riage return.

Lines that contain only a carriage return are not stored as the last line.
Therefore, if the last line you typed contains only a carriage return, the pre-
vious line is reproduced.

After you reproduce the line, you can edit it and execute the new command.
The cursor is placed at the end of the line reproduced on the screen.

For example:
+LINK RTN1,RTNZ,RTN3RTN4 +PROGRM/EXECUTE /MAPED
+ RED

+TLINK RTNLsRTNZ,;RTN3 +RTN4 »PROGRM/EXECUTE/MAP_

Keyboard Commands



4.3.5 Delete Line from Cursor to End of Line

Use the PF4 key to delete characters from the cursor to the end of a line. In
the example below, typing the PF4 key deletes the D of DY1: and all charac-
ters that immediately follow it in the command line.

RENAME FIL1.MACFIL2.MAC DY1:MYFILE.MACEED

produces:

+RENAME FIL1.MAC:FILZ,MAC

4.3.6 Restore Last Line Deleted

Use the PF1 key with the PF4 key, or the PF1 key with CTRL/U, to restore
all the characters that you have just deleted on a line. In the example below,
the characters after the D in DY1: are deleted by typing the PF4 key, then
restored by typing the PF1 and PF4 keys.

LRENAME FIL1.MACFIL2.MAC DY1:MYFILE.MACE

produces:

+RENAME FIL1.MACFILZ.MAC D

Then:

+RENAME FIL1.MACFILZ,MAC DEEDEES

produces:

+RENAME FIL1.MAC:FILZ,MAC DX¥1:MYFILE.MAC

Typing instead of produces the same result.

4.3.7 Delete One Character to Left of Cursor

Use the DELETE key to delete the character to the left of the cursor. For
example:

+COPY A,MAC B.MAC.CD

produces:

+COPY A.MAC B.MA

You can use the PF1 key with the DELETE key to restore the last character
that you deleted.

Keyboard Commands 4-13



4.3.8 Switch Positions of Two Characters

Use the BACKSPACE key to switch the positions of the character under the
cursor and the character to the right of the cursor. The cursor remains on the
same character in its new position. For example:

+COPY MYFIL1.,SAY MYFILZ,SY ABACKSPACE)

produces:

+COPY MYFIL1.SAYW MYFILZ.SAY

You can use the PF1 and BACKSPACE keys to switch the positions of the
character under the cursor and the character to the left of the cursor. For
example:

+CPOY MYFIL1.SAY MYFILZ.SAUEF)BACKSPACE)

produces:

+COPY MYFIL1.B8AY MYFILZ,SAYV

This function is useful to restore the positions of two characters you
switched with the BACKSPACE key.

4.3.9 Delete All Characters to Left of Cursor

Use the CTRL/U command to delete all characters from the character to the
left of the cursor to the monitor prompt (.) or CSI prompt (¥). In the example

below, all characters to the left of the colon (:) in DLO: are deleted by typing
CTRL/U.

+RENAME DLO:MAIN,MAC DL1:5UB1.MACCRIY

produces:

+2MAIN.MAC DL1:SUBIL.MALC

You can type to restore the deleted characters.

4.3.10 Truncate and Execute Command Line

Use the PF1 key and the RETURN key to truncate the command line at the
cursor and execute the remaining line. In the example below, a command
line has been edited and characters have been inserted before DL1:. Type
to truncate the command line beginning with DL1: and execute the

command.

+COPY DXO:%,MAC DX1:%,BAK DL1:FILES.BAKEEED

4-14 Keyboard Commands



—”

N

executes:

+COPY DXO:%.,MAC DXI1:%,BAK

4.3.11 Execute Entire Command Line

Use the RETURN key to execute the entire command line, regardless of the
position of the cursor. In the example below, the original command line did
not include the file LIB2.0BJ. The cursor has been moved back to the middle
of the line and LIB2.0OBJ has been inserted after LIB1.0OBJ. To execute the
entire command line, type RETURN.

+LINK MYPROG,LIB1.0OBJ,LIBZ,0BJ+SUB1 . SUBZGD

executes:

+LINK MYPROG.LIBL1.0BJ,LIBZ.0BJ,5UB1.SUBZ

4.3.12 Redisplay Current Line

Both CTRL/R and CTRL/W redisplay the current line you are typing or the
last line you typed. This function is useful if you are not sure that your
screen is displaying information accurately, or if another job prints a mes-
sage on your screen while you are typing input. When you type either CTRL/
R or CTRL/W, the interrupting messages and data are removed and the line
you are typing (or the line you just typed) is redisplayed, unaltered.

Indirect Files

You can group together, as a file, a collection of keyboard commands that
you want to execute sequentially. This collection is called an indirect com-
mand file, or indirect file. Indirect files are best suited to perform tasks that
require a significant amount of computer time and that do not require your
supervision or intervention. Any series of commands that you are likely to
type often can also run easily as an indirect file.

The indirect file concept is similar to BATCH processing. Although indirect
files lack some of the capabilities of BATCH, they are easier to use, use the
same commands as normal operations, and generally require less memory
overhead than the BATCH processor. (RT-11 BATCH is described in

Appendix A of the RT—11 System Utilities Manual.)

Another type of file contains a collection of keyboard commands and IND
directives that you want to execute. This collection is called an indirect con-
trol file, or control file. Chapter 5 of this manual describes IND directives
and explains how to create and execute indirect control files.

This section describes how to create indirect command files and how to
execute them.

Keyboard Commands 4-15



4-16

4.41 Creating Indirect Files

Create an indirect file by using the EDIT/CREATE command described in
Section 4.5. It is conventional to use a .COM file type for an indirect file, but
you can choose any file name that you wish. Structure the lines of text to
look like keyboard input, placing one command on each line of the file and
terminating each line with a carriage return. Do not include the prompt
character (.) in the line.

Any keyboard monitor command you can type at the terminal can also be
included in an indirect file. The following file, for example, prints the date
and time, and creates backup copies of all FORTRAN source files:

DATE
TIME
COPY *,FOR *,BAK

Control returns to the monitor at the console terminal after this indirect file
executes.

In addition to using the keyboard monitor commands, you can also run one
of the RT—11 system utility programs in an indirect file. In this case, struc-
ture your input to conform to the Command String Interpreter (CSI) syntax
described in Chapter 1 of the RT-11 System Utilities Manual. Do not include
the CSI asterisk (*) in any line that provides input or output to a utility
program.

The following file starts the directory system utility program and lists the
directory of two devices on the line printer.

R DIR
LP:=CTO:/C:3
LP:=DT1:/C:3
e

Note that the last command line is AC. This is not the standard CTRL/C
sequence you enter by holding down the CTRL key and typing a C. Rather, it
is a character sequence that consists of two separate characters: a circumflex
(~) followed by a C. This sequence represents CTRL/C in indirect files. This
sequence terminates the directory program so that control returns to the
monitor when the indirect file finishes executing. Otherwise, the directory
program would be left waiting for input from the console terminal when the
indirect file finishes executing.

Remember to terminate the last command line with a carriage return, as

................

NOTE

If you have a minimal configuration (16K) or a very large
indirect command file, use frequent AC sequences in your
indirect files. When the system processes an indirect file, it
first places each line in a special memory buffer. This memory

Keyboard Commands



buffer must expand to accommodate each line in an indirect
file, and if there are too many lines before the system reaches
a ~C, the processor’s memory area may become filled. Placing
a ~C every 10 or so lines avoids this problem.

Some commands normally require a response from you as they execute. The
INITIALIZE command, for example, prints the Are you sure? message and
waits for you to type Y and a carriage return before it executes. The
DELETE command also requests confirmation from you before it deletes a
file if you use wildcards in the file specification.

There are three ways to control interaction with the executing command.
One way is to use the /NOQUERY option on each command that allows it.
This option suppresses the confirmation messages entirely when you use the
command in an indirect file.

Another method of interacting applies to a command like DELETE. This
command can have a variable number of confirmation queries, if you use a
wildcard in the file specification. (If you use no wildcards in the file specifica-
tion, the DELETE command does not query before deleting the specified
file(s).) This type of command accepts your responses directly from the ter-
minal and allows you to make a decision before deleting each file. However,
in this case the indirect file cannot operate unattended.

There is yet another way to deal with commands that require a response
from you. Both the INITIALIZE and LINK commands have options that
cause the system to prompt you for data. This section describes two methods
of responding to these prompts, where more than just a Y response is
required.

The INITTALIZE command with the /VOLUMEID option permits you to
specify a volume ID and owner name for a device. You can place your
responses in the indirect file, as this example shows:

INITIALIZE/NOQUERY /WOLUMEID DT:
TAPEB
PAYROLL

You can change the indirect file so that the prompts appear on the console
terminal and you can type your responses there:

INITIALIZE/NOQUERY/VOLUMEID DT:
“C

The ~C informs the system that the responses are to be entered at the termi-
nal. Execution of the indirect file pauses until you enter the responses.

Similarly, the LINK command lets you specify some data either in the indi-
rect file or from the console terminal. The following example contains the
response to the TRANSFER prompt.

LINK/TRANSFER MYPROG.ODT
0.0DT

Keyboard Commands 4-17



You can specify the same information interactively, as this example shows:

LINK/TRANSFER MYPROG.0ODT
“p

The A~C informs the system that the response to the prompt is to be entered
at the terminal. Execution of the indirect file pauses until you enter your
response.

NOTE

You cannot place in indirect files responses to prompts that
result in destruction of data. For example, you cannot use the
INITIALIZE command followed by a Y on the following line
in an indirect file. Commands like INITIALIZE require
responses that you must enter at the terminal. (You can avoid
the need for a response by using the / NOQUERY option.)

You can specify overlays to the LINK command by either of these two meth-
ods. The following indirect file links an overlaid program consisting of a root
module and four overlay modules that reside in two overlay segments.

LINK/PROMPT ROOT
OYR1/0:1
ODWR2/0:1
OUR3/0:2
OVR4/0:2//

Note in the above example that two slashes (/) terminate the module list.
You can also enter all or part of the overlay information interactively, as
this example shows:

LINK/PROMPT ROOT
OUR1/0:1
"o

The AC informs the system that more overlay information is to be entered
from the terminal. Execution of the indirect file pauses when the system
requires the information. Respond to the asterisk prompt by entering the
overlay information. Terminate the last overlay line with two slashes (/).
Execution of the indirect file then proceeds. Chapter 11 of the RT—11 System
Utilities Manual describes the LINK program and explains how to use
overlays.

If you need to link more than six modules, you can specify the extra modules
on the next line in the indirect file, as this example shows:

LINK/PROMPT FIL1,FILZFIL3,FILAFILDFILG
FIL7.:FILB//

Or, you can enter the extra modules from the terminal:

LINK/PROMPT FILI1FILZFIL3FILAFILSFILG
ap

4-18 Keyboard Commands



M’

Execution of the indirect file pauses until you enter the remaining module
names. Remember to follow the last name with two slashes (//).

You can include comments in an indirect file to help you document your
work. These comments do not print on the console terminal when the indi-
rect file executes. You begin each line of comment with an exclamation point
(). The system ignores any characters it finds between the exclamation
point and the end of the current line. The following example shows an indi-
rect file that contains comments.

'INDIRECT FILE

DATE IPRINT DATE

TIME 'PRINT TIME

RENAME *.MAC *.,BAK 'GAVE MAC FILES

BPROCES 'CALL ANOTHER INDIRECT FILE
DIRECTORY 'LIBT DIRECTORY OF DK:

4.4.2 Executing Indirect Files

You can use indirect files to supply input to jobs running under the SJ mon-
itor and to background jobs running under the FB or XM monitor. Indirect
files are unavailable for foregound or system jobs.

To execute an indirect file, specify a command string according to the follow-
ing syntax:

@filespec  (when SET KMON NOIND is in effect)
or:

$@filespec (always)
where:

$ is the command that causes KMON to execute a file as an
indirect file when SET KMON IND is enabled

@ is the monitor command that indicates an indirect file

filespec represents.the name and file type of the indirect file, as
well as the device on which it is stored. The default file
type is .COM

If you omit the device specification, DK: is assumed. If you specify any other
block-replaceable device, the monitor automatically loads the handler for
that device.

After you type the SET KMON IND command, the command syntax @file-
spec causes IND (the Indirect Control File Processor) to execute the specified
file as an IND control file. Once SET KMON IND is in effect, you can force
KMON to execute a file as an indirect command file by typing a dollar sign
($) before the at sign (@) in the command line as follows:

$Bfilespec

Keyboard Commands 4-19



Use the SET KMON NOIND command to disable IND processing. See
Section 4.5 of this manual for more information on the SET KMON
[NOJIND command.

Note that indirect control files are quite different from indirect command
files. Chapter 5 of this manual describes IND and indirect control files in
detail.

It is conventional to type the indirect file command directly in response to
the monitor’s prompt, as this example shows:

+BINDCT

However, you can place the indirect command anywhere in a keyboard mon-
itor command string, as long as it is the last element in the string, not
including comments. For example:

+DELETE/NDQUERY R@INDCT!comments

This is a valid command string. The first line of the indirect file should con-
tain the specifications of files to be deleted. In the example above, assume
the first line of the indirect file is:

*.BAK

This is the command that will actually execute:

DELETE/NOQUERY #*.BAK

Check your indirect file carefully for errors before you execute it. When the
monitor or any program that has control of the system encounters an invalid
command line, or if an execution error of any kind occurs, that particular
line does not execute properly. Execution of the indirect file does proceed,
however, until any program that may be running relinquishes control to the
monitor. Be careful of this if you run a system utility program in an indirect
file, as this example shows:

R PIP
Hle® ., %=DXO:z%,. %
DXO:1%.,MAC/D

“C

PRINT DXCO:%.L8T

~ If device DX1: becomes full before all the files from DXO: are copied to it, the
second line of the indirect file does not execute completely. Execution then
passes to the next line and the system deletes all MACRO files from DXO:.
The AC returns control to the monitor, which aborts the rest of the indirect
file. This example shows that it is possible to destroy files accidentally
because of the way indirect files execute. To be safe, use only keyboard mon-
itor commands in an indirect file. This way the monitor regains control after

4-20 Keyboard Commands

—



each operation and can abort the indirect file as soon as it detects an error. A
better way to perform the same operations as the indirect file shown above is
as follows:

COPY DXO:%.,% DX1:%,%
DELETE DX0O:%.MAC
PRINT DXO:%,L8T

You can use the SET ERROR command, described in Section 4.5, to define
the severity of error that causes an indirect file to stop executing.

Normally, as each line of an indirect file executes, it echos on the console ter-
minal so that you can observe the progress of the job. However, you can use
the SET TT QUIET command, described in Section 4.5, to suppress this
printout. In this case, only the prompting messages, if any, print.

You can stop execution of an indirect file at any time by typing two CTRL/C
characters. Control returns to the monitor and you can enter a new com-
mand. You can also abort the indirect file by typing a single CTRL/C in
response to a query or prompt. If you use an indirect file to execute a
MACRO program, read the appropriate section in the RT—11 Programmer’s
Reference Manual to learn about certain restrictions on using the .EXIT call
with indirect files.

You can call another indirect file from within an indirect file. This procedure
is called nesting. Restrict nesting to three levels of indirect files (see the
RT-11 Installation Guide for details on selecting the indirect file nesting
depth). The following example shows two-level nesting. Assume a program-
mer types this command at the console terminal in response to the monitor’s
prompt:

+BFIRST

The file FIRST.COM contains these lines:

DATE

TIME

COPY *,MAC #*,BAK
BSECOND

PRINT C
DIRECTORY/PRINTER DK:
DELETE/NOGQUERY *.MAC

When this file executes it calls another indirect file, SECOND.COM, which
contains this line:

MACRO/CROSSREFERENCE A+B+C/LIST

When the file SECOND.COM finishes executing, control returns to
FIRST.COM, at the line following the indirect file specification
(@SECOND). FIRST.COM then prints the contents of the file C.LST on the
line printer, followed by a directory listing of device DK:. Then control
returns to the monitor at the console terminal.

Keyboard Commands 4-21



4.4.3 Start-Up Indirect Files

Section 3.1 introduced the start-up indirect command files: STARTS.COM
(for SJ), STARTF.COM (for FB), and STARTX.COM (for XM). Each monitor
automatically invokes its own indirect command file when you bootstrap the
system, and you can modify these files to perform standard system configu-
rations. Since many of the system parameters are reset by a bootstrap opera-
tion (see the SET command, Section 4.5), you should use the start-up indi-
rect files to set the system parameters you normally use.

For example, if you use the FB monitor and have a visual display console
terminal that supports hardware tabs, add the SET TT: SCOPE and SET TT:
TAB commands to the file STARTF.COM. You could also include a SET TT:
QUIET command at the beginning of STARTF.COM and a SET TT:
NOQUIET command at the end to suppress extra type-out at bootstrap time.
If you have a list of commands that you need to execute, regardless of the
monitor you bootstrap, include these commands in a separate indirect file,
such as COMMON.COM, and invoke this file from all three start-up indirect
files. The following example shows a typical STARTF.COM file.

SET TTe WUIET +SCOPE :CRLF ITURN OFF TTY PRINTING
BCOMMON |PERFORM COMMON OPERATIONS
SET TTe NOQUIET ITURN ON TTY PRINTING

You can also use the start-up indirect files to run your own programs, set the
date, or do other file maintenance operations. You can use IND to run an
interactive dialog to assign devices and load handlers.

4.5 Keyboard Monitor Commands

The keyboard monitor commands are your means of communicating with
the system and controlling the monitor. This section lists the keyboard mon-
itor commands in alphabetical order. Each command description includes
the command syntax, a table of valid options, and some sample command
lines, as well as a general discussion of how to use the command.

You can type almost all the commands to any of the three monitors. The
exceptions are ABORT, FRUN, SRUN, SUSPEND, and RESUME. These
are not valid for the SJ monitor because they apply to foreground programs.

Any reference to the background program applies also to the program run-
ning under the SJ monitor. Any reference to FB operation also applies to
XM operation.

NOTE

Unless noted otherwise, all numeric values you supply to key-
board commands should be in decimal.

4-22 Keyboard Commands



e

If you make a mistake in a command line, or if the system cannot perform
the action you request, an error message prints on your terminal. The error
message indicates which error occurred; see the RT-11 System Message
Manual for a more complete description of the error and for the recom-
mended action to take. The error message also indicates which system util-
ity program detected the error. For example, if your keyboard monitor com-
mand line contains a syntax error, the keyboard monitor prints an error
message. If the utility program the keyboard monitor invokes cannot
execute a command, that utility prints the error message.

RT-11 permits you to remove some of the monitor commands at system gen-
eration time. If you type a command that the system does not recognize as a
keyboard monitor command, the system checks the concise command lan-
guage (CCL) and user command linkage (UCL) tables. If the command is not
part of your system, the system prints an error message. See Section 4.6 for
instructions on using CCL. Refer to the RT—11 Software Support Manual for
more information on UCL.

Keyboard Commands 4-23



ABORT

The ABORT command, typed on the system console, aborts a foreground or
system job that has been assigned a private terminal for communication.
(See the description of the FRUN or SRUN /TERMINAL:n option in this
chapter for more information.)

ABORT jobname

When you type the ABORT command at the system console, the foreground
or system job is immediately aborted.

You can enter the ABORT command as one line, or you can rely on the sys-

tem to prompt you. If you type ABORT followed by a carriage return, the
system prompts Jobname?.

When running under an FB or XM monitor, if your monitor does not include
system job support, use F as the jobname to abort the foreground job. If your

monitor includes system job support, type the name of the job you want to
abort.

4-24 Keyboard Commands



g

R

ASSIGN

The ASSIGN command associates the logical name you specify with a phys-
ical device.

ASSIGN physical-device-name logical-device-name
logical-device-name

~In the command syntax illustrated above, physical-device-name represents

the RT-11 permanent name that refers to a particular device installed on
your system. Table 3—1 contains a list of these names. (The colon that fol-
lows the device name is optional.) The term logical-device-name represents
an alphanumeric name, from one to three characters long and followed by an
optional colon, that you assign to a particular device. Note that you can not
use spaces or tabs in the logical device name. If you type ASSIGN, followed
by a carriage return, the system prompts Device name?. If you follow the
first device name with a carriage return, the system prompts Logical device
name?.

Assigning a logical name to a physical device simplifies programming by
allowing you to write device-independent programs. When you write a pro-
gram, for example, you can request input from a device called INP: and
direct output to a device called OUT:. When you are ready to execute the
program, you can assign those logical names to the physical devices you
need to use for that job. The ASSIGN command is especially helpful when a
program refers to a device that is not available on a certain system; the
ASSIGN command allows you to direct input and output to an available
device.

If the logical name you supply is already associated with a physical device,
the system disassociates the logical name from that device and assigns it to
the current device. You can assign only one logical name with each ASSIGN
command, but you can use several ASSIGN commands to assign different
logical names to the same device. Note that BA and SY are always invalid as
logical device names.

The following command, for example, causes data that you write to device
LST: to print on the line printer.

+ASEIGN LP: LBT:

If your program attempts to access a device by using a logical name (such as
LST:) and you do not issue an appropriate ASSIGN command, an error is
reported to the program.

The following command redirects the printer output to the terminal.

+ASSIGNTT: LP:

The command shown above illustrates how you can run a program that spe-
cifically references LP: without using a line printer.

Keyboard Commands 4-25



ASSIGN

The next command redefines the default file device.

+ASSIGNDL1: DK:

If after executing this command you supply a file specification in a command
and omit the device name, it now defaults to DL1:. Note that this does not
affect the default system device, SY:.

The last example is typical for a system that uses a dual-drive diskette
device. Several users can share the same system software on DYO0: and
maintain their own data files on diskettes that they run in drive 1. When
you use the following command, references to files without an explicit device
name automatically access DY1:.

+ASSIGN DY1: DK:

Use the SHOW command to display logical device name assignments on the
terminal.

426 Keyboard Commands



N

——

B

The B (Base) command sets a relocation base. To obtain the address of the
location to be referenced in a subsequent Examine or Deposit command, the
system adds this relocation base to the address you specify.

B [ address]

In the command syntax shown above, address represents an octal address
that the system uses as a base address for subsequent Examine and Deposit
commands. If the address you supply is an odd number, the system decreases
it by one to make the address even. If you do not specify an address, this com-
mand sets the base to zero.

Use the B command when using the Examine and Deposit commands to ref-
erence linked modules that you have loaded into memory with the GET com-
mand. (Note that the B command has no effect on program execution.) The
system adds the current base address to the value you supply in an Examine
or Deposit command. You can set the current base address to the address
where a particular module is loaded. Then you can use the relocatable
addresses printed in the assembler, compiler, or map listing of that module
to reference locations within the module.

The following command sets the base to 0.

+B

The next two commands both set the base to 1000.

+B 1000
B 1001

Keyboard Commands 4-27



BACKUP

The BACKUP command backs up and restores RT—11 files or volumes.

BACKUP | /DEVICE input-fitespec output-filespec
/RESTORE

The BACKUP command copies the contents of a large file or an entire vol-
ume to a set of smaller volumes. Since you can not use the file or volume
while it is fragmented on several smaller volumes, you should use the
BACKUP command only as a means of storing information.

The BACKUP command also performs the reverse operation of restoring the
fragmented file or volume to its original form on a single large volume so
you can again use the file or volume.

In the command syntax shown above, input-filespec represents the data to
copy. Output-filespec represents the device or file to receive the data. You
cannot use wildcards with the BACKUP command; when storing a file with
the BACKUP command you must specify the input file name and device.
The output file name is the same as the input file unless otherwise specified.

When copying an entire volume, the output file name is the two-letter device
mnemonic of the volume you are copying, unless otherwise specified. In
either case, the default output file type is .BUP. For example, the system
assigns the name DL.BUP to the output file on the diskettes to which the
RLO02 is copied.

,BACKUP/DEVICEDLO: DYO:

You can use random-access volumes as either input or output volumes for
both backup and restore operations. Magtapes, however, can be used only as
output volumes for a backup operation, and only as input volumes for a
restore operation. If you use TSV05 magtapes as backup volumes, you must
set the Extended Features Switch (switch SO on switch pack E58) if you
want the tape to stream at 100 in/s. See Appendix A of either the T'SV05
Installation Guide or the T'SV05 User’s Guide for more information on set-
ting the Extended Features Switch.

You can use the BACKUP command to store a file or volume only if the
input file is larger than the type of output volume you are using unless the
output volume is magtape. Otherwise, if you use the BACKUP command to
copy a file or volume that fits on only one of the selected output volumes, an
error occurs.

When you use the BACKUP command, the system copies as much of the
input as will fit on the first output volume. When that volume becomes full,
the system prompts you to mount another volume in the same drive unit. As
each output volume is filled, the system notifies you which volume is being
created, so you can label the volumes accordingly. The process continues
until the entire file or volume has been copied.

4-28 Keyboard Commands



BACKUP

The output volumes must be specially initialized as backup volumes (see the
INITIALIZE command). If you mount a volume that is not a backup volume,
is not an RT-11 block-replaceable volume, or already contains files, the sys-
tem notifies you. You can then choose to replace that output volume with
another backup volume, or you can allow the system to initialize the output
volume that is already mounted without disrupting the backup operation.

When you use the BACKUP command without any option, the system backs
up the specified input file to a set of volumes successively mounted in the
specified output device. In the following example, the file MYPROG.MAC is
backed up to several double-density diskettes. The system detects that the
second output diskette has not been initialized as a backup volume.

BACKUP DLO:MYPROG.,MAC DYO:

Mount outeput volume in DY0Q:3 Continue? Y
"BUP-I~-Creating volume «<nx

Mount next outeput volume in DYO:3 Continue? Y
PBUP-W-Not a bacKup volume DYO:

DY:/7BUP Initialize’d Are vou sure? Y
"BUP-I-Bad block scarn started, ..
PBUP~I-No bad blocKs detected
PYBUP-I-Creating volume <n>x

Mount next output volume in DYO:3 Continue? Y
TBUP-I-Creatindg volume <nx

The following sections describe the BACKUP command options and include
command examples.

/DEVICE Use this option to back up an entire volume to several smaller
volumes, or use /DEVICE with /RESTORE to restore a volume from a set of
backup volumes. In the following example, an RL02 disk is backed up to sev-
eral double-density diskettes. The system detects that the second output
diskette has not been initialized as a backup volume.

BACKUP/DEVICE DLO: DYO:DL.BUP

Mount outrput volume in DY¥Y0D:3 Continue? Y
PBUP-I-Creating volume <nk

Mount next outeut vwolume ivn DY0O:§5 Continue? Y
PBUP-W-Not a bacKup volume DYO:

DY:/7BUP Imitializejd Are vou sure? Y
TBUP-I-Bad blocK scan started...

PBUP~I~No bkad blocks detected

P"BUP-I-Creating volume <nk

Mount next outeput volume in DY¥0:3 Continue? Y
PBUP-I-Creating volume <nx

/RESTORE This option restores to its original state a file you have
backed up using the BACKUP command. Use /DEVICE with /RESTORE to
restore an entire volume.

When restoring a file, if you specify no input file name the system uses the
name of the file on the volume you specify. The default file type is .BUP. If
you specify no output file, the system uses the input file name and type.

Keyboard Commands 4-29



BACKUP

The system prompts you to mount each volume of the set that contains the
full volume or file, and copies the contents of each volume to the volume you
specify. If you mount the input volumes in the wrong order, or if you mount a
volume that contains the wrong file, the system notifies you and reprompts
you to mount the correct volume. The system also notifies you when it has
finished the restore operation.

The following command restores the volume DL: from several RX02 dis-
kettes to a single RLO2 disk.

+BACKUP/DEVICE/RESTORE DYO:DL.BUP DL1:

4-30 Keyboard Commands



e’

BASIC

The BASIC command invokes the BASIC language interpreter.

BASIC

Because BASIC has its own command language, the BASIC command
accepts no options and no file specifications. For information on using the
BASIC interpreter, see the BASIC-11 Language Reference Manual.

Keyboard Commands 4-31



4-32

BOOT

The BOOT command directs a new monitor to take control of the system. It
can also read into memory a new copy of the monitor that is currently con-
trolling the system.

BOOT | /FOREIGN filespec
MWAIT

In the command syntax illustrated above, filespec represents the device or
monitor file to be bootstrapped. If you omit filespec, the system prompts you
with Device or file?. The BOOT command can perform either of two oper-
ations: a hardware bootstrap of a specific device, or a direct bootstrap of a
particular monitor file without using the bootstrap blocks on the device.
When you bootstrap a volume, make sure that the appropriate device han-
dler is present on that volume.

To perform a hardware bootstrap, specify only a device name in the com-
mand line. The following supported devices are valid for this operation:

DDO0:-DD1: DXO0:-DX1:
DK: DY0:-DY1:
DLO0:-DL3: DUO0:-DUT:
DMO:-DM7: RKO:-RKT7:
DS0:-DS7: SY:
NOTE
The following unsupported devices are also valid for the
BOOT command:
DPO0:-DP7:
DTO0:-DT7:
PDO:-PD1:
RF:

You can also boot any of the above storage volumes by specifying its logical
name, if assigned (see the ASSIGN command). The hardware bootstrap
operation gives control of the system to the monitor whose bootstrap is writ-
ten on the device. (You can change this monitor by using the COPY/BOOT
command.) This example bootstraps the SJ monitor, RT11SJ, whose

bootstrap information is written on device DK:.

,BOOT DK:

RT-1184 U0%,00

To bootstrap a particular monitor file, specify that file name and the device

on which it is stored, if necessary, in the command line. SY: is the default
device, and .SYS is the default file type.

Keyboard Commands



M

BOOT

You can use the BOOT command to alternate between the SJ and FB moni-
tors. When you use the BOOT command to change monitors you do not have
to reenter the date and time. The system clock, however, may lose a few sec-

onds during a reboot. The next example bootstraps the FB monitor on device
SY:.

«BOOT RT11FB

RT-11FB VOS.00

NOTE

If you are running a foreground or system job that is sending
I/O to the system volume, using the BOOT command may
cause your system to hang. You should terminate such a job in
the foreground before using the BOOT command.

/FOREIGN Use this option to boot a pre-version 4 volume or a non-RT—11
system. You may not specify a file name with /FOREIGN. The /FOREIGN
option does not preserve the date or time.

/WAIT This option is useful if you have a single-disk system, or if you
want to bootstrap a different volume in the drive unit currently occupied by
your system volume. When you use this option, the system initiates the
BOOT procedure but then pauses and waits for you to mount the volume you
want to bootstrap. When the system pauses, it prints Mount input volume in
<device>; Continue? at the terminal, where <device> represents the device
into which you mount the volume. Mount the volume you want to bootstrap,
then type Y or any string beginning with Y followed by a carriage return.
Type N or any string beginning with N, or two CTRL/Cs, to abort the opera-
tion and return control to the original monitor. Any other response causes
the message to repeat. Make sure DUP is on the system volume when you
use the /WAIT option.

The following sample command line boots an RK05 disk:

LBOOT/WALIT RKO:
Mournt input volume in RKO:3 Continue? ¥

Keyboard Commands 4-33



CLOSE

The CLOSE command closes and makes permanent all output files that are
currently open in the background job.

CLOSE

The CLOSE command accepts no options or arguments.

You can use the CLOSE command to make tentative open files permanent;
otherwise, they do not appear in a normal directory listing and the space
associated with the files is available for reuse. The CLOSE command is par-
ticularly useful after you type a CTRL/C to abort a background job. You can
also use it after an unexpected program termination to preserve any new
files that were being used by the terminated program. The CLOSE command
has no effect on a foreground job and will not make permanent any files
opened on magnetic tape.

The CLOSE command does not work if your program defines new channels
(with the .CDFN programmed request). Because CTRL/C or .EXIT resets
channel definitions, the CLOSE command has no effect on channels it does
not recognize.

The following example shows how the CLOSE command makes temporary
files permanent.

+R PROG

CTRUDETRLID
+CLOSE

434 Keyboard Commands



. p

COMPILE

The COMPILE command invokes the appropriate language processor to
assemble or compile the files you specify.

COMPILE /LIST[:filespec] filespec {/LIBRARY]
/ALLOCATE:size

/INOJOBJECT] :filespec]
/ALLOCATE:size

( /DIBOL N

[~ /ALPHABETIZE

/BUFFERING

/CROSSREFERENCE

/[NOJLINENUMBERS

ILOG

/ONDEBUG

/PAGE:n

/TABLES

L /INO]WARNINGS

/FORTRAN

| [ /copE:type

/DIAGNOSE

< /EXTEND ?

/HEADER

na

/[NOJLINENUMBERS

/ONDEBUG

/RECORD:length

/SHOW([:type]

ISTATISTICS

/[NOISWAP

/UNITS:n

/[NOJVECTORS

L /INOIWARNINGS

/MACRO
/CROSSREFEHENCE[:type[...:type]]

/DISABLE:typel...:type]
/ENABLE:type[...:type]
| /INOJSHOW:typel...:type]

\« p,

In the command line shown above, filespecs represents one or more files to be
included in the assembly or compilation. The default file types for the output
files are .LST for listing files and .OBJ for object files. The defaults for input
files depend on the particular language processor involved and include
.MAC for MACRO files, .FOR for FORTRAN files, and .DBL for DIBOL files.

To compile (or assemble) multiple source files into a single object file, sepa-
rate the files by plus (+) signs in the command line. Unless you specify oth-
erwise, the system creates an object file with the same name as the first
input file and gives it an .OBJ file type. You can combine up to six files for a
compilation producing a single object file. To compile multiple files in inde-
pendent compilations, separate the files by commas (,) in the command line.
This generates a corresponding object file for each set of input files.

Language options are position-dependent — that is, they have different
meanings depending on where you place them in the command line. Options
that qualify a command name apply across the entire command string.
Options that follow a file specification apply only to the file (or group of files
separated by plus signs) that they follow in the command string.

Keyboard Commands 4-35



COMPILE

You can specify the entire COMPILE command as one line, or you can rely
on the system to prompt you for information. The COMPILE command
prompt is Files?.

There are three ways to establish which language processor the COMPILE
command invokes.

1. Specify a language-name option, such as /MACRO which invokes the
MACRO assembler.

2. Omit the language-name option and explicitly specify the file type for the
source files. The COMPILE command then invokes the language proces-
sor that corresponds to that file type. Specifying the file SOURCE.MAC,
for example, invokes the MACRO assembler.

3. Let the system choose a file type of . MAC, .DBL, or .FOR for the source
file you name. To do this, the handler for the device you specify must be
loaded. If you specify DX1:A and the DX handler is loaded, the system
searches for source files A.MAC and A.DBL, in that order. If it finds one
of these files, the system invokes the corresponding language processor. If
it cannot find one of these files, or if the device handler associated with
the input file is not resident, the system assumes a file type of .FOR and
invokes the FORTRAN compiler.

If the language processor selected as a result of one of the procedures
described above is not on the system device (SY:), the system issues an error
message.

The following sections explain the options you can use with the COMPILE
command.

JALLOCATE:size Use this option with /LIST or /OBJECT to reserve
space on the device for the output file. The argument size represents the
number of blocks of space to allocate. The meaningful range for this value is
from 1 to 65535. A value of -1 is a special case that creates the largest file
possible on the device. '

/ALPHABETIZE Use this option with /DIBOL to alphabetize the entries
in the symbol table listing. This is useful for program maintenance and
debugging.

/BUFFERING Use this option with /DIBOL to direct the compiler to use
single buffering for I/O. Normally the compiler uses double buffering.

/CODE:type Use this option with /FORTRAN to produce object code that
is designed for a particular hardware configuration. The argument type
represents a three-letter abbreviation for the type of code to produce. The
valid values are: EAE, EIS, FIS, and THR. See the RT-11/RSTS/E
FORTRAN IV User’s Guide for a complete description of the types of code
and their functions.

436 Keyboard Commands



e

COMPILE

/CROSSREFERENCE[:typel....typell Use this option with /MACRO or
/DIBOL to generate a symbol cross-reference section in the listing. This
information is useful for program maintenance and debugging. Note that
the system does not generate a listing by default. You must also specify
/LIST in the command line to get a cross-reference listing.

With /MACRO, this option takes an optional argument. The argument type
represents a one-character code that indicates which sections of the cross-
reference listing the assembler should include. See the MACRO command in
this chapter for a summary of valid arguments and their meaning.

/DIAGNOSE Use this option with /FORTRAN to help analyze an internal
compiler error. /DIAGNOSE expands the crash dump information to include
internal compiler tables and buffers. Submit the diagnostic printout to
DIGITAL with an SPR form. The information in the listing can help the
DIGITAL programmers locate the compiler error and correct it.

/DIBOL  This option invokes the DIBOL language processor to compile the
associated files.

/DISABLE:typel....type] Use this option with /MACRO to specify a
.DSABL directive. See the MACRO command in this chapter for a summary
of the arguments and their meaning. See the PDP—11 MACRO Language
Reference Manual for a description of the directive and a list of all valid

types.
/ENABLE:typel....type] Use this option with /MACRO to specify an
.ENABL directive. See the MACRO command in this chapter for a summary

of the arguments and their meaning. See the PDP-11 MACRO Language
Reference Manual for a description of the directive and a list of all valid

types.

/EXTEND Use this option with /FORTRAN to change the right margin
for source input lines from column 72 to column 80.

/FORTRAN This option invokes the FORTRAN language processor to
compile the associated files.

/HEADER Use this option with /FORTRAN to include in the printout a
list of options that are currently in effect.

/14  Use this option with /FORTRAN to allocate two words for the default
integer data type (FORTRAN uses only one-word integers) so that it takes
the same physical space as real variables.

/LIBRARY Use this option with /MACRO to identify a macro library file;
use it only after a library file specification in the command line. The
MACRO assembler looks first to any MACRO libraries you specify before
going to the default system macro library, SYSMAC.SML, to satisfy refe-
rences (made with the MCALL directive) from MACRO programs. In the

Keyboard Commands 4-37



COMPILE

example below, the two files A.FOR and B.FOR are compiled together, pro-
ducing B.OBJ and B.LST. The MACRO assembler assembles C.MAC, satis-
fying .MCALL references from MYLIB.MAC and SYSMAC.SML. It pro-
duces C.OBJ and C.LST.

,COMPILE A+B/LIST/0BJECT sMYLIB/LIBRARY+C.MAC/LIST/0BJECT

/LINENUMBERS Use this option with /DIBOL or /FORTRAN to include
internal sequence numbers in the executable program. These numbers are
especially useful in debugging programs. This is the default operation.

/NOLINENUMBERS Use this option with /DIBOL or /FORTRAN to sup-
press the generation of internal sequence numbers in the executable pro-
gram. This produces a smaller program and optimizes execution speed. Use
this option to compile only those programs that are already debugged; other-
wise the line numbers in DIBOL or FORTRAN error messages are difficult
to interpret.

/LIST[:filespec] You must specify this option to produce a compilation or
assembly listing. The /LIST option has different meanings depending on its
position in the command line. Note that anytime you type a colon after the
/LIST option (/LIST:) you must specify a device or a file specification after
the colon.

If you specify /LIST without a file specification in the list of options that
immediately follows the COMPILE command, the system generates a list-
ing that prints on the line printer. If you follow /LIST with a device name,
the system creates a listing file on that device. If the device is a file-
structured device, the system stores the listing file on that device, assigning
it the first input file name and a .LST file type. The following command pro-
duces a listing on the terminal:

+COMPILE/LIST:TT: A.FOR

The next command creates a listing file called A.L.ST on RK3:.

+COMPILE/LIST:RK3: AMAC

If the /LIST option contains a name and file type to override the default of
LST, the system generates a listing file with that name and file type. The
following command, for example, compiles A.FOR and B.FOR together, pro-
ducing files A.OBJ and FILE1.OUT on device DK:.

+COMPILE/FORTRAN/LIST:FILEL.OUT A+B

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input
file, you can use a command similar to this one:

+COMPILE/DIBOL A+B/LIST:RK3:

4-38 Keyboard Commands



.

COMPILE

The command shown above compiles A.DBL and B.DBL together, producing
files DK:A.OBJ and RK3:B.LST. If you specify a file name on a /LIST option
following a file specification in the command line, it has the same meaning
as when it follows the command. The following two commands have the
same results:

+COMPILE/MACRO A/LIST:B
+COMPILE/MACRO/LIST:BA

Both the commands shown above generate A.OBJ and B.LST on device DK:
as output files.

Remember that file options apply only to the file (or group of files separated
by plus signs) they follow in the command string. For example:

+COMPILE AWMAC/LISBTB.FOR

This command compiles A.MAC, producing A.OBJ and A.LST on DK:. It
also compiles B.FOR, producing B.OBJ on DK:. However, it does not produce
any listing file for the compilation of B.FOR.

/LOG Use this option with /DIBOL to create a log of error messages gener-
ated by the compiler.

/MACRO This option invokes the MACRO assembler to assemble the
associated files.

/OBJECT:filespec] Use this option to specify a file name or device for the
object file. Note that anytime you type a colon after the /OBJECT option
(/OBJECT:) you must specify a device or a file specification after the colon.

Because the COMPILE command creates object files by default, the follow-
ing two commands have the same meaning:

+COMPILE/FORTRAN A
+COMPILE/FORTRAN/DBJECT A
Both commands compile A.FOR and produce A.OBJ as output. The

/OBJECT option functions like the /LIST option; it can be either a command
or a file qualifier.

As a command option, /OBJECT applies across the entire command string.
The following command, for example, assembles A. MAC and B.MAC sepa-
rately, creating object files A.OBJ and B.OBJ on RK1:.

+COMPILE/OBJECT:RRK1: (A+B) . MAC

Keyboard Commands 4-39



COMPILE

Use /OBJECT as a file option to create an object file with a specific name or
destination. The following command compiles A.DBL and B.DBL together,
creating files B.LST and B.OBJ.

+COMPILE/DIBOL A+B/LIBT/0BJELCT

/NOOBJECT Use this option to suppress creation of an object file. As a
command option, /NOOBJECT suppresses all object files; as a file option, it
suppresses only the object file produced by the related input files. In this
command, for example, the system compiles A.FOR and B.FOR together,
producing files A.OBJ and B.LST. It also compiles C.DBL and produces
C.LST, but it does not produce C.OBJ.

+COMPILE A.FOR+B.FOR/LIST.C.DBL/NOOBJECT/LIST

/ONDEBUG Use this option with /DIBOL to include an expanded symbol
table in the object file. You can then use a debugging program to find and
correct errors in the object file.

Use /ONDEBUG with FORTRAN to include debug lines (those that have a
D in column 1) in the compilation. You do not, therefore, have to edit the file
to include these lines in the compilation or to logically remove them. This
option means that you can include messages, flags, and conditional branches
to help you trace program execution and find errors.

/PAGE:n Use this option with /DIBOL to override the default listing page
length of 66 lines. The meaningful range of values for the decimal argument
nis1to 32768 (decimal).

/RECORD:length Use this option with /FORTRAN to override the
default record length of 132 characters for ASCII sequential formatted input
and output. The meaningful range for the argument length is from 4 to
4095.

/SHOW:type Use this option with /FORTRAN to control FORTRAN list-
ing format. The argument type represents a code that indicates which list-
ings the compiler is to produce. Table 4—6 summarizes the codes and their
meaning.

Use this option with /MACRO to specify any MACRO .LIST directive. Table
4-13 summarizes the valid arguments and their meaning. The PDP-11
MACRO Language Reference Manual explains how to use these directives.

/NOSHOW:type Use this option with MACRO to specify any MACRO
NLIST directive. Table 4-13 summarizes the valid arguments and their
meaning. The PDP—-11 MACRO Language Reference Manual explains how
to use these directives.

/STATISTICS Use this option with /FORTRAN to include compilation
statistics in the listing, such as amount of memory used, amount of time
elapsed, and length of the symbol table.

440 Keyboard Commands



COMPILE

/ISWAP Use this option with /FORTRAN to permit the USR (User Service
Routine) to swap over the FORTRAN program in memory. This is the
default operation.

INOSWAP Use this option with /FORTRAN to keep the USR resident
during execution of a FORTRAN program. This may be necessary if the
FORTRAN program uses some of the RT-11 system subroutine calls (see the
RT-11 Programmer’s Reference Manual). If the program frequently updates
or creates a large number of files, making the USR resident can improve pro-
gram execution. However, the cost for making the USR resident is 2K words
of memory.

/TABLES Use this option with /DIBOL to generate a symbol table and
label table as part of the listing. This information is useful for program
maintenance and debugging. The system does not generate a listing by
default. You must also specify /LIST in the command line to produce an
assembly listing.

/UNITS:n Use this option with /FORTRAN to override the default num-
ber of logical units (6) to be open at one time. The maximum value you can
specify for n is 16.

/VECTORS This option directs FORTRAN to use tables to access multidi-
mensional arrays. This is the default mode of operation.

/INOVECTORS This option directs FORTRAN to use multiplication oper-
ations to access multidimensional arrays.

/WARNINGS Use this option to include warning messages in DIBOL or
FORTRAN compiler diagnostic error messages. These messages call certain
conditions to your attention but do not interfere with the compilation. This
is the default operation for DIBOL.

/INOWARNINGS Use this option with /DIBOL or /FORTRAN to suppress
warning messages during compilation. These messages are for your infor-
mation only; they do not affect the compilation. This is the default operation
for FORTRAN.

Keyboard Commands 4-41



COPY

The COPY command performs a variety of file transfer and maintenance
operations.

WAIT /OWNER:[nnn,nnn] /INTERCHANGE(:size]
/ANTERCHANGE
/DEVICE TOPS /ALLOCATE:size
/FILES /START:n
/WAIT, /END:n
/START:n /POSITION:n

copv( /BOOT[:dev] input-filespecs {/DOS } output-filespec {/DOS

/PACKED
/BEFORE[:date]
/SINCE[:date]
/DATE[:date]
/NEWFILES
J/CONCATENATE
/DELETE
/EXCLUDE
/NNIGNORE
/INFORMATION
/[NOJLOG
/MULTIVOLUME
/PREDELETE
/[NOJPROTECTION
/[NOJQUERY
/[NOJREPLACE
/RETAIN
/SETDATE[:date]
/SLOWLY
ISYSTEM
VERIFY

/WAIT

/ASCII
/BINARY /POSITION:n
/IMAGE

The COPY command performs the following transfers:
® One file to another file

® A number of files to a single file by concatenation

® Files from a large volume to several smaller volumes
® The bootstrap code to a volume

® The contents of a volume to a file and vice versa

@ The contents of a device to another device

In the command syntax shown above, input-filespecs represents the data to
copy. The input-filespec can be a device name, if you use the /DEVICE
option. Otherwise, you can specify as many as six files for input. Output-
filespec represents the device or file to receive the data. You can specify only
one output device or file.

Normally, commas separate the input files if you specify more than one.
However, you can separate them by plus (+) signs if you want to combine
them, as the following example shows:

+COPY A.FOR+B.FOR C.FOR

442 Keyboard Commands



e’

COPY

This command combines DK:A.FOR with DK:B.FOR and stores the results
in DK:C.FOR.

Note that because of the file protection feature, you cannot execute any
COPY operations that result in the deletion of a protected file. For example,
you cannot copy a file from one volume to another if a protected file of the
same name and type already exists on the output volume.

You can use wildcards in the input or output file specification of the com-
mand. However, the output file specification cannot contain embedded wild-
cards. Note that for all operations except CONCATENATE, if you use a wil-
dcard in the input file specification, the corresponding output file name or
file type must be an asterisk (*). This example uses wildcards correctly:

LCOPY A%B.MAC *.BAK

In the CONCATENATE operation, the output specification must represent
a single file. Therefore, no wildcards are allowed.

You can enter the COPY command as one line, or you can rely on the system
to prompt you for information. If you type COPY followed by a carriage
return, the system prompts From?. If you type the input specification fol-
lowed by a carriage return, the system prompts To?.

The system has a special way of handling system (.SYS) files and files that
cover bad blocks (.BAD files). The system requires you to use the /SYSTEM
option when you need to copy system files and wildcards are used in the
input file type, or when you use the /EXCLUDE option. You cannot copy sys-
tem files simply by placing wildcards in file specifications. To copy a .BAD
file, you must specify it by explicitly giving its file type. (You can use wild-
cards when specifying the file name.) Since .BAD files cover bad blocks on a
device, you usually do not need to copy, delete, or otherwise manipulate
these files.

The following sections describe the COPY command options and include
command examples. Some of the options accept a date as an argument. The
syntax for specifying the date is:

[dd][:mmm][:yy]
where:
dd represents the day (a decimal integer in the range 1-31)

mmm represents the first three characters of the name of the month
vy represents the year (a decimal integer in the range 73—-99)

The default value for the date is the current system date. If you omit any of
these values (dd, mmm, or yy), the system uses the values from the current
system date. For example, if you specify only the year ::82 and the current

Keyboard Commands 4-43



COPY

system date is May 4, 1983, the system uses the date 4:MAY:82. If the cur-
rent date is not set, it is considered 0 (the same as for an undated file in a
directory listing).

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system
prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

/ALLOCATE:size Use this option after the output file specification to
reserve space on the device for the output file. The argument size represents
the number of blocks of space to allocate. The meaningful range for this
value is from 1 to 65535. A value of —1 is a special case that creates the
largest file possible on the device.

/ASCII This option copies files in ASCII mode, ignoring and eliminating
nulls and rubout characters. It converts data to the ASCII 7-bit format and
treats CTRL/Z (32 octal) as the logical end-of-file on input. Files that consist
of ASCII-format data include source files you create with the editor, map
files, and list files. The /ASCII option cannot be used with /VERIFY.

The following example copies a FORTRAN source program from DYO: to
DY1:, giving it a new name, and reserving 50 blocks of space for it.

+COPY/ASCIT DYO:MATRIX.FOR DY1:TEST.FOR/ALLOCATE:50

/BEFORE[:date] This option copies all files on a device created before a
specified date. The following command copies only those .MAC files on DK:
created before February 4, 1983.

+LCOPY/BEFORE:4:FEB:83 %.MAC DLO:*.MAC
Filescoried:

DK:A.MAC to DLO:zACMAC
DR:B.MAC to DLO:zB.MAC
DK:C.MAC to DLO:C.MAC

/BINARY Use this option to copy formatted binary files, such as .OBJ files
produced by the assembler or the FORTRAN compiler, and .LDA files pro-
duced by the linker. The system verifies checksums and prints a warning if a
checksum error occurs. If this happens, the copy operation does not com-
plete. The /BINARY option cannot be used with /VERIFY.

The following command copies a binary file from DK: to a diskette.

+COPY/BINARY ANALYZ.0BJ DY1l:%,%

Note that you cannot copy library files with the /BINARY option because a
checksum error occurs. Copy them in image mode.

444 Keyboard Commands



~—”

N

COPY

/BOOT[:dev] This option copies bootstrap information from monitor and
handler files to blocks 0 and 2 through 5 of a random-access volume, permit-
ting you to use that volume as a system volume. The optional argument dev
represents a two-letter target system device. This argument is especially
useful when you are creating a bootable RX01 system while the current sys-
tem is on an RX02 diskette. Note that you cannot combine /BOOT with any
other option, and that your input and output volume must be the same. Also
note that you can name your monitor file any name you wish; the default file
type is .SYS. When you perform this operation, you must have the correct
device handler to go with the volume. For example, to create a bootable
RLO02 disk, you must have the handler file DL.SYS on that RLO2.

To create a bootable system volume, follow the procedure below:

1. Initialize the volume, using the keyboard monitor command
INITIALIZE. (Note that if the volume is an RK06/07 or an RL01/02, you
should also use the /REPLACE option.)

2. Copy files onto the volume, using the COPY/SYSTEM or SQUEEZE/
OUTPUT command.

3. Write the monitor bootstrap onto the volume, using COPY/BOOT.
The following example creates a system diskette.

JINITIALIZE DY1c:
D¥i:/Initialized Are vou sure? Y
JCOPY/SYSTEM DYOs%.% DY1l:x,#
Files corpied:

DYO:RT11FB,.BYS to DY1:RT11FB.SYS
DYO:8WAP.SYS to DY1:SWAP,.BYS
DY0O:DT.BYH to DY1:DT.5YS
DYQ:DX.5YS to DY1:DX.8Y8
DYO:LP.BYS to DY1:LP,5Y¥5
DYO:DIR.S5AV to DY1:DIR.S5AV
D¥O:DUP,BSAY to DY1:DUP.SAV
DYOQ:ABC. MAC to DY1:ABC.MAC
DYO:AAF . MAC to DY1l:AAF.MAC
DYOQ:CT.SY8 to DY1:CT.8YS
DYD:PIP.5AV to DY1:PIP.SAV
DYO:MT.BYS to DY1:MT.GYS
DYQ:MM.BYE to DY1l:MM.BYS
DYO:COMB.DAT to DY1:COMB.DAT

+COPY¥/BOOT DY1:RTL11FB.BYS D¥1z

The following example creates a bootable RX01 system diskette on an RX02
drive:

L,COPY/BOOT:DX DYO:RT118J.8¥Y8 DYO:
Note that the monitor file cannot reside on a block that contains a bad sector
error (BSE) if you are doing bad block replacement. If this condition occurs,

a boot error results when you bootstrap the system. In this case, move the
monitor so that it does not reside on a block with a BSE.

Keyboard Commands 4-45



4-46

COPY

/ICONCATENATE Use this option to combine several input files into a
single output file. This option is particularly useful to combine several object
modules into a single file for use by the linker or librarian.

The following command combines all the .FOR files on DY1: into a file called
MERGE.FOR on DYO:.

+LCOPY/CONCATENATE DY1l:*,FOR DYO:MERGE.,FOR
Files coried:

DY1:A.FOR to DYO:MERGE,FOR
D¥1:B,FOR to DYO:MERGE.FOR
D¥1:C.FOR to DYO:MERGE,FOR

Wildcards are invalid in the output file specification.

/DATE[:date] Use this option to copy only those files with a certain cre-
ation date. If no date is specified the current system date is used. The follow-
ing command copies all .MAC files created on February 20, 1983 from DLO:
to DL1:

+COPY/DATE:20:FEB:8B3 DLO:%,MAC DL1z#%.%
Files copied:

DLOsAMAC to DLi:A.MAC
DLO:B.MAC to DL1:B.MAC
DLO:C.MAC to DL1:C.MAC

/DELETE Use this option to delete the input file after it has been copied.
The COPY/DELETE operation does not ask you for confirmation before it
executes. You must use /QUERY for this function. If the input specification

and output specification are the same, the filé is not deleted. The following
example copies JSPROG.SAV to DY1:, then deletes it from device DK:.

+COPY/DELETE JSPROG.SAY DY1:JSPROG.SAY

/DEVICE This option copies block for block the image of one device to
another, and copies all data from one disk to another without changing the
file structure or the location of the files on the device. This is convenient
because the bootstrap blocks also remain unchanged. You can copy disks
that are not in RT—11 format if they have no bad blocks. When copying
RT-11 disks, you should ensure the integrity of the results by making sure
the disk being copied contains no bad blocks. If the system encounters a bad
block during the COPY/DEVICE operation it prints an error message. When
copying any disk using COPY/DEVICE, make sure the output device con-
tains no bad blocks because this operation will write over bad blocks on the
output device.

If one device is smaller than the other, the system copies only as many
blocks as the smaller device contains. For example, if you copy a large vol-
ume to a smaller one, you may copy the entire directory of the input volume,
but not every file on the input volume. When you copy a larger device to a

Keyboard Commands



N

M

corPYy

smaller one, you are asked to confirm the copy operation. If you also use the
/START and /END options with the input specification, the confirmation is
requested only if the number of blocks to be copied is greater than the area
on the output volume defined by the /START option and the end of the out-
put volume.

It is possible to copy blocks between disk and magtape, even though mag-
tape is not a random-access device. The data is stored on tape formatted in
1K-word blocks. Because magtape is not file-structured, there is room for
only one disk image on a magtape. When you use the /DEVICE option with
magtape, you must also use the /FILES option with the magtape input or
output specification.

The following command copies an image of DY0: to DY 1..

yCOPY/DEVICE DYO:DY1is
D¥1s/Copy3 Are vou sure? Y

Respond to the query message by typing Y and a carriage return. Any
response not beginning with Y cancels the command and the COPY opera-
tion does not proceed. -

NOTE

The COPY command does not copy track 0 of diskettes.
However, this restriction has no impact on any copy oper-
ations if your diskette was supplied by DIGITAL.

/DOS Use this option to transfer files between RSTS/E or DOS-11 format
and RT-11 format. The option must appear in the command line after the
file to which it applies. Valid DOS input devices are DECtape and RKO05; the
only valid DOS output device is DECtape. The only other options allowed
with /DOS are /ASCII, /BINARY, IMAGE, /OWNER:[nnn,nnn], and /WAIT
(using two device drives).

The following command transfers a BASIC source file from a DOS-11 disk te
an RT-11 disk.

+COPY RK:PROG.BAS/DOS/OWNER:LZ00:2001 BY %, %

The next command copies a memory image file from an RT-11 disk to a
RSTS/E format DECtape.

,COPY DUMP.SAY DT:#,%/D0OS

/END:n  Use with /START:n and /DEVICE to specify the last block of the
volume you are copying. The /END:n notation must follow the input file

Keyboard Commands 4-47



COPY

specification. The argument n represents a decimal block number. The fol-
lowing example copies blocks 0 to 500 from DLO0: to DL1:, starting at block
501, in a file named ADAM.MAC:

+COPY/DEVICE/FILES DLO:/START:0/END:500 DL1:ADAM.MAC/START:501

/EXCLUDE This option copies all the files on a device except the ones you
specify. The following command copies all files from DYO0: to DY1: except
.OBJ and .SAY files.

+COPY/EXCLUDE DYO:(#.0BJ:%,8AV) DY1l:%.%

Note that if you are copying system (.SYS) files using the /EXCLUDE
option, you must also use the /SYSTEM option.

/FILES Use with /DEVICE to copy a volume to a file on another volume or
vice versa. If you use magtape in the operation, you must specify a file name
and the /FILES option with the magtape. Do not include wildcards in either
the input or output specification when you use the /FILES option. This
operation is useful if you wish to make several copies of a volume that ison a
slow device. You can copy the volume as a file onto a volume that is on a
faster device, and then proceed to make copies. Note that when you copy a
file to a volume, the bootstrap and directory of the output volume are
replaced by the equivalent blocks of the input file.

The following example copies diskette DYO0: to DL1: as file FLOPPY.BAK:

+COPY/DEVICE/FILES DYO: DL1:FLOPPY.BAK

The following example copies file DECTAP.BAK to DDO:

+COPY/DEVICE/FILES DECTAP.BAK DDO:

/IGNORE Use this option to ignore errors during a copy operation.
/IGNORE forces a single-block data transfer, which you can invoke at any
other time with the /SLOWLY option. Use /IGNORE if an input error
occurred when you tried to perform a normal copy operation. This procedure
can sometimes recover a file that is otherwise unreadable. If there is still an

error, an error message prints on the terminal, but the copy operation con-
tinues. This option is invalid with /DOS, /TOPS, and /INTERCHANGE.

/IMAGE If you enter a command line without an option, or if you use the
/IMAGE option, the copy operation proceeds in image mode. Use this method
to transfer memory image files and any files other than ASCII or formatted
binary. Note that you cannot transfer memory image files reliably to the
line printer or onsole terminal. You can image-copy ASCII and binary data
with the following restrictions:

1. For ASCII data, there is no check for nulls.

448 Keyboard Commands



M

COPY

2. For binary data, there is no checksum consideration.
This command copies a text file to a double density diskette for storage:

+COPY LETTER.SAY DYO:%, %

The primary advantage to using /IMAGE is that it is faster than /ASCII and
/BINARY.

ANFORMATION Use this option to change the severity level of the error
message that prints when not all of the input files you specified are found. If
you do not use INFORMATION, the system prints an error message when it
is unable to find an input file, and execution halts after the command is proc-
essed. When you use /INFORMATION, the system prints an informational
message to tell you which files it cannot find, but execution continues.

In the following example, the input files FILE1.TXT and FILE3.TXT are
copied to DL1:. However, since the system is unable to find DLO:FILE2 TXT,
the system prints a message to inform you.

+COPY/INFORMATION DLO:(FILEL1,FILE2yFILE3).,TX DL1z%,%
TPIP-I-File not found DLO:FILEZ,TXT

ANTERCHANGEI[:size] This option transfers data in interchange format
between interchange diskettes that are compatible with IBM 3741 format
and RT-11 block-replaceable devices or the console. The option must appear
in the command line after the file to which it applies. If the output file is to
be in interchange format, you can specify the length of each record. The
argument size represents the record length in characters (the default record
length is 80 bytes).

If you use the /WAIT option with INTERCHANGE, you must use two device
drives for the operation. The following command transfers the RT-11 file
WAIT.MAC from device DK: to device DX1: in interchange format, giving it
the name WAIT.MA. The record length is set to 128 (decimal) bytes.

+COPY WAIT.MAC DXi:%,%#/INTERCHANGE:1Z28.

/LOG This option lists on the terminal the names of the files that were
copied by the current command. Normally, the system prints a log only if
there is a wildcard in the file specification. If you specify /QUERY, the sys-
tem prints the name of each file and asks you for confirmation before the
operation proceeds. In this case, the query messages replace the log, unless
you specifically type /LOG/QUERY in the command line.

The following example shows a copy command line and the resulting log.
,COPY/LDG DY1:FILE.MAC DYO:FILE.MAC

Files coried:
DY1:FILE.MAC to DYO:FILE.MAC

Keyboard Commands 4-49



COPY

/INOLOG This option prevents a list of the files copied from appearing on
the terminal.

/MULTIVOLUME Use this option to copy files from an input volume to
one or more output volumes. This option is useful when you are copying sev-
eral files from a large input volume to a smaller output volume and you are
not sure all the files will fit on one output volume.

When you use this option the system copies files to the output volume until
the system finds a file that will not fit. The system continues to search that
file’s directory segment, copying all files from that segment that will fit onto
the output volume. When no more files from that segment will fit on the out-
put volume, the system prompts you to mount the next output volume and
prints the Continue? message. Mount another output volume of the same
type and type Y or any string beginning with Y to continue. The system
begins the copy operation with the first file that did not fit on the previous
output volume. If you type N or any string beginning with N, or two CTRL/
Cs, the operation is not completed and the monitor prompt (.) appears. Any
other response causes the prompt to repeat. The system continues to copy
files from that directory segment until no more files from that segment will
fit on the output volume or until all files from that directory segment have
been copied. When all files from that segment have been copied, the system
begins copying files from the next directory segment. File copying continues
in this fashion until all the specified input files have been copied.

The following example shows all files on DLO: being copied to several
double-density diskettes:

LCOPY/ZMULTIVOLUME DLO:%.% DYO:

(Log of files copied)
Mount mext outPut volume in DYO:i Continue? Y
(Log of files copied)
Mount mext outPut volume in DYO:3i Continue? Y
(Log of files copied)
Mount next outPut wolume inw DYO:3 Continue? Y
(Log of files copied)
Mourt mext outeput uvolume inm DYO:i Continue? ¥

The /MULTIVOLUME option is not valid when you are copying from
magtape.

/INEWFILES Use this option in the command line if you want to copy only
those files that have the current date. The following example shows a
convenient way to back up all new files after a session at the computer.

JCOPY/NEWFILES #.% DY1us%,%
Files coried:

DR:A.FOR to DY1:A.FOR
DR:B.FOR to DY1:B.FOR
DR:C.FOR to DY1:C.FOR

4-50 Keyboard Commands



COPY

/OWNER:[nnn,nnn] Use this option with /DOS to represent a DOS-11
user identification code (UIC) for a DOS-11 input device. Note that the

square brackets are part of the UIC; you must type them. The initial default
for the UIC is [1,1].

/PACKED This option copies files in DECsystem—10, DOS, or interchange
mode. You can use /PACKED on an input file specification with the /TOPS,
/DOS, or /INTERCHANGE option to transfer files to RT-11 format. This
option transfers DECsystem—10 files created by MACY11, MACX11, or
LNKX11 with the /P option.

/POSITION:n Use this option when you copy files to or from magtape.
The /POSITION:n option lets you direct the tape operation; you can move
the tape and perform an operation at the point you specify. For all oper-
ations, omitting the argument n has the same effect as setting n equal to 0 (n
is interpreted as a decimal number). Since this option applies to the device
and not to the files, you can specify one /POSITION:n option for the output
file and one for the input files.

For magtape read (copy from tape) operations, the /POSITION:n option initi-
ates these procedures:

1. IfnisO:
The tape rewinds and the handler searches for the file you specify. If you
specify more than one file, the tape rewinds before each search. If the file
specification contains a wildcard, the tape rewinds only once and then the
handler copies all the appropriate files.

2. Ifnis a positive integer:
The handler looks for the file at file sequence number n. If the file it finds
there is the one you specify, the handler copies it. Otherwise, it prints an
error message. If you use a wildcard in the file specification, the handler

goes to file sequence number n and then begins to look for the appropriate
files.

3. Ifnis-1:
The handler starts its search at the current position. Note that if the cur-
rent position is not the beginning of the tape, it is possible that the file
you specify will not be found, even though it does exist on the tape.

For magtape write (copy to tape) operations, the /POSITION:n option has
this effect:

1. IfnisO:
The tape rewinds before the handler copies each file. A warning message
prints on the terminal if the handler finds another file on the tape with
the same name and file type, and the handler does not copy the file.

Keyboard Commands 4-51



4-52

COPY

2. Ifnis a positive integer:

The handler goes to file sequence number n or to the logical end of tape,
whichever comes first. Then it enters the file you specify. If you specify
more than one file, or if you use a wildcard in the file specification, the
tape does not rewind before the handler writes each file, and the handler
does not check for duplicate file names. If the handler finds the sequence
number n, it creates a new logical end of tape. If there are any files with a
sequence number greater than n, they are lost.

3. Ifnis-1:
The handler goes to the logical end-of-tape and enters the file you specify.
It does not rewind, and it does not check for duplicate file names.

4, Ifnis-2:
The tape rewinds between each copy operation. The handler enters the
file you specify at logical end-of-tape or at the first occurrence of a dupli-
cate file name (but if the handler enters the file over the duplicate file,
you lose everything after that file).

Chapter 13 of the RT—11 System Utilities Manual, Section 13.2.1, contains
more detailed information about operations involving magtape.

/PREDELETE This option deletes a file on the output device that has the
same file name and type as a file you copy to that device, before the copy
occurs. Normally, the system deletes a file of the same file name and type
after the copy operation successfully completes.

This option is useful for operations involving devices that have limited
space, such as diskettes. Be careful when you use the /PREDELETE option;
if for any reason the input file is unreadable, the output file will already
have been deleted and you are left with no usable version of the file.

/PROTECTION Use this option to give an output file protected status s.
that it cannot be deleted. Note that if a file is protected, you cannot perform
any operations on the file that result in its deletion. You can copy a protected
file to another volume, change its name, or write to it. However, you cannot

delete a protected file; you must first change its protection status by using
the / NOPROTECTION option.

If during a copy operation neither the /PROTECTION nor the
/NOPROTECTION option is specified, the output file retains the protection
status of the input file.

/NOPROTECTION Use this option to enable an output file for deletion.
When you use the /NOPROTECTION option during a copy operation the
resulting output file is enabled for deletion.

Files that have been assigned as logical disks and active console log files are
protected. You should not use this option to remove protection from an
active logical disk file.

Keyboard Commands



—

R

COPY

/QUERY Ifyou use this option, the system requests confirmation from you
before it performs the operation. /QUERY is particularly useful on oper-
ations that involve wildcards, when you may not be sure which files the Sys-
tem selected for an operation. The /QUERY option is valid on the COPY
command only if both input and output are in RT—11 format.

Note that if you specify /QUERY in a copy command line that also contains a
wildcard in the file specification, the confirmation messages that print on
the terminal replace the log messages that would normally appear. You
must respond to a query message by typing Y (or any string that begins with
Y) and a carriage return. The system interprets any other response to mean
NO, and it does not copy the file.

The following example copies three of the four .MAC files stored on DK: to
DY1..

+COPY/QUERY DK:%.MAC DY1:%,%
Files copied:

DK:AMAC to DY1:A.MAC A
DKR:B.MAC to DY1:B.MAC G
DK:C.MAC to DY1:C.MAC TN
DR :DEMOF1.MAC to DY1:DEMOF1.MAC? ¥

/INOQUERY This option suppresses the confirmation message that the
system prints for some operations, such as COPY/DEVICE. It also sup-
presses logging of file names if the command line contains a wildecard. You
must explicitly type /LOG to obtain a list of the files copied when you use
INOQUERY.

/REPLACE This is the default mode of operation for the COPY command.
If a file exists on the output device with the same name as the file you specify
for output, the system deletes the duplicate file after the copy operation suc-
cessfully completes.

/NOREPLACE This option prevents execution of the copy operation if a
file with the same name as the output file you specify already exists on the
output device. /NOREPLACE is valid only if both the input and output are

in RT-11 format.

/RETAIN Use this option with the /DEVICE option to preserve the bad
block table of the output volume. The input and output volumes must be
alike and must support bad block replacement. You must have initialized
the output volume by using the INITIALIZE/REPLACE command before
you can use this option with /DEVICE. The /RETAIN option is invalid with
the /START, /END, and /FILES options.

The following example copies the volume DLO: to DL1:, but preserves DL1:’s
bad block replacement table.

+COPY/DEVICE/RETAIN DLO: DL1i:

Keyboard Commands 4-53



COPY

/SETDATE[:date] This option causes the system to put the date you
specify on all files it transfers. If you specify no date the current system date
is used. If the current system date is not set, the system places zeros in the
directory entry date position. Normally, the system preserves the existing
file creation date when it copies a file block for block.

This option is invalid for magtape operations; the system always uses the
current date when copying to magtape, and always uses the magtape file’s
creation date when copying from magtape.

/SINCE:[date] This option copies all files on a specified device that were
created on or after a specified date. The following command copies only those
.MAC files on DK: created on or after February 24, 1983.

+COPY/SINCE:24:FEB:83 %*,MAC DLO:%,MAC
Files copied:

DR:AMAC to DLO:AMAC
DK:B.MAC to DLO:B.MAC
DR:C.+MAC to DLO:C.,MAC

/SLOWLY This option transfers files one block at a time. On some devices,
a single-block transfer increases the chances of an error-free transfer. Use
this option if a previous copy operation failed because of a read or write
error.

/START[:n] Use with the /DEVICE option to specify the starting block
and, with /END:n, to specify the last block of the disk you are copying. The
/START:n notation must follow the input or output file specification. The
argument n with both /START and /END represents a decimal block
number.

You can use /START:n with the output file specification to specify the start-
ing block number for the write operation on the output volume.

The following example copies blocks 500 to 550 of DLO: to DL1: starting at
block 100:

,COPY/DEVICE DLO:/START:S00/END:550 DL1:/5TART:100

If you do not supply a value with /START, the system assumes the first block
on the volume. If you do not specify a value with /END, the system assumes
the last block on the volume. Note that the first block of a file or volume is
block 0.

/ISYSTEM Use this option if you need to copy system (.SYS) files and you
use wildcards in an input file type, or you use the /EXCLUDE option. If you
omit this option, the .SYS files are excluded from these operations and a
message is printed on the terminal to remind you.

4-54 Keyboard Commands



N

8 o

COPY

/TOPS This option transfers files on DECsystem—10 DECtape to RT-11
format. The option must follow the input file specification. Note that
DECtape is the only valid input device. You cannot perform this copy opera-
tion while a foreground job is running. Use /PACKED with /TOPS to convert
from TOPS-10 7-bit ASCII format to standard PDP-11 byte ASCII format.

If you use the /WAIT option with /TOPS, you must use two device drives for
the operation.

The following command copies in ASCII format all the files named
MODULE from the DECsystem—10 DECtape DTO0: to RT—11 device RKO:.

+COPY/7ASCIT DTO:MODULE.*/TOPE RKQ:z#.,%

/VERIFY Use this option to verify that the output matchés the input after
a copy operation between RT—11 directory-structured devices. If the two files

or devices are different, a message is printed on the terminal. This option
cannot be used with /ASCII or /BINARY.

/WAIT Use this option to copy from one disk to another if your system has
only a single-disk drive, if you want to use only one drive unit of a dual-drive
system for a copy operation, or if your system has dual drives but the system
volume is neither the input nor output volume. When you use this option,
the system initiates execution of a command but then pauses and prints the
message Continue?. At this time, you can remove the system disk and mount
the disk on which you want the operation to take place. Mount the new disk
and type a Y or any string beginning with Y, followed by a carriage return,
to resume the operation. If you type N, or any string beginning with N, or
two CTRL/Cs, and the system volume is still in place, the operation is not
performed and the keyboard monitor prompt (.) appears. If the system vol-
ume is not in place, the system prompts you to remount the system volume
before the system aborts the operation. Any other response causes the mes-
sage to repeat.

When the operation completes the system prints the Continue? message
again. Mount the system volume and type a Y or any string beginning with
Y followed by a carriage return. If you type any other response the system
prompts you to mount the system volume until you type Y. The system then
prints the keyboard monitor prompt. Make sure PIP, DUP, and FILEX (if
necessary) are on your system volume when you use the /WAIT option.

The /WAIT option is valid with /INTERCHANGE, /TOPS, and /DOS when
you have two device drives available for the operation, and with /DEVICE
when the input and output devices are different.

Keyboard Commands 4-55



COPY

Single-Volume Operation

If you want to transfer a file between two storage volumes, and you have
only one drive for that type of storage volume, follow the procedure below.

1. Enter a command string according to this general syntax:

.COPY/WAIT input-filespec output-filespec

where output-filespec represents the destination device and file speci-
fication, and input-filespec represents the source device and file speci-
fication.

2. The system responds by printing the following message at the terminal.

Mount input wolume in <devicer’ Continue?

where <device> represents the device into which you are to mount your
input volume. Type a Y followed by a carriage return after you have
mounted your input volume.

3. The system continues the copy procedure and prints the following mes-
sage on the terminal:

Mount outeut volume iw <device>*i Continue?

After you have removed your input volume from the device, mount your
output volume, then type Y followed by a carriage return.

4. Depending on the size of the file, the system may repeat the transfer cycle
(steps 2 and 3) several times before the transfer is complete. When the
transfer is complete, the system prints the following prompt at the termi-
nal:

Mount svstem volume in <devicexi Continue?
When you mount your system volume and type a Y followed by a carriage

return in response to the last instruction, you terminate the copy opera-
tion.

Double-Volume Operation

If you have a small disk system, you can use the /WAIT option for transfer-
ring files between two nonsystem volumes. The procedure for transferring
files this way follows.

456 Keyboard Commands
r



N

COPY

. With your system volume mounted, enter a command according to the

following general syntax:
.COPY/WAIT input-filespec output-filespec

where output-filespec represents the destination device and file speci-
fication, and input-filespec represents the source device and file speci-
fication.

. After you have entered the last command string, the system responds

with the following prompt:

Mount inpPut volume in <dewvicer’ Continue?

Type a Y followed by a carriage return after you have mounted the input
volume.

. The system then prints the next instruction for you to mount the output

volume:

Mourt output wolume in <devicerxd Continue?

Type a Y followed by a carriage return in response to this message after
you have mounted the output volume.

. Unlike the single-volume transfer, the double-volume transfer involves

only one cycle of mounting the input and output volumes. When the file
transfer is complete, PIP prints the following instruction:

Mount svstem volume in <devicer’ Continue?

When you mount your system volume and type a Y followed by a carriage
return in response to the last instruction, you terminate the copy opera-
tion.

Keyboard Commands 4-57



CREATE

The CREATE command creates or extends a file with a specific name, loca-
tion, and size on the random-access volume that you specify.

CREATE filespec /EXTENSION:n
/START:n
/ALLOCATE:slze

In the command syntax illustrated above, filespec represents the device and
file specifications of the file you wish to create or extend. If you are using the
CREATE command to create a file, this command creates only a directory
entry for the file. This command does not store any data in a file. You must
specify both the file name and type of the file you wish to create or extend.

If you attempt to create a file over a tentative file (one that was opened but
never closed) and the foreground job is loaded, the system prompts you to
confirm the operation. If you type Y to continue, the tentative file will be
written over. Be sure that you do not write over a tentative file being used by
the foreground job; this will corrupt the file and cause unpredictable results.

If you type a carriage return after typing CREATE, the system prompts
File?.

The following sections describe the options you can use with the CREATE
command.

/ALLOCATE:size Use this option following the file specification to allo-
cate the number of blocks you specify for the file you are creating; size repre-
sents a decimal number of blocks. A value of —1 indicates a file of the maxi-
mum size available on the volume. If you do not use /ALLOCATE, the
system assumes one block.

/EXTENSION:n Use this option to extend an existing file by the number
of blocks you specify; n is a decimal number of blocks. When you use this
option following the file specification, make sure that there is enough
unused space on the volume for the size you specify (use the DIRECTORY/
FULL command to do this). If you do not supply a value with /EXTENSION,
the system assumes one block.

The following example illustrates the procedure for extending a file with the
CREATE command. In this example, BUILD.MAC is extended by 20 blocks.
First, a DIRECTORY/FULL command determines whether there is avail-
able space adjacent to BUILD.MAC.

+DIRECTORY/FULL DXO:

09-FEB-83

MYPROG.MAC 36P 19-JAN-B3 ™ +MAC 23 27-JAN-83
UTMAC HMAC 7 19-JAN-83 5YSMAC.MAC 41 19-JAN-83
< UNUBED * 25 RT115J4.8Y85 67 19-JAN-83

4-58 Keyboard Commands

——



- AW//

CREATE

TT +8Y8 2 18-JAN-83 bt +BY8 3 19-JAN-B83
LELA +LBM i 08-FEB-83 BUILD .MAC 80 18-JAN-83
£ UNUSED * 198

9 Files)» 2B2 Blocks
224 Free blockKs

Next, the CREATE command extends BUILD.MAC by 20 blocks.

+ CREATE DXO:BUILD.MAC/EXTENSION:ZO

/START:n Use this option to specify the starting block number of the file
you are creating. The argument n represents a decimal block number. If you
do not use /START, the system uses the first available space on the volume.

The following example illustrates the procedure for creating a file with the
CREATE command. In this example, SWAP.SYS is restored after having
been deleted. First, a DIRECTORY/DELETED command establishes the
starting block numbers of the deleted files on DXO0:

,DIRECTORY /DELETED DXO:

09-FEB-B83
SHAP . 8Y8 25  19-JAN-83 117 EMPTY.FIL 178 31-JAN-8B3 315
¢ Filess O Blocks

204 Free blocks

Next, the CREATE command restores SWAP.SYS, starting at block 117,
and the /ALLOCATE:n option allocates 25 blocks.

+ CREATE DXO:5WAP.SYS/START:117/ALLOCATE:IES

See the RT-11 Software Support Manual for a detailed description of the
RT-11 file structure.

Keyboard Commands 4-59



D

The D (Deposit) command deposits values in memory, beginning at the loca-
tion you specify.

D address = valuel,...value]

In the command syntax illustrated above, address represents an octal
address that, when added to the relocation base value from the Base com-
mand (if you used one), provides the actual address where the system must
deposit the value(s). The argument value represents the new contents of the
address. If you do not specify a value, the system assumes a value of 0. If you
specify more than one value and separate the values by commas, the system
deposits the values in sequential locations, beginning at the location you
specify.

The D command accepts both word and byte addresses, but it always
executes the command as though you specified a word address. (If you
specify an odd address, the system decreases it by one to make it
even.) The D command stores all values as word quantities.

Use commas to separate multiple values in the command line. Two or more
adjacent commas cause the system to deposit zeroes at the location you
specify and at subsequent locations, if indicated.

Note that you cannot specify an address that references a location outside
the area of the background job. You can use the D command with GET and
START to temporarily alter a program’s execution. Use the SAVE command
before START to make the alteration permanent.

The following command deposits zeroes into locations 300, 302, 304, and
306.

D 300=43

The next command sets the base address to 0.

+B

The following command deposits 3705 into location 1000.

D 1000=370%

The next command sets the relocation base to 1000.

B 1000

The next command puts 2503 into location 1500 (offset of 500 from the last B
command) and 22 into location 1502.

D SO0=2503,22

460 Keyboard Commands



S

DATE

Use the DATE command to set or to inspect the current system date.

DATE [ dd-mmm-yy]

In the command syntax shown above, dd represents the day (a decimal num-
ber from 1 to 31), mmm represents the first three characters of the name of
the month, and yy represents the year (a decimal number from 73 to 99).

To enter a date into the system, specify the date in the format described
above. The system uses this date for newly created files, for files that you
transfer to magtape or cassette, and for listing files. It is recommended that
you enter the system date as soon as you bootstrap the system.

The following example enters the current date.

+DATE 18-MAY-B3

To display the current system date, type the DATE command without an
argument, as this example shows.

+DATE
i8-Mav-83

The FB and XM monitors automatically increment the date at midnight
each day. The SJ monitor increments the date only if you select timer sup-
port as a system generation special feature. Note that you can also select
automatic end-of-month date advancement through system generation.

Keyboard Commands 4-61



DEASSIGN

The DEASSIGN command disassociates a logical device name from a phys-
ical device name.

DEASSIGN [ logical-device-name]

In the command syntax illustrated above, logical-device-name represents an
alphanumeric name, from one to three characters long and followed by an
optional colon, that is assigned to a particular device. Note that spaces and
tabs are not permitted in the logical device name.

To remove the assignment of a particular logical device name to a particular
device, specify that logical device name in the command line. The following
example disassociates the logical name INP: from the physical device to
which it is assigned.

. DEABSTIGN INP:
If you specify a logical name that is not currently assigned, the system
prints an error message, as this example shows.

+ODEABSIGN INP:

TRMON-W-Logical name not found INP:

To disassociate all logical names from physical devices, type the DEASSIGN
command without an argument. The following example disassociates all

logical device names (except SY:) from physical devices and resets the logi-
cal names DK: and SY: to represent the system volume.

. DEASSIGN

TL TOT, £ 11

If DK: is assigned to a nonsystem device (such as DY1:), the following com-
mand disassociates DK: from DY1: and restores the default association of
DK: to SY:, the system device.

+DEABSIGN DK:

462 Keyboard Commands



M’

S

DELETE

The DELETE command deletes the files you specify.

DELETE| ( /DOS filespecs
WAIT
ANTERCHANGE

IWAIT

/ENTRY

JBEFORE[:date]

/SINCE[:date]
IDATE[:date]
/NEWFILES
/EXCLUDE
/INFORMATION
/LOG
/POSITION[:n]
/INOJQUERY
/SYSTEM
WAIT

In the command syntax shown above, filespecs represents the file(s) to be
deleted. You can specify up to six files; separate them with commas. You can
enter the DELETE command as one line, or you can rely on the system to
prompt you for information. If you omit the file specification, the DELETE
command prompts Files?. If you delete a file accidentally, it may be possible
to recover the file if you act immediately (see CREATE). A procedure for
doing this is described in Chapter 6 of the RT—11 System Utilities Manual.

The system has a special way of handling system (.SYS) files and files that
cover bad blocks (.BAD files) so that you do not delete these files by accident.
The system requires you to use the /SSYSTEM option when you need to delete
system files and you use wildcards in an input file type. To delete a .BAD
file, you must specify it by explicitly giving its file name and file type. Since
-BAD files cover bad blocks on a device, you do not need to copy, delete, or
otherwise manipulate these files.

To delete a protected file (a P next to the block size of a file’s directory entry
denotes protection), you must first remove protection from that file by using
the UNPROTECT command, the COPY/NOPROTECTION command, or the
RENAME/NOPROTECTION command.

Another feature of the DELETE command is that, unless you use /LOG or
/NOQUERY, the system requests confirmation from you before it deletes a
file, if you use wildcards in the input specification. You must respond to the
query message by typing Y followed by a carriage return in order to execute
the command.

The following sections describe the options you can use with the DELETE
command. Some of the options accept a date as an argument. The syntax for
specifying the date is:

[dd][:mmm][:yy]

Keyboard Commands 4-63



DELETE

where:
dd represents the day (a decimal integer in the range 1-31)
mmm represents the first three characters of the name of the month
vy represents the year (a decimal integer in the range 73-99)

The default value for the date is the current system date. If you omit any of
these values (dd, mmm, or yy), the system uses the values from the current
system date. For example, if you specify only the year ::82 and the current
system date is May 4, 1983, the system uses the date 4$:MAY:82. If the cur-
rent date is not set, it is considered 0 (the same as for an undated file in a
directory listing).

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system
prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

/BEFORE[:date] Use this option to delete only those files created before a
certain date. If you specify no date the current system date is used. The fol-

lowing command deletes all .SAV files on DYO: that were created before
March 20, 1983.

+DELETE/LDG/BEFORE:20:MAR:B3 DY¥0:%.8AY
Files deleted:

D¥0:A.5AY
D¥Q:B.5AY
D¥O:C.8AV

/DATE[:date] Use this option to delete only those files with a certain cre-
ation date. If no date is specified the current system date is used. The follow-
ing command deletes all .MAC files on DK: that were created on February
20, 1983.

JDELETE/LOG/DATE:20:FEB:83 DK:#.MAC
Files deleted:

DR:AMAC

DK:B.+MAC

DKR:C+MAC

/DOS Use this option to delete a file that is in DOS-11 or RSTS/E format.
The valid devices for this type of file are disks or DECtapes. You cannot use
any option except /WAIT in combination with /DOS.

/ENTRY Use this option to delete a job from the queue. Use /ENTRY
when QUEUE is running as a foreground or system job (see Chapter 17 of
the RT—-11 System Utilities Manual, Queue Package).

464 Keyboard Commands



DELETE

When you use /ENTRY, you do not have to specify the input files in the job,
only the job name. If you have not specified a job name, the system uses the

first file name in the job as the job name. The following example deletes
MILLER from the queue: '

+DELETE/ENTRY MILLER

If QUEUE is printing a job when you delete that job, QUEUE immediately
stops processing that job.

/EXCLUDE This option deletes all the files on a device except the ones
you specify. The following command, for example, deletes all files from DYO0:
except .SAYV files.

+DELETE/EXCLUDE DYQ:+%,5AY
PPIP-W-No 8¥5 action
Files deleted:
DYQ:ABC.OLD
DY¥O:1AAF,.OLD
DYOsCOMB ., Y
DY¥OsMERGE,DLD 7 V¥

N

|
A
1

2 RELYS BECS JRES |

/AINFORMATION Use this option to change the severity level of the error
message that prints when not all of the input files you specified are found. If
you do not use INFORMATION, the system prints an error message when it
is unable to find an input file, and execution halts after the command is pro-
cessed. When you use INFORMATION, the system prints an informational
message to tell you which files it cannot find, but execution continues.

In the following example, the input files FILE1.TXT and FILE3.TXT are
deleted. However, since the system is unable to find DLO:FILE2.TXT, the
system prints a message to inform you.

+DELETE/INFORMATION DLOs(FILELl sFILEZsFILES3),THT
PPIP-I-File not found DLO:FILEZ2.TXT

/INTERCHANGE Use this option to delete from a diskette a file that is in
interchange format. /WAIT is the only option you can use with
/INTERCHANGE.

/LOG This option lists on the terminal a log of the files that are deleted by
the current command. Note that if you specify /LOG, the system does not ask
you for confirmation before execution proceeds (that is, /[LOG implies
/INOQUERY). Use both /LOG and /QUERY to invoke logging and querying.

INEWFILES Use this option to delete only the files that have the current
system date. This is a convenient way to remove all the files that you just

created in a session at the computer. The following example deletes the
.BAK files created today.

JDELETE/NEWFILES DY1:%.BAK
Files deleted:
DY1:MERGE.BAK ? Y

Keyboard Commands 4-65



DELETE

/POSITION[:n] You can use this option when you delete files from cas-
sette. It permits you to move the tape and perform an operation at the point
you specify. Omitting the argument n has the same effect as setting n equal
to 0 (n is interpreted as a decimal number). The /POSITION:n option has the
following effect:

1. IfnisO:
The cassette rewinds and the system searches for the file you specify. If
you specify more than one file, or if you use a wildcard in the file spec-
ification, the cassette rewinds before each search.

2. Ifnisapositive integer:
The system starts from the cassette’s present position and searches for
the file you specify. If the system does not find the file you specify before
it reaches the nth file from its starting position, it deletes the nth file.
Note that if the starting position is not the beginning of the tape, it is
possible that the system will not find the file you specify, even though it
does exist on the tape.

3. Ifnis anegative integer:
The cassette rewinds, then the system follows the procedure outlined in
step 2 above.

/QUERY Use this option to request confirmation before the system deletes
each file. This option is particularly useful on operations that involve wild-
cards, when you may not be completely sure which files the system selected
for the operation. This is the default mode of operation when you use wild-
cards in the file specifications. Note that specifying /LOG eliminates the
automatic query; you must specify /QUERY with /LOG to retain the query
function.

You must respond to a query message by typing Y or any string beginning
with Y, and a carriage return to initiate execution of a particular operation.
The system interprets any other response as NO; it does not perform the
operation.

The following example shows querying. Only the file DX1:AAF.MAC is
deleted.

,DELETE/QUERY DY1l:%,%
Files deleted:
DY¥1:ABC.MAC ? N
DY¥1:AAF.MAC C
DY1:MERGE.FOR ? N

/INOQUERY This option suppresses the confirmation message the system
prints before it deletes each file.

4-66 Keyboard Commands



DELETE

/SINCE[:date] Use this option to delete only those files created on or after
a certain date. If you specify no date the current system date is used. The fol-

lowing command deletes all .SAV files on DYO: that were created on or after
March 20, 1983.

+DELETE/LOG/SINCE:20:MAR:83 DYO:%,5AY
Files deleted:

D¥Y0:A,8AY
DY0:B.8AY
DYO:C.B8AY

/SYSTEM Use this option if you need to delete system (.SYS) files and you
use wildcards in an input file type. If you omit this option, the system files
are excluded from the DELETE operation, and a message is printed on the
terminal. (Note that the system prints this message only when system files
would have been included in the operation.)

/WAIT This option is useful if you have a single-disk system of if you want
to use only one drive unit of a dual-drive system. When you use this option,
the system initiates the DELETE operation but then pauses for you to
mount the volume that contains the files you want to delete.

When the system pauses, it prints Mount input volume in <device>;
Continue?, where <device> represents the device into which you mount the
volume. Mount the volume and type Y or any string beginning with Y, fol-
lowed by a carriage return. Type N or any string beginning with N, or two
CTRL/Cs, to abort the operation and return control to the keyboard monitor.
Any other response causes the message to repeat.

When the operation completes the system prints the Continue? message
again. Mount the system volume and type a Y or any string beginning with
Y, followed by a carriage return. If you type any other response the system
prompts you to mount the system volume until you type Y. The system then
prints the keyboard monitor prompt.

Make sure that PIP (and FILEX, if necessary) are on the system volume
when you use the /WAIT option.

The following example deletes FILE.MAC from an RL0O2 disk:

+DELETE/WAIT DLO:FILE.MAC

Mounmt dineput volume in DLC:3 Continue? Y
DLOsFILE.MACT Y

Mount svstem volume in DLO:§ Continue? Y

Keyboard Commands 4-67



DIBOL

The DIBOL command invokes the DIBOL compiler to compile one or more

source programs.
DIBOL | /ALPHABETIZE filespecs
/BUFFERING
/CROSSREFERENCE
/[NOJLINENUMBERS
/LIST[:filespec]

/ALLOCATE:size
/LOG
/[NOJOBJECT!:filespec]

/ALLOCATE:size
/ONDEBUG
/PAGE:n
/TABLES
/INO]WARNINGS

In the command syntax illustrated above, filespecs represents one or more
files to be included in the compilation. If you omit a file type for an input file,
the system assumes .DBL. Output default file types are for listing files and
.OBJ for object files. To compile multiple source files into a single object file,
separate the files by plus (+) signs in the command line. Unless you specify
otherwise, the system creates an object file with the same name as the first
input file and gives it an .OBJ file type. To compile multiple files in
independent compilations, separate the files by commas (,) in the command
line. This generates a corresponding object file for each set of input files.

Language options are position-dependent — that is, they have different
meanings depending on where you place them in the command line. Options
that qualify a command name apply across the entire command string.
Options that follow a file specification apply only to the file (or group of files
separated by plus signs) they follow in the command string.

You can enter the DIBOL command as one line, or you can rely on the sys-
tem to prompt you for information. The DIBOL command prompt is Files?
for the input specification.

The DIBOL—11 Language Reference Manual contains more detailed infor-
mation about using DIBOL. The following sections describe the options you
can use with the DIBOL command.

/ALLOCATE:size Use this option with /LIST or /OBJECT to reserve space
on the device for the output file. The argument size represents the number of
blocks of space to allocate. The meaningful range for this value is from 1 to
65535. A value of —1 is a special case that creates the largest file possible on
the device.

/ALPHABETIZE Use this option to alphabetize entries in the symbol and
label tables. This is useful for program maintenance and debugging.

/BUFFERING Use this option to direct the compiler to use single buffer-
ing for I/0O. Normally the compiler uses double buffering.

4 68 Keyboard Commands



DIBOL

/CROSSREFERENCE This option generates a symbol cross-reference
section in the listing to which it adds as many as four separate sections to
the listing. These sections are: symbol cross-reference table, label cross-
reference table, external subroutine cross-reference table, and COMMON
cross-reference table. Note that the system does not generate a listing by
default. You must also specify /LIST in the command line to get a cross-
reference listing.

/LINENUMBERS This option generates line numbers for the program
during compilation. These line numbers are referenced by the symbol table
segment, label table segment, and cross-reference listing; they are espe-
cially useful in debugging DIBOL programs. This is the default operation.

/NOLINENUMBERS This option suppresses the generation of line num-
bers during compilation, which produces a smaller program and optimizes
execution speed. Use this option to compile only programs that are already
debugged; otherwise the DIBOL error messages are difficult to interpret.

/LIST[:filespec] You must specify this option to produce a DIBOL compi-
lation listing. The /LIST option has different meanings depending on where
you place it in the command line. Note that anytime you type a colon after
the /LIST option (/LIST:) you must specify a device or a file specification
after the colon.

The /LIST option produces a listing on the line printer when /LIST follows
the DIBOL command. For example, the following command line produces a
line printer listing after compiling a DIBOL source file:

+DIBOL/LIST MYPROGEED)

When the /LIST option follows the file specification, it produces a listing file.
For example, the following command line produces the listing file
DK:MYPROG.LST after compiling a DIBOL source file:

+DIBOL MYPROG/LISTED

If you specify /LIST in the list of options that immediately follows the
DIBOL command, but omit a file specification, the DIBOL compiler gener-
ates a listing that prints on the line printer. If you follow /LIST with a device
name, the system creates a listing file on that device. If the device is a file-
structured device, the system stores the listing file on that device, assigning
it the same name as the input file with a .LST file type. The following com-
mand produces a listing on the terminal.

+DIBOL/LIST:TT: A

The next command creates on RK3: a listing file called A.LST.

+DIBOL/LISTIRK3: A

Keyboard Commands 469



DIBOL

If the /LIST option contains a name and file type to override the default of
.LST, the system generates a listing file with that name. The following com-
mand, for example, compiles A.DBL and B.DBL together, producing on
device DK: files A.OBJ and FILE1.OQUT:

DIBOL/LIST:FILEL,.OUT A+B

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input
file, you can use a command similar to this one:

+DIBOL A+B/LISTiRK3:
The command shown above compiles A.DBL and B.DBL together, producing
files DK:A.OBJ and RK3:B.LST.

If you specify a file name on a /LIST option following a file specification in
the command line, it has the same meaning as when it follows the command.
The following two commands have the same results:

+DIBOLA/LIST:B

+DIBOL/LIST:BA

Both commands generate as output files A.OBJ and B.LST.

Remember that file options apply only to the file (or group of files that are
separated by plus signs) they follow in the command string. For example:

DIBOL+A/LIST B

This command compiles A.DBL, producing A.OBJ and A.LST. It also com-
piles B.DBL, producing B.OBJ. However, it does not produce any listing file
for the compilation of B.DBL.

/LOG Use this option to create a log of error messages generated by the
compiler.

/OBJECT(:filespec] Use this option to specify a file name or device for the
object file. Note that anytime you type a colon after the /OBJECT option
(/OBJECT:) you must specify a device or a file specification after the colon.

Because DIBOL creates object files by default, the following two commands
have the same meaning:

+DIBOL A

+DIBOL/0OBJECT A

4-70 Keyboard Commands

R



—_”

DIBOL

Both commands compile A.DBL and produce A.OBJ as output. The
/OBJECT option functions like the /LIST option; it can be either a command
or a file qualifier.

As a command option, /OBJECT applies across the entire command string.
The following command, for example, compiles A.DBL and B.DBL sepa-
rately, creating object files A.OBJ and B.OBJ on RK1:.

+DIBOL/OBJECT:RK1: A:B

Use /OBJECT as a file option to create an object file with a specific name or
destination. The following command compiles A.DBL and B.DBL together,
creating files B.LST and B.OBJ.

+DIBOL A+B/LIST/OBJECT

/NOOBJECT Use this option to suppress creation of an object file. As a
command option, NOOBJECT suppresses all object files; as a file option, it
suppresses only the object file produced by the related input files.

In this command, for example, the system compiles A.DBL and B.DBL
together, producing files A.OBJ and B.LST. It also compiles C.DBL and pro-
duces C.LST, but does not produce C.OBJ.

+DIBOL A+B/LIST:C/NDOBJECT/LIST

/ONDEBUG This option includes an expanded symbol table in the object
file. You can then use a debugging program to find and correct errors in the
object file.

/PAGE:n Use this option to override the default listing page length of 66
lines. The meaningful range of values for the decimal argument n is 1 to
32768.

ITABLES Use this option to generate a symbol table and label table as
part of the listing. This information is useful for program maintenance and
debugging. Note that the system does not generate a listing by default. You
must also specify /LIST in the command line to produce an assembly listing.

/WARNINGS Use this option to include warning messages in DIBOL
compiler diagnostic error messages. These messages call certain conditions
to your attention, but they do not interfere with the compilation. This is the
default operation.

INOWARNINGS Use this option to suppress warning messages during
compilation.

Keyboard Commands 4-71



4-72

DIFFERENCES

The DIFFERENCES command compares two files and lists the differences
between them.

DIFFERENCES /BINARY /OUTPUT:filespec oldfile,newfile
/ALWAYS /ALLOCATE:size
/BYTES /ALWAYS
/DEVICE /PRINTER
/ENDI[:n] /TERMINAL
/QUIET
/SIPP:filespec

/ALLOCATE :size
/START[:n]
/BLANKLINES
/CHANGEBAR
/INOJCOMMENTS
/FORMFEED
/MATCHI:n]
/SLP:filespec
JALLOCATE:size
/AUDITTRAIL
/INOJTRIM
/INOJSPACES

In the command syntax shown above, oldfile represents the first file to be
compared and newfile represents the second. The default output device is the
console terminal. The default file type for input files is . MAC; for output list-
ing files it is .DIF. (Default file types do not apply when you use wildcards in
a DIFFERENCES command line.) You can specify the entire command on
one line, or you can rely on the system to prompt you for information. The
DIFFERENCES command prompts are File 1?2 and File 2?.

You can use wildcards in either input file specification to perform multiple
source file and binary file comparisons. When you use wildcards, the system
prints which files are being compared before it lists the differences. The
DIFFERENCES command allows no implicit wildcards.

A different type of comparison is performed depending upon whether you
use wildcards in only one or in both of the input file specifications. If you use
wildcards in only one of the input file specifications, the system compares
the file you specify without any wildcards to all variations of the file specifi-
cation with wildcards. The wildcard represents the part of the file specifica-
tion to be varied. You can use this method to compare one file to several
other files. For example, when the following command line is executed, the
system compares the file TEST1.MAC on device DYO: to all files on device
DY1: with the file name TEST2:

+DIFFERENCES/MATCH: 1 /OUTPUT:TEST.DIF DYO:TESBTL+MACDYL1:TESTZ %

You can send the results of all the comparisons to a file on a volume rather
than to the console by specifying a file name with the /OUTPUT option. In
the above example, all differences from the comparisons are sent to the file
TEST.DIF on device DK:.

Keyboard Commands



‘\\v//

DIFFERENCES

If you use wildcards in both input file specifications, the wildcards represent
the part of a file specification you want to be the same in both files being
compared. You can use this method to compare several pairs of files; each
input file is compared to only one other input file. For example, when the fol-
lowing command line is executed, the system compares pairs of files; the first
input file in each pair has the file name PROG1, and the second has the file
name PROG2. The file type of both files in each pair must match.

+DIFFERENCES/BINARY DYO:PROGL.*,DY1:PROGZ,#

The system searches for the first file on DYO0: with the file name PROG1, and
takes note of its file type. Then, the system searches DY1: for a file with the
file name PROG2 and the same file type as PROG1. If a match is found, the
system compares the two files and lists the differences on the console (or
sends the differences to an output file if one is specified). The system then
searches DYO0: for more files with the file name PROG1 and DY1: for PROG2
files with matching file types.

The DIFFERENCES command is particularly useful when you want to com-
pare two similar versions of a source or binary program, typically an
updated version against a backup version. A file comparison listing high-
lights the changes made to a program during an editing session.

The DIFFERENCES command is also useful for creating command files that
can install patches to backup versions of programs so they match the
updated versions. The /SLP:filespec and /SIPP:filespec options are designed
especially for this purpose. The default file type for the output files created
by these options is .COM. You cannot use wildcards when creating SLP or
SIPP command files.

The following sections describe the various options you can use with the
DIFFERENCES command. Following the descriptions of the options is a
sample listing and an explanation of how to interpret it.

/ALLOCATE:size Use this option with /OUTPUT, /SLP, or /SIPP to
reserve space on the device for the output listing file. The argument size
represents the number of blocks of space to allocate. The meaningful range
for this value is from 1 to 65535. A value of -1 is a special case that creates
the largest file possible on the device.

/ALWAYS When you use this option with /BINARY, /SIPP:filespec, or
/OUTPUT:filespec, the system creates an output file regardless of whether
there are any differences between the two input files. This option is useful

when running BATCH streams to prevent job step failures due to the
absence of a DIFFERENCES output file.

The /ALWAYS option is position dependent. That is, you must use it imme-
diately after the output file to which you want it to apply. If you use it at the
end of the DIFFERENCES command, it applies to all output files.

Keyboard Commands 4-73



DIFFERENCES

/AUDITTRAIL Use this option with /SLP to specify an audit trail. The
/SLP option, described below, creates a command file which, when run with
the source language patch program (SLP), can patch oldfile so it matches
newfile. When you use SLP to modify a file, it creates an output file that has
audit trails. An audit trail is a string of characters that appears in the right
margin of each line that has been changed by the modification procedure.

The audit trail keeps track of the patches you make to the patched source
file.

By default, SLP uses the following characters for the audit trail:

When you use the /AUDITTRAIL option, the system prints the following
prompt at the terminal.

Audit trail?

Enter a string of up to 12 ASCII characters that you want to use in place of
the default audit trail. Do not use the slash (/) in the audit trail.

/BINARY When you use this option, the system compares two binary files
and lists the differences between them. This option is useful for comparing
memory image and relocatable image files (that is, machine runnable pro-
grams and object files) and provides a quick way of telling whether two files
are identical. For example, you can use /BINARY to tell whether two ver-
sions of a program produce identical output.

When you use /BINARY and do not specify an output file, the system prints
output at the terminal according to the following general syntax:

bbbbbb ooo/ fffff ssssss xxxxxx
where:

bbbbbb represents the octal block number of the block that contains
the difference

000 represents the octal offset within the block that contains the
difference
idiuig represents the value in the first file you are comparing

ssssss  represents the value in the second file you are comparing

xxxxxx represents the logical exclusive OR of the two values in the
input files

If you use the /OUTPUT:filespec option with /BINARY, the system stores
the differences listing in the file you specify (if there are any differences
found), instead of printing the differences at the terminal.

4-74 Keyboard Commands



N

P

N y

DIFFERENCES

/BLANKLINES Use this option to include blank lines in the file compari-
son. Normally, the system disregards blank lines.

/BYTES When you use this option with /BINARY, the system lists the dif-
ferences byte-by-byte.

/CHANGEBAR Use this option to create an output file that contains
newfile with a changebar character next to the lines in newfile that differ
from oldfile. The system inserts a vertical bar next to each line that has been

added to newfile, and a bullet (lowercase letter o) next to each line that has
been deleted.

The output defaults to the terminal. Use the /PRINTER option to list the
output on the line printer. Specify an output file with the /OUTPUT:filespec
option.

The sample that follows creates a listing of RTLIB.MAC with a changebar or
bullet character at the left margin of each line that is different from
RTLIB.BAK:

DIFFERENCES/CHANGEBAR RTLIB.BAK:RTLIB.MAC

/COMMENTS When you use this option, the system includes in the file
comparison all assembly language comments it finds in the two files.
(Comments are preceded by a semicolon on the same line.) This is the
default operation.

/NOCOMMENTS Use this option to exclude comments from the compari-
son. (Comments are preceded by a semicolon on the same line.) This is useful
if you are comparing two MACRO source programs with similar contents
but different formats.

/DEVICE Use this command with /BINARY to compare two entire vol-
umes starting with block 0. If one input volume is longer than the other the
system prints BINCOM-W-Device is longer DEV:. The system prints the
message ’BINCOM-W-Devices are different only if differences are found
before the point where one input volume ends and the longer one continues.

/END[n]  Use this option with /BINARY to specify the ending block num-
ber of the file comparison, where n is an octal number that represents the
ending block number. If you do not supply a value with /END, the system
defaults to the last block of the file or volume.

/FORMFEED  Use this option to include form feeds in the output listing.
Normally, the system compares form feeds but does not include them in the
output listing.

/MATCH[:n] Use this option to specify the number of lines from each file
that must agree to constitute a match. The value n is an integer in the range
1-200. The default value for n is 3. This option is invalid with /BINARY.

Keyboard Commands 4-75



DIFFERENCES

/OUTPUT:filespec Use this option to specify a device and file name for
the output listing file. Normally, the listing appears on the console terminal.
If you omit the file type for the listing file, the system uses .DIF. Note that
the system creates this file only if there are any differences found. Use the
/ALWAYS option, with /BINARY, if you want the system to create an out-
put file regardless of whether any differences are found.

/PRINTER Use this option to print a listing of differences on the printer.
Normally, the listing appears on the console terminal.

/QUIET When you use this option with /BINARY, the system suppresses
printing the differences at the terminal and prints ?BINCOM-W-Files are
different or ZBINCOM-W-Devices are different, if applicable.

/SIPP:filespec Use this option with /BINARY to output a file that you can
use as an input command file to the save image patch program (SIPP), where
filespec represents the name of the output file. The file you create with /SIPP
can patch oldfile so it matches newfile.

The example that follows creates an input command file which, when run
with SIPP, patches DEMOF1.BAK so it matches DEMOF1.SAV.

DIFFERENCES/BINARY/SIPP:PATCH.COM DEMOF1.BAKDEMOF1.G5AY

To execute the input command file created by /SIPP, see Chapter 20 of the
RT-11 System Utilities Manual, Save Image Patch Program (SIPP).

/SLP[:filespec] Use this option to create a command file that, when run
with the source language patch utility (SLP), patches oldfile to match
newfile. The default file type is .SLP. If you do not supply a file specification
with /SLP, the system prints the command file at the console.

The sample that follows creates the command file PATCH.COM.
PATCH.COM can be used as input to the SLP program to patch RTLIB.BAK
so that it matches RTLIB.MAC.

,DIFFERENCES/SLP:PATCH RTLIB.BAK::RTLIB.MAC

To execute the command file you create with /SLP, see Chapter 21 of the
RT-11 System Ultilities Manual, Source Language Patch Program (SLP).
You cannot use wildcards in a command line with the /SLP option.

/ISPACES This option includes spaces and tabs in the file comparison.
This is the default operation and is particularly useful when you are com-
paring two text files and must pay careful attention to spacing.

INOSPACES Use this option to exclude spaces and tabs from the file com-
parison. This is useful when you are comparing two source programs with
similar contents but different formats.

4-76 Keyboard Commands



s

N’

DIFFERENCES

/ISTART[:n] Use this option with /BINARY to specify the starting block
number of the file comparison, where n represents the octal starting block
number. If you do not supply a value with /START, the system defaults to
the first block in the file.

/TERMINAL Use this option to cause the list of differences to appear on
the console terminal. This is the default operation.

To understand how to interpret the output listing, first look at the following
two text files. »

+TYPE FILEL.TX

HERE'S A BOTTLE AND AN HONEST FRIEND!
WHAT WAD YE WISBH FOR MAIR: MAN?

WHA KENS: BEFORE HIS LIFE MAY END,
WHAT HIS SHAME MAY BE O’ CARE: MANT

THEN CATCH THE MOMENTS A8 THEY FLY
AND USE THEM AS YE OUGHT, MAN: --

BELIEVE MEs HAPPINESS I8 SLY
AND COMES NOT AY WHEN SO0UGHT: MAN,

--GCOTTISH SONG

+IYPE FILEZ,

HERE’'S A BOTTLE AND AN HONEST FRIEND!
WHAT WAD YE WISH FOR MAIR, MANT

WHA KENS, BEFORE HIS LIFE MAY END.
WHAT HIS SHARE MAY BE 0O’ CARE: MANT

THEN CATCH THE MOMENTS AS THEY FLY
AND USE THEM AS YE OUGHT: MAN: -~

BELIEVE ME: HAPPINESS IS5 SHY:
AND COMES NOT AY WHEN SOUGHT: MAN.

--BCOTTISH SONG
Notice that in the fourth line of FILE1.TXT, shame should be share; in the
seventh line, sly should be shy.

The following command compares the two files, creating a listing file called

DIFF.TXT.

+DIFFERENCES/MATCH: 1 /0UTPUT*DIFF,THTFILEL .TXT +FILEZ,TKT
PSRCCOM-W-Files are different

The following listing shows file DIFF.TXT.

+IYPE DIFF.TXT
1) DR:FILEL.TXT
2) DK:FILEZ.TX

KREXXXAXXN

1)1 WHAT HIS SHAME MAY BE 0O’ CARE: MANT?
1) THEN CATCH THE MOMENTS A8 THEY FLY.
k%X

231 WHAT HIS SHARE MAY BE 0/ CARE: MANT
2) THEN CATCH THE MOMENTS AS THEY FLY:
R KKK KKK

Keyboard Commands 4-77



DIFFERENCES

11 BELIEVE ME, HAPPINESS IS SLY,

1) AND COMES NOT AY WHEN SOUGHT: MAN,
* X %K%

2)1 BELIEVE ME, HAPPINESSE IS5 SHY .

2) AND COMES NOT AY WHEN SOUGHT . MAN,
T EE R

If the files are different, the system always prints the file specification of
each file as identification:

1) DR:FILEL1.TXT
2) DR:FILEZ.TXT

The numbers at the left margin have the form n)m, where n represents the
source file (either 1 or 2) and m represents the page of that file on which the
specific line is located.

The system next prints ten asterisks and then lists the differences between
the two files. The /MATCH:n option was used in this example to set to 1 the
number of lines that must agree to constitute a match.

The first three lines of the song are the same in both files, so they do not
appear in the listing. The fourth line contains the first discrepancy. The sys-
tem prints the fourth line from the first file, followed by the next matching
line as a reference.

1)1 WHAT HIS SHAME MAY BE 0O’ CARE.» MANT

1) THEN CATCH THE MOMENTS AS THEY FLY,
*EER

The four asterisks terminate the differences section from the first file.

The system then prints the fourth line from the second file, again followed
by the next matching line as a reference:

231 WHAT HIS SHARE MAY BE 0’ CARE: MANT
2) THEN CATCH THE MOMENTS AS THEY FLY
EEEKH KRR RN

The ten asterisks terminate the listing for a particular difference section.

The system scans the remaining lines in the files in the same manner. When
it reaches the end of each file, it prints 2SRCCOM-W-Files are different on
the terminal.

If you compare two files that are identical, the system does not create an out-
put listing, but prints:

TSRCCOM-I-No differences found

4-78 Keyboard Commands



N

N

DIFFERENCES

If you use wildcards in the command line, the system always prints the spec-
ifications of the files being compared regardless of whether or not there are
differences.

TRIM Use the /TRIM option with /SLP to ignore tabs and spaces that
appear at the ends of source lines. This is the default setting.

/INOTRIM Use /NOTRIM with /SLP to include in the comparison spaces
and tabs that appear at the ends of source lines. /TRIM is the default setting.

Keyboard Commands 4-79



DIRECTORY

The DIRECTORY command lists information you request about a device, a
file, or a group of files.

DIRECTORY /BACKUP /OUTPUT:filespec filespecs
/ALLOCATE:size /BEGIN
/DOS /PRINTER

/OWNER:[nnn,nnn] /TERMINAL

/WAIT
/INTERCHANGE

WAIT
TOPS

/WAIT

/BADBLOCKS

/END:n
/FILES
/START:n
/WAIT

/ALPHABETIZE
/REVERSE
/ORDER[:category]
/REVERSE

/POSITION

/SORT[:category]

/REVERSE

/BEFORE[:date]

/SINCE[:date]

/DATE[:date]

/NEWFILES

/BLOCKS

/BRIEF

/COLUMNS:n

/DELETED

/EXCLUDE

/FAST

/FREE

/FULL

/OCTAL

/[NOJPROTECTION

/SUMMARY
/VOLUMEID[:ONLY]

In the command syntax shown above, filespecs represents the device, file, or
group of files whose directory information you request. The DIRECTORY
command can list directory information about a specific device, such as the
number of files stored on the device, their names, and their creation dates. It
can list details about certain files including their names, their file types, and
their size in blocks. You can specify up to six files explicitly, but you can
obtain directory information about many files by using wildcards in the file
specification. The DIRECTORY command can also print a device directory
summary, organized in several ways, such as alphabetical or chronological.

Normally, the DIRECTORY command prints listings in two columns on the
terminal. Read these listings as you would read a book; read across the col-
umns, moving from left to right, one row at a time. Directory listings that
are sorted (with /ALPHABETIZE, /ORDER, or /SORT) are an exception to
this. Read these listings as you would a telephone directory, by reading the
left column from top to bottom, then reading the right column from top to
bottom.

4-80 Keyboard Commands

——



e

DIRECTORY

The DIRECTORY command does not prompt you for any information. If you
omit the file specification, the system lists directory information about
device DK:, as this example shows.

+DIRECTORY

21-ArPr-B83

RT1184.8Y8S B7P 03-Mar-83 RTL1IFB.,8YS BOP 13-Feb-83
RT11BL.SYS B3P 15-Mar-83 X +8YS 3P 13-Feh-83
SWAP .8YS 25P 13-Fehk-83 TT +8YS 2P 13-APr-83
DP +8YS 3P 13-Mar-83 DY +BYS 4p 13-Apr-B83
LLP +8YS 2P 27-Jan-B83 PIP +5AY 18 25-Mar-B83
DUP + BAY 41 26-Mar-83 RESORC +SAY 15 13-Apr-83
EDIT +85AY 18 13-Febk-83 STARTS.COM 1 27-Jan-83
SIPP  .3AY 14 13-Fek-B3

153 Filess 413 Blocks
73 Free hklocks

A P next to the block size number of a file’s directory entry indicates that the
file is protected from deletion (see PROTECT, RENAME/PROTECTION,
and COPY/PROTECTION commands).

If you specify only a device in the file specification, the system lists directory
information about all the files on that device. If you specify a file name, the
system lists information about just that file, as this example shows.

+DIRECTORY DYO:RT11FB.SYS
10-Jan-83
RTLIFB.SYS BOP 89-Jan-83
1 Files BO Blocks
4 Free blocKs

The following sections describe the options you can use with the
DIRECTORY command and provide sample directory listings. Some of the
options accept a date or part of a date as an argument. The syntax for speci-
fying the date is:

[dd]:mmm][:yy]
where:
dd represents the day (a decimal integer in the range 1-31)

mmm represents the first three characters of the name of the month
yy represents the year (a decimal integer in the range 73-99)

The default value for the date is the current system date. If you omit any of
these values (dd, mmm, or yy), the system uses the values from the current
system date. For example, if you specify only the year ::82 and the current
system date is May 4, 1983, the system uses the date 4:MAY:82. If the cur-
rent date is not set, it is considered 0 (the same as for an undated file in a
directory listing).

Keyboard Commands 4-81



DIRECTORY

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system
prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

/ALLOCATE:size Use this option with /OUTPUT to reserve space on the
device for the output listing file. The argument size represents the number
of blocks of space to allocate. The meaningful range for this value is from 1
to 65535. A value of —1 is a special case that creates the largest file possible
on the device.

/ALPHABETIZE This option lists the directory of the device you specify
in alphabetical order by file name and file type. It has the same effect as the
/ORDER:NAME option. Note that this option sorts numbers after letters.

/BACKUP This option lists the directory of the backup volume you
specify. This option lists only backup information about a volume created
with the / BACKUP command.

The listing for a random-access volume begins with the system date and the
volume number of the specified backup volume, which indicates its position
within the set of volumes that compose a single file or volume. The volume
number is followed by a four-column listing of information about each vol-
ume in the set. The first column lists the volume numbers. The second col-
umn lists the name of the file, part of which resides on that volume. The
third column lists the number of blocks from the file each volume contains.
The last column lists the date on which the file or volume was backed up.
Underneath the four columns the system prints the number of free blocks on
the specified volume. Since this directory information is determined when
you first begin a backup operation, all the predetermined backup directory
information prints when you use this option even if you do not complete the
backup operation.

The following command lists the backup information for backup volume 3 of
the four-volume set that composes the file CAFIL.TXT.

+DIRECTORY/BACKUP DYO:
23-Jan-83

YOLUME 3 OF 4

VOLUME FILENAME BLOCKS DATE
Wi CAFIL.BUP 880 23-Jan-83
Yz CAFIL.BUP ag0 23-Jan-83

4-82 Keyboard Commands



- DIRECTORY

U3 CAFIL.BUP 980 23-Jan-83
v CAFIL.BUP 400 23-Jan-83

1 files 980 blocks
0 free blocKs

For magtapes, the listing appears in the same four-column format. However,
only the current system date, and information for the one magtape, is dis-
played. The third column lists the total number of blocks used in the set of
magtapes that compose the file or volume.

The next command lists the backup information for a magtape.

+DIRECTORY/BACKUP MT1:
23-Jan-83

VOLUME FILENAME BLOCKS DATE

Wi DL1 +BUP 20430 23-Jan-83

/BADBLOCKS Sometimes volumes (disks and diskettes) have bad blocks,
or they develop bad blocks as a result of use and age. Use the/ BADBLOCKS
option to scan a volume and locate bad blocks on it. The system prints the
absolute block number of these blocks on the volumes that return hardware
errors when the system tries to read them. This procedure does not destroy
data that is already stored on the volume. Remember that block numbers

are listed in both octal and decimal, and the first block on a volume is block
0.

If a volume has no bad blocks, an informational message prints on the
terminal.

+DIRECTORY/BADBLOCKS DVY1:
POUP-I-No bad blocks detected DYi:

If BADBLOCKS is the only option in the command line, the volume being
scanned does not need a valid RT-11 directory structure.

/BEFORE[:date] This option prints a directory of files created before the
date you specify. The following command lists on the terminal all files stored
on device DY1: created before February 1983.

+DIRECTORY/BEFORE:1:FEB:83 DVY1:

14-Fek-83
MYPROG . MAC 3G6P 18-Nov-82 TH +MAC 23 27-Nou-BZ
YTMAC ,MAC 7 19-Nou-B82 8SYSMAC.MAC 41 19-Nov-82
RT118.J.8Y8 0 19-Nou-82 RT115J.8Y8 67 19-Nov-82
TT +8YS 2 19-Nov-82 b +8Y5 3 18-Nov-8Z
BUILD .MAC 100 19-Nou-82

9 Filess 281 Blocks
180 Free hlocKs

Keyboard Commands 4-83



DIRECTORY

/BEGIN This option lists the directory of the device you specify, beginning
with the file you name and including all the files that follow it in the direc-
tory. The occurrence of file names in the listing is the same as the order of
the files on the device.

The following example lists the file VTMAC.MAC on device DYO0: and all
the files that follow it in the directory.

+DIRECTORY DYO:VTMAC.MAC/BEGIN
10-Mar-83
UTMAC «MAC 18 10-Feb-B3 DIR +S5AY 17 03-Fek-B3
RK +BYS 3 13-Febk-B3 EDIT +8AY 18 03-Feb-B3
STARTS.COM 1 27-Feb-83 DD +8Y8 5 19-Feb-83
SRCCOM.B5AY 13 13-Feb-83 BINCOM.S5AYV 11 0S5-Jan-83
SLP +5AY 8 13-Feb-83 SIPP 5AV 14 ©05-Jan-83
10 Filess 107 BlocKs

73 Free blockKs

/BLOCKS This option prints a directory of the device you specify and
includes the starting block number in decimal (or in octal if you use
/OCTAL) of all the files listed. The following example lists the directory of
DXO0:, including the starting block numbers of files.

+DIRECTORY/BLOCKS DYO:
14-Dec-82
FSM +SYS 31P 18-Nou-82
ELCORY .MAC BF 18-Novw-B82
ELTASK .MALC 15P 19-Nou-B2
ERRTHT+MAC 9P 19-Nouv-82
SYSTBL .BL 4P 19-Npw-82
SYSTBL.DIS 4P 19-Nowv-82
ABSLOD.SAV 48 15-Mar-82
PETAL .8AY 36 1i-Ser-BZ
WUMPLS . 8AV 30 16-Mar-8%2
17 Filess 348 Blocks

138 Free blocks

29358
3088
3111
3174
3186
3195
3204
3282
3337

BATCH MAC
ELINIT.MAC
ERROUT . MAC
SYCND .BL
SYCND .DIS
SYCND +HD
CHESS +SAY
LAMP  +SAY

102p

15
48
3
o
3
40
29

1i9-Nouv-82
P 189-Nov-BZ
P 19-Nouv-82
P 18-Nouv-82
P 19-Mov-B2
P 189-Nov-82
17-Aug-82
16-Mar-82

2986
3006
3126
3183
31890
31889
3252

3328

/BRIEF This option lists only file names and file types, omitting file
lengths and associated dates. It produces a five-column listing, as the follow-
ing example shows.

+DIRECTORY/BRIEF RK1:

14-Dec-82
SWAP  +8YS
DT +BY8
RK +BY8
LP +8Y8
DISMT1.COM
PROG +MAP
PD +8Y8
35 Files

RT118J.,8Y8
DP +8YS
DL

LS +BY5
MMHD
ANTONY .BAK
CT +8YS8

408 BlocKs

78 Free blocks

/COLUMNS:n

RT11FB.8Y5E

+8Y8
+8Y8
+BY8

NUMBER . PAS
MSHD

+8Y5
+ S‘I’S

RTI1BL.5YS

DY
D8
M58

WLOCK

NL

MYPROG, BAY

TT +8Y8
+8¥8 RF + SAY
+8Y8 DD +8Y6
+8Y8 MTHD .8YS
+SAY  MYPROG.MAC
+8YS  PC +8YS

obT +8AV

Use this option to list a directory in a specific number of

columns. The value n represents an integer in the range 1-9. Normally, the

484 Keyboard Commands



e

S

DIRECTORY

system uses two columns for regular listings and five columns for brief list-
ings. The following example lists the directory information for device DY1:
in one column.

+DIRECTORY /COLUMNS:1 DY1l:s
289-Jan~-B3

SWAP ,8YS 28P 19-Jan-83
RT118J.8Y8 B7P 19-Jan-83
RTL1FB,BYS BOP 18-Jan-83
RTL11iBL.,8YS G4P 18-Jan-83

TT +8Y8 Z2F 18-Jan-83
DT +8Y5 3F 18-Jan-83
Dp +8Y5 3P 19-Jan-83

7 Files, 244 BlocKks
242 Free blocks

/DATE[:date] Use this option to include in the directory listing only those
files with a certain creation date. The following command lists all the files
on device DYO: that were created on April 21, 1983.

+DIRECTORY/DATE:21:APR:83 DYO:

26-Arr-83
RT118J.8Y8 B7P 21-Arpr-83 RT11FB.8YS 8OP 21-Apr-83
RT11BL.SYS B3P 21-APr-83 X +5Y8 3P Z21-Arr-83
SKHAP .BYS Z23P 21-ArPr-83 TT +5YS 2P 21-Apr-83
DP +8Y5 3P 21-Apr-83 DY +5Y8 4p Z1-Apr-83
LP +8Y5 2P 21-Apr-83 PIP +8AY 18 21-Apr-83
DUp + SAY 41 Z1-Apr-83 RESORC.8AY 13 Z21-APrr-83
DIR +5AY 17 2i-Apr-83 RK +8YS 3 Z21-Arr-83
EDIT .5AY 19 21-APr-83 DD +5Y8 5 21-APrr-83
SRCCOM.BAY 13 21i-Apr-83 BINCOM.8AY 11 Z21-ApPr-83
SLP «5AY 8 21-Apr-83 SIPP SAY 14 Z21-Arr-83

20 Filesy 412 Blocks
73 Free blocks

/DELETED This option lists a directory of files that have been deleted
from a specific device, but whose file name information has not been
destroyed. The listing includes the file names, types, sizes, creation dates,
and starting block numbers in decimal of the files. The file names that print
also represent tentative files. The listing can be useful in recovering files
that have been accidentally deleted. Once you identify the file name and
location, you can use DUP or the CREATE command to rename the area (see
Section 6.2.1 of the RT—11 System Utilities Manual for this procedure).

The following command lists files on device DYO0: that have been deleted.

+«DIRECTORY/DELETED DYO:

1d-Jan-83
SYBGEN,CND 11 19-Now-BZ2 1403 TS +MAC 2 27-Nou-B2 2895
™ +MAC ZB 19-Now-82 2826 MT +8YS 32 27-Nou-8BZ2 3415
4G8BDAT.DIR 1 14-Dec-82 3701 468DEL.DIR 3527 14-Dec-8B2 3704
NUMZ  +MAC 4 21-Nouw-82 4231 NUMZ  +LS8T 565 0B6-Sep-82 4235
O Filessy O Blocks

11684 Free blockKs

Note in the example shown above that, since a deleted file does not really
exist, the total number of files and blocks is 0.

Keyboard Commands 4-85



DIRECTORY

/DOS Use this option to list the directory of a device that is in RSTS/E or
DOS format. The only other options valid with /DOS are /BRIEF, /FAST,
JOWNER, and /WAIT. The valid devices are DECtape (RSTS/E and DOS),
and RK05 (DOS).

/END:n Use with /START:n and /BADBLOCKS to specify the last block
number of a bad block scan. If you do not specify /END:n, the system scans to
the last block on the volume.

/EXCLUDE This option lists a directory of all the files on a device except
those files you specify. The following example lists all files on DYO: except
the .SAV and .SYS files.

+DIRECTORY/EXCLUDE DYO: (#,8AV,%,85YS)

289-0ct-82

RT115J.MAC B7F 0B-S5er-B82 RT1iFB.MAC BOP 0G-Sep-82
RTL11BL.MAC B3P 0G-Sep-82 X +MAC 3P 0B-Ber-82
SWHAR  «MAC 25P 06-85er-8Z TT +MAC 2P 0B-Ser-BZ
DP +MAC 3P 0B-Ser-BZ DY +MAC 4P 0B-Bep-82
LP +MAC 2P 0B-8Ber-82 RK +MAC 3 0B-Ber-82
STARTS.COM 1 27-Aug-82 DD +MAC 5 0B-Ser-BZ

12 Filessy 258 BlocKs
73 Free blocKks

/FAST This option lists only file names and file types, omitting file lengths
and associated dates. This is the same as /BRIEF.

/FILES Use this option with /BADBLOCKS to print the file names of bad
blocks. If the system does not find any bad blocks, it prints only the heading,
as the following example shows.

+DIRECTORY/BADBLOCKS/FILES D¥1:
PDUP-I-No bad blocks detected DY1:

Do not use this option if the volume is not a standard RT-11 directory-
structured volume or if the volume does not contain an RT—11 directory.

/FREE Use this option to print a directory of unused areas and the size of
each. This example lists the unused areas on device DK:.

+DIRECTORY/FREE

14-Jan-83

o UNUSED 11 < UNUSED = 2
< UNUSED > 26 < UNUSED * 32
< UNUSED > 1 < UNUBED * 525
< UNUSED 0 < UNUSED * 565
O Filess O Blooks

1162 Free blocKs

4-86 . Keyboard Commands



DIRECTORY

/FULL This option lists the entire directory, including unused areas and
their sizes in blocks (decimal). The following example lists the entire direc-
tory for device DXO:.

+«DIRECTORY/FULL DXO3:

14-Dec-82

SWAP 48YS 23R 23-0ct-82 RT1184.,8YS 67FP 23-0ct-B82
RT11FB.5YS5 BOP 19-Nouv-82 RTLLBL.SYS B4P 19-Now-8Z
TT +8YS 2P 19-Nou-82 DT +8YS 3P-19-Nouv-82
DP +8Y8 3P 23-0ct-B82 b +BY S 3F 189-Now-82
DY +8YS 4P 19-Nov-B8Z RF +8Y8 3F 19-Nou-82
RK +8Y8 3P 18-Nov-B2Z2 DL +8YS 4p 23-0ct-B82
DM +8YS oP 23-0ct-~-B2 DS 1 8YS 3P 189-Nou-8Z
DD +8YS 9P 23-0ct-B2 LP +8YS 2P 23-0ct-8Z2
.5 +BY8 2P 19-Npw-82 CR +8YS 3P 19-Nouw-82
Mg +8Y5 gpP 27-Nov-82 MTHD .5YS 3P 23-0ct-82
DISMTL.COM 9P 27-Nov-82 MMHD . 8YS 4P 19-Nou-BZ2
NUMBER + PAS 1 11-Dec-82 TAONY  +AGP 14 17-Aug-82
NUM3  +L8T 1 13-Dec-82 < UNUSED > 365

25 Filess 322 BlocKs
184 Free blocKs

/INTERCHANGE  Use this option to list the directory of a diskette that
is in interchange format. The only other options wvalid with
/INTERCHANGE are /BRIEF, /FAST, /VOLUMEID, and /WAIT.

/NEWFILES This option includes in the directory listing only those files
created on the current day. This is a convenient way to list the files you cre-

ated in one session at the computer. The following command lists the new
files created on 19 May 1983.

+DIRECTORY/NEWFILES DYO:

189-Mav-83
FILEL TXT 1 19-Mar-B83 FILEZ +THT 1 19-Mav-83
2 Files» 2 BlockKs

8568 Free blocKs

/OCTAL This option lists the sizes (and starting block numbers if you also
use /BLOCKS) in octal. If the device you specify is a magtape the system
prints the sequence numbers in octal. The following example shows an octal

listing of device DY0:.

+DIRECTORY/0CTAL DXOs
14-Dec~B2 Octal

MYPROG.MAC 44P 12-Nov-82 ™ +MAC 31 27-Nov-82
UTMAC .MAC 7 18-0ct-82 5YSMALC . MAC 31 18-Nouw-B2
SWAP .BYS 31 05-8epr-82 ANTON . MAC 4 18-Now-82
RT118J.8Y8 103 19-Nov-82 TT +8Y8 2 18-Nou-82
A +8Y8 3 Z29-Aug-B2 BUILD .MAC 144 19-Nov-82

10 Filess 4B2 Blocks
264 Free blocks

Keyboard Commands 4-87



DIRECTORY

/ORDER/:category] This option sorts the directory of a device according
to the category you specify. Table 4—4 summarizes the categories and their
functions.

Table 4-4: DIRECTORY Sort Categories

Category Function

DATE Sorts the directory chronologically by creation date. Files that have the
same date are sorted alphabetically by file name and file type.

NAME Sorts the directory alphabetically by file name. Files that have the same file
name are sorted alphabetically by file type (this has the same effect as the
/ALPHABETIZE option).

POSITION  Lists the files according to their position on the device (this is the same as
using /ORDER with no category).

SIZE Sorts the directory based on file size in blocks. Files that are the same size
are sorted alphabetically by file name and file type.

TYPE Sorts the directory alphabetically by file type. Files that have the same file
type are sorted alphabetically by file name.

The following examples list the directory of device DY0:, according to each of
the categories.

+DIRECTORY/ORDER:DATE DYO:

14-Dec-B2
BUILD +MAC 100 0B-Sep-82 SYSMAC . MAC 41 19-Novw-82
b +8YS 3 0B-8Ser-B2 T +8Y8 2 19-Nov-82
MYPROG.MAC 36P 12-0ct-B2 YTMAC +MAC 7 19-Nov-82
RFUNCT . MAC 4 19-Nov-82 TH +MAC 25 27-Nou-B82
RT118J.,8Y8 67 19-Nou-82 SWAP .BYS 25 058-Dec-82Z2
10 Filess 308 BlocKs
180 Free hlocKs
+DIRECTORY/ORDER:NAME DYO:
i4-Dec-82 .
BUILD +MAC 100 0B-5ep-BZ SWAP . 8YS 2% 05-Dec-82
i +8Y5 3 0B-Sep-B2 SYSMAC . MAC 41 19-Nou-B2
MYPROG.+MAC 36P 12-0ct-82 TH +MAC 25 E27-Nov-82
RFUNCT.S8YS 4 19-Now-82 TT +85YS 2 19-Novw-82
RTLI1G8J.8YS 67 19-Now-82 UTHMAC +MAC 7 19-Ngv-82
10 Filess 308 BlocKs
180 Free blocKks
+DIRECTORY/ORDERsPOSITION DYO:
14-Dec-82
RT1154.8Y8 67 18-Now-82 BUILD «MAC 100 O0B-5er-BZ
¥ +8YS 3 06-5ep-82 SYSMAC . MAC 41 19-Nov-82
MYPROG.MAC 36F 12-0ct-82 ™ +MAC 28 27-Now-82
SWAR ., 8YS 283 05-Dec-B2 UTMAC +MAC 7 19-Nou-82
RFUNCT.8YS 4 19-Nov-B82 TT +8YS 2 19-Nov-B2

10 Filesy 306 BlocKs
180 Free bloocKs

488 Keyboard Commands



R g

i

e’

DIRECTORY

+DIRECTORY/ORDER:SIZE DYO:

14-Dec-82
TT +8Y8 2 19-Now-82 ™ +MAC 23 27-Nov-82
b +8Y8 3 0B-Bep-B2 MYPROG.MAC 36P 12-0ct-82
RFUNCT . 5¥S 4 19-Nov-82 SY8MAC . MAC 41 19-Novw-BZ2
WTMAC +MAC 7 19-Nou-BZ RT1154.,8%8% B7 189-Ngu-82
SWAP ,8YS 23 05-Dec-BZ BUILD .MAC 100 0B-Sep-82

10 Filess» 306 BlocKs
180 Free blocKks

+«DIRECTORY/ORDER:TYPE DYO:

14-Dec-82
BUILD +MAC 100 0B6~S5ep-BZ2 DX +8YS 3 0B6-Sep-BZ2
MYPROG.MAC 36P 12-0ct-8Z2 RFUNCT.SYS 4 18-Nou-82
SYEMAC +MAC 41 19-Now-82 RT118J.,8Y8 B7 19-Nowv-82
™ +MAC 25 27-Now-82 SWAP .8YS 23 03-Dec-82
UTHMAC +MAC 7 19-Nou-8Z TT +BYS 2 19-Nou-82

10 Files: 306 Blocks
180 Free blocks

/OUTPUT:filespec Use this option to specify a device and file name for
the output listing file. Normally, the directory listing appears on the console
terminal. If you omit the file type for the listing file, the system uses .DIR.

/OWNERI[:[nnn,nnn]] Use this option with /DOS to specify a user identifi-
cation code (UIC). Note that the inner set of square brackets (immediately
surrounding the UIC) are part of the UIC; you must type them.

/POSITION Use this option to list the file sequence numbers of files
stored on a magtape.

/PRINTER Use this option to print the directory listing on the line
printer. The default output device is the terminal. Note that the /PRINTER
option does not use the QUEUE program to queue the directory listing.

/PROTECTION This option includes in the directory listing only those
files on the specified volume that are protected against deletion. The follow-
ing command lists only those files on DK.: that are protected.

+DIRECTORY/ORDER:SI1ZE/REVERSE/PROTECTION

14-Dec-82
BUILD +MAC 100P 0OB-Sepr~-B2 T™ +MAC 25P 27-Now-82
RT1184.,8YS B87P 189-Nou-82 YTMAC +MAC 7P 19-Nov-B2
SYSMAC «MAC 41P 18-Nov-82 RFUNCT .8YS8 4P 19-Now-B2
MYPROG.MAC 36P 12-0ct-82 ® ' 8YS 3P (B-Ser-B2
SWAP . 5YS 25P 05-Dec-82 TT +8Y8 2P 18~Now-82

10 Filess 306 Blocks
180 Free blocKs

/INOPROTECTION This option includes in the directory listing only
those files on the specified volume that are not protected against deletion.

Keyboard Commands 4-89



DIRECTORY

/REVERSE This option lists a directory in the reverse order of the sort
you specify with /ALPHABETIZE, /ORDER, or /SORT. The following exam-
ple sorts the directory of DYO: and lists it in reverse order by size.

+ DIRECTORY/ORDER:SIZE/REVERSE DYO:

14-Dec-82
BUILD +MAC 100 (0G6-~Sep-82 ™ +MAC 23 27-Nov-B8Z2
RT1184.8Y8 57 19-Nouw-8Z YTMAC +MAC 7 19-Now-8Z2
SYSMAC «MAC 41 189-Now-82 RFUNCT.SYS 4 19-Nou-82
MYPROG.MAC 36P 12-0ct-82 i +BYS 3 06-5ep-82
SWARP  ,8YS8 25 05-Dec-82 TT +8YS 2 19-Now-B82

10 Filess 306 BlocKs
180 Free blocks

/SINCE[:date] This option lists a directory of all files on a specified vol-
ume created on or after a specified date. The following command lists only
those files on DK: created on or after August 13, 1982.

+DIRECTORY/SINCE:13:AUG:B2

14-Dec-83
RT118J.8YS B7P 14-Aug-BZ RT11FB.SYS BOP 0Z-Ser-82
RT11BL.8YS B3P 19-Aud-B2 b +8YS 3P 10-8ep-82
SKWAP .8YS8 25P 0Z2-Ser-B8B2 TT :8¥Y8 2P 15-5ep-82
SIPP +8AY 14 02-Sep-B82

7 Filess 154 Blocks
332 Free blocKs

/ISORTI:categoryl This option sorts the directory of a device according to
the category you specify. It is the same as /ORDER|[:category]. (See Table
4-4)

/START:n Use this option with the /BADBLOCKS option to specify the
starting block, and optionally the last block if you use /END:n, of the bad
block scan. The argument n represents a block number in decimal. If you do
not supply a value with /START, the system scans from the first block on the
volume. If you do not specify /END:n, the system scans to the end of the vol-
ume.

/SUMMARY This option lists a summary of the device directory. The
summary lists the number of files in each segment and the number of seg-
ments in use on the volume you specify. The/ SUMMARY option does not Iist
the segments in numerical order, only the order in which they are linked on
the volume. The following example lists the summary of the directory for

device DK:.

+DIRECTORY /SUMMARY
14-Mar-B83

44 Files in sedment 1

46 Files in sedgment 4

-2

37 Files in sedment

a1

34 Fileg in sedment

38 Files in sedment 3

4-90 Keyboard Commands



e

DIRECTORY

18 Available sedmentss 5 in use

199 Filess» 3647 BlocKs
1115 Free blocKs

/TERMINAL This option lists directory information on the console termi-
nal. This is the default operation.

/TOPS Use this option to list the directory of a DECtape that is in
DECsystem—10 format. The only other options valid with /TOPS are
/BRIEF, /FAST, and INTERCHANGE.

/VOLUMEID[:ONLY] Use /VOLUMEID to print the volume ID and
owner name along with the directory listing of the storage volume. If you
include the optional argument, ONLY, the system prints only the volume ID
and owner name.

You can use /VOLUMEID[:ONLY] with /INTERCHANGE to display the
volume identification of the specified interchange diskette.

The following example displays the volume ID of volume DX1:

LDIRECTORY /VOLUMEID DX1ic:

14-Dec-B2

Yolume ID: BACKUPZ

Owrier : Marcvy
SWAP ,8YS8 28P 19«Nou-82 RT118J.8Y8 B7P 19-Nou-BZ
RT11iFB.5YS BOP 189-Nou-82 RT11BL.8YS B4P 19-Nou-8Z
TT +8Y9 2P 19-Nov-82 DT +BY8 3P 19-Nou-82
DP +SY8 3P 19-Nov-82 b +8Y5 3P 19-Nou-82
DY +SY5 4P 19-Nouv-82 RF +8YS 3P 19-Nouv-82
RK +8Y8 3P 19-Nou-82 DL +8YS 4P 19-Nou-BZ

12 Filess 271 Blocks
215 Free blocks

/WAIT Use with the /BADBLOCKS option when you want the system to
initiate a bad block scan but to pause for you to mount the input volume.
This option is particularly useful if you have a single-disk system. When you
use this option, and the system volume is mounted, the system initiates the
operation you specify, then prints Mount input volume in <device>;
Continue?. The prompt <device> represents the device into which you
mount the volume. Mount your input volume and type Y or any string
beginning with Y, followed by a carriage return. Type N or any string begin-
ning with N, or two CTRL/Cs, to abort the operation and return control to
the keyboard monitor. Any other response causes the message to repeat.
Make sure that DUP or FILEX is on the system volume when you use the
/WAIT option.

The following sample performs a bad block scan on an RL02 disk.
DIRECTORY/WAIT/BADBLOCKS DLO:
Mount ineput volume inm DLO: Continue? Y

PDUP-I-Np bad blocKs detected DLO:
Mount svstem volume inm DLO: Continue? Y

Keyboard Commands 4-91



DISMOUNT

The DISMOUNT command disassociates a logical disk unit from a file.

DISMOUNT logical-disk-unit

In the command syntax illustrated above, logical-disk-unit represents the
logical disk unit that you want to free from its current assignment. Specify a
logical disk unit number in the form LDn:, where n is an integer in the
range 0-7. If the logical disk has been assigned a logical device name, you
can free the logical disk unit by specifying the logical device name. You can
specify the entire command on one line, or you can rely on the system to
prompt you for information. The DISMOUNT command prompt is Device?.

The following example frees logical disk unit 3 (LD3:) from it’s current file
assignment.

+DISMOUNT LD3:

The following example shows another way of freeing logical disk unit 3, once
it has been assigned the logical device name DAT.

+ABSIGN LD3: DAT

+DISMOUNT DAT

4-92 Keyboard Commands

——



DUMP

The DUMP command can print on the terminal or line printer, or write to a
file all or any part of a file in octal words, octal bytes, ASCII characters, or
Radix—50 characters. It is particularly useful for examining directories and
files that contain binary data.

DUMP /OUTPUT filespec filespec
/ALLOCATE size
[PRINTER
/TERMINAL J
/INOJASCII
/BYTES
/END:n
/FOREIGN
/\IGNORE
JONLY:n
/RAD50
/START:n
/WORDS

In the command syntax shown above, filespec represents the device or file
you want to examine. If you do not specify an output file, the listing prints on
the line printer. If you do not specify a file type for an output file, the system
uses .DMP. You can specify the entire command on one line, or you can rely
on the system to prompt you for information. The DUMP command prompt
is Device or file?.

Notice that some of the options (/ONLY, /START, and /END) accept a block
number as an argument. Remember that all block numbers are in octal, and
that the first block of a device or file is block 0. To specify a decimal block
number, follow the number with a decimal point. If you are dumping a file,
the block numbers you specify are relative to the beginning of that file. If
you are dumping a device, the block numbers are the absolute (physical)
block numbers on that device.

The system handles operations involving magtape differently from oper-
ations involving random-access devices. If you dump an RT-11 file-
structured tape and specify only a device name in the file specification, the
system reads only as far as the logical end-of-tape. Logical end-of-tape is
indicated by an end-of-file label (EOF1) followed by two tape marks. For
non-file-structured tape, logical end-of-tape is indicated by two consecutive
tape marks. If you dump a cassette and specify only the device name in the
file specification, the results are unpredictable. For magtape dumps, tape
mark messages appear in the output listing as the system encounters them
on the tape.

NOTE

The DUMP operation does not print data from track 0 of dis-
kettes.

Keyboard Commands 4-93



DUMP

The following sections describe the options you can use with the DUMP com-
mand. Following the options are some sample listings and an explanation of
how to interpret them.

/ALLOCATE:size Use this option with /OUTPUT to reserve space on the
device for the output listing file. The argument size represents the number
of blocks of space to allocate. The meaningful range for this value is from 1
to 65535. A value of -1 is a special case that creates the largest file possible
on the device.

/ASCII This option prints the ASCII equivalent of each octal word or byte
that is dumped. A dot (.) represents characters that are not printable. This is
the default operation.

/INOASCII Use this option to suppress the ASCII output, which appears in
the right hand column of the listing (or below the bytes if you have specified
/BYTES). This allows the listing to fit in 72 columns.

/BYTES Use this option to display information in octal bytes. The system
does not display words unless you also use /WORDS.

/END:n Use this option to specify an ending block number for the dump.
The system dumps the device or file you specify, beginning with block 0
(unless you use /START) and continuing until it dumps the block you specify
with /END.

/FOREIGN Use this option to dump a magtape that is not RT-11 file-
structured.

IGNORE Use this option to ignore errors that occur during a dump
operation. Use /IGNORE if an input or output error occurred when you tried
to perform a normal dump operation.

/ONLY:n Use this option to dump only the block you specify.

/OUTPUT:filespec Use this option to specify a device and file name for
the output listing file. Normally, the listing appears on the line printer. If

=T

you omit the file type for the listing file, the system uses .DMP.

/PRINTER This option causes the output listing to appear on the line
printer. This is the default operation.

/RAD50 This option prints the Radix—50 equivalent of each octal word
that is dumped.

/START:n Use this option to specify a starting block number for the
dump. The system dumps the device or file, beginning at the block number
you specify with /START and continuing to the end of the device or file
(unless you use /END).

/TERMINAL This option causes the output listing to appear on the con-
sole terminal. Normally, the listing appears on the line printer.

4-94 Keyboard Commands



y
N

. -

DUMP

/WORDS This option displays information in octal words. This is the
default operation.

The following command dumps block 1 of the file SYSMAC.MAC. The out-
put listing, which shows octal bytes and their ASCII equivalents, is stored in
file MACLIB.DMP. The PRINT command prints the contents of the file on
the line printer.

+DUMP/OUTPUT:MACLIB/BYTES/ONLY:1 SYSMAC.MAC

+PRINT MACLIB.DMP

8Y:8YSMALC . MAC

BLOCK MNUMBER

QOo/

120
P

Q40

020/ 101 122

0do/

GE0/

100/

1260/

140/

180/

200/

220/

240/

260/

300/

320/

340/

360/

400/

420/

440/

460/

300/

S20/

sS40/

A
012
+
o1z

101
A
106
F
124
T
110
H
101
A
40

040

124
T
111
I
101
A
111
I
122
R
117
0
1035
E
111
I
117
0
103
C
103
E
104

+

R

-3

[
pay

= [T} e —f = ed e T
b -3 .
i s

[
-3

M=
—
=

124

116

110

104

056

Qo001

117
0
103
E
Q040

108
F
040

124

103
040
{31
103
117
114
120
124
1od
015
108
111
102

101
A

Q40
040

122
R
073
i
116
N
122
R
040

040
Q40
040
ad0
040

118
N
116
N
Q40

117
0
110
H
102

040

111

101

040

Q40

108

103

40

124
T
123
8
116
N
124
T
111
I
040

110
H
116
N
110
H
103
C
040

111
I
013

013

)

3

)

1
g
123
8

040
114
L

040
111
116
104

117

110
H
040

123
S
110
H
116
N
111
I
1ol
A
117
0
117
0
117
0
103
C
107
G
o1z

+
o1z

-3 r3 - ™3 — -3
i ) Ll A | —_ )

b B ¥ 2 R S I el S I S o B

o
—
~l

111
I
040

105
E
040

108
F
105
E
040

-3 -3 - t-3
1411 = o [V}

=Z = o = F o ) e
531

20 b ] e T s [ ] = ) e T o T e
L] r-J [and Lot r-J -3 i "
~J o L4} ~3 o ]

&
=

.

040

110

103

040

103 105
104 040
124 122
T R

115 111
101 114
103 117
012 073
105 123
114 111
040 117

040 040

Do e ] b 3D
i - r3 [
— on = ~

1
)
@
-

117
0
105
E
103
E
106
F
123
S
102
B
040

124
131
056
122
R

123
105
111
073
3

117
104
105
121
117
111
117
040
Q40
040
105
110
114
015

013

Keyboard Commands

4-95



360/

BOGQ/

B20/

640/

BBO/

700/

720/

740/

780/

103
c
115
M
054
3 +
036
¥ + +
056

036
056

103
C
0G4
4

101
A
061

114 114

034 036

036 036

103 118

116 104

126 0B2

103 118
062 034

036 056

011
+
O36
i03
C
G666
B
115
M
Q356
+
0G0
0
036
+
056

+

036

036

115

015

015

115

103

0B3

036

034
+
056

103
C
061
1
101
A
101
A
061
1
056
036

+

073
103
c
114
L
0354
¥
036
103
C

In the printout above, the heading shows which file was dumped and which
block of the file follows. The numbers in the leftmost column indicate the
byte offset from the beginning of the block. Remember that these are all
octal values, and that there are two bytes per word. The octal bytes that
were dumped appear in the next 16 columns. The ASCII equivalent of each
octal byte appears underneath the byte. The system substitutes a dot (.) for
nonprinting codes, such as those for control characters.

The following example shows block 6 (the directory) of device RKO:. The out-
put is in octal words with Radix—50 equivalents below each word.

+DUMP/NOASCII/RADSO/0ONLY B RRO:

RKO:/N/X/0:6
BLOCK NUMBER
000/ Q00020
P
020/ Q73273
5Y8
000103
A%
OBO/ 000000

040/

10067 027147
GP2
QO2000
¥ X
0185600
bp
000000

120/

140/

1680/

200/ 073273

sYg

220/

240/ Q00000

4-96 Keyboard Commands

Qo006

B

027147

GP8

QO2000

(Y2
[IFAY

027147
GPH
002000

LYaY;
in

100040
TT

Gl1B040 000000

DT

027147

GP8

073273
5Y8

027147
GP9
Q02000

Y2y
LAY

027147

GP8

002000

(Yavs
AN

071677

RT1

027147

GPB

0OZ000

[YAY]
VA

015340

DL

000046
B
QOZ000

LYAYS
[ PN

071677
RT1
141034
iBL
073273
8YH

027147
GPY
002000

LAY
LIFAY

071070

OQO2000
¥X
017167
RT1
141262
1FB
078273
8YS

075131
SWA
142302
184
078273
5Y8
000100

027147
GPO
002000

LYAY]
LAY

Q27147
GPY
GO2000 016350
VK DY
070560 Q00000
RF

...... 073273
SY8
Q735273 000004
8Y8

QOBZ00

p

073273

5Y8

QOO12¢

027147
GPB
002000

YAV
[ PN

016300

DX



g

260/

300/

320/

340/

360/

400/

420/

440/

460/

S00/

s20/

sd40/

360/

BOO/

B2O/

B4/

BGBO/

700/

720/

740/

760/

027147
GPY
QO2000
WX
014640
DD
GaQooo

073273
5Y8
000003
C
000000

027147
GP9
OOZ000

(YAYS
LAY

015173
DIS
014400
D
073273
8YS

027147
GP8
0QZ000

LAY
A

Q023732
FOR
OBO223
ORC
073378
SAY
000052
AB
QOOO00

Q02000

YX
013770
D&

Q75273
8Y8

027347
GWO
Q02000

LYAY]
tn

031520
MMH
032200
MTZ
073273
8Y§

027147
GP9
QO2000

(Yav]
LAY

016130
DUP
030874
MAT
073376
SAY
000021

027147
GPa

015410
DM

073273

Y8

000002
B

027147
GPH
002000

LYAY;
T A

015173
DIS
014400
D
012445
CoM

027147
GPY
CO2000

(YAY]
A

00B250
BA

073376
SAY
000017

027147
GPH
002000

LYav:
in

8Y8

027147
GP8
002000
YK
032150
MTH
032177
MT1
Q73273
5Y8
Goool1ao

Q27147
GP9
OO2000

(Yav:
[ SFAY

012740
CT

073376
Say
QOOO23

Q27147
GPD
002000

AL
LAY

042614
KED

073273
8Y8

027147
GP8
002000
Y X
032070
M8
014400
b
012443
COM

027147
GP8
002000

YAV
LIV

QB2240
PD

075273

8Y8

000051
AA

027147
GPY
002000

avs
A

017721
EDI

000005
E

027147
GPS
QO2000

LYAYS
in

012620
CR

073273

8Y8

000011
I

027547
GWD
OO2000

X
DB2170
PC

027147
GPS
QO2000
X
075273
SYS
076400
T
073376
5AY

000000

027147
GPY
QO2000

MK
Q46770
.S

073273
5Y8

QOO000

027147
GP3
002000

LYAYS
ra

034340
NL

027147
GP8
OO2000
YR
013172
DIR
030853
MAC
073378
8AY
ooon73
AS

DUMP

027147
GPY
Q2000

AYAY
it

04BGEO0
LP
000000

073273

8Y8

QoootLl
I

027347
GHWO
DOZ2000

LYAY]
L IEAY

Q32100
M8H

027147
GPO
DOZ000
YK
0703533
RES

074324

SML
000023

Keyboard Commands

4-97



E

The E (Examine) command prints in octal the contents of an address on the
console terminal.

E address[-address]

In the command syntax illustrated above, address represents an octal
address that, when added to the relocation base value from the Base com-
mand, provides the actual address that the system examines. This command
permits you to open specific locations in memory and inspect their contents.
It is most frequently used after a GET command to examine locations in a
program.

The Examine command accepts both word and byte addresses, but it always
executes the command as though you specified a word address. If you specify
an odd address, the system decreases it by one.

If you specify more than one address (in the form addressl-address2), the
system prints the contents of addressl through address2, inclusive. The sec-
ond address (address2) must always be greater than the first address. If you

do not specify an address, the system prints the contents of relative location
0.

Note that you cannot examine addresses outside the background.

The following example prints the contents of location 1000, assuming the
relocation base is 0.

JE 1000

127401

The next command sets the relocation base to 1000.

LB 1000

The following command prints the contents of locations 2000 (offset of 1000
from last B command) through 2005.

JE 1001-1005

127401 0O76824 127400

4-98 Keyboard Commands



—”

., s

-

EDIT

The EDIT command invokes the text editor.

/K52 /ALLOCATE:size
/TECO
/EXECUTE:filespec

EDIT /EDIT /CREATE filespec
/KED /INSPECT /ALLOCATE:size
/KEX IOUTPUT filespec

The text editor, EDIT, is a program that creates or modifies ASCII files for
use as input to programs such as the MACRO assembler or the FORTRAN
compiler. The editor reads ASCII files from any input device, makes spec-
ified changes, and writes the files on an output device. It also allows efficient
use of VT'11 or VS60 graphics display hardware, if this is part of the system
configuration (except in multiterminal systems).

You can also use the keypad editor (KED or KEX for VT100-compatible ter-
minals, K52 for VT52 terminals) as an alternative to EDIT if you have a
video terminal. You can invoke the keypad editor with the /KED, /KEX, or
/K52 options described below. For more information on the keypad editor,
see the PDP—-11 Keypad Editor User’s Guide.

NOTE

You can use the SET EDIT command to set a default editor
(EDIT, KED, KEX, K52, or TECO) so that when you issue the
EDIT command, you invoke that editor. The system defaults
to the EDIT editor each time you bootstrap, however. For
more details, see the SET EDIT command description.

EDIT considers a file to be divided into logical units called pages. A page of
text is generally 50-60 lines long (delimited by form feed characters) and
corresponds approximately to a physical page of a program listing. EDIT
reads one page of text at a time from the input file into its internal buffers
where the page becomes available for editing. You can then use editing com-
mands to:

® Locate text to be changed

® Execute and verify the changes

@ List an edited page on the console terminal
® Output a page of text to the output file

In the command syntax illustrated above, filespec represents the file you
wish to edit. You can enter the EDIT command on one line, or you can rely
on the system to prompt you for information. If you do not supply a file spec-
ification for the file to edit, the system prompts File?. If you do not specify

Keyboard Commands 4-99



EDIT

any option with the EDIT command, the text editor performs the edit
backup operation. To do this, it changes the name of the original file, giving
it a file type of .BAK when you finish making your editing changes. The
actual file renaming occurs when you successfully exit from the editor.

When you want to edit an existing file, the editor does not perform any I/O
operation as a result of your command. You must issue the R command to
the editor to read the first page of text and make it available for you to work
on. The following example invokes EDIT, opens an existing file, and reads
the first page of text:

+EDIT MYFILE.TXT
*RES

When you issue an EDIT command, the system invokes the text editor. (You
can use the SET EDIT command to set the default editor. If you do not use
the SET EDIT command, the system assumes EDIT.SAV each time you
issue the EDIT command. See the SET EDIT command for more
information.)

It is possible to receive an error or warning message as a result of the EDIT
command. If, for example, the file you need to edit with EDIT does not exist
on device DK:, the editor issues an error message and remains in control.
For example:

+EDIT/INSPECT EXAMP3.THT
PEDIT-F-File not found

*CTRL/C

When a situation like this occurs, you can either issue another command
directly to the text editor or enter CTRL/C followed by two ESCAPEs to
return control to the monitor.

NOTE

To perform any edit operations on a protected file, you must
disable the file’s protected status (see the descriptions of the
UNPROTECT command, the COPY/NOPROTECTION com-
mand, or the RENAME/NOPROTECTION command).

The following sections describe the options you can use with the EDIT com-
mand. A complete description of EDIT is contained in Chapter 6.

/ALLOCATE:size Use this option with /OUTPUT or after the file specifi-
cation to reserve space on the device for the output file. The argument size
represents the number of blocks of space to allocate. The meaningful range
for this value is from 1 to 65535. A value of —1 is a special case that creates
the largest file possible on the device.

4~-100 Keyboard Commands



EDIT

/ICREATE Use this option to build a new file. With EDIT you can also cre-
ate a new file while you are working with the text editor by using the Edit
Write (EW) command, described in Chapter 6.

The following example creates a file called NEWFIL.TXT on device DK:,
inserts one line of text, and then closes the file.

+EDIT/CREATE NEWFIL.TX
*¥ITHIS I8 A NEW FILE.,
EDED

* EXEDED

To create a file using KED, KEX, or K52, use the /KED, /KEX, or /K52
options with /CREATE. See the PDP-11 Keypad Editor User’s Guide for
more information on creating files with /KED, /KEX, or /K52.

/EDIT This option invokes the editor EDIT. This is the default editor.

/EXECUTE:filespec Use this option with /TECO to execute the TECO
commands contained in the file you specify.

/INSPECT Use this option to open a file for reading. This option does not
create any new output files. You can also open a file for inspection while you
are working with EDIT by using the Edit Read (ER) command, which is
explained in Chapter 6 of this manual.

The following commands open an existing file for inspection, list its con-
tents, and then exit.

+EDIT/INSPECT NEWFIL,TXT
*REDED

*/LEDED

THIS IS A NEW FILE.

* CTRLI

/KED  This option invokes the keypad editor (KED). For more informa-
tion on the keypad editor, see the PDP-11 Keypad Editor User’s Guide. Use
/KED only if you are using a VT100-compatible terminal.

/KEX This option invokes a specialized version of the keypad editor

(KEX). KEX is a version of KED for use only as a background job under the
XM monitor. Use /KEX only if you are using a VT100-compatible terminal.

/K52 This option invokes the Keypad Editor. Use /K52 only if you are
using a VT52 terminal. For more information on the Keypad Editor, see the
PDP-11 Keypad Editor User’s Guide.

Keyboard Commands 4-101



4-102

EDIT

/OUTPUT:filespec This option directs the text you edit to the file you
specify, leaving the input file unchanged. You can also write text to an out-
put file while you are working with EDIT by using the Edit Write (EW) com-
mand, explained in Chapter 6. The following command reads file
ORIG.TXT, and writes the edited text to file CHANGE.TXT.

+EDIT/0UTPUT:CHANGE . TXT ORIG.TXT
*

/TECO This option invokes the TECO editor. (TECO is not supported by
DIGITAL. It is distributed in the RT—11 kit for the convenience of those
users who normally order TECO from the DECUS Program Library). For
more information on TECO see the PDP-11 TECO User’s Guide.

Keyboard Commands



Qe

R

EXECUTE

The EXECUTE command invokes one or more language processors to
assemble or compile the files you specify. It also links object modules and ini-
tiates execution of the resultant program.

EXECUTE

/BOTTOM:n
/DEBUG(:filespec]
/DUPLICATE
. IEXECUTE[:fllespec]
/ALLOCATE:size
/GLOBAL
/LINKLIBRARY :filespec
/LIST[:filespec]
/ALLOCATE:size
IMAP[:filespec]
/ALLOCATE::size
/WIDE
/OBJECT[:filespec]
/ALLOCATE:size
/PROMPT
/[NOJRUN

( /DiBOL
[7ALPHABETIZE

/BUFFERING

ICROSSREFERENCE

/INOJLINENUMBERS
LOG

/ONDEBUG

/PAGE:n

/TABLES
/[NOJWARNINGS

/FORTRAN
/CODE:type
/DIAGNOSE
JEXTEND

/HEADER

na
/[NOJLINENUMBERS
/ONDEBUG
/RECORD:length
/SHOW([:type]
/STATISTICS
/[NO]JSWAP
/UNITS:n
/[NOIVECTORS

| /[NOJWARNINGS
/MACRO
[7TCROSSREFERENCE[:typel...:type]
/DISABLE:typel...:type]

/ENABLE:typel[...:type]
g L_/[NO]SHOW:type[...:type]

filespec [/LIBRARY]

l

In the command line shown above, filespecs represents one or more files to be
included in the assembly. The default file types for the output files are .LST
for listing files, MAP for load map files, .OBJ for object files, and.SAV for
memory image files. The defaults for input files depend on the language
processor involved. These defaults include .MAC for MACRO files, .FOR for
FORTRAN files, and .DBL for DIBOL files.

To compile (or assemble) multiple source files into a single object file, sepa-
rate the files by plus (+) signs in the command line. Unless you specify
otherwise, the system creates an object file with the same name as the first
input file and gives it an .OBJ file type.

Keyboard Commands 4-103



EXECUTE

To compile multiple files in independent compilations, separate the files by
commas (,) in the command line. This generates a corresponding object file
for each input file. The system then links together all the object files and cre-
ates a single executable file.

You can combine up to six files for a compilation producing a single object
file. You can specify the entire EXECUTE command as one line, or you can
rely on the system to prompt you for information. The EXECUTE command
prompt is Files?.

There are several ways to establish which language processor the
EXECUTE command invokes:

1. Specify a language-name option, such as /MACRO to invoke the MACRO
assembler.

2. Omit the language-name option and explicitly specify the file type for
the source files. The EXECUTE command then invokes the language
processor that corresponds to that file type. Specifying the file
SOURCE.MAC, for example, invokes the MACRO assembler.

3. Let the system choose a file type of . MAC, .DBL, or .FOR for the source
file you name. The handler for the device you specify must be loaded. If
you specify DX1:A, and the DX handler is loaded, the system searches
for source files A MAC and A.DBL, in that order. If it finds one of these
files, the system invokes the corresponding language processor. If it can-
not find one of these files, or if the device handler associated with the

input file is not resident, the system assumes a file type of .FOR and
invokes the FORTRAN compiler.

If the language processor selected as a result of the procedure described
above is not on the system device (SY:), the system issues an error
message.

Language options are position-dependent. That is, they have different
meanings depending on where you place them in the command line. Options
that qualify a command name apply across the entire command string.
Options that follow a file specification apply only to the file (or group of files
separated by plus signs) that they follow in the command string.

The following sections describe the options you can use with the EXECUTE
command.

/ALLOCATE:size TUse this option with /EXECUTE, /LIST, /MAP, or
/OBJECT to reserve space on the device for the output file. The argument
size represents the number of blocks of space to allocate. The meaningful
range for this value is from 1 to 65535. A value of —1 is a special case that
creates the largest file possible on the device.

4-104 Keyboard Commands



N

RN

EXECUTE

[ALPHABETIZE Use this option with /DIBOL to alphabetize the entries
in the symbol table listing. This is useful for program maintenance and
debugging.

/BOTTOM:n Use this option to specify the lowest address to be used by
the relocatable code in the load module. The argument n represents a six-
digit, unsigned, even octal number. If you do not use this option, the system
positions the load module so that the lowest address is location 1000 (octal).
This option is invalid for foreground links.

/BUFFERING Use this option with /DIBOL to direct the compiler to use
single buffering for I/O. Normally the compiler uses double buffering.

/CODE:type Use this option with /FORTRAN to produce object code that
is designed for a particular hardware configuration. The argument type
represents a three-letter abbreviation for the type of code to be produced.
The valid values are: EAE, EIS, FIS, and THR. See the RT-11/RSTS/E
FORTRAN 1V User’s Guzde for a complete description of the types of code
and their function.

/ICROSSREFERENCEI:typel....typell Use this option with /MACRO or
/DIBOL to generate a symbol cross-reference section in the listing. This
information is useful for program maintenance and debugging. Note that
the system does not generate a listing by default. You must also specify
/LIST in the command line to get a cross-reference listing.

With MACRO, this option takes an optional argument. The argument type
represents a one-character code that indicates which sections of the cross-
reference listing the assembler should include. Table 4-11 summarizes the
valid arguments and their meaning.

/DEBUGT(:filespec] Use this option to link ODT (On-Line Debugging
Technique, described in Chapter 18 of the RT—11 System Utilities Manual)
with your program to help you debug it. If you supply the name of another
debugging program, the system links the debugger you specify with your
program. The debugger is always linked low in memory relative to your pro-
gram.

/DIAGNOSE Use this option with /FORTRAN to help analyze an internal
compiler error. ' DIAGNOSE expands the crash dump information to include
internal compiler tables and buffers. Submit the diagnostic printout to
DIGITAL with a software performance report (SPR) form. The information
in the listing can help DIGITAL programmers locate the compiler error and
correct it.

/DIBOL This option invokes the DIBOL language processor to compile the
associated files.

Keyboard Commands 4-105



EXECUTE

/DISABLE:typel....typel Use this option with /MACRO to specify a
.DSABL directive. Table 4-12 summarizes the arguments and their mean-
ing. See the PDP—11 MACRO Language Reference Manual for a description
of the directive and a list of all valid types.

/DUPLICATE Use this option to place duplicate copies of a library mod-
ule in each overlay segment that references the module. This option is useful
in reducing the size of the root segment of your program. When you have
entered the complete EXECUTE command, the system prompts you for the
names of the global symbols in the library module you want to duplicate.
The prompt is:

Durplicate symbol®?

Respond by typing the name of each global symbol you want to duplicate.
Terminate each response with a carriage return. Type a carriage return
after the last global symbol you want to duplicate.

See Chapter 11 of the RT—11 System Utilities Manual for more information
on duplicating library modules.

/ENABLE:typel....typel Use this option with /MACRO to specify an
.ENABL directive. Table 4-12 summarizes the arguments and their mean-
ing. See the PDP—11 MACRO Language Reference Manual for a description
of the directive and a list of all valid types.

/EXECUTEI:filespec] Use this option to specify a file name or device for
the executable file. Note that anytime you type a colon after the / EXECUTE
option (EXECUTE:) you must specify a device or a file specification after
the colon.

Because the EXECUTE command creates executable files by default, the fol-
lowing two commands have the same meaning:

+EXECUTE HMYPROG
+EXECUTE/EXECUTE MYPROG

Both commands link MYPROG.OBJ and produce MYPROG.SAV as a
result. The /EXECUTE option has different meanings when it follows the
command and when it follows the file specification. The following command
creates an executable file called PROG1.SAV on device DL1.:.

+EXECUTE/EXECUTE:DL1: PROG1sPROGZ

The next command creates an executable file called MYPROG.SAV on
device DK.:.

+EXECUTE RTNILsRTNZ MYPROG/EXECUTE

4-106 Keyboard Commands



AN

EXECUTE

/EXTEND Use this option with /FORTRAN to change the right margin
for source input lines from column 72 to column 80.

/FORTRAN This option invokes the FORTRAN language processor to
compile the associated files.

/GLOBAL Use this option to generate a global symbol cross-reference sec-
tion in the load map. The global symbols are listed alphabetically. Each
module in which a symbol is referenced or defined is listed in alphabetical
order after the global symbol. A number sign (#) after a module name indi-
cates that the global symbol is defined in that module. A plus sign (+) after
amodule name indicates that the module is from a library.

See Chapter 11 of the RT—11 System Utilities Manual for an example of a
load map that includes a global symbol cross-reference table, and for a more
detailed description of how to interpret a load map.

Note that the system does not generate a load map by default. You must also
specify /MAP in the command line to get a cross-reference section. The fol-
lowing command produces a map listing file, MYPROG.MAP, that contains
a global symbol cross-reference section:

+EXECUTE/GLOBAL/MAP:DL1: MYPRODG

/HEADER Use this option with /FORTRAN to include in the printout a
list of options currently in effect.

/14 Use this option with /FORTRAN to allocate two words for the default
integer data type (FORTRAN uses only one-word integers) so that it takes
the same physical space as real variables.

/LIBRARY Use this option with /MACRO to identify the file the option
qualifies as a macro library file. Use it only after a library file specification
in the command line.

The MACRO assembler looks first to the library associated with the most
recent /LIBRARY option to satisfy references (made with the MCALL direc-
tive) from MACRO programs. It then looks to any libraries you specified
earlier in the command line, and it looks last to SYSMAC.SML.

In the example below, the two files A.FOR and B.FOR are compiled
together, producing B.OBJ and B.LST. The MACRO assembler assembles
C.MAC, satisfying .MCALL references from MYLIB.MAC and
SYSMAC.SML. It produces C.OBJ and C.LST. The system then links B.OBJ
and C.OBJ together, resolving undefined references from SYSLIB.OBJ, and
produces the executable file B.SAV. Finally, the system loads and executes
B.SAV.

+EXECUTE A+B/LIST/0BJECT +MYLIB/LIBRARY+C.MAC/LIST/0BJECT

Keyboard Commands 4-107



EXECUTE

/LINENUMBERS Use this option with /DIBOL or /FORTRAN to include
internal sequence numbers in the executable program. These are espec1ally
useful in debugging programs. This is the default operation.

/NOLINENUMBERS Use this option with /DIBOL or /FORTRAN to sup-
press the generation of internal sequence numbers in the executable pro-
gram. This produces a smaller program and optimizes execution speed. Use
this option to compile only those programs that are already debugged; other-
wise the line numbers in DIBOL or FORTRAN error messages are difficult
to interpret.

/LINKLIBRARY:filespec Use this option to include the library file name
you specify as an object module library during the linking operation. Repeat
the option if you need to specify more than one library file.

/LISTI:filespec] You must specify this option to produce a compilation or
assembly listing. Note that anytime you type a colon after the /LIST option
(/LIST:) you must specify a device or a file specification after the colon.

The /LIST option has different meanings depending on where you put it in
the command line. If you specify /LIST without filespec in the list of options
that immediately follows the EXECUTE command, the system generates a
listing that prints on the line printer. If you follow /LIST with a device
name, the system creates a listing file on that device. If the device is a file-
structured device, the system stores the listing file on that device, assigning
it the same name as the input file with a .LLST file type.

The following command produces a listing on the terminal:

+EXECUTE/LIST:TT ALFOR

The next command creates a listing file called A.LST on RK3:.

+EXECUTE/LIST:RK3: AJMAC

If the /LIST option contains a name and file type to override the default of
.LST, the system generates a listing file with that specification. The follow-
ing command, for example, compiles A.FOR and B.FOR together, producing
files A.OBJ and FILE1.OUT on device DK.:. It then links A.OBJ (using
SYSLIB.OBJ as needed) and produces A.SAV.

+EXECUTE/NORUN/FORTRAN/LIST:FILEL,QUT A+B

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input
file, you can use a command similar to this one:

+EXECUTE/DIBOL A+B/LIST:RK3:

4-108 Keyboard Commands



“ E

EXECUTE

The command shown above compiles A.DBL and B.DBL together, producing
files DK:A.OBdJ and RK3:B.LST. It then links A.OBJ (using SYSLIB.OBJ as
needed) and produces DK:A.SAV

If you specify a file name on a /LIST option following a file specification in
the command line, it has the same meaning as when it follows the command.
The following two commands have the same results:

+EXECUTE/MACRO A/LIST:B

+EXECUTE/MACRO/LIST:B A

Remember that file options apply only to the file (or group of files that are
separated by plus signs) that they follow in the command string. For exam-
ple:

+EXECUTE/NORUN A.MAC/LIST:B.FOR

This command compiles A.MAC, producing A.OBJ and A.LST. It also com-
piles B.FOR, producing B.OBJ. However, it does not produce any listing file
for the compilation of B.FOR. Finally, the system links A.OBJ and B.OBJ
together, producing A.SAV.

/LOG  Use this option with /DIBOL to create a log of error messages gener-
ated by the compiler.

/MACRQO This option invokes the MACRO assembler to assemble associ-
ated files.

IMAP[:filespec] You must specify this option to produce a load map after
a link operation. The /MAP option has different meanings depending on
where you put it in the command line. It follows the same general rules out-
lined above for /LIST.

/OBJECT([ filespec] Use this option to specify a file name or device for the
object file. Note that anytime you type a colon after the /OBJECT option
(/OBJECT:) you must specify a device or a file specification after the colon.

Because the EXECUTE command creates object files by default, the follow-
ing two commands have the same meaning:

+EXECUTE/FORTRAN A

+EXECUTE/FORTRAN/OBJECT A

Both commands compile A.FOR and produce A.OBJ as output. The
/OBJECT option functions like the /LIST option; it can be either a command
option or a file qualifier.

Keyboard Commands 4-109



EXECUTE

As a command option, /OBJECT applies across the entire command string.
The following command, for example, assembles A.MAC and B.MAC sepa-
rately, creating object files A.OBJ and B.OBJ on DL1.:.

+EXECUTE/OBJECT:DL1: A.MAC:B.MAC

Use /OBJECT as a file qualifier to create an object file with a specific name
or destination. The following command compiles A.DBL and B.DBL
together, creating files B.LST, B.OBJ, and B.SAV.

EXECUTE/DIBOL A+B/LIST/0OBJECT/EXECUTE

/ONDEBUG Use this option with /DIBOL to include an expanded symbol
table in the obJect file. You can then use a debugging program to find and
correct errors in the object file.

Use /ONDEBUG with /FORTRAN to include debug lines (those that have a
D in column one) in the compilation. You do not, therefore, have to edit the
file to include these lines in the compilation or to logically remove them. You
can include messages, flags, and conditional branches to help you trace pro-
gram execution and find an error.

/PAGE:n Use this option with /DIBOL to override the default listing page

length of 66 lines. The meaningful range of values for the decimal argument
nis1to32768.

/PROMPT Use this option to enter additional lines of input for the link
operation. The system continues to accept lines of linker input until you
enter two slashes (/). Chapter 11 of the RT—11 System Utilities Manual
describes the commands you can enter directly to the linker. When you use
the /PROMPT option, note that successive lines of input must conform to
CSI conventions (see Chapter 1, Command String Interpreter, in the RT—-11
System Utilities Manual).

The example that follows uses the /PROMPT option to create an overlay
structure for the program COSINE.MAC:

+EXECUTE/PROMPT COSINE
*TAN/Os1

*C0S81/70¢:1

*8IN3/0:2

*LML3/0:2//

The /PROMPT option also gives you a convenient way to create an overlaid
program from an indirect file. The file LCP.COM contains these lines:

A/PROMPT
SuB1/0:1
5UBZ/0:1
SUB3.5UB4/0:1
/7

4-110 Keyboard Commands



—?

EXECUTE

The following command produces an executable file, DK:A.SAV, and a link
map on the printer.

+EXECUTE/MAP ELCP

/RECORD:length TUse this option with /FORTRAN to override the
default record length of 132 characters for ASCII sequentially formatted
input and output. The meaningful range for length is from 4 to 4095.

/RUN Use this option to initiate execution of your program if there are no
errors in the compilation or the link. This is the default operation. Do not
use /RUN with any option that requires a response from the terminal.

/NORUN Use this option to suppress execution of your program. The sys-
tem performs only the compilation and the link.

/ISHOW[:type]l Use this option with /FORTRAN to control the FORTRAN
listing format. The argument type represents a code that indicates which
listings the compiler is to produce. Table 46 summarizes the codes and
their meaning.

Use this option with /MACRO to specify any MACRO .LIST directive. Table
4-13 summarizes the valid arguments and their meaning. The PDP-11
MACRO Language Reference Manual explains how to use these directives.

INOSHOW:type Use this option with /MACRO to specify any MACRO
NLIST directive. Table 4-13 summarizes the valid arguments and their
meaning. The PDP-11 MACRO Language Reference Manual explains how
to use these directives.

/ISTATISTICS Use this option with /FORTRAN to include compilation
statistics, such as amount of memory used, amount of time elapsed, and
length of the symbol table.

/ISWAP Use this option with /FORTRAN to permit the USR (user service
routine) to swap over the FORTRAN program in memory. This is the default
operation.

INOSWAP Use this option with FORTRAN to keep the USR resident dur-
ing execution of a FORTRAN program. This may be necessary if the
FORTRAN program uses some of the RT-11 system subroutine library calls
(see the RT—11 Programmer’s Reference Manual). If the program frequently
updates or creates a large number of different files, making the USR resi-
dent can improve program execution. However, the cost for making the USR
resident is 2K words of memory.

/TABLES Use this option with /DIBOL to generate a symbol table and
label table as part of the assembly listing. This information is useful for pro-
gram maintenance and debugging. Note that the system does not generate a
listing by default. You must also specify /LIST in the command line to pro-
duce an assembly listing.

Keyboard Commands 4-111



EXECUTE

/UNITS:n Use this option with /FORTRAN to override the default num-
ber of logical units (6) to be open at one time. The maximum value you can
specify for n is 16.

/VECTORS This option directs FORTRAN to use tables to access multidi-
mensional arrays. This is the default mode of operation.

/INOVECTORS This option directs FORTRAN to use multiplication oper-
ations to access multidimensional arrays.

/WARNINGS Use this option to include warning messages in DIBOL or
FORTRAN compiler diagnostic error messages. These messages call certain
conditions to your attention but do not interfere with the compilation. This
is the default operation for DIBOL.

/INOWARNINGS Use this option with /DIBOL to suppress warning mes-
sages during compilation. These messages are for your information only;

they do not affect the compilation. This is the default operation for
FORTRAN.

/WIDE Use this option with /MAP to produce a wide load map listing.
Normally, the listing is wide enough for three global value columns, which
is suitable for a page with 72 or 80 columns. The /WIDE option produces a
listing that is six global value columns wide, or 132 columns.

4-112 Keyboard Commands

—



N

FORMAT

The FORMAT command formats disks and diskettes, and verifies any disk,
diskette, or DECtape II except MSCP devices.

FORMAT | /[NOJQUERY device
/SINGLEDENSITY
INERIFY[:ONLY]
/PATTERN:value
/WAIT

In the command syntax described above, device represents the storage vol-
ume you wish to format and/or verify. Although you can verify any disk or
DECtape II except MSCP devices, the formatting process is valid only for the
disks and diskettes listed below.

RKO05
RKO06-RKO07
RX01-RX02

When the system formats a volume, it writes headers for each block in the
volume. The header of a block contains data the device controller must use
to transfer data to and from that block. Using the FORMAT command to for-
mat a storage volume makes that volume usable to the RT-11 operating sys-
tem. Formatting is advisable under the following circumstances:

@ When you receive a new RKO05 disk from DIGITAL

® When you wish to format an RX02 double density diskette to single den-
sity, and vice versa

® When you wish to eliminate bad blocks (though formatting does not guar-

antee the elimination of every bad block, formatting can reduce the num-
~ ber of bad blocks)

When the system verifies a volume, it writes a 16-bit pattern on each block
in the volume, and then reads each pattern. When the system is unable to
write and read a pattern, it reports a bad block. The verification process is
similar to the bad block scan (see INITIALIZE), except that verification is a
data-destructive process. That is, whereas bad block scanning only reads
data from each block on a volume, verifying both writes and reads data,
destroying any data previously existing on the volume. Because the verifica-
tion process reads and writes data, it can be more effective than a bad block
scan in establishing the validity of data contained in a block. Verifying also
makes sure that the previous formatting operation was successful.

When you issue the FORMAT command, the system prints:

{dev:»/FORMAT-Are vou sure?

Keyboard Commands 4-113



FORMAT

The variable <dev:> represents the drive name and unit number of the vol-
ume you want to format. Type Y to continue the format operation. Type N or
any string beginning with N, or CTRL/C, to abort the operation. Any other
response causes the prompt to repeat.

NOTE

You can format a diskette (RX01 or RX02) only when you
have mounted the diskette in a double-density diskette drive
unit (RX02). Unless you use the /SINGLEDENSITY option,
the system will format diskettes in double-density format. If
you attempt to format a diskette in a single-density drive unit
(RX01), the system will print an error message.

When you format an RK06 or RK07 disk, the system lists the block numbers
of all the bad blocks in the manufacturer’s bad block table and in the soft-
ware bad block table.

If you try to format a volume while a foreground job is loaded the system
prints:

Foredround Loaded.
“dev:»/FORMAT~Are vou sure?

Type Y or any string beginning with Y to continue with the formatting
operation. Type N or any string beginning with N, or CTRL/C, to abort the
operation. Any other response causes the message to repeat

NOTE

Although you can format or verify a volume while a fore-
ground job is loaded, it is not recommended. If you try to for-
mat or verify a volume that the foreground job is using, data
on the volume will be written over and corrupted, which may
cause the foreground job or the system to crash.

If you try to format a volume that contains protected files, the system prints:

Yolume contains protected filesi Are vou sure?

Type Y or any string beginning with Y to continue the formatting operation.
Type N or any string beginning with N, or CTRL/C, to abort the operation.
Any other response causes the message to repeat.

The options you can use with the FORMAT command follow.

/PATTERN[:value] Use this option with /VERIFY[:ONLY] to specify
which 16-bit patterns you want the system to use when it verifies the vol-
ume. The optional argument value represents an octal integer in the range 0
to 177777 that denotes which patterns you want used.

4-114 Keyboard Commands

—



—

L

FORMAT

Table 4-5 lists the verification patterns FORMAT uses and the correspond-
ing values for the argument value.

Table 4-5: Verification Bit Patterns

Pattern Bit Set Value 16-Bit Pattern
1 0 1 000000
2 1 2 177777
3 2 4 163126
4 3 10 125252
5 4 20 052525
6 5 40 007417
7 6 100 021042
8 7 200 104210
9 8 400 155555
10 9 1000 145454
11 10 2000 146314
12 11 4000 *
13 12 10000 *
14 13 20000 *
15 14 40000 *
16 15 100000 *

*These patterns are reserved for future use. Currently these bit patterns run the default bit
pattern (pattern 8).

In /PATTERN:value, the number you specify for value indicates which bit
patterns to run during verification. Table 4-5 gives the equivalent values
for each verification bit pattern. If you want to run more than one bit pat-
tern, add together the values for each pattern you select. For example, sup-
pose you want to run bit patterns 1, 3, and 5. The corresponding values are 1,
4, and 20, for a sum of 25. This is the value you would specify with
/PATTERN to run all three bit patterns. If you specify /PATTERN:777, pat-
terns 1 through 9 are run during verification. If you do not use the

- v

/PATTERN:value option, the system runs only pattern 8.

After it completes verification, the system prints at the terminal each bad
block it found during each verification pass. The format of the verification
report is:

PATTERN #zx
nnnnnn

In the example above, x represents the pattern number, and nnnnnn repre-
sents the bad block number. The system makes a separate verification pass
for each pattern it runs, and reports on each pass.

Keyboard Commands 4-115



FORMAT

The command line that follows verifies an RL02 disk with the 16-bit pat-
terns denoted by the value 25.

+FORMAT/VERIFY/PATTERN:2S DLO:
DLO:/FORMAT-Are vou sure? Y
PFORMAT-I-Formatting complete
PATTERN #5

PATTERN #3

PATTERN #1
PFORMAT-I-VYerification comelete

If you do not supply a value with /PATTERN, the system uses pattern 8.

/QUERY Use this option when you want the system to request confirma-
tion before it performs formatting or verification. You must respond to the
query message by typing a Y (or any string that begins with Y) and a car-
riage return to continue the operation. The system interprets any other
response to mean NO, and it does not continue the operation. /QUERY is the
default setting.

/INOQUERY Use this option if you do not want the system to print a
confirmation message before it performs formatting or verification. When
you use this option in the FORMAT command line, the system prints only
the pattern numbers it uses if it performs verification and the informational

messages indicating the formatting or verification is complete. The default
setting is /QUERY.

/SINGLEDENSITY Use this option to format an RX02 double-density
diskette in single-density format. The following example uses the
/SINGLEDENSITY option to format a diskette in RX02 drive unit 1 as a
single-density diskette.

+FORMAT/SINGLEDENSITY DVY1:
DY1:/FORMAT-Are vou sure? ¥
PFORMAT-I-Formatting complete

/VERIFY[:ONLY] Use this option when you want to verify a volume fol-
lowing formatting. Use the optional argument, :ONLY, when you want the
system to only verify a volume. (Note that although you can format only &

limited variety of storage volumes, you can verify any disk, diskette, or
DECtape II except MSCP devices.)

When you use /VERIFY, the system first formats the specified volume, and:
then writes a bit pattern to each block on the volume. Next, the system reads

each pattern. After the verification process is complete, the system prints at

the terminal the block number of each bad block it found.

The example that follows uses /VERIFY to format and verify an RL02 disk
in drive unit 2.

4-116 Keyboard Commands



N

S

FORMAT

+ FORMAT/VERIFY DLZ:
DL2:/FORMAT-Are vou sure? Y
PFORMAT-I-Formattindg complete
PATTERN %8
TFORMAT-~I-VYerification comprlete

The next example uses /VERIFY:ONLY to only verify an RX02 diskette in
drive unit 0.

+ FORMAT/VERIFY : ONLY DYO:
DYO:/VERIFY-Are vou sure? Y
PATTERN #8
PFORMAT~I-Verification complete

/WAIT Use this option to initiate the formatting operation, then pause
before formatting begins to wait for you to change volumes. The /WAIT
option is useful for single drive systems.

After the system accepts your command line, it pauses and prints the mes-
sage Continue?. At this time, you can exchange volumes. When the new disk
is loaded, type Y or any string beginning with Y, followed by a carriage
return to resume the operation. If you type N or any string beginning with
N, or CTRL/C, the operation is not performed and control returns to the key-
board monitor. Any other response causes the message to repeat.

When formatting completes the system pauses again while you remount the
system volume. Mount the system volume and type Y or any string begin-
ning with Y, followed by a carriage return, to terminate the formatting
operation. If you type any other response the system prompts you to mount
the system volume until you type Y. The system then prints the keyboard
monitor prompt. Make sure FORMAT is on the system volume when you use
the /WAIT option.

The following example uses the /WAIT option to format an RLO2 disk.

+ FORMAT/WAIT DLO:
DLO: /FORMAT-Are vou sure? Y

Mount inPut volume in <devicer’ Continue? Y
?FORMAT-I-Formatting complete
Mount svstem volume in <deviceri Continue? Y

Keyboard Commands 4-117



FORTRAN

The FORTRAN command invokes the FORTRAN IV compiler to compile
one or more source programs.

FORTRAN | /CODE:type filespecs

/DIAGNOSE

/EXTEND

/HEADER

na

/[NOILINENUMBERS

ILIST[:filespec]
/ALLOCATE:size

/[NOJOBJECT]:filespec]
/ALLOCATE:size

/ONDEBUG

/RECORD:length

/ISHOW([:type]

/STATISTICS

/[NO]SWAP

/UNITS:n

/INOJVECTORS

/[NOJWARNINGS

You can enter the FORTRAN command as one line, or you can rely on the
system to prompt you for information. The FORTRAN command prompt is
Files? for the input specification.

In the command syntax illustrated above, filespecs represents one or more
files to be included in the compilation. If you omit a file type for an input file,
the system assumes .FOR. Output default file types are .LST for listing files
and .OBJ for object files. To compile multiple source files into a single object
file, separate the files with plus (+) signs in the command line. Unless you
specify otherwise, the system creates an object file with the same name as
the first input file and gives it an .OBJ file type. To compile multiple files in
independent compilations, separate the files with commas (,) in the com-

mand line. This generates a corresponding object file for each set of input
files.

Language options are position-dependent — that is, they have different
meanings depending on where you place them in the command line. Options
that follow the FORTRAN command apply across the entire command
string. Options that follow a file specification apply only to the file (or group
of files separated by plus signs) that they follow in the command string.

The RT-11/RSTS/E FORTRAN IV User’s Guide contains detailed informa-
tion about using FORTRAN. The following sections describe the options you
can use with the FORTRAN command.

/ALLOCATE:size Use this option with /LIST or /OBJECT to reserve
space on a device for the output file. The argument size represents the num-
ber of blocks of space to allocate. The meaningful range for this value is from
1 to 65535. A value of —1 is a special case that creates the largest file possible
on the device.

4-118 Keyboard Commands



e’

FORTRAN

/CODE:type Use this option to produce object code that is designed for a
particular hardware configuration. The argument type represents a three-
letter abbreviation for the type of code to be produced. The valid values are:
EAE, EIS, FIS, and THR. See the RT-11/RSTS/E FORTRAN IV User’s
Guide for a complete description of the types of code and their function.

/DIAGNOSE Use this option to help analyze an internal compiler error.
/DIAGNOSE expands the crash dump information to include internal com-
piler tables and buffers. Submit the diagnostic printout to DIGITAL with a
software performance report (SPR) form. The information in the listing can
help DIGITAL programmers locate the compiler error and correct it.

/EXTEND Use this option to change the right margin for source input
lines from column 72 to column 80.

HEADER This option includes in the printout a list of options that are
currently in effect.

/M4 Use this option to allocate two words for the default integer data type
(FORTRAN uses one-word integers) so that it takes the same physical space
asreal variables.

/LINENUMBERS Use this option to include internal sequence numbers
in the executable program. These are especially useful in debugging a
FORTRAN program. They identify the FORTRAN statements that cause
run-time diagnostic error messages. This is the default operation.

/NOLINENUMBERS This option suppresses the generation of internal
sequence numbers in the executable program. This produces a smaller pro-
gram and optimizes execution speed. Use this option to compile only those
programs that are already debugged; otherwise the line numbers in
FORTRAN error messages are replaced by question marks and the mes-
sages are difficult to interpret.

/LIST(:filespec] You must specify this option to produce a FORTRAN
compilation listing. Anytime you type a colon after the /LIST option (/LIST:)
you must specify a device or a file specification after the colon.

The /LIST 8ption has different meanings depending on where you place it in
the command line.

The /LIST option produces a listing on the line printer when /LIST follows
the FORTRAN command. For example, the following command line pro-
duces a line printer listing after compiling a FORTRAN source file:

+ FORTRAN/LIST MYPROG

Keyboard Commands 4-119



FORTRAN

When the /LIST option follows the file specification, it produces a listing file.
For example, the following command line produces the listing file
DK:MYPROG.LST after compiling a FORTRAN source file:

+FORTRAN MYPROG/LIST

If you specify /LIST without a file specification in the list of options that
immediately follows the FORTRAN command, the FORTRAN compiler gen-
erates a listing that prints on the line printer. If you follow /LIST with a
device name, the system creates a listing file on that device. If the device is a
file-structured device, the system stores the listing file on that device,
assigning it the same name as the input file with a .LST file type. The follow-
ing command produces a listing on the terminal:

+FORTRAN/LIST:TT: A

The next command creates a listing file called A.LST on RK3:.

+FORTRAN/LIST:RK3: A

If the /LIST option contains a name and file type to override the default of
.LST, the system generates a listing file with that name. The following com-
mand, for example, compiles A.FOR and B.FOR together, producing files
A.OBJ and FILE1.OUT on device DK:.

+FORTRAN/LIST:FILEL.OUT A+B

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input
file, you can use a command similar to this one:

+FORTRAN A+B/LIST:RK3:

The above command compiles A.FOR and B.FOR together, producing files
DK:A.OBJ and RK3:B.LST.

If you specify a file name on a /LIST option following a file specification in
the command line, it has the same meaning as when it follows the command.
The following two commands have the same results:

+FORTRAN A/LIST:B

+FORTRAN/LIST:B A

Both the above commands generate A.OBJ and B.LLST as output files.

4-120 Keyboard Commands



—

FORTRAN

Remember that file options apply only to the file (or group of files that are
separated by plus signs) that they follow in the command string. For exam-
ple:

+FORTRAN A/LISTB

This command compiles A.FOR, producing A.OBJ and A.LST. It also com-
piles B.FOR, producing B.OBJ. However, it does not produce any listing file
for the compilation of B.FOR.

/OBJECTT:filespec] Use this option to specify a file name or device for the
object file. Note that anytime you type a colon after the /OBJECT option
(/OBJECT:) you must specify a device or a file specification after the colon.

Because FORTRAN creates object files by default, the following two com-
mands have the same meaning:

+FORTRAN A

+FORTRAN/OBJECT A

Both commands compile A.FOR and produce A.OBJ as output. The
/OBJECT option functions like the /LIST option; it can be either a command
option or a file qualifier.

As a command option, /OBJECT applies across the entire command string.
The following command, for example, compiles A.FOR and B.FOR sepa-
rately, creating object files A.OBJ and B.OBJ on RK1:.

+FORTRAN/OBJECT:RK1: AB

Use /OBJECT as a file qualifier to create an object file with a specific name
or destination. The following command compiles A.FOR and B.FOR
together, creating files B.LLST and B.OBJ.

+FORTRAN A+B/LIST/0OBJECT

/INOOBJECT Use this option to suppress creation of an object file. As a
command option, INOOBJECT suppresses all object files; as a file option, it
suppresses only the object file produced by compilation of the related input
files. In this command, for example, the system compiles A.FOR and B.FOR
together, producing files A.OBJ and B.LST. It also compiles C.FOR and pro-
duces C.LST, but does not produce C.OBJ.

+FORTRAN A+B/LIST:C/NOOBJECT/LIST

Keyboard Commands 4-121



FORTRAN

/ONDEBUG Use this option to include debug lines (those that have a D in
column one) in the compilation. Therefore, you do not have to edit the file to
include these lines in the compilation or to logically remove them. This
option is useful in debugging a program. You can include messages, flags,
and conditional branches to help you trace program execution and find an
error.

/RECORD:length Use this option to override the default record length for
ASCII sequentially formatted input and output, usually 132 characters. The
meaningful range for length is from 4 to 4095.

/ISHOWI:type]l Use this option to control FORTRAN listing output. The
argument type represents a code that indicates which listings the compiler
is to produce. Table 4-6 summarizes the codes and their meaning.

You can combine options by specifying the sum of their numeric codes. For
example:

/S5HOW:7

or

/SHOW:ALL

The two options shown above have the same meaning. If you specify no code,
the default value is 3, a combination of SRC and MAP.

Table 4-6: FORTRAN Listing Codes

Code Listing Content
0 Diagnostics only
1or SRC Source program and diagnostics
2 or MAP Storage map and diagnostics
3 Diagnostics, source program, and storage map
4 0or COD Generated code and diagnostics
7 or ALL Diagnostics, soutrce program, storage map, and generated code

/STATISTICS Use this option to include compilation statistics in the list-
ing, such as amount of memory used, amount of time elapsed, and length of
the symbol table. '

/ISWAP Use this option to permit the USR (user service routine) to swap
over the FORTRAN program in memory. This is the default operation.

4-122 Keyboard Commands



FORTRAN

/INOSWAP This option keeps the USR resident during execution of a
FORTRAN program. This may be necessary if the FORTRAN program uses
some of the RT-11 system subroutine library calls (see Chapter 4 of the
RT-11 Programmer’s Reference Manual). If the program frequently updates
or creates a large number of different files, making the USR resident can
improve program execution. However, the cost for making the USR resident
is 2K words of memory.

/UNITS:n  Use this option to override the default number of logical units
(6) to be open at one time. The maximum value you can specify for n is 16.

/VECTORS This option directs FORTRAN to use tables to access multidi-
mensional arrays. This is the default mode of operation.

/NOVECTORS This option directs FORTRAN to use multiplication oper-
ations to access multidimensional arrays.

/WARNINGS Use this option to include warning messages in FORTRAN
compiler diagnostic error messages. These messages call certain conditions
to your attention, but do not interfere with the compilation. A warning mes-
sage prints, for example, if you change an index within a DO loop, or if you
specify a variable name longer than six characters.

NOWARNINGS Use this option to exclude warning messages in
FORTRAN compiler diagnostic error messages. This is the default setting.

Keyboard Commands 4-123



FRUN

The FRUN command initiates foreground jobs. The default file type is .REL;
the default device is DK:.

FRUN filespec |:;EUFFER:n :I

/TERMINAL:n

In the command syntax illustrated above, filespec represents the program to
execute. Because this command runs a foreground job, it is valid for the FB
and XM monitors only.

If a foreground job is active when you issue the FRUN command, an error
message prints on the terminal. You can run only one foreground job at a
time. If a terminated foreground job is occupying memory, the system
reclaims that region for your program. Then, if the system finds your pro-
gram and if your program fits in the available memory, execution begins.

Note that you can use the FRUN command to run a virtual foreground job,
and that you can use FRUN to run a virtual .SAV file in the foreground
under the XM monitor.

The following sections describe the options you can use with FRUN. Note
that the option must follow the file specification in the command line.

/BUFFER:n Use this option to reserve more space in memory than the
actual program size. The argument n represents, in octal, the number of
words of memory to allocate. You must use this option to execute a
FORTRAN foreground job. If you use /BUFFER for a virtual job linked with
the /V option (or /’XM), the system ignores /BUFFER because it has already
provided a buffer in extended memory.

The following formula determines the space needed to run a FORTRAN pro-
gram as a foreground job.

n = [1/2[504 + (35*N) + (R-136) + A*512]]
where:

A represents the maximum number of files open at one time. Each file
opened as double buffered should be counted as two files.

N represents the maximum number (decimal) of simultaneously open
channels (logical unit numbers). This value is specified when the
compiler is built, and can be overridden with the /UNITS option
during main program compilation; the default value is 6. Make
sure you use a decimal point with this number.

4-124 Keyboard Commands



R

FRUN

R represents the maximum formatted sequential record length. This
value is specified when the compiler is built and can be overridden
with the /RECORD option during main program compilation; the
default value is 136.

This formula must be modified for certain system subroutine library
(SYSLIB) functions.

The IQSET function requires the formula to include additional space for
queue elements (qcount) as follows:

n = [1/2[504 + (35*N) + (R-136) + A*512]] + [10*gcount]

The ICDFN function requires the formula to include additional space for the
integer number of channels (num) as follows:

n = [1/2[504 + (35*N) + (R-136) + A*512]] + [6*num]

The INTSET function requires the formula to include additional space for
the number of INTSET calls issued in the program as follows:

n = [1/2[504 + (35*N) + (R—136) + A*512]] + [25*INTSET]

Any functions, including INTSET, that invoke completion routines must
include 64(decimal) words plus the number of words needed to allocate the
second record buffer (default is 68 decimal words).

The length of the record buffer is controlled by the /RECORD option to the
FORTRAN compiler. If the /RECORD option is not used, the allocation in
the formula must be 136(decimal) bytes, or the length that was set at
FORTRAN installation time. This modifies the formula as follows:

n = [1/2[504 + (35*N) + (R—136) + A*512]] +[64 + R/2]

If the /BUFFER option does not allocate enough space in the foreground on
the initial call to a completion routine, the following message appears:

TERR 0+ NON-FORTRAN errcr call

This message also appears if there is not enough free memory for the back-
ground job or if a completion routine in the SJ monitor is activated during
another completion routine. In the latter case, the job aborts; you should use
the FB monitor to run multiple active completion routines.

/INAME:name Use this option to assign a logical name to the foreground
job. This option is valid only on a monitor that has system job support, a spe-
cial feature enabled by the system generation process.

/PAUSE Use this option to help you debug a program. When you type the
carriage return at the end of the command string, the system prints the load
address of your program and waits. You can examine or modify the program

Keyboard Commands 4-125



FRUN

(by using ODT, described in Chapter 18 of the RT-11 System Ultilities
Manual) before starting execution. You must use the RESUME command to
start the foreground job.

The following command loads the program DEMOSP.REL, prints the load
address, and waits for a RESUME command to begin execution.

+FRUN DEMOSP/PAUSE
Loaded at 127276
+RESUME

/TERMINAL:n This option is meaningful only in a multiterminal sys-
tem. Use it to assign a terminal to interact with the foreground job. The
argument n represents a terminal logical unit number. If you do not use this
option, the foreground job shares the console terminal with the background
job. By assigning a different terminal to interact with the foreground job,
you eliminate the need for the foreground and background jobs to share the
console terminal.

Note that the original console terminal still interacts with the background
job and with the keyboard monitor, unless you use the SET TT:CONSOL
command to change this.

4-126 Keyboard Commands



M

GET

The GET command loads a memory image file into memory.

GET filespec

In the command syntax shown above, filespec represents the memory image
file to be loaded. The default file type is .SAV. Note that magtape is not a
block-replaceable device and therefore is not permitted with the GET com-
mand. Use the GET command for a background job only. You cannot use
GET on a virtual program that executes under the XM monitor.

The GET command is useful when you need to modify or debug a program.
You can use GET with the Base, Deposit, Examine, and START commands
to test changes. Use the SAVE command to make these changes permanent.
You can combine programs by issuing multiple GET commands, as the fol-
lowing example shows. This example loads a program, DEMOSP.SAV, loads
ODT.SAV (on-line debugging technique, described in Chapter 18 of the
RT-11 System Utilities Manual), and starts the program using the address
of ODT’s entry point.

+GET DEMOSP
+GET ODT
+START

opT  VOs.,00
*

If more than one program requires the same locations in memory, the pro-
gram you load later overlays the previous program. Note that you cannot
use GET to load overlay segments of a program; it can load only the root. If
the file you need to load resides on a device other than the system device, the
system automatically loads that device handler into memory when you issue
the GET command. This prevents problems that occur if you use the START
command and your program is overlaid.

Keyboard Commands 4-127



GT

The GT command enables or disables the VT11 or VS60 graphics display
hardware.

GT OFF
ON
L:n
T:n

When you issue the GT OFF command, you disable the display hardware.
The printing console terminal then becomes the device that prints output
from the system.

When you issue the GT ON command, the display screen replaces the print-
ing console terminal. The display screen offers some advantages over the
printing terminal: it is quieter than a printing terminal, it is faster than a
printing terminal, it does not require a supply of paper, and it is the device
for which EDIT’s immediate mode is intended.

The display screen can speed up the editing process (see Chapter 6 for infor-
mation on how to use the text editor). You can use CTRL/A, CTRL/S, CTRL/ -
E, and CTRL/Q to control scrolling. These commands are explained in
Chapter 3.

Note that RT-11 does not permit you to use display hardware (with GT ON)
if you have multiterminal support (enabled by a user-generated monitor) or
if you have an 8K configuration. You cannot use GT ON or GT OFF when a
foreground or system job is active; this causes the system to print an error
message. Issue the GT ON command before you begin execution of the fore-
ground job.

ODT (on-line debugging technique, described in Chapter 18 of the RT—11
System Utilities Manual) is the only system program that cannot use the dis-
play screen. Its output always appears on the console terminal. You can use
VDT, a variant of ODT, because it can interact with the display hardware.

NOTE

If an indirect command file issues a GT ON command, part of
the command may echo on the terminal and the rest may echo
on the graphics screen. Also, if you type the GT ON command,
followed by CTRL/E, the initial line on the terminal over-
prints when you type GT OFF.

The following options control the number of lines that appear on the screen
and position the first line vertically.

4-128 Keyboard Commands



—

GT

/Lem Use this option to change the number of lines of text that display on
the screen. Table 4-7 shows the valid range for the argument n in decimal. If
you do not use this option the system determines the screen size and auto-
matically assigns the largest valid value.

/T:n Use this option to change the top position of the scroll display. Table
4-7 shows the valid range for the argument n in decimal. If you do not use
this option, the system determines the screen size and automatically assigns
the largest valid value.

Table 4-7: Display Screen Values

Screen Size  Lines Top Position
'12-inch 1-31 1-744
17-inch 1-40 1-1000 (or larger)

Keyboard Commands 4-129



HELP

The HELP command lists information related to RT—11 commands to help
you remember command syntax, options, and so on, when you are at the
console.

HELP|: TERMINAL }:I [ topic subtoplc[:item] :|[1:|
JPRINTER Joption

In the command syntax shown above, topic represents a subject about which
you need information. In the help file supplied with RT-11, the topics are
the keyboard monitor commands. The subtopic represents a category within
a topic. In the RT—11 help file, the subtopics are SYNTAX, SEMANTICS,
OPTIONS, and EXAMPLES. The item represents one member of the sub-
topic group. You can specify more than one item in the command line if you
separate the items by colons (). If you type HELP followed by a carriage
return, the system lists information on the HELP command.

The HELP command permits you to access the HELP text file. The help file
distributed with RT-11 contains information about the keyboard monitor
commands and how to use them. However, the concept of the help file is a
general one. That is, you can create your own help file to supply quick refer-
ence material on any subject. For information on how to change the HELP
text file, see the RT—11 Installation Guide.

There are only two options you can use with the HELP command. They are
/PRINTER and /TERMINAL.

/PRINTER Use this option to list information on the line printer.

/TERMINAL This option lists information on the console terminal. This
is the default operation. When HELP information is listed on a video termi-
nal, and SET TT SCOPE is in effect, the display fills one screen at a time.
Type a carriage return to view the next screen.

The following examples all make use of the standard RT-11 help file.

The following command lists all the topics for which assistance is available.

+HELP *

ABORT Terminates a Foredround/Svstem Job from the console
ASBIGN Associates a lodical device name with a physical device
B Sets a relocation base

BACKUP Backur/Restore large files or random access devices

4-130 Keyboard Commands



R

N

HELP

The next command lists all the information about the DATE command.

+HELP DATE

DATE Sets or displavs the current svstem date
SYNTAX
DATEL dd-mmm-vyy]

SEMANTICS
All vwumeric values are decimali mmm represents the first
three characters of the mame of the month., Under RTEM-11,
the current date can not be changed,

OPTIONS
None

EXAMPLES
DATE 12-MAR-B83

The next command lists all the options that are valid with the DIRECTORY
command.

+HELP DIRECTORY OPTIONS

OFTIONS
ALLOCATE:size

Use with /0OUTPUT to reserve space for the outeut listing file
ALPHABETIZE

Sorts the directory in alphabetical order by file name and
type

The next command lists information about the /BRIEF option for the
DIRECTORY command.
+HELP DIRECTORY OPTIONS:BRIEF

BRIEF
Lists only file names and file tvepes of filesi same as /FAST

The following command lists information about the DIRECTORY command
options that begin with B.

+HELP DIRECTORY/B

BADBLOCKS

Scans the device for bad blocKs and tvpes their octal number
BEFOREL :DD:MMM:YY 1

Lists the files created before the specified date. I the

date is omitteds the svstem date is used,

BEGIN

Lists the directory: starting with the file vou specify
BLOCKS

Lists the starting blocK numbers of the files
BRIEF

Lists only file names and file tvypes of filesi same as /FAST

Keyboard Commands 4-131



4-132

INITIALIZE

Use the INITIALIZE command to clear and initialize a device directory.

INITIALIZE | /BACKUP ] device
/DOS
WAIT
/INTERCHANGE
WAIT

/BADBLOCKSI[:RET]
IFILE:filespec
/INOJQUERY
/REPLACE[:RET]
/SEGMENTS:n
/VOLUMEID[:ONLY]
WAIT

.- /RESTORE -

In the command syntax illustrated above, device represents the volume you
need to initialize. The initialize operation must always be the first operation
you perform on a new volume after you receive it, formatted, from the man-
ufacturer. If the volume is not formatted, use the FORMAT command (see
the FORMAT command description) to format the volume. After you use the
INITIALIZE command, there are no files in the directory. If you use the
INITIALIZE command with no options; the system simply initializes the
device directory. You can enter the INITIALIZE command as one line, or
you can rely on the system to prompt you for the name of the device with
Device?.

The default number of directory segments for RT—11 directory structured
volumes is listed in Table 4-8. If any default is too small for your needs, see
the RT-11 Installation Guide for details on changing this default directory
size.

If the volume you are initializing has protected files, the system always

requests confirmation as in the following example.

+INIT DLO:
DLG:z/Initialize’ Are vou sure?® VY
Wolume contains protected filesi Are vou sure? V¥

The following sections describe the options you can use with INITIALIZE
and give some examples of their use.

/BACKUP Use this option to initialize a backup volume to be used as an
output volume with the BACKUP command. Output volumes for the
BACKUP command, except magtape, must be initialized by using this
option. (The system automatically initializes magtapes during BACKUP
operations; therefore, the /' BACKUP option is invalid with magtape.)

Since backup output volumes cannot contain badblocks, this option also per-
forms a bad block scan. If bad blocks are detected, the system instructs you
to use another volume for your backup operation.

Keyboard Commands



INITIALIZE

The system also warns you if you attempt to initialize a volume that already
contains files, and allows you to replace the volume.

The following command initializes a double-density diskette as a backup
volume.

+INITIALIZE/BACKUP DY:

DYO:/BUP Initialize’ Are vou sure? Y
PBUP-I-Bad blocKk scan started...
PBUP-I-No bad blocKs detected

/BADBLOCKS[:RET] Use this option to scan a volume (disk or DECtape)
for bad blocks and write .BAD files over them. For each bad block the system
encounters on the volume, it creates a file called FILE.BAD to cover it. After
the volume is initialized and the scan completed, the directory consists of
only FILE.BAD entries to cover the bad blocks. This procedure ensures that
the system will not attempt to access these bad blocks during routine oper-
ations. If the system finds a bad block in either the boot block or the volume
directory, it prints an error message and the volume is not usable.

DIGITAL recommends that you use the DIRECTORY/BADBLOCKS com-
mand after using the INITTALIZE/BADBLOCKS command so that you can
find out where the bad blocks are, if any.

The following command initializes volume DL1: and scans for bad blocks.

+INITIALIZE/BADBLOCKS DL1:
DLOsInitialize’ Are vour sure? Y

If you use / BADBLOCKS:RET, the system will retain through initialization
all files with a .BAD file type that it finds on the volume, giving them the
name FILE.BAD. The system does not do a bad block scan. The advantage in
using :RET is that initializing takes less time. '

Note that some volumes support bad block replacement; DIGITAL recom-
mends you use the /REPLACE[:RET] option instead of BADBLOCKS[:RET]
for these volumes when scanning for bad blocks. If you use INITIALIZE/
BADBLOCKS with a volume that has been previously initialized with the
INITIALIZE/REPLACE command, .BAD files will be written over all bad
blocks and the bad block replacement table will be ignored by the system.

If the volume being initialized contains bad blocks, the system prints the
locations of the bad blocks in octal and in decimal, as in the following
example:

- +INITIALIZE/BADBLOCKS DLO:

DLO:/Initialize’ Are vou sure? Y
Block Trre

QOOL120 80, Hard

000471 313, Hard

000521 337+ Hard

TDUP-W-Bad blocKs detected 3.

Keyboard Commands 4-133



INITIALIZE

The left column lists the locations in octal, and the middle column lists the
locations in decimal. The right column indicates the type of bad block found:
hard or soft.

/DOS Use this option to initialize a DECtape for DOS-11 format.

/FILE:filespec Use this option to initialize a magtape and create a boot-
able tape. For filespec, substitute dev:MBOOT.BOT. This file is distributed
with RT-11 for this purpose only. Consult the RT-11 Installation Guide for
more information.

The following example creates a bootable magtape.

» INITIALIZE/FILE:MBOOT.BOT MTO:

ANTERCHANGE Use this option to initialize a diskette for interchange
format. The following example initializes DX1: in interchange format.

+INITIALIZE/INTERCHANGE DX1:
DH1:/Init Are vou sure? Y

NOTE

The directory of an initialized interchange diskette has a sin-
gle file entry, DATA, that reserves the entire diskette. You
must delete this file before you can write any new files on the
diskette. Do this by using the following command:

DELETE/INTERCHANGE DX1:DATA

This is necessary for IBM compatibility.

/QUERY This option requests confirmation before it initializes a device.
Respond by typing Y or any string beginning with Y, followed by a carriage
return, to initiate execution of the command. The system interprets a
response beginning with any other character to mean NO. /QUERY is the
default operation.

/NOQUERY Use this option to suppress the confirmation message the
system prints before it proceeds with the initialization.

/REPLACE[:RET] If you have an RK06, RK07, RL0O1, or RLO2 disk, use
this option to scan a disk for bad blocks. If the system finds any bad blocks, it
creates a replacement table so that routine operations access good blocks
instead of bad ones. Thus, the disk appears to have only good blocks. Note,
though, that accessing this replacement table slows response time for rou-
tine input and output operations.

4-134 Keyboard Commands



N

INITIALIZE

If you use :RET with /REPLACE, the system initializes the volume and
retains the bad block replacement table (and FILE.BAD files) created by the
previous /REPLACE command.

Note that if the monitor file resides on a block that contains a bad sector
error (BSE) and you are doing bad block replacement, a boot error results
when you attempt to bootstrap the system. In this case, move the monitor.
Use the DIRECTORY/BADBLOCKS/FILES command to determine which
files reside on bad blocks.

With an RK06, RK07, RLO01, or RLO02 disk, you have the option of deciding
which bad blocks you want replaced if there is a replacement table overflow.
The RK06s and RK07s support up to 32 bad blocks in the replacement table;
the RLO1s and RLO02s support up to 10.

With an RK06 or RK07 disk, the system can replace only those bad blocks
that generate a bad sector error (BSE). With an RLO1 or RLO02 disk, the sys-
tem can replace any kind of bad block. The following paragraphs describe
how to designate which blocks to replace on an RK06, RK07, RLO01, or RLO02
disk.

When you use /REPLACE, the system prints a list of replaceable bad blocks
as in the following sample:

+INITIALIZE/REPLACE DLO:
Block Tvre
030722 12754, Rerlaceable
1153046 38462, Rerplaceable
133617 46991, Rerlaceahkle
136175 48233, Reelaceahle
136277 48319, Rerlaceable
136401 48385, Reelaceable
140403 48413, Rerplaceable
1468252 ©$2394, Replaceahle
DUP-I-Bad bhlocks detected B,

If there is a replacement table overflow, the system prompts you to indicate
which blocks you want replaced as follows:

PDUP-W-Rerlacement table overflow DEVY:
Tyere <RET>s Os or nnnnnn ({RET>)
Rerplace hlock #

The variable nnnnnn represents the octal number of the block you want the
system to replace.

After you enter a block number, the system responds by repeating the
Replace block # prompt. If you type a 0 at any time you do not want any
more blocks replaced, prompting ends and any blocks not placed in the
replacement table are marked as FILE.BAD.

Keyboard Commands 4-135



INITIALIZE

If you enter a carriage return at any time, the system places all bad blocks
you have not entered into the replacement table, starting with the first on
the disk, until the table is full. The system assigns the name FILE.BAD to
any remaining bad blocks and prompting ends.

If you use /NOQUERY with /REPLACE, and there is a replacement table
overflow, the effect will be as if you had entered a carriage return in
response to the first Replace block # prompt.

/RESTORE Use this option to uninitialize a volume. That is, you can use
this option to restore the directory and files that were present on the volume
prior to the previous initialization. You can use /RESTORE only if no files
have been transferred to the volume since the last time it was initialized.
You cannot restore volumes that support bad block replacement if bad
blocks were found during initialization.

The /RESTORE option does not restore the boot blocks; so if you use
/RESTORE to restore a previously bootable volume, use the COPY/BOOT
command to make the volume bootable again.

/SEGMENTS:n Use this option if you need to initialize a disk and also
change the number of directory segments. The number of segments in the
directory establishes the number of files that can be stored on a device. The
system allows a maximum of 72 files per directory segment, and 31 directory
segments per device. The argument n represents the number of directory
segments. The valid range for n is from 1 to 31 (decimal). Table 4-8 shows
the default values of n for standard RT-11 devices.

Table 4-8: Default Directory Sizes

Number (decimal) of

Device Segments in Directory
DD 1
DX 1
DY (single-density) 1
DY (double-density) 4
PD 1
DL (RLO1) 16
DL (RL02) 31
DM 31
DU (Winchester disks) 31
DU (diskettes) 1
RK 16

/VOLUMEID[:ONLY] Use /VOLUMEID to write a volume identification
on a device when you initialize it. This identification consists of a volume ID
(up to 12 characters long for a block-replaceable device, up to 6 characters
long for magtape, or interchange diskette when used with

4-136 Keyboard Commands



R—

\\;w’/

S

INITIALIZE

/INTERCHANGE) and an owner name (up to 12 characters long for a block-
replaceable device, up to 10 characters long for magtape). If you use this
option with /INTERCHANGE but you speciy no volume ID, the volume ID
RT11A is automatically assigned.

The following example initializes device RK1: and writes a volume identifi-
cation on it.

+ INITIALIZE/VDLUMEID RK1:
RK1:/Initialize’ Are vou sure? VY
Volume ID? FORTRAN LOL
Owner? Marcy

Use /VOLUMEID:ONLY to write a new volume identification on a device
without reinitializing the device. You cannot change the volume ID of a
magtape without initializing the entire tape.

/WAIT The /WAIT option is useful if you have a single-disk system. When
you use this option to initialize a volume, the system begins the procedure
but then pauses and waits for you to mount the volume you want to initial-
ize. When the system pauses, it prints the following prompt at the terminal:

Mount ineput volume in <device>’d Continue?

The variable <device> is the name of the device into which you mount the
volume to be initialized. Mount the input volume and type Y or any string
beginning with Y, followed by a carriage return, to continue the intializa-
tion operation. Type N or any string beginning with N, or two CTRL/Cs, to
abort the operation and return control to the keyboard monitor. Any other
response causes the message to repeat.

After the system completes the initialization process, the system prints the
following message prompting you to mount the system volume:

Mount svstem volume in <device>? Continue?
Mount the system volume and type Y or any string beginning with Y, fol-

lowed by a carriage return. If you type any other response the system contin-
ues to prompt you to mount the system volume until you type Y.

When you use /WAIT, make sure that DUP, and FILEX if necessary, are on
the system volume.

Keyboard Commands 4-137



INSTALL

The INSTALL command installs the device you specify into the system.

INSTALL device[,...device]

In the command syntax shown above, device represents the name of the -

device to be installed. The INSTALL command accepts no options. It allows
you to install into the system tables a device that was not installed into the
system when it was bootstrapped. (A device handler must exist in the sys-
tem tables before you can use that device.) The device occupies the first
available device slot. Using the INSTALL command does not change the
monitor disk image; it only modifies the system tables of the monitor that is
currently in memory.

You can enter the command on one line, or you can rely on the system to
prompt you for information. The INSTALL command prompt is Device?.

When you specify a device name, the system searches the system volume for
the corresponding device handler file. For SJ and FB systems, if LP: is to be
installed, the INSTALL command searches for the file SY:LP.SYS. For XM
systems, INSTALL searches for SY:LPX.SYS. The INSTALL command does
not allow a device handler built for a different configuration of the system to
be installed in a given system. Note that you cannot install the device names
SY, DK, or BA, or a logical device name that is the same as an already
installed physical device name.

To permanently install a device, include the INSTALL command in the
standard, system start-up indirect command file. This file is invoked auto-
matically when you boot the system. The INSTALL command also allows
you to configure a special system for a single session without having to
reconfigure to revert to the standard device configuration. If there are no
free device slots (use the SHOW DEVICES command to ascertain this), you
must remove an existing device (with the REMOVE command) before you
can install a new device.

The following command installs the serial line printer into the system tables
from the file L.S.SYS. (The colon (:) that follows the device handler name is
optional.)

+ INSTALL LS:

The next example installs the line printer, RK05, and DY.

+ INSTALL LP:sRK: DY

4-138 Keyboard Commands

—



LIBRARY

The LIBRARY command lets you create, update, modify, list, and maintain
library files.

LIBRARY | /EXTRACT library filespecs /REPLACE}
/UPDATE
ICREATE
/DELETE
/INSERT
/LIST:fllespec]
/ALLOCATE:slze
/INOJOBJECT]:filespec]
/ALLOCATE:size
/PROMPT
/REMOVE

/MACRO[:n)
/CREATE
JPROMPT

In the command syntax illustrated above, library represents the library file
name, and filespecs represents the input module file names. Separate the
library file specification from the module file specifications with a space.
Separate the module file specifications with commas.

The system uses .LLST as the default file type for library directory listing
files. It uses .OBJ as the default file type for object libraries and object input
files, and .MAC for macro input files. The default output file type for macro
library files is .MLB. Object libraries contain machine-level object modules,
and macro libraries contain MACRO source modules. You cannot combine
object modules with MACRO modules.

The default operation, if you do not specify an option, is /INSERT. If you do
not specify a library file in the command line, the system prompts Library?.
If you specify /CREATE, /INSERT, or /MACRO and omit the module file
specification, the system prompts Files?. If you specify /EXTRACT, the sys-
tem prompts File?. Note that no other option causes the File? or Files?
prompt.

The LIBRARY command can perform all the functions listed above on object
library files. It can also create macro library files for use with the
MACRO-11 assembler. A library file is a direct-access file (a file that has a
directory) that contains one or more modules of the same type. The system
organizes library files so the linker and MACRO-11 assembler can access
them rapidly. Each library is a file that contains a library header, library
directory, and one or more object modules. The object modules in a library
file can be routines that are repeatedly used in a program, routines that are
used by more than one program, or routines that are related and simply
gathered together for convenience. An example of a typical object library file
is the default system library, SYSLIB.OBJ, used by the linker. An example
of a macro library file is SYSMAC.SML.

Keyboard Commands 4-139



LIBRARY

You access object modules in a library file by making calls or references to
their global symbols; you link the object modules with the program that uses
them by using the LINK command to produce a single executable module.
Each input file for an object library consists of one or more object modules,
and is stored on a device under a specific file name and file type. Once you
insert an object module into a library file, you no longer reference the mod-
ule by the file name of which it was a part; reference it by its individual mod-
ule name. For example, the input file FORT.OBJ may exist on DT2: and can
contain an object module called ABC. Once you insert the module into a
library, reference only ABC, and not FORT.OBJ.

The input files normally do not contain main programs but only subpro-
grams, functions, and subroutines. The library file must never contain a
FORTRAN BLOCK DATA subprogram because there is no undefined global
symbol to cause the linker to load it automatically.

The following sections describe the LIBRARY command options and explain
how to use them. The last section under this command describes the
LIBRARY prompting sequence and order of execution for commands that
combine two or more LIBRARY options. Chapter 10 of the RT—11 System
Utilities Manual contains more detailed information on object and macro
libraries.

/ALLOCATE:size Use this option only with /LIST or /OBJECT to reserve
space on the device for the output file. The value size represents the number
of blocks of space to allocate. The meaningful range for this value is from 1
to 65535. A value of —1 is a special case that allocates the largest area avail-
able on the device.

The following example uses /ALLOCATE to create the object library
MYLIB.OBJ from the object library MYFILE.OBJ. The argument, —1, is
specified with /ALLOCATE.

LIBRARY/DBJECT:MYLIB/ALLDCATE:-1 MYFILE

/ICREATE Use this option by itself to create an object library. Specify a
library name followed by the file specifications for the modules that are to be
included in that library. The following command creates a library called
NEWLIB.OBJ from the modules contained in files FIRST.OBJ and
SECOND.OBJ.

LIBRARY/CREATE NEWLIB FIRST,SECOND

/DELETE Use this option to delete an object module and all its associated
global symbols from a library file directory. Since the module is deleted only
from the directory (the object module itself is not deleted), the module and
all global symbols that were previously deleted are restored whenever you
update that library, unless you use /DELETE again to delete them. Specify
the library name in the command line.

4-140 Keyboard Commands



LIBRARY

The system prompts you for the names of the modules to delete. The prompt
is:

Module wmame?

Respond with the name of a module. (Be sure to specify a module name and
not a global name.) Follow each module name with a carriage return. Enter
a carriage return on a line by itself to terminate the list of module names.

The following example deletes modules SGN and TAN from the library
called NEWLIB.OBJ.

JLIBRARY/DELETE NEWLIB
Module wame? SGN
Module name? TAN
Module wame?

/EXTRACT Use this option to extract an object module from a library and
store it in a file with the same name as the module and a file type of .OBJ.
You cannot combine this option with any other option.

The system prompts you for the name of the object module to be extracted.
The prompt is:

Global?

If you specify a global name, the system extracts the entire module of which
that global is a part. Follow each global name with a carriage return. Enter
a carriage return on a line by itself to terminate the list of global symbols.
The following example shows how to extract the module ATAN from the
library called NEWLIB.OBJ and store it in file ATAN.OBJ on DX1.:.

WL IBRARY/EXTRACT
Likrarv? NEWLIB
File ? DX1:ATAN
Global 7 ATAN
Global #7

/INSERT Use this option to insert an object module into an existing
library. Although you can insert object modules that have duplicate names,
this practice is not recommended because of the difficulty involved in replac-
ing or updating these modules. Note that /INSERT is the default operation.
If you do not specify any option, insertion takes place.

The following example inserts the modules contained in the files
THIRD.OBJ and FOURTH.OBJ into the library called OLDLIB.OBJ.

JMLIBRARY/INSBERT OLDLIB THIRD,FOURTH

Keyboard Commands 4-141



LIBRARY

/LIST[:filespec] Use this option to obtain a directory listing of an object
library. Note that anytime you type a colon after the /LIST option (/LIST:),
you must include a device or file specification following the colon.

The following example obtains a directory listing of OLDLIB.OBJ on the
terminal (the line printer is the default device).

+LIBRARY/LIST:TT: DLDLIB

The directory listing prints global symbol names. A plus sign (+) in the
module column indicates a continued line. See Section 10.2.8 in Chapter 10
of the RT-11 System Utilities Manual for a procedure to include module
names in the directory listing.

You can also use /LIST with other options (except /MACRO) to obtain a
directory listing of an object library after you create or modify it. The follow-
ing command, for example, inserts the modules contained in the files
THIRD.OBJ and FOURTH.OBJ into the library called OLDLIB.OBJ; it
then prints a directory listing of the library on the terminal.

+LIBRARY/INGERT/LIST:TT: DOLDLIB THIRD:FOURTH

You cannot obtain a directory listing of a macro library.

Make sure when you use /LIST with LIBRARY that you use it on the com-
mand side of the command string, and not after the file specification.

/MACRO[:n] Use this option to create a macro library. The optional argu-
ment n represents the size (in blocks) of the macro name directory. Note that
this is the only valid function for a macro library. You can create a macro
library, but you cannot list or modify it. To update a macro library, simply
edit the ASCII text file and then reprocess the file with the LIBRARY/
MACRO command.

The following example creates a macro library called NEWLIB.MLB from
the ASCII input file SYSMAC.MAC.

+LIBRARY/MACRO/CREATE NEWLIB SYSMAC

When you use /MACRO with LIBRARY, use it on the command side of the
command string, and not after the file specification.

/OBJECT[:filespec] The system creates object library files by default as a
result of executing a LIBRARY command: When you modify an existing
library, the system actually makes the changes to the library you specify,
thus creating a new, updated library that it stores under the same name as
the original library. Use this option to give a new name to the updated
library file and preserve the original library.

4-142 Keyboard Commands



LIBRARY

The following example creates a library called NEWLIB.OBJ, which con-
sists of the library OLDLIB.OBJ plus the modules that are contained in files
THIRD.OBJ and FOURTH.OBJ.

+LIBRARY/INSERT/DBJECT:NEWLIB OLDLIB THIRD.FOURTH

INOOBJECT Use this option to suppress the creation of a new object
library as a result of a LIBRARY command.

/PROMPT Use this option to specify more than one line of input file spe-
cifications in a LIBRARY command. This option is valid with all other
library functions except the /EXTRACT option. You must specify // as the
last input in order to terminate the input list. Note that the file specifica-
tions you enter after typing the /PROMPT option must conform to Command
String Interpreter (CSI) conventions.

The following example creates a macro library called MACLIB.MLB from
seven input files.

sLIBRARY/MACRO/PROMPT MACLIB A:B.:C,D
*EF QG
*//

/REMOVE This option permits you to delete a specific global symbol from
a library file’s directory. Since globals are deleted only from the directory
(and not from the object module itself), all the globals that were previously
deleted are restored whenever you update that library, unless you use
/REMOVE again to delete them. This feature lets you recover a library if
you have inadvertently deleted the wrong global.

The system prompts you for the names of the global symbols to remove. The
prompt is:

Global?

Respond with the name of a global symbol to be removed. Follow each global
symbol with a carriage return. Enter a carriage return on a line by itself to
terminate the list of global symbols.

The following example deletes the globals GA, GB, GC, and GD from the
library OLDLIB.OBJ.

LLIBRARY /REMOVE OLDLIB
Global? GA

Global? GB

Global? GC

Global®™ GD

Global?

Keyboard Commands 4-143



LIBRARY

/REPLACE Use this option to replace modules in an existing object
library with modules of the same name contained in the files you specify.

The following example replaces a module called SQRT in the library
MATHLB.OBJ with a new module, also called SQRT, from the file called
MFUNCT.OBJ.

+{LIBRARY MATHLB MFUNCT/REPLACE

Note that the /REPLACE option must follow each file specification that con-
tains a module to be inserted into the library. Note also that you can use
/REPLACE only with modules, and never with library files.

/UPDATE This option combines the functions of /INSERT and
/REPLACE. Specify it after each file specification to which it applies. If the
modules in the input file already exist in the library, the system replaces
those library modules. If the modules in the input file do not exist in the
library, the system inserts them.

The following example updates the library OLDLIB.OBJ.

LIBRARY OLDLIB FIRST/UPDATE .SECOND/UPDATE

Note that the /UPDATE option must follow each file specification to which it
applies, and that you can use this option only with modules, not files.

You can combine the LIBRARY options with the exceptions of /EXTRACT
and /MACRO, which you cannot combine with most of the other functions.
Table 4-9 lists the sequence in which the system executes the LIBRARY
options and prompts you for additional information.

Table 4-9: Execution and Prompting Sequence of

LIBRARY Options
Option Prompt
/ICREATE
/DELETE ‘Module name?
/REMOVE Global?
/UPDATE
/REPLACE
/INSERT
/LIST

4-144 Keyboard Commands



\M/

LIBRARY

The following example combines several options.

LIBRARY/LIST:TT: /REMOVE/INSERT NEWLIB LIBZ/REPLACELIB3
Global? SORT

Global?
RT-11 LIBRARIAN W0OS5.,01 FRI 14-JAN-83 00:08:37
NEWLIB FRI 14-JAN-B83 00:08:35
MODULE GLOBALS GLOBALS GLOBALS
cas SIN
DATAN DATANZ
ATAN ATANZ
DCOS DSIN

The command executes in the following sequence:

1.

2
3.
4

Removes global SQRT from NEWLIB

Replaces any duplicates of the modules in the file LIB2.0BJ
Inserts the modules in the file LIB3.0OBJ

Lists the directory of NEWLIB.OBJ on the terminal

Keyboard Commands

4-145



LINK

The LINK command converts object modules into a format suitable for load-
ing and execution.

LINK /ALPHABETIZE /BOTTOM:value filespecs
/INOJBITMAP /BOUNDARY:value
/DEBUGI:filespec] /FOREGROUND:stacksize
/DUPLICATE /LDA
/[NOJEXECUTE[:filespec] /RUN
/ALLOCATE:size [TOP:value
/EXTEND:n XM
/FILL:n /LIMIT:n

/GLOBAL

/INCLUDE

/LIBRARY:filespec

/LINKLIBRARY:filespec

/MAP[:filespec]
/ALLOCATE:slzej
/WIDE

/PROMPT

/ROUND:n

/SLOWLY

/STACK][:value]

/SYMBOLTABLE(:filespec]
/TRANSFER[:value]

The RT-11 system lets you separately assemble a main program and each of
its subroutines without assigning an absolute load address at assembly
time. The linker can then process the object modules of the main program
and subroutines to relocate each object module and assign absolute
addresses. It links the modules by correlating global symbols that are de-
fined in one module and referenced in another, and it creates the initial con-
trol block for the linked program. The linker can also create an overlay
structure (if you specify the /PROMPT option) and include the necessary
run-time overlay handlers and tables. The linker searches libraries you
specify to locate unresolved global symbols, and it automatically searches
the default system subroutine library, SYSLIB.OBJ, to locate any remain-
ing unresolved globals. Finally, the linker produces a load map (if you
specify /MAP) that shows the layout of the executable module. The linker
also can produce an STB file. See Chapter 11 of the RT—11 System Ultilities
Manual for a more detailed explanation of the RT-11 linker.

In the command syntax illustrated above, filespecs represents the object
modules to be linked. Each input module should be stored on a random-
access device (disk, diskette, or DECtape II); the output device for the load
map file can be any RT—11 device. The output for an .LDA file (if you specify
/LDA) can also be any RT—11 device, even those that are not block replace-
able such as paper tape.

The default file types are as follows:

Load Module: SAV, REL(/FOREGROUND), .LDA(LDA)
Map Output: .MAP
Object Module: .OBJ

Symbol Table File: .STB

4-146 Keyboard Commands



e

R

LINK

If you specify two or more files to be linked, separate the files by commas.
The system creates an executable file with the same name as the first file in
the input list (unless you use /EXECUTE to change it).

Table 4-10 summarizes the LINK prompting sequence for commands that
combine two or more LINK options.

Table 4-10: Prompting Sequence for LINK Options

Option Prompt
/TRANSFER Transfer symbol?
/STACK Stack symbol?
/EXTEND:n Extend section?
/BOUNDARY:value Boundary section?
/ROUND:n Round section?
/INCLUDE Library search?
/DUPLICATE Duplicate symbol?

If you combine any of the options listed in Table 4-10, the system prompts
you for information in the sequence shown in the table. Note that the
Duplicate symbol? prompt is always last. This and Library search? are the
only prompts that accept more than one line as a response. For all the
prompts, terminate your response with a carriage return. Terminate your
list of responses to the Library search? and Duplicate symbol? prompts by
typing an extra carriage return. Note that if the command lines are in an
indirect file and the system encounters an end-of-file before all the prompt-
ing information has been supplied, it prints the prompt messages on the
terminal.

The LINK command options and explanations of how to use them follow.

/ALLOCATE:size Use this option with /EXECUTE or /MAP to reserve
space on the device for the output file. The argument size represents the
number of blocks of space to allocate. The meaningful range for this value is
from 1 to 65535. A value of —1 is a special case that creates the largest file
possible on the device. When tised with /EXECUTE, /ALLOCATE is valid
only when you are generating a .REL or .LDA file.

/ALPHABETIZE When you use this option, the linker lists in the load
map your program’s global symbols in alphabetical order.

/BITMAP Use this option if you want the linker to create a memory usage
bitmap. This is the default setting.

Keyboard Commands 4-147



LINK

/INOBITMAP Use this option if you do not want the linker to create a
memory usage bitmap. This option is useful if you are preparing your pro-
gram for ROM storage and its code lies between locations 360 and 377 inclu-
sive. /BITMAP is the default setting.

/BOTTOM:value Use this option to specify the lowest address to be used
by the relocatable code in the load module. The argument value represents a
six-digit unsigned, even octal number. If you do not use this option, the
linker positions the load module so that the lowest address is location 1000
(octal). This option is invalid for foreground links.

/BOUNDARY:value Use the/ BOUNDARY option to start a specific pro-
gram section in the root on a particular address boundary. The system gen-
erates a whole-number multiple of the value you specify for the starting
address of the program section. The argument value must be a power of 2.
The system extends the size of the previous program section to accommodate
the new starting address for the specific section.

When you have entered the complete LINK command, the system prompts
you for the name of the section whose starting address you need to modify.
The prompt is:

Boundary section?

Respond with the appropriate program section name and terminate your
response with a carriage return.

/DEBUG(:filespec] Use this option to link ODT (on-line debugging tech-
nique, described in Chapter 18 of the RT—11 System Utilities Manual) with
your program to help you debug it. If you supply the name of another
debugging program, the system links the debugger you specify with your
program. The system links the debugger low in memory relative to your
program.

/DUPLICATE Use this option to place duplicate copies of a library mod-
ule in each overlay segment that references the module. This option is useful
in reducing the size of the root segment of your program.

When you have entered the complete LINK command, the system prompts
you for the names of the global symbols in the library module you want to
duplicate. The prompt is:

Duplicate symbol?

Respond by typing the name of each global symbol in a module you want to
duplicate. Type a carriage return after each global symbol. Type a carriage
return on a line by itself to terminate the list.

See Chapter 11 of the RT-11 System Utilities Manual for more information
on duplicating library modules.

4-148 Keyboard Commands



LINK

/EXECUTE[:filespec] Use this option to specify a file name or device for
the executable file. Note that anytime you type a colon after the /EXECUTE
option (EXECUTE:), you must include a device or file specification follow-
ing the colon. Because the LINK command creates executable files by
default, the following two commands have the same meaning:

+« LINK MYPROG

« LINK/EXECUTE MYPROG

Both commands link MYPROG.OBJ and produce MYPROG.SAV as a
result.

The /EXECUTE option has different meanings when it follows the command
and when it follows the file specification. The following command creates an
executable file called PROG1.SAV on device DL1:.

+ LINK/EXECUTE:DL1: PROGI1:PROGZ

The next command creates an executable file called MYPROG.SAV on
device DK:.

+ LINK RTN1RTNZ sMYPROG/EXECUTE

/INOEXECUTE Use this option to suppress creation of an executable file.

/EXTENDm This option allows you to extend a program section to a spe-
cific octal value n. The resultant program section size is equal to or greater
than the value you specify, depending on the space the object code requires.

When you have entered the complete LINK command, the system prompts
you for the name of the program section you need to extend. The prompt is:

Extend section?®

Respond with the appropriate program section name, and terminate your
response with a carriage return.

/FILL:n Use this option to initialize unused locations in the load module
and place a specific octal value n in those locations. Note that the linker
automatically initializes to 0 unused locations in the load module; use this
option to place another value in those locations. This option can be useful in
eliminating random results that occur when a program references uninitial-
ized memory by mistake. It can also help you to determine which locations
have been modified by the program and which remain unchanged.

/FOREGROUNDV:stacksize] This option produces an executable file in
relocatable (.REL) format for use as a foreground job under the FB or XM
monitor. You cannot use .REL files under the SJ monitor.

Keyboard Commands 4-149



LINK

This option assigns the default file type .REL to the executable file. The
argument stacksize represents the number of bytes of stack space to allocate
for the foreground job. The value you supply is interpreted as an octal num-
ber; specify an even number. Follow n with a decimal point (n.) to represent
a decimal number. The default value is 128 (decimal) or 200 (octal) bytes of
stack space. DIGITAL recommends that you allocate 256. bytes of stack
space when linking a FORTRAN program to run in the foreground.

You can use /[FOREGROUND:stacksize] with /XM to link privileged fore-
ground jobs with virtual overlays. See Chapter 11 of the RT—11 System
Utilities Manual for more detailed information on linking privileged fore-
ground jobs with virtual overlays.

/GLOBAL Use this option to generate a global symbol cross-reference sec-
tion in the load map. The global symbols are listed alphabetically. Each
module in which a symbol is referenced or defined is listed in alphabetical
order after the global symbol. A number sign (#) after a module name indi-
cates that the global symbol is defined in that module. A plus sign (+) after
a module name indicates that the module is from a library. See Chapter 11
of the RT—11 System Utilities Manual for an example of a load map that
includes a global symbol cross-reference table, and for a more detailed
description of how to interpret a load map.

Note that the system does not generate a load map by default. You must also
specify /MAP in the command line to get a cross-reference section.

The following command produces a map listing file, MYPROG.MAP, that
contains a global symbol cross-reference section:

+LINK/GLOBAL/MAP:DL1: MYPROG

/INCLUDE This option lets you take global symbols from any library and
include them in the linked memory image. When you use /INCLUDE, the
linker loads modules that are not called by other modules from a library into
the root.

When you have entered the complete LINK command, the system prompts
you for a list of global symbols to include in the load module. The prompt is:

Library search?

Respond by typing the global symbols to be included in the load module.
Type a carriage return after each global symbol. Type a carriage return in
response to the Library search? prompt itself to terminate the list.

/LDA This option produces an executable file in LDA format. The LDA-
format file can be output to any device, including those that are not block-
replaceable. The default file type .LDA is assigned by /LDA to the execut-
able file. This option is useful for files that you need to load with the
Absolute Binary Loader.

4-150 Keyboard Commands



e

LINK

/LIBRARY This option is the same as /[LINKLIBRARY. It is included
here only for system compatibility.

/LIMIT:n Use the /LIMIT:n option with /XM to limit the amount of mem-
ory allocated by a .SETTOP programmed request to n (octal) K words. If you
do not use the /LIMIT option, a .SETTOP request allocates up to 32K words
or, if less than 32K words of physical memory are available, as much mem-
ory as is available.

/LINKLIBRARY:filespec You can use this option to include the library
file you specify as an object module library in the linking operation. Because
the system automatically recognizes library files in the linking operation

you do not normally need this option; it is provided for compatibility with
the EXECUTE command.

/MAPI:filespec] You must specify this option to produce a load map list-
ing. Note that anytime you type a colon after the /MAP option /MAP:), you
must include a device or file specification following the colon.

The /MAP option has different meanings depending on where you put it in
the command line. If you specify /MAP without a filespec in the list of
options that immediately follows the command name, the system generates
a listing that prints on the line printer. If you follow /MAP with a device
name, the system creates a map file on that device. If the device is a file-
structured device, the system stores the listing file on that device, assigning
it the same name as the first input file and a . MAP file type.

The following command produces a load map on the terminal.

+LINK/MAP:TT: MYPROG

The next command creates a map listing file called MYPROG.MAP on RK3:.

+LINK/MAP:RK3: MYPROG

If the /MAP option contains a name and file type to override the default of
.MAP, the system generates a listing with that name. The following com-
mand, for example, links PROG1 and PROG2, producing a map listing file
called MAP.OUT on device DK..

+LINK/MAP:MAP.OUT PROG1,PROGZ

Another way to specify /MAP is to type it after the file specification to which
it applies. To link a file and produce a map listing file with the same name,
use a command similar to this one.

+LINK PROG1+PROGZ/EXECUTE/MAP

Keyboard Commands 4-151



LINK

The command shown above links PROG1 and PROG2, producing files
PROG2.SAV and PROG2.MAP. If you specify a file name on a /MAP option
following a file specification in the command line, it has the same meaning
as when it follows the command.

/PROMPT Use this option to enter additional lines of input. The system
continues to accept lines of linker input until you enter two slashes (//).
Chapter 11 of the RT-11 System Utilities Manual describes the commands
you can enter directly to the linker. When you use the /PROMPT option,
note that successive lines of input must conform to CSI conventions (see
Chapter 1, Command String Interpreter, in the RT-11 System Utilities
Manual).

The example that follows uses the /PROMPT option to create an overlay
structure for the program COSINE.MAC:

+LINK/PROMPT COSINE
*TAN/O:1

*C081/0:1

¥8IN3/0:2
*LML3/0:2//

The /PROMPT option also gives you a convenient way to create an overlaid
program from an indirect file. The file PROMPT.COM contains these lines:

A/PROMPT
suBi1/0:1
S5UBZ/0:1
SuUB3.:5UB4/0:1
/7

The following command produces an executable file, DK:A.SAV, and a link
map on the printer.

+LINK/MAP EPROMPT

/ROUND:n This option rounds up the section you specify so that the size
of the root segment is a whole-number multiple of the value n you supply.
The argument n must be a power of 2.

When you have entered the complete LINK command, the system prompts
you for the name of the section that you need to round up. The prompt is:

Round section®
Respond with the appropriate program section name, and terminate your
response with a carriage return.

/RUN Use this option to initiate execution of the resultant .SAV file. This
option is valid for background jobs only. Do not use /RUN with any option
that requires a response from the terminal.

4-152 Keyboard Commands



LINK

/SLOWLY  This option instructs the system to allow the largest possible
memory area for the link symbol table at the expense of making the link
process slower. Use this option only if an attempt to link a program failed
because of symbol table overflow.

/ISTACK][:value]l This option lets you modify the stack address, location
42, which is the address that contains the value for the stack pointer (SP).
When your program executes, the monitor sets SP to the contents of location

42. The argument value is an even, unsigned, six-digit octal number that
defines the stack address.

When you have entered the complete LINK command, the system prints the
following prompt message if you did not already specify a value:

Stack svmbol®

Respond with the global symbol whose value is the stack address. You can-
not specify a number at this point. Terminate your response with a carriage
return. If you specify a nonexistent symbol, the system prints an error mes-
sage. It then sets the stack address to 1000 (for memory image files) or to the
bottom address if you used /BOTTOM.

/ISYMBOLTABLE[:filespec] When you use this option, the linker creates
a file that contains symbol definitions for all the global symbols in the load
module. Enter the symbol table file specification as the third output specifi-
cation in the LINK command line. If you do not specify a file name, the
linker uses the name of the first input file and assigns the file type .STB

Note that anytime you type a colon after the /SSYMBOLTABLE option
(/SYMBOLTABLE:), you must include a device or file specification following
the colon. By default, the system does not create a symbol table file.

The following example creates the symbol table file BTAN.STB

+LINK AOBJ,BOBJ/SYMBOLTABLE:BTAN

[TOP:value Use this option to specify the highest address to be used by
the relocatable code in the load module. The argument value represents an
unsigned, even octal number.

ITRANSFER[:value] The transfer address is the address at which a pro-
gram starts when you initiate execution with R, RUN, FRUN, or SRUN.
The /TRANSFER option lets you specify the start address of the load mod-
ule. The argument value is an even, unsigned, six-digit octal number that
defines the transfer address. If the transfer address you specify is odd, the
program does not execute after loading, and control returns to the monitor.

When you have entered the complete LINK command, the system prints the
following prompt message if you did not already specify a value:

Transfer symbol?

Keyboard Commands 4-153



LINK

Respond with the global symbol whose value is the transfer address. You
cannot specify a number at this point. Terminate your response with a car-
riage return. If you specify a nonexistent symbol, an error message prints
and the linker sets the transfer address to 1 so that the system cannot
execute the program.

/WIDE Use this option with /MAP to produce a wide load map listing.
Normally, the listing is wide enough for three global value columns, which
is suitable for paper with 72 or 80 columns. The /WIDE option produces a
listing that is six global value columns wide, which is equivalent to 132
columns.

/XM When you use this option, you enable special .SETTOP and .LIMIT
features provided in the XM monitor. This option allows a virtual job to map
a scratch region in extended memory with the .SETTOP programmed
request. See the RT—11 Programmer’s Reference Manual and the RT-11
Software Support Manual for more details on these special features. You can
use /XM with /FOREGROUNDI:stacksize] to link privileged foreground jobs
with virtual overlays.

If you want to create an extended memory overlay structure for your pro-
gram, use the /PROMPT option. You can then specify on subsequent lines
the overlay structure using the LINK /V option (see Chapter 11 of the
RT-11 System Utilities Manual). Note that when you use /V to create an
overlay structure, the linker automatically enables the special .SETTOP
and .LIMIT features.

4-154 Keyboard Commands



e’

LOAD

The LOAD command loads a device handler into memory for use with fore-
ground, background, system jobs, or BATCH.

LOAD device[ = jobname]{,...device[ = jobname]]

In the command syntax shown above, device represents the device handler
to be made resident; jobname assigns the device handler to the background
job if it has the value B, or to the foreground if it has the value F. The job-
name specification is invalid with the SJ monitor. Under a monitor that has
system job support, jobname can be the logical job name of a system job.

The LOAD command helps control system execution by bringing a device
handler into memory and optionally allocating the device to a job. The sys-
tem allocates memory for the handler as needed. Before you use a device in a
foreground program, you must first load the device handler. Also, if you
have generated an XM monitor without fetchable handler support, or if your
handler is not fetchable, you must load the device handler before the job is
executed.

A device can be owned exclusively by either the foreground, background, or
system job. (Note that BATCH, if running, is considered to be a background
job under the FB and XM monitors.) This exclusive ownership prevents the
input and output of two different jobs from being intermixed on the same
non-file-structured device.

In the following example, magtape belongs to the background job, while
RLO2 is available for use by either the background, foreground, or system
job; the line printer is owned by the foreground job. All three handlers are
made resident in memory.

+LOAD DL:sMT:=B:LP:=F

For a monitor with system job support, the following example reserves the
line printer for the system job QUEUE.

,LOAD LP:=QUEUE
Different units of the same random-access device controller can be owned by
different jobs. Thus, for example, DL1: can belong to the background job,

while DL5: can belong to the foreground or system job. If no ownership is
indicated, the device is available for use by any job.

Keyboard Commands 4-155



LOAD

NOTE

If you use the LOAD command to load a non-file-structured
device handler, and assign ownership of that handler to a job,
all units of that particular device become assigned to that job.
This means no other job can use any unit of that particular
device.

To change ownership of a device, use another LOAD command. It is not nec-
essary to first unload the device. For example, if the line printer has been
loaded into memory and assigned to the foreground job as in the example
above, the following command reassigns it to the background job without
unloading the handler first.

+LOAD LP:=B

Note, however, that if you interrupt an operation that involves magtape,
you must unload (with the UNLOAD command) then load the appropriate
device handler (MM, MT, or MS). When using these handlers with the FB
monitor, this restriction does not apply.

You cannot assign ownership of the system unit (the unit you bootstrapped)
of a system device, and any attempt to do so is ignored. You can, however,

_ assign ownership of other units of the same type as the system device. LOAD
is valid for use with logical names. For example:

+ABBIGN DL: XY
+LOAD XY:=

If you are using a diskette, loading the necessary device handlers into mem-
ory can improve system performance significantly, since no handlers need to
be loaded dynamically from the diskette. Use the SHOW command to dis-
play on the terminal the status of device handlers and device ownership.

4-156 Keyboard Commands



MACRO

The MACRO command invokes the MACRO assembler to assemble one or
more source files.

MACRO /CROSSREFERENCE[:typel...:type]] filespecs [/LIBRARY}
/DISABLE typel...:type]
/ENABLE:typel[...:type]
/LIST[:filespec]
/ALLOCATE:slze
/INOJOBJECT!:filespec]
/ALLOCATE:slze
/[NOJSHOW:type[...:type]

In the command syntax shown above, filespecs represents one or more files
to be included in the assembly. If you omit a file type for an input file, the
system assumes .MAC. Output default file types are .LST for listing files and
.OBJ for object files.

To assemble multiple source files into a single object file, separate the files
by plus (+) signs in the command line. Unless you specify otherwise, the
system creates an object file with the same name as the first input file and
gives it an .OBJ file type. To assemble multiple files in independent assem-
blies, separate the files by commas (,) in the command line. This generates a
~ corresponding object file for each set of input files.

Language options are position-dependent — that is, they have different
meanings depending on where you place them in the command line. Options
that qualify a command name apply across the entire command string.
Options that follow a file specification apply only to the file (or group of files
separated by plus signs) that they follow in the command string.

You can enter the MACRO command as one line, or you can rely on the sys-
tem to prompt you for information. The MACRO command prompt is Files?
for the input specification. The system prints on the terminal the number of
errors MACRO detects during an assembly.

Chapter 12 of the RT-11 System Utilities Manual and the PDP-11 MACRO
Language Reference Manual contain more detailed information about usin
MACRO. The options you can use with the MACRO command follow.

/ALLOCATE:size Use this option with /LIST or /OBJECT to reserve
space on the device for the output file. The argument size represents the
number of blocks of space to allocate. The meaningful range for this value is
from 1 to 65535. A value of —1 is a special case that creates the largest file
possible on the device.

/CROSSREFERENCE][:typel...:.typel]l Use this option to generate a
symbol cross-reference section in the listing. This information is useful for
program maintenance and debugging. Note that the system does not gener-
ate a listing by default. You must also specify /LIST in the command line to

Keyboard Commands 4-157



MACRO

get a cross-reference listing. The argument type represents a one-character
code that indicates which sections of the cross-reference listing the assem-
bler should include. Table 4-11 summarizes the arguments and their
meaning.

Table 4-11: Cross-Reference Sections

Argument Section Type
S User-defined symbols
R Register symbols
M Macro symbolic names
P Permanent symbols (instructions, directives)
C Control sections (CSECT symbolic names)
E Error codes
None Equivalent to :S:M:E

/DISABLE:typel....typel Use this option to specify a MACRO .DSABL
directive. See the PDP-11 MACRO Language Reference Manual for a
description of the directive and a list of all valid types. Table 4-12 summa-
rizes the arguments and their meaning.

Table 4-12: .DSABL and .ENABL Directive Summary

Argument Default Enables or Disables
ABS Disable  Absolute binary output
AMA Disable  Assembly of all absolute addresses as relative addresses
CDR Disable  Treating source columns 73 and greater as comments
DBG Disable  Generation of internal symbol directory (ISD) records during

assembly (See Chapter 8 of the RT-11 Software Support
Manual for more information on ISD records.)

FPT Disable  Floating-point truncation

GBL Enable Treating undefined symbols as globals

LC Enable Accepting lowercase ASCII input

LCM Disable  Uppercase and lowercase sensitivity of MACRO-11 condi-
tional assembly directives .IF IDN and .IF DIF

LSB Disable  Local symbol block

PNC Enable Binary output

REG Enable Mnemonic definitions of registers

/ENABLE:typel....typel Use this option to specify a MACRO .ENABL
directive. See the PDP-11 MACRO Language Reference Manual for a
description of the directive and a list of all valid types. Table 4-12 summa-
rizes the arguments and their meaning.

/LIBRARY This option identifies the file it qualifies as a library file; use it
only after a library file specification in the command line. The MACRO

4-158 Keyboard Commands



N

MACRO

assembler looks first to the library file or files you specify and then to the
system library, SYSMAC.SML, to satisfy references (made with the
.MCALL directive) from MACRO programs.

In the example below, the command string includes two user libraries.

+MACRO MYLIBL1/LIBRARY+A+MYLIBZ/LIBRARY+B

When MACRO assembles file A, it looks first to the library, MYLIB1.MAC,
and then to SYSMAC.SML to satisfy .MCALL references. When it assem-
bles file B, MACRO searches MYLIB2.MAC, MYLIB1.MAC, and then
SYSMAC.SML, in that order, to satisfy references.

/LIST[:filespec] You must specify this option to produce a MACRO
assembly listing. Note that anytime you type a colon after the /LIST option
(/LIST:), you must include a device or file specification following the colon.

The /LIST option has different meanings depending on where you place it in
the command line.

The /LIST option produces a listing on the line printer when /LIST follows
the command name. For example, the following command line produces a
line printer listing after compiling a MACRO source file:

+MACRO/LIST MYPROG
When the /LIST option follows the file specification, it produces a listing file.

For example, the following command line produces the listing file
DK:MYPROG.LST after compiling a MACRO source file:

+MACRD MYPROG/LIST

If you specify /LIST without a file specification in the list of options that
immediately follows the command name, the MACRO assembler generates
a listing that prints on the line printer. If you follow /LIST with a device
name, the system creates a listing file on that device. If the device is a file-

structured device, the system stores the listing file on that device, assigning
it the same name as the input file and a .LST file type.

The following command produces a listing on the terminal.

+MACRO/LIST:TT: A

The next command creates a listing file called A.LST on RK3:.

+MACROD/LIST:RK3: A

Keyboard Commands 4-159



MACRO

If the /LIST option contains a name and file type to override the default of
.LST, the system generates a listing file with that name. The following com-
mand, for example, assembles A.MAC and B.MAC together, producing files
A.OBJ and FILE1.OUT on device DK:.

+MACRO/LIST:FILEL.QUT A+B

You cannot use a command like the next one. In this example, the second
listing file would replace the first one and cause an error.

+MACRO/LIBT:FILEZ A4B

Another way to specify /LIST is to type it after the file specification to which
it applies. To produce a listing file with the same name as a particular input
file, you can use a command similar to this one:

+MACRO A+B/LIST:RK3:
The above command assembles AMAC and B.MAC, producing files
DK:A.OBJ and RK3:B.LST.

If you specify a file name on a /LIST option following a file specification in
the command line, it has the same meaning as when it follows the command.
The following two commands have the same results:

+MACRO A/LIST:B

+MACRO/LIST:B A

Both commands generate output files A.OBJ and B.LST.

Remember that file options apply only to the file (or group of files that are
separated by plus signs) they follow in the command string. For example:

+MACRO A/LIST:B

This command assembles A.MAC, producing A.OBJ and A.LST. It also
assembles B.MAC, producing B.OBJ. However, it does not produce any list-
ing file for the assembly of B.MAC.

/OBJECTT:filespec] Use this option to specify a file name or device for the
object file. Note that anytime you type a colon after the /OBJECT option
(/OBJECT:), you must include a device or file specification following the
colon.

Because MACRO creates object files by default, the following two commands
have the same meaning:

+MACRD A

+MACRO/OBJECT A

4-160 Keyboard Commands



MACRO

Both commands assemble A.MAC and produce A.OBJ as output.

The /OBJECT option functions like the /LIST option; it can be either a com-
mand option or a file qualifier.

As a command option, /OBJECT applies across the entire command string.
The following command, for example, assembles A.MAC and B.MAC sepa-
rately, creating object files A.OBJ and B.OBJ on RK1.:.

+MACRO/0BJECT:RK1: A,B

Use /OBJECT as a file qualifier to create an object file with a specific name
or destination. The following command assembles A.MAC and B.MAC
together, creating files B.LST and B.OBJ.

+MACRO A+B/LIST/0BJECT

/NOOBJECT Use this option to suppress creation of an object file. As a
command option, /NOOBJECT suppresses all object files; as a file qualifier,
it suppresses only the object file produced by the related input files. In this
command, for example, the system assembles A.MAC and B.MAC together,
producing files A.OBJ and B.LST. It also assembles C.MAC and produces
C.LST, but does not produce C.OBJ.

+MACRO A+B/LIST:C/NOOBJECT/LIST

/SHOW:type Use this option to specify any MACRO .LIST directive. The
PDP-11 MACRO Language Reference Manual explains how to use these
directives. Table 4-13 summarizes the arguments and their meaning. Note
that you must explicitly request a listing file with the /LIST option.

Table 4-13: .LIST and .NLIST Directive Summary

Argument Default Controls
SEQ List Source line sequence numbers
LOC List Location counter
BIN List Generated binary code
BEX List Binary extensions
SRC List Source code
COM List Comments
MD List Macro definitions, repeat range expansions
MC List Macro calls, repeat range expansions
ME Nolist Macro expansions
MEB Nolist Macro expansion binary code
CND List Unsatisfied conditionals, .IF and .ENDC statements
LD Nolist Listing directives with no arguments
TOC List Table of contents
TT™M Line printer Output format
mode
SYM List Symbol table

Keyboard Commands 4-161



MACRO

INOSHOW:type Use this option to specify any MACRO .NLIST directive.
The PDP-11 MACRO Language Reference Manual explains how to use
these directives. Table 4-13 summarizes the valid arguments and their
meaning. Note that you must explicitly request a listing file with the /LIST
option.

4-162 Keyboard Commands



MOUNT

The MOUNT command associates the logical disk unit you specify with the
file you specify.

MOUNT /[NOJWRITE logical-disk-unit fllespec | logical-device-name]

In the command syntax illustrated above, logical-disk-unit represents the
logical disk unit you want to mount. Specify the logical disk unit in the form
LDn: (the colon is optional), where n is an integer in the range 0—7; or you
can specify a logical device name that has already been assigned to the logi-
cal disk unit. The term filespec represents the file to be used as the logical
disk. The default file type is .DSK. The optional term logical-device-name
represents a logical device name you want to assign to the logical disk. The
logical device name can be one to three characters long, followed by an
optional colon (:). All alphanumeric characters are valid, but the first char-
acter must be a letter.

You can specify the entire command on one line, or you can rely on the sys-
tem to prompt you for information. If you type MOUNT followed by a car-
riage return, the system prompts Device?. If you type the device name fol-
lowed by a carriage return, the system prompts File?. The system does not
prompt you for an optional logical device name; enter the logical device
name on the same line as the file specification.

The following example associates logical disk unit 5 (LD5:) with the file
DATA.DSK on device DLO:.

+MOUNT LDS: DLO:DATA

Use the SET LD CLEAN command to verify and correct logical disk assign-
ments. See the SET command description for more information on SET LD
CLEAN.

The next example associates LD5: with the file DLO:DATA.DSK, after LD5:
has been assigned the logical device name OUT. When the command is
executed, the logical device name TST is also assigned to LD5:.

+ABBIGN LDS: 0OUT

+ MOUNT
Device? OUT
File? DLO:DATA T&T

NOTE

You must be careful to avoid accidentally destroying files
while performing logical disk subsetting. You can assign logi-
cal disk unit numbers to both protected and system (.SYS)
files, and write to those files.

Keyboard Commands 4-163



MOUNT

The following sections describe MOUNT command options and include com-
mand examples.

/WRITE Use this option to write-enable a logical disk. This option allows
you read/write access to the logical disk you specify. This is the default
mode.

The following example associates LD1: with the file MYFILE.DSK on device
DY1:. When the command is executed, the logical disk is write-enabled.

+MOUNT/WRITE LD1: DY1:MYFILE.DEK

/NOWRITE Use this option to write-protect a logical disk. This option
allows you read-only access to the logical disk you specify. The default is
/WRITE.

The following example write-protects LDO:.

+MOUNT/NOWRITE LDO: DY1:MYFILE,DSK

4-164 Keyboard Commands



QS

M

PRINT

The PRINT command lists the contents of one or more files on the line
printer.

PRINTF /BEFORE[:date] filespecs
/SINCE[:date]

/DATE[:date]

/NEWFILES

/COPIES:n
/DELETE
/INFORMATION
/[NOJLOG
/PRINTER
/QUERY
/WAIT

/[NOJFLAGPAGE:n
/NAME:[dev:]jobname
/PROMPT

In the command syntax illustrated above, filespecs represents the file or files
to be printed. You can explicitly specify up to six files as input to the PRINT
command. The system prints the files in the order in which you specify them
in the command line. You can also use wildcards in the file specification. In
this case, the system prints the files in the same order as they occur in the
directory of the specified volume. If you specify more than one file, separate
the files by commas. If you omit the file type for a file specification, the sys-
tem assumes .LST. You can specify the entire command on one line, or you
can rely on the system to prompt you for information. The PRINT command
prompt is Files?.

If you are running QUEUE as either a foreground or system job, many of the
PRINT commands are executed by this program; therefore, the keyboard
monitor may return the dot prompt (.) immediately. See Chapter 17 of the
RT-11 System Utilities Manual, Queue Package, for more information. If
QUEUE is not running, some PRINT options are invalid (as noted below).
Likewise, some PRINT options are invalid if QUEUE is running. You

device to QUEUE so that another job and QUEUE will not intermix output
on that device.

Some of the options accept a date as an argument. The syntax for specifying
the date is:

[dd][:mmm][:yy]

where:
dd represents the day (a decimal integer in the range 1-31)
mmm represents the first three characters of the name of the month

vy represents the year (a decimal integer in the range 73-99)

Keyboard Commands 4-165



PRINT

The default value for the date is the current system date. If you omit any of
the date values (dd, mmm, or yy), the system uses the values from the cur-
rent system date. For example, if you specify only the year ::82 and the cur-
rent system date is May 4, 1983, the system uses the date 4:MAY:82. If the
current date is not set, it is considered O (the same as for an undated file in a
directory listing).

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system
prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

The PRINT command options follow; they include command examples.

/BEFORE[:date] Use this option to print only those files created before
the specified date. If no date is specified the current system date is used. The
following command prints all .MAC files on DYO: created before April 21,
1983:

+PRINT/BEFORE:21:APR:B3 DYO:% . MAC

/COPIES:n Use this option to print more than one copy of the file. The
meaningful range of values for the decimal argument n is from 1 to 32 (1 is

the default). The following command, for example, prints three copies of the
file REPORT.LST on the line printer.

+PRINT/COPIES:3 REPORT

/DATE[:date] Use this option to print only those files with a certain cre-
ation date. If no date is specified the current system date is used. The follow-
ing command prints all MAC files created on April 21, 1983:

LPRINT/DATE:Z1:APR:B3 DK:%,MAC

/DELETE Use this option to delete a file after it lists on the line printer.
This option must appear following the command in the command line. The
PRINT/DELETE operation does not ask you for confirmation before it
executes. You must use /QUERY for this function. The following example
prints PROG1.BAS on the line printer, then deletes it from DY 1.

+PRINT/DELETE DY1:PROGL.,BAS

/[FLAGPAGE:n Use this option if you want banner pages for each file
being printed, where n represents the number of banner pages you want for

4-166 Keyboard Commands



RN

S

PRINT

each file. This option is valid only if you are running QUEUE. If you specify
more than one file to be printed, QUEUE prints a banner page for each file.

The banner page that QUEUE creates consists of a page showing the file
name in large, block letters. The banner page also includes a trailer that
lists the job name, the date and time the job was output, the copy number
and number of copies in the job, and the input file specification.

NOTE

If you use the PRINT command to output files, and QUEUE is
running, you may get banner pages even when you do not
specify /FLAGPAGE. This condition is due to a default value
you can set when you run QUEMAN, the background job that
serves as an interface between you and QUEUE. The
QUEMAN /P option sets the default number of banner pages
for output jobs, so that each time you output a job, you get
banner pages. This condition remains in effect until you reset
it with the QUEMAN /P option. For more information on
QUEMAN and the /P option, see Chapter 17, Queue Package,
in the RT—11 System Utilities Manual.

The following example prints three banner pages for each file in the com-
mand line.

+PRINT/FLAGPAGE:3 PROG1.,MACsPROG1.LST,PROGL,STB

/INOFLAGPAGE Use this option if you do not want any banner pages
printed for each of the files in the job you want printed. Use this option only
if you are running QUEUE. This option is useful if you have previously set
QUEMAN’s /P option to create banner pages each time a job is output (see
note above). The default setting is/INOFLAGPAGE unless you specify other-
wise with the QUEMANY/P option.

/INFORMATION Use this option to change the severity level of the error
message that prints when not all of the input files you specified are found. If
you do not use INFORMATION, the system prints an error message when it
is unable to find an input file, and execution halts after the command is proc-
essed. When you use INFORMATION, the system prints an informational
message to tell you which files it cannot find, but execution continues.

In the following example, the system prints input files FILE1.TXT and
FILE3.TXT. However, since the system is unable to find DLO:FILE2.TXT,
the system prints a message to inform you.

+PRINT/INFORMATION DLO:(FILEL )FILE2FILED3),THT
TPIP-I-File not found DLO:FILEZ.THT

Keyboard Commands 4-167



PRINT

/LLOG This option lists on the terminal the names of the files that are
printed by the current command. Normally, the system prints a log only if
there is a wildcard in the file specification. If you specify /QUERY, the query
messages replace the log, unless you specifically type /LOG/QUERY in the
command line.

The following example shows a PRINT command and the resulting log.

+PRINT/LOG/DELETE REPORT
Files coried/deleted:
DK:REPORT.LST to LP:

/INOLOG This option prevents a list of the files copied from typing out on
the terminal. You can use this option to suppress the log when you use a
wildcard in the file specification.

INAME:[dev:]jobname TUse this option to specify a job name for the files
you want printed. This option is valid only if you are running QUEUE. You
can use up to six alphanumeric characters for the job name. If you do not use
the /NAME option, the system uses the first input file name as the job name.
If you specify a device with the job name, you can send the files to that
device, permitting you to send files to any valid RT-11 device. Note that the
handler for the output device must be loaded in memory (see the LOAD com-
mand description).

The following example sends JOB5, consmtmg of FILE1.LST, FILE2.L.ST,
and FILE3.LST, to DX1..

+PRINT/NAME:DX1:J0B5 FILELlFILEZ,FILES
The files from this example reside on DX1: as JOB5.JOB.

/NEWFILES Use this option in the command line if you need to print only
those files that have the current date. The following example shows a conve-
nient way to print all new files after a session at the computer.

+PRINT/NEWFILES #.,L8T
Files copied:

DR:OUTFIL.LST to LP:
DK:REPORT.LST to LP:

/PRINTER Use this option to force files to be copied to the line printer.
Use this option when you are running QUEUE if you want to perform other
tasks while you want print a file. This option causes PIP to copy the file to
the line printer, which bypasses QUEUE processing.

/PROMPT Use this option to continue a command string on subsequent
lines. This option is valid only if you are running QUEUE. When you use
/PROMPT, you can enter file specifications on subsequent lines directly to
QUEMAN, described in Chapter 17 of the RT-11 System Utilities Manual.
Terminate the command with two slashes (//).

4-168 Keyboard Commands



T

PRINT

The following example uses /PROMPT to print FILE1,FILE2,FILE3,FILE4,
and FILE5:

+PRINT/PROMPT FILE1L
*FILEZ, FILE3
*FILE4

*FILES//

/QUERY Ifyou use this option, the system requests confirmation from you
before it performs the operation. /QUERY is particularly useful on oper-
ations that involve wildcards, when you may not be sure which files the sys-
tem selected for an operation. Note that if you specify /QUERY in a PRINT
command line that also contains a wildcard in the file specification, the
confirmation messages that print on the terminal replace the log messages
that would normally appear. You must respond to a query message by typ-
ing Y or any string beginning with Y, followed by a carriage return, to initi-
ate execution of a particular operation. The system interprets any other
response to mean NO; it does not perform the specific operation. The follow-
ing example uses /QUERY.

+PRINT/QUERY #,L.8T

Files coried:

DR:OUTFIL LSBT to LP:? N
DK:REPORT.LST to LP:? Y

/SINCE[:date] Use this option to print only those files created on or after
the specified date. If no date is specified the current system date is used.

The following command prints all .MAC files on DYO: created on or after
April 21, 1983:

+PRINT/SINCE:21:APR:B3 DYO:%.MAC

/WAIT The /WAIT option is useful if you have a single-disk system. When
you use this option, the system initiates the PRINT operation, but then
pauses and waits for you to mount the volume that contains the files you
want to print.

When the system pauses, it prints Mount input volume in <device>;
Continue?. Mount the input volume and type Y or any string beginning with
Y, followed by a carriage return, to continue the print operation. Type N or
any string beginning with N, or two CTRL/Cs, to abort the operation and
return control to the keyboard monitor. Any other response causes the mes-
sage to repeat.

After the system completes the PRINT operation the system prints the fol-
lowing message prompting you to mount the system volume:

Mount svstem volume in <device®} Continue?

Keyboard Commands 4-169



PRINT

Mount the system volume and type Y or any string beginning with Y, fol-
lowed by a carriage return. If you type any other response the system contin-
ues to prompt you to mount the system volume until you type Y.

The following command line prints ERREX.MAC from DLO:

LPRINT/WAIT DLOIERREX.MAC
Mount inPut volume in DLO:z} Continue? Y
Mount svstem volume in DLO:3§ Continue? Y

In the case of PRINT, the system prints the file or files you specify before it
prints Mount system volume in <device>; Continue?. Make sure when you
use /WAIT that PIP is on the system volume. This option is invalid if
QUEUE is running.

4-170 Keyboard Commands



PROTECT

The PROTECT command protects a file so you cannot delete the file until
you remove the protection. (See the UNPROTECT command later in this
section.)

PROTECT /BEFORE[:date] filespecs
/SINCE[:date]
/DATE[:date]
/NEWFILES
/EXCLUDE
/INFORMATION
/INOJLOG
/QUERY
/SETDATE[:date]
/SYSTEM
WAIT

In the command syntax illustrated above, filespecs represents the file or files
you want to protect. You can explicitly specify up to six files. If you specify
more than one file, separate the files with commas. You can also use wild-
cards in the file specifications. You can enter the PROTECT command as one
line, or you can rely on the system to prompt you for information. The
PROTECT command prompt is Files?.

Some of the options accept a date as an argument. The syntax for specifying
the date is:

[dd][:mmm][:yy]

where:
dd represents the day (a decimal integer in the range 1-31)
mmm represents the first three characters of the name of the month

yy represents the year (a decimal integer in the range 73-99)

The default value for the date is the current system date. If you omit any of
the date values (dd, mmm, or yy), the system uses the values from the cur-
rent system date. For example, if you specify only the year ::82 and the cur-
rent system date is May 4, 1983, the system uses the date 4:MAY:82. If the
current date is not set, it is considered 0 (the same as for an undated file in a
directory listing).

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month,the system
prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

Keyboard Commands 4-171



PROTECT

The following sections describe options you can use with the PROTECT com-
mand and include command examples.

/BEFOREI:date] Use this option to protect only those files created before
the specified date. If no date is specified the current system date is used.

The following command protects all .MAC files on DK: created before
March 20, 1983.

+PROTECT/BEFORE:20:MAR:83 *.MAC
Files protected:

DK:A.MAC

DK:B.MAC

DK:C+MAC

/DATE[:date] Use this option to protect only those files with a certain cre-
ation date. If no date is specified the current system date is used.

The following command protects all . MAC files on DK: that were created on
March 20, 1983.

+PROTECT/DATE:20:MAR:83 +*.MAC
Files protected:

DK:A.MAC

DK:B.MAC

DK:C . MAC

/EXCLUDE This option protects all the files on a device except the ones
you specify. The following command, for example, protects all files on DYO:
except .SAV files.

+PROTECT/EXCLUDE DYO:*,8AY
PPIP-W-No .8Y5 action
Files protected:
DYQ:ABC.OLD

DYO:AAF.OLDY

DYCG:COMB.

DYC:MERGE.OLD

ANFORMATION Use this option to change the severity level of the error
message that prints when not all of the input files you specified are found. If
you do not use INFORMATION, the system prints an error message when it
is unable to find an input file, and execution halts after the command is proc-
essed. When you use /INFORMATION, the system prints an informational
message to tell you which files it cannot find, but execution continues.

In the following example, the input files FILE1.TXT and FILE3.TXT are
protected. However, since the system is unable to find DLO:FILE2.TXT, the
system prints a message to inform you.

+PROTECT/INFORMATION DLO:(FILE1l FILE2JFILE3) . .TXT
PPIP-I-File not found DLOSFILER.TXT

4-172 Keyboard Commands



N

PROTECT

/LOG This option lists on the terminal a log of the files protected by the
current command. This is the default mode of operation when you use wild-
cards in the file specification. Note that if you specify /LOG, the system does
not ask you for confirmation before execution proceeds. Use both /LOG and
/QUERY to invoke logging and querying.

/INOLOG This option prevents a list of files being protected from printing
on the terminal.

/INEWFILES Use this option to protect only the files that have the current
system date. The following example protects the files created today.

+PROTECT/NEWFILES DY1:%,BAK
Files Protected:
DY1:MERGE.BAK

/QUERY Use this option to request confirmation from the system before it
protects each file. This option is particularly useful on operations that
involve wildcards, when you may not be completely sure which files the sys-
tem will select for the operation. Note that specifying /LOG eliminates the
automatic query; you must specify /QUERY with /LOG to retain the query
function. You must respond to a query message by typing Y or any string
beginning with Y, followed by a carriage return, to initiate execution of a
particular operation. The system interprets any other response as NO; it
does not perform the operation.

The following example shows querying. Only the file DY1:AAF.MAC is
protected:

+PROTECT/QUERY DY1l:%.%
Files protected:
DY1lsABC.MAC TN
DY¥1:AAF .MAC TV
DY1:MERGE.FOR 7 N

/ISETDATE[:date] This option causes the system to put the date you
specify on all files it protects. If you specify no date the current system date
is used. If the current system date is not set, the system places zeros in the
directory entry date position. Normally, the system preserves the existing
file creation date when it protects a file.

The following example protects files and changes their dates to the current
system date.

+PROTECT/SETDATE DYO:%,FOR
Files pProtected:
D¥Q:ABC.FOR

DYO:AAF . FOR

DYO:MERGE.FOR

Keyboard Commands 4-173



PROTECT

/SINCE[:date] Use this option to protect only those files created on or
after the specified date. If no date is specified the current system date is
used.

The following command protects all . MAC files on DYO0: that were created on
or after April 21, 1983:

+PROTECT/SINCE:21:APR:83 DYO:%,.MAC
Files Protected:

DYO:AWMAC

DY¥0:B.MAC

D¥0:C+MAC

/ISYSTEM Use this option if you need to protect system (.SYS) files and
you use wildcards in the file type. If you omit this option, the system files are
excluded from the protect operation and a message is printed on the termi-
nal to remind you of this.

This example protects all files on DYO: with the file name MM, including
SYSfiles.

+PROTECT/SYSTEM DYO:MM, %
Files Protected:

DYOQ:MM.MAC
DYOs:MM,.OBJ
DYO:MM.,BAY
DYO:MM.BYS

/WAIT  When you use this option, the system initiates the PROTECT
operation but then pauses for you to mount the volume that contains the
files you want to protect. This option is especially useful if you have a single-
disk system.

When the system pauses, it prints Mount input volume in <device>;
Continue?, where <device> represents the device into which you mount the
volume. Mount the volume and type Y or any string beginning with Y, fol-
lowed by a carriage return. Type N or any string beginning with N, or two
CTRL/Cs, to abort the operation and return control to the keyboard monitor.
Any other response causes the message to repeat.

When the operation completes the system prints the Continue? message
again. Mount the system volume and type Y or any string beginning with Y,
followed by a carriage return. If you type any other response the system
prompts you to mount the system volume until you type Y. The system then
prints the keyboard monitor prompt. Make sure PIP is on your system vol-
ume when you use the /WAIT option.

The following example protects the file FILE.MAC on an RLO02 disk:

+ PROTECT/WAIT DLO:sFILE.MAC
Mount ineput volume in DLOz3 Continue? Y
Mount svstem volume in DLO:3 Continue? V¥

4-174 Keyboard Commands



Ny

R

" ™

’ N’

R

The R command loads a memory image file from the system device into
memory and starts execution.

R filespec

In the command syntax shown above, filespec represents the program to be
executed. The default file type is .SAV. The only valid device is SY:. The R
command is similar to the RUN command except that the file you specify in
an R command string must be on the system device (SY:). Use the R com-
mand only with background jobs including privileged jobs under the XM
monitor. (Use FRUN to execute a foreground job under the FB or XM
monitor.)

The following command loads and executes MYPROG.SAV from device SY:.

+R MYPROG

You can use the R command to execute a background virtual job under the
XM monitor. The R command creates a virtual memory partition for the job,
creates a region 0 and window 0 definition block, and sets up the user map-
ping registers.

Keyboard Commands 4-175



REENTER

The REENTER command starts the program at its reentry address (the
start address minus 2).

REENTER

The REENTER command accepts no options or arguments. REENTER does
not clear or reset any memory areas. Use it to avoid reloading the same pro-
gram for subsequent execution. You can use REENTER to return to a sys-
tem program or to any program that allows for a REENTER after the pro-
gram terminates. You can also use REENTER after you have used two
CTRL/Cs to interrupt those programs.

If you issue the REENTER command and it is not valid, the message
¢KMON-F-Invalid command is printed. You must start that program with
an R or RUN command. Note that if SET EXIT NOSWAP is in effect, you
may be unable to reenter the program.

In the following example the directory program (DIR) lists the directory of
DK: on the line printer. Two CTRL/Cs interrupt the listing and return to the
monitor. REENTER starts DIR at its reentry address, and DIR prompts for a
line of input.

+R DIR

¥ Pi=DKi*,%
CTRLIC

CTRLIC

+REENTER
*

Note in the example above that using REENTER does not mean that the
directory listing continues from where it was interrupted, only that the
DIRECTORY program recommences execution.

4-176 Keyboard Commands



REMOVE

The REMOVE command removes a device name from the system tables.

REMOVE devicel,...device]

In the command syntax shown above, device represents the device to be
removed from the system tables. You can enter the REMOVE command on
one line, or you can rely on the system to prompt you for information. The
REMOVE command prompt is Device?.

Using the REMOVE command does not change the monitor disk image; it
only modifies the system tables of the monitor currently in core. This allows
you to configure a special system for a single session at the computer with-
out having to reconfigure to return to your standard device configuration.
Bootstrapping the system device restores the original device configuration.
To permanently REMOVE a device, include the REMOVE command in the
standard system start-up indirect command file.

You cannot remove a loaded device, or any of the following handlers: SY:
(the handler for the system device), BA: (the BATCH handler), MQ (the mes-
sage queue handler), or TT: (the terminal handler). If you attempt to
REMOVE a device that does not exist in the running monitor’s system table,
the system prints an error message. You can use the INSTALL command to
install a new device after using the REMOVE command to remove a device
(thus creating a free device slot).

The following command removes the line printer handler and the card
reader handler from the system. Note that the colons (:) are optional.

+REMOVE LP:,CR:

Use the SHOW command to display on the terminal a list of devices that are
currently available on your system.

Keyboard Commands 4~177



RENAME

The RENAME command assigns a new name to an existing file.

RENAME /BEFORE[:date] input-filespecs output-filespecs
/SINCE[:date]
/DATE[:date]
/NEWFILES
/INFORMATION
/[NOJLOG
/[NOJPROTECTION
/QUERY
/INOJREPLACE
ISETDATE[:date]
/SYSTEM

L. /WAIT -

In the command syntax illustrated above, input-filespecs represents the
file(s) to be renamed, and output-filespec represents the new name. You can
specify up to six input files, but only one output file. Note that the device
specification must be the same for input and output; you cannot rename a
file from one device to another. If a file exists with the same name and file
type as the output file you specify, the system deletes the existing file unless
you use the NOREPLACE option to prevent this.

So that you do not rename system (.SYS) files by accident, the system
requires you to use the /SYSTEM option when you need to rename system
files and you use a wildcard in a file type. To rename files that cover bad
blocks (BAD files), you must explicitly give the file name and file type of the
specified .BAD file. Since .BAD files cover bad blocks on a device, you usu-
ally do not need to rename or otherwise manipulate these files.

Note that because of the file protection feature, you cannot execute any
RENAME operations that result in deleting a protected file. For example,
you cannot rename a file to the name of a protected file that already exists on
the same volume.

Some of the options accept a date as an argument. The syntax for specifying
the date is:

[dd][:mmm][:yy]

where:
dd represents the day (a decimal integer in the range 1-31)
mmm represents the first three characters of the name of the month

NAS represents the year (a decimal integer in the range 73-99)

The default value for the date is the current system date. If you omit any of
the date values (dd, mmm, or yy), the system uses the values from the cur-
rent system date. For example, if you specify only the year ::82 and the cur-
rent system date is May 4, 1983, the system uses the date 4:MAY:82. If the
current date is not set, it is considered 0 (the same as for an undated file in a
directory listing).

4-178 Keyboard Commands



R

RENAME

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system
prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

The options you can use with the RENAME command follow.

/BEFORE([:date] Use this option to rename only those files created before
the specified date. If no date is specified the current system date is used.

The following command renames all .MAC files on DYO: created before April
21,1983:

,RENAME/BEFORE:21:APR:83 DYO:%,MAC DYO:%.,BAK
Files renamed:

D¥0:AMAC to DYODO:A.BAK

DYO:B,MAC to DY0:B.BAK

DYOsC,MAC to DYOQ:C.BAK

/DATE[:date] Use this option to rename only those files with a certain
creation date. If no date is specified the current system date is used.

The following command renames all .MAC files created on March 20, 1982
to .BAK files:

,RENMAME/DATE:20:MAR:BZ DK:#.MAC *.BAK
Files renameds:

DK:A.MAC to DRK:A.BAK
DK:B.MAC to DR:B.BAK
DK:C.+MAC to DK:C.BAK

/INFORMATION Use this option to change the severity level of the error
message that prints when not all of the input files you specified are found. If
you do not use INFORMATION, the system prints an error message when it
is unable to find an input file, and execution halts after the command is pro-
cessed. When you use /INFORMATION, the system prints an informational
message to tell you which files it cannot find, but execution continues.

In the following example, the input files FILE1.TXT and FILE3.TXT are
renamed. However, since the system is unable to find DLO:FILE2.TXT, the
system prints a message to inform you.

+RENAME/INFORMATION DLO:(FILEL1sFILEZsFILE3) ,TXT
PPIP-I-File not found DLO:FILEZ2.TXT

/LOG This option lists on the terminal the files that were renamed by the
current command. Normally, the system prints a log only if there is a wild-
card in the file specification. If you specify /QUERY, the query messages
replace the log (unless you specifically type /LOG/QUERY in the command
line).

Keyboard Commands 4-179



RENAME

This example demonstrates logging.

+RENAME DYOQ: (A%*,MAC *,FOR)
Files renamed:

DYO:ABC . MAC to DYO:ABC.FOR
DYO:AAF +MAC to DYO:AAF.FOR

/INOLOG This option prevents a list of the files that are renamed from
appearing on the terminal.

/INEWFILES Use this option in the command line if you want to rename
only those files that have the current date. This is a convenient way to access
all new files after a session at the computer.

/PROTECTION Use this option to give a file protected status so that it
cannot be deleted until you disable that status. Note that if a file is pro-
tected, you cannot delete it implicitly. For example, you cannot perform any
operations on a file that result in deleting a protected file. You can change a

protected file’s name, but not its protected status, unless you also use the
/NOPROTECTION option.

/INOPROTECTION Use this option to enable a file for deletion. This
option disables a file’s protected status.

/QUERY Ifyou use this option, the system requests confirmation before it
performs the operation. /QUERY is particularly useful on operations that
involve wildcards, when you may not be sure which files the system selected
for the operation.

You must respond to a query message by typing Y or any string beginning
with Y, followed by a carriage return, to initiate execution of a particular
operation. The system interprets any other response to mean NO; it does not
perform the specific operation. The following example demonstrates
querying.

sRENAME/QUERY DYOQs(PIP1.8AY PIP,.8AV)
Files renamed:
DYO:PIPL,.5AY to DYO:PIP,SAV oY

Using the /QUERY option also provides a quick way of performing oper-
ations on several files. For example, renaming several files is easier if you
use /QUERY. You can then specify Y for each file you want renamed, as the
following example shows.

+RENAME/QUERY *,BAK #.MAC
Files renamed:

DK:PROGIL.BAK to DK:PROGL1.MAC ? Y
DK:PROGZ.BAK to DK:PROGZ.MAC 7 Y
DK:PROGE . BAK to DK:PROGG.MAC 7 Y
DRK:LMLBA.BAK to DRK:LMLBA.MAC 7

DK:LMLE BAKR to DR:LMLS .MAC 7 Y

4-180 Keyboard Commands



. ;
S

RENAME

Note that if you specify /QUERY in a command line that also contains a wil-
dcard in the file specification, the confirmation messages that print on the
terminal replace the log messages that would normally appear.

/REPLACE This is the default mode of operation for the RENAME com-
mand. If a file exists with the same name as the file you specify for output,
the system deletes that duplicate file when it performs the rename
operation. '

/INOREPLACE This option prevents execution of the rename operation if
a file with the same name as the output file you specify already exists on the
same device.

The following example uses /NOREPLACE. In this case, the output file
already existed and no action occurs.

+ RENAME/NOREPLACE DYQ:TEST.SAY DYO:DUP,5AY
PPIP-W-Outrut file founds no oreration performed DYOQ:TEST.S5AV

/SETDATE[:date] This option causes the system to put the date you
specify on all files it renames. If you specify no date the current system date
is used. If the current system date is not set, the system places zeros in the
directory entry date position. Normally, the system preserves the existing
file creation date when it renames a file.

The following example renames files and changes their dates to the current
system date.

+ RENAME/SETDATE DYO: (%,FOR +,0LD)
Files renamed:

DYO:ABC . FOR to DYOsABC.OLD
DYQ:AAF.FOR to DYO:AAF,OLD
DY0O:MERGE.FOR to DYQ:MERGE.OQLD

/SINCE[:date] This option renames all files on a specified device created
on or after a specified date.

The following command renames only those .MAC files on DK: created on or
after February 24, 1983.

+RENAME/SINCE:24:FEB:83 *.MAC #.BAK
Files coried:

DR:AMAC to DK:ABAK
DKk:B.MAC to DK:B.BAK
DR:C.+MAC to DK:C.BAK

/ISYSTEM Use this option if you need to rename system (.SYS) files and
you use wildcards in the input file type. If you omit this option, the system
files are excluded from the rename operation and a message is printed on the
terminal to remind you of this.

Keyboard Commands 4-181



4-182

RENAME
This example renames all files on DY0: with the file name MM, including
SYS files, to MX files:

JRENAME/SYSTEM DYO:MM, % DYOQ:iMKX, #
Files renamed:

DYO:MM.MAC to DYO:MX.MAC
DYO:MM.OBJ to DYO:MX.0BJ
DYO:MM.BAY to DYO:MX.,5AU
DYO:MM.BYS to DYO:MX.8YS

/WAIT The /WAIT option is useful if you have a single-disk system. When
you use this option, the system initiates the RENAME operation but then
pauses and waits for you to mount the volume that contains the files you
want to rename.

When the system pauses, it prints Mount input volume in <device>;
Continue?. Mount the input volume and type Y or any string beginning with
Y, followed by a carriage return, to continue the rename operation. Type N
or any string beginning with N, or two CTRL/Cs, to abort the rename opera-
tion and return control to the keyboard monitor. Any other response causes
the message to repeat.

After the system completes the rename operation, the system prints the fol-
lowing message prompting you to mount the system volume:

Mount svetem volume in <devicerd Continue?

Mount the system volume and type Y or any string beginning with Y, fol-
lowed by a carriage return. If you type any other response the system
prompts you to mount the system volume until you type Y. When you use
/WAIT, make sure that PIP is on the system volume.

The following command line renames PRIAM.TXT to NESTOR.TXT.
PRIAM.TXT is on an RKO05 disk.

JRENAME/WAIT/NOLOG RKO:PRIAM.THT NESTOR.TXT
Mount input volume in RKO:zi Continue? Y
Mount svstem volume in RKO:§ Continue? Y

Keyboard Commands



RESET

The RESET command resets several background system tables and does a
general clean-up of the background area.

RESET

The RESET command accepts no options or arguments.

It causes the system to purge all open input/output channels, initialize the
user program memory area, and release any device handlers that were not
explicitly made resident with the LOAD command. It also disables CTRL/O,
clears locations 40-53, resets the ring buffers, and resets the KMON (key-
board monitor) stack pointer.

Use RESET before you execute a program if a device or the monitor needs
reinitialization, or when you need to discard the results of previously issued
GET commands. The RESET command has no effect on the foreground or
system job.

The following example uses the RESET command before running a
program.

+RESET
JROMYPROG

Keyboard Commands 4-183




RESUME

The RESUME command continues execution of the foreground or system job
from the point at which a SUSPEND command was issued.

RESUME [ ]obname:l

If you have system job support enabled on your monitor, jobname represents
the name of the foreground or system job you wish to resume. (The RESUME
command accepts logical job names.) If you do not have system job support
enabled on your monitor, do not include the name of the foreground job you
wish to resume. When you issue the RESUME command, the foreground or
system job enters any completion routines that were scheduled while the job
was suspended. Note that RESUME is valid only with the FB and XM
monitors.

The following command resumes execution of the foreground job that is cur-
rently suspended.

+RESUME

The next command resumes execution of the system job, QUEUE.SYS, that
is currently suspended.

+RESUME GQUEUE

You can also use the RESUME command to start a foreground job that you
loaded with FRUN using /PAUSE. Likewise, you can use RESUME to start
a system job that you loaded with SRUN using /PAUSE.

4-184 Keyboard Commands



e

RUN

The RUN command loads a memory image file into memory and starts
execution.

argument

RUN filespec [ input-list 1GP output-list] i|

In the command syntax illustrated above, filespec represents the program to
be executed. The system assumes a .SAV file type for the executable file,
which can reside on any RT-11 block-replaceable device. The default device
is DK:. When used to execute a virtual job, the RUN command automati-
cally loads the device handler for the device you specify if it is not already
resident. This eliminates the need to explicitly load a device handler when
you run an overlaid program from a device other than the system device.
The RUN command executes only those programs that have been linked to
run as background jobs. (Use FRUN to execute foreground jobs under the FB
or XM monitor.)

RUN is a combination of the GET and START commands. First it loads a
memory image file from a storage device into memory. Then it begins execu-
tion at the program’s transfer address.

You can use RUN to execute a privileged job under the XM monitor the
same way you execute any other background job under the FB or SJ moni-
tor. However, a virtual job under the XM monitor requires special prepara-
tion for execution. The RUN command creates a virtual memory partition
for the job, creates a region 0 and window 0 definition block for the partition,
and sets up the user mapping registers.

The following command executes MYPROG.SAV, which is stored on device
DX1..

+RUN DX1:MYPROG

You can also pass an argument in the RUN command to the program, or
specify a list of input and output. This allows you to specify a line of input for
a user program or for a system utility program (which accepts file specifica-
tions in the special syntax described in Chapter 1 of the RT-11 System
Utilities Manual). The system automatically converts the input list and the
output list you specify into a format that the Command String Interpreter
(CSI) accepts. For example, to execute the directory program (DIR) and
obtain a complete listing of the directory of DX1: on the printer, you can use
the following command.

+RUN DIR DX1:%.,% LP:/E

4

Keyboard Commands 4-185



RUN

This command has the same effect as the following lines.

+RUN DIR
*LP:/E=DX1s% %
*CmLO

+

Note that when you use either an argument or an input list and output list
with RUN, control returns to the monitor when the program completes.

4-186 Keyboard Commands



SAVE

The SAVE command writes memory areas in memory image format to the
file and device that you specify.

SAVE filespec [ parameters]

In the command syntax shown above, filespec represents the file to be saved
on a block-replaceable device. If you do not specify a file type, the system
uses .SAV. The parameters represent memory locations to be saved.

Parameters are of the form:
address[-address(2)][,address(3)[-address(n)]]
where: .

address is an octal value representing a specific block of memory loca-
tions to be saved. If you specify more than one address, each
address must be higher than the previous one.

RT-11 transfers memory in 256-word blocks, beginning on boundaries that
are multiples of 256 (decimal). If the location(s) you specify make a block
that is less than 256 words, the system saves additional words to make a
256-word block. ‘

The system saves memory from location 0 to the highest memory address
specified by the parameter list or to the program high limit (location 50 in
the system communication area). Initially, the system gives the start
address and the Job Status Word (JSW) the default value O and sets the
stack to 1000. If you want to change these or any of the following addresses,
you can use the Deposit command to alter them and the SAVE command to
save the correct areas.

Area Location
Start address 40
Stack 42
JSW 44
USR address 46
High address 50
Fill characters 56

If you change the values of the addresses, it is your responsibility to reset
them to their default values. For more information concerning these
addresses refer to the RT—-11 Programmer’s Reference Manual. Note that the
SAVE command does not write the overlay segments of programs; it saves
only the root segment. You cannot use the SAVE command for foreground or
virtual jobs.

Keyboard Commands 4-187



SAVE

The following command saves locations 10000 through 11777 and 14000

through 14777. It stores the contents of these locations in the file
FILE1.SAV on device DK.:.

+8SAVE FILEL 10000-11000,14000-14100

The next example sets the reenter bit in the JSW and saves locations 1000
through 5777 in file PRAM.SAV on device SY:.

+D 44=2000
+SAVE BY:PRAM 1000-3777

4-188 Keyboard Commands



—

M’

SET

The SET command changes device handler characteristics and certain sys-
tem configuration parameters.

SET {physlcal-devlce-name} condition[,...condition]
Item

In the command syntax illustrated above, physical-device-name represents
the device handler whose characteristics you need to modify. See Table 3-1
in this manual for a list of the standard RT-11 permanent device names.
The argument item represents a system parameter that you need to modify.
The system items you can change include the default editor (SET EDIT),
error handling (SET ERROR), program swapping upon exit (SET EXIT),
IND and KMON handling of indirect command files and indirect control
files (SET KMON), USR status (SET USR), and wildcard handling (SET
WILD). Table 4-14 lists the devices and items you can modify, as well as the
valid conditions for these devices and items.

If you set more than one condition for a device in a single SET command,
separate the conditions with commas. With the exception of the SET TT,
SET USR, and SET item commands, the SET command locates the file
SY:device.SYS and permanently modifies it. The SET commands are valid
for all three RT—11 monitors unless otherwise specified. They permanently
modify the device handlers (except where noted); this means that the condi-
tions remain set even across a reboot. For those SET commands that do not
permanently modify the device handlers, the conditions return to the
default setting after a reboot. To make these settings appear permanent,
include the appropriate SET commands in your system’s start-up indirect
command file (see Section 4.4.3). The command you enter must be com-
pletely valid for the modification to take place. The SET command will
modify only the device handler that corresponds to the currently booted
monitor. For example, if you issue the SET command while running under
the XM monitor, any device handlers modified will be of the form %%X.SYS.

NOTE

If a handler (except for TT: or the handler specified in SET dd:
[NOJWRITE commands) is already loaded when you issue a
SET command for it, you must unload the handler and load a
fresh copy from the system device for the modification to have
an effect on execution.

The colon (:) after each device name is optional.

Keyboard Commands 4-189



SET

Figure 4-2: Format of a 12-Bit Binary Number (See SET CR: IMAGE
command for accompanying text)

PDP-11 WORD
15 14

13 12

1"

1

UNUSED (ALWAYS 0)

{

ZONE
12

ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE | ZONE

1 0 1 2 3 4 5 6 7 8 9

Table 4-14: SET Device Conditions and Modifications

Device or
Item

Condition

Modification

CR:

CR:
CR:
CR:

CR:

CR:

CR:

CR:

CR:

CODE=n

CRLF

NOCRLF

HANG

NOHANG

IMAGE

NOIMAGE

TRIM

NOTRIM

Modifies the card reader handler to use either the DEC 026 or
DEC 029 card codes. The argument n must be either 26 or 29.
The default value is 29.

Appends a carriage return/line feed combination to each card
image. This is the normal mode.

Transfers each card image without appending a carriage
return/line feed combination. The default is CRLF.

Waits for you to make a correction if the reader is not ready
at the start of a transfer. This is the normal mode.

Generates an immediate error if the device is not ready at the
start of a transfer. The handler waits (regardless of how the
condition is set) if the reader is not ready at some point dur-
ing a transfer (that is, the input hopper is empty, but an end-
of-file card has not been read). The default is HANG.

Causes each card column to be stored as a 12-bit binary num-
ber, one column per word. The CODE option has no effect in
IMAGE mode. Figure 4-2 illustrates the format of the 12-bit
binary number. This format allows the system to read binary
card images. It is especially useful if you use a special encod-
ing of punch combinations. Mark-sense cards can be read in
this mode. The default is NOIMAGE.

Allows the normal translation (as specified by the CODE
option) to take place. The system packs data one column per
byte. It translates invalid punch combinations into the error
character, ASCII backslash (\), which is octal 134. This is the
normal mode.

Removes trailing blanks from each card that the system
reads. You should not use TRIM and NOCRLF together
because card boundaries become difficult to read. TRIM is the
normal mode.

Transfers a full 80 characters per card. The default is TRIM.

4-190 Keyboard Commands

(Continued on next page)




g

SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item Condition Modification
dd: CSR=n Modifies the device handler to use n as the Control and
Status Register (CSR) address for the first controller. The
valid range for n is 160000 to 177570 (octal). This option
enables you to set a special CSR value in the device handler
itself without having to modify and reassemble the handler
source code.
This command is valid for the following devices:
DD: TU58
DL: RL01/02
DM: RK06/07
DU: RC25,RA80,RD51, RX50
DX: RX01
DY: RX02
RK: RKO05
dd: CSR2=n Modifies the device handler dd: to use n as the CSR address
for the second controller. This option is valid only if you cre-
ate the dd: dual controller handler (through system
generation).
This command is valid for the following devices:
DD:
DX:
DY:
DU:
dd: RETRY =n Allows you to change the number of times a device handler

attempts to recover from an error when the Error Logger is
running. The value n must be an integer in the range 1
through 8. The default value for n is 8. The variable dd:
represents the device mnemonic of any device that the Error
Logger supports:

DD:
DL:

DM:
DU:
DX

DY:
RK:

{Continued on next page)

Keyboard Commands 4-191



4-192

SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item Condition

Modification

dd: SUCCES

dd: NOSUCCES

dd: VECTOR=n

Allows you to choose to log successful I/O transfers as well as
errors when the error logger is running. This is the default
mode. The variable dd: represents the device mnemonic of
any device that the Error Logger supports:

DD:
DL:

DM:
DU:
DX:
DY:
RK:

Allows you to choose not to log successful I/O transfers when
the error logger is running. The default mode is SET dd:
SUCCES. The variable dd: represents the device mnemonic
of any device that the error logger supports:

DD:
DL:

DM:
DU:
DX:
DY:
RK:

Modifies the device handler to use n as the vector address for
the first controller. The valid range for n is 100 to 474 (octal).
This option enables you to set a special vector value in the
device handler without having to modify and reassemble the
handler source code.

This command is valid for the following devices:

DD: TU58

DL: RL01/02

DM: RK06/07

DU: RC25,RA80, RD51, RX50

DX: RX01
DY: RX02
RK: RKO05

Keyboard Commands

(Continued on next page)



e

-

SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

dd:

DU:

DU:

DUn:

DUn:

DUn:

DU:

DU:

DXn:

VEC2=n

CSR3=n

CSR4=n

PART=x

PORT=x

UNIT=x

VEC3=n

VEC4=n

WRITE

Modifies the device handler dd: to use n as the vector for the
second controller. This option is valid only if you create the
dd: dual controller handler (through system generation).

This command is valid for the following devices:

DD:
DIL:

DM:
DU:
DX:
DY:
RK:

Modifies the DU: device handler to use n as the CSR address
for the third controller. This option is valid only if you create
the third DU: controller handler (through system
generation).

Modifies the DU: device handler to use n as the CSR address
for the fourth controller. This option is valid only if you cre-
ate the fourth DU: controller handler (through system
generation).

Defines the partition of a disk on which device unit n resides.
The variable x is an integer in the range 0-255, depending on
the size of the disk device (each partition is 64K blocks). The
default for x is 0. (See the RT-11 Software Support Manual
for more information on MSCP disk partitioning.)

Defines which port to access when device unit n is specified.
The variable x is an integer in the range 0-3. (See the RT-11
Software Support Manual for more information on using
multiple ports with MSCP devices.)

Defines which unit plug number to access when device unit n
is specified. The variable x is an integer in the range 0-251.

Modifies the DU: device handler to use n as the vector for the
third controller. This option is valid only if you create the
third DU: controller handler (through system generation).

Modifies the DU: device handler to use n as the vector for the
fourth controller. This option is valid only if you create the
fourth DU: controller handler (through system generation).

Write-enables RX01 drive unit n. The condition remains set
across a reboot unless DXn is the system device when you
issue the command. The default value for nis 0.

(Continued on next page)

Keyboard Commands 4-193



SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

DXn:

DYn:

DY¥Yn:

EDIT

EDIT

EDIT

EDIT

EDIT

EL:

EL:

NOWRITE

WRITE

NOWRITE

EDIT

KED

KEX

K52

TECO

LOG

NOLOG

Write-protects RX01 drive unit n. This condition remains set
across a reboot unless DXn is the system device when you
issue the command. The default value for nis 0.

Write-enables RX02 drive unit n. This condition remains set
across a reboot unless DYn is the system device when you
issue the command. The default value for nis 0.

Write-protects RX02 drive unit n. This condition remains set
across a reboot unless DYn is the system device when you
issue the command. The default value for nis 0.

Invokes the text editor EDIT with the keyboard monitor
EDIT command. This is the normal mode. The system
returns to this condition after a reboot.

Invokes the keypad editor (KED) with the keyboard monitor
EDIT command. For more information on the keypad editor,
see the PDP—11 Keypad Editor User’s Guide. This condition
is valid only for VT100-compatible terminals. The system
returns to EDIT after a reboot.

Invokes the virtual form of the keypad editor (KEX) with the
keyboard monitor EDIT command. KEX runs only as a back-
ground job, and only under the XM monitor. Otherwise, you
use KEX just as you would KED. See the PDP-11 Keypad
Editor User’s Guide for instructions on how to use KED. This
condition is valid only for VT100-compatible terminals. The
system returns to EDIT after a reboot.

Invokes the keypad editor (K52) with the keyboard monitor
EDIT command. This condition is valid only if your terminal
is a VT52. For more information on the keypad editor, see the
PDP-11 Keypad Editor User’s Guide. The system returns to
EDIT after a reboot.

Invokes the text editor TECO with the keyboard monitor
EDIT command. The default is EDIT. The system returns to
that condition after a reboot.

Used when running the Error Logger under the SJ monitor.
Turns on the Error Logger if the EL handler is loaded and
begins logging errors in an EL handler internal buffer. The
Error Logger can be turned off by issuing SET EL NOLOG or
by unloading the EL handler. The system returns to SET EL:
NOLOG after a reboot.

Used when running the Error Logger under the SJ monitor.
Turns off the Exror Logger. This is the default condition.

4-194 Keyboard Commands

(Continued on next page)



‘\L\«_Q/' '

SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

EL:

ERROR

ERROR

ERROR

ERROR

ERROR

PURGE

ERROR

FATAL

NONE

SEVERE

WARNING

Used when running the Error Logger under the SJ monitor.
Discards the contents of the internal Error Logger buffer.
This command is valid only if the Error Logger has been
enabled with the SET EL LOG command.

Causes indirect command files and keyboard monitor com-
mands that perform multiple operations (such as EXECUTE,
which combines assembling, linking, and running) to abort if
errors or severe or fatal errors occur. These errors produce
error messages that contain the severity codes -E-, -F-, and
-U-. This setting causes indirect files and keyboard monitor
commands to abort on MACRO assembly errors. An example
of an error is an undefined symbol in an assembly. An exam-
ple of a severe error is a device that is write-locked when the
system attempts to write to it. If either condition occurs, the
indirect command file or keyboard monitor command aborts
the next time the monitor gets control of the system. This is
the normal setting. The system returns to this condition after
areboot.

Causes indirect command files and keyboard monitor com-
mands to abort only if severe or fatal errors occur. These
errors produce error messages that contain the severity codes
-E-, -F-, and -U-. See SET ERROR ERROR, which is the
default setting. The system returns to that condition after a
reboot.

Allows indirect command files and keyboard monitor com-
mands to continue to execute even though they contain sig-
nificant errors. Most monitor fatal errors still cause the indi-
rect command file or keyboard monitor command to abort.
Fatal errors that always abort indirect command files con-
tain the -U- characters in the error messages. See SET
ERROR ERROR, which is the default setting. The system
returns to that condition after a reboot.

Causes indirect command files and keyboard monitor com-
mands to abort only if severe or fatal errors occur. These
errors produce error messages that contain the severity codes
-F- and -U-. See SET ERROR ERROR, which is the default
setting. The system returns to that condition after a reboot.

Causes indirect command files and keyboard monitor com-
mands to abort if warnings, errors, or severe or fatal errors
occur. These errors produce error messages that contain the
severity codes -W-, -E-, -F-, and -U-. See SET ERROR
ERROR, which is the default setting. The system returns to
that condition after a reboot.

(Continued on next page)

Keyboard Commands 4-195



SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

EXIT

EXIT

KMON

KMON

LD

LDn:

LDn:

LP:

SWAP

NOSWAP

IND

NOIND

CLEAN

WRITE

NOWRITE

CR

When a program terminates, causes any portion of the pro-
gram that resides in SWAP.SYS to be written back into
memory. This is the default setting.

When a program terminates, prevents any portion of the pro-
gram that resides in SWAP.SYS from being written back
into memory. This may prevent you from being able to reen-
ter a program; however, it allows considerably better perfor-
mance when using slower media (such as TU58, RX01, and
RX02). The default setting is SET EXIT SWAP.

Causes IND to execute a file specified in the command @file-
spec as an IND control file. Causes KMON to execute a file
specified in the command $@filespec as an indirect command
file. The default setting is SET KMON NOIND.

Causes KMON to execute a file specified in the command
@filespec as an indirect command file. If you try to execute
an indirect control file, an error occurs. This is the default
setting.

Verifies and corrects, if necessary, all current logical disk
assignments by checking them against the files on volumes
that are mounted. This command is most useful after you
have moved or removed files on a volume, or after you have
removed a volume from a device. If a logical disk file has
moved, the new location is noted so that you can continue to
use that logical disk. If you have deleted a logical disk file or
the volume containing a logical disk file is no longer
mounted, the logical disk assignment is disconnected. In the
case of a volume that you have removed, the disconnect is
only temporary. You can reestablish the assignment when
you remount the volume by using the SET LD CLEAN com-
mand again. The keyboard commands SQUEEZE and BOOT
automatically perform the SET LD CLEAN operation.

Used during disk subsetting; defines logical disk unit n as
being write-enabled (read/write access allowed). The value n
must be an integer in the range 0 through 7.

Used during disk subsetting; defines logical disk unit n as
being write-locked (read-only access allowed). The value n
must be an integer in the range 0 through 7.

Sends carriage réturns to the printer. To allow overstriking
on the printer, use this condition for any FORTRAN program
that uses formatted input and output. Use CR also for any
LS11 or LPO5 line printer to prevent loss of the last line in
the buffer. LP NOCR is the normal mode.

4-196 Keyboard Commands

(Continued on next page)



‘\://

“ /

SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

LP:

LP:

LP:

LP:

LP:

LP:

LP:

LP:
LP:

NOCR

CSR=n

CTRL

NOCTRL

FORM

NOFORM

FORMO

NOFORMO
HANG

Prevents the system from sending carriage returns to the
printer. This setting produces a significant increase in print-
ing speed on LP11 printers, where the line printer controller
causes a line feed to perform the functions of a carriage
return. This is the default setting.

Modifies the line printer handler to use n as the Control and
Status Register (CSR) address for the line printer controller.
The value you supply must be an octal word address not less
than 160000. This option enables you to set a special CSR
value in the line printer handler itself, without having to
modify and reassemble the handler source code. Use this
option if you have installed the line printer controller at a
nonstandard address.

Passes all characters, including nonprinting control charac-
ters, to the printer. Use this condition to pass the bell charac-
ter to the LA180 printing terminal. You can use this mode for
LS11 line printers. (Other line printers print a space for a
control character.) The defaultis NOCTRL.

Ignores nonprinting control characters. This is the normal
mode.

Declares that the line printer has hardware form feeds, caus-
ing the line printer handler to send form feeds to the control-
ler. When you use this option, the line printer handler sends
the form feed character to the printer each time the handler
encounters a form feed. This is the default setting.

Causes the line printer handler to simulate hardware form
feeds by sending one or more line feeds to the printer. When
you use this setting, you must also use the LENGTH =n set-
ting and position the paper at the top of a form (that is, at the
page perforation) before you start to use the printer. Using
the NOFORM condition is useful if you are using a pre-
printed form that has a nonstandard length. You must use
this setting if your printer does not accommodate form feeds.
FORM is the default setting.

Issues a form feed before a request to print block 0. This is the
normal mode.

Turns off FORMO mode, which is the default.

Waits for you to make a correction if the line printer is not
ready or is not ready at some point during printing. If you
expect output from the line printer and the system does not
respond or appears to be idle, check to see if the line printer is
powered on and ready to print. This is the normal mode.

(Continued on next page)

Keyboard Commands 4-197



SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Ttem

Condition

Modification

LP:

LP:

LP:

LP:

LP:

LP:

LP:

LP:

LP:

LS:

NOHANG

LC

NOLC

LENGTH=n

SKIP=n

TAB

NOTAB

VECTOR=n

WIDTH=n

CR

Generates an immediate error if the line printer is not ready.
The default is HANG.

Allows the system to send lowercase characters to the
printer. Use this condition if your printer has a lowercase
character set. The default is NOLC.

Translates characters in lowercase to uppercase before print-
ing. This is the normal mode.

Causes the line printer to use n as the number of lines per
page. The default number of lines per page is 66. Use this
option with the NOFORM and SKIP =n settings.

Causes the line printer handler to send a form feed to the
printer when it comes within n lines of the bottom of a page.
Use this setting to prevent the printer from printing over
page perforations. The value you supply for n should be an
integer from O to the maximum number of lines on the paper.
If you set SKIP=0, the handler sends lines to the printer
regardless of the position of the paper. If you have set SKIP to
a value other than 0, set SKIP=0 to disable this condition.
When you use this setting, you must also use the
LENGTH =n setting. The default is SKIP=0.

Sends TAB characters to the line printer. The default is
NOTAB.

Expands TAB characters by sending multiple spaces to the
line printer. This is the normal mode.

Modifies the line printer handler to use n as the vector of the
line printer controller. The value you supply for n must be an
even octal address below 500. This option enables you to set a
special vector value in the line printer handler itself, without
having to modify the handler source code and reassemble.
Use this option if you have installed the line printer control-
ler at a nonstandard address.

Sets the line printer width to n, where n is a decimal integer
between 30 and 255 inclusive. The system ignores any char-
acters that print past column n. The default is 132.

Sends carriage returns to the printer. To allow overstriking
on the printer, use this condition for any FORTRAN program
that uses formatted input and output. (Use CR also for any
LS11 or LP05 line printer to prevent loss of the last line in
the buffer.) This is the normal mode.

4-198 XKeyboard Commands

(Continued on next page)



N

N

N

SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

LS:

LS:

LS:

LS:

LS:

LS:

LS:

TJS:
1S:

LS:

NOCR

CSR=n

CTRL

NOCTRL

FORM

NOFORM

FORMO

NOFORMO
HANG

NOHANG

Prevents the system from sending carriage returns to the
printer. This setting may produce a significant increase in
printing speed on some line printers, where the printer con-
troller causes a line feed to perform the functions of a car-
riage return. The default is CR.

Modifies the line printer handler to use n as the Control and
Status Register (CSR) address for the printer controller. The
value you supply for n must be an octal word address not less
than 160000. This option enables you to set a special CSR
value in the printer handler itself, without having to modify
the handler source code and reassemble. Use this option if
you have installed the printer controller at a nonstandard
address.

Passes all characters, including nonprinting control charac-
ters, to the printer. Use this condition to pass the bell charac-
ter to the LA180 printing terminal. The default is NOCTRL.

Ignores nonprinting control characters. This is the normal
mode.

Declares that the line printer has hardware form feeds, caus-
ing the line printer handler to send form feeds to the control-
ler. When you use this option, the line printer handler sends
the form feed character to the printer each time the handler
encounters a form feed. This is the default setting.

Causes the line printer handler to simulate hardware form
feeds by sending one or more line feeds to the printer. When
you use this setting, you must also use the LENGTH =n set-
ting and position the paper at the top of a form (that is, at the
page perforation) before you start to use the printer. Using
the NOFORM condition is useful if you are using a pre-
printed form that has a nonstandard length. You must use
this setting if your printer does not accommodate form feeds.
FORM is the default setting.

Issues a form feed before a request to print block 0. This is the
normal mode.

Turns off FORMO mode. The default is FORMO.

Waits for you to make a correction if the line printer is not
ready or becomes not ready during printing. If you expect
output from the printer and the system does not respond or
appears to be idle, check to see if the printer is powered on
and ready to print. This is the normal mode.

Generates an immediate error if the printer is not ready. The
default setting is HANG.

(Continued on next page)

Keyboard Commands 4-199



SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item Condition Modification

LS: LC Allows the system to send lowercase characters to the
printer. Use this condition if your printer has a lowercase
character set. This is the normal mode.

LS: NOLC Translates lowercase characters to uppercase before print-
ing. The default is LC.

LS: LENGTH=n Causes the printer to use n as the number of lines per page.
The default number of lines per page is 66. Use this option
with the NOFORM and SKIP =n settings.

LS: SKIP=n Causes the line printer handler to send a form feed to the
printer when it comes within n lines of the bottom of a page.
Use this setting to prevent the printer from printing over
page perforations. The value you supply for n should be an
integer from 0 to the maximum number of lines on the paper.
If you set SKIP=0, the handler sends lines to the printer
regardless of the position of the paper. If you have set SKIP to
a value other than 0, set SKIP=0 to disable this condition.
When you use this setting, you must also use the
LENGTH =n setting. The default is SKIP=0.

LS: TAB Sends TAB characters to the printer. The default is NOTAB.

LS: NOTAB Expands TABs by sending multiple spaces to the printer.
This is the normal mode.

LS: VECTOR=n Modifies the printer handler to use n as the vector of the line
printer controller. The value you supply for n must be an
even octal address below 500. This option enables you to set a
special vector value in the line printer handler itself, without
having to modify the handler source code and reassemble.
Use this option if you have installed the printer controller at
anonstandard address.

LS: WIDTH=n Sets the printer to width n, where n is a decimal integer
between 30 and 255 inclusive. The system ignores any char-
acters that print past column n. The default is 132.

MM: DEFALT=9 Returns to default settings for 9-track tape. The 9-track
defaults are:

DENSE =809
ODDPAR
NODUMP

MM: DENSE=[800 Sets density for the 9-track tape handler. Do not alter the
or 809 density setting within a volume. A density setting of 1600
or 1600] bits/in automatically sets parity to odd. The valid density set-

tings for 9-track tape are:

800 bits/in
1600 bits/in

(Continued on next page)

4-200 Keyboard Commands



R

SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

MM:

MM:

MT:

MT:

MT:

MT:

SL:

SL:

SL:

SL:

ODDPAR

NOODDPAR

DEFALT=9

DENSE =800
or 809

ODDPAR

NOODDPAR

ASK

LEARN

NOLEARN

ON

Sets parity to odd for 9-track tape. DIGITAL recommends
this setting.

Sets parity to even for 9-track tape. DIGITAL does not recom-
mend this setting for normal operation, and provides it only
for compatibility with other systems.

Returns to default settings for 9-track tape:

DENSE =800
ODDPAR

Sets density for 9-track tape. Settings 800 and 809 are the
only valid settings for 9-track tape. Thus, the valid density
setting is:

9-track: 800 or 809 = 800 bits/in

NOTE

These SET command options apply to all units of the mag-
tape controller. Six-bit mode and core dump mode are
described in the RT-11 Software Support Manual.

Sets parity to odd for 9-track tape. DIGITAL recommends
this setting.

Sets parity to even for 9-track tape. DIGITAL does not recom-
mend this setting for normal operation, and provides it only
for compatibility with other systems.

Allows the single-line editor to determine the type of termi-
nal you are using, so SL can use the proper escape sequences.
SL prints on the console the type of terminal you are using
and the type of support SL will provide for that terminal. If
SL does not support the terminal you are using, SL prints an
error message.

Helps you learn to use the single-line editor by allowing you
to lock the help display on the top half of your screen. You
can use the bottom of your screen to type command lines and
display console output. After you issue the commands SET
SL ON and SET SL LEARN, type the PF2 key to display the
help frame and lock it on the screen. This command is valid
for VT'100-compatible terminals only.

Unlocks the help display and allows it to scroll off the screen,
S0 you can use the entire screen to display console input and
output. This is the default setting. The SET SL: OFF com-
mand performs an automatic SET SL: NOLEARN command.

Loads and enables the single-line editor.

(Continued on next page)

Keyboard Commands 4-201



SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

SL:
SL:

SL:

SL:

SL:

SL:

OFF
SYSGEN

TTYIN

NOTTYIN

VTxxx

WIDTH=n

Unloads and disables the single-line editor.

Converts the system generation characteristics of SL.SYS
(under the SJ and FB monitors) or SLX.SYS (under the XM
monitor) to match those of the current monitor without
requiring you to reassemble SL.

Enables you to edit responses to prompts printed by the sys-
tem utilities. When SET SL: TTYIN in enabled, the prompt
prints on one line, and your response appears on the follow-
ing line. (This command allows SL to intercept and edit input
requests from TTYIN. SL always intercepts and edits input
requests from .CSIGEN, .CSISPC, and .GTLIN.)

Disables your ability to edit responses to prompts printed by
the system utilities. When SET SL: NOTTYIN is enabled,
the prompt and your response appear on the same line. (This
command prevents SL from intercepting and editing input
requests from .TTYIN. SL still intercepts and edits input
requests from .CSIGEN, .CSISPC, and .GTLIN.) This is the
default mode.

Tells the single-line editor which type of terminal you are
using, so SL can send the proper escape sequences. It is rec-
ommended that you use SET SL: ASK instead of this
command.

This command supports the following terminals:

VT52 (SET SL: VT52)
VT62 (SET SL: VT62)
VT100 (SET SL: VT100)
VT101 (SET SL: VT101)
VT102 (SET SL: VT102)

The default setting is SET SL VT100.

Allows you to set the width of the terminal. The variable n
represents the maximum number of characters on a single
line on the terminal. The maximum allowable width of a line
you can input at the terminal is:

n - (width of prompt string including monitor prompt) - 1

For example, if you issue the command SET SL: WIDTH = 50,
and the prompt consists of only the keyboard monitor prompt
(), then the maximum number of characters you can type as
input on one line is:

50—-1-1 = 48 characters
The default value for nis 79.

4-202 Keyboard Commands

(Continued on next page)



——

\‘WM -

SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

TT:*

TT:*

TT:*

TT:*

TT:*

TT:*

TT:*

CONSOL=n

CRLF

NOCRLF

FB

NOFB

FORM

NOFORM

HOLD

Directs the system to use the terminal whose logical unit
number you specify as the console terminal. The terminal
whose logical unit number you specify must not be currently
attached by the foreground or any system job. To use this set-
ting, you must have a multiterminal configuration. The sys-
tem returns to this default after a reboot. You cannot use this
setting for a remote line.

Issues a carriage return/line feed combination on the console
terminal whenever you attempt to print past the right mar-
gin. You can change the margin with the WIDTH command.
This is the normal mode. This setting is invalid with a non-
multiterminal SJ monitor. The system returns to this condi-
tion after a reboot.

Takes no special action at the right margin. This setting is
invalid with a non-multiterminal SJ monitor. The default is
CRLF. The system returns to that condition after a reboot.

Treats CTRL/B and CTRL/F (and CTRL/X in monitors that
include system job support) as background and foreground
program control characters and does not transmit them to
your program. This is the normal mode. This setting is not
valid for the SJ monitor. The system returns to this condition
after a reboot.

Causes CTRL/B and CTRL/F (and CTRL/X in monitors that
include system job support) to have no effect. Issue SET TT:
NOFB to KMON, which runs as a background job, to disable
all communication with the foreground or system job. To
enable communication with the foreground job, issue the
command SET TT FB. This setting is not valid for the SJ
monitor. The default is FB, The system returns to that condi-
tion after a reboot.

Indicates that the console terminal is capable of executing
hardware form feeds. This setting is invalid with a non-
multiterminal SJ monitor.

Simulates form feeds by generating eight line feeds. This set-
ting is not valid for the non-multiterminal SJ monitor. This
is the normal mode. The system returns to this condition
after a reboot.

Enables the hold screen mode of operation for the VT50,
VT52, and VT61 terminals. The command has no effect on
any other terminals, but it can cause a left square bracket ()
to print. This setting is valid for all monitors. NOHOLD is
the default setting. The system returns to that condition
after a reboot.

*SET TERM can be substituted for SET TT:

(Continued on next page)

Keyboard Commands 4-203



SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

TT:*

TT:*

TT:*

NOHOLD

PAGE

NOPAGE

QUIET

NOQUIET

SCOPE

NOSCOPE

TAB

NOTAB

Disables the hold screen mode of operation for the VT50 ter-
minal. The command has no effect on any other terminal, but
it can cause a backslash (\) to print. This setting is valid for
all monitors. The default is NOHOLD. The system returns to
that condition after a reboot.

Treats CTRL/S and CTRL/Q characters as terminal output
hold and unhold flags and does not transmit them to your
program. You must use this setting if you are using a VT100
terminal. This setting is not valid for the non-multiterminal
SJ monitor. This is the normal mode. The system returns to
this condition after a reboot.

Causes CTRL/S and CTRL/Q to have no special meaning.
This setting is not valid for the non-multiterminal SJ moni-
tor. The default is PAGE. The system returns to that condi-
tion after a reboot.

Prevents the system from echoing lines from indirect files.
The default is NOQUIET. The system returns to that condi-
tion after a reboot.

Echoes lines from indirect files. This is the default mode. The
system returns to this condition after a reboot.

Echoes DELETE or RUBOUT characters as backspace-space-
backspace. Use this mode if your console terminal is a VT50,
VTO05, VI52, VT55, VT61, VT100, or if GT ON is in effect.
The default is NOSCOPE. The system returns to that condi-
tion after a reboot. Note that you delete TAB characters by
typing a single RUBOUT or DELETE, even though the cur-
sor does not move back the correct number of spaces. This is a
restriction in SCOPE modes.

Echoes DELETE or RUBOUT characters by enclosing the
deleted characters in backslashes. This is the normal mode.
The system returns to this condition after a reboot.

Indicates that the console terminal is capable of executing
hardware tabs. This setting is not valid for the non-
multiterminal SJ monitor. The default is NOTAB. The sys-
tem returns to that condition after a reboot.

Simulates tab stops every eight positions. Many terminals
supplied by DIGITAL have hardware tabs. This setting is not
valid for the non-multiterminal SJ monitor. This is the nor-
mal mode. The system returns to this condition after a
reboot.

*SET TERM can be substituted for SET TT: (Continued on next page)

4-204 Keyboard Commands



Necaai”

e

SET

Table 4-14: SET Device Conditions and Modifications (Cont.)

Device or
Item

Condition

Modification

TT:*

USR

USR

VM

WILD

WIDTH=n

SWAP

NOSWAP

BASE =nnnnnn

EXPLICIT

Sets the terminal width to n, where n is an integer between
30 and 255. The system initially sets the width to 80. This
setting is not valid for the non-multiterminal SJ monitor.
(See SET TT CRLF). The system returns to 80 after a reboot.

Allows the background job to place the User Service Routine
in a swapping state. This setting is not valid for the XM mon-
itor. This is the normal mode for FB and SJ monitors. The
system returns to this condition after a reboot.

Prevents the background job from placing the User Service
Routine in a swapping state. This setting is not valid for the
XM monitor. The default is SWAP for FB and SJ monitors.
The system returns to that condition after a reboot.

Allows you to select the location in memory where block 0 of
a virtual disk will begin (the base address). Since the base
address is a 22-bit address that must be represented in 16
bits, the bottom six bits (bits 0-5) are always 0. Therefore,
when specifying the value nnnnnn use only the top 16 bits of
the base address you want. For example, if you want the base
address to be 10025600 (octal), specify 100256 for nnnnnn.
The default value for nnnnnn is 1600 (octal) under the SJ and
FB monitors, and 10000 (octal) under the XM monitor. (The
address 10000 is the division between 18- and 22-bit
addresses.)

Causes the system to recognize file specifications exactly as
you type them. If you omit a file name or a file type in a file
specification the system does not automatically replace the
missing item with an asterisk (*). Wildcards are described in
Section 4.2 of this manual. The default is IMPLICIT. The sys-
tem returns to that condition after a reboot.

Causes the system to interpret missing fields in file specifica-
tions as asterisks (*). Wildcards are described in Section 4.2
of this manual. Table 4-2 shows how the system interprets
commands that have missing fields. This is the normal mode.
The system returns to this condition after a reboot.

*SET TERM can be substituted for SET TT:

(Continued on next page)

Keyboard Commands 4-205



SET

The following examples illustrate the SET command. This command allows
the system to send lowercase characters to the printer:

+5ET LP LC

The next command sets the system wildcard default to implicit.

+BET WILD IMPLICIT

As a result of this command the system inserts an asterisk (*) in place of a
missing file name or file type in a file specification. See Table 4-2 for a list of
these commands.

4-206 Keyboard Commands



SHOW

The SHOW command prints information about your RT-11 system on the
console terminal.

SHOW (" ALL )
CONFIGURATION
DEVICES[:dd]
ERRORS
JALL
IFILE:filespec
/FROM[:date]
/OUTPUT:filespec
< /PRINTER
/SUMMARY
/TERMINAL
/TO[:date]
JOBS
MEMORY
QUEUE
SUBSET
LTERMINALS

VT

The information includes hardware configuration, monitor version, total
amount of memory on the system and organization of physical memory, spe-
cial features in effect, device names and logical device name assignments,
terminal characteristics for terminals currently active on a multiterminal
system, logical disk subsetting, and device handler status. If you are run-
ning the Error Logger or QUEUE, the SHOW command can provide infor-
mation on errors and the update status of files waiting to be sent to an out-
put device.

If you specify SHOW without an option, SHOW displays your system’s
device assignments. The devices the system lists are those known by the
RT-11 monitor currently running. This list reflects any additions or dele-
tions you have made with the INSTALL and REMOVE commands. The list-
ing also includes additional information about particular devices. The infor-
mational messages and their meanings are:

Message Indicated Condition
(RESORC) The device or unit is assigned to the back-
or = RESORC ground job RESORC (for FB and XM monitors
only).
(F) The device or unit is assigned to the foreground
or =F job (for FB and XM monitors only and monitors

without system job support).

(jobname) The device or unit is assigned to the system or
or =jobname foreground job (for FB and XM monitors that
have system job support), where jobname repre-

sents the name of the system or foreground job.

Keyboard Commands 4-207



SHOW

(Loaded) The handler for the device has been loaded into
memory with the LOAD command.

(Resident) The handler for the device is included in the
resident monitor.

=]ogical-device-name(1), The device or unit has been assigned the indi-
logical-device-name(2)... cated logical device names with the ASSIGN
JJogical-device-name(n)  command.

xx free slots The last line tells the number of unassigned, or
free, device slots.

The following example was created under an FB monitor that has system job
support. It shows the status of all devices known to the system.

+SHOMW

TT (Resident)

RK (Resident)
RK1 = 8Yy DKy OBJ» BRCy» BIN
RKZ = L8T: MAP

MQ (Resident)

DL (Loaded)

DM
DX (Loaded)

DXO: (MYPRDG)
LP: (Loaded=QUEUE)
MT

3 free slots

The listing shows first that TT, MQ, and RK are resident in memory. The
other device handlers known to the system are MQ, DL, DM, DX, LP, and
MT. There are five free slots in the table. RKO: has the logical names SY,
DK, OBJ, SRC, and BIN. RK1: has the logical names LST and MAP. The DX
handler is loaded and device DXO: belongs to the foreground job, MYPROG.
The LP: handler is loaded and belongs to the system job, QUEUE.

The options for the SHOW command follow.

ALI, This option is a combination of CONFIGURATION, DEVICES,
device assignments (SHOW command with no option), JOBS, TERMINALS,
MEMORY, and SUBSET in that order.

CONFIGURATION This option displays the monitor version number
and update level, the monitor SET options in effect, the hardware configura-
tion, the total amount of memory on the system, and the special features in
effect (if any). The listing varies, of course, depending on which monitor and
which hardware system you are using.

First, the listing always shows the version number and update level of the
currently running monitor.

4-208 Keyboard Commands



o

SHOW

Next, information about the monitor is displayed. The first line indicates the
device from which the system was bootstrapped, and the next line indicates
whether or not 22-bit addressing is on if you are running the XM monitor.
Then the listing shows whether the user service routine (USR) is set to
SWAP or NOSWAP, whether EXIT is set to SWAP or NOSWAP, whether
TT is set QUIET or NOQUIET, whether KMON is set to IND or NOIND,
and to which severity level ERROR is set. Another line prints out if a fore-
ground or system job is loaded. The indirect file nesting depth then prints
out as a decimal number.

Next, the listing displays the system hardware configuration. It lists the
processor type, which can be one of the following:

LSI11 PDP 11/24 PDP 11/35,40
PDT 130/150 PDP 11/34 PDP 11/44

PDP 11/04 SBC11/21 PDP 11/45,50,55
PDP 11/05,10 PDP 11/23 PDP 11/60

PDP 11/15,20 PDP 11/23 PLUS PDP 11/70

Then, the total amount of memory your system contains is displayed; for
example:

56KB of memory

A separate line prints out for each of the following items that is present on
your system:

FP11 Hardware Floating Point Unit
Commercial Instruction Set (CIS)
Extended Instruction Set (EIS)
Floating Instruction Set (FIS)

KT11 Memory Management Unit
Parity Memory

Cache Memory

If you have graphics hardware (VT11 or VS60), another line is printed out to
indicate it. The clock frequency (50 or 60 cycles) prints next, followed by a
line for the KW11-P programmable clock, if there is one on your system.

Finally, the listing either shows that there are no special features in effect,
or it lists the appropriate features from the following list:

Device I/0 time-out support
Error logging support
Multi-terminal support
Memory parity support

SJ timer support

System job support

The following example was created on a PDP 11/23 processor:

Keyboard Commands 4-209



SHOW

+«85HOW CONFIGURATION

RT-11FB(S) YOS, 00
Booted from DLO:

USR is set SWAP
KIT is set BWAP
KMON is set IND
TT is set NOQUIET
ERROR is set ERROR
KMON mesting derth is 3

PDP 11/23
6O KB of memory
FP11l Hardware Floating Point Unit

Extended Instruction
KTil Memory Manadement Unit

Paritv Memorv
B0 Crele Bystem ClocK

Multi-terminal surPoOTrt

DEVICES[:dd]

Set

(EIS)

This option displays the RT-11 device handlers and their
status, CSR addresses, and vectors. You can obtain this information for a
specific device by including the optional argument dd. The variable dd repre-

sents the two-letter permanent device mnemonic.

The messages for handler status are as follows:

The following example illustrates SHOW DEVICES.

Installed
Not installed

-Not installed (handler special features do not match those of the

monitor)

nnnnnn (load address of handler)

Resident

+SHOW DEVICES

DEVICE STATUS

DY 122620

DD Installed

DL Installed

DX Not installed
Le Installed

l.P Installed

M5 Installed

DU Installed

NL. Installed

LD Installed

DM Installed

UM Installed

RR Resident

SL Not installed
MT Installed

MM Not installed

Because of its special format, the TT handler is never listed.

4-210 Keyboard Commands

C8BR

177170
176300
174400
177170
176500
177314
172382

172130

177440
1773872
177400

172320
172440

VECTOR(S)

264
300
160
264
300
200
224
154
00
oQ0
210
oo
220
QO
224

224

304

304

300



J
[—

SHOW

ERRORS The SHOW ERRORS command is valid only if you have error
logging enabled on your monitor. For a complete description of the Error
Logger and directions on how to start it, see Chapter 16 of the RT—11 System
Utilities Manual, Error Logging. Note that error logging is a special feature,
available only through the system generation process. Because the Error
Logger can compile statistics on each I/O transfer that occurs, in addition to
hardware errors that occur, it is a good idea to enable error logging on a
spare system volume that you use only when you want to compile error
statistics.

The SHOW ERROR command invokes ERROUT, one of the programs in the
error logging package. ERROUT runs as a background job under the FB and
XM monitors, and as the only job under the SJ monitor. ERROUT creates
reports on the I/O and error statistics the Error Logger compiles, and can
print the reports at the terminal, line printer, or store the reports in a file
you specify. If you type the SET dd: NOSUCCESS command before you use
the Error Logger, the Error Logger compiles statistics on only the errors
that occurred, not the successful I/0O transfers. Therefore the reports gener-
ated when you type SHOW ERRORS will list only errors that occurred. For
complete descriptions of the reports ERROUT creates, see Chapter 16 of the
RT-11 System Utilities Manual, Error Logging.

ERRORS Prints a full report on each I/O transfer that
has occurred in addition to each I/O, memory
parity, and cache memory error that has
occurred.

ERRORS/ALL Same as SHOW ERRORS

ERRORS/FILE:filespec Prints a full I/O transfer and error report from
the file you specify. The file you specify must
be of the same format that the error logger
uses for its statistical compilations.

ERRORS/FROM:date Prints a full I/O transfer and error report for
errors that occurred starting from the date
you specify. Enter the date as dd:mmm:yy,
where:

dd is a two-digit day
mmm is the first three characters of a month

name
vy is the last two digits of a year
ERRORS/TO:date Prints a full I/O transfer and error report for

errors that occurred up to the date you specify.

Keyboard Commands 4-211



SHOW

ERRORS/OUTPUT:filespec Enters the I/O transfer and error report in the
output file you specify. This is useful if you
want to save the error logging reports.

ERRORS/PRINTER Prints the I/O transfer and error report at the
line printer.
ERRORS/SUMMARY Prints a summary error report at the termi-

nal. The summary error report lists only the
errors that occurred, not the successful I/O
transfers.

ERRORS/TERMINAL Prints the I/O transfer and error report at the
terminal. /TERMINAL is the default setting.

JOBS This option displays data about the jobs that are currently loaded.
This option also tells the following:

® The job name and number (if you have not enabled system job support on
your monitor, the foreground job name appears as FORE, and its priority
is 1)

® The console the job owns (with a non-multiterminal monitor, this space is
blank)

® The priority level of the job

® The job’s running state (running, suspended, or done but not unloaded)
@ 'The low and high memory limits of the job

® The start address of the job’s impure area

The example that follows displays data about currently running jobs:

+5HOW JOBS

JoB NAME CONSOLE LEVEL STATE LOW HIGH IMPURE

14 QUEUE 0 o] SUSPEND 118224 130306 115254
0 RESORC O 0 RUN Q00000 126110 132344

MEMORY The SHOW MEMORY command lists the organization of
physical memory. The listing displays such information as where jobs are
loaded, where devices handlers are loaded, where in memory KMON and the
USR will reside, and the number of words of memory each occupies. Memory
addresses are displayed in octal.

If you are running under the XM monitor, the SHOW MEMORY listing is
divided into two sections, the first for extended memory and the second for
kernal memory.

4-212 Keyboard Commands



—

N

SHOW

The following example displays the organization of physical memory when
running under the SJ monitor.

+ SHOW MEMORY

Address Module
180000 I0PAGE
157400 RK
127274 RMON
126112 DY
aO1000 + o BGy

Words

4086,
120,
B17C,
313,
21797,

The next example shows the organization of physical memory when running
under the XM monitor.

+ BHOW MEMORY

Extended Memory

Address Module

01000000 WM

QO1B0000

L I R 1

Words

383218,
102400,

Kernal Memory

Address Module
180000 I0PAGE
157330 RK
124144 RMON
122612 DY
111610 USR
Go1000 + e BG

Words

40896,
140,
5970,
365,
2303,
10620,

QUEUE Use the SHOW QUEUE command to get a listing of the contents
of the queue. This option is invalid if you are not running QUEUE (see
Chapter 17 of the RT—11 System Utilities Manual, Queue Package). The list-
ing shows the output device, job name, input files, job status, and number of
copies for each job that is queued. The sample command line that follows
lists the current contents of the queue.

+ SHOW QUEUE
DEVICE JoB
LPO: LABZ
LPO: HODG
MT1: SZYM
LPO: JOYCE

STATUS

P

sag

COPIES

Lantiandi ol #% BN OV N SR B

FILES
PASS3 .LST
PASE54 LL8BT
PASSS .LST
MESMAN,DOC
REFMAN, TX
58M +DOC
pOCPLN.DOC

Keyboard Commands

4-213



SHOW

The job status column contains a P if the job is currently being output, an S
if the job being output is suspended, or a Q if the job is waiting to be output.
If you have'a large lineup of files, and your console is a video terminal, you
can use the CTRL/S and CTRL/Q commands to control the scrolling of the
listing.

SUBSET This option diplays the subsetting of physical disks into logical
disks. The logical disk unit is displayed with the file name to which it is
assigned and the size of the logical disk in decimal blocks.

The following sample command line displays the logical disks into which the
physical disks DU: and DL1: are divided.

,B6HOW SUBBET

LDO is DU:DISK.LBTL4000,1

LD2 is DL1:DISK.,SRCL1200.1
LDl is DLI:WORK,DSKLGQO.]

An asterisk (*) following the file information indicates that although the
logical disk assignment exists, the file does not exist on the volume that is
currently mounted in the drive unit. A number sign (#) indicates that the
device handler is not loaded. These symbols are especially useful in deter-
mining the status of logical disk assignments after you use the SET LD
CLEAN command.

If LD.SYS is not installed, the system prints the message LD handler
unavailable. If no logical disk units have been mounted (by using the
MOUNT command), the system prints No LD units mounted.

TERMINALS This option indicates the status of and special features in
effect for currently active terminals on multiterminal systems. If the moni-
tor does not include multiterminal support, the following message prints:

No multi-terminal support

Multiterminal support is a special feature; it is not part of the distributed
RT-11 monitors.

If the monitor includes multiterminal support, SHOW TERMINALS prints
a table of the existing terminals and lists the following information:

Unit number: 0-15
Owner: Background, foreground, system job, or none

Type: Local
Remote (dial-up)
Console
S-Console (shared by background and foreground or
system job)
Is attached to another job (the foreground)

4-214 Keyboard Commands

—



SHOW

Interface type: DL or DZ
Width: Width in characters, up to 255
SET options in effect:

TAB
CRLF
FORM
SCOPE

Line speed: Baud rate if DZ; not applicable (N/A) if DL
The following example shows the terminal status of an RT-11 system.

+85HOW TERMINALS

Unit Owner Tyre WIDTH TAB CRLF FORM SCOPE SPEED
0 RESORC S-Console DL 132 No Yes No No N/A
1 F Local DL g0 Yes No No Yes NMN/A

Keyboard Commands 4-215



SQUEEZE

The SQUEEZE command consolidates all unused blocks into a single area
on the device you specify and consolidates the directory entries on the
device.

/[NO]JQUERY

SQUEEZE | /OUTPUT:device device
WAIT

In the command syntax illustrated above, device represents the random-
access volume to be compressed. To perform a squeeze operation, the system
moves all the files to the beginning of the device you specify, producing a sin-
gle unused area after the group of files. The squeeze operation does not
change the bootstrap blocks of a device. The system requests confirmation
before it performs the squeeze operation. You must type Y followed by a car-
riage return to execute the command.

The squeeze operation does not move files with .BAD file types. This feature
prevents you from reusing bad blocks that occur on a disk. During a squeeze
operation, files with a .BAD file type will be renamed FILE.BAD. The sys-
tem inserts files before and after .BAD files until the space between the last
file it moved and the .BAD file is smaller than the next file to be moved. Note
that you should use the SQUEEZE command when you get a directory full
error, even if there is still space remaining on the volume.

If you perform a squeeze operation on the system device, the system auto-
matically reboots the running monitor when the compressing operation
completes. This reboot takes place in order to prevent system crashes that
might occur when the monitor file or handler files are moved. The system
volume cannot be squeezed if a foreground or system job is loaded.

You should not attempt a squeeze operation on a volume that a running
foreground job is using. Data may be written over a file that the foreground
job has open, thereby corrupting the file and possibly causing a system
crash.

The options for the SQUEEZE command follow.

/OUTPUT:device Use this option to transfer all the files from the input
device to the output device in compressed format, an operation that leaves
the input device unchanged. The output device must be an initialized
random-accesss volume. (Use the INITIALIZE command to do this.) Note
that the system does not request confirmation before this operation pro-
ceeds. If the output device is not initialized, the system prints an error mes-
sage and does not execute the command. Note that /OUTPUT does not copy
boot blocks; you must use the COPY/BOOT command to make the output
volume bootable.

4-216 Keyboard Commands



. S

SQUEEZE

The following example transfers all the files from RKO: to RK1: in com-
pressed format, leaving RKO: unchanged.

+SQUEEZE/OUTPUT:RK1: RKO:

/QUERY This option causes the system to request confirmation before it
executes a squeeze operation. You must respond by typing a Y or any string
beginning with Y, followed by a carriage return, for execution to proceed.
This is the default operation. /QUERY is invalid with the /OUTPUT option.

/INOQUERY Use this option to suppress the confirmation message that
prints before a squeeze operation executes. The following command com-
presses all the files on device DY 1: and does not query.

+SOUEEZE/NOQUERY DY1:

/WAIT When you use /WAIT, the system initiates the SQUEEZE opera-
tion, but then pauses and waits for you to mount the volume you want to
squeeze. This option is especially useful if you have a single-disk system.

When the system pauses, it prints Mount input volume in <device>;
Continue?. Mount the volume and type Y or any string beginning with Y,
followed by a carriage return, to continue the squeeze operation. Type N or
any string beginning with N, or two CRTL/Cs, to abort the squeeze opera-
tion and return control to the keyboard monitor. Any other response causes
the message to repeat.

When the squeeze operation is complete the system prompts you to remount
the system volume. Mount the system volume and type Y or any string
beginning with Y, followed by a carriage return. If you type any other
response the system prompts you to mount the system volume until you type
Y. The system then prints the keyboard monitor prompt. When you use the
/WAIT option, make sure DUP is on the system volume.

The following sample command line squeezes an RLO2 disk:

+SQUEEZE/WAIT DLO:

DLO:/Saueezed Are vou sure? Y

Mount inPut volume in DLO:z§ Continue? Y
Mount svstem volume in DLO:z3 Continue? Y

The system may repeat the mount input volume, mount output volume cycle
several times to complete the SQUEEZE operation.

Keyboard Commands 4-217



SRUN

The SRUN command initiates system jobs.

SRUN tilespec | /BUFFER:n
/LEVEL:n
/NAME:logical-jobname
/PAUSE
[TERMINAL:n

In the command syntax illustrated above, filespec represents the program to
be executed. Because this command runs a system job, it is valid only for FB
and XM monitors that have system job support, a special feature enabled
through the system generation process.

You can run up to six system jobs simultaneously, in addition to the fore-
ground and background jobs. If you attempt to run a system job that is
already active, an error message prints on the terminal.

Note that when you issue the SRUN command, the monitor assumes a .REL
file type. The default device is SY:.

In an XM monitor, you can use the SRUN command to run a virtual .SAV
image program. You must type the file type explicitly.

The options that you can use with SRUN follow.

/BUFFER:n Use this option to reserve space in memory over the actual
program size. The argument n represents the number of octal words of mem-
ory to allocate. You must use this option to run any FORTRAN program as a
system job. If you use this option for a virtual job linked with the /V option
(or /XM), the system ignores / BUFFER because the system provides a buffer
in extended memory.

/LEVEL:n Use this option to assign an execution priority level to the job,
where n can be 1, 2, 3, 4, 5, or 6. If you attempt to assign the same priority
level to two system jobs, an error message prints at the terminal. If omitted,
the priority level defaults to the highest level that is unassigned.

/INAME:logical-jobname Use this option to assign a logical job name to a
program. This is the name that programmed requests and SYSLIB calls use
to reference a system job. If you attempt to assign the same logical job name
to two system jobs, an error message prints at the terminal. If you do not
specify a logical job name, the system assumes the file name of the program.

/PAUSE Use this option to help you debug a program. When you type the
carriage return at the end of the command string, the system prints the load
address of your program and waits. By means of ODT, you can examine or
modify the program before starting execution (see Chapter 18 of the RT-11
System Utilities Manual). You must use the RESUME command to restart
the system job.

4-218 Keyboard Commands

e



s’

\\w/

SRUN

The following command loads the program MFUNCT.SYS, prints the load
address, and waits for a RESUME command to begin execution.

+BRUN MFUNCT/PAUSE
Loaded at 126556
+RESUME MFUNCT

/TERMINAL:n Use this option to change the console of the system job.
Your system must have multiterminal support, a special feature available
only through system generation, before you can use it. The argument n
represents a terminal logical unit number. By assigning a different terminal
to interact with the system job, you eliminate the need for system, fore-
ground, and background jobs to share the console terminal.

Note that the original console terminal still interacts with the background
job and with the keyboard monitor, unless you use the SET TT: CONSOL
command to change this.

Keyboard Commands 4-219



START

The START command initiates execution of the program currently in mem-
ory (loaded with the GET command) at the address you specify.

START | address]

In the command syntax shown above, address is an even octal number repre-
senting any 16-bit address. If you omit the address or if you specify 0, the
system uses the starting address that is in location 40. If the address you
specify does not exist or is invalid for any reason, a trap to location 4 occurs
and the monitor prints an error message. Note that this command is valid
for background jobs only, and not for extended-memory virtual jobs.

The following example loads MYPROG.SAYV into memory and begins execu-
tion. |

+GET MYPROG
+START

The next example loads MYPROG.SAV, which has previously been linked
with ODT, into memory and begins execution at ODT’s starting address
(obtained from the link map).

+GET MYPROG

+GET ODT
+8START 1222
ODT YoOS5,00

*

4-220 Keyboard Commands



N’

SUSPEND

The SUSPEND command temporarily stops execution of the foreground or
system job.

SUSPEND [ jobname]

If you have system job support enabled on your monitor, specify the name of
the system or foreground job you wish to suspend. If you do not have system
job support, then do not include an argument with the SUSPEND command.
The SUSPEND command is not valid for the SJ monitor.

The system permits foreground input and output that are already in pro-
gress to finish; however, it issues no new input or output requests and enters
no completion routines (see the RT—11 Programmer’s Reference Manual for
a detailed explanation of completion routines). You can continue execution
of the job by typing the RESUME command.

The following command suspends execution of the foreground job that is cur-
rently running on a system that does not have system job support.

+8SUSPEND

The next command suspends execution of the system job, QUEUE, that is
currently running on a system that does have system job support.

+SUSPEND QUEUE

Keyboard Commands 4-221



TIME

Use the TIME command to set the time of day or to display the current time
of day.

TIME [ GP hh:mm:ss]

In the command syntax shown above, hh represents the hour (from 0 to 23),
mm represents the minutes (from 0 to 59), and ss represents the seconds
(from 0 to 59). The system keeps time on a 24-hour clock.

To enter the time of day, specify the time in the format described above. You
should do this as soon as you bootstrap the system. The following example
enters the time, 11:15:00 A.M.

+TIME 11:15

As this example shows, if you omit one of the arguments the system assumes
0.

To display the current time of day, type the TIME command without an
argument, as this example shows.

+ TIME
11:15:01

When you install the standard RT-11 monitors, the clock rate is preset to 60
cycles. Consult the RT—11 System Generation Guide for information on set-
ting the clock to a 50-cycle rate.

The FB and XM monitors automatically reset the time éach day at midnight
when a TIME command is used, or if a .GTIM programmed request is issued.
(The TIME command issues a .GTIM programmed request.) The SJ monitor
resets the time under these conditions only if you select timer support dur-
ing the system generation process.

4-222 Keyboard Commands




TYPE

The TYPE command prints the contents of one or more files on the terminal.

TYPE /BEFORE[:date] filespecs
/SINCE[:date]
/DATE[:date]
/NEWFILES
/COPIES:n
/DELETE
/INFORMATION
/[NOILOG
/QUERY
WAIT

In the command syntax illustrated above, filespecs represents the file or files
to be typed. You can explicitly specify up to six files as input to the TYPE
command. The system prints the files in the order in which you specify them
in the command line. You can also use wildcards in the file specification. In
this case, the system prints the files in the order in which they occur in the
directory of the device you specify. If you specify more than one file, separate
the files by commas. If you omit the file type for a file specification, the sys-
tem assumes .LST. You can specify the entire command on one line, or you
can rely on the system to prompt you for information. The TYPE command
prompt is Files?.

Some of the options accept a date as an argument. The syntax for specifying
the date is:

[ddI[:mmm][:yy]
where:
dd represents the day (a decimal integer in the range 1-31)

mmm represents the first three characters of the name of the month

vy represents the year (a decimal integer in the range 73-99)

The default value for the date is the current system date. If you omit any of
the date values (dd, mmm, or yy), the system uses the values from the cur-
rent system date. For example, if you specify only the year ::82 and the cur-
rent system date is May 4, 1983, the system uses the date 4:MAY:82. If the
current date is not set, it is considered 0 (the same as for an undated filein a
directory listing).

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system

Keyboard Commands 4-223



TYPE

prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

The TYPE command options and examples follow.

/BEFORE[:date] This option prints on the terminal all files on a specified
volume created before a specified date. The following command prints only
those .MAC files on DK: created before March 24, 1983.

+TYPE/BEFORE:24:MAR:83 *.MAC

/COPIES:n Use this option to list more than one copy of the file. The
meaningful range of values for the decimal argument n is from 2 to 32 (1 is

the default). The following command, for example, prints three copies of the
file REPORT.LST on the terminal.

+TYPE/COPIES:3 REPORT

/DATE[:date] Use this option to print on the terminal only those files
with a certain creation date. If no date is specified the current system date is
used. The following command prints on the console all .MAC files on DK:
created on March 20, 1983:

+TYPE/DATE:Z0:MAR:83 DK:#%,MAC

/DELETE Use this option to delete a file after it is typed on the terminal.
This option must appear following the command in the command line. The
TYPE/DELETE operation does not ask you for confirmation before it
executes. You must use /QUERY for this function.

The following example prints a BASIC program on the terminal, then
deletes it from DY1:.

+TYPE/DELETE DY¥1:PROG1.BAS

/INFORMATION Use this option to change the severity level of the error
message that prints when not all of the input files you specified are found. If
you do not use INFORMATION, the system prints an error message when it
is unable to find an input file, and execution halts after the command is proc-
essed. When you use /INFORMATION, the system prints an informational
message to tell you which files it cannot find, but execution continues.

In the following example, the input files FILE1.TXT and FILE3.TXT are
printed. However, since the system is unable to find DLO:FILE2.TXT, the
system prints a message to inform you.

+TYPE/INFORMATION DLOs(FILELsFILEZ,FILE3) . TXT
TPIP-I-File not found DLO:FILEZ.TXT

4-224 Keyboard Commands



N’

TYPE

/LOG This option prints on the terminal the names of the files that were
printed by the current command. Normally, the system prints a log only if
there is a wildcard in the file specification. If you specify /QUERY, the query
messages replace the log, unless you specifically type /LOG/QUERY in the
command line.

The following example shows a TYPE command and the resulting log.

+TYPE/LDG DUTFIL.LST
Files corpied:
DR:OUTFIL.LST to TT:

/INOLOG This option prevents a list of the printed files from printing on
the terminal. You can use this option to suppress the log if you use a wild-
card in the file specification.

/INEWFILES Use this option in the command line if you need to print only
those files that have the current date. The following example shows a conve-
nient way to print all new files after a session at the computer.

+TYPE/NEWFILES %.LST
Files corieds:
DK:REPORT.LST to TT:

/IQUERY If you use this option, the system requests confirmation before it
performs the operation. /QUERY is particularly useful on operations that
involve wildcards, when you may not be sure which files the system selected
for an operation. Note that if you specify /QUERY in a TYPE command line
that also contains a wildcard in the file specification, the confirmation mes-
sages printed on the terminal replace the log messages that would normally
appear.

You must respond to a query message by typing Y or any string begiuning
with Y, followed by a carriage return, to initiate execution of a particular
operation. The system interprets any other response to mean NO and does
not perform the specific operation.

+TYPE/QUERY/DELETE #.LST
Files corpied/deleted:
DR:OUTFIL.LST to TT:? NO
DK:REPORT.LST to TT:? Y

/SINCE[:date] This option prints on the terminal all files on a specified
volume created on or after a specified date. The following command prints
only those .MAC files on DK: created on or after April 21, 1983.

+TYPE/SINCE:21:APR:83 *,MAC

Keyboard Commands 4-225



TYPE

/WAIT This option is useful if you have a single-disk system. When you
use this option, the system initiates the TYPE operation, but then pauses
and waits for you to mount the volume that contains the volumes you want
to print.

When the system pauses, it prints Mount input volume in <device>;
Continue?. Mount the input volume and type Y or any string beginning with
Y, followed by a carriage return, to continue the operation. Type N or any
string beginning with N, or two CTRL/Cs, to abort the the operation and
return control to the keyboard monitor. Any other response causes the mes-
sage to repeat.

After the system completes the operation, the system prints the following
message prompting you to mount the system volume:

Mount svstem volume in <devicesd Continue?

Mount the system volume and type Y or any string beginning with Y, fol-
lowed by a carriage return. If you type any other response the system
prompts you to mount the system volume until you type Y. When you use /
WAIT, make sure that PIP is on the system volume.

The following sample prints AJAX.DOC from an RL02 disk:

+ TYPE/WAIT DLLO:AJAR,.DOC
Mount inPut uvolume in DLO:zi Continue? ¥

After the system has printed AJAX.DOC at the terminal, it issues the fol-
lowing prompt:

Mount svstem volume in DLO:i Continue? V¥

When you mount the system volume, and type a Y followed by a carriage
return, you terminate the TYPE operation.

4-226 Keyboard Commands



S

p—

UNLOAD

The UNLOAD command removes previously loaded handlers from memory,
thus freeing the memory space they occupied. It also removes terminated
foreground or system jobs.

UNLOAD | device],...device]
Jobnamel[,...jobname]

In the command syntax shown above, device represents the device handler
and jobname represents the job to be unloaded. You can specify both device
handlers and job names on the same command line. The colon that follows
the device handler is optional with SJ, FB, and XM monitors and monitors
that do not have system job support. If your system has system job support, it
is recommended that you type the colon to unload a handler. If you do not
type a colon, the system checks the table of system jobs for a job with that
name before it checks the device table. Therefore, if you have a system job
with the same name as a device handler, you must include the colon to
remove the handler.

UNLOAD clears ownership for all units of the device type you specify. A
request to unload the system device handler clears ownership for any
assigned units for that device, but the handler itself remains resident. After
you issue the UNLOAD command, the system returns any memory it frees
to a free memory list. The background job eventually reclaims free memory.
Note that if you interrupt an operation that involves magtape, you must
unload and then load (with the LOAD command) the appropriate device
handler (MM, MT, or MS).

The system does not accept an UNLOAD command while a foreground job is
running if the foreground job owns any units of that device. This is because a
handler that the foreground job needs might become nonresident. You can
unload a device while a foreground job is running if none of its units belong
to the foreground job.

A special function of this command is to remove a terminated foreground or
system job and reclaim memory, since the system does not automatically
return the space occupied by the foreground or system job to the free mem-
ory list.

The following command unloads the foreground job and frees the memory it
occupied. This command is valid only if the foreground job is not running.

+UNLOAD F

Keyboard Commands 4-227




UNLOAD

The following command unloads the system job QUEUE.

+UNLOAD QUEUE

The following command clears ownership of all units of RK:. If RK: is the
system device, the RK handler itself remains resident.

+UNLOAD RK:

The next command releases the line printer and RL02 handlers and frees
the area they previously held.

+UNLOAD LP: DL

——

4-228 Keyboard Commands



e

e

UNPROTECT

The UNPROTECT command removes a file’s protected status so that you
can delete the file.

/SINCE[:date]
/DATE[:date]
/NEWFILES
/EXCLUDE

a T
UNPROTECT { /BEFORE[:date] } filespecs

/INFORMATION
/INOJLOG
/QUERY
/SETDATE[:date]
ISYSTEM

IWAIT

In the command syntax illustrated above, filespecs represents the file or files
whose protected status you want to remove. Use the DIRECTORY
/PROTECTION and /NOPROTECTION options to determine the protection
status of files on a volume. A P next to the block size number of a file’s direc-
tory entry indicates that the file is protected from deletion.

You can explicitly specify up to six files. If you specify more than one file,
separate the files with commas. You can also use wildeards in the file specifi-
cations. You can enter the UNPROTECT command as one line, or you can
rely on the system to prompt you for information. The UNPROTECT com-
mand prompt is Files?.

Some of the options accept a date as an argument. The syntax for specifying
the date is:

[dd][:mmm][:yy]
where:
dd represents the day (a decimal integer in the range 1-31)

mmm represents the first three characters of the name of the month
vy represents the year (a decimal integer in the range 73-99)

The default value for the date is the current system date. If you omit any of
the date values (dd, mmm, or yy), the system uses the values from the cur-
rent system date. For example, if you specify only the year ::82 and the cur-
rent system date is May 4, 1983, the system uses the date 4:MAY:82. If the
current date is not set, it is considered 0 (the same as for an undated file in a
directory listing).

If you have selected timer support through the system generation process,
but have not selected automatic end-of-month date advancement, make sure
that you set the date at the beginning of each month with the DATE com-
mand. If you fail to set the date at the beginning of each month, the system

Keyboard Commands 4-229



UNPROTECT

prints -BAD- in the creation date column of each file created beyond the end-
of-month. (Note that you can eliminate -BAD- by using the RENAME/
SETDATE command after you set the date.)

The following sections describe options you can use with the UNPROTECT
command and include command examples.

/BEFORE[:date] Use this option to remove protection from only those
files created before the specified date. If no date is specified the current sys-
tem date is used. The following commmand removes the protected status of
all . MAC files on DK: created before March 20, 1983.

JUNPROTECT/BEFORE:20:MAR:B3 *,MAC
Files uneprotected:

DK:A+MAC

DK:B.+MAC

DR:C+MAC

/DATE[:date] Use this option to remove protection from only those files
with a certain creation date. If no date is specified the current system date is
used. The following command removes the protected status of all MAC files
on DK: created on March 20, 1983.

JUNPROTECT/DATE:20:MAR: 83 #,MAC
Files unprotected:

DK:A.MAC

DK:B.+MAC

DK:C+MAC

/EXCLUDE This option removes protection from all the files on a device
except the ones you specify. The following command, for example, removes
protection from all files on DYO: except .SAV files.

LUNPROTECT/EXCLUDE DYO:#,5AY
PPIP-W-No .8YS5 action

Files unprotecteds:
DXO:ABC,OLD

DXO3AARF OLD

XO:COMB,

HO:MERGE.OLD

/INFORMATION Use this option to change the severity level of the error
message that prints when not all of the input files you specified are found. If
you do not use INFORMATION, the system prints an error message when it
is unable to find an input file, and execution halts after the command is proc-
essed. When you use /INFORMATION, the system prints an informational
message to tell you which files it cannot find, but execution continues.

In. the following example, the system removes protection from input files
FILE1.TXT and FILE3.TXT. However, since the system is unable to find
DLO:FILE2.TXT, the system prints a message to inform you.

JUNPROTECT/INFORMATION DLO:(FILELlsFILEZ,FILE3).TXT
TRPIP-I-File not found DLO:FILEZ.TXT

4-230 Keyboard Commands



UNPROTECT

/LOG This option lists on the terminal a log of the files from which protec-
tion is removed by the current command. This is the default mode of opera-
tion when you use wildcards in the file specification. Note that if you specify
/LOG, the system does not ask you for confirmation before execution pro-
ceeds. Use both /LOG and /QUERY to invoke logging and querying.

/NOLOG This option prevents a list of files from which protection is being
removed from appearing on the terminal.

/NEWFILES Use this option to remove protection from only the files that
have the current system date. The following example removes protection
from the files created today.

+UNPROTECT/NEWFILES DY1:#,BAK
Files unprotected:
DY1:sMERGE.BAK 7 Y

/IQUERY Use this option to request a confirmation message from the sys-
tem before it removes protection from each file. This option is particularly
useful on operations that invelve wildcards, when you may not be com-
pletely sure which files the system will select for the operation. Note that
specifying /LOG eliminates the automatic query; you must specify /QUERY
with /LOG to retain the query function.

You must respond to a query message by typing Y or any string beginning
with Y, followed by a carriage return, to initiate execution of a particular
operation. The system interprets any other response as NO; it does not per-
form the operation.

The following example shows querying. Protection is removed from only the
file DY1:AAF.MAC:

JUNPROTECT/QUERY DYle%,%
Files unpProtected:
DY¥1:ABC«MAC TN
DY1:AAF .MAC Y
DY1:MERGE.FOR * N

/ISETDATE[:date] This option causes the system to put the date you
specify on all files from which it removes protection. If you specify no date
the current system date is used. If the current system date is not set, the sys-
tem places zeros in the directory entry date position. Normally, the system

preserves the existing file creation date when it removes protection from a
file.

The following example removes protection from files and changes their dates
to the current system date.

+UNPROTECT/SETDATE DYO:#%,FOR
Files unpProtected:
DY¥QO:ABC.FOR

DYOQ:AAFFOR

DYO:MERGE.FOR

Keyboard Commands 4-231



UNPROTECT

/SINCE[:date] Use this option to remove protection from only those files
created on or after the specified date. If no date is specified the current sys-
tem date is used. The following command removes protection from all MAC
files on DYO0: created on or after April 21, 1983:

+UNPROTECT/SINCE:21:APR:83 DYO:#.MAC
Files unrrotected:

DYO:A.MAC

DY0:B.MAC

DYO:CMAC

/SYSTEM Use this option if you need to remove protection from system
(.SYS) files and you use wildcards in the file type. If you omit this option, the
system files are excluded from the unprotect operation and a message is
printed on the terminal to remind you of this. This example removes protec-
tion from all files on DYO: with the file name MM, including .SYS files.

+UNPROTECT/SYSTEM DYO:MM. %
Files unprotected:
DYQ:MM,.MAC

DYOu:MM,0BJ

DYO:MM, SAY

DYO:MM.8YE

/WAIT This option is useful if you have a single-disk system. When you
use this option, the system initiates the UNPROTECT operation but then
pauses for you to mount the volume that contains the files whose protection
status you want to change. When the system pauses, it prints Mount input
volume in <device>; Continue?, where <device> represents the device into
which you mount the volume. Mount the volume and type Y or any string
beginning with Y, followed by a carriage return. Type N or any string begin-
ning with N, or two CTRL/Cs, to abort the operation and return control to
the keyboard monitor. Any other response causes the message to be
repeated.

When the operation completes the system prints the Continue? message
again. Mount the system volume and type Y or any string beginning with Y,
followed by a carriage return. If you type any.other response the system
prompts you to mount the system volume until you type Y. The system then
prints the keyboard monitor prompt. Make sure PIP is on your system vol-
ume when you use the /WAIT option.

The following example removes protection from the file FILE.MAC on an
RLO02 disk:

+UNPROTECT/WAIT DLO:FILE.MAC

Mount ineput volume in DLO:3 Continue? Y
DLOsFILE.MAC? Y

Mount system volume in DLO:z§ Continue? ¥

4-232 Keyboard Commands



N

4.6 Concise Command Language (CCL)

Concise Command Language (CCL) allows you to run a program and pass it
a command string on a single command line.

When you type a CCL command, the keyboard monitor translates the com-
mand into a RUN SY: command followed by the program name you specify
and one or more lines of file specifications and options for that program.
When the operation completes, control returns to the keyboard monitor and
it prompts you for another command.

The syntaxes for CCL commands are:
PROGNAM in-filespecs[/options] out-filespecs[/options]
JPROGNAM out-filespecs[/options] = in-filespecs[/options]
where:

PROGNAM represents the RT-11 utility program you want to run.
These programs are described in the RT-11 System
Utilities Manual.

in-filespecs  represents the device, file names, and file types of the
input files. Implicit wildcards are not allowed in file
specifications; you must use the wildcard symbols * and
%.

out-filespecs represents the device, file names, and file types of the
output files. Implicit wildcards are not allowed in file
specifications; you must use the wildcard symbols * and
%. In the first syntax line shown above, out-filespecs is

optional.

[/options] represents the single-character options for each utility
program, as described in the RT-11 System Utilities
Manual.

The following example copies all files on DYO: with the file type .MAC cre-
ated on or after January 12,1983 to DY 1:.

+PIP DYO:% ,MAC/I:12.,:JAN:zB3, DYli%.%

The next example achieves the same results.

+PIP DY1e#,%=DY0O:r*,MAC/T:12.,:JAN:B3.

The next example calls KED to inspect the file JMS.MAC.

+KED JMS.MAC/I

Keyboard Commands 4-233






R

R

e

Chapter 5
Indirect Control File Processor (IND)

This chapter tells you how to create indirect control files for execution by the
Indirect Control File Processor (IND).

An indirect control file, or control file, consists of one or more lines of key-
board commands and special commands, called IND directives, that control
system execution. You can use control files to execute keyboard commands,
access files, and perform logical tests to control the flow of execution.

This chapter begins by describing how to create an indirect control file and
how to structure its command lines. The second section describes how to
execute the control files you create. Next follows a section of tables contain-
ing brief descriptions of all the IND directives and special characters, and a
section describing the use of symbols in control files. The chapter concludes
with detailed descriptions of how to use each IND directive.

5.1 Creating an Indirect Control File

An indirect control file consists of one or more lines of directives or keyboard
commands to be processed by IND. Each line of an indirect control file can
contain up to three elements, illustrated in Figure 5-1: a label, IND direc-
tives and keyboard commands, and a comment. Labels are used to mark
specific locations in a program. IND directives (or simply directives) and
keyboard commands control the execution of your program and perform
specific operations. Comments are used to document the program. These ele-
ments are described in the following sections.

Figure 5-1: Indirect Control File Line Elements

, SUBONE +IFNDF §YM ,GOSUB SUBTWO +iGET DEFINITION OF SYM
Label IND directive Comment

In general, follow these rules of syntax when you create indirect control
files:

1. Separate directives from their arguments and from keyboard commands
by at least one space or tab, unless otherwise indicated in this manual.

5-1



However, do not place spaces or tabs between arithmetic operators, such
as plus signs (+) and minus signs (-), and their arguments. For example,
the following command line is correct:

+SETNNUM (2+3) %4

The next line is incorrect:

+SETNNUM (2+3) x4

2. Using tabs and spaces allows you to format the control files for readabil-
ity. You can format control files by inserting spaces and horizontal tabs
in a command line in the following locations:

At the start of the command line

Immediately following the colon (:) of a label

Directly before the semicolon (;) or period-semicolon (.;) of a comment

At the end of a command line

3. IND accepts up to 132 characters in a command line.

4. You can include up to 80 characters (before IND processing) in .ASK,
ASKN, and .ASKS prompts.

5. Keyboard monitor commands, concise command language (CCL) com-
mands, and commands that run system utility programs must be com-
plete on one line. For commands that query or prompt, you must either
use /NOQUERY or the equivalent utility option, or enter the responses to
the prompts at the terminal. The following example shows an incorrect
method of running a utility program from within a control file; the com-
mand is not complete on one line.

RUN MACRD
PROG=PROGA
“C

5.1.1 Labeis

A label assigns a name to a line in the control file so that the line can be
referenced. Labels are from one to six characters long, and must be prefixed
with a period (.) and suffixed with a colon(:). A label may contain only alpha-
numeric or dollar sign ($) characters. For example, in the following line,
START is a label.

+8TART: +ASKS ANS DO YOU HAVE A LINEPRINTER?

Place labels at the beginning of a line. You may use a label on a line that has
directives or keyboard commands, on a line with a comment, or on a line by

5-2 Indirect Control File Processor (IND)



N

itself. You can place only one label on a line, but you need not use a label on
every line.

See Section 5.5.1 for more information on using labels.

5.1.2 IND Directives and Keyboard Commands

Control file lines may also contain IND directives, keyboard commands, and
CCL commands. Section 4.5 of this manual describes keyboard commands.
Section 4.6 describes CCL.

Directives and keyboard commands can be used together on the same line or
on separate lines. Some directives can also be used on the same line with
other directives.

When processing a control file, IND reads the control file and interprets each
command line either as a command to be passed directly to the keyboard
monitor (KMON) or as a request for action by the indirect control file proces-
sor itself. IND directives, which are processed by the indirect control file pro-
cessor, are preceded by a period. Keyboard commands have no preceding
characters when used in a control file.

5.1.2.1 IND Directives — Directives can be used on a line with a label or a
comment, or alone on a line. Directives must be placed after a label but
before a comment. The following line shows that the directive follows the
label and precedes the comment:

JJIDED: L BETT VT , JUIDED TERMINAL AVAILABLE
Label IND directive Comment

IND directives allow you to:

® Define labels

® Define and assign values to three types of symbols: logical, numeric, and
strin

® Create and access data files

® Control the logical flow within a control file
® Perform logical tests

@ Enable or disable operating modes

@ Increment or decrement a numeric symbol

® Perform time-based operations, if you have timer support

IND directives are described in detail in Section 5.5.

Indirect Control File Processor IND) 5-3



5.1.2.2 Keyboard Commands — Keyboard commands may appear with labels
but not on lines with comments. When IND encounters a keyboard com-
mand, IND passes the remainder of the command line to the keyboard mon-
itor. Since the keyboard monitor would be unable to interpret the comment,
an invalid command error results.

Keyboard commands used within an indirect control file must be complete
on one line. Therefore, if you use keyboard commands that query (such as
the DELETE command with wildcards) or prompt you (such as the LINK/
PROMPT command), you must either specify the /NOQUERY option or
enter the response to the query at the terminal when the command is

executed. You can, however, process commands with more than one line by
using the .ENABLE DATA or .DATA directive to create and execute an
indirect file from within the control file.

The control file lines in the next two examples create and execute an indirect
command file that runs PIP, unprotects the file DY:FILE.TST, and copies
the file to DY1:. The first example uses the ENABLE DATA directive to cre-
ate the control file:

+ASKE DEY WHICH DEVICE CONTAINS FILE.TST?
+OPEN COPY.THMP

+ENABLE DATA

RUN PIP

‘DEV’:FILE.TET/Z
D¥1:FILE.TST='DEV/:FILE.TE8T/W/Y

“r

+DISABLE DATA

+CLOSE

$@COPY . TMP

The second example uses the .DATA directive to create and execute the
same indirect file:

+ASKS DEV WHICH DEVICE CONTAINS FILE.TST?
+OPEN COPY.,THMP

+DATA RUN PIP

+DATA 'DEV/:FILE.TST/Z

+DATA DY1:FILE.TST='DEV’/sFILE.TEBT/W/Y

+DATA *C
+CLOSE
$@COPY ., TMP

See Section 5.2.4 for information on executing indirect files from control
files. See Sections 5.5.9 and 5.5.14 for information on using the .DATA and
.ENABLE DATA directives.

You can also issue CCL commands in control files to run the utility pro-
grams described in the RT—11 System Utilities Manual. The following exam-
ple executes a CCL command if the RL02 device handler is loaded:

+ROUTN:  +IFLOA DL PIP DL1:MYPROG.BAV=DLO:MYPROG.,SAV

54 Indirect Control File Processor (IND)

—



N

“ )
e

The following command line copies a diskette in image mode if a certain con-
dition is true. The .IFT directive tests the condition represented by the sym-
bol LOGSYM for a true or false value.

+IFT LOGSYM DUP DY1:%=DY0:/I/Y

As is true for keyboard commands, options that query or prompt are not
allowed unless you specify the option that prevents querying (as does /Y in
the above example), or unless you enter the response to the query at the ter-
minal when the control file is executed.

Keyboard monitor commands are described in detail in Section 4.5 of this
manual, and the corresponding utility programs are described in the RT-11
System Utilities Manual.

NOTE

The following keyboard commands should not be used in con-
trol files, as they will produce unpredictable results:

Base R

Deposit REENTER
Examine SAVE
GET START

5.1.3 Comments

You can document a control file by including comments. Comments provide
you with information but perform no operations.

You can include either external or internal comments in a control file.
During execution, IND prints external comments at the console. To define
an external comment, begin the comment with a semicolon (;). Internal com-
ments are for documenting a control file internally and are never printed at
the console. To define an internal comment, begin the comment with a
period and semicolon (.;).

You can place an external comment on a line with a label and with direc-
tives that do not branch to another location. An external comment on a line
with a branching directive is never printed, because IND branches before
the comment is processed. You can place an internal comment on a line with
a label or with most directives. When used on a line with a label, or with
directives, the comment should be the last field on the line. However, you
can not place any comment on a line with a keyboard command, since the
keyboard monitor will interpret the comment as an invalid command.

Comments can include up to 80 characters including the period, semicolon,
carriage return, and line feed characters. IND ignores any characters that
exceed the 80-character limit.

Indirect Control File Processor IND) 5-5



The following line shows an internal comment on a line with a label and
directives. The second half of the comment appears on a line by itself.

+DEVICE: IFLOA D¥0: ,GDSUB COPY +3DY0: IS LOADED: GO TO
+ 3COPY SUBROUTINE

5.2 Executing Indirect Control Files

You can execute indirect control files either from keyboard monitor level or
from within another indirect control file. Section 5.2.3 discusses executing
control files from within other control files. You can also execute indirect
command files from control files, as described in Section 5.2.4.

Td execute an indirect control file from keyboard monitor level, you must
call IND as follows:

+R IND
*

The Command String Interpreter (CSI) prints an asterisk at the left margin
of the terminal and waits for you to enter a command string. If you enter
only a carriage return, IND prints its current version number and the CSI
prompts you again for a command string.

You can type CTRL/C to halt IND and return to the keyboard monitor when
IND is waiting for input from the console terminal. You must type two
CTRL/Cs to abort IND at any other time.

The syntax of the command string is:
ctrl-filespec[/options][parameters]
where:

ctrl-filespec represents the control file you want to execute. The
default file type is .COM. '

options is one or more of the options listed in Table 5-1. The
brackets surrounding the options are not part of the
command syntax. The options you specify are stored in
the local string symbol COMMAN with the entire com-
mand line, and in local string symbol P0O. See Section
5.2.2 for more information on COMMAN and PO.

parameters is one or more values (up to nine) that you want to pass
to the control file. The parameters you specify are stored
in local string symbols P1-P9. The brackets, which are
not part of the command syntax, indicate that the
parameters are optional. Separate the parameters you
specify with a space. See Section 5.2.2 for more informa-
- tion on passing parameters.

56 Indirect Control File Processor (IND)

—



R

N

You can also call IND and execute a control file by issuing the following
command:

+RUN IND ctrl-filespecl/ortions]

or simply:

+IND ctrl-filesrecl/0ortions]

However, you can not pass parameters when you use this syntax.

When SET KMON IND is in effect, you can use the following syntax to
execute a control file, in response to the keyboard monitor prompt (.):

@ctrl-filespec[/options][parameters]

You can run IND from the console by specifying the console device (TT:) as
the control file specificaton. IND prints an asterisk (*) to prompt you for a
single command line to execute. Since IND processes one command line at a
time when run from the console, labels have no meaning and branch instruc-
tions produce no results. This function is especially useful for testing the
results of individual command lines.

In the following example, IND executes one command line and prompts for
input.

+RUN IND TT:
*,ASKS NAM WHAT I8 YOUR NAME?
* WHAT I8 YOUR NAMEY [81 Jon@ED

5.2.1 IND Options

IND options (See Table 5-1) allow you to change the way IND processes and

- displays a control file. The following sections describe the options you can

use in an IND command string.

Table 5-1: IND Options

Option Section Function
/D 52.1.1 Deletes the control file when IND has finished processing that
file.
/N 5.2.1.2 Directs IND to ignore all keyboard commands in the control file.
Q 5.2.1.3 Suppresses the display of keyboard commands and their results.
/T 5.2.1.4 Displays each command line that has been processed.

5.2.1.1 Delete Control File Option (/D) — Deletes the control file when IND has
finished processing that file. The processing of a control file is complete only
when IND executes the .EXIT directive or reaches the end of the control file.

Indirect Control File Processor IND) 5-7



Therefore, if you use the /D option and IND encounters a .STOP directive or
a slash (/) character, the file is not deleted. The .DISABLE DELETE direc-
tive in a control file overrides the /D option.

5.2.1.2 Suppress Keyboard Commands Option (/N) — When you use the /N
option, IND processes all the directives in a control file, but does not execute
any of the keyboard commands. This function is useful if you wish to test the
logical flow of your control file without executing any of the keyboard com-
mands within.

If /N is used when calling a nested control file, keyboard commands are
ignored until the previous control file is reentered, an .ENABLE DCL or
.ENABLE MCR directive is found in the control file, or processing at all lev-
els is complete.

5.2.1.3 Suppress Console Display Option (/Q) — The /Q option suppresses the
display of keyboard commands and their results as IND executes the key-
board commands. The /Q option remains in effect even when control passes
to a nested control file. A .DISABLE QUIET directive in the control file
overrides the /Q option.

5.2.1.4 Command Tracing Option (/T) — When you use the /T option, IND
prints on the console all directives or keyboard commands as they are proc-
essed. This option is useful for testing and debugging control files.

When you enable tracing, IND prints an exclamation mark (!) on the console
before each line that begins with a directive. IND does not print any charac-
ters before comments and keyboard commands as they are processed.

If control branches to another location in the control file, IND does not print
the command lines that have not been processed.

The /T option has the same effect as the ENABLE TRACE directive in a
control file and can be overridden from within the control file by the
.DISABLE TRACE directive.

5.2.2 Passing Parameters

Passing parameters allows you to define the contents of certain symbols
when IND begins processing a file. You can pass as many as nine param-
eters when you execute a control file. When you execute a control file, either
directly from the terminal or by calling another control file from within a
control file, IND stores the command line, including parameters, in the local
string symbol COMMAN. IND then stores the parameters separately in
local string symbols P1 through P9.

Passing parameters allows you to predetermine the value of these symbols
when you begin execution of a control file. Parameter values can be global
symbols, numeric values, or character strings.

5-8 Indirect Control File Processor (IND)



When the following command line is executed, IND stores in COMMAN the
string DX:COACH A BD.

«R IND
*DX:CO0ACH A B D

IND breaks the command string into elements separated by spaces, which
IND stores in the local string symbols PO through P9. PO contains the file
specification and any options. P1 through P9 contain the parameters you
specify. P1 contains the first space-delimited parameter, P2 the second, and
so on. P9 contains any remaining parameters. Any parameter not present
results in the equivalent symbol being set to null. The number of symbols
set, excluding the symbols that contain null values, appears in the numeric
symbol <STRLEN>.

When IND processes the command line @DX:COACH A B D, it produces the
following symbols:

Symbol Contents
COMMAN DX:COACHABD
PO DX:.COACH
P1 A

P2 B

P3 D

P4 null

P5 . null

P6 null

P7 null

P8 null

P9 null
<STRLEN> 4

5.2.3 Nested Indirect Control Files

You can call indirect control files from within an indirect control file. This
process is called nesting control files; the control file that is called from the
first control file is referred to as nested. You can nest up to three control files,
for a total of four levels of control files (including the first file).

Use a command line with the following syntax to call a contro!l file from
within a control file:

@ctrl-filespecl/options][parameters]
where:

ctrl-filespec ~ represents the control file to which you want to branch.
The default file type is .COM.

options is one or more of the options listed in Table 5—1. The
brackets shown in the syntax illustration are not part of
the command syntax. The options you specify are stored
in the local string symbol COMMAN with the entire
command line, and in local string symbol PO. See
Section 5.2.2 for more information on these symbols.

Indirect Control File Processor IND) 5-9



parameters is one or more parameters (up to nine) that you want to
pass to the control file. The surrounding brackets in the
syntax illustration, which indicate that the parameters
are optional, are not part of the command syntax. The
parameters you specify are stored in local string sym-
bols PO—P9. See Section 5.2.2 for more information on
passing parameters.

You cannot include either internal or external comments on this command
line.

The .ENABLE GLOBAL directive allows you to define symbols as global to
all nested indirect control file levels. Refer to Section 5.4.1 for information
on defining global symbols. If you do not use this directive, each time IND
enters a deeper level it masks all symbols defined by the previous level out of
the symbol table, so that only symbols defined in the current level are avail-
able. These symbols are recognized only within the level of the control file in
which the symbols are defined. When control returns to a previous level, the
symbols defined in that level become available again and the symbols from
the lower levels are lost.

5.2.4 Executing Indirect Command Files from Controi Files

The method for calling an indirect command file from within an indirect con-
trol file is similar to calling a control file from a control file (see Section
5.2.3). You can invoke an indirect command file from a control file by placing
a dollar sign, at sign ($@) sequence before the name of the indirect com-
mand file you wish to invoke. When you pass control to an indirect command
file, the keyboard mohitor processes and executes the file. Control then
returns to the control file from which the indirect command file was called.

The command to invoke an indirect command file is:
$@ﬁ1espec
where:

filespec represents the indirect command file you wish to invoke.
The default file type is .COM.

For example, the following command line invokes the indirect command file
DYOUT.COM:

$@DYOUT

After the keyboard monitor has finished executing the indirect command
file, IND resumes processing of the control file from which the command file
was called.

5-10 Indirect Control File Processor (IND)



pN—

\._4//'

5.3 Directive Summary

This section includes four tables of abbreviated information. The IND direc-
tives described in this chapter are listed in Table 5-2 by category. Use these
directives in your control files to direct execution. Table 5-3 lists the operat-
ing modes you can use with the .ENABLE and .DISABLE directives. A
detailed description of each directive and operating mode is presented in
alphabetical order in Section 5.5. Table 54 lists some special IND charac-
ters, and Table 5-5 lists the arithmetic, logical, and relational operators you
can use to form numeric expressions. Refer to Section 5.4.3.2 for more infor-
mation on numeric expressions.

Table 5-2: IND Directive Summary

Directive Section Function

Label Definition

Jabel: 5.5.1 Assigns a name, represented by label, to a line in the
control file so that the line can be referenced.

Symbol Definition

ASK 5.5.3 Prints a prompt, and uses the response to define or
redefine a logical symbol and assign the symbol a logical
(true or false) value.

ASKN 5.5.4 Prints a prompt, and uses the response to define or
redefine a numeric symbol and assign it a numeric
value.

ASKS 5.5.5 Prints a prompt, and uses the response to define or
redefine a string symbol and assign it a string value.

.DUMP 5.5.13 Displays local, global, and special symbol definitions.

.ERASE 5.5.16 Deletes local or global symbols from the symbol tables.

.PARSE 5.5.24 Breaks a string into substrings.

SETD/.SETO 5.5.28 Redefines a numeric symbol to decimal (.SETD) or octal
(.SETO) radix.

SETL 5.5.29 Defines or redefines a logical symbol and assigns it a
logical value.

SETN 5.5.30 Defines or redefines a numeric symbol and assigns it a
numeric value.

SETS 5.5.31 Defines or redefines a string symbol and assigns it a
string value.

SETT/.SETF 5.5.32 Defines or redefines a logical symbol or redefines bits
within a numeric symbol, and assigns the symbol or bits
atrue or false value.

.TEST 5.5.34 Tests attributes of a symbol or string and stores the

results in special symbols.

(Continued on next page)

Indirect Control File Processor (IND) 5-11



Table 5-2: IND Directive Summary (Cont.)

Directive Section Function

.TESTDEVICE 5.5.35 Tests a specified device and stores the device attributes
in the special symbol <EXSTRI>.

.TESTFILE 5.5.36 Determines if a file exists and stores the results in the
special symbols <FILSPC> and <FILERR>.

.VOL 5.56.37 Assigns a volume ID to a string symbol.

File Access

.CHAIN 5.5.7 Closes the current control file, opens another control file,
and resumes execution.

.CLOSE 5.5.8 Closes an output data file.

DATA 5.5.9 Specifies a single line of data to be sent to an output data
file.

.OPEN 5.5.23.1 Creates an output data file. If the file you specify with
.OPEN already exists, .OPEN creates a new file and will
delete the existing file if you subsequently use the
.CLOSE directive. Use the .OPEN directive only when
you wish to write to a file.

.OPENA 5.5.23.2 Opens an existing file and appends subsequent data to it.
If the file you specify does not exist, OPENA creates a
new file. Use this directive only when you wish to write
to afile.

.OPENR 5.5.23.3 Opens an existing file for use with the .READ directive.
Use this directive only when you wish to read from a file.

.PURGE 5.5.25 Discards or closes an output file without making any
changes to the file.

.READ 5.5.26 Reads the next record from a file into a string variable.
The file must have been previously opened with
.OPENR.

Logical Control

.BEGIN 5.5.6 Marks the beginning of a begin-end block.

.END 5.5.15 Marks the end of a begin-end block.

EXIT 5.5.17 Terminates processing of either the current control file

or a begin-end block, and returns control to the previous
level; can also assign a value to the numeric symbol
<EXSTAT> (see the <EXSTAT> special symbol
description in Table 5-6).

5-12 Indirect Control File Processor (IND)

(Continued on next page)



—

R

Table 5-2: IND Directive Summary (Cont.)

Directive Section Function

.GOSUB 5.5.18 Branches to a subroutine within the control file.

.GOTO 5.5.19 Branches to another location in the control file.

.ONERR 5.5.22 On detecting an error, branches to another location in
the control file.

RETURN 5.5.27 . Returns control from a subroutine to the line immedi-
ately following that subroutine’s call.

.STOP 5.5.33 Terminates control file processing

Logical Tests

JF 5.5.20.1 Determines whether a symbol satisfies one of several
possible conditions.

JFDF/IFNDF 5.5.20.2 Determines whether a symbol is defined or not defined.

JFENABLED/ 5.5.20.3 Determines whether an operating mode is enabled or

JFDISABLED disabled. See Section 5.5.14 for descriptions of the oper-
ating modes.

JFLOA/IFNLOA 5.5.20.4 Determines whether a device handler has been loaded or
has not been loaded.

JFT/IFF 5.5.20.5 Determines whether a logical symbol is true or false, or
tests specific bits in a numeric symbol.

Execution Control

5.5.11 Delays control file processing for a specified period of

.DELAY

time.

Enable/Disable Operating Modes

.DISABLE

.ENABLE

5.5.12

5.5.14

Disables the operating modes. See Table 5-3 and
Sections 5.5.12 and 5.5.14 for more information on the
operating modes.

Enables the operating modes. See Table 5-3 and
Sections 5.5.12 and 5.5.14 for more information on the
operating modes.

Increment/Decrement Numeric Symbols

.DEC
ANC

5.5.10
5.56.21

Subtracts one from the value of a numeric symbol.

Adds one to the value of a numeric symbol.

Indirect Control File Processor IND) 5-13



Table 5-3: Operating Modes

These operating modes are arguments for the ENABLE and directives. The
entry in the scope column refers to whether the operating mode automati-
cally returns to its default setting or remains at its current setting when
control passes to a nested control file. Local operating modes return to their
default settings; global operating modes keep their current settings. See
Sections 5.5.12 and 5.5.14 for more information on operating modes.

Operating Mode

Default

Scope

Function

DATA

DCL

DELETE

ESCAPE

GLOBAL

LOWERCASE

MCR

OCTAL

PREFIX

QUIET

Disabled

Enabled

Disabled

Disabled

Disabled

Enabled

Enabled

Enabled

Enabled

Disabled

Local

Local

Local

Global

Global

Global

Local

Global

Global

Local

When DATA is enabled, IND sends to an
output file all lines that follow the
.ENABLE DATA directive until a
.DISABLE DATA or .CLOSE directive is
encountered.

When DCL is disabled, IND suppresses
execution of keyboard commands in a con-
trol file.

When DELETE is enabled, control files are
deleted after execution of the file has
completed.

When ESCAPE is enabled, IND recognizes
the escape character as a valid response to
an .ASK, .ASKS, or .ASKN directive.

When GLOBAL is enabled, symbol names
that begin with a dollar sign ($) are recog-
nized as global symbols; that is, these sym-
bols are recognized throughout all levels of
control files.

When LOWERCASE is enabled, characters
typed in response to an .ASKS directive are
stored in the string symbol without auto-
matic lowercase to uppercase conversion.

When MCR is disabled, IND suppresses
execution of keyboard commands in a con-
trol file.

When OCTAL is enabled, the default radix
of responses to .ASKN directives and of
numeric symbol definitions is octal.

When PREFIX is disabled, IND suppresses
printing of the asterisk (*) before all
prompts that result from .ASK, .ASKN, and
.ASKS directives, and the semicolon (;) in
front of comments.

When QUIET is enabled, IND does not dis-
play keyboard command lines.

5-14 Indirect Control File Processor (IND)

(Continued on next page)



B

Table 5-3: Operating Modes (Cont.)

Operating Mode  Default Scope Function

SUBSTITUTION Enabled  Global When SUBSTITUTION is enabled, IND
replaces symbols with their assigned

SUFFIX

TIMEOUT

TRACE

values.

Enabled  Global When SUFFIX is disabled, IND suppresses
printing of the question mark and [Y/N]
notation at the end of an .ASK prompt, and
suppresses range, default, timeout and
question type notations for all ASK direc-

tive prompts.

Disabled Global When TIMEOUT is enabled, IND recog-
nizes the timeout parameter for ASK direc-
tives if your monitor includes timer

support.

Disabled Local When TRACE is enabled, IND displays the

command line processed.

Table 5-4: Special IND Characters

This table lists a set of characters which have special meaning during con-
trol file execution.

Character Function
Used as a prefix character for all IND directives and labels, and as a
suffix character for all integers that have a decimal radix.

# Used as a prefix character to define a response to an .ASKN directive
prompt as octal. Also used as a prefix character for file numbers specified
with the .CLOSE, .DATA, .OPEN, .OPENA, .OPENR, and .PURGE
directives.

@ Used before a nested control file specification to pass control to that file.

$ Used as a prefix character to define symbols as global.

@ Used before an indirect command file specification to pass control to that
file. .

/ Used as an end-of-file character. This character has the same effect as
the See Section 5.5.2 for more details.

+ Concatenates string symbols (see Section 5.4.4).

Indicates the start of an external comment. During execution, IND
prints external comments at the console. These comments can have up to
132 characters. If you use the period-semicolon (.;) to begin a comment,

the comment is an internal comment, which IND does not print.

Indirect Control File Processor (IND)

5-15



Table 5-5: Arithmetic, Logical, and Relatiqnal Operators

This table lists the arithmetic, logical, and relational operators you can use
to form numeric expressions.

Character Function
+ Add
- Subtract
* Multiply
/ Divide

! Logical inclusive OR

& Logical AND

A Logical NOT

EQor = Equal to

NE or <> Not equal to

GEor>= Greater than or equal to
LEor <= Less than or equal to
GT or > Greater than

LTor< Less than

5.4 Symbols

You can use symbols in your control files as variables that represent logical,
numeric, or string values. By testing or comparing these symbols, you can
control the flow of execution. You can also substitute symbols for keyboard
commands, data records or data files, or comments to be displayed on the
console.

All symbols are from one to six characters in length. Symbols can include
alphanumeric characters and dollar signs (§).

Symbols can be one of three types: logical, numeric, and string. Any of these
symbols can be local or global.

You use directives to define a symbol’s type and value. You can redefine a
symbol’s value throughout a control file, but you cannot redefine its type
except within a begin-end block. See Section 5.5.6 for more details on begin-
end blocks.

516 Indirect Control File Processor (IND)



5.4.1 Local and Global Symbols

Logical, numeric, and string symbols can be defined as either local or global.
Local symbols are recognized only within the begin-end block or control file
in which the local symbols are defined. Global symbols are recognized
throughout all levels of nested control files.

You can define a symbol as global by including the . ENABLE GLOBAL
directive in your command file. After the .ENABLE GLOBAL directive,
symbols that begin with a dollar sign ($) are defined as global. Local symbols
are those that are defined previous to the .ENABLE GLOBAL directive,
after a dollar sign ($).

Once a symbol is defined as global or local you cannot change its scope.
Therefore, if a symbol that begins with a dollar sign (8$) is defined before the
.ENABLE GLOBAL directive, the symbol is defined as local and remains
local even after a later ENABLE GLOBAL directive. After an .ENABLE
GLOBAL directive, if another symbol with the same name is defined, there
will be two symbols with the same name: one local symbol and one global
symbol.

5.4.2 Logical Symbols

Logical symbols represent true or false values. You can define or redefine a
logical symbol by using the .ASK, .SETL, .SETT, or .SETF directive. See
Section 5.5.

5.4.3 Numeric Symbols

A numeric symbol represents an integer. You can use numeric symbols to
represent integer arguments in command lines, and you can combine them
with other numeric symbols and constants to form arithmetic expressions.
The valid range for an integer represented by a numeric symbol is 0 to 65535
(decimal) or 177777 (octal).

5.4.3.1 Defining the Radix of a Numeric Symboi — When a numeric symbol is
defined using the .ASKN or .SETN directive, the default radix (octal or deci-
mal) of the symbol definition is determined by the status of the OCTAL oper-
ating mode. When OCTAL is enabled, the symbol definition is stored as an
octal number; when OCTAL is disabled, the symbol definition is stored as a
decimal number.

When you use .ASKN, you can control the default radix by specifying deci-
mal or octal values for range, default, and timeout indicator values.
Indicator values you specify with a decimal point (.) are interpreted as deci-
mal. When decimal indicator values are specified, or when octal mode is
disabled, the response to the prompt will be stored in decimal. IND indicates

Indirect Control File Processor (IND) 5-17



this by printing a (D) decimal indicator when it processes the .ASKN
prompt. If an octal response is given by placing a number sign (#) before the
number, the response is stored as its decimal equivalent. When octal mode is
enabled and you specify no decimal indicator values, the response will be
stored as an octal value; IND prints an (O) octal indicator instead. If a deci-
mal response is given by placing a decimal point (.) after the number, the
response is stored as its octal equivalent. See Section 5.5.4 for more informa-
tion on the .ASKN directive.

When you use the .SETN directive, you can override the octal default radix
by specifying decimal values in the numeric expression that defines the sym-
bol. Values you specify with a decimal point (.) are interpreted as decimal. If
octal mode is enabled and you specify no decimal values, the expression is
evaluated and stored as an octal value. When you use all decimal values in
the expression, or when octal mode is disabled, the expression is evaluated
and stored as a decimal value. When you use both octal and decimal values
and octal mode is enabled, all octal values are converted to decimal before
the expression is evaluated and the symbol is stored as a decimal value. See
Section 5.5.30 for more information on the .SETN directive.

Once a numeric symbol is defined as an octal or decimal value, you can
change the symbol’s radix by using the .SETD and .SETO directives. See
Section 5.5.28 for more information on these two directives.

5.4.3.2 Numeric Expressions — You can form numeric expressions by using
operators to combine numeric symbols and constants.

Operator Function
+ Addition
- Subtraction
/ Division
* Multiplication
! Logical OR
& Logical AND
EQor =  Equalto

NE or <> Notequalto

GE or >= Greater than or equal to
LE or <= Lessthan or equal to
GTor > Greater than

LTor< Less than

When you divide numeric symbols, IND always truncates the dividend to
yield an integer.

Numeric expressions are evaluated from left to right, unless you use paren-
theses to form subexpressions which IND evaluates first. Do not put blanks
or tabs between operators and numeric symbols. The following directive
lines assign numeric symbol N3 the value 24 (octal):

+SETN N1 2
+8SETN N2 3
+SETN N3 Ni+NZ2x*4

5-18 Indirect Control File Processor (IND)



N

p—

In the next example, IND assigns the symbol N3 the value 16 (octal):

+SETN N1 2
+SETN NZ 3
+SETN N3 NI+(NZ*4)

5.4.4 String Symbols

You can use a string symbol to represent a string of up to 132 ASCII charac-
ters. You assign string symbols with the .ASKS and .SETS directives.

When you assign a character string to a string symbol, enclose the character
string with quotes, as in the following example, which assigns a string to the
string symbol PROMPT:

+8ETS PROMPT "DO YOU HAVE ANY PROTECTED FILES"

IND permits you to break string symbols into substrings. You can use
substrings with only the .SETS and .IF directives. In the following example,
string symbol ALPHA2 is assigned four characters from the string repre-
sented by BETA2:

+8ETS BETAZ "DEVICE DX1: DX2: RKI1:"
+8ETS ALPHAZ BETAZIB.:11.1

In this example, [8.:11.] indicates that characters 8 to 11 (decimal) of BETA2
are to make up ALPHAZ2. ALPHAZ2 consequently contains the characters
DX1:. The square brackets are part of the command line; you must use them
when you specify the range for a substring. If you use a decimal point with
either number in the range specification (that is, the numbers that appear
between the brackets), IND interprets both numbers as decimal.

String symbols can also represent other string symbols. In the next example,
the string symbol NAME is assigned the contents of a previously defined
string symbol, VOLID.

+8ETS NAME VOLID

You can concatenate string symbols with other string symbols, substrings,
and character strings by using the plus sign (+). The .SETS directive
description (Section 5.5.31) provides more details on concatenating string
symbols.

5.4.5 Special Symbols

In addition to the symbols that you create, IND has its own special symbols,
listed in Table 5-6. IND sets these symbols according to specific system
characteristics and responses to queries presented during command file
execution; you cannot set them directly. You can, however, test these sym-
bols to determine system characteristics IND special symbols are enclosed in
angle brackets so you can distinguish them from symbols you create.

Indirect Control File Processor (IND) 5-19



Table 5-6: IND Special Symbols

Symbol

Value

Logical Symbols
<ALPHAN>

<ALTMOD> or
<ESCAPE>
<DEFAUL>
<EOF>
<FALSE>

<MAPPED>

<OCTAL>

<RAD50>

<TIMOUT>

<TRUE>

Numeric Symbols
<ERROR>
<EXSTAT>

Set to true if last string entered in regponse to an .ASKS directive
contains only alphanumeric characters. The .TEST and .TESTFILE
directives can set <KALPHAN> to true or false. An empty string sets
<ALPHAN> to true, and any embedded blank sets <ALPHAN> to
false. If lowercase mode is disabled, a lowercase response to a query
sets <ALPHAN> to false.

Set to true if the last query was answered with a single escape char-
acter. Otherwise set to false.

Set to true if response to last query was a default response (that is, a
carriage return was entered).

Set to true after the .READ directive encounters end-of-file.
Otherwise set to false.

Permanently set to false; can be used to specify a default response for
an .ASK directive.

Set to true if IND is running under the XM monitor; false if
otherwise.

Set to true if the last numeric symbol tested with the .TEST directive
contained an octal value; false if the last numeric symbol contained a
decimal value. Also set to true if a numeric symbol defined using the
SETN or .ASKN directive was assigned an octal value; false if
assigned a decimal value.

Set to true if last string entered in response to an .ASKS directive, or
tested with a .TEST or .TESTFILE directive, contains only Radix—50
characters. The period and dollar sign are valid Radix-50 characters,
but blank characters and lowercase alphabetic characters are not.
An empty string sets <RAD50> to true.

Set to true if the last response to an ASK directive exceeded the
timeout count; false if otherwise.

Permanently set to true; can be used to specify a default response for
an .ASK directive.

Permanently assigned the value 2 (octal) to represent an error,

Assigned the exit status value of 0, 1, 2, or 4 according to the con-
tents of the user error byte as a result of the last keyboard command
executed. The values 0, 1, 2, and 4 indicate:

0 Warning

1 Success

2 Error

4 Severe error

This special numeric symbol is modified at the completion of each
keyboard command. The .EXIT directive can also modify
<EXSTAT>. The value is returned from the task that has completed

(Continued on next page)

5-20 Indirect Control File Processor (IND)

~——



Table 5-6: IND Special Symbols (Cont.)

Symbol Value

if you hav.. used the .EXIT directive to specify an exit status value.
Otherwise, the value is returned from KMON.

<FILERR> Assigned a numeric status code indicating whether a file operation
was successful. The codes returned, along with their descriptions,
are:

1 Success

372 No room to fetch handler
366 End-of-file detected

363 Data overrun

351 Device full

346 No such file

343 File accessed for write

340 Device read error

337 Device write error

333 No file accessed on channel
327 File exceeds space allocated
325 Bad record type (non-ASCII)
324 File accessed for read

313 File already open

312 Bad file name

244 Invalid device or unit

<SEVERE> '+ Permanently assigned the value 4 (octal) to represent a severe error.

<SPACE> Assigned an octal number to represent the amount of space avail-
able, in bytes, in the symbol table. IND uses a minimum of 10 bytes
(octal) for each symbol.

<STRLEN> Assigned the length, in octal, of the string entered in response to the

last .ASKS directive or the string tested by the last .TEST directive.

<SUCCES> Permanently assigned the value 1 (octal) to represent success.

<SYMTYP> Assigned a numeric code to represent the type of symbol tested by a
.TEST directive. The codes represent the following:

0 Logical symbol
2 Numeric symbol
4 String symbol

<SYSTEM> Assigned an octal number to represent the operating system on

which IND is running. The octal numbers represent one of the
following:

0 RSX-11D

1 RSX-11M

2 RSX-118

3 IAS

4 RSTS

5 VAX/VMS

6 RSX-11M-PLUS

7 RT-11 (SJ monitor)

10 RT-11 (FB monitor)

(Continued on next page)

Indirect Control File Processor (IND) 5-21



Table 5-6: IND Special Symbols (Cont.)

Symbol Value

If <MAPPED> is true, the XM monitor is running.

<SYUNIT> Assigned the unit number of the user’s system device (SY:).
<WARNIN> Permanently assigned the value 0 (octal) to represent a warning,.
String Symbols

<DATE> Assigned the current date; format is dd-mmm-yy. The length of the

value of <DATE> is predetermined (nine characters). If date is defi-
ned with less than nine characters, the value is padded with blank
characters in the symbol table. If no date has been assigned,
<DATE> contains nine blank characters.

<EXSTRI> Assigned the physical device name, device size, and attributes of a
device tested with the TESTDEVICE directive.

<FILSPC> Assigned the full file specification (device, file name, and file type) of
the file tested with the .TESTFILE directive, opened with the
.OPEN, .OPENA, or .OPENR directive, or opened when a control file
is called to begin execution.

<MONNAM> Assigned the name of the currently running monitor. The length of
the value of this special string symbol is predetermined (six charac-
ters). Therefore, if <MONNAM> is defined with less than six char-
acters, the value is padded with blank characters in the symbol

table.
<SYDISK> Assigned the device mnemonic of the user’s system device.
<TIME> Assigned the current time; format is hh:mm:ss.

5.4.6 Symbol Value Substitution

Symbol value substitution is a means of replacing a symbol you use in a
command line with that symbol’s contents. When you use the .ENABLE
SUBSTITUTION directive and enclose a symbol in apostrophes, IND
replaces that symbol with the value assigned to it. This process is known as
substitution. You can enable substitution in any line of a control file. Using
substitution, you have a quick way to print character strings and prompts at
the console, and you can manipulate symbol values neatly and efficiently in
your control files.

If IND encounters an apostrophe when substitution is enabled, IND treats
the subsequent text, up to a second apostrophe, as a symbol name. IND then
substitutes the value of the symbol in the command line in place of the sym-
bol. You can also use substitution within the comments that IND prints at
the console.

The following example illustrates substitution. The lines below appear in a
control file.

+ENABLE SUBSTITUTIDN
+ABKE DEV ENTER INPUT DEVICE
ASSIGN ‘DEV’ INP

5-22 Indirect Control File Processor (IND)



N

5.5

When IND processes the above lines, it prints the following at the console:

# ENTER INPUT DEVICE [851: DY
+ASSIGN DY INP

In the example above, DY is the response to the displayed prompt. This reply
assigned the string value DY to string symbol DEV. Then when IND read
ASSIGN ‘DEV’ INP, it substituted for ‘DEV’ the value assigned to DEV;
that is, DY. If substitution mode was not enabled, IND would simply have
passed the line to KMON as it appeared in the control file (that is, ASSIGN
‘DEV’INP).

If substitution mode is enabled, an apostrophe signals the beginning of a
string symbol. Thus, to include an apostrophe as text within a command
line, rather than as the start of a symbol, you must replace the single apos-
trophe with two consecutive apostrophes (). For example, if substitution
mode is enabled, IND displays the control file line:

iTHE SYMBOL ‘'S VALUE

as:

iTHE 8YMBOL‘S WVALUE

IND Directives

The sections that follow give detailed information on the IND directives and
also provide examples.

NOTE

In the sections that follow, unless specified otherwise, square
brackets ([1) that enclose directive arguments indicate that
the arguments are optional. They are not part of the directive
syntax.

5.5.1 Define a Label (.label:)

The .label: directive assigns a name to a location in your control file so that
the location can be easily referenced. The .label: directive has the following
syntax:

Jabel:
where:

label represents the name you want to assign to a location in your con-
trol file

Labels must be from one to six characters, prefixed with a period (.) and fol-
lowed by a colon (:). Labels must always appear at the beginning of a line.

Indirect Control File Processor IND) 5-23



You can use labels as reference points in your control files. A label is known
only within the level of the indirect control file in which the label is defined.

5.5.1.1 Label'Processing — When your control file instructs IND to branch to
a label, IND first determines whether or not the label is a direct access label
(See Section 5.5.1.2). If not, IND searches for the label from the current posi-
tion in the file to the end of the file. If the label is not found, IND searches
from the beginning of the file toward the current position. When IND finds
the label, processing continues on that line. If IND cannot find the label it
prints an error message.

5.5.1.2 Direct Access Labels — Direct access labels are labels IND can branch
to quickly. You can define a direct access label by placing a label on a line by
itself. When processing a control file, IND recognizes these labels as direct
access labels and records the label and its location in an internal table.
When a direct access label is referenced, IND checks the direct access table
and jumps directly to the proper location without having to search the file.
IND then continues processing at the statement directly below the direct
access label.

You can define up to 20 direct access labels within an indirect control file. If
you define more than 20, the newly defined labels replace the already defi-
ned labels in order, beginning with the first direct access label defined.
Direct access labels that are replaced are thereafter treated as nondirect
access labels.

In the following example, 100 is a direct access label, while 200 is not:

+100:
+THIS IS THE START OF A SUBROUTINE
+RETURN

+ 200 +ASK A DO YOU WANT TO CONTINUE

+IFT A .GOSUB 100

5.5.2 Define Logical End of File (/)

The logical end-of-file directive, the slash character (/), terminates file proc-
essing. You cannot assign an exit status value when you use the slash char-
acter. The slash character performs the same function as the .STOP direc-
tive (see Section 5.5.33).

When IND encounters the slash, it prints the following message at the con-
sole:

@ <{EODF

524 Indirect Control File Processor (IND)



S’

IND ignores any characters that follow the slash on the same line. You can
use this directive at any location in the control file to quickly terminate file
processing.

The following example uses the end-of-file directive:

+ASK CONT DO YOU WISH TO CONTINUE
+IFT CONT .GOTO 100
/

s 100

In the last example, execution halts if the logical symbol CONT is defined as
false.

5.5.3 .ASK Directive

The .ASK directive sets the value of a specified logical symbol to true or
false. The .ASK directive prints a question at the console, waits for a yes or
no response, and sets a specified logical symbol to a value of true for yes or
false for no. If the symbol has not already been defined, IND makes an entry
in the symbol table. If the symbol has been defined, IND resets its value
according to the response. IND prints an error message and exits if the sym-
bol was previously defined as a numeric or string symbol.

5.5.3.1 Syntax —The .ASK directive has the following syntax:
ABSK [def:time] logsym prompt
where:

def represents the default response that is used when only a car-
riage return is entered as a response, or when a specified time
interval elapses and no response is given. Specify the default
response by using a logical or special symbol (such as
<TRUE> or <FALSE>) that is assigned a true or false value.
If no default response is specified, the default response is no.

time represents the timeout count. If the timeout count is exceeded
and no response is given, IND uses the default response and
the special symbols <DEFAUL> and <TIMOUT> are set to
true. A timeout count can be used only if you have enabled
timeout mode by means of the ENABLE TIMEOUT directive.
Also, your configuration must include a system clock and your
monitor must include timer support. If you specify a timeout
count in a control file, and any of these conditions is not met,
the timeout indicator is not displayed in the resulting prompt
and the timeout count is ignored.

Indirect Control File Processor IND) 5-25



The timeout count syntax is nnu. The variable nn represents
the number of time units to count before the timeout occurs,
and u represents one of the following time units:

T Ticks

S Seconds
M  Minutes
H Hours

IND interprets nn as an octal number unless you use a decimal
point (.) following the number to denote decimal. If you specify
an invalid timeout parameter, an error occurs.

logsym represents a logical symbol to be set to true or false.

prompt represents the question to be printed at the console. The
prompt you specify can include up to 80 characters.

The brackets surrounding the optional parameters def and time are part of
the syntax; you must include them if you specify a value for either param-
eter. Although both parameters are optional, they are position-dependent
within the brackets. If you specify time without specifiying a default, you
must delimit the position of the default parameter with a colon (:).

The following command line specifies a timeout count but no default
response. If no response is given within 15 (decimal) seconds, IND assigns
the value false (for no) to the logical symbol DONE.

+ABK [:15.81 DONE ARE ¥YOU FINISHED

5.5.3.2 Question Display — When IND processes an .ASK directive in a com-
mand line, IND prints an asterisk followed by a space (*), the question you
specified (prompt), and a question mark (?), followed by response informa-
tion, taken from the optional parameters, in brackets. For example, when
IND processes the command line shown above, IND prints:

¥ ARE YDU FINISHED? [Y¥/N D:N T:15.81

The Y/N indicates that a yes or no response is required. The notation D:N
indicates that the default response is no. The notation T:15.S indicates that
the default response will be used if no response is given within 15 (decimal)
seconds.

5.5.3.3 Responses —IND interprets any string that begins with a Y to mean
yes, and sets the specified logical symbol to a value of true. IND interprets
any string that begins with an N to mean no, and the logical symbol is set to
a value of false. A response that begins with any other character causes IND
to reprint the question.

If only a carriage return is typed in response to the question, IND uses the
default response indicated within the brackets. This response also sets
<DEFAUL> to true.

5-26 Indirect Control File Processor (IND)



N

N

If the response is typed while escape recognition is enabled (with the
.ENABLE ESCAPE command), the special symbol <ESCAPE> is set to
true and the symbol is set to true if it is undefined. However, if the symbol
has been previously defined its value remains unchanged. If the response
is typed while escape recognition is disabled (by the <ESCAPE> is
set to false and IND prints an error message.

The response CTRL/Z causes IND to print the following message, then ter-
minate processing:

BEOF

5.5.4 .ASKN Directive

The .ASKN directive sets the value of a specified numeric symbol to a
numeric value. The .ASKN directive prints a question or prompt at the con-
sole, waits for a numeric response, and sets the specified numeric symbol to
the value of the response. If the symbol has not already been defined, IND
makes an entry in the symbol table. If the symbol has been defined, IND
resets its value according to the response and the default radix mode
enabled (octal or decimal). IND prints an error message and exits if the sym-
bol was previously defined as a logical or string symbol.

5.5.4.1 Syntax — The .ASKN directive has the following syntax:
ASKN [low:high:def:time] numsym prompt
where:

low:high represents the inclusive numerical range within which the
response must fall. The default range is 0 through 177777
(octal), or O through 65535 (decimal). If you specify values for
low and high, they must fall within the default range. You
can specify these values as numbers or as numeric
expressions.

def represents the default response that is used when only a car-
riage return is entered as a response, or when a specified
time interval elapses and no response is given. You can
specify the default response either as a number or as a
numeric expression. If no default response is specified, the
default response is assigned the value of the low limit of the
range (either the assigned range or the default range if none
is assigned).

time represents the timeout count. If the timeout count is
exceeded and no response is given, IND uses the default
response and the special symbols <DEFAUL> and
<TIMOUT> are set to true. A timeout count can be used

Indirect Control File Processor (IND) 5-27



only if you have enabled timeout support by means of the
.ENABLE TIMEOUT directive. Also, your configuration
must include a system clock and your monitor must include
timer support. If you specify a timeout count in a control file,
and any of these conditions is not met, the timeout indicator
is not displayed in the resulting prompt and the timeout
count is ignored.

The timeout count syntax is nnu. The variable nn represents
the number of time units to count before the timeout occurs,
and u represents one of the following time units:

T Ticks

S ‘Seconds
M  Minutes
H Hours

If you specify an invalid timeout count, an error occurs.

numsym represents a numeric symbol to be assigned the value of the
response

prompt  represents a string of characters to be printed at the console.
If the prompt is a question, you must include the question
mark as part of prompt. The prompt you specify can include
up to 80 characters.

The brackets surrounding the optional parameters low, high, def and time
are part of the syntax; you must include them if you specify a value for any
of these parameters. Although all four parameters are optional, they are
position-dependent within the brackets. You must use a colon to delimit the
position of any parameter you exclude if you want to specify a parameter
that follows it within the brackets.

The following command line specifies high value for the range and a timeout
count, but no low limit or default response. If no response is given within 15
seconds, IND assigns the value 0 (the default value of the low limit) to the
numeric symbol NUM.

+ASKN [:7::1581 NUM # OF LINEPRINTERS IN CONFIGURATION?

5.5.4.2 Determining the Radix — The radix is determined by the ENABLE/
DISABLE OCTAL directive. The radix affects how range, default, and
timeout indicators are displayed in a resulting prompt, and the radix of the
response.

If the default radix, octal, is in effect IND considers the indicators you
specify to be octal. However, if decimal mode is in effect .DISABLE OCTAL
(the directive has been issued, IND interpretes the indicators you specify as
decimal.

You can override octal mode by placing a decimal point (.) after any of the
values you specify withir the brackets. IND considers values that you

5-28 Indirect Control File Processor (IND)

——

p—



R

specify with a decimal point (.) to be decimal values. Any values within the
same set of brackets specified without a decimal point are interpreted as
octal, but IND converts them to their decimal equivalents before printing
the resulting prompt. When decimal mode is in effect, all values specified
within the brackets are considered decimal; using a decimal point (.) has no
effect.

For example, in the following control file octal mode is enabled. When IND
processes the .ASKN directive, IND interprets the default and timeout val-
ues as decimal numbers. However, IND converts the range values from octal
to decimal.

+ENABLE OCTAL
+ASKN [0:10:3,:20,81 ERR NO. OF ERROR CODES TO USE

Therefore, the valid range for the response is 0-8 (decimal), the default
response is 3 (decimal), and the timeout count is 20 (decimal) seconds.

When you use numeric symbols or expressions to specify the range or default
response, the radix of the numeric symbols determines the radix of the range
and default values.

5.5.4.3 Question Display — When IND processes an .ASKN directive in a
command line, IND prints an asterisk followed by a space (*) and the prompt
you specified, followed by response indicators taken from the optional values
you specify, in brackets. For example, when IND processes the command
line shown above, IND prints:

* ND, OF ERROR CODES TO USE [D R:0.-8, D:3, T:20,8]

Since decimal values were specified within the brackets in the original com-
mand line, all values within the resulting prompt are shown as decimal.
(The decimal points (.) following the values for the range, default response,
and timeout count indicate that these are decimal numbers.) The notation
R:0.-8. indicates that the value must be a number in the range 1 to 8 (deci-
mal) inclusive; the notation D:3. indicates that the default response is 3; and
the notation T:20.S indicates that the default response will be used if no
response is given within 20 (decimal) seconds.

The D indicates that for this example the default radix for the response is
decimal, and that response will be always stored as a decimal number.

If octal values had been specified in the original command line, IND would
print the O (octal) indicator instead, meaning the default radix of the
response is octal and the response will be stored as an octal value.

5.5.4.4 Responses —The response to an .ASKN directive must be an octal or
decimal number within the range specified by the prompt. The O or D radix
indicator tells you the radix in which the response is stored.

Indirect Control File Processor (IND) 5-29



If the radix indicator within the prompt brackets is O, IND assumes the
response is an octal value. You can specify a decimal value by typing a deci-
mal point (.) after the response. IND stores the response as its octal
equivalent.

If the radix indicator is D, IND assumes the response is a decimal value. You
can specify an octal value by typing a number sign (#) before your response.
IND stores the response as its decimal equivalent.

If only a carriage return is typed in response to the question, IND uses the
default response indicated within the brackets. This response also sets
<DEFAUL> to true.

If the response is typed while escape recognition is enabled (with the
.ENABLE ESCAPE command), the special symbol <ESCAPE> is set to
true and the numeric symbol is set to 0 if the symbol has not yet been defi-
ned. If the symbol was previously defined, its value remains unchanged.
However, if escape recognition is disabled, <ESCAPE> is set to false and
IND prints an error message and reprompts for a valid response.

The response CTRL/Z causes IND to print the following message, then ter-
minate processing:

BEOF

5.5.5 .ASKS Directive

The .ASKS directive sets the value of a specified string symbol to an ASCII
string. The .ASKS directive prints a question or prompt at the console, waits
for an ASCII string response, and sets the specified string symbol to the
value of the response. If the symbol has not already been defined, IND
makes an entry in the symbol table. If the symbol has been defined, IND
resets its value according to the response. IND prints an error message and
exits if the symbol was previously defined as a logical or numeric symbol.

5.5.5.1 Syntax —The .ASKS directive has the following syntax:
ASKS [low:high:“def”:time] strsym prompt
where:

low:high represents the inclusive number of characters permitted in
the response string. The default range is 0 through 204
(octal), or O through 132 (decimal). If you specify values for
low and high, they must fall within the default range. You
can specify these values as numbers or as numeric
expressions.

“def” represents the default response that is used when only a
carriage return is entered as a response, or when a spec-
ified time interval elapses and no response is given. You

5-30 Indirect Control File Processor (IND)



e

time

strsym

prompt

can specify the default response either as a string, string
symbol, or string expression. The quotation marks are part
of the directive syntax if you specify a string.

represents the timeout count. If the timeout count is
exceeded and no response is given, IND uses the default
response and the special symbols <DEFAUL> and
<TIMOUT> are set to true. A timeout count can be used
only if you have enabled timeout support by means of the
.ENABLE TIMEOUT directive. Also, your configuration
must include a system clock and your monitor must
include timer support. If you specify a timeout count in a
control file, and any of these conditions is not met, the
timeout indicator is not displayed in the resulting prompt
and the timeout count is ignored. If these conditions are all
met and you specify a timeout count but no default
response, an error results and IND will not execute the
command line.

The timeout count syntax is nnu. The variable nn repre-
sents the number of time units to count before the timeout
occurs, and u represents one of the following time units:

T Ticks

S Seconds
M  Minutes
H Hours

If you specify an invalid timeout count, an error occurs.

represents a string symbol to be assigned the value of the
response

represents a string of characters to be printed at the con-
sole. If the prompt is a question, you must include the
question mark as part of prompt. The prompt you specify
can include up to 80 characters.

The brackets surrounding the optional parameters low, high, def, and time

are part of the syntax; you must include them if you specify a value for any
of these parameters. Although all four parameters are optional, they are
position-dependent within the brackets. You must use a colon to delimit the
position of any parameter you exclude if you want to specify a parameter
that follows it within the brackets.

The following command line specifies a low value for the range, a default
response, and a timeout count. Since no high limit is specified, the default
high limit 204 (octal) is assumed. If no response is given within 15 seconds,
IND assigns the value DYO to the string symbol DEV.

+ASKE [3::"DYO0O":158]1 DEY DEVICE TO USE FOR DEFAULT?

Indirect Control File Processor IND) 5-31



5.5.5.2 Determining the Radix of Range and Timeout Values — The radix of the
range and timeout values is determined by the .ENABLE/DISABLE
OCTAL directive. The radix of these values determines how they are dis-
played in the resulting prompt.

If the default radix, octal, is in effect IND considers the numbers you specify
to be octal. However, if decimal mode is in effect (the .DISABLE OCTAL
directive has been issued), IND interpretes the values you specify as
decimal.

You can override octal mode by placing a decimal point (.) after any of the
values you specify within the brackets. IND considers values that you
specify with a decimal point (.) to be decimal values. Any values within the
same set of brackets specified without a decimal point are interpreted as
octal, and IND converts them to their decimal equivalents. When decimal
mode is in effect, all values specified within the brackets are considered deci-
mal; using a decimal point (.) has no effect.

For example, in the following control file octal mode is enabled. When IND
processes the .ASKS directive, IND interprets the timeout value as a deci-
mal number. However, IND converts the range values from octal to decimal.

+ENABLE OCTAL
+ASKS [0:10:"RT11A":20,81 YOLID TYPE YOUR YOLUME ID

Therefore, the response must contain from 0 (decimal) to 8 (decimal) ASCII
characters, the default response is RT11A, and the timeout count is 20 (deci-
mal) seconds.

‘When you use numeric symbols or expressions to specify the range, the radix
of the numeric symbols determines the radix of the range.

5.5.5.3 Question Display — When IND processes an .ASKS directive in a
command line, IND prints an asterisk followed by a space (*) and the prompt
you specified, followed by response information taken from the optional
parameters, in brackets. For example, when IND processes the command
line shown above, IND prints:

* TYPE YOUR VOLUME ID ES R:0.-8, D:"RTL1A" T:20,81

The S indicates that the response must be an ASCII string. The notation
R:0.-8. indicates that the response string can be from 0 to 8 (decimal) char-
acters long, inclusive. The notation D:"EBCDIC” indicates that the default
volume ID is “EBCDIC”. (If no default response was specified, the D: is not
displayed.) The notation T:20.S indicates that the default response will auto-
matically be used if no response is given within 20 (decimal) seconds. Note
that IND indicates decimal values by printing a decimal point (.), and indi-
cates octal values by excluding the decimal point.

5.5.5.4 Responses — The response to an .ASKS directive must be an ASCII
string whose length is within the range specified by the prompt.

532 Indirect Control File Processor IND)



\“\s;v/ 4

If only a carriage return is typed in response to the question, IND uses the
default response indicated within the brackets. This response also sets
<DEFAUL> to true. If no default response has been specified, the symbol is
set to null.

If the response is typed while escape recognition is enabled (with the
.ENABLE ESCAPE command), the special symbol <ESCAPE> is set to
true and the symbol is defined as null (if not previously defined). If the sym-
bol was previously defined, the definition remains unchanged. However, if
escape recognition is disabled, <ESCAPE> is set to false and IND prints an
error message and reprompts for a valid response.

The response CTRL/Z causes IND to print the following message, then ter-
minate processing:

BEOQF

5.5.6 Begin Block (.BEGIN)

The .BEGIN and .END directives permit you to structure the control file in
blocks. Modular, block-structured control files are easy to debug and main-
tain. More importantly, begin-end blocks isolate local symbol definitions
and thus conserve symbol table space. When you define a symbol, IND cre-
ates an entry in an internal symbol table.

The symbol table entries retain their definitions throughout the control file
execution if defined locally, or throughout all levels of control files if defined
globally. Local symbols defined within a block, however, are defined only
within that block; they are erased from the symbol table when IND encoun-
ters an .END directive. Thus, if a symbol is defined as a logical, numeric, or
string symbol outside of a begin-end block, you can redefine the symbol to
another type within the begin-end block. However, when you exit from the
begin-end block, the redefined symbol is erased and the symbol returns to its
previous type.

The .BEGIN directive marks the beginning of a begin-end block. All local
symbols following the directive are local to the block instead of to the entire
control file. The .ERASE LOCAL directive erases all local symbols within
the block.

Begin-end blocks can be nested up to a maximum depth of 127, but IND usu-
ally exhausts stack space before this limit can be reached.

The .BEGIN directive has the following syntax:
BEGIN
Anything that follows a .BEGIN directive on the same line is ignored.

The block must be terminated by an .END directive. Each .BEGIN directive
must have a corresponding .END directive.

Indirect Control File Processor (IND) 5-33



5.5.7 Chain to Another File (.CHAIN)

The .CHAIN directive closes the current indirect control file, disregards all
current local symbols, and continues processing by using commands from
another indirect control file. The .CHAIN directive does not close data files
or change the control file level.

The .CHAIN directive has the following syntax:
.CHAIN filespec [/options]
where:

filespec represents the indirect control file to which control is to be
passed

/options represents one of the options described in Section 5.2.1

In the following example, IND passes control to the file DK:OUTPUT.COM:

+CHAIN DQUTPUT

55.8 Close File (CLOSE)

The .CLOSE directive closes the file opened by the .OPEN, .OPENA, and
.OPENR directives. You must close any open files before passing control
from IND to the keyboard monitor. The .CLOSE directive disables data
mode. When you use the .CLOSE directive, make sure you use a file number
with the file specification.

The .CLOSE directive has the following syntax:
.CLOSE [#n] [filespec]
where:

n represents an optional file number from 0 to 3 (the default file
number is 0). If substitution is enabled, you can substitute a
symbol for n by enclosing the symbol in apostrophes.

filespec represents the name of the file you are closing

Using a file specification with .CLOSE causes no action but can make your
control file more readable.

If you use the .CLOSE directive after .OPENR, .CLOSE has the same effect
as the PURGE directive.

5.5.9 Send Data to File .DATA)

The .DATA directive writes a record to a file previously opened by an .OPEN
or .OPENA directive.

The .DATA directive has the following syntax:
DATA [#n] text-string

5-34 Indirect Control File Processor (IND)



R

where:

n represents an optional file number from 0 to 3 (the default
file number is 0). If substitution is enabled, you can substi-
tute a symbol for n by enclosing the symbol in apostrophes.

text-string represents text to be sent to the output file. (If substitution
is enabled, text-string can be a string symbol in apostro-
phes.) You can send blank lines as text to an output file, as
well as characters.

The .DATA command line cannot exceed 132 characters.

In the following example, IND sends the string THIS IS DATA to the output
file TEMP.DAT (file number 0):

+OPEN TEMP
+DATA THIS IS DATA
+CLOSE

In the next example, IND sends the output file COMMAN.DAT (file number
1):

+OPEN #1 COMMAN
+DATA =1 .DISABLE DATA
+CLOBE #1

The .DATA directive is also useful for creating indirect files that execute
commands that use more than one line. The following example creates and
executes an indirect command file that runs PIP, unprotects the file
DY:FILE.TST, and copies the file to DY 1..

+0OPEN COPY.,TMP

+DATA RUN PIP

+DATA DY:FILE.TST/Z

+DATA DY:FILE.TS8T=DY1:FILE.TST/W/Y
+DATA “C

+CLOSE

$@COPY.THMP

5.5.10 Decrement Numeric Symbol (.DEC)
The .DEC directive decrements a numeric symbol by one.
The .DEC directive has the following syntax:
.DEC numsym
where:
numsym represents the numeric symbol to be decremented

IND prints an error message and terminates processing if you use a logical
or string symbol with .DEC.

Indirect Control File Processor IND) 5-35



5.5.11 Delay Execution (.DELAY)

The .DELAY directive delays control file processing for a specified period of
time. The directive is valid only if your monitor includes timer support and
your configuration includes a clock.

The .DELAY directive has the following general syntax:
.DELAY nnu
where:

nn represents the number of time units for which you wish to delay

execution
u represents one of the following time units:
T Ticks
S Seconds
M  Minutes
H Hours

IND interprets the number you specify for nn as octal, unless you use a deci-
mal point to denote decimal.

When .DELAY suspends execution, IND prints the following message at the
console:

Delavind...

When execution resumes, IND prints the following at the console:

vesContinuing

In the following example, .DELAY delays execution for 8 seconds (10 octal):

+DELAY 108

In the following example, .DELAY delays execution for 25 (decimal) sec-
onds:

+DELAY 25.86

5.5.12 Disable Option (.DISABLE)

The .DISABLE directive disbles a specified operating mode. See the
.ENABLE directive for details on enabling operating modes.

The .DISABLE directive has the following syntax:
.DISABLE op-mode[,op-mode,op-mode...]

5-36 Indirect Control File Processor (IND)



where:

op-mode represents one or more of the following operating modes:

DATA OCTAL

DCL PREFIX
DELETE QUIET

ESCAPE SUBSTITUTION
GLOBAL SUFFIX
LOWERCASE TIMEOUT

MCR TRACE

Each operating mode is independent of the others; all can be disabled at the
same time. You can disable more than one operating mode with one
.DISABLE directive by separating the operating modes with commas. The
DATA operating mode is an exception; the .DISABLE DATA directive must
appear on a line by itself. If you disable more than one operating mode on
one line and an error occurs, none of the operating modes are disabled.

In the following example, the SUBSTITUTION and GLOBAL operating
modes are disabled with one directive.

+DISABLE SUBSTITUTION,GLOBAL

Operating modes can be local or global in scope. Local operating modes auto-
matically return to their default settings when you enter a nested control
file. You must explicitly enable or disable local operating modes when you
enter a nested file. Conversely, when you return from a nested control file to
the previous level file, the operating mode returns to its previous setting as
specified for that file. However, global operating modes remain enabled or
disabled throughout all levels of control files until you explicitly change the
setting. Table 5-7 in Section 5.5.14 lists the scope of each operating mode.

The .DISABLE DATA directive requires special treatment. Like other
.DISABLE directives, you can place the .DISABLE DATA directive in any
column of your control file. Therefore, you can format the control file by
‘using spaces and tabs before the .DISABLE DATA directive on a command
line. However, .DISABLE DATA must be the first and only command on the
line, and you may not use labels on the same command line with a
DISABLE DATA directive.

When IND is processing a control file and you type CTRL/O, IND suppresses
terminal output until it encounters a .DISABLE QUIET directive.

5.5.13 Display Symbol Table (.DUMP)

The .DUMP directive displays the contents of the local, global, or special
symbol table, or displays the contents of all symbol tables. See Section 5.4
for a description of local, global, and IND special symbols.

The .DUMP directive has the following syntax:
.DUMP [symboltable]

Indirect Control File Processor IND) 5-37



where:

symboltable represents the symbol table whose contents you want
to display: LOCAL, GLOBAL, or SPECIAL. If you do
not specify a symbol table, IND prints the contents of
all three.

IND first indicates what type of symbols will be displayed. When displaying
the contents of all symbol tables, IND lists the special symbols first, followed
by the global symbols and lastly the local symbols. Each line of the symbol
table display is formatted as follows:

SYMBOL(TYPE): VALUE

where:
SYMBOL represents the symbol name
TYPE represents the type of symbol:

L Logical symbol

O  Octal numeric symbol

D  Decimal numeric symbol
S String symbol

VALUE represents the symbol’s value: T or F for a logical symbol,
a number for a numeric symbol, or an ASCII string in
quotation marks for a string symbol.

Local symbols are displayed in reverse order of definition; the last local sym-
bol defined is listed first. If you use the .DUMP LOCAL directive and the
local symbol table is empty, IND prints:

*%%¥%%¥There are no local symbols*¥*

Global symbols are listed in order of definition; the first global symbol defi-
ned is listed first. If you use the .DUMP GLOBAL directive and the global
symbol table is empty, IND prints:

*¥%%%There are no dlobal symbols#¥%s
IND may also print one or both of these messages when displaying all three
symbol tables (the DUMP directive with no argument). Note, however, that

the special symbol table is never empty because IND special symbols are
permanent symbols.

The following example displays the contents of all three symbol tables.

+DUMP

5-38 Indirect Control File Processor (IND)

——



Special svmbolss

MAPPED(L):
ALTMOD(L) 2
ESCAPE(L):
DEFAUL (L)
RADSO (L)
ALPHANC(L) &
EOF (L)
FALSE (L):
TIMOUTC(L) ¢
TRUE (L):
OCTAL (L)
SPACE (0): 76GG
SYMTYP(D): O
FILERR(D): O
STRLENC(D)Y: 1
SYUNIT(D): O
EXSTAT(D): 1
SUCCES(DY: 1
WARNIN{(D): O

ERROR (D): 2
SEVERE(D): 4
SYSTEM(D): 7
MONNAM(S): "RT118J"
8SYDISK(8): "DL"

DATE (8): "20-MAR-B83"
TIME (S8): "00:0B8:14"
FILBPC(S): "TT:®
EXSTRI(E): ""

4T mmTTmTmT T

Global svmbols:

*%%x¥There are no dlobal svmbols**%*
Local symbolss:
NAME (5): "JON"

UNITE (D): 4
SUSPND(LY: T

Pg (§)y: "
P8 (§)s "
P7 (§): v
PG (§)s o
PS (5ye o
P4 (§): "
P3 (§): "*
P2 (8): "*®
P1 (5): "¢
PO (8): "TT:"

COMMAN(S): "TT:"

5.5.14 Enable Option (.ENABLE)

You can use the .ENABLE directive to invoke one of the operating modes
listed in Table 5-7.

The .ENABLE directive has the following syntax:
.ENABLE op-mode[,op-mode,op-mode...]

Indirect Control File Processor (IND) 5-39



where:
op-mode represents one or more of the operating modes.

Each mode is independent of the others; all can be active simultaneously.
You can enable more than one operating mode with one . ENABLE directive
by separating the operating modes with commas. The DATA operating mode
is an exception; the .ENABLE DATA directive must appear on a line by
itself. If you enable more than one operating mode on one line and an error
occurs, none of the operating modes are enabled.

In the following example, the LOWERCASE and TIMEOUT operating
modes are enabled with one directive.

+ENABLE LOWERCASE sTIMEOUT

Operating modes can be local or global in scope. Local operating modes auto-
matically return to their default settings when you enter a nested control
file. You must explicitly enable or disable local operating modes when you
enter a nested file. Conversely, when you return from a nested control file to
the previous level file, the operating modes return to their previous settings
as specified for that file. However, global operating modes remain enabled or
disabled throughout all levels of control files until you explicitly change the
settings.

Table 5-7 lists the operating mode default settings and the scope of each
mode.

Table 5-7: IND Operating Modes

Mode Default Scope
DATA Disabled Local
DCL Enabled Local
DELETE Disabled Local
ESCAPE Disabled Global
GLOBAL Disabled Global
LOWERCASE Enabled Global
MCR Enabled Local
OCTAL Enabled Global
PREFIX Enabled Global
QUIET Disabled Local
SUBSTITUTION Enabled Global
SUFFIX Enabled Global
TIMEOUT Disabled Global
TRACE Disabled Local

Descriptions and examples of each of the operating modes follow.
® Data mode (DATA [#n])

In data mode, IND sends to an output file lines that follow the directive
line .ENABLE DATA. (To send a single line of text to a file, see the

540 Indirect Control File Processor (IND)



\\‘s—v"/

.DATA directive description.) When you use .ENABLE DATA, blank
lines are ignored; this allows you to format your control file.

In the ENABLE DATA [#n] directive, n represents an optional file num-
ber in the range 0-3. (The default is 0.) If substitution is enabled, you can
substitute a symbol for the value n by enclosing the symbol in
apostrophes.

When the control file contains:

+0OPEN SECFIL.DAT
+ENABLE DATA # "NUM"

+DISABLE DATA # "NUM"

IND writes the lines that fall between the .ENABLE and .DISABLE
directives to the file SECFIL.DAT.

NOTE

If you have enabled data mode for one file and wish to send
data to a second file, you must disable data mode for the
first file before you enable it for the second file. If you fail to
disable data mode for the first file, the data you direct to the
second file is sent to the first file.

Data mode is also useful for creating indirect files that execute commands
that use more than one line. The next example creates an indirect file that
runs PIP, unprotects the file DY:FILE.TST, and copies the file to DY1.:.

+OPEN COPY.,TMP

+ENABLE DATA

RUN PIP

DY:FILE.T8T/Z

DY :FILE.TST=DY1:FILE.TET/MW/Y
e

+DISABLE DATA

+CLOSE

$@COPY+THMP

® DCL command niode (DCL)

In DCL mode, IND passes lines it does not recognize to the keyboard mon-
itor to be executed. When the control file contains:

+ASKS DEV WHICH DEVICE WILL YOU USE FOR THE LOG FILE?
ABBIGN DYO: LOG

and DCL mode is enabled, the keyboard command ASSIGN DYO0: LOG is

executed. If DCL mode is disabled, or if the /N option was used, this com-
mand is ignored.

Indirect Control File Processor (IND) 541



542

@ Delete mode (DELETE)

When delete mode is enabled in a control file, the control file is deleted
when IND is through processing it. Processing is complete when IND
executes the .EXIT directive or reaches the end of the control file.

The .ENABLE DELETE directive has the same effect as the /D option.
Escape recognition mode (ESCAPE)

Escape recognition permits the escape character to be a valid response to
an .ASK, .ASKS, or .ASKN directive. A question answered with a single
escape character sets the special logical symbol <ESCAPE> to true. The
escape character, followed by a carriage return, must be used only as an
immediate terminator to the question; if one or more characters precede
or follow the escape, IND will print the following error message:

PIND-E-Invalid Answer or Terminator

IND will then repeat the query. If you type in response to an .ASK
directive, the specified logical symbol will be set to true if the symbol has
not previously been defined; otherwise, it remains unchanged.

When the control file contains:

iIF YOU WANT A LIST OF OPTIONS, TYPE <ESCr<RET>
+ENABLE ESCAPE

+ASKS A ENTER OPTION

+IFT {ESCAPE:» .GOTO LIST

+LIST: FOPTIONS ARE: A (ADD):+ 8 (SUBTRACT) s D (DIVIDE)

and you type the key, followed by a carriage return, in response to
ENTER OPTION, the corresponding lines displayed at the terminal are:

iIF YOU WANT A LIST OF DPTIONSs TYPE <ESCr<RET>
* ENTER OPTION [S1: <{EBCH<RET:
FOPTIONS ARE: A (ADD) s 8 (SUBTRACT), D (DIVIDE)

Global symbol mode (GLOBAL)

In global symbol mode, symbol names that begin with a dollar sign ($) are
defined as global to all levels of control files; once such a symbol has been
defined, all levels recognize it. Symbols that do not begin with a dollar
sign are local to the level that defines them.

The file LORRAN.COM contains the following lines:

\ENABLE SUBSTITUTION
3eX

Indirect Control File Processor (IND)



When the control file contains:

+ENABLE GLOBAL
+SETE $X "TEST"
BLORRAN,COM

IND prints at the console:

iTEST

Lowercase mode (LOWERCASE)

When lowercase mode is enabled, IND stores responses to .ASKS directive
prompts, and strings that define symbols with the .SETS directive, in the
string symbol as the characters are typed (uppercase characters are stored
in uppercase, lowercase characters are stored in lowercase). When lower-
case mode is disabled, IND stores all characters as uppercase characters,
regardless of whether they were typed as uppercase or lowercase
characters.

Character case is significant when comparing strings; the .IF and .TEST
directives discriminate between lowercase and uppercase characters,
regardless of whether lowercase mode is enabled or disabled. Also, if
lowercase mode is disabled and the response to a query is in lowercase, the
special logical symbol <ALPHAN> will be set to false.

When the control file contains:

+ENABLE SUBSTITUTION:LOWERCASE
+ABKE A DEFINE STRING SYMBOL A
;IAI

IND prints at the console:

% DEFINE STRING SYMBOL A [8]1: SORT Subkroutine
i8O0RT Subroutine

MCE command mode (MCR)

In MCR mode, IND passes lines it does not recognize to the keyboard mon-
itor to be executed. When the control file contains:

+«ABKE DEY DEVICE TO USE FOR LDG FILE?
ASBIGN DYO: LOG

and MCR mode is enabled, the keyboard command ASSIGN DY0: LOG is
executed. If MCR mode is disabled, or if the /N option was used, this com-
mand is ignored.

Indirect Control File Processor (IND) 543



® Octal mode (OCTAL)

In octal mode, numeric symbols and .ASKN directive responses are inter-
preted as octal rather than decimal. For example, if octal mode is enabled
and the control file contains the line:

+ASKN VECTR ENTER VECTOR ADDRESS OF FIRST CONTROLLER

IND prints the following and interprets the response to be an octal num-
ber:

* ENTER VECTOR ADDRESS OF FIRST CONTROLLER [O1:

The .ENABLE OCTAL directive can be overridden by specifying decimal
numbers in the range specification, or by issuing the .DISABLE OCTAL
directive.

@ Prefix mode (PREFIX)

In prefix mode, IND prints an asterisk and a space in front of all prompts
resulting from .ASK, .ASKN, and .ASKS directives, and prints semico-
lons ;) in front of all external comment lines. For example, suppose a con-
trol file contains the following lines:

+ENABLE PREFIX

+ASK CONT DO YOU WANT TO CONTINUE

+ IFF CONT ,GODTO SUBZ + D0 NOT CONTINUE
FCONTINUE

When IND processes these lines, IND prints the following on the console:

% DO YOU WANT TO CONTINUE? L[Y/N D:NI: Y<RET:
FCONTINUE

If prefix mode had been disabled, IND would print the same lines but
without the asterisk-space combination and semicolon.

® Quiet mode (QUIET)

In quiet mode, IND does not display keyboard command lines. The com-
mand lines are executed normally, and if they return a message or dis-
play, the message or display is printed on the console.

When the control file contains:

+ASK QUIET DO YOU WANT COMMAND LINES SUPPRESSED
+IFT QUIET ENABLE QUIET

+ IFF QUIET .DISABLE QUIET

ABSIGN DX 0OUT

and the response is affirmative, IND processes the ASSIGN command but
does not display it on the console.

5-44 Indirect Control File Processor (IND)



——

R

® Substitution mode (SUBSTITUTION)

In substitution mode, IND replaces a symbol with its assigned value. The
symbol must be enclosed by apostrophes. For example, if the string sym-
bol A has been assigned the string value THIS IS A TEST, then every
occurrence of ‘A’ will be replaced by THIS IS A TEST. When substitution
mode is enabled, IND performs substitutions on each line before scanning
the line for directives and keyboard commands.

When the control file contains:

+ENABLE SUBSTITUTION
+ASKS FIL SPECIFY S0URCE FILE
MACRO ‘FIL’

IND prints at the console:

* GPECIFY SOURCE FILE [S1:SOURCE
+MACRD SOURCE

Suffix mode (SUFFIX)

In suffix mode, IND prints a question mark after all .ASK prompts, and
response specifications after all prompts that result from .ASK, .ASKN,
and .ASKS directives. For example, suppose a control file contains the fol-
lowing line:

+ABKN [1:9,:11 INIT NO. OF DISKS TO INIT?

If suffix mode is enabled, IND prints the following on the console:

* ND. OF DISKS TO INIT? [D Rel1-9 D:il

If suffix mode is disabled, IND prints only the following:

* NO. OF DISKS TO INIT?

Even when suffix mode is disabled, the response specifications are still

used to check the validity of the response.
Timeout mode (TIMEQUT)

In timeout mode, IND recognizes timeout counts used with ASK direc-
tives, if the monitor includes timer support and the configuration includes
a system clock. (If the monitor does not include timer support or your con-
figuration lacks a system clock, a warning message prints if you attempt
to use the . ENABLE TIMEOUT directive.) If timeout mode is disabled,
timeout counts are ignored.

If the control file contains the following line and timeout mode is enabled,
IND waits 15 (decimal) ticks for a response before using the specified
default response VT100:

+ABKS [::"VUT100":15,T1 TERM CONSOLE TYPE BEING USED?

Indirect Control File Processor IND) 545



If timeout mode is disabled or the monitor does not include timer support,
you must enter a response or carriage return to proceed.

® Trace mode (TRACE)

In trace mode, IND prints on the console each command line in a control
file as the command line is processed. IND prints an exclamation mark (!)
before each command line containing directives. No leading characters
are placed before lines containing only keyboard monitor commands or
comments.

When trace mode is enabled, the effect is the same as using the /T option
in the CSI command string.

5.,5.15 End Block (.END)

The .END directive marks the end of the begin-end block.
The .END directive has the following syntax:
.END

Anything that follows an .END directive on the same line is ignored. If IND
encounters more .END directives than .BEGIN directives, IND prints an
error message. (See Section 5.5.6 for more information about begin-end
blocks.)

5.5.16 Delete Symbols (.ERASE)

The .ERASE directive deletes local or global symbol definitions from the
symbol table. When you define a symbol, either locally or globally, IND cre-
ates an entry in a symbol table. The .ERASE directive erases either all
entries in that table or specific entries.

IND permits you to redefine global and local symbols after you have used the
.ERASE directive.

The .ERASE directive has the following syntax:

.ERASE LOCAL [symbol]
.ERASE GLOBAL [symbol]

where:

symbol represents the symbol you want to erase from the specified
symbol table. If you do not specify a symbol, all symbols
from that symbol table are erased.

For example, the following directive erases the symbol DEV from the global
symbol table:

+ERASE GLOBAL DEV

546 Indirect Control File Processor (IND)



N

The following directive erases all global symbols from the global symbol
table:

+ERASE GLOBAL

When you use .ERASE LOCAL without a symbol name, the IND internal
local symbols PO—P9 and COMMAN are erased as well as the local symbols
that you have defined. See Section 5.2.2 for more information on these inter-
nal local symbols.

The .DUMP directive enables you to see which symbols each symbol table
contains. See Section 5.5.13 for more information on the .DUMP directive.

An .ERASE LOCAL directive outside of a begin-end block erases all local
symbols. An . ERASE LOCAL directive within a begin-end block erases only
those local symbols defined in that block. An .ERASE GLOBAL, either out-
side of or within a begin-end block, erases all global symbols.

5.5.17 Exit Current Control File (.EXIT)

The .EXIT directive terminates processing of the current control file or
begin-end block and returns control to the previous level control file or
begin-end block. If the directive is encountered in the first control file, IND
exits and passes control to the keyboard monitor. The .EXIT directive also
allows you to specify a value for the special symbol <EXSTAT>.

The .EXIT directive has the following syntax:
EXIT [value]
where:

value is an optional numeric expression or the value of a special
symbol that is assigned to the special symbol <EXSTAT>

For example, the following line appears in indirect control file FILE1:

BFILEZ

The file FILE2.COM contains the following line:

+EXIT

When IND encounters the .EXIT directive in FILE2, control returns to
FILE1.COM.

If the .EXIT directive in FILE2.COM includes a numeric expression as in
the following example, IND evaluates the expression and then assigns the
value to <EXSTAT>.

+EXIT N+2

When IND reaches the end of a control file, the effect is the same as execut-
ing an .EXIT directive.

Indirect Control File Processor (IND) 5-47



5.5.18 Call a Subroutine (.GOSUB)

The .GOSUB directive saves the current location in a control file and then
branches to another location, identified by a label. The label identifies an
entry point to a subroutine. IND can branch to any subroutine in the current
control file, regardless of begin-end blocks. The maximum nesting depth for
subroutine calls is eight.

The .GOSUB directive has the following syntax:
.GOSUB label

where:
label represents the subroutine entry point

The label used with .GOSUB must not include the leading period and trail-
ing colon.

To return from the subroutine to the calling location, use the .RETURN
directive. Refer to Section 5.5.27 for more information on the . RETURN
directive.

The following directive transfers control to the subroutine labeled . EVAL:

+GOBUB EVAL

5.5.19 Branchto aLabel (.(GOTO)

The .GOTO directive causes a branch from one line in a control file to
another line, identified by a label. All lines between the .GOTO directive
and the specified label are ignored. Branches can go forward or backward in
the file.

If a .GOTO directive appears in a begin-end block, its target must be in that
same block. The .GOTO directive cannot branch to a nested begin-end block,
but can branch to another location in the control file that appears after a
nested begin-end block.

When IND encounters a .GOTO directive within a begin-end block, it scans
the current begin-end block from top to bottom for the label within that
block. Since the label scan starts at the . BEGIN directive and continues to
the .END directive, labels that have multiple definitions are permitted
within a block. IND finds the first definition of the label and branches to that
location.

The .GOTO directive has the following syntax:
.GOTO label
where:

label represents the name of the target label

5-48 Indirect Control File Processor (IND)

——



e

N’

RN

The label used with .GOTO must not include the leading period and trailing
colon.

The following example transfers control to the entry point labeled .100:

LGOTO 100

+100:

5.5.20 Logical Tests

IND has a set of directives that perform logical tests. If the test results in a
true value, IND processes the remainder of the command line.

Logical tests can be combined into a compound logical test by using the
.AND and .OR directives.

5.5.20.1 Test If Symbol Meets Specified Condition (.IF) — The .IF directive com-
pares a numeric or string symbol with another symbol of the same type to
determine if one of several possible conditions is true. If the comparison
yields a true value, IND executes the remainder of the command line.

When comparing string values, IND compares the value of each string’s
ASCII value. Because of this, IND can establish less-than, greater-than, or
equal-to relationships between string values; differences between uppercase
and lowercase characters are important.

The .IF directive has the following syntax:
IF symbol operator expr action
where:
symbol represents a numeric or string symbol

operator represents one of the following relational operators:

EQ or = Equal to
NE or <> Not equal to
GE or >= Greater than or equal to
LE or <= Less than or equal to
GT or > Greater than
LT or < Less than
expr represents an expression of the same symbol type
action represents how processing continues if the test resultsin a
true value

In the following example, IND compares two string values.

+SETS X "A"
SETS Y "a"
JIF X LT Y .GOTO 200

Indirect Control File Processor IND) 5-49



In this example, the ASCII value of string symbol X is less than the ASCII
value of string symbol Y, which yields the less-than condition. Thus, control
passes to the line containing the label .200:.

In the following example, IND compares two numeric values. In this exam-
ple, if N1 is less than or equal to N2, IND will increment N1.

+8ETN N1 2
+«8SETN N2 7
+IF N1 <= N2 INC NI

In the following example, IND compares the value S1 with the value of S2
concatenated with the first character of S3:

+8ETS 81 "AAR"

+8SETS 82 "AAY

+SETS 53 "BBBB"

«IF 81 »= 82+83[1:11 JINC N

In this example, the .IF directive yields a true result and IND increments N.

5.5.20.2 Test If Symbol Is Defined or Not Defined (.IFDF/.IFNDF) — The .IFDF
and .IFNDF directives test whether a logical, numeric or string symbol has
been defined (.IFDF) or not defined (IFNDF). If the test is true, IND pro-
cesses the remainder of the command line. These directives do not evaluate
symbols.

The .IFDF and .IFNDF directives have the following syntax:
JEFDF symbol action
JFNDF symbol action

where:
symbol represents a 1- to 6-character symbol

action represents how processing continues depending on the test
results

The following example illustrates the .IFDF and .IFNDF directives:

+IFDF A LGOTOD 100
+IFNDF & +ASK A DD ¥OU MWANT TO SET TIME

In this example, if symbol A is defined, control branches to .100:; otherwise
IND prints a prompt at the console.

5.5.20.3 Test If Operating Mode Is Enabled or Disabled (.IFENABLED/
AFDISABLED) — The .IFENABLED and .IFDISABLED directives test
whether a specific operating mode is enabled (IFENABLED) or disabled
(IFDISABLED). If the test is true, IND processes the rest of the directive
line.

5-50 Indirect Control File Processor (IND)



RN

S

The JFENABLED and .IFDISABLED directives have the following syntax:
JFENABLED op-mode action
IFDISABLED op-mode action

where:

op-mode represents the operating mode you want to test. See
Section 5.5.14 for more information on operating modes.

action represents how processing continues depending on the test
results

In the following example, control branches to COM if DCL mode is enabled:

+IFENABLED DCL .GOTO COM

5.5.20.4 Test If Device Is Loaded (.IFLOA/IFNLOA) — The .IFLOA and
JIFNLOA directives test whether a specific device handler is loaded
(IFLOA) or not loaded (.(IFNLOA). If the test is true, IND processes the rest
of the directive line.

The .IFLOA and .IFNLOA directives have the following syntax:
JFLOA dev action
JFNLOA dev action

where:

dev represents the device handler you want to test. You can use a
character string, or string symbol in single quotes (when
substitution mode is enabled), to specify the device handler.

action represents how processing continues depending on the test
results

In the following example, if DY 1 is loaded, control branches to RT67:

+IFLOA DY1 .GOTO RTB7

5.5.20.5 Test If Symbol Is True or False (.IFT/.IFF) — The .IFT and .IFF direc-
tives test whether a logical symbol is true or false, or test whether specific
bits in a numeric symbol are set to 1 or O.

The .IFT and .IFF directives have the following syntax:

JFT logsym action
JFT  [mask] numsym action

JFF  logsym action
JFF  [mask] numsym action

Indirect Control File Processor IND) 5-51



where:

logsym represents a logical symbol you want to test for a true or
false value

[mask] represents a numeric symbol or expression, in the range 0—
177777 (octal) or 0—65535 (decimal), that determines which
bits to test for a 1 or 0 value. You must include the sur-
rounding brackets when you use this argument.

numsym represents a numeric symbol whose bits you want to test for
alorOvalue

action represents how processing continues depending on the test
results

JFT Directive

When you use the .IFT directive with a logical symbol, IND tests the symbol.
If the symbol’s value is true, IND processes the remainder of the command
line. Otherwise, the symbol’s value is false, and the next command line is
processed instead.

When you use the IFT directive with [mask], IND checks to see which bits
in the mask are set to 1 (for true), and tests the corresponding bits in the
numeric symbol. If any of these are also set to 1, IND processes the remain-
der of the command line. Otherwise, the next command line is processed
instead.

When the following sample command lines are processed, IND branches to
line 100.

+SETT LOGA
+IFT LOGGA GOTO 100

IND also branches control to line 100 when the next two command lines are
processed.

+SETT [31 NUMB
+IFT [71 NUMB .GOTOD 100

JFF Directive

When you use the .IFF directive with a logical symbol, IND tests the symbol.
If the symbol’s value is false, IND processes the remainder of the command
line. Otherwise the next command line is processed.

When you use the .IFF directive with [mask], IND checks to see which bits
in the mask are set to 1, and tests the corresponding bits in the numeric
symbol. If any of these are set to 0, IND processes the remainder of the com-
mand line. Otherwise, the next command line is processed instead.

When the following sample command lines are processed, IND branches con-
trol to line 100.

5-52 Indirect Control File Processor IND)



e

+SETF LOGA
+IFF LOGA ,GOTO 100

IND also branches to line 100 when the next two command lines are
processed.

+8ETF [51 NUMB
+IFF [71 NUMB .GOTD 100

5.5.20.6 Compound Tests — You can combine logical tests with the .AND
and .OR directives.

IND also lets you perform more than one logical test on the same line. If you
do put more than one logical test on the same line, IND assumes an .AND
directive between the tests so you can omit it.

IND processes .AND directives before .OR directives. When IND processes
the first line in the following example, the effect is the same as the second
line:

+IFT A +OR JIFT B .AND IFT C .GOTO D
+IFT A JOR (,IFT B .AND ,IFT C) ,GOTO D

In the following example, control will pass to HELP if logical symbol A is
true and logical symbol B is false:

+IFT A +AND JIFF B .GOTOD HELP

In the following example, IND assumes an .AND directive between the two
tests .IFT A and .IFF B:

+IFT A WIFF B .GOTO HELP

In the following example, control will branch to the label HELP if A is true
or if B is false: :

+IFT A ,OR LIFF B .GOTO HELP
5.5.21 increment Numeric Symbol (.INC)

The .INC directive adds one to a numeric symbol.

The .INC directive has the following syntax:

INC numsym
where:
numsym represents the numeric symbol being incremented

In the following example, IND increments numeric symbol UNITS by one:

+INC UNITS

If you use the .INC directive to increment a logical or string symbol, IND
prints an error message and exits from processing.

Indirect Control File Processor (IND) 5-53



5.5.22 Branch on Error ((ONERR)

The .ONERR directive causes IND to continue processing at another loca-
tion in a control file when IND detects any of the errors listed in Table 5-8.
Table 5-8 lists the actual error messages generated by the errors; refer to
the RT-11 System Message Manual for more detail on the causes of these
errors.

The .ONERR directive has the following syntax:
.ONERR label
where:

label represents a label in a control file marking the location at

which you want to continue processing. If you do not specify a
label, the .ONERR directive is disabled.

Table 5-8: Errors Intercepted by .ONERR Directive

TIND-F-Bad rande or default specification
PIND-F-Data file error

TIND-F-Data file oren

TIND-F-Deleting special svmhbol

TIND-F-Error reading from terminal

PIND-F-File already opren

PIND-F-File not aoren

PIND-F-File read error

PIND-F-Invalid file number

PIND-F-Invalid Kevword

PIND-F-Invalid nesting

PIND-F-Label not at bedinning of line
PTIND-F-Null control stringd (to PARSE directive)
TIND-F-Redefining svmbol to differenmt tvrpe <svmbol>
PTIND-F-+.RETURN without .GOSUB

PIND-F-8tring substitution error
TIND-F-8ubroutine nestind too deer

TIND-F-8war error

PIND-F-Symbol tvpe error <svmhbolX
?IND-F-Undefined label <.label> ‘

TIND-F-Undefined svmbol <svymbol>

5-54 Indirect Control File Processor (IND)



e’

Usually when IND detects any of these errors, IND prints an error message
and stops executing the control file. When you use .ONERR, IND branches
control to the label you specify and continues execution instead.

You must place the .ONERR directive before the location in the control file
where IND detects an error. You may use .ONERR directives anywhere in
your control file, but each time IND detects an error control passes to the
label specified in the most recently processed .ONERR directive. A . ONERR
directive is only effective within the begin-end block or the control file in
which it is defined.

Once issued, an .ONERR directive remains in effect until it is redefined
(when IND finds another .ONERR directive in the control file) or until the
.ONERR directive is disabled. Whenever IND detects one of the errors listed
in Table 5-8, the current .ONERR directive is processed and then disabled.
You must then define another .ONERR directive to continue error process-
ing.

5.5.23 Opening Data Files

IND has the following three directives for opening auxiliary data files:

+OPEN
+OPENA
+OPENR

The sections that follow show how to use these directives.

When you use these file opening directives, observe the following guidelines:

1. You can have up to four files open at any time. When you use any of these
directives, specify a file number, from 0 to 3, with the file specification.
The first file you open is number 0, the second is number 1, and so on.

2. Before exiting from IND or passing execution to the keyboard monitor,
you must close any open files.

5.5.23.1 Open File (OPEN) —The .OPEN directive opens a file for output. Use
the .OPEN directive only when you wish to send data to a file. Before you
open a file, make sure that the output file you specify is not protected.

If you use the .OPEN directive and specify a file that already exists, IND
deletes the original file when you subsequently use the .CLOSE directive.

The .OPEN directive has the following syntax:
.OPEN [#n] filespec

where:
n - represents a file number. (The default is #0.) You can sub-
stitute a numeric symbol for n by enclosing the symbol in
apostrophes.

Indirect Control File Processor (IND) 5-55



filespec represents the file to be opened. (The default file type is
.DAT.)

In the following example, IND opens SECOUT.DAT for output:

+OPEN #0 BECOUT

5.5.23.2 Open File for Append (.OPENA) — The .OPENA directive opens a file
and appends all subsequent data to the file. Use this directive only when you
wish to send output to a file. If you use this directive with a file that does not
already exist, this directive has the same effect as the .OPEN directive.
Before you open a file, make sure it is not protected.

The .OPENA directive has the following syntax:
.OPENA [#n] filespec

where:
n represents a file number. (The default is #0.) You can sub-
. stitute a numeric symbol for n by enclosing the symbol in
apostrophes.
filespec represents the file to be opened. (The default file type is
.DAT.)
In the following example, IND opens SECOUT.DAT and appends subse-

quent data to it:

+OPENA #0 SECOUT

5.5.23.3 Open File for Read (.OPENR) — The .OPENR directive opens a file so
that you can read it. Use this directive only when you wish to read from a
file.

The .OPENR directive has the following syntax:
.OPENR [#n] filespec

where:
n represents a file number. (The default is #0.) You can sub-
stitute a numeric symbol for n by enclosing the symbol in
apostrophes.

filespec represents the file to be opened

5.5.24 Parse a String ((PARSE)

The .PARSE directive divides a character string into substrings. IND then
assigns the substrings to string symbols that you specify.

556 Indirect Control File Processor (IND)



e

S

The .PARSE directive has the following syntax:
PARSE string “ctrl-string” syml sym2 ...
where:

string represents the character string you wish to parse. You
can use a string symbol to represent the string you wish
to parse, or you can specify a character string. If you
specify a character string, make sure the string begins
and ends with quotes ().

© ctrl-string represents the control string, which specifies the
substring delimiters. (Make sure you include the
quotes.) Do not separate substring delimiters.

syml symZ2 ... represent the substring symbols into which you wish to
store the substrings. Separate string symbols with
spaces.

IND parses the character string into substrings as specified by the control

string. The following example illustrates a command line that uses the
PARSE directive:

+PARSE "DY1:LNKLIB,OBJ" ":," DEY FILE TYPE

In the sample line above, DY1:LNKLIB.OBJ is the character string to be
parsed. The control string “:.” contains a colon and a period as the substring
delimiters. The colon serves as a terminator for the first substring, and the
period serves as a terminator for the second substring. If the number of
substring symbols exceeds the number of characters in the control string,
the last character of the control string will be repeated as a substring delimi-
ter. The last substring symbol receives the remaining part of the character

string.

If there are more substring symbols than substrings, IND sets the additional
substring symbols to null. The special symbol <STRLEN> contains the
number of strings processed, including explicit null symbols.

In the sample command line above, .PARSE “DY1:LNKLIB.OBJ” “..” DEV
FILE TYPE, DEV, FILE, and TYPE are the symbols into which the sub-
strings are to be stored. In this example, the PARSE directive stores all the
characters up to a colon (that is, DY1) in the first symbol, DEV. All charac-
ters up to the period (that is, LNKLIB) are stored in the second symbol,

FILE. The remaining characters (that is, OBJ) are stored in the last symbol,
TYPE. ‘

In the following example, the symbol to be parsed, MACFIL, contains the
string COPY FILE1.MAC,FILE2.MAC,,FILE3.MAC:

+PARBE MACFIL " »" COM Al AZ A3 A4 AS

Indirect Control File Processor (IND) 5-57



When IND processes the command line above, it produces the following

symbols:
Symbol Contents
coM COPY
Al FILE1.MAC
A2 FILE2.MAC
A3 null
Ad FILE3.MAC
A5 null
<STRLEN> 5

5.5.25 Purge File (PURGE)

The .PURGE directive discards or closes a specified output file and frees its
file number, without taking any other action. If you use .PURGE with a file
that was previously opened with .OPEN, IND discards that file. If you use
PURGE with a file previously opened with .OPENA, IND makes no changes
to that file. If you use .PURGE after .OPENR, .PURGE has the same effect
as .CLOSE.

The .PURGE directive has the following syntax:
PURGE [#n]
where:

n represents a file number from 0 to 3. (The default is 0.)

5.5.26 Read a Record (.READ)

The .READ directive reads an ASCII record from a file previously opened
with the .OPENR directive. The record is stored in the specified string sym-
bol. An ASCII record is a string of characters delimited by line terminators.

The .READ directive has the following syntax:
READ [#n] strsym
where:
n represents a file number from 0 to 3. (The default is 0.)

strsym represents the string symbol which is assigned the charac-
ters in the record

Since the string variable cannot exceed 132 characters, file records cannot
exceed 132 characters, which includes the carriage return and line feed
characters at the end of the record.

The <EOF> symbol is set only when the .READ directive encounters end-
of-file. If end-of-file has occurred, both <EOF> and <FILERR> will be set
to indicate end-of-file. When processing is complete, close the file with the
.CLOSE or .PURGE directive. The .READ directive ignores null characters.

5-58 Indirect Control File Processor (IND)



5.5.27 Return from a Subroutine (.RETURN)

The .RETURN directive appears at the énd of a subroutine and returns con-
trol to the most recently saved position in the indirect control file.

The .RETURN directive has the following syntax:
.RETURN

5.5.28 Set Numeric Symbol to Decimal or Octal (.SETD/.SETO)

The .SETD and .SETO directives change the radix of a numeric symbol to
decimal (.SETD) or octal (.SETO). These directives do not alter the value of a
symbol, only its radix.

The .SETD and .SETO directives have the following syntax:
SETD numsym
SETO numsym

where:

numsym represents the numeric symbol whose radix is being
changed

In the following example, the value of the numeric symbol UNITS is set to
10 (decimal), then changed to 12 (octal).

+SETN UNITS 10,
+SETO UNITS

5.5.29 Set Symbol to Logical Value (.SETL)

The .SETL directive sets or clears the bits of a logical symbol depending on
the value of a logical expression. If the symbol has not been defined, IND
makes an entry in the symbol table and sets the symbol to the value (set or
cleared) of the logical expression. If the symbol has already been defined,
IND resets the symbol accordingly. If the logical symbol was previously defi-
ned as a numeric or string symbol, IND prints an error message and exits
from processing.

The .SETL directive has the following syntax:
SETL logsym logexp
where: .
logsym represents the logical symbol to be set or cleared

logexp represents a logical expression that can include logical
sqmceols and numeric values joined by the logical operators
& (logical AND), ! (logical OR), and A (logical NOT). No
imbedded blanks or tabs are permitted. IND evaluates from

Indirect Control File Processor (IND) 5-59



left to right unless parentheses are used to form subexpres-
sions, which are evaluated first. If any value in an expres-
sion is specified as decimal, IND assumes that all values in
the expression are decimal; otherwise, all values are octal.

When you use the .SETL directive, the logical symbol you specify is set to
the value represented by the logical expression.

In the following example, the control file contains these lines:

+SETL MONITR SJIFB!X

If any of the three logical symbols (SJ, FB, or XM) is set to true, the logical
symbol MONITR is set to true. If none of the three is set to true, MONITR is
set to false.

5.5.30 Set Symbol to Numeric Value (.SETN)

The .SETN directive defines or changes the numeric value of a specified
symbol. If the symbol has not been defined, IND makes an entry in the sym-
bol table and sets the symbol to the numeric value specified. If the symbol
has already been defined, IND resets the symbol accordingly. If the numeric
symbol was previously defined as a logical or string symbol, IND prints an
error message and exits from processing.

The .SETN directive has the following syntax:
SETN numsym numexp

where:
numsym represents a numeric symbol
numexp represents a numeric expression

When specifying a numeric value to assign to a symbol, you may combine
numeric symbols and constants to form a numeric expression. If numeric
expressions are used, no imbedded blanks or tabs are permitted. IND evalu-
ates from left to right unless parentheses are used to form subexpressions,
which are evaluated first. If none of the values in the expression includes a
decimal point, the radix of the symbol is determined by the default radix in
effect (as determined by the ENABLE/in the expression and octal mode is
enabled, all values specified without decimal points are assumed to be octal,
and are converted to decimal before the arithmetic operation is performed.
All values specified with decimal points are treated and stored as decimal
values.

In the following example, IND assigns the integer 27 (octal) to the numeric
symbol NUMBER:

+8ETN NUMBER 27

5-60 Indirect Cont'fol File Processor (IND)

~—

—



In the following example, IND assigns to the numeric symbol Al the value
of symbol A2 minus five, multiplied by three. All numbers are interpreted as
octal.

+SETN Al 3% (AZ-3)

5.5.31 Set Symbol to String Value (.SETS)

The .SETS directive defines or changes the value of a specified string sym-
bol. If the symbol has not been defined, IND makes an entry in the symbol
table and sets the symbol to the specified string value. If the symbol has
been'defined, IND resets the symbol accordingly. If the symbol has been defi-
ned previously as logical or numeric, IND prints an error message.

The .SETS directive has the following syntax:
SETS strsym strexp

where:
strsym represents a string symbol

strexp represents any string expression (You can concatenate
string symbols and substrings to form a valid string
expression.)

IND assigns to the specified symbol the string value represented by the
string expression strexp. If a string constant is used in strexp, the constant
must be enclosed by quotes.

You can combine a string symbol, constant, or substring with another string
symbol or substring by using the plus sign (+) to form a string expression.

In the following example, IND assigns to the symbol A the string value
ABCDEF:

+S6ET8 A "ABCDEF"

In the following example, IND assigns to the symbol X the value of symbol
STR2 (which contains ZZZ) plus ABC, resulting in ZZZABC:

+8ETE X SBTRZ2+"ABC"

In the next example, IND assigns the symbol X the string value of STR2
(which contains ZZZ) plus the last three characters of string A (which con-
tains ABCDEF), resulting in ZZZDEF:

+SETS X STREZ+AL4:61

Indirect Control File Processor (IND) 5-61



In the next example, IND assigns to the string symbol MYFILE the string
value of the system device plus the string MYFILE TXT. If the system
device is RK:, string symbol MYFILE is assigned the string value
RK:MYFILE.TXT.

+SETS MYFILE <SYDISK»>+":MYFILE.,TKT"

5.5.32 Set Symbolto True or False (.SETT/.SETF)

The .SETT and .SETF directives assign a value of true or false to a logical
symbol. If the logical symbol has not been defined, IND makes an entry in
the symbol table and sets the symbol to the value specified. If the symbol has
already been defined, IND resets the symbol accordingly.

You can also use the .SETT and .SETF directives to redefine a numeric sym-
bol by setting and clearing bits. You can use these directives with a numeric
symbol only to reset bits in a previously defined symbol.

If the logical or numeric symbol you specify was previously defined as
another type of symbol, IND prints an error message and processing halts.

The .SETT and .SETF directives have the following syntax:

SETT logsym
SETT [mask] numsym

.SETF logsym
SETF [mask] numsym

where:
logsym represents a logical symbol you want to define or redefine

[mask] = represents a numeric symbol or expression, in the range 0—
177777 (octal) or 0-65535 (decimal), that determines which
bits are to be set or cleared in a numeric symbol. You must
include the surrounding brackets when you use this
argument.

numsym represents a numeric symbol to be redefined by setting or
clearing bits as dictated by the mask.

5.5.32.1 .SETT Directive — When you use the .SETT directive with a logical
symbol, IND assigns the value of true.

When you use the .SETT directive with [mask], for every bit in the mask
that is set to 1 the corresponding bit in the numeric symbol is also set to 1.
For every bit in the mask that is set to 0, the corresponding bit in the symbol
remains unchanged.

In the following example, IND sets the logical symbol X to true:

+8ETT X

562 Indirect Control File Processor (IND)

——



As aresult, X can be used in the following sample command line:

+IFT X .GOTO 300

In the next example, IND sets bits 0, 1 and 2 of the previousb‘r defined
numeric symbol NUM to 1. The rest of the bits remain as they were pre-
viously defined.

+SETT [£71 NUM

As a result, when IND processes the following command line, control
branches to label SUB1:

+IFT [71 NUM .GOTO SUB1L

See Section 5.5.20.5 for more information on the .IFT and .IFF directives.

5.5.32.2 .SETF Directive — When you use the .SETF directive with a logical
symbol, IND assigns the value of false.

When you use the .SETF directive with [mask], for every bit in the mask
that is set to 1 the corresponding bit in the numeric symbol is set to 0. For
every bit in the mask that is set to 1, the corresponding bit in the symbol
remains unchanged.

For example, in the following command line IND assigns a value of false to
the logical symbol LOG.

+SETF LOG

In the next example, IND sets bits 1 and 3 of the numeric symbol NUM to 0.
The rest of the bits remain as they were previously defined.

«8ETF [123 NOUM

As a result, when IND processes the following command line, control
branches to the label SUB1.

+IFF [221 ,GOTO SuUBL

See Section 5.5.20.5 for more information on the .IFT and .IFF directives.

5.5.33 Terminate Processing (.STOP)

The .STOP directive halts control file processing. When you use the .STOP
directive to halt processing, IND prints the following message on the
console:

@ {EOF>

Indirect Control File Processor IND) 5-63



The .STOP directive has the following syntax:
STOP

The .STOP directive has the same effect as the logical end-of-file directive
0.

5.5.34 Testa Symbol (.TEST)

You can use the .TEST directive to determine the symbol type of a symbol, to
test the characters of a string symbol for their type (alphanumeric or
RADA50), to find the starting position of an ASCII string within a character
string, or to test a numeric symbol for its radix.

The .TEST directive has the following syntax:

.TEST symbol
TEST strsym matchstrng

where:
symbol represents the symbol you want to test
strsym represents the string symbol you want to test

matchstrng represents the ASCII string whose starting position
within a character string you want to find. The variable
matchstrng can represent an ASCII string, a string
symbol, or an expression.

When you use the .TEST directive to test for a symbol type, IND indicates
the symbol’s type by storing the proper numeric code in <SYMTYP>. If the
symbol is found to be a string symbol, IND sets the special symbols
<ALPHAN>, <RAD50>, and <STRLEN> accordingly. If the symbol is
found to be a numeric symbol, IND reports the radix of the symbol by setting
the special symbol <OCTAL> to true if the symbol’s radix is octal, or set-
ting <OCTAL> to false if the symbol’s radix is decimal.

To search for an ASCII string within a character string, use the .TEST
strsym matchstrng directive. Then test the contents of <STRLEN>. If
<STRLEN> is 0, the match string you specified was not found in the charac-
ter string. A nonzero value represents the absolute position (in octal) of the
match string in the character string, rather than an offset to the starting
position. For example, the following command lines test the string symbol
ADDRES for the position of the match string “STREET”, and then check to
see whether the string was found:

+SETS ADDR "SBTREET"

+TEST ADDR "STREET" iLDOOK FOR "STREET"
JIN BTRING CONTAINED IN
iBTRING SYMBOL ADDR

+IF <8TRLEN> = 0 ,GOTO NOTFND iBTRING NOT FOUND

+IF <STRLENX> <> 0 ,GOTO POS iIBTARTING POS. OF STRING

5-64 Indirect Control File Processor (IND)



In the example above if <STRLEN> has a value of 1, the string “STREET”
begins on the first character in the string represented by ADDR. Note that
the match string will be found within the target string only if both are in
uppercase characters or both are in lowercase characters.

In the following example, IND enters the number of characters in the string
symbol A into <STRLEN> and sets <ALPHAN> and <RAD50>
accordingly.

+TEST A
The special numeric symbol <STRLEN> is then available to compare the
length of string symbol A to a numeric constant or expression.

In the following example a control file contains these lines:

JASKN [1:10,1 UNITS # OF UNITS ERROR LOGGER SUPPORTST
+ASKN [1:71 DEVUSLT # EXTRA DEVICE SLOTS WANTED?

+IF DEVSLT » 1 .GOTO DEVSUB

+TEST UNITS

IND tests the numeric symbol UNITS for radix. In this case, since the range
specification contained a decimal point after the number 10, the response
would be interpreted as decimal. Therefore, when IND tests the symbol
UNITS, the special symbol <OCTAL> will be false because the radix of the
symbol is decimal.

5.5.35 Test for Installed Device (.TESTDEVICE)

The .TESTDEVICE directive obtains information on the specified device.
The .TESTDEVICE directive has the following syntax:

TESTDEVICE device
where:

device represents the device you want to test. The colon (:) following
the device name is optional.

The results of the test are stored in the special symbol <EXSTRI>. You can
use the .PARSE or .TEST directive to move the information in <EXSTRI>
to separate string symbols for inspection.

If the device name you specify is invalid or the device is not installed,
<EXSTRI> contains the characters NSD (no such device). If the device is
valid, eight fields of information are returned in <EXSTRI>:

Indirect Control File Processor (IND) 5-65



Field Contents

1 Physical device name; if no unit number is specified, unit O is
assumed.
2 Device size, displayed as a decimal number (with a decimal

point). If the device has a variable-sized handler and no vol-
ume is mounted in the drive, the size returned is the smallest

for that device.

3

4 Three fields, each containing 0.

5

6 LOD (device handler loaded) or UNL (device handler not
loaded).

7 ONL (on-line), OFL (off-line), or UNK (unknown). IND checks

for this attribute by attempting to read from the device. If a
volume is mounted in the device and IND is able to read it, the
ONL attribute is returned in field 7. If a read error occurs, such
as when no volume is mounted, the OFL attribute is returned.
Also, if the device tested is a logical disk, and the file assigned
to the logical disk is for any reason not accessible, the OFL
attribute is returned. Devices that are write-only, and
sequential-access devices that are not non-RT-11 directory-
structured (such as TT: and CR:), return the attribute UNK.

8 MTD (mounted) or NMT (not mounted). The MTD attribute is
returned for logical disk devices that have been assigned with
the keyboard monitor MOUNT command. Any device not
assigned with the MOUNT command, or any device that is not
a logical disk, returns NMT in field 8.

In <EXSTRI>, each field of information is followed by a comma, including
field 8.

In the following example, LD2: (logical disk unit 2) is associated with the file
DL1:MASTER.DSK, and also assigned the logical device name SEC. The
example shows the contents of <EXSTRI> when the .TESTDEVICE direc-
tive is used with SEC.

MOUNT LDZ2: DL1:MASTER SEC
+TESTDEVICE SEC

FILEXBTRI:

SLDZ2 5000, s0 400 »UNL sONL »MTD »

The contents of <EXSTRI> show that the physical device name is LD2,
whose size is 5000 (decimal) blocks. The LD handler is not loaded, the device
on which LD2: resides (DL1:) is on-line, and LD2: has been assigned with the
MOUNT command.

In the next example, device DYO0: is tested.
+TESTDEVICE DY:

F/CEXBTRI '
SDYQ 494, +00,0,L0D»0FL +NMT

566 Indirect Control File Processor (IND)

——



The contents of <EXSTRI> show that the physical device name is DY0, and
the device’s size is 494 (decimal) blocks. The DY handler is loaded, but the
there is no volume in DYO: so the device is off-line. (Since DY has a variable-

size handler, the smallest device size is displayed.) DY has not been assigned
with the MOUNT command.

5.5.36 Test for File (TESTFILE)

The .TESTFILE directive checks to see whether a specified file exists. The
directive then places the name of the specified file in the special symbol
<FILSPC> and the results of the test in <FILERR>.

The . TESTFILE directive has the following syntax:
.TESTFILE filespec

where:
filespec represents the file you wish to verify

The default device specification is DK:, and the default file type is .DAT.

5.5.37 Obtain Volume ldentification (.VOL)

The .VOL directive assigns the volume identification of a volume to a string
symbol. )

The syntax of the .VOL directive is:
.VOL strsym dev
where:

strsym represents the string symbol in which to store the volume
identification

dev represents the device that contains the volume from which
to read the volume identification. You can use either a
string symbol in single quotes (when substitution mode is
enabled), or a character string, to specify the device. The
colon following the device mnemonic is ignored.

In order for IND to read the volume identification, the volume must be an
RT-11 file-structured device.

IND reads only the volume identification from the specified volume and
stores it in the specified symbol. The owner name is not stored. The length of
the volume identification is predetermined (12 spaces); if the volume iden-
tification is less than 12 characters, the value of the symbol is padded with
blank characters up to 12 spaces.

Indirect Control File Processor (IND) 5-67






e

Part Il
Text Editing

You use an editor to create and modify textual material. Part III describes
the RT-11 text editor, EDIT, and explains how to use it.






Chapter 6
Text Editor (EDIT)

The text editor (EDIT) is a program that creates or modifies ASCII source
files for use as input to other system programs such as the MACRO assem-
bler or the FORTRAN compiler. EDIT, which accepts commands you type at
the terminal, reads ASCII files from any input device, makes specific
changes, and writes on any output device. EDIT allows efficient use of VT11
or VS60 display hardware, if they are part of the system configuration.

The editor considers a file to be divided into logical units called pages. A
page of text is generally 50 to 60 lines long (delimited by form feed charac-
ters) and corresponds approximately to a physical page of a program listing.
The editor reads one page of text at a time from the input file into its inter-
nal text buffers, where the page becomes available for editing. Editing com-
mands can:

@ Locate text to be changed

@ ' Execute and verify changes

® List an edited page on the console terminal
@ Qutput a page of text to the output file

Note that you cannot perform any edit operations on a protected file. To dis-
able a file’s protected status, see the RENAME and UNPROTECT command
descriptions in Section 4.5.

6.1 Calling EDIT

You can call the text editor when you are at monitor level. The syntax of the
command is:

EDIT /CREATE filespec[/ALLOCATE:size]
/INSPECT }
/{OUTPUT:filespec[/ALLOCATE:size]

See Section 4.5 for a description of the EDIT command and its options.

6.2 Modes of Operation

The editor operates in either command mode or text mode. In command
mode the editor interprets all input you type on the keyboard as commands
to perform some operation. In text mode the editor interprets all typed input

6-1



as text to replace, insert into, or append to the contents of the text buffer.
You can use a special editing mode, called immediate mode, with the VT-11
display hardware. Section 6.7.2 describes this mode.

Immediately after being loaded into memory and started, the editor is in
command mode. EDIT prints an asterisk at the left margin of the console
terminal page to indicate that it is ready to accept a command. Terminate
all commands by pressing the ESCAPE key twice in succession. Execution of
commands proceeds from left to right. When EDIT encounters an error
before beginning execution of a command string, it prints an error message
followed by an asterisk at the beginning of a new line, indicating that it is
still in command mode, that it is waiting for a command, and that execution
of the illegal command has not occurred. You should retype the command
correctly.

To enter text mode, type a command that must be followed by a text string.
These commands insert, replace, exchange, or otherwise manipulate text.
When you type one of these commands, EDIT recognizes all succeeding char-
acters as part of the text string until it encounters an ESCAPE character.
The ESCAPE terminates the text string and causes the editor to reenter
command mode.

8.3 Special Key Commands

6-2

Table 6-1 lists the EDIT key commands. Type a control command by holding
down the CTRL key and typing the appropriate character. Control com-
mands are documented as CTRL/C, CTRL/R, etc. Throughout this chapter,
the $ character is used in examples to represent the ESCAPE key, AC is
used in examples to represent CTRL/C, and ~X is used in examples to repre-
sent CTRL/X.

Table 6-1: EDIT Key Commands

Key Explanation

ESCAPE, ESC key; echoes as $. A single ESCAPE terminates a text string. A double
ALTMODE, ESCAPE (two consecutive ESCAPESs) executes the command string. For
or SEL example:

*«GMOV ABE-1D%%

The first ESCAPE ($) terminates the text object (MOV A,B) of the Get com-
mand. The double ESCAPE terminates the Delete command and causes
execution of the entire statement with the result that the character B will
be deleted.

CTRL/C Echoes as A~C. If EDIT encounters a CTRL/C as a command in command
mode, it terminates execution and returns control to the monitor. You can
restart the editor by typing R EDIT or REENTER in response to the moni-
tor’s prompt. If EDIT encounters a CTRL/C in a text object, the CTRL/C is
included in the text object, as if it were just like any other character. If the
editor is executing a lengthy command and you want to stop EDIT, type two
CTRL/C commands in succession. This will abort the command, generate

Text Editor (EDIT)



e

N

Table 6-1:

EDIT Key Commands (Cont.)

Key

Explanation

CTRL/O

CTRL/U

DELETE
or

RUBOUT

TAB

CTRL/X

the ?EDIT-F-Command aborted error message, and return the editor to
command mode. For example:
*¥I"C"CCHs$

*"CH$

In the first command, the three CTRI/C characters are part of the text
object of the Insert command. EDIT treats them like any other character. In
the second command string, the CTRL/C occurs at command level, which
causes the editor to terminate.

If no commands (other than CLOSE) are executed between the time you ter-
minate the editor and the time you issue a REENTER command, the text
buffer is preserved as it was at program termination. However, only the text
buffer is preserved. The input and output files are closed, and the save and
macro buffers are reinitialized.

If you inadvertently terminate an editing session before the output file can
be closed, you can often use the monitor CLOSE command to make perma-
nent the portion of the output file that has already been written (see Section
4.5). You can then reenter the editor, open a new output file, and continue
the editing session.

Echoes as A0 and a carriage return. Inhibits printing on the terminal until
completion of the current command string. Typing a second CTRL/O
resumes output.

Echoes as AU and a carriage return. Deletes all characters on the current
terminal input line. (Typing CTRL/U has the same effect as pressing the
RUBOUT key until all the characters back to the beginning of the line are
deleted.)

Deletes a character from the current command line; echoes as a backslash
(\) followed by the character deleted. Each succeeding DELETE you type
deletes and echoes another character. An enclosing backslash prints when
you type a key other than DELETE. This erasure is done from right to left.
Since EDIT accepts multiple-line commands, DELETE can delete past the
carriage return and line feed combination and delete characters on the pre-
vious line. You can use DELETE in both command and text modes.

Spaces to the next hardware tab stop. Tab stops are positioned every eight
spaces on the terminal; pressing the TAB key causes the carriage to
advance to the next tab position.

Echoes as ~X and a carriage return. CTRL/X causes the editor to ignore the
entire command string you are currently entering. The editor prints a car-
riage return and line feed combination and an asterisk to indicate that you
can enter another command. For example:

*IABCD
EFGH" X
*

A CTRL/U would cause only deletion of EFGH; CTRL/X erases the entire
command.

If you are running a system job, you must SET TT:NOFB to enable this
function of CTRL/X. If you do not and you type CTRL/X, the system inter-
cepts the CTRL/X and prompts you for a system job name.

Text Editor (EDIT) 6-3



6.4 Command Structure

EDIT commands fall into eight general categories. Table 6-2 lists these
categories, the commands they include, and the sections of this chapter
where you will find information on the commands.

Table 6—2: EDIT Command Categories

Category Commands Section

File open and close

Edit Backup (EB) 6.6.1.3
Edit Read (ER) 6.6.1.1
Edit Write (BW) 6.6.1.2
End File (EF) 6.6.14
File input/output
Exit (EX) 6.6.2.4
Next (nN) 6.6.2.3
Read (R) 6.6.2.1
Write (mW) 6.6.2.2
Immediate mode
CTRL/D 6.7.2
CTRL/G 6.7.2
CTRL/N 6.7.2
CTRL/V 6.7.2
DELETE or RUBOUT 6.7.2

ESCAPE or ALTMODE 6.7.2

Pointer location

Advance (nA) 6.6.3.3
Beginning (B) 6.6.3.1
Jump (nd) 6.6.3.2
Search
Find (nF) 6.6.4.2
Get (nG) 6.6.4.1
Position (nP) 6.6.4.3
Text listing
List (nL) 6.6.5.1
Verify (V) 6.6.5.2
Text modification
Change nC) 6.6.6.4
Delete (nD) 6.6.6.2
Exchange (nX) 6.6.6.5
Insert (I) 6.6.6.1
Kill (nK) 6.6.6.3
Utility
Edit Console (EC) 6.7.1
Edit Display (ED) 6.7.1
Edit Lower (EL) 6.6.7.6
Edit Upper (EU) 6.6.7.6
Edit Version (EV) 6.6.7.5
Execute Macro (nEM) 6.6.7.4
Macro (M) 6.6.7.3
Save (nS) 6.6.7.1
Unsave (U) 6.6.7.2

6—4 Text Editor (EDIT)



The general syntax for all the EDIT commands, except immediate mode
commands, is:

[n]C[text]EsO
or
[n]CED
where:
n represents one of the arguments from Table 6-3
C represents a 1- or 2-letter command
text represents a string of ASCII characters

As a rule, commands are separated from one another by a single ESCAPE;
however, if the command requires no text, the separating ESCAPE is not
necessary. Commands are terminated by a single ESCAPE; typing a second
ESCAPE begins execution. (You use ESCAPE differently when immediate
mode is in effect; see Section 6.7.2.)

The syntax of display editor commands is different from the normal editing
command format, and is described in Section 6.7.

6.4.1 Arguments

An argument is typed before a command letter. It specifies either the par-
ticular portion of text to be affected by the command or the number of times
to perform the command. With some commands, this specification is implicit
and no argument is needed; other editing commands require an argument.
Table 6-3 lists the possible arguments and their meanings.

Table 6-3: Command Arguments

Argument Meaning

n Represents an integer in the range —~16383 to +16383 (decimal) and may,
except where noted, be preceded by a plus (+) or minus () sign. If no sign
precedes n, it is assumed to be a positive number. The absence of n implies a
1 (or -1 if a minus sign precedes a command). This argument can represent
the number of characters or lines forward (+) or backward (-) to move the
pointer, or it can represent the number of times to execute the operation.

0 Indicates the text between the beginning of the current line and the location
pointer (see Section 6.4.3).

/ Refers to the text between the location pointer and the end of the text in the
buffer.

= Represents —n, where n is equal to the length of the last text argument used.
Use this argument with the Jump, Delete, and Change commands only.

The roles of all arguments are explained in the following sections.

Text Editor (EDIT) 6-5



6.4.2 Command Strings

All EDIT command strings are terminated by two successive ESCAPE char-
acters. Use spaces, carriage returns, and line feeds within a command string
to increase command readability. EDIT ignores them unless they appear in
a text string.

Commands to insert text can contain text strings that are several lines long.
Each line you enter is terminated by the carriage return, which inserts both
a carriage return and a line feed character into the text. The entire com-
mand is terminated by a double ESCAPE.

You can string several commands together and execute them in sequence.
For example:

text object text object text object

— ~ —
*BGMOY PCRO$-2CR1ISSKGCLR GRE$$

i ——
second third fifth
command command command
first fourth
command command
where:
B is the first command
GMOV PC,R0O is the second command (MOV PC,R0 is the text
object)
—2CR1 is the third command (R1 is the text object)
5K is the fourth command
GCLR @R2 is the fifth command (CLR @R2 is the text
object)
$ represents the ESCAPE key; separates the end of
each text object from the following command
$$ represents the ESCAPE key pressed twice;

executes the commands

Execution of a command string begins when you type the double ESCAPE
and proceeds from left to right. EDIT ignores spaces, carriage returns, line
feeds, and single ESCAPES, except when they are part of a text string. Thus,
these two examples have the same result:

*BGMOY RO%=CCLR R1%AV$S$
*B$ GMOU RO

=CCLR R1%
A% Vs

66 TextEditor (EDIT)



. /
RN

6.4.3 Current Location Pointer

Most EDIT commands function with respect to a movable location pointer
that is normally located between the most recent character operated on and
the next character in the buffer. It is important to think of this pointer as
being between two characters, and never directly on a character.

At the start of editing operations, the pointer precedes the first character in
the buffer, although it is not displayed on the console terminal. At any time
during the editing procedure, think of the pointer as representing the cur-
rent position of the editor in the text. The pointer moves during editing oper-
ations according to the type of editing operation being performed. Refer to
text in'the buffer as so many characters or lines preceding or following the

- pointer.

6.4.4 Character- and Line-Oriented Command Properties

EDIT commands are either character-oriented or line-oriented: character-
oriented commands affect a specified number of characters preceding or fol-
lowing the pointer; line-oriented commands operate on entire lines of text.

6.4.4.1 Character-Oriented Commands — The argument of character-oriented
commands specifies the number of characters in the buffer on which to oper-
ate. If n is unsigned (positive), the command moves the pointer in a forward
direction. If n is preceded by a minus sign (negative), the command moves
the reference pointer backward. Line feeds, carriage returns, and null char-
acters, although not printed, are embedded in text lines, counted as charac-
ters in character-oriented commands, and treated as any other text
characters.

When you press the RETURN key, both a carriage return and a line feed
character are inserted into the text. For example, assume the pointer is posi-
tioned as indicated in the following text (* represents the current position of
the pointer):

Moy #VECT yREZGE0).
CLR ERZREDDD +

The EDIT command —2J moves the pointer back two characters to precede
the carriage return character.

May #VECT yR2EDD
CLR BERzGEO *

The command 10J advances the pointer forward ten characters and places it
between the BED and @8 characters at the end of the second line. Note that the
tab character preceding @R2 is also counted as a single character.

Moy #UECT »RZGDW
CLR BRZEED
f\

Text Editor (EDIT) 6-7



Finally,

to place the pointer after the C in the first line, use a —14J com-

mand. The J (Jump) command is explained in Section 6.6.3.2.

Moy
CLR

6.4.4.2

#VECT +R2@EIE
ERZGDD

Line-Oriented Commands — When you use line-oriented commands,

the command argument specifies the number of lines on which to operate.
Because EDIT counts the line-terminating characters to determine the

number
number

of lines on which to operate, an argument n does not affect the same
of lines forward (positive) as it affects backward (negative).

For example, the argument —1 applies to the line beginning with the first
character following the second previous end-of-line and ending with the
character preceding the pointer. The argument 1 in a line-oriented com-
mand, however, applies to the text beginning with the first character follow-
ing the pointer and ending at the first end-of-line. Thus, if the pointer is at
the center of the line, the argument —1 affects one and one-half lines back-
ward from the pointer and the argument 1 affects one-half line beyond the

pointer.

For example, assume the buffer contains:

MOU  ,PCR1GEE®

ADD #DRIV- . R1IE@ED
MOy #UECT »R2ZE0D
CLR ER2GD

The command to advance the pointer one line (1A) causes the following

change:

Mow
ADD
Moy
CLR

4

PC R 1@
#DRIV-, »RIGDO
#UECT +R2E@EDED

B R ZREDCD

The command 2A moves the pointer over two combinations to precede

the fourth line:

MOWY PC R 1IREDD

anp #DRIV-, s R1GEDOD
MOU #VECT +RE2EED
’CLR' BRZ2RELD

For another example, assume the buffer contains:

Moy
ADD
Moy
CLR

6-8 Text Editor (EDIT)

PCIRIGED
#DRIV-, 'RiIGED
#UECT +R2@ED
@RE@



S

A command of —-1A moves the pointer back by one and one-half lines to pre-
cede the second line.

Moy PC R 1@
4ADD #DRIV-, »RIGED
Mov #UECT » R 2@EDED

CLR BRZRED

Now a command of -1 A moves the pointer back by only one line.

aMOV PCR1IGED
ADD #DRIV-, yR1IGEDDD
Moy #UECT »R2EEDD
CLR BRZRE

6.4.5 Command Repetition

You can execute portions of a command string more than once by enclosing
the portions in angle brackets (<>) and preceding the left angle bracket
with the number of iterations you desire. The syntax is:

n<command>
For example:
C1$C28n<C3$C4$>C5%%
where:
C represents a command
n represents an iteration argument

Commands C1 and C2 each execute once, then commands C3 and C4 execute
n times. Finally, command C5 executes once and the command line is finish-
ed. The iteration argument (n) must be a positive number (in the range 1
through 16383 decimal); if unspecified, it is assumed to be 1. If the number is
negative or too large, an error message prints. You can nest iteration brack-
ets up to 20 levels. Before execution, EDIT checks command lines to make
certain the brackets are correctly used and match.

Enclosing a portion of a command string in iteration brackets and preceding
it with an iteration argument (n) has the same result as typing that portion
of the string n times. Thus, these two examples are equivalent:

*BGAAAS3L -DIBS-JxUs$
*BGAAA%-DIB$-J-DIB$-J-DIB$-~-JVS%

Similarly, the following two strings are equivalent:

*BIC2LAD XY bk
*BADADVADADVADADYSS

Text Editor (EDIT) 6-9



The following bracket structures are examples of legal usage:

S

The following bracket structures are examples of combinations that will
cause an error message:

During command repetition, execution proceeds from left to right until a
right bracket is encountered. EDIT then returns to the last left bracket
encountered, decreases the iteration counter, and executes the commands
within the brackets. When the counter is decreased to 0, EDIT looks for the
next iteration count to the left and repeats the same procedures. The overall
effect is that EDIT works its way to the innermost brackets and then works
its way back again.

The most common use for iteration brackets is found in commands, such as
Unsave (U), that do not accept repeat counts. For example:

*¥3Ure%

Assume you want to read a file called SAMP (stored on device DK:), and you
want to change the first four occurrences of the instruction MOV #200,R0 on
each of the first five pages to MOV #244 R4. Enter the following command
line:

*EBSAMP$S<N4<BGMOY #200,RO$=J63<G0s=C4>>>EX$$

>»< w<

The command line contains three sets of iteration loops (A, B, C) and
executes as follows:

Execution initially proceeds from left to right; EDIT opens the file SAMP for
input and reads the first page into memory. EDIT moves the pointer to the
beginning of the buffer and initiates a search for the character string MOV
#200,R0. When it finds the string, EDIT positions the pointer at the end of
the string, but the =J command moves the pointer back, so that it is posi-
tioned immediately preceding the string. At this point, execution has passed
through each of the first two sets of iteration loops (A, B) once. The inner-
most loop (C) is next executed three times, changing the Os to 4s. Control
now moves back to pick up the second iteration of loop B, and again moves
from left to right. When loop C has executed three times, control again

6-10 Text Editor (EDIT)



S’

D

moves back to loop B. When loop B has executed a total of four times, control
moves back to the second iteration of loop A, and so forth, until all iterations
have been satisfied.

6.5 Memory Usage

The memory area used by the editor is divided into four logical buffers as fol-
lows:

MACRO BUFFER

High Memory
SAVE BUFFER

FREE MEMORY

COMMAND INPUT
BUFFER

Low Memory
TEXT BUFFER

The text buffer contains the current page of text you are editing, and the
command input buffer holds the command you are currently typing at the
terminal. If a command you are currently entering is within ten characters
of exceeding the space available in the command buffer, the following mes-
sage prints on the terminal.

TEDIT-W-Command buffer almost full

If you can complete the command within ten characters, you can finish
entering the command; otherwise you should press the ESCAPE key twice
to execute that portion of the command line already completed. The warning
message prints each time you enter a character in one of the last ten spaces.

If you attempt to enter more than ten characters, EDIT prints the following
message and aborts the command.

PEDIT-F-Command buffer fulli no command{s) executed

The save buffer contains text stored with the Save (S) command, and the
macro buffer contains the command string macro entered with the Macro
(M) command. (Both commands are explained in Section 6.6.7.)

EDIT does not allocate space for the macro and save buffers until an M or S
command executes. Once you enter an M or S command, a subsequent OM or
0U (Unsave) command executes to return that space to the free area.

Text Editor (EDIT) 6-11



The size of each buffer automatically expands and contracts to accommodate
the text you are entering; if there is not enough space available to accommo-
date required expansion of any of the buffers, EDIT prints the error
message:

PEDIT-F-Insufficient memorv

6.6 Editing Commands

This section describes the commands and procedures required to:

® Read text from the input files to the buffer

Create a backup version of the file

List the contents of the buffer on the terminal

Move the reference pointer

Locate characters or strings of characters within the text buffer

Insert, relocate, or delete text in the buffer

Close the output file

® Terminate the editing session

The following sections are arranged, in order, by category of command func-
tion, as illustrated in Table 6-2.

6.6.1 File Open and Close Commands

You can use file open and close commands to: /

® Open an existing file for input and prepare it for editing (ER)

@ Open a file for output of newly created or edited text (EW)

® Open an existing file for editing and create a backup version of it (EB)

® Close an open output file (EF)

6.6.1.1 Edit Read — The Edit Read (ER) command opens an existing file for
input and prepares it for editing. Only one file can be open for input at a
time.

The syntax of the command is:
ERdev:filnam.typ

The argument dev:filnam.typ is limited to 19 characters and specifies the file
to be opened. If you do not specify a device, DK: is assumed. If a file is cur-
rently open for input, EDIT closes that file and opens the new one.

Edit Read does not input a page of text nor does it affect the contents of the
other user buffers.

6-12 Text Editor (EDIT)



\W/

With Edit Read you can close a file that is already open for input and reposi-
tion EDIT at the beginning of the file. The first Read command following any
Edit Read command inputs the first page of the file.

This command string opens the file SAMP.MAC on device DT1:.

#ERDT1:S5AMP . MACS$

NOTE

If you enter EDIT with the monitor EDIT/INSPECT or EDIT/
OUTPUT command, an Edit Read command is automatically
performed on the file named in the EDIT command.

6.6.1.2 Edit Write — The Edit Write (EW) command opens a file for output of
newly created or edited text. However, no text is output and the contents of
the buffers are not affected. Only one file can be open for output at a time.

EDIT closes any output files currently open and preserves any edits made to
the file.

The syntax of the command is:
EWdev:filnam.typ[n]

The argument dev:filnam.typ[n] is limited to 19 characters and is the name
you assign to the output file being opened. If you do not specify a device, DK:
is assumed. The optional argument [n] is a decimal number that represents
the length of the file to be opened. Note that the square brackets ([]) are part
of this argument and must be typed. If you do not specify [n], the system will
default to either the larger of one-half the largest available space, or the sec-
ond largest available space. If this is not adequate for the output file size,
you must close this file and open another when this one becomes full. You
should use the [n] construction whenever there is doubt as to whether
enough space is available on the device for one output file.

If a file with the same name already exists on the device, EDIT deletes the
existing file when you type an Exit, End File, or another Edit Write com-
mand. EDIT then prints the warning message:

PEDIT-W-Surerseding existing file

The following command, for example, opens FILE.BAS on device DK: and
allocates 11 blocks of space for it.

*EWFILE.BAGL111%s%

NOTE

If you enter EDIT with the monitor EDIT/CREATE command,
an Edit Write command is automatically performed on the file
named in the EDIT command. If you enter EDIT with the
monitor EDIT/OUTPUT command, an Edit Write is auto-
matically performed on the file named with the /OUTPUT
option.

Text Editor (EDIT) 6-13



6.6.1.3 Edit Backup — The Edit Backup (EB) command opens an existing file
for editing and at the same time creates a backup version of the file. EDIT
closes any input and output files currently open. No text is read or written
with this command.

The syntax of the command is:
EBdev:filnam.typ[n]

The argument dev:filnam.typ[n] is limited to 19 characters. If you do not
specify a device, DK: is assumed. The argument [n] is optional and repre-
sents the length of the file to be opened; if you do not specify [n], the system
defaults to the larger of either one-half the largest available space or the sec-
ond largest available space.

The file you indicate in the command line must already exist on the device
you designate, because text will be read from this file as input. At the same
time, EDIT opens an output file under the same file name and file type.
When the output file is closed, EDIT renames the original file (used as input)
with the current file name and a .BAK file type, and deletes any previous file
with this file name and a .BAK file type. EDIT closes the new output file and
assigns it the name you specify in the EB command. This renaming of files
takes place when an Exit, End File, or subsequent Edit Write or Edit
Backup command executes. If you terminate the editing session with a
CTRL/C command before the output file is closed, the new output file is not
made permanent, and the renaming of the current version to .BAK does not
take place. Thus:

*EBSY:BAS1 .MACHS

This command opens BAS1.MAC on device SY:. When editing is complete,
the old BAS1.MAC becomes BAS1.BAK and the new file becomes
BAS1.MAC. EDIT deletes any previous version of BAS1.BAK.

NOTE

In EB, ER, and EW commands, leading spaces between the
command and the file name are not permitted because EDIT
assumes the file name to be a text string. All dev:filnam.typ
specifications for EB, ER, and EW commands conform to
RT-11 conventions for file naming. File names entered in
command strings used with other system programs have iden-
tical specifications.

If you enter EDIT with the monitor EDIT command, an Edit
Backup command is automatically performed on the file
named in the EDIT command.

6.6.1.4 End File — The End File (EF) command closes the current output file
and makes it permanent. You can use the EF command to create an output
file from a section of a large input file, or to close an output file that is full
before you open another file. Modifiers are illegal with an EF command.
Note that an implied EF command is included in EW and EB commands.

6-14 Text Editor (EDIT)



N

S

The syntax of the command is:

EF

Table 64 illustrates the relationship between the file open and close com-

mands and the buffers and files themselves.

Table 6—4: EDIT Commands and File Status

File Status
Command
Input Text Buffer Output
ERXXX Opens XXX for Unchanged Unchanged
input; closes existing
input file, if any
EWXXX  Unchanged Unchanged Opens XXX for output; closes exist-

EBXXX Opens XXX for
input; closes existing
input file, if any

EF Unchanged
EX Copies to
output file

Unchanged

Unchanged

Copies to
output file

ing output file, if any; performs
.BAK renaming if EB is in effect

Opens temporary file for output;
closes existing output file, if any;
performs .BAK renaming if EB is in
effect

Closes output file; performs .BAK
renaming if EB is in effect

Closes output file after copying com-
plete; performs .BAK renaming if
EB is in effect

6.6.2 File Input/Output Commands

You use file input/output commands to:

@ Read text from an input file into the buffer

@ Copy lines of text from the buffer into an output file

® Terminate the editing session

6.6.2.1 Read — Before you can edit text, you must read the input file into the
buffer. The Read (R) command reads a page of text from the input file (pre-
viously specified in an ER or EB command) and appends it to the current
contents of the text buffer (contents can be empty).

The syntax of the command is:

R

No arguments are used with the R command. If the buffer contains text
when the R command is executed, the pointer does not move; however, if the
buffer does not contain text, the pointer is placed at the beginning of the

Text Editor (EDIT) 6-15



buffer. EDIT transfers text to the buffer until one of the following conditions
occurs:

® A form feed character, signifying the end of the page, is encountered.

® The text buffer is 500 characters from being full. (When this condition
occurs, the Read command inputs up to the next carriage return and line
feed combination, then returns to command mode. An asterisk prints as
though the read were complete, but text will not have been fully input.)

® An end-of-file is encountered. (The ?EDIT-F-End of input file message
prints when all text in the file has been read into memory and no more
input is available.)

The maximum number of characters you can bring into memory with an R
command depends on the system configuration and the memory require-
ments of other system components. EDIT prints an error message if the read
exceeds the memory available or if no input is available.

The following example creates a file using the EB and R commands.

*EBS.JK1.BASHS

This command opens SJK1.BAS on DK: and permits modification.

*R/L$%
THIS IS PAGE ONE OF
FILE SJK1.BAS.

This command reads the first page of SJK1.BAS into the buffer. The pointer
is placed at the beginning of the buffer. The /L. command lists the contents of
the buffer on the terminal, beginning at the pointer and ending with the last
character in the buffer.

6.6.2.2 Write — The Write (mW) command copies lines of text from the text
buffer to the output file (as specified in the EW or EB command). The con-
tents of the buffer are not altered and the pointer is left unchanged (unless
an output error occurs).

NOTE

EDIT uses a system of intermediate buffers to store output
before it writes the data to an output file. The Write command
logically writes to the file, but output to a device does not
occur until the intermediate buffer fills. When the editor
closes a file (that is, after you issue an EF, EB, EX, or EW
command), text is written from the buffer to the file and the
file is complete. If the editor does not close a file (if you exit
with CTRL/C and use the CLOSE command), it is possible
that the output file will be missing the last 512 characters.

6-16 Text Editor (EDIT)

e



The syntax of the command is:
nW
The argument you supply with the W command determines the lines of text

to copy. Table 6-5 lists the arguments for the W command.

Table 6-5: Write Command Arguments

Argument Function

n Writes n lines of text, beginning at the pointer and ending with the nth end-
of-line character, to the output file.

-n Writes n lines of text to the output file beginning with the first character on
the -nth line and terminating at the pointer.

0 Writes to the output file the current line up to the pointer.
/ Writes to the output file the text between the pointer and the end of the
buffer.

If the buffer is empty when the write executes, no characters are output.

The following examples illustrate the use of the W command.

*SHEE

This command writes the five lines of text following the pointer into the cur-
rent output file.

*¥-2W%4

This command writes the two lines of text preceding the pointer into the cur-
rent output file.

*¥B/WESE
This command writes the entire text buffer to the current output file.

NOTE

If an output file fills while a Write command is executing,
EDIT prints the ?EDIT-F-Output file full message. In this
case, EDIT positions the reference pointer after the last char-
acter it wrote successfully. You can then use the following
recovery procedure:

1. Close the current output file (EF command).
2. Open a new output file (EW command).

Text Editor (EDIT) 6-17



3. Delete the characters just written by using -nD or -nK,
where n is any arbitrary number that exceeds the number
of lines or characters in the buffer.

4. Resume output. ~

6.6.2.3 Next—The Next (nN) command writes the contents of the text buffer
to the output file, deletes the text from the buffer, and reads the next page of

the input file into the buffer. The pointer is positioned at the beginning of
the buffer.

The syntax of the command is:
nN

If you specify the argument n with the Next command, the sequence is
executed n times. The N command operates in a forward direction only;
therefore, you cannot specify negative arguments with an N command.

If EDIT encounters the end of the input file when trying to execute an N
command, it prints 2EDIT-F-End of input file to indicate that no further text
remains in the input file. Since the contents of the buffer have already been
transferred to the output file, the buffer is empty.

Using the N command is a quick way to write edited text to the output file
and set up the next page of text in the buffer. The N command functions as
though it were a combination of the Write, Delete, Read, and Beginning
commands. (Delete is a text modification command, described in Section
6.6.6.2; the Beginning command is a pointer relocation command, described
in Section 6.6.3.1.) Using the N command with an argument is a conven-
ient way to set up text in the buffer, if you already know its page location.

In the following example, an N command copies an input file with more than
one page of text to the output file.

*EBDR:TEST .MACS S

This command opens the file TEST.MAC on device DK: and creates a new
file entitled TEST.MAC for output.

*N/L$$
THIS IS PAGE ONE OF
FILE TEST.MAC.

This command reads the first page of the input file, TEST.MAC, into the
buffer and lists the entire page on the terminal.

*N/L$s

PEDIT-F-End of input file
*

This command transfers the contents of the buffer to the output file, clears
the buffer, and encounters the end of the file. Because it cannot complete the

6-18 Text Editor (EDIT)



N sequence, EDIT prints ¢EDIT-F-End of input file on the terminal. The
buffer is empty and the entire input file has been written to the output file.

6.6.2.4 Exit — Type the Exit (EX) command to terminate an editing session.
The Exit command:

® Writes the text buffer to the output file
@ Transfers the remainder of the input file to the output file
® Closes all open files

® Renames the backup file with a .BAK file type if an EB command is in
effect

@® Returns control to the monitor
The syntax of the command is:
EX

No arguments are accepted. Essentially, Exit copies the remainder of the
input file into the output file and returns to the monitor. Exit is legal only
when there is an output file open. If an output file is not open and you want
to terminate the editing session, return to the monitor with CTRL/C.

NOTE

You must issue an EF or EX command in order to make an
output file permanent. If you use CTRL/C to return to the
monitor without issuing an EF command, the current output
file will not be saved. (You can, however, make permanent
that portion of the text file that has already been written out,
by using the monitor CLOSE command.)

An example of the contrasting uses of the EF and EX commands follows.
Assume an input file, SAMPLE, contains several pages of text. The first and
second pages of the file will be made into separate files called SAM1 and
SAM2, respectively; the remaining pages of text will then make up the file
SAMPLE. This can be done by using these commands:

*EWSAM1GS
*ERSAMPLES S
*RNEF %
*EWSAM24$%
*NEF %
*EWSAMPLE$EX$$

Note that the EF commands are not necessary in this example, since the EW
command closes a currently open output file before opening another.

6.6.3 Pointer Relocation Commands

Pointer relocation commands allow you to change the current location of the
pointer within the text buffer.

Text Editor (EDIT) 6-19



6.6.3.1 Beginning —The Beginning (B) command moves the current location
of the pointer to the beginning of the text buffer.

The syntax of the command is:
B
There are no arguments.

For example, assume the buffer contains:

MOUB S(R1) 1BR?
ADD R1s(R2)+
CLR BRE

MOUB B R1) s@R2

The B command moves the pointer to the beginning of the text buffer.

*B$$

The text buffer now looks like this:

AMOVB S(R1) sBR2
ADD R1+(R2)+
CLR BRZ2
MOWB B(R1)+BRZ

6.6.3.2 Jump —The Jump (nJ) command moves the pointer past a specified
number of characters in the text buffer.

The syntax of the command is:
nd

Table 6—6 shows the arguments for the J command.

Table 6—-6: Jump Command Arguments

Argument Function
(+or-)n Moves the pointer (forward or backward) n characters
0 Moves the pointer to the beginning of the current line (equivalent to 0A)
/ Moves the pointer to the end of the text buffer (equivalent to /A)

= Moves the pointer backward n characters, where n equals the length of the
last text argument used

Negative arguments move the pointer toward_ the beginning of the buffer;
positive arguments move it toward the end. Jump treats carriage returns,
line feeds, and form feed characters the same as any other characters, count-
ing one buffer position for each one.

6-20 Text Editor (EDIT)



s

N

The following examples illustrate the J command.

LEcN] 3

This command moves the pointer ahead three characters.

*-4.)%¢

This command moves the pointer back four characters.

*BsGABCs=J$4%

This command moves the pointer so that it immediately precedes the first
occurrence of ABC in the buffer.

6.6.3.3 Advance —The Advance (nA) command is similar to the Jump com-
mand, except that it moves the pointer a specific number of lines (rather
than single characters) and leaves it positioned at the beginning of the line.

The syntax of the command is:

nA

Table 6-7 lists the arguments for the A command and their functions.

Table 6-7: Advance Command Arguments

Argument Function
n Moves the pointer forward n lines and positions it at the beginning of the
nth line
-n Moves the pointer backward past n carriage return and line feed combina-

tions and positions it at the beginning of the -nth line
0 Moves the pointer to the beginning of the current line (equivalent to 0J)

/ Moves the pointer to the end of the text buffer (equivalent to /J)

The following examples use the A command.

*3AEE

This command moves the pointer ahead three lines.

Assume the buffer contains:

CLR BR2
Py

The following command moves the pointer to the beginning of the current
line:

*OASS

Text Editor (EDIT) 6-21



Now the buffer looks like this:

#CLR ERZ

6.6.4 Search Commands

Use search commands to locate characters or strings of characters within
the text buffer.

NOTE

Search commands always have positive arguments. They
search ahead in the file. This means that to search for a char-
acter string that has already been written to the output file,
you must first close the currently open files (with EX) and
then edit the file that was just used for output (with EB).

6.6.4.1 Get—The Get (nG) command is the basic search command in EDIT.
It searches the current text buffer for the nth occurrence of a specific text
string, starting at the current location of the pointer. If you do not supply the
argument n, EDIT searches for the first occurrence of the text object.

The search terminates when EDIT either finds the nth occurrence or
encounters the end of the buffer. If the search is successful, EDIT positions
the pointer to follow the last character of the text object. EDIT notifies you of
an unsuccessful search by printing ¢EDIT-F-Search failed. In this instance,
EDIT positions the pointer after the last character in the buffer.

The syntax of the command is:
nGtext
The argument n must be positive. If you omit it, EDIT assumes it to be 1.

The text string may be any length and must immediately follow the G com-
mand. EDIT makes the search on the portion of the text between the pointer

and the end of the buffer.
For example, assume the pointer is at the beginning of the buffer shown
below.
s MOY PCsR1

ADD #DRIV-, sR1
Mow #VECT +R2

CLR BRZ

MouB S(R1) ,BR2
ADD R1+{R2)+

CLR @RZ

MovB BIR1) sBR2

The following command searches for the first occurrence of the characters
ADD following the pointer and places the pointer after the searched
characters.

*GADD$$

6-22 Text Editor (EDIT)



S

Now the buffer looks like this:

Mou PCR1
ADD s #DRIV-.R1

The next command searches for the third occurrence of the characters @R2
following the pointer and leaves the pointer immediately following the text
object.

*JGERZ%S

The buffer is changed to:

ADD Ris(RZ)+
CLR BRZ s

After successfully completing a search command, EDIT positions the pointer
immediately following the text object. Using a search command in combina-
tion with =J places the pointer in front of the text object, as follows:

*GTESTH=1%4%

This command combination places the pointer before TEST in the text
buffer.

6.6.4.2 Find —The Find (nF) command starts at the current pointer location
and searches the entire input file for the nth occurrence of the text string. If
EDIT does not find the nth occurrence of the text string in the current buffer,
it automatically performs a Next command and continues the search on the
new text in the buffer. When the search is successful, EDIT leaves the
pointer immediately following the nth occurrence of the text string.

If the search fails (that is, EDIT detects the end-of-file for the input file and
does not find the nth occurrence of the text string), EDIT prints 2EDIT-F-
Search failed. In this instance, EDIT positions the pointer at the beginning
of an empty text buffer. When you use the F command, EDIT deletes the con-
tents of the buffer after writing it to the output file.

The syntax of the command is:
nFtext

The argument n must be positive. EDIT assumes it to be 1 if you do not sup-
ply another value.

You can use an F command to copy all remaining text from the input file to
the output file by specifying a nonexistent text object. The Find command
functions like a combination of the Get and Next commands.

The following example uses the F command.

*2FMOVB G(R1) sBRZ2%%

Text Editor (EDIT) 6-23



This command searches the entire input file for the second occurrence of the
text string MOVB 6(R1),@R2. EDIT places the pointer following the text
string. EDIT writes the contents of each unsuccessfully searched buffer to
the output file.

6.6.4.3 Position — The Position (nP) command is identical to the Find (F)
command with one exception. The F command transfers the contents of the
text buffer to the output file as each page is unsuccessfully searched, but the
P command deletes the contents of the buffer after it is searched without
writing any text to the output file.

The syntax of the command is:
nPtext
The argument n must be positive. If you omit it, EDIT assumes it to be 1.

The nP command searches each page of the input file for the nth occurrence
of the text object, starting at the pointer and ending with the last character
in the buffer. If EDIT finds the nth occurrence, it positions the pointer fol-
lowing the text object, deletes all pages preceding the one containing the
text object, and positions the page containing the text object in the buffer.

If the search is unsuccessful, EDIT clears the buffer but does not transfer
any text to the output file. EDIT positions the pointer at the beginning of an
empty text buffer.

The P command is a combination of the Get, Delete, and Read commands; it
is most useful as a means of placing the pointer in the input file. For exam-
ple, if your aim in the editing session is to create a new file from the second
half of the input file, a P search saves time.

The following example uses the P command.

*P3%%

This command searches the input file for the first occurrence of the text
object, 3. EDIT positions the pointer after the text object.

*0L$$
INPUT FILE PAGE 3

This command lists on the terminal the current line up to the pointer.

6.6.5 TextListing Commands

Two EDIT commands print lines of text on the terminal: the nL (List) com-
mand and the V (Verify) command.

6.6.5.1 List — The List (nL) command prints at the terminal lines of text as
they appear in the buffer.,

6-24 Text Editor (EDIT)



The syntax of the command is:
nL

An argument preceding the L command indicates the portion of text to print.
For example, the command, 2L, prints on the terminal the text beginning at
the pointer and ending with the second end-of-line character. The pointer is
not altered by the L command. Table 6-8 lists arguments and their effect on
the List command.

Table 6-8: List Command Arguments

Argument Function

n Prints at the terminal n lines beginning at the pointer and ending with the
nth end-of-line character

-n Prints all characters beginning with the first character on the -nth line and
terminating at the pointer

0 Prints the current line up to the pointer. Use this command to locate the
pointer within a line

/ Prints the text between the pointer and the end of the buffer

These examples illustrate the use of the L command.

*-2L$%

This command prints all characters starting at the beginning of the second
preceding line and ending at the pointer.

*A4L %%

This line prints all characters beginning at the pointer and terminating at
the fourth carriage return and line feed combination.

Assuming the pointer location is:

MOVB 3{R1)+BR2 ~
ADD 4 R1(RZ)+

The following command prints the previous one and one-half lines up to the
pointer:

*¥-1L%$¢

The terminal output now looks like this:

MOUB S(R1),E@R2
ADD

Text Editor (EDIT) 6-25



6.6.5.2 Verify — The Verify (V) command prints at the terminal the entire
line in which the pointer is located. It provides a ready means of determin-
ing the location of the pointer after a search completes and before you give
any editing commands. (The V command combines the two commands-QLL.)
You can also type the V command after an editing command to allow proof-
reading of the results.

The syntax of the command is:

v

No arguments are allowed with the V command. The location of the pointer
does not change.

6.6.6 Text Modification Commands

You can use the following commands to insert, change, relocate, and delete
text in the text buffer.

6.6.6.1 Insert — The Insert (I) command is the basic command for inserting
text. EDIT inserts the text you supply at the location of the pointer and then
places the pointer after the last character of the new text.

The syntax of the command is:
Ttext

No arguments are allowed with the insert command. The text string is
limited only by the size of the text buffer and the space available. All charac-
ters are legal, except ESCAPE which terminates the text string.

NOTE

If you forget to type the I command, the editor will interpret .
the text as commands.

EDIT automatically protects the text buffer from overflowing during an
insert. If the I command is the first command in a multiple command line,
EDIT ensures that there will be enough space for the insert to be executed at
least once. If repetition of the command exceeds the available memory, an
error message prints.

The following example illustrates the I command.

* IMOY #BUFF sR2
MOy #LINEsR1
MOuB ~1{(RZ2}YsRO$%$

*

This command inserts the text at the current location of the pointer and
leaves the pointer positioned after RO.

6-26 Text Editor (EDIT)



DIGITAL recommends that you insert large amounts of text into the file in
small sections rather than all at once. This way, you are less vulnerable to
loss of time and effort due to machine failure or human error. This is the rec-
ommended procedure for inserting large amounts of text:

1. Open the file with the EB command.

2. Insert or edit a few pages of text.

3. Insert a unique text string (like mrkple) to mark your place.

4. Use the Exit command to preserve the work you have done so far.
5

Start again, using the F command to search for the unique string you
used to mark your place.

6. Delete your marker and continue editing.

6.6.6.2 Delete — The Delete (nD) command is a character-oriented command
that deletes n characters in the text buffer, beginning at the current location
of the pointer.

The syntax of the command is:

nD

If you do not specify n, EDIT deletes the character immediately following
the pointer. On completion of the D command, EDIT positions the pointer
immediately before the first character following the deleted text. Table 6-9
lists arguments for the D command.

Table 6-9: Delete Command Arguments

Argument Function

n Deletes n characters following the pointer. Places the pointer before the
first character following the deleted text.

-n Deletes n characters preceding the pointer. Places the pointer before the
first character following the deleted text.

0 Deletes the current line up to the pointer. The position of the pointer does
not change (equivalent to 0K).

/ Deletes the text between the pointer and the end of the buffer. Positions the
pointer at the end of the buffer (equivalent to /K).

= Deletes -n characters, where n equals the length of the last text argument
used.

The following examples illustrate the use of the D command.

*-2D%%

Text Editor (EDIT) 6-27



This command deletes the two characters immediately preceding the
pointer.

*BEFMOY R1$=D%%

/

This command string deletes the text string MOV R1 (=D in combination
with a search command deletes the indicated text string).

Assume the text buffer contains the following:

ADD R1s(RZ)+
CLR ABRZ

The following command deletes the current line up to the pointer:

*OD%$

The buffer now contains:

ADD R14(R2)+
»BRZ

6.6.6.3 Kill — The Kill (nK) command removes n lines of text (including the
carriage return and line feed characters) from the page buffer, beginning at
the pointer and ending with the nth end-of-line.

The syntax of the command is:

nK

EDIT places the pointer at the beginning of the line following the deleted
text. Table 6-10 describes each argument and its effect on the Kill
command.

Table 6-10: Kill Command Arguments

Argument Function

n Removes the character string (including the carriage return and line feed
combination) beginning at the pointer and ending at the nth end-of-line.

-n Removes the current line up to the pointer and n full lines preceding the
current line. Thus, if the pointer is at the center of a line, the modifier —1
deletes one and one-halflines preceding it.

0 Removes the current line up to the pointer (equivalent to 0D).

/ Removes the characters beginning at the pointer and ending with the last
line in the text buffer (equivalent to /D).

The following examples illustrate the K command.

*2K$4$

6-28 Text Editor (EDIT)



This command deletes lines starting at the current location of the pointer
and ending at the second carriage return and line feed combination.

Assume the text buffer contains the following:

ADD R1+(R2)+
CLR 4 BRZ
MOUB B(R1) )BRZ

This command removes the characters beginning at the pointer and ending
with the last line in the text buffer:

*/K$%

The buffer now contains:

ADD R14(RZ)+
CLR4

Kill and Delete commands perform the same function, except that Kill is
line-oriented and Delete is character-oriented.

6.6.6.4 Change — The Change (nC) command changes a specific number of
characters preceding or following the pointer.

The syntax of the command is:
nCtext

A C command is equivalent to a Delete command followed by an Insert com-
mand. You must insert a text object following the nC command. Table 6-11
lists each argument and its effect on the C command.

Table 6-11: Change Command Arguments

Argument Function

n Replaces n characters following the pointer with the specified text. Places
the pointer after the inserted text.

-n Replaces n characters preceding the pointer with the specified text. Places
the pointer after the inserted text.

0 Replaces the current line up to the pointer with the specified text. Places the
pointer after the inserted text (equivalent to 0X).

/ Replaces the text beginning at the pointer and ending with the last charac-
ter in the buffer. Places the pointer after the inserted text (equivalent to /X).

= Replaces -n characters with the indicated text string, where n represents
the length of the last text argument used.

Text Editor (EDIT) 6-29



The size of the text is limited only by the size of the text buffer and the space
available. All characters are legal except ESCAPE which terminates the
text string.

If the C command is to be executed more than once (that is, it is enclosed in
angle brackets) and if there is enough space available for the command to be
entered, it will be executed at least once (provided it appears first in the com-
mand string). If repetition of the command exceeds the available memory,
an error message prints.

The following examples illustrate the C command.

*SCHVUECTS%

This command replaces the five characters to the right of the pointer with
#VECT.

Assume the text buffer contains the following:

CLR BR2
MOYa S(R1) s@RZ

The next command replaces the current line up to the pointer with the speci-
fied text.

*0OCADDB$4

The buffer now contains:

CLR BR2
ADDB4 S(R1)+BRE

You can use =C with a Get command to replace a specific text string. Here
is an example:

*GFIFTY:4=CFIVE: %

This command finds the text string FIFTY: and replaces it with FIVE:.

6.6.6.5 Exchange — The Exchange (nX) command is similar to the change
command, except that it changes lines of text instead of a specific number of
characters.

The syntax of the command is:
nXtext

The nX command is identical to an nK command followed by an Insert com-
mand. Table 6-12 lists the Exchange command arguments.

6-30 Text Editor (EDIT)



Table 6-12: Exchange Command Arguments

Argument Function

n Replaces n lines, including the carriage return and line feed characters, fol-
lowing the pointer. Places the pointer after the inserted text.

-n Replaces n lines, including the carriage return and line feed characters, pre-
ceding the pointer. Positions the pointer after the inserted text.

0 Replaces the current line up to the pointer with the specified text. Positions
the pointer after the inserted text (equivalent to 0C).

/ Replaces the text beginning at the pointer and ending with the last charac-
ter in the buffer with the specified text (equivalent to /C). Positions the
pointer after the inserted text.

All characters are legal in the text string except ESCAPE which terminates
the text.

If the X command is enclosed within angle brackets to allow more than one
execution, and if there is enough memory space available for the X com-
mand to be entered, EDIT executes it at least once (provided it is first in the
command string). If repetition of the command exceeds the available mem-
ory, an error message prints.

The following example illustrates the X command.

*2XADD  R1,(RZ)+
CLR Br2

$%

*

This command exchanges the two lines to the right of the pointer with the
text string.

6.6.7 Utility Commands

During the editing session, you can store text in external buffers and subse-
quently restore this text when you need it later in the editing session. The
following sections describe the commands that perform this function.

6.6.7.1 Save — The Save (nS) command lets you store text in an external
buffer called a save buffer (described previously in Section 6.5), and subse-
quently insert it in several places in the text.

The syntax of the command is:

nS

Text Editor (EDIT) 6-31



The Save command copies n lines, beginning at the pointer, into the save
buffer. The S command operates only in the forward direction; therefore, you
cannot use a negative argument. The Save command destroys any previous
contents of the save buffer; however, EDIT does not change the location of
the pointer or the contents of the text buffer.

If you specify more characters than the save buffer can hold, EDIT prints
2EDIT-F-Insufficient memory. None of the specified text is saved.

For example, assume the text buffer contains the following assembly lan-
guage subroutine: :

FSUBROUTINE MESGTYP

iWHEN CALLEDs» EXPECTS RO TO POINT TO AN
iASCII MESS5AGE THAT ENDS IN A ZERO BYTE
iTYPES THAT MESSAGE ON THE USER TERMINAL

MSGTYP: TETB (RO) iDONE?
BEQD MDONE IYES-RETURN

MLOOP: TSTB @#177364 IND-I8 TERMINAL READY?
BPL MLOOP INO-WAIT
MOVB (RO)+B#1773G6 iYES PRINT CHARACTER
BR MSGTYP iLooOP

MDONE : RTS pC iRETURN

The following command stores the entire subroutine in the save buffer
(assuming the pointer is at the beginning of the buffer):

*125%%

You can insert the contents of the save buffer into a program whenever you
choose by using the Unsave command.

6.6.7.2 Unsave —The Unsave (U) command inserts the entire contents of the
save buffer into the text buffer at the pointer and leaves the pointer posi-
tioned following the inserted text. You can use the U command to move
blocks of text or to insert the same block of text in several places.

Table 6—13 lists the U commands and their functions.

Table 6-13: Unsave Command Arguments

Command Function
U Inserts the contents of the save buffer into the text buffer
ou Clears the save buffer and reclaims the area for text

The only argument the U command accepts is 0.

The contents of the save buffer are not destroyed by the U command (only by
the OU command) and can be unsaved as many times as desired. If the
Unsave command causes an overflow of the text buffer, the ¢EDIT-F-
Insufficient memory error message prints, and the command does not
execute.

6-32 Text Editor (EDIT)



For example:

*Us$

This command inserts the contents of the save buffer into the text buffer.

6.6.7.3 Macro —The Macro (M) command inserts a command string, called a
macro, into the EDIT macro buffer.

Table 6—14 lists the M commands and their functions.

Table 6-14: M Command and Arguments

Command Function
M/command string/ Stores the command string in the macro buffer
OM or M/ Clears the macro buffer and reclaims the area for text

The slash (/) represents the delimiter character. The delimiter is always the
first character following the M command, and can be any character that does
not appear in the macro command string itself.

Starting with the character following the delimiter, EDIT places the com-
mand string characters into its internal macro buffer until the delimiter is
encountered again. At this point, EDIT returns to command mode. The
Macro command does not execute the command string; it merely stores the
command string so that the Execute Macro (EM) command can execute

later. The Macro command does not affect the contents of the text or save
buffers.

All characters except the delimiter are valid macro command string charac-
ters, including single ESCAPEs to terminate text commands. All com-
mands, except the M and EM commands, are valid in a command string
macro.

In addition to using the OM command, you can type the M command immedi-
ately followed by two identical characters (assumed to be delimiters) and
two ESCAPE characters to clear the macro buffer.

The following examples illustrate the use of the M command.

*M/ /4%

This command clears the macro buffer.

*M/GRO%$-C1/4%%

This command stores a macro to change RO to R1.

Text Editor (EDIT) 6-33



NOTE

Be careful to choose infrequently used characters as macro
delimiters; choosing frequently used characters can lead to
errors. For example:

¥ GMOYV RO%=CADD R1% 4%
PEDIT-F~No file orpen for inPut

In this case, it was intended that the macro be GMOV
R0$=CADD R1$, but since the delimiter character (the char-
acter following the M) is a space, the space following MOV is
used as the second delimiter, terminating the macro. EDIT
then returns an error when it interprets the R as a Read com-
mand.

6.6.7.4 Execute Macro — The Execute macro (nEM) command executes a
command string previously stored in the macro buffer by the M command.

The syntax of the command is:

nEM

The argument n must be positive. The macro is executed n times and then
returns control to the next command in the original command string.

The following example uses the EM command.

*M/BEROS-C16/%%
*BLOOOEMSS
PEDIT-F-Search failed
*

This command sequence stores a command in the macro buffer and then
executes that command. EDIT prints an error message when it reaches the
end of the buffer. (This macro changes all occurrences of RO in the text buffer
toR1.)

#IMOY PC.RISZEMICLR BRZI%S$
*

This command inserts MOV PC,R1 into the text buffer and then executes
the command in the macro buffer twice before inserting CLR @R2 into the
text buffer.

6.6.7.5 Edit Version — The Edit Version (EV) command displays the version
number of the editor in use on the console terminal.

The syntax of the command is:

EV

6-34 Text Editor (EDIT)



e

This example displays the running version of EDIT:

*EVSS
YOS, 00
*

6.6.7.6 Uppercase and Lowercase Commands — If you have a terminal that
has both uppercase and lowercase characters as part of your hardware con-

figuration, you can take advantage of two editing commands, Edit Lower
(EL) and Edit Upper (EU).

When the editor is started with the EDIT command, uppercase mode is
assumed — that is, all characters you type are automatically translated to
uppercase. To allow processing of both uppercase and lowercase characters,
enter the Edit Lower command. For example:

*EL$%

*#1 You pcan enter text and commands iv UPPER and lower casu.$$
*

The editor now accepts and echoes uppercase and lowercase characters
received from the keyboard, and prints text on the terminal in uppercase
and lowercase.

To return to uppercase mode, use the Edit Upper command:

*EU%$

Control also reverts to uppercase mode on exit from the editor (with EX or
CTRL/C).

Note that when you issue an EL command, you can enter EDIT commands
in either uppercase or lowercase. Thus, the following two commands are
equivalent:

*GTEXT$=Cnew textdUss
*ITEXTS$=cnew textduss

The editor automatically translates (internally) all commands to uppercase
without reference to EL or EU.

NOTE

When you use EDIT in EL mode, make sure that text argu-
ments you specify in search commands have the proper case.
The command GTeXt$, for example, will not match TEXT,
text, or any combination other than TeXt.

Text Editor (EDIT) 6-35



6.7 Display Editor

In addition to all functions and commands mentioned thus far, the editor can
use VT-11 and VS-60 display hardware as part of the system configuration
(GT40, GT44, DECLAB 11/40, DECLAB 11/34). The most obvious feature
provided by this hardware is the use of the display screen rather than the
console terminal for printing terminal input and output. Another feature is
that the top of the display screen functions like a window into the text
buffer. When all the features of the display editor are in use, a 12-inch
screen displays text as shown in Figure 6-1.

Figure 6-1: Display Editor Format, 12-Inch Screen

GETL TN COET i T L 1 T
SAVIRIG

S (s )
:E v NI
10 PRECEDING AL el e (v [ead (0NN

LINES OF TEXT . .
Y ETLEENE W CRE B G|

WINDOW
INTO THE

Ltk
i (o o TEXT BUFFER

i 10 ' g b A ANRANRE
AND © g vl SR Ot TR E R ) b
FOLLOWING
LINES OF TEXT

CURSOR
(CURRENT LINE)

SEPARATION
LINE

3 PRECEDING
COMMAND LINES
CURRENT
COMMAND LINE

The major advantage is that you can see immediately where the pointer is,
because it appears between characters on the screen as a blinking L-shaped
cursor. Remember that pressing the RETURN key causes both a carriage
return and a line feed character to be inserted into the text. Note that if the
pointer is placed between a carriage return and line feed, it appears in an
inverted position at the beginning of the next line.

In addition to displaying the current line (the line containing the cursor),
the 15 lines of text preceding the current line and the 14 lines following it
are also in view on a 17-inch screen. Each time you execute a command
string (with a double ESCAPE), EDIT refreshes the text portion of the
screen so that it reflects the results of the commands you just performed.

The lower section of the 17-inch screen contains eight lines of editing com-
mands. The command line you are currently entering is last, preceded by the
most recent command lines. A horizontal line of dashes separates this sec-
tion from the text portion of the screen. As you enter new command lines,
previous command lines scroll upward off the command section so that only
eight command lines are ever in view.

A 12-inch screen displays 20 lines of text and 4 command lines, as shown in
Figure 6-1.

6-36 Text Editor (EDIT)



6.7.1 Using the Display Editor

The display features of the editor are automatically invoked whenever the
system scroller is in use (a monitor GT ON command is in effect) and you
start the editor. However, if the system does not contain display hardware,
the display features are not enabled.

If the system contains display hardware and you wish to use the screen dur-
ing the editing session, you can activate it in one of two ways, whether or not
the display is in use. (All editing commands and functions previously dis-
cussed in this chapter are valid for use.)

1. If the scroller is in use (the GT ON monitor command is in effect), EDIT
automatically uses the screen for display of text and commands.
However, it rearranges the scroller so that a window into the text buffer
appears in the top two-thirds of the screen, while the bottom third dis-
plays command lines. This arrangement is shown in Figure 6-1.

You can use the Edit Console (EC) command to return the scroller to its
normal mode so that text and commands use the full screen, and the win-
dow is eliminated.

The command is:
EC
This example uses the EC command:
*BAECZL 4%
This command lists the second and third lines of the current buffer on
the screen; there is no window into the text buffer at this point.

EDIT ignores subsequent EC commands if the window into the text
buffer is not being displayed.

To recall the window, use the Edit Display (ED) command:

*ED

The screen is again arranged as shown in Figure 6-1.

2. Assume the scroller is not in use (the GT ON command is not in effect).
When you call EDIT with the EDIT command, an asterisk appears on
the console terminal. Use the ED command at this time to provide the
window into the text buffer; however, commands continue to be echoed to
the console terminal.

When you use ED in this case, it must be the first command you issue.
Otherwise, it becomes an invalid command (the memory used by the dis-
play buffer and code, amounting to over 600 words, is reclaimed as work-

ing space). You cannot use the display again until you load a fresh copy
of EDIT.

Text Editor (EDIT) 6--37



While the display of the text window is active, EDIT ignores ED
commands.

Typing the EC command clears the screen and returns all output to the
console terminal.

NOTE

After completing an editing session that uses the ED com-
mand, clear the screen by typing the EC command or by
returning to the monitor and using the monitor RESET
command. Failure to do this may cause unpredictable
results.

6.7.2 Immediate Mode

An additional mode is available to provide easier and faster interaction dur-
ing the editing session. This mode is called immediate mode, which com-
bines the most frequently used functions of the text and command modes —
namely, repositioning the pointer and deleting and inserting characters.

You can use immediate mode only when the VT-11 display hardware is
active and the editor is running. To enter immediate mode type two
ESCAPEsS (only) in response to the command mode asterisk:

*5%

The editor responds by displaying an exclamation point (!) on the screen.
The exclamation character remains on the screen as long as immediate
mode is in effect.

Once you enter immediate mode, you can use only the commands in Table
6-15. Any other commands or characters are treated as text to be inserted.
None of these commands echoes, but the text appearing on the screen is con-
stantly refreshed and updated during the editing process.

To return control from immediate mode to normal command mode, type a
single ESCAPE. The editor responds with an asterisk and you may proceed
using all normal editing commands. (Immediate mode commands you type -
at this time will be accepted as command mode input characters.) To return
control to the monitor from immediate mode, type ESCAPE to return to
command mode, then type CTRL/C followed by two ESCAPEs.

6-38 Text Editor (EDIT)



\w/

e’

Table 6-15: Immediate Mode Commands

Command Function
CTRL/N Advances the pointer (cursor) to the beginning of the next line (equiv-
alent to A)
CTRL/G Moves the pointer (cursor) to the beginning of the previous line (equiv-
alent to -A)
CTRL/D Moves the pointer (cursor) forward by one character (equivalent to J)
CTRL/V Moves the pointer (cursor) backward by one character (equivalent to -J)
DELETE Deletes the character immediately preceding the pointer (cursor) (equiv-
or alent to -D)
RUBOUT
ESCAPE Single character returns control to command mode; double character
or redirects control to immediate mode
ALTMODE
Any character Inserts the character as text positioned immediately before the pointer
other than (cursor) (equivalent to I)
those above

6.8 EDIT Example

The following example illustrates the use of EDIT commands to change a
program stored on the device DK.:. Sections of the terminal output are coded
by letter, and corresponding explanations follow the example.

EDIT TEST1.MAC

*R$S
~o%/L$%

STEST PROGRAM

START: MOU #1000 ,8P SINITIALIZE STACK
MOY #MSG RO JPOINT RO TO MESSAGE

B JSR PCsMSGTYP SPRINT IT

HALT }STOP

MSG: VASCII/IT WORKS/
«BYTE 15
WBYTE 12

+BYTE O

< *¥BE1lIsEDSS$

*GPROGRAMS S
D< *0L$%

iPROGRAM*I TO TEST SUBROUTINE MSGTYP. TYPES
F"THE TEST PROGRAM WORKS"
iON THE TEMINIMARMINAL%®

{ *F.ASCII/ %4
*BCTHE TEST PROGRAM WORKS®$
*PL.BYTE"X

{i *#FL,BYTE O%Uss

+BYTE 0O

Text Editor (EDIT) 6-39



6.9

6-40

[ o*1
+END

$B/Lesd

iPROGRAM TO TEST SUBROUTINE MSGTYP. TYPES
§*"THE TEST PROGRAM WORKS™

50N THE TERMINAL

START: MOU#1000 +8P FINITIALIZE STACK

H MOU#MSG /RO iPOINT RO TO MESSAGE
JSRPC sMSGTYP SPRINT IT
HALT 15TOP

MSG3 ASCII/THE TEST PROGRAM WORKS/
/BYTE 15
BYTE 12
VBYTE O
L VEND

{: *ENSS
|

A Calls the EDIT program and prints *. The input file is TEST1.MAC; the
output file is TEST2.MAC. Reads the first page of input into the buffer.

B Lists the buffer contents.

C Places the pointer at the beginning of the buffer. Advances the pointer
one character (past the ;) and deletes the TEST.

D Positions the pointer after PROGRAM and verifies the position by list-
ing up to the pointer.

E Inserts text. Uses DELETE to correct typing error.

F Searches for .ASCII/ and changes IT WORKS to THE TEST PROGRAM
WORKS.

G Types CTRL/X to cancel the P command. Searches for BYTE 0 and
verifies the location of the pointer with the V ¢command.

H Inserts text. Returns the pointer to the beginning of the buffer and lists
the entire contents of the buffer.

I Closes the input and output files after copying the current text buffer as
well as the rest of the input file into the output file. EDIT returns control
to the monitor.

EDIT Error Conditions

The editor prints an error message whenever it detects an error. EDIT
checks for three general types of error conditions: syntax errors, execution
errors, and macro execution errors. This section describes the error message
form for each type of error condition.

Text Editor (EDIT)

——



S

Before it executes any commands, EDIT first scans the entire command
string for errors in command syntax, such as illegal arguments or an illegal
combination of commands. If the editor finds an error of this type, it prints a
message of this form:

PEDIT~-F-Messade i#tno command(s) executed

You should retype the command.

If a command string is syntactically correct, EDIT begins execution.
Execution errors, such as buffer overflow or input and output errors, can still
occur. In this case, EDIT prints a message of the form:

PEDIT-F-Messade

EDIT executes all commands preceding the one in error. It does not execute
the command in error or any commands that follow it.

When an error occurs during execution of a macro, EDIT prints a message of
the form:

PEDIT-F-Messade in macro? no caommand{(s) executed

or

TEDIT-F-Messade in macro

Most errors are syntax errors. These are usually easy tc correct before
execution.

The RT-11 System Message Manual contains a complete list of the EDIT
error messages, along with recommended corrective action for each error.

Text Editor (EDIT) 6—41






‘\@’/

Appendix A

Monitor Command Abbreviations and System Utility
Program Equivalents

This appendix provides a table of correspondence between the keyboard moni-
tor commands with their options and the system utility programs with their
options. Remember that the syntax you use to issue a keyboard monitor com-
mand is different from the syntax that the Command String Interpreter
requires for input and output specifications for the system utility programs.
Bear in mind that there are many differences between issuing a monitor com-
mand and running a utility program.

The following table lists all the keyboard monitor commands and options. A
dash under the corresponding system program or option column indicates that
the command has no real system program equivalent, that the function is
inherent in the keyboard monitor, or that the function is the default mode of
operation. The minimum abbreviation for each command and option is in red.

Monitor System Utility
Command Option Program Option
ABORT — —
ASSIGN — —
B _ _
BACKUP BUP —
/DEVICE BUP n
/RESTORE BUP X
BASIC RBASIC /-
BOOT DUP /0
/FOREIGN DUP {8}
[WAIT DUP W
CLOSE — —
COMPILE — —
/ALLOCATE:size — [n]
/ALPHABETIZE DIBOL /A
/BUFFERING DIBOL /B
/CODE:type FORTRAN /T:type
/CROSSREFERENCEI(:typel...type]]l MACRO,DIBOL /C
/DIAGNOSE FORTRAN /B
/DIBOL DIBOL —

(Continued on next page)

A-1



Monitor System Utility
Command Option Program Option
/DISABLE:type[...:typel MACRO /D
/ENABLE:type[....type] MACRO E
/[EXTEND FORTRAN E
/FORTRAN FORTRAN —_
HEADER FORTRAN /0
14 FORTRAN T
/LIBRARY MACRO M
[LINENUMBERS DIBOL,FORTRAN —
/INOLINENUMBERS DIBOL, /0
FORTRAN S
/LIST[:filespec] — 2nd
output
spec.
/LOG DIBOL G
MACRO MACRO —
/OBJECT:filespec] — 1st
output
spec.
MNOOBJECT — null
1st
output
spec.
/ONDEBUG DIBOL,FORTRAN /D
/PAGE:n DIBOL /P
/RECORD:length FORTRAN /R:length
/SHOW:type . FORTRAN,MACRO /L:value
/NOSHOW:type MACRO /N:value
/STATISTICS FORTRAN /A
ISWAP FORTRAN —
NOSWAP FORTRAN g
/TABLES DIBOL IN]
/UNITS:n FORTRAN /N:n
/VECTORS FORTRAN —
/NOVECTORS FORTRAN N
/WARNINGS DIBOL —
FORTRAN W
/NOWARNINGS DIBOL W
FORTRAN —
COoPY PIP —
/ALLOCATE:size — [n]
/ASCII PIP FILEX /A
/BEFORE[:date] PIP H{:date]
/BINARY PIP /B
/BOOT[:dev] DUP /U[:dev]
/CONCATENATE PIP g
/DATE[:date] PIP /Cl:date]
/DELETE PIP /D
/DEVICE DUP nn
/DOS FILEX INEE
/ENDO:n DUP /Exn
/EXCLUDE PIP P
/FILES DUP /F
/IGNORE PIP G
(Continued on next page)

A-2 Monitor Command Abbreviations and System Utility Program Equivalents



A

Monitor System Utility
Command Option Program Option
MIMAGE PIP,FILEX a
ANFORMATION PIP X
AINTERCHANGE][:size] FILEX /U[:n]
ILOG PIP W
/NOLOG PIP —
/MULTIVOLUME PIP %
/NEWFILES PIP /IC
JOWNER[:nnn,nnn] FILEX [UIC]
/PACKED FILEX P
/POSITION[:n] PIP M[:n]
/PREDELETE PIP /0
/PROTECTION PIP /F
/NOPROTECTION PIP 1Z
/IQUERY PIP,FILEX Q
/NOQUERY PIP —
/REPLACE DUP R
/NOREPLACE PIP /N
/RETAIN DUP R
/SETDATE[:date] PIP /T[:date]
/SINCE[:date] PIP /[:date]
/SLOWLY PIP IN]
/START:n DUP 1G
/SYSTEM PIP Y
/TOPS FILEX T
/VERIFY PIP, H
DUP H
/WAIT DUP, FILEX W
PIP /E
CREATE DUP /C
/ALLOCATE:size DUP n]
/EXTENSION:n DUP [T:size
/START:n DUP /G
D _ _
DATE — —
DEASSIGN — —
DELETE PIP /D
/BEFORE(:date] pPIpP /J(:date]
/DATE[:date] PIP /Cl:date]
/DOS FILEX /S
/ENTRY QUEMAN i
/EXCLUDE PIP P
ANFORMATION PIP X
ANTERCHANGE FILEX /U
/LOG PIP W
/NEWFILES PIP IC
/POSITION[:n] PIP /M[:n]
/QUERY PIP Q
/NOQUERY PIP —
/SINCE[:date] PIP /M:date]

(Continued on next page)

Monitor Command Abbreviations and System Utility Program Equivalents A-3



Monitor System Utility

Command Option Program Option
/ISYSTEM PIP Y
[WAIT PIP /E

FILEX W

DIBOL R DIBOL —
/ALLOCATE:size — [n}
/ALPHABETIZE DIBOL /A
/BUFFERING DIBOL /B
/CROSSREFERENCE DIBOL /C
/LINENUMBERS DIBOL —
/NOLINENUMBERS DIBOL /0
/LIST{:filespec] DIBOL 2nd

output
spec.
/LOG DIBOL G
/OBJECT{ filespec] DIBOL 1st
output
spec.
/NOOBJECT DIBOL null
1st
output
spec.
/ONDEBUG DIBOL /D
/PAGE:n DIBOL /P
/TABLES DIBOL 8
/WARNINGS DIBOL —
/INOWARNINGS DIBOL W

DIFFERENCES RSRCCOM -
/ALLOCATE:size — [n]
/ALWAYS BINCOM /0
/AUDITTRAIL SRCCOM /A
/BINARY BINCOM —
/BLANKLINES SRCCOM /B
/BYTES BINCOM /B
/CHANGEBAR SRCCOM /D
/COMMENTS SRCCOM —
/NOCOMMENTS SRCCOM IC
/DEVICE BINCOM /D
/ENDI[:n] BINCOM /Elmn]
/FORMFEED SRCCOM /F
/MATCH[:n] SRCCOM /Llm]
/OUTPUTfilespec SRCCOM, Ist

output
spec.
BINCOM 1st
output
spec.
/PRINTER SRCCOM, LP: as
1st
output

spec.

(Continued on next page)

A-4 Monitor Command Abbreviations and System Utility Program Equivalents



Monitor System Utility
Command Option Program Option
BINCOM LP: as
1st
output
spec.
/QUIET BINCOM J(a)
/SIPP:filespec BINCOM 2nd
output
spec.
/SLP:filespec SRCCOM 2nd
output
spec.
/SPACES SRCCOM —
/NOSPACES SRCCOM 8
/START[:n] BINCOM /S[n]
/TERMINAL SRCCOM, TT: as
1st
output
spec.
BINCOM TT: as
1st
output
spec.
/TRIM SRCCOM —
/NOTRIM SRCCOM T
DIRECTORY DIR —
/ALLOCATE:size — [n]
/ALPHABETIZE DIR /A
/BACKUP BUP /L
/BADBLOCKS DUP K
/BEFORE[:date] DIR /Kl[:date]
/BEGIN DIR G
/BLOCKS DIR /B
/BRIEF DIR, FILEX /F
/COLUMNS:n DIR /C:n
/DATE[:date] DIR /Dl:date]
/DELETED DIR Q
/DOCS FILEX 5]
/END:mn pup /Em
/EXCLUDE DIR /P
/FAST DIR, FILEX /F
/FILES DUP /F
/FREE DIR M
/FULL DIR /B
/INTERCHANGE FILEX 18]
/NEWFILES DIR D
/OCTAL DIR /0
/ORDER[:category] DIR
/S[:category]
/OUTPUT filespec DIR, 1st
output
file

spec.

(Continued on next page)

Monitor Command Abbreviations and System Utility Program Equivalents A-5



Monitor System Utility

Command Option Program Option
FILEX 1st
output
file
spec.
/OWNER[:nnn,nnn] FILEX [UIC]
/PCSITION DIR /B
/PRINTER DIR, LP: as
1st
output
spec.
FILEX LP: as
1st
output
file
spec.
/PROTECTION DIR T
/NOPROTECTION DIR /U
/REVERSE DIR R
/SINCE[:date] DIR /J[:date]
/SORT{:category] DIR
/S[:category]
/START:n DUP /G:n
SUMMARY DIR N
/TERMINAL DIR, TT: as
1st
output
spec.
FILEX TT: as
1st
output
spec.
/TOPS FILEX /T
/VOLUMEID[:ONLY] DIR,
FILEX /V[:ONL]
/WAIT DUP,FILEX W
DISMOUNT LD /L
DUMP RDUMP —
/ALLOCATE:size — —
/ASCII DUMP —
/INOASCII DUMP /N
/BYTES DUMP /B
/END:n DUMP /En
/FOREIGN DUMP T
NIGNORE DUMP /G
/ONLY:n DUMP /Om
/OUTPUTfilespec DUMP 1st
output
file
spec.
/  NTER DUMP LP: as
1st

(Continued on next page)

A-6 Monitor Command Abbreviations and System Utility Program Equivalents



\w’/ :

Monitor System Utility
Command Option Program Option
/RAD50 DUMP X
/START'n DUMP S
/TERMINAL DUMP TT: as
Ist
output
spec.
/WORDS DUMP W
E — —
EDIT EDIT,TECO,KED,
KEX, K52 EB
/ALLOCATE:size — [n]
/CREATE EDITOR —
/EDIT EDIT —
/EXECUTE:filespec TECO —
/INSPECT EDITOR —
/KED KED —
/KEX KEX —_—
/K52 K52 —
/OUTPUT filespec EDITOR —
TECO TECO —
EXECUTE — —
/ALLOCATE:size — [n]
/ALPHABETIZE DIBOL /A
/BOTTOM=mn - LINK /Bmn
/BUFFERING DIBOL /B
/CODE:type FORTRAN /L:type
/CROSSREFERENCE[:typel....type]]l DIBOL,MACRO /C
/DEBUGI:filespec] LINK —
/DIAGNOSE FORTRAN /B
/DIBOL DIBOL —
/DISABLE:typel...:typel MACRO /D
/DUPLICATE LINK /D
/ENABLE:typel...:type] MACRO /E
/EXECUTE filespec] LINK 1st
output
file
: spec.
/EXTEND FORTRAN /E
/FORTRAN FORTRAN —
/GLOBAL LINK /N
/HEADER FORTRAN 10
14 FORTRAN /T
/LIBRARY MACRO /M
/LINENUMBERS DIBOL, FORTRAN  —
/NOLINENUMBERS DIBOL, /0
FORTRAN IS]
/LINKLIBRARY:filespec LINK —
/LISTT filespec] — 2nd
output

file
spec.

(Continued on next page)

Monitor Command Abbreviations and System Utility Program Equivalents

A7



Monitor System Utility

Command Option Program Option
LOG DIBOL G
MACRO MACRO —
/MAP(:filespec] LINK 2nd

output

file

spec.
/OBJECT:filespec] — 1st

output

file

spec.
/ONDEBUG DIBOL,FORTRAN /D

" [PAGEmn DIBOL /P:n
/PROMPT LINK i
/RECORD:length FORTRAN /R:length
/RUN RUN —
/NORUN — —
/SHOWT :type] FORTRAN, MACRO /L[:value]
/NOSHOW!(:type] MACRO /N[:value]
/STATISTICS FORTRAN A
SWAP FORTRAN —
/NOSWAP FORTRAN g
TABLES DIBOL ]
/UNITS:n FORTRAN /N:n
/VECTORS FORTRAN —
/NOVECTORS FORTRAN A%
/WARNINGS FORTRAN W
DIBOL —_
/NOWARNINGS DIBOL W
FORTRAN —

/WIDE LINK W

FORMAT — —
[PATTERN[:value] FORMAT /P[:value]
/QUERY FORMAT —
/INOQUERY FORMAT Y
/SINGLEDENSITY FORMAT IS]
/VERIFY[:ONLY] FORMAT /V[:ONLY]
/WAIT FORMAT W

FORTRAN RFORTRAN —
JALLOCATE:size - — [n]
/CODE:type FORTRAN /Litype
/DIAGNOSE FORTRAN /B
EXTEND FORTRAN /E
MHEADER FORTRAN /0
/14 FORTRAN /T
/LINENUMBERS FORTRAN —
/NOLINENUMBERS FORTRAN IS]
/LIST[:filespec] FORTRAN o2nd

output
file
spec.
/OBJECT:filespec] FORTRAN 1st
output

file
spec.

(Continued on next page)

A-8 Monitor Command Abbreviations and System Utility Program Equivalents



N J
e

AN

Monitor System Utility
Command Option Program Option
/NOOBJECT FORTRAN null
Ist
output
spec.
/ONDEBUG FORTRAN D
/RECORD:length FORTRAN R
/SHOWT[:type] FORTRAN /Li:value]
/STATISTICS FORTRAN /A
/SWAP FORTRAN —
/NOSWAP FORTRAN g
/UNITS:n FORTRAN /Nn
/VECTORS FORTRAN —
/NOVECTORS FORTRAN v
/WARNINGS FORTRAN W
/INOWARNINGS FORTRAN —
FRUN — —
/BUFFER:n — —
/NAME:name — —
/PAUSE — —
/TERMINAL:n — —
GET — —_
GT OFF — —
GTON — —
Lin — —
Tn — —
HELP — —
/PRINTER — —
/TERMINAL — —
INITIALIZE DUP 1Z
/BACKUP BUP 1Z
/BADBLOCKS[:RET] DUP /B
/DOS FILEX IS
/FILE:filespec DUP 1st
output
spec.
/INTERCHANGE FILEX g
/QUERY DUP, FILEX —
/NOQUERY BUP, DUP, FILEX Y
/REPLACE[:RET] DUP R
/RESTORE DUP /D
/SEGMENTS:n DUP /N:n
/VOLUMEID{:ONLY] DUP, /V[:ONL]
FILEX
/WAIT DUP,FILEX W
INSTALL — _
LIBRARY RLIBR —
/ALLOCATE:size — [size]
/CREATE LIBR —
/DELETE LIBR /D
(Continued on next page)

Monitor Command Abbreviations and System Utility Program Equivalents A-9



Monitor System Utility
Command Option Program Option
/EXTRACT LIBR /E
/ANSERT LIBR —_
/LIST{:filespec] LIBR 2nd
output
file
spec.
/MACRO[:n] LIBR /M[:n]
JOBJECT! filespec] LIBR 1st
output
file
spec.
/NOOBJECT LIBR null
1st
output
spec.
/PROMPT LIBR i
/REMOVE LIBR G
/REPLACE LIBR R
/UPDATE LIBR U
LINK RLINK —_—
/ALLOCATE:size — [n]
/ALPHABETIZE LINK /A
/BITMAP LINK —
/NOBITMAP — /X
/BOTTOM:value LINK /Bmn
/BOUNDARY:value LINK MY:value
/MDEBUG:filespec] LINK —
/DUPLICATE LINK /D
/EXECUTE(:filespec] LINK 1st
output
file
spec
/NOEXECUTE LINK null
1st
output
spec.
/EXTEND:n LINK /E:n
/FILL:n LINK Zn
/FOREGROUNDI:stacksize] LINK
/Rl:stacksize]
/GLOBAL LINK /N
/INCLUDE LINK a
/LDA LINK /L
/LIBRARY:filespec LINK —
/LIMIT[:n] LINK /K[:n]
/LINKLIBRARY filespec LINK —
/MAPI:filespec] LINK 2nd
output
file
spec
/PROMPT LINK I
/ROUND:n LINK /Umn
/RUN LINK, RUN —

(Continued on next page)

A-10 Monitor Command Abbreviations and System Utility Program Equivalents



Monitor System Utility

Command Option Program Option
/SLOWLY LINK S
/STACK[:value] LINK . /M[:n]
/SYMBOLTABLE[:filespec) LINK 3rd
output
file
spec.
/TOP[:value] LINK /H[:valuel
/TRANSFER/:value] LINK M}
/WIDE LINK W
/XM LINK A%
LOAD — —
MACRO RMACRO —
/ALLOCATE:size — [n]
/CROSSREFERENCEI:typel...type]] MACRO /C
/DISABLE:typel...:type] MACRO /D
/ENABLE:typel...:type] MACRO E
/LIBRARY MACRO M
/LIST[filespec] MACRO 2nd
output
file
spec.
/OBJECTTfilespec] : MACRO 1st
output
file
spec.
/NOOBJECT MACRO null
1st
output
spec.
/SHOW:type MACRO /L
/NOSHOW:type MACRO /N
MOUNT LD /L
/WRITE LD W
/NOWRITE LD R
PRINT — _—
/BEFORE[:date] PIP, /J[:date]
QUEMAN
/COPIES:n PIP, QUEMAN K:n
/DATE[:date] PIP, /Cl:date]
QUEMAN
/DELETE PIP, QUEMAN /D
/FLAGPAGE:n QUEMAN H:n
/NOFLAGPAGE QUEMAN /N
/INFORMATION PIP, QUEMAN X
LOG PIP, QUEMAN W
/NOLOG PIP, QUEMAN —_—
/NAME:[dev:]jobname QUEMAN 1st
output
file

(Continued on next page)

Monitor Command Abbreviations and System Utility Program Equivalents A-11



Monitor System Utility

Command Option Program Option
/INEWFILES PIP,QUEMAN IC
/PRINTER PIP LP: as
1st
output
spec.
/PROMPT QUEMAN Vi
/QUERY PIP,QUEMAN o]
/SINCE[:date] PIP, /l:date]}
QUEMAN
/WAIT PIP /E
PROTECT PIP /F
/BEFORE[:date] PIP /Jl:date]
/DATE[:date] PIP /Cl:date]
/EXCLUDE PIP /P
/ANFORMATION PIP X
/LOG pIP W
/NOLOG PIP —
/NEWFILES PIP /C
/QUERY PIP Q
/SETDATE:date] PIP /T[:date]
/SINCE[:date] PIP Al:date]
/ISYSTEM PIP Y
/WAIT PIP /E
R ' — —
REENTER — —_
REMOVE — —
RENAME PIP —
/BEFOREI[:date] PIP /J[:date]
/DATE[:date] PIP /C[:date]
/INFORMATION PIP X
LOG PIP W
/NOLOG PIP —
/NEWFILES PIP /C
/PROTECTION PIP /F
/NOPROTECTION PIP 17
/QUERY PIP ]
/REPLACE PIP —
/NOREPLACE PIP /N
/SETDATE[:date] PIP : [T(:date]
/SINCE[:date] PIP A[:date]
/SYSTEM PIP Y
/WAIT PIP /E
RESET — _
RESUME — —
RUN — _
SAVE - —
SET —_ _

(Continued on next page)

A—12 Monitor Command Abbreviations and System Utility Program Equivalents



Monitor System Utility
Command Option Program Option
SHOW ALL RESORC /A
CONFIGURATION RESORC 17
DEVICES[:dd] RESORC /Df:dd]
ERRORS ERROUT —
/ALL ERROUT /A
[FILE:filespec ERROUT input
file
spec.
/FROM[:date] ERROUT /F
/OUTPUT filespec ERROUT 1st
output
file
spec.
/PRINTER ERROUT LP: as
Ist
output
spec.
SUMMARY ERROUT S
/[TERMINAL ERROUT TT: as
1st
output
spec.
/TO[:date] ERROUT /T
JOBS RESORC 1J
MEMORY RESORC X
QUEUE QUEMAN /L
SUBSET RESORC IS
TERMINALS RESORC /T
SQUEEZE DUP S
/OUTPUT:filespec DUP 1st
output
file
spec.
/QUERY DUP —_
/NOQUERY DUP Y
/WAIT DUP W
SRUN
/BUFFER:n — —
/LEVEL:mn — —_
/NAME:logical-jobname _— —
PAUSE — —
/TERMINAL:n — —
START — —
SUSPEND - -
TIME — —
TYPE — —
/BEFORE[:date] PIP [J:date]
/COPIES:n PIP K
/DATE[:date] PIP /Cl:date]

(Continued on next page)

Monitor Command Abbreviations and System Utility Program Equivalents

A-13



Monitor System Utility

Command Option Program Option
Y
J
/DELETE PIP D
INFORMATION PIP X
LOG PIP W
NOLOG PIP —
NEWFILES PIP IC
Q ) PIP Q
/SINCE[:date] PIP /[:datel
/WAIT PIP /E
UNLOAD — —
UNPROTECT
PIP /F
/BEFORE[:date] PIP /J[:date]
/DATEI[.date] PIP /Cl:date]
[EXCLUDE PIP /P
AINFORMATION PIP X )
LOG PIP W
/NOLOG PIP —
/NEWFILES PIP /C
QUERY PIP Al
/SETDATE[:date] PIP M(:date]
JSINCE[:date] PIP M[:date]
SYSTEM PIP Y
[WAIT PIP /E

S

A-14 Monitor Command Abbreviations and System Utility Program Equivalents



M

R

INDEX

ABORT keyboard command, 4-24

Absolute addresses
assigning, 4-146

Absolute binary loader
and .LDA files, 3-2
creating files for, 4-150

Advance (A) command (EDIT), 6-21

arguments, 6-21
/ALLOCATE

COMPILE option, 4-36

COPY option, 444

CREATE option, 4-58

DIBOL option, 4-68

DIFFERENCES option, 4-73

DIRECTORY option, 4-82

DUMP option, 4-94

EDIT option, 4-100

EXECUTE option, 4-104

FORTRAN option, 4-118

LIBRARY option, 4-140

LINK option, 4-147

MACRO option, 4-157
/ALPHABETIZE

COMPILE option, 4-36

DIBOL option, 4-68

DIRECTORY option, 4-82

EXECUTE option, 4-105

LINK option, 4-147
<ALPHAN>

IND special symbol, 5-20
<ALTMODE>

IND special symbol, 5-20
[ALWAYS

DIFFERENCES option, 4-73

American Standard Code for Information

Interchange

See ASCII files
/ASCII

COPY option, 4-44

DUMP option, 4-94
ASCII files, 3-2

copying, 4—44
ASK directive (IND), 5-25

maximum number of characters

allowed in prompt for, 5-2
question display, 526

responses to prompts printed by, 5-26

ASKN directive (IND), 5-27

maximum number of characters

allowed in prompt for, 5-2
question display, 5-29
radix, 5-28
responses, 5-29
ASKS directive (IND), 5-30

maximum number of characters

allowed in prompt for, 5-2
question display, 5-32
responses, 5—-32

Assembler
function of, 2—-1
Assembly listings

generating, 4-38, 4-108, 4-159

including symbol and label table in,

4-111

including symbol cross-reference
section in, 4-37, 4-105, 4-157
ASSIGN keyboard command, 4-25

Index-1



/{AUDITTRAIL
DIFFERENCES option, 4-74
Audit trail
SLP
specifying, 4-74

Background job
communicating with
See CTRL/B
executing, 4-152, 4-185
Backing up files or volumes
for storage
See BACKUP keyboard command
BACKSPACE key
with single-line editor, 4-14
/BACKUP
DIRECTORY option, 4-82
INITIALIZE option, 4-132
BACKUP keyboard command, 4-28
backup process, 428
initializing volumes for, 4-29
input devices for, 4-28
options, 4-29
options and utility program equivalents
(table), A-1
output devices for, 4-28
wildcards with, 4-28
Backup utility program
See BUP
Backup volumes (BUP)
initializing, 4-132
Bad block replacement, 4-134
/BADBLOCKS
DIRECTORY option, 4-83
INITIALIZE option, 4-133
Bad blocks
covering, 4-133
finding, 4-83
listing files that contain, 4-86
replacing, 4-134
treatment during a squeeze operation,
4-216
Bad block scans
performing, 4-133, 4-134
specifying last block for, 4-86
specifying starting block for, 4-90
Bad block table
preserving output volume’s, 4-53
.BAD files
copying, 443
deleting, 463
renaming, 4-178
Banner pages
generating, 4-166
suppressing printing of, 4-167

Index-2

Base-line monitor
See BL: monitor
BASIC keyboard command, 4-31
BATCH
description of, 1-9
/BEFORE
COPY option, 444
DELETE option, 4-64
DIRECTORY option, 4-83
PRINT option, 4-166
PROTECT option, 4-172
RENAME option, 4-179
TYPE option, 4-224
UNPROTECT option, 4-230
/BEGIN
DIRECTORY option, 4-84
BEGIN directive (IND), 5-33
Begin-end blocks (IND), 5-33,
5-46
exiting, 547
Beginning (B) command (EDIT),
6-20
/BINARY
COPY option, 4444
DIFFERENCES option, 4-74
Binary files, 3—-2
comparing, 4-74
to create SIPP input file, 4-76
copying, 4—44
Binary number
format of (figure), 4-190
/BITMAP
LINK option, 4-147
Bitmap
creating, 4-147
suppressing creation of, 4-148
B keyboard command, 4-27
/BLANKLINES
DIFFERENCES option, 4-75
BL monitor
advantages of, 1-3
features of, 1-3
Block-replaceable devices
See Devices
/BLOCKS
DIRECTORY option, 4-84
/BOOT
COPY option, 445
Bootable volume
creating, 445
BOOT keyboard command, 4-32
" devices for, 4-32
options, 4-33
options and utility program equivalents
(table), A-1



Bootstrap

copying to a volume, 4-45
Bootstrapping

foreign volumes, 4-33

monitor files, 4-32
Bootstrapping the system, 3-1

hardware bootstrap, 4-32

software bootstrap, 4-32

with a single-disk system, 4-33
/BOTTOM

EXECUTE option, 4-105

LINK option, 4-148
/BOUNDARY

LINK option, 4-148
/BRIEF

DIRECTORY option, 4-84
/BUFFER

FRUN option, 4-124

SRUN option, 4-218
/BUFFERING

COMPILE option, 4-36

DIBOL option, 4-68

EXECUTE option, 4-105
BUP

description of, 1-6
/BYTES

DIFFERENCES option, 4-75

DUMP option, 4-94

Card reader

See CR handler
Cassette

deleting files from, 4-66
CCL

function of, 4-233

syntax, 4-233

using in control files, 54
.CHAIN directive (IND), 5-34
Change (C) command (EDIT), 6-29

arguments, 6-29
/CHANGEBAR

DIFFERENCES option, 4-75
Character strings

parsing in control files, 5-56
.CLOSE directive (IND), 5-34
CLOSE keyboard command, 4-34

closing a file opened with EDIT, 6-3
/CODE

COMPILE option, 4-36

EXECUTE option, 4-105

FORTRAN option, 4-119
/COLUMNS

DIRECTORY option, 4-84

COMMAN
IND local string symbol, 5-8
Command lines
editing
See Single-line editor
reproducing
See Single-line editor
Commands
multiline
using in a control file, 5-4
/COMMENTS
DIFFERENCES option, 4-75
Comments
in control files, 5-5
external, 5-5
internal, 5-5
Compilation listing
DIBOL
generating, 4-69
including line numbers in, 4-69
including symbol and label tables in,
4-41, 4-71
including symbol cross-reference
section in, 4-69
suppressing line numbers in, 4-69
FORTRAN
generating, 4-119
generating, 4-38, 4-108
including symbol crogs-reference
section in, 4-37, 4-105
COMPILE keyboard command, 4-35 to
4-41
default file types, 4-35
options, 4-36 to 4-41
options and utility program equivalents
(table), A-1
/{CONCATENATE
COPY option, 4-46
Concise command language
See CCL
Console
assigning to another terminal, 4-203
setting width for, 4-205
with hardware tabs, 4-204
with simulated tab stops, 4-204
Console output
resuming, 4-204
suspending, 4-204
Control files, 5-2
See also IND, IND command lines
arithmetic operators in, 5-2
begin-end blocks in, 5-33, 5-46
exiting, 547

Index-3



branching
to a command line, 548
to subroutines, 548
when errors occur, 5-54
CCL commands in, 5—4
chaining between, 5-34
closing open files, 5-34
command line in (example), 5-1
commenting
See Comments
contents of, 5-1
creating, 5-1
general rules for, 5-2
debugging with /T, 5-8
default file type, 5-6
definition of, 4-15
delaying processing of, 5-36
deleting after processing completes, 5-7
displaying processing of command lines
in, 5-46
ESCAPE recognition in, 5-42
executing, 56
from keyboard monitor level, 5-6, 5-7
exiting, 5-47
formatting, 5-2
global symbol definition in, 5-42
global symbols in, 5-17
IND directives in, 5-3
keyboard commands in, 5-3, 5-4
suppressing display of, 5-8, 5—44
suppressing execution of, 5-8
labels in, 5-2
See Labels
local symbols in, 5-17
logical symbols in
See Logical symbols
lowercase characters in, 543
multiline commands in, 5-4
nesting, 5-9
numeric expressions in, 5-16, 5-18
numeric symbols in
See Numeric symbols
opening data files from, 5-55
parsing strings from within, 5-56
passing parameters when executing,
5-8
returning from subroutines within, 5-59
sample line from, 5-3
string symbols in
See String symbols
symbols in, 5-16
terminating processing of, 5-24, 5-63
testing device characteristics, 5-65
testing existence of a file, 5-67

Index—4

testing the starting position of an
ASCII string, 5-64
uses for, 5-1
/COPIES
PRINT option, 4-166
TYPE option, 4-224
COPY keyboard command, 442 to 4-57
assigning a date, 4-54
changing volumes during operations,
4-55
copying files in image mode, 4-48
function of, 4-42
options, 4-44 to 4-55
options and utility program equivalents
(table), A-2
syntax for specifying date, 4-43
verifying copy, 4-55
wildcards with, 4-43
Copy operations
verifying, 4-55
/{CREATE
EDIT option, 4-101
LIBRARY option, 4-140
CREATE keyboard command, 4-58 to
4-59
options, 4-58 to 4-59
options and utility program equivalents
(table), A-3
CREF table
generating, 4-37, 4-69, 4-157
CR handler
modifying card codes for, 4-190
setting device conditions for, 4-190
/{CROSSREFERENCE
COMPILE option, 4-37
DIBOL option, 4-69
EXECUTE option, 4-105
MACRO option, 4-157
CSR addresses
changing in device handlers, 4-191,
4-197, 4-199
CTRL/A, 3-7
CTRL/B, 3-7
treating as a program control character,
4-203
CTRL/C, 3-7
including in text with EDIT, 6-2
with EDIT, 6-2
CTRL/E, 3-7
CTRL/F, 3-8
treating as a program control character,
4-203
CTRL/O, 3-8
disabling, 4183, 4-204



enabling, 4-204
with EDIT, 6-3
CTRL/Q, 3-8
CTRL/R, 3-8, 4-15
CTRL/S, 3-8
disabling, 4-204
enabling, 4-204
CTRL/U, 3-8, 4-14
with EDIT, 6-3
CTRL/W, 3-8, 4-15
CTRL/X, 3-8
treating as a program control character,
4-203
with EDIT, 6-3
CTRL/Z, 3-9
CTRL key, 3-7

/D
IND option, 5-7
.DATA directive (IND), 5-34
creating an indirect command file with,
5—4,5-35
Data format
ASCII, 3-2
binary, 3-2
DATA operating mode (IND), 5-40
/DATE
COPY option, 446
DELETE option, 4-64
DIRECTORY option, 4-85
PRINT option, 4-166
PROTECT option, 4-172
RENAME option, 4-179
TYPE option, 4-224
UNPROTECT option, 4-230
Date
displaying, 461
setting, 4-61
<DATE>
IND special symbol, 5-22
DATE keyboard command, 4-61
DCL operating mode, 541
DEASSIGN keyboard command, 4-62
/DEBUG
EXECUTE option, 4-105
LINK option, 4-148
Debugging a program
See ODT
See VDT
.DEC directive (IND), 5-35
DECsystem—10 files
obtaining directory listings of, 4-91
transferring to RT-11 format with
/TOPS, 4-55

<DEFAUL>
IND special symbol, 5-20
and .ASK directive, 5-26
and .ASKN, 5-30
DELAY directive (IND), 5-36
/DELETE
COPY option, 4-46
LIBRARY option, 4-140
PRINT option, 4166
TYPE option, 4-224
Delete (D) command (EDIT), 6-27
arguments (table), 6-27
/DELETED
DIRECTORY option, 4-85
DELETE key, 3-9
for single-line editor, 4-13
with EDIT, 6-3
DELETE keyboard command, 4-63 to
4-67
options, 4-64 to 4-67
options and utility program equivalents
(table), A—3
DELETE operating mode (IND),
5-42
Deleting a character
See DELETE key
Deleting characters on console, 4-204
/DEVICE
BACKUP option, 4-29
COPY option, 4-46
DIFFERENCES option, 4-75
Device assignments
displaying, 4-207
Device driver
See Device handler
Device handlers
changing CSR addresses in, 4-191,
4-197, 4-199
changing error logging retry attempt
number in, 4-191
changing vectors in, 4-192, 4-193,
4-198, 4-200
definition, 1-5
loading into memory, 4-155
logging only unsuccessful I/O transfers,
4-192
logging successful I/O transfers and
errors, 4-192
releasing if not loaded, 4-183
status of
displaying, 4210
unloading from memory, 4227
Device names
removing from the system tables, 4-177

Index-5



Devices
assigning to a job, 4-155
binary comparison of
See Volumes
block-replaceable, 3—6
copying
See COPY keyboard command
file-structured, 36
installing into the system, 4-138
nonfile-structured, 3-6
random-access, 3—6
RT-11 directory-structured, 36
sequential-access, 3—6
structures of (table), 3—-7
testing characteristics of, from control
files, 5-65
testing in control files to see if loaded,
5-51
Device utility program
See DUP
/DIAGNOSE
COMPILE option, 4-37
EXECUTE option, 4-105
FORTRAN option, 4-119
/DIBOL
COMPILE option, 4-37
EXECUTE option, 4-105
DIBOIL. compiler
using single buffering, 4-68, 4-105
DIBOL keyboard command, 4-68 to 4-71
default file types for, 468
options, 468 to 471
options and utility program equivalents
(table), A—4
DIBOL object file
allocating space for, 4-68
DIBOL programs
compiling, 4-35, 4-68
excluding line numbers from, 469
including line numbers in, 469
with single buffering, 4-68
compiling with single buffering, 4-36
debugging, 4-40, 4-71, 4-110
excluding line numbers from, 4-38
including line numbers in, 4-38
DIFFERENCES keyboard command,
4-72 to 4-79
default file types for, 472
options, 4-73 to 4-79
options and utility program equivalents,
A4
wildcards with, 4-72
Differences listing
creating a, 4-76

Index—-6

displaying on the console, 477
example, 4-77
excluding source program comments
from, 4-75
including changebars in, 4-75
including form feeds in, 4-75
including source program comments in,
4-75
interpretation of, 4-78
printing, 4-76
suppressing terminal display of, 4-76
DIR
description of, 1-7
Direct access labels (IND), 5-24
Directories
clearing, 4-132
DIRECTORY keyboard command, 4-80
to 4-91
options, 4-82 to 4-91
options and utility program equivalents
(table), A-5
Directory listings
abbreviated, 4-84, 4-86
DECsystem~10 format volumes, 4-91
displaying on the console, 4-91
DOS format volumes, 4-86
excluding certain files from, 4-86
for backup volumes created with BUP,
4-82
for magtapes, 4-89
including deleted files in, 4-85
including files created before certain
date in, 4-83
including files created since certain
date in, 4-90
including file starting block numbers,
4-84
including files with certain date in,
4-85
including protected files in, 4-89
including unprotected files in, 4-89
including unused areas in, 4-86
including volume ID and owner name -
in, 4-91
interchange diskettes, 487
obtaining on a single-disk system,
4-91
printing, 4-89
reading, 4-80
RSTS/E format volumes, 4-86
sorting, 4-88, 4-90
by creation date, 4-88
by file name, 4-88
by file type, 4-88



by position on volume, 488
by size, 4-88
in alphabetical order, 4-82
in reverse order, 4-90
specifying number of columns for,
4-84
with octal sizes and block numbers,
4-87
Directory segments
changing default number of, 4-136
default number of (table), 4-136
/DISABLE
COMPILE option, 4-37
EXECUTE option, 4-106
MACRO option, 4-158
.DISABLE directive (IND), 5-36
DISABLE OCTAL directive (IND)
effect on .ASKN directive, 5-28
DISMOUNT keyboard command, 4-92
D keyboard command, 4-60
/DOS
COPY option, 4-47
DELETE option, 4-64
DIRECTORY option, 4-86
INITIALIZE option, 4-134
DOS-11 format files
deleting, 4-64
obtaining a directory of, 4-86
DOS-11 format volume
initializing, 4-134
Double-density diskettes
formatting in single-density mode,
4-116
DSABL directive arguments (MACRO),
4-158
DU handler
changing CSR address in, 4-193
changing vector in, 4-193
defining disk partition size in, 4-193
defining ports in, 4-193
defining valid unit plug numbers in,
4-193
DUMP
description of, 1-7
DUMP directive (IND), 5-37
DUMP keyboard command, 4-93 to 4-97
options, 4-94 to 4-95
options and utility program equivalents
(table), A—6
DUP
description of, 1-7
/DUPLICATE
EXECUTE option, 4-106
LINK option, 4-148

/EDIT
EDIT option, 4-101
EDIT, 6-1 to 641
buffers, 6-11
calling, 4-101, 6-1
character deletion, 6-3
character-oriented commands, 67
command arguments (table), 6-5
command mode, 6-1
command repetition, 6-9
commands, 6-12, 6-15
advance by lines, 6-21
change characters, 6-29
change lines of text, 6-30
delete characters, 627
delete lines of text, 6-28
display EDIT version number, 6-34
effects on output files (table), 6-15
effects on text buffer (table), 6-15
enable uppercase or lowercase mode,
6-35
execute command stored in macro
buffer, 6-34
for closing files, 6-14
for creating a backup file, 6-14
for opening files, 612, 6-13
for reading files, 6-12
for writing files, 6-13
immediate mode, 6-39
insert text, 6-26
insert text saved in external buffer,
6-32
list lines of text buffer, 6-24
move location pointer a number of
spaces, 6—20
move location pointer to text buffer
beginning, 6-20
read files into text buffer, 6-15
save text in external (macro) buffer,
6-33
save text in external (save) buffer,
6-31
search, 622
search entire file for text string, 6-23
search for text string and write buffer
to output file, 6-24
search text buffer for text string,
6-22
terminate editing session, 6-19
terminating, 6-2
text listing, 6-24
text modification, 6-26
using arguments in, 6-5
utility, 6-31

Index-7



verify current line, 6-26
write text buffer to output file, 6-16,
6-18
commands (table), 64
command strings, 6-6
command syntax, 6-5
current location pointer (cursor), 6-7
determining the location of, 6-26
deleting of all characters on current
line, 6-3
display editor, 6-36
format, 6-36
using with graphics terminals, 6-37
error conditions, 6—40
example, 6-39
function of, 6-1
ignoring current command string with,
6-3
immediate mode for graphics terminals,
6-38
key commands (table), 6-2
line-oriented commands, 6-8
memory usage, 611
processing, 4-99, 6-1
setting as default editor, 4-194
terminating, 6-2
text buffer, 6-11
filling, 6-11
text mode, 6-1
Edit Backup (EB) command (EDIT),
6-14
Edit Console (EC) command (EDIT),
6-37
Edit Display (ED) command (EDIT),
6--37
Edit File (EF) command (EDIT), 6-14
EDIT keyboard command, 4-99 to 4-102
options, 4-100 to 4-102
options and utility program equivalents
(table), A7
Edit Lower (EL) command (EDIT), 6-35
Editors
See Text editors
EDIT
See EDIT
K52
See K52
KED
See KED
KEX
See KEX
TECO
See TECO
Edit Read (ER) command (EDIT), 6-12

Index—8

Edit Upper (EU) command (EDIT), 6-35
Edit Version (EV) command (EDIT),
6-34
Edit Write (EW) command (EDIT), 6-13
E keyboard command, 4-98
.ENABL directive arguments (MACRO),
4-158
/ENABLE
COMPILE option, 4-37
EXECUTE option, 4-106
MACRO option, 4-158
.ENABLE DATA directive (IND)
using to create an indirect command
file, 54
.ENABLE directive (IND), 5-39
.ENABLE GLOBAL directive (IND)
defining global symbols with, 5-17
.ENABLE OCTAL directive (IND)
effect on .ASKN directive, 5-28
.ENABLE SUBSTITUTION directive
(IND), 5-22

- /END

COPY option, 4-47
DIFFERENCES option, 4-75
DIRECTORY option, 4-86
DUMP option, 4-94
.END directive (IND), 5-46
/ENTRY
DELETE option, 4-64
<EQOF>
IND special symbol, 5-20
.ERASE directive IND), 5—46
Erasing a line
See CTRL/U
<ERROR>
IND special symbol, 5-20
Error Logger
description of, 1-8
displaying errors logged by, 4-211
logging only unsuccessful I/O transfers,
4-192
logging successful I/O transfers, 4-192
SJ
clearing internal buffer, 4-195
disabling, 4-194
enabling, 4-194
Errors
during copy operations
overcoming with /IGNORE, 448
overcoming with /SLOWLY, 4-54
Error severity level
to abort indirect command files, 4-195
changing, 4-195
to abort keyboard commands, 4-195



s

N

<ESCAPE>
IND special symbol, 5-20
and .ASK directive, 5-27
and .ASKN, 5-30
and .ASKS, 5-33
ESCAPE key
with EDIT, 6-2
ESCAPE operating mode (IND),
542
Exchange (X) command (EDIT), 6-30
arguments (table), 6-31
/EXCLUDE
COPY option, 448
DELETE option, 4-65
DIRECTORY option, 4-86
PROTECT option, 4-172
UNPROTECT option, 4-230
Executable files
creating at link time, 4-149
suppressing creation of at link time,
4-149
/EXECUTE
EDIT option, 4-101
EXECUTE option, 4-106
LINK option, 4-149
EXECUTE keyboard command, 4-103 to
4-112
default file types, 4-103
options, 4-104 to 4-112
options and utility program equivalents
(table), A-7
Execute Macro (EM) command (EDIT),
6-34
Executing programs, 4-111
Executing sequential commands
See Indirect command files
Exit (EX) command (EDIT), 6-19
.EXIT directive (IND), 5-47
Exit status
of control files, 5-20
<EXSTAT>
IND special symbol, 5-20
<EXSTRI>
IND special symbol, 5-22
/EXTEND
COMPILE option, 4-37
EXECUTE option, 4-107
FORTRAN option, 4-119
LINK option, 4-149
Extended memory monitor
See XM monitor
/EXTENSION
CREATE option, 4-58
/EXTRACT
LIBRARY option, 4-141

<FALSE>
IND special symbol, 520
/FAST
DIRECTORY option, 4-86
FB monitor
advantages of, 1-4
features of, 1—4
minimum requirements, 1-4
processing priorities, 14
/FILE
INITIALIZE option, 4-134
<FILERR>
IND special symbol, 5-21
/FILES
COPY option, 4-48
DIRECTORY option, 4-86
Files
ASCII
See ASCII files
binary
See Binary files
changing volumes while deleting, 4-67
comparing, 4-72
binary, 4-74
by bytes, 4-75
excluding spaces and tabs, 4-76
including spaces and tabs, 4-76
creating, 458, 4-59
over a tentative file, 458
with a text editor, 4-101
deleted
recovering, 4-85
recovering (example), 4-59
" deleting
after copy, 4-46
before copy, 4-52
DELETE command, 4-63
dumping contents of, 4-93
dumping contents of (example), 4-95
extending, 4-58
naming, 3—4
object
See Object files
object (MACRO)
creating, 4-160
suppressing creation of, 4-161
printing, 4-165
more than one copy of, 4-166
protecting, 4-171
protecting during copy, 4-52
removing protection from, 4—-229
on a single-disk system, 4-232
renaming, 4-178
tentative
making permanent, 4-34

Index-9



Filespec
See File specifications
File specifications
factoring, 44
restrictions, 4—4
syntax of, 4-3
File-structured devices
See Devices
File types, 3—4
default, 4-5
standard, 3—4
/FILL
LINK option, 4-149
<FILSPC>
IND special symbol, 5-22
Find (F) command (EDIT), 6-23
/FLAGPAGE
PRINT option, 4-166
/FOREGROUND
LINK option, 4-149
Foreground/background monitor
See FB monitor
Foreground job
assigning logical name to, 4-125
assigning terminals to interact with,
4-126
communicating with
See CTRL/F
creating executable files for, 4-149
debugging, 4-125
FORTRAN
running, 4-124
running, 4-124
and reserving memory for, 4-124
suspending, 4-221
with assigned private console
aborting from system console, 4-24
/FOREIGN
BOOT option, 4-33
DUMP option, 4-94
FORMAT
description of, 1-7
FORMAT keyboard command, 4-113 to
4-117
options, 4-114 to 4-117

options and utility program equivalents

(table), A-8
Formatting a volume
on a single-disk system, 4-117
reasons for, 4-113
while the foreground job is loaded,
4114
Formatting utility program
See FORMAT

Index-10

/FORMFEED
DIFFERENCES option, 4-75
Form feeds
sending to the console, 4-203
sending to the line printer, 4-197,
4-199
/FORTRAN
COMPILE option, 4-37
EXECUTE option, 4-107
FORTRAN compiler
examining internal errors of, 4-105
FORTRAN keyboard command, 4-118 to
4-123
options, 4-118 to 4-123

options and utility program equivalents

(table), A~8
FORTRAN listing codes (table), 4-122
FORTRAN logical units
overriding default number with
/UNITS, 4-41
FORTRAN multidimensional arrays
accessing with multiplication, 4-41,
4-112,4-123
accessing with tables, 4-41, 4-112,
4-123
FORTRAN program
changing to two-word default integer
data type, 4-37
compiling, 4-35, 4-118
debugging, 4-40
excluding line numbers from, 4-38
including line numbers in, 4-38
permitting USR to swap over, 4-41,
4-122
preventing USR from swapping over,
4-41, 4-111, 4-123
FORTRAN record length
overriding default, 440
/FREE
DIRECTORY option, 4-86
FRUN keyboard command, 4-124
options, 4-124 to 4-126
options (table), A-9
/FULL
DIRECTORY option, 4-87

Get (G) command (EDIT), 6-22
GET keyboard command, 4-127
/GLOBAL
EXECUTE option, 4-107
LINK option, 4-150
GLOBAL operating mode (IND),
5-42



)

Global symbols
including during link, 4-150
in control files, 5-17
GOLD key
use of with single-line editor, 4-10
.GOSUB directive (IND), 5—48
.GOTO directive (IND), 5-48
Graphics display paging
See CTRL/A
Graphics terminal display
with console terminal display
See CTRL/E
Graphics terminals
disabling, 4-128

display screen values for (table), 4-129

enabling, 4-128
GT keyboard command, 4-128
options, 4-129
GT OFF keyboard command, 4-128
GT ON keyboard command, 4-128
and EDIT, 6-37
options (table), A-9

Hardware
components (table), 1-2
Hardware configuration
displaying, 4-208
minimum, 1-1
/HEADER
COMPILE option, 4-37 .
EXECUTE option, 4-107
FORTRAN option, 4-119
Help key
Single-line editor, 4-10
HELP keyboard command, 4-130
options, 4-130
options (table), A-9

I/O channels
open
purging, 4-183
I/0O transfers
logging only unsuccessful, 4-192
logging successful, 4-192
14
COMPILE option, 4-37
EXECUTE option, 4-107
FORTRAN option, 4-119
IBM 3741-compatible diskettes
copying with /INTERCHANGE, 4-49
JFDF directive (IND), 5-50
JF directive (IND), 549
JFDISABLED directive (IND), 5-50
JFENABLED directive (IND), 5-50

IFF directive (IND), 5-51
JIFLOA directive (IND), 5-51
JFNDF directive (IND), 5-50
JFNLOA directive (IND), 5-51
JFT directive (IND), 5-51
/IGNORE
COPY option, 4-48
DUMP option, 4-94
/IMAGE
COPY option, 4-48
Image mode copy, 4-48
Immediate mode (EDIT), 6-38
commands, 6—-39
INC directive (IND), 5-53
/INCLUDE
LINK option, 4-150
IND, 5-1 to 5-67
See also Control files
arithmetic operators (table), 5-16
characters with special meaning, 5-15
command string syntax, 5-6
logical operators (table), 5-16
logical tests, 5—49
operating modes
testing to see if enabled, 5-50
options, 5-7, 5-8
options (table), 57
parameter passing, 58
processing of command lines, 5-3
processing single command lines with,
5-7
relational operators (table), 5-16
running, 5-6
from the console (TT:), 5-7
symbols, 5-16
global, 5-17
local, 5-17
symbol tables
displaying, 5-37
terminating, 5-6
timeout count, 5-25, 5-27, 5-31, 5-45
IND command lines
See also Control files
CCL commands in, 54
comments in, 5-5
IND directives in, 5-3
keyboard commands in, 5-3, 5—4
labels in, 5-2
maximum number of characters
allowed in, 5-2
sample, 5-3
IND command lines (example), 5-1
IND control files
See Control files

Index-11



IND directives, 5—23 to 5-67
functions of, 5-3
in control files, 5-3
separating from arguments, 5-2
IND directives (table), 5-11 to 5-13
Indirect command files
accepting keyboard input, 4-17
changing error severity level to abort,
4-195
commands that query in, 4-17
commenting, 4-19
compared to BATCH processing, 4-15
creating, 4-16
within a control file, 5-4
creating an overlay structure in, 4-110
CTRL/Cs in, 4-17
definition of, 4-15
echoing lines in, 4-204
executing, 4-19
from within a control file, 5-10
with SET KMON IND in effect,
4-19, 4-196
executing a MACRO program in, 4-21
file type
default, 4-16
including CTRL/C in, 4-16
INITIALIZE command in, 4-18
keyboard commands in, 4-16
lengthy
partitioning, 4-17
LINK commands in, 4-17
nesting, 4-21
placing responses to prompts in, 4-17
running utility programs in, 4-16
setting severity of error that terminates
execution, 421
specifying an overlay structure in, 4-18
start-up, 4-22
suppressing echoing of lines in, 4-204
suppressing execution printout, 4-21
teminating, 4-21
Indirect Control File Processor
See IND
Indirect control files
See Control files
Indirect files
See Indirect command files
IND operating modes (table), 5-14
IND symbols
deleting definitions of, 5-46
displaying definitions of, 5-38
enabling symbol substitution for, 5-45
logical
See Logical symbols

Index-12

numeric
See Numeric symbols
special, 5-19
logical, 5-20
numeric, 5-20
string, 5-22
special (table), 5-20
string
See String symbols
substituting values for, 5-22
substituting values for (example), 5-22
testing to see if defined, 5-50
testing type of, 5-64
/INFORMATION
COPY option, 4-49
DELETE option, 4-65
PRINT option, 4-167
PROTECT option, 4-172
RENAME option, 4-179
TYPE option, 4-224
UNPROTECT option, 4-230
INITIALIZE keyboard command, 4-132
to 4-137
options, 4-132 to 4-137
options and utility program equivalents
(table), A9
Initializing volumes, 4-132
for use as a backup (BUP) volume,
_ 4-132
on a single-disk system, 4-137
with protected files, 4-132
Input/output
See I/0
/INSERT
LIBRARY option, 4-141
Insert (I) command (EDIT), 6-26
/INSPECT
EDIT option, 4-101
INSTALL keyboard command, 4-138
/INTERCHANGE
COPY option, 449
DELETE option, 4-65
DIRECTORY option, 4-87
INITIALIZE option, 4-134
Interchange diskettes
initializing, 4-134
obtaining directory listings of, 4-87
Interchange format files
deleting, 4-65

Jobs
currently loaded
displaying status of, 4-212
displaying, 4-208



N

Jump (J) command (EDIT), 6-20
arguments, 6-20

/K52
EDIT option, 4-101
K52
calling, 4-101
setting as default editor, 4-194
/KED
EDIT option, 4-101
KED
calling, 4-101
setting as default editor, 4-194
Keyboard commands, 4-24 to 4-232
abbreviating, 4-5
using file specification factoring, 4—4
changing error severity level to abort,
4-195
continuing to the next line, 4-2
deleting characters in, 4-14
error messages for, 4-23
function of, 4-1
in control files, 53, 5—4
suppressing display of, 5-8
suppressing execution of, 5-8
list of (table), A-1
monitor restrictions, 422
options
and utility program equivalents
(table), A—1
mutually exclusive, 4-2
prompts, 4-5
radix of arguments, 422
SET
See SET keyboard command
suppressing control file display of, 5—44
syntax, 4-1
syntax illustration (sample), 4-3
syntax illustration conventions, 4-2
that should not be used in control files,
5-5
unrecognized, 4-23
Keyboard monitor
See KMON
Keyboard monitor commands
See Keyboard commands
Kill (K) command (EDIT), 6-28
arguments, 628
KMON
definition of, 1-3
stack pointer
resetting, 4-183

/L
GT option, 4-129

Labels
in control files, 5-2
defining, 5-23
direct access, 5—24
processing of, 5-24
Jabel: directive (IND), 5~23
Languages
supported by RT-11, 1-9
LD
description of, 1-7
/LDA
LINK option, 4-150
.LDA files, 3-2
generating, 4-150
/LEVEL
SRUN option, 4-218
Librarian
function of, 2-2
/LIBRARY
COMPILE option, 4-37
EXECUTE option, 4-107
LINK option, 4-151
MACRO option, 4-158
Library files
accessing object modules in, 4-140
copying, 4-44
default system
See SYSLIB.OBJ
including during link, 4-151
macro
changing, 4-142
creating, 4-142
definition of, 4-139
object
creating, 4-140, 4-142
definition of, 4-139
deleting global symbols from the
directory of, 4-143
deleting modules from, 4-140
extracting modules from, 4-141
inserting modules into, 4-141
obtaining directory listings of, 4-142
replacing modules in, 4-144
suppressing creation of, 4-143
updating, 4-144
with duplicate module names,
4-141
specifying during MACRO assembly,
4-158
structure of, 4-139
system macro
See SYSMAC.SML
LIBRARY keyboard command, 4-139 to
4-145
options, 4-140 to 4-144

Index—13



options and utility program equivalents
(table), A-9
prompting sequence (table), 4-144
specifying more than one line for,
4--143
Library modules
duplicating in overlay segments, 4-1086,
4-148
/LIMIT
LINK option, 4-151
/LINENUMBERS
COMPILE option, 4-38
DIBOL option, 469
EXECUTE option, 4-108
FORTRAN option, 4-119
Line printer handlers
changing CSR addresses in, 4-197,
4-199
changing vectors in, 4-198, 4-200
Line printers
allowing corrective action while hung,
4-197, 4-199
generating an error when hung, 4-198,
4-199
passing nonprinting control characters
to, 4-197, 4-199
setting characteristics of, 4-196, 4-197,
4-198, 4-199, 4-200
Linker
function of, 22
Linking a program
specifying the lowest address to use,
4-105
LINK keyboard command, 4-146 to
4-154 !
default file types, 4-146
entering on more than one line, 4-152
options, 4-147 to 4-154
options and utility program equivalents
(table), A-10
prompting sequence, 4-147
/LINKLIBRARY
EXECUTE option, 4-108
LINK option, 4-151
Link maps
See Load maps
/LIST
COMPILE option, 4-38
DIBOL option, 4-69
EXECUTE option, 4-108
FORTRAN option, 4-119
LIBRARY option, 4-142
MACRO option, 4-159
List (L) command (EDIT), 6-24
arguments, 6-25

Index-14

.LIST directive (MACRO)
arguments (table), 4-161
specifying with MACRO command,
4-161
Load image file
See .LDA files
LOAD keyboard command, 4-155
Load maps
creating, 4-109, 4-151
global symbols
listing in alphabetical order, 4-147
including global symbol cross-reference
section in, 4-107, 4-150
wide
creating, 4-154
Load modules
initializing unused locations in, 4-149
relocatable code in
specifying highest address for, 4-153
specifying lowest address to use for
relocatable code in, 4-148
Local symbols
in control files, 5-17
LOG
COMPILE option, 4-39
COPY option, 449
DELETE option, 4-65
DIBOL option, 4~70
EXECUTE option, 4-109
PRINT option, 4-168
PROTECT option, 4-173
RENAME option, 4-179
TYPE option, 4-225
UNPROTECT option, 4-231
Logical device names
and device-independent programming,
4-25
assigning, 4-25
to logical disks, 4-163
cancelling, 4-62
displaying assignments of, 4-208
listing, 4-26
syntax of, 4-25
Logical disks
assigning logical device names to,
4-163
assigning to files, 4-163
displaying assignments of, 4208, 4-214
freeing from file assignment, 4-92
verifying and correcting assignments,
4-163, 4-196
write-enabling, 4-164, 4-196
write-locking, 4-164, 4-196
Logical disk subsetting handler
See LD



Logical symbols (IND)
defining, 5-59, 5-62
defining with .ASK directive, 5-25
in control files, 5-17
testing to see if true or false, 5-51
LOWERCASE operating mode (IND),
543

/MACRO
COMPILE option, 4-39
EXECUTE option, 4-109
LIBRARY option, 4-142
Macro (M) command (EDIT), 6-33
arguments (table), 6-33
MACRO assembler
calling, 4-109, 4-157
MACRO keyboard command, 4-157 to
4-162
options, 4-157 to 4-162

options and utility program equivalents

(table), A-11
Macro library files
changing, 4-142
creating, 4-142
definition of, 4-139
identifying in a command line, 4-37,
4-107
MACRO programs
assembling, 4-35, 4-39, 4-157
Magtapes
bootable
how to create, 4-134
copying with /FILES, 4-48
copying with /POSITION, 4-51
obtaining directory listings of, 4-89
setting density and parity for, 4-200,
4-201
MAP
EXECUTE option, 4-109
LINK option, 4-151
<MAPPED>
IND special symbol, 5-20
MATCH
DIFFERENCES option, 4-75
MCR operating mode (IND), 543
Memory
amount on system
displaying, 4-208
depositing values in with D keyboard
command, 4-60
examining with E command, 4-98
Memory available on system
displaying, 4-208

Memory image files

See .SAYV files
Memory layout

displaying, 4-208, 4-212
Memory locations

writing contents to a file, 4-187
Monitor

definition, 1-3
<MONNAM>

IND special symbol, 5-22
MOUNT keyboard command, 4-163 to

4-164
options, 4-164

options and utility program equivalents

(table), A-11
/MULTIVOLUME
COPY option, 4-50

/N
IND option, 5-8
/NAME
FRUN option, 4-125
PRINT option, 4-168
SRUN option, 4-218
/NEWFILES
COPY option, 4-50
DELETE option, 4-65
DIRECTORY option, 4-87
PRINT option, 4-168
PROTECT option, 4-173
RENAME option, 4-180
TYPE option, 4-225
UNPROTECT option, 4-231
Next (N) command (EDIT), 6-18
NLIST directive (MACRO)
arguments (table), 4-161
specifying with MACRO command,
4-162
/NOASCIL
DUMP option, 4-94
/INOBITMAP
LINK option, 4-148
/NOCOMMENTS
DIFFERENCES option, 4-75
/NOEXECUTE
LINK option, 4-149
/NOFLAGPAGE
PRINT option, 4-167
/NOLINENUMBERS
COMPILE option, 4-38
DIBOL option, 4-69
EXECUTE option, 4-108
FORTRAN oeption, 4-119

Index-15



/NOLOG
COPY option, 4-50
PRINT option, 4-168
PROTECT option, 4-173
RENAME option, 4-180
TYPE option, 4-225
UNPROTECT option, 4-231
Nonfile-structured devices
See Devices
/NOOBJECT -
COMPILE option, 440
DIBOL option, 4-71
FORTRAN option, 4-121
LIBRARY option, 4-143
MACRO option, 4-161
/NOPROTECTION
COPY option, 4-52
DIRECTORY option, 489
RENAME option, 4-180
/NOQUERY
COPY option, 4-53
DELETE option, 4-66
FORMAT option, 4-116
INITIALIZE option, 4-134
SQUEEZE option, 4-217
/NOREPLACE
COPY option, 4-53
RENAME option, 4-181
/NORUN
EXECUTE option, 4-111
/NOSHOW
COMPILE option, 440
EXECUTE option, 4-111
MACRO option, 4-162
/NOSPACES
DIFFERENCES option, 4-76
/NOSWAP
COMPILE option, 441
EXECUTE option, 4-111
FORTRAN option, 4-123
/NOTRIM
DIFFERENCES option, 4-79
/NOVECTORS
COMPILE option, 441
EXECUTE option, 4-112
FORTRAN option, 4-123
/NOWARNINGS
COMPILE option, 4-41
DIBOL option, 4-71
EXECUTE option, 4-112
FORTRAN option, 4-123
/NOWRITE
MOUNT option, 4-164

Index-16

Numeric expressions
evaluation of, in control files, 5-18
forming, in control files, 5~18
Numeric symbols (IND)
decrementing, 5-35
defining, 5-59, 5—60
in control files, 5~17
incrementing, 5-53
radix of, 5-17, 5-28
testing, 5-64

/OBJECT
COMPILE option, 4-39
DIBOL option, 4-70
EXECUTE option, 4-109
FORTRAN option, 4-121
LIBRARY option, 4-142
MACRO option, 4-160
Object files, 3-2
creating, 4-109, 4-121
during DIBOL compilation, 4-70
with COMPILE keyboard command,
4-39
MACRO
creating, 4-160
suppressing creation of, 4-161
suppressing creation of, 4-40, 4-121
during DIBOL compilation, 4-71
Object module patch program
See PAT
/OCTAL
DIRECTORY option, 4-87
<OCTAL>
IND special symbol, 5-20
OCTAL operating mode (IND), 5-44
ODT
description of, 1-8
linking with a program, 4-148
/ONDEBUG
COMPILE option, 4-40
DIBOL option, 4-71
EXECUTE option, 4-110
FORTRAN option, 4-122
.ONERR directive (IND), 5-54
On-line debugging technique
See ODT
/ONLY
DUMP option, 4-94
.OPENA directive (IND), 5-55
.OPEN directive (IND), 5-55
.OPENR directive (IND), 5-55
Operating modes (IND), 5-40
default settings, 5-40



S’

disabling, 5-36

enabling, 5-39

global, 5-40

local, 5-40

testing to see if enabled, 5-50
/ORDER

DIRECTORY option, 4-88
/OUTPUT

DIFFERENCES option, 4-76

DIRECTORY option, 4-89

DUMP option, 4-94

EDIT option, 4-102

SQUEEZE option, 4-216
/OWNER

COPY option, 4-51

DIRECTORY option, 4-89
Owner name

specifying for volume, 4-136

P1 through P9

IND local string symbols, 5-8
/PACKED

COPY option, 4-51
PAGE

COMPILE option, 4-40

DIBOL option, 4-71

EXECUTE option, 4-110
PARSE directive (IND), 5-56
PAT

description of, 1-8
Patch programs

See PAT, SIPP, and SLP
/[PATTERN

FORMAT option, 4-114
/PAUSE

FRUN option, 4-125

SRUN option, 4-218
Peripheral devices

specifying

See Physical device names

Peripheral interchange program

See PIP
Permanent devices names

See Physical device names
PF1 key

use of with single-line editor, 4-10
Physical device names

for peripheral devices, 3—-3
Physical device names (table), 3—3
PIP

description of, 1-7
/POSITION

COPY option, 4-51

DELETE option, 4-66

DIRECTORY option, 4-89

Position (P) command (EDIT), 6-24
/PREDELETE
COPY option, 4-52
PREFIX operating mode (IND), 5—44
/PRINTER
DIFFERENCES option, 4-76
DIRECTORY option, 4-89
DUMP option, 4-94
HELP option, 4-130
PRINT option, 4-168
Printing files
and specifying a job name, 4-168
and then deleting, 4166
excluding banner pages when, 4-167
on the line printer, 4-165
with a single-disk system, 4-169
with banner pages, 4-166
PRINT keyboard command, 4-165 to
4-170
options, 4-166 to 4-169
options and utility program equivalents
(table), A-11
specifying on more than one command
line, 4-168
Priority
assigning for a system job, 4-218
Programs
debugging, 4-105
developing, 2-1
developing (figure), 2-3
executing, 4-111
running, 4-220
suppressing execution of, 4-111
Program sections
See P-sects
/PROMPT
EXECUTE option, 4-110
LIBRARY option, 4-143
LINK option, 4-152
PRINT option, 4-168
Protected files
deleting, 4-63
obtaining directory listings of, 4-89
Protecting files from deletion, 4-52,
4-171
on a single-disk system, 4-174
while renaming, 4-180
/PROTECTION
COPY option, 4-52
DIRECTORY option, 4-89
RENAME option, 4-180
Protection status of a file
determining, 4-229
PROTECT keyboard command, 4-171 to
4-174

Index-17



options, 4-172 to 4-174
options and utility program equivalents
(table), A—12

P-sects

"~ changing the size of during link, 4-152
extending at link time, 4-149
specifying a starting address boundary

for, 4-148
.PURGE directive (IND), 5-58

)
IND option, 5-8
/QUERY
COPY option, 4-53
DELETE option, 4-66
FORMAT option, 4-116
INITTALIZE option, 4-134
PRINT option, 4-169
PROTECT option, 4-173
RENAME option, 4-180
SQUEEZE option, 4-217
TYPE option, 4-225
UNPROTECT option, 4-231
Queue
deleting a job from, 4-64
listing the contents of the, 4-213
/QUIET
DIFFERENCES option, 4-76
QUIET operating mode (IND), 5-44

/RAD50

DUMP option, 4-94
<RAD50>

IND special symbol, 5-20
Radix

setting octal default, in control files,

5-44

Random-access devices

See Devices
Read (R) command (EDIT), 6-15
READ directive (IND), 5-58
/RECORD

COMPILE option, 4-40

EXECUTE option, 4-111

FORTRAN option, 4-122
REENTER keyboard command, 4-176

with EDIT, 6-3
REL file, 3-2
Relocatable file

See .REL file
Relocation base

setting

See B keyboard command

/REMOVE

LIBRARY option, 4-143

Index—18

REMOVE keyboard command, 4-177
RENAME keyboard command, 4-178 to \
4-182 J
options, 4-179 to 4-182
options and utility program equivalents
(table), A—12
Renaming files
on a single-disk system, 4-182
/REPLACE
COPY option, 4-53
INITIALIZE option, 4-134
LIBRARY option, 4-144
RENAME option, 4-181
RESET keyboard command, 4-183
Resident monitor
See RMON
/RESTORE
BACKUP option, 4-29 ;
INITIALIZE option, 4-136 J
RESUME keyboard command,
4-184
/RETAIN
COPY option, 4-53
Retry attempts
changing number to be performed,
4-191
RETURN directive (IND), 5-59
/REVERSE
DIRECTORY option, 4-90
Ring buffers
resetting, 4-183
R keyboard command, 4-175
RMON
definition of, 1-3
/ROUND
LINK option, 4-152
RSTS/E format files
deleting, 4-64
obtaining a directory of, 4-86
RT-11 directory structured devices
See Devices
RUBOUT key
See DELETE key
/RUN
EXECUTE option, 4-111
LINK option, 4-152
RUN keyboard command, 4-185
RXO01 drives
write-enabling, 4-193
write-protecting, 4-194
RX02 diskettes
See Double-density diskettes
RX02 drives
write-enabling, 4-194 )
write-protecting, 4-194

S



“ J

Save (S) command (EDIT), 6-31
Save image patch program
See SIPP
SAVE keyboard command, 4-187
SAYV files, 3-2
loading into memory, 4-127
running, 4-152, 4-175, 4-185
Search commands (EDIT), 6-22
/ISEGMENTS
INITTALIZE option, 4-136
Sequential-access devices
See Devices
/SETDATE
COPY option, 4-54
PROTECT option, 4-173
RENAME option, 4-181
UNPROTECT option, 4-231
SETD directive IND), 5-59
SETF directive (IND), 5-62
SET keyboard commands, 4-189 to
4-205
SET TERM, 4-205
SETL directive (IND), 5-59
.SETN directive IND), 5-60
SETO directive (IND), 5-59
SET options in effect
displaying, 4-208
.SETS directive (IND), 5-61
SETT directive (IND), 562
SETTOP programmed request
limiting amount of memory allocated
by, 4-151
<SEVERE>
IND special symbol, 5-21
/SHOW
COMPILE option, 4-40
EXECUTE option, 4-111
FORTRAN option, 4-122
MACRO option, 4-161
SHOW keyboard commands, 4-207 to
4-215

options and utility program equivalents

(table), A-13
/SINCE
COPY option, 4-54
DELETE option, 4-67
DIRECTORY option, 4-90
PRINT option, 4-169
PROTECT option, 4-174
RENAME option, 4-181
TYPE option, 4-225
UNPROTECT option, 4-232
/SINGLEDENSITY
FORMAT option, 4-116

Single-job monitor
See SJ monitor
Single-line editor, 4-9 to 4-15
deleting characters with, 4-13, 4-14
deleting lines with, 4-13
executing a command line edited with,
4-14, 4-15
function keys (table), 4-11
function of, 4-9
GOLD key, 4-10
help key, 4-10
learning to use, 4-201
loading and enabling, 4-201
matching system generation
characteristics for, 4-202
moving cursor with, 4-11
PF1 key, 4-10
redisplaying current line with, 4-15
reproducing last command line with,
4-12
restoring deleted characters with, 4-13
restoring deleted command line, 4-13
switching characters with, 4-14
turning off, 4-10
turning on, 4-10
unloading and disabling, 4-202
/SIPP
DIFFERENCES option, 4-76
SIPP
description of, 1-8
SJ monitor
advantages of, 1-3
features of, 1-3
SL
See Single-line editor

- /[SLOWLY

COPY option, 4-54
LINK option, 4-153
/SLP
DIFFERENCES option, 4-76
SLP
description of, 1-9
/SORT
DIRECTORY option, 4-90
Source files
comparing (example), 4-77
comparing to create SLP input file,
4-76
Source language patch program
See SLP
<SPACE>
IND special symbol, 5-21
/SPACES
DIFFERENCES option, 4-76

Index-19



SQUEEZE keyboard command, 4-216 to
4-217
options, 4-216, 4-217

options and utility program equivalents

(table), A~13
Squeeze operation
on a single-disk system, 4-217
SRUN keyboard command, 4-218
default file type, 4218
options, 4-218, 4-219
options (table), A-13
/ISTACK
LINK option, 4-153
Stack pointer
modifying the address of, 4153
Stack size
changing, 4-153
/START
COPY option, 454
CREATE option, 4-59
DIFFERENCES option, 4-77
DIRECTORY option, 4-90
DUMP option, 4-94
STARTF.COM, 3-2
Starting RT-11
See Bootstrapping the system
START keyboard command, 4-220
STARTS.COM, 3-2
Start-up indirect command files,
3-2
See Indirect command files
Start-up messages, 3-1
STARTX.COM, 3-2
/STATISTICS
COMPILE option, 440
EXECUTE option, 4-111
FORTRAN option, 4-122
STOP directive (IND), 5—63
tring symbols (IND)
breaking into substrings, 5-19
concatenating, 5-19
defining, 5-19, 5-61
testing for alphanumeric or RAD50,
5-64
<STRLEN>
IND special symbol, 5-21
Subroutines
calling within a control file, 5-48
returning from, in control files, 559
SUBSTITUTION operating mode (IND),
545
<SUCCES>
IND special symbol, 5-21
SUFFIX mode (IND), 5-45

Index—20

/ISUMMARY
DIRECTORY option, 4-90
SUSPEND keyboard command, 4-221
/SWAP
COMPILE option, 4-41
EXECUTE option, 4-111
FORTRAN option, 4-122
Swapping program into memory, 4-196
preventing, 4-196
<SYDISK>
IND special symbol, 5-22
Symbol definitions file
creating, 4-153
Symbols
in control files, 5-16, 5-17
Symbol substitution (IND)
enabling, 5-45
/SYMBOLTABLE
LINK option, 4-153
Symbol table overflow
preventing, 4-153
Symbol tables IND)
deleting definitions from, 546
displaying contents of, 5-37
<SYMTYP>
IND special symbol, 5-21
SYSCOM area
clearing locations in, 4-183
SYS files
copying, 4-43, 4-55
deleting, 4-63, 467
protecting from deletion, 4-174
removing protection from, 4-232
renaming, 4-178, 4-181
SYSLIB.OBJ, 4-139
SYSMAC.SML, 4-139
ISYSTEM
COPY option, 4-55
DELETE option, 4-67
PROTECT option, 4-174
RENAME option, 4-181
UNPROTECT option, 4-232
<SYSTEM>
IND special symbol, 5-21
System communication area
See SYSCOM area
System device
squeezing, 4-216
System files
See .SYS files
System generation options
displaying those in effect, 4-208
System jobs
assigning a logical job name to, 4-218



assigning priority levels for, 4-218
communicating with
See CTRL/X
debugging, 4-218
running, 4-218
suspending, 4221
System resources
displaying, 4-207
<SYUNIT>
IND special symbol, 5-22

T
GT option, 4-129
IND option, 5-8
TAB key
with EDIT, 6-3
/TABLES
COMPILE option, 441
DIBOL option, 4-71
EXECUTE option, 4-111
TECO
EDIT option, 4-102
TECO
calling, 4-102
setting as default editor, 4-194
[TERMINAL
DIFFERENCES option, 4-77
DIRECTORY option, 4-91
DUMP option, 4-94
FRUN option, 4-126
HELP option, 4-130
SRUN option, 4-219
Terminal output
resuming
See CTRL/Q
suppressing
See CTRL/O
suspending
See CTRL/S
Terminals
displaying assignments of, 4-208
displaying files on, 4-223
displaying status of, 4-214
Terminating program execution
See CTRL/C
.TESTDEVICE directive (IND), 5-65
TEST directive (IND), 5-64
.TESTFILE directive (IND), 5-67
Text editors
See also EDIT, KED, KEX, K52, and
TECO
calling, 4-99
for hard copy terminals, 1-6
for video terminals, 1-6

function of, 4-99

RT-11,1-6

setting default, 4-99

types of, 4-99
Time

displaying, 4-222

setting, 4-222
<TIME>

IND special symbol, 5-22
TIME keyboard command, 4-222
Timeout count

IND, 5-25, 5-27, 5-31, 5-45
TIMEOUT operating mode (IND), 5—45
<TIMOUT>

IND special symbol, 5-20
/TOP

LINK option, 4-153
/TOPS

COPY option, 4-55

DIRECTORY option, 4-91
TRACE operating mode (IND), 546
/TRANSFER

LINK option, 4-153
Transfer address

specifying, 4-153
/TRIM ,

DIFFERENCES option, 4-79
<TRUE>

IND special symbol, 5-20
Type-ahead, 3-10
TYPE keyboard command, 4-223 to

4-226
options, 4-224 to 4-226
options and utility program equivalents
(table), A-13

/UNITS
COMPILE option, 4-41
EXECUTE option, 4-112
FORTRAN option, 4-123
UNLOAD keyboard command, 4-227
Unprotected files
obtaining directory listings of, 4-89
Unprotecting files, 4-52
while renaming, 4-180
UNPROTECT keyboard command,
4-229 to 4-232
options, 4-230 to 4-232
options and utility program equivalents
(table), A-14
Unsave (U) command (EDIT), 6-32
arguments (table), 6-32
/UPDATE
LIBRARY option, 4-144

Index-21



User program memory area
purging, 4-183
User Service Routine
See USR
USR
definition of, 1-3
enabling swapping of, 4-205
preventing from swapping over
FORTRAN programs, 4-123
preventing swapping of, 4-205
swapping over FORTRAN programs,
4-111, 4-122
Utility programs
list of, 1-6

/VECTORS
COMPILE option, 441
EXECUTE option, 4-112
FORTRAN option, 4-123
Vectors
changing in device handlers, 4-192,
4-193, 4-198, 4-200
Verification
of volumes, 4-113
/VERIFY
COPY option, 4-55
FORMAT option, 4-116
Verify (V) command (EDIT), 6-26
.VOL directive (IND), 5-67
/VNOLUMEID
DIRECTORY option, 4-91
INITTALIZE option, 4-136
Volume ID
testing from within a control file,
5-67
writing, 4-136
Volumes
binary comparison of, 4-75
copying
See COPY keyboard command
using SQUEEZE command,
4-216
directory of
clearing, 4-132
initialized
restoring, 4-136
listing unused areas on, 4-86
verifying, 4-113

Index—22

/WAIT
BOOT option, 4-33
COPY option, 4-55
DELETE option, 467
DIRECTORY option, 4-91
FORMAT option, 4-117
INITTALIZE option, 4-137
PRINT option, 4-169
PROTECT option, 4-174
RENAME option, 4-182
SQUEEZE option, 4-217
TYPE option, 4-226
UNPROTECT option, 4-232
<WARNIN>
IND special symbol, 5-22
/WARNINGS
COMPILE option, 4-41
DIBOL option, 4-71
EXECUTE option, 4-112
FORTRAN option, 4-123
/WIDE
EXECUTE option, 4-112
LINK option, 4-154
Wildcards
commands that support (table), 47
default usage of, 4-8
embedded, 47
enabling use of implicit, 4-205
suppressing use of implicit, 4-205
using, 4-6
with DIFFERENCES keyboard
command, 4-8
/WORDS
DUMP option, 4-95
/WRITE
MOUNT option, 4-164
Write (W) command (EDIT), 6-16
arguments (table), 6-17
Write-enabling RX01 drives, 4-193
Write-enabling RX02 drives, 4-194
Write-protecting RX01 drives, 4-194
Write-protecting RX02 drives, 4-194

/XM
LINK option, 4-154
XM monitor
features of, 14
minimum requirements, 1-5



e

HOW TO ORDER
ADDITIONAL DOCUMENTATION

From

Call

Write

Chicago

312-640-5612
8:15 aM. to 5:00 PM. CT

Digital Equipment Corporation
Accessories & Supplies Center
1050 East Remington Road
Schaumburg, IL 60195

San Francisco

Alaska, Hawaii

or

408-734—4915
8:15 AM. to 5:00 PM. PT

603-884—-6660
8:30 AM. to 6:00 PM. ET

408-734-4915
8:15 AM. to 5:00 M. PT

Digital Equipment Corporation
Accessories & Supplies Center
632 Caribbean Drive
Sunnyvale, CA 94086

New Hampshire

Rest of U.S.A,,
Puerto Rico*

603-884—6660
8:30 AM. t0 6:00 PM. ET

1-800-258-1710
8:30 AM. to 6:00 P.M. ET

Digital Equipment Corporation
Accessories & Supplies Center
P.O. Box CS2008

Nashua, NH 03061

*Prepaid orders from Puerto Rico must be placed with the local DIGITAL subsidiary (call 809-754~7575)

Canada

British Columbia 1-800-267-6146 Digital Equipment of Canada Ltd

8:00 AM. to 5:00 M. ET 940 Belfast Road
Ottawa, Ontario K1G 4C2

Ottawa—Hull 613-234-7726 Attn: A&SG Business Manager
8:00 AM. to 5:00 PM. ET

Elsewhere 112-800-267-6146
8:00 Am. to 5:00 P.M. ET

Elsewhere Digital Equipment Corporation

A&SG Business Manager*

*c/o DIGITAL's local subsidiary or approved distributor







. J
DN

N’

READER’S COMMENTS

RT-11 System
User’s Guide
AA-5279C-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

—  Assembly language programmer

— Higher-level language programmer

— Occasional programmer (experienced)

— User with little programming experience
—  Student programmer
— Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code

or Country



~— — Do Not Tear — Fold Here and Tape

dlilgliltlall

_ Do Not Tear — Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, MLO5-5/E45
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET

MAYNARD, MA 01754

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line



	AA-5279C-TC RT-11 System User's Guide
	Contents
	Preface
	Part I RT-11 Overview
	Chapter 1 System Components
	1.1 Hardware
	1.2 Software
	1.2.1 Monitors
	1.2.1.1 Single-Job (SJ) Monitor
	1.2.1.2 Foreground/Background (FB) Monitor
	1.2.1.3 Extended Memory (XM) Monitor

	1.2.2 Device Handlers
	1.2.3 System Utility Programs
	1.2.3.1 Editing
	1.2.3.2 General Purpose
	1.2.3.3 System Jobs
	1.2.3.4 Debugging and Patching
	1.2.3.5 BATCH

	1.2.4 Language Processors

	1.3 RT-11 Software Documentation
	1.4 System Services
	1.4.1 Keyboard Monitor Commands
	1.4.2 System Programs
	1.4.3 The Relationship between Complex Commands and System Programs
	1.4.4 The System Macro Library and Programmed Requests
	1.4.5 SYSLIB FORTRAN-Callable Subprograms


	Chapter 2 Program Development
	2.1 Using an Editor (EDIT, KED, KEX, or K52)
	2.2 Using the Assembler (MACRO)
	2.3 Using the Linker (LINK)
	2.4 Using the Debugger (ODT or VDT)
	2.5 Using the Librarian (LIBR)
	2.6 Using a High-Level Language (FORTRAN, BASIC, or DIBOL)


	Part II System Communication
	Chapter 3 System Conventions
	3.1 Start-Up Procedure
	3.2 Data Formats
	3.3 Device Names
	3.4 File Names and File Types
	3.5 Device Structures
	3.6 Special Function Keys
	3.7 Foreground/Background Terminal I/O
	3.8 Type-Ahead Feature

	Chapter 4 Keyboard Commands
	4.1 Command Syntax
	4.1.1 Factoring File Specifications
	4.1.2 File Type Specification
	4.1.3 Abbreviating Keyboard Commands
	4.1.4 Keyboard Prompts

	4.2 Wildcards
	4.3 Editing Command Lines and Terminal Input
	4.3.1 The GOLD Key (PF1)
	4.3.2 The Help Key (PF2)
	4.3.3 Moving the Cursor
	4.3.4 Reproduce Last Command Executed
	4.3.5 Delete Line from Cursor to End of Line
	4.3.6 Restore Last Line Deleted
	4.3.7 Delete One Character to Left of Cursor
	4.3.8 Switch Positions of Two Characters
	4.3.9 Delete All Characters to Left of Cursor
	4.3.10 Truncate and Execute Command Line
	4.3.11 Execute Entire Command Line
	4.3.12 Redisplay Current Line

	4.4 Indirect Files
	4.4.1 Creating Indirect Files
	4.4.2 Executing Indirect Files
	4.4.3 Start-Up Indirect Files

	4.5 Keyboard Monitor Commands
	ABORT
	ASSIGN
	B (BASE)
	BACKUP
	BASIC
	BOOT
	CLOSE
	COMPILE
	COPY
	CREATE
	D (DEPOSIT)
	DATE
	DEASSIGN
	DELETE
	DIBOL
	DIFFERENCES
	DIRECTORY
	DISMOUNT
	DUMP
	E (EXAMINE)
	EDIT
	EXECUTE
	FORMAT
	FORTRAN
	FRUN
	GET
	GT
	HELP
	INITIALIZE
	INSTALL
	LIBRARY
	LINK
	LOAD
	MACRO
	MOUNT
	PRINT
	PROTECT
	R
	REENTER
	REMOVE
	RENAME
	RESET
	RESUME
	RUN
	SAVE
	SET
	SHOW
	SQUEEZE
	SRUN
	START
	SUSPEND
	TIME
	TYPE
	UNLOAD
	UNPROTECT

	4.6 Concise Command Language

	Chapter 5 Indirect Control File Processor (IND)
	5.1 Creating an Indirect Control File
	5.1.1 Labels
	5.1.2 IND Directives and Keyboard Commands
	5.1.2.1 IND Directives
	5.1.2.2 Keyboard Commands

	5.1.3 Comments

	5.2 Executing Indirect Control Files
	5.2.1 IND Options
	5.2.1.1 Delete Control File Option (/D)
	5.2.1.2 Suppress Keyboard Commands Option (/N)
	5.2.1.3 Suppress Console Display Option (/Q)
	5.2.1.4 Command Tracing Option (/T)

	5.2.2 Passing Parameters
	5.2.3 Nested Indirect Control Files
	5.2.4 Executing Indirect Command Files from Control Files

	5.3 Directive Summary
	5.4 Symbols
	5.4.1 Local and Global Symbols
	5.4.2 Logical Symbols
	5.4.3 Numeric Symbols
	5.4.3.1 Defining the Radix of a Numeric Symbol
	5.4.3.2 Numeric Expressions

	5.4.4 String Symbols
	5.4.5 Special Symbols
	5.4.6 Symbol Value Substitution

	5.5 IND Directives
	5.5.1 Define a Label (.label:)
	5.5.1.1 Label Processing
	5.5.1.2 Direct Access Labels

	5.5.2 Define Logical End of File (/)
	5.5.3 .ASK Directive
	5.5.3.1 Syntax
	5.5.3.2 Question Display
	5.5.3.3 Responses

	5.5.4 .ASKN Directive
	5.5.4.1 Syntax
	5.5.4.2 Determining the Radix
	5.5.4.3 Question Display
	5.5.4.4 Responses

	5.5.5 .ASKS Directive
	5.5.5.1 Syntax
	5.5.5.2 Determining the Radix of Range and Timeout Values 
	5.5.5.3 Question Display
	5.5.5.4 Responses

	5.5.6 Begin Block (.BEGIN)
	5.5.7 Chain to Another File (.CHAIN)
	5.5.8 Close File (.CLOSE)
	5.5.9 Send Data to File (.DATA)
	5.5.10 Decrement Numeric Symbol (.DEC)
	5.5.11 Delay Execution (.DELAY)
	5.5.12 Disable Option (.DISABLE)
	5.5.13 Display Symbol Table (.DUMP)
	5.5.14 Enable Option (.ENABLE)
	5.5.15 End Block (.END)
	5.5.16 Delete Symbols (.ERASE)
	5.5.17 Exit Current Control File (.EXIT)
	5.5.18 Call a Subroutine (.GOSUB)
	5.5.19 Branch to a Label (.GOTO)
	5.5.20 Logical Tests
	5.5.20.1 Test If Symbol Meets Specified Condition (.IF)
	5.5.20.2 Test If Symbol is Defined or Not Defined (.IFDF/.IFNDF)
	5.5.20.3 Test If Operating Mode is Enabled or Disabled (.IFENABLED/.IFDISABLED)
	5.5.20.4 Test If Device Is Loaded (.IFLOA/.IFNLOA)
	5.5.20.5 Test If Symbol is True or False (.IFT/.IFF)
	5.5.20.6 Compound Tests

	5.5.21 Increment Numeric Symbol (.INC)
	5.5.22 Branch on Error (.ONERR)
	5.5.23 Opening Data Files
	5.5.23.1 Open File (.OPEN)
	5.5.23.2 Open File for Append (.OPENA)
	5.5.23.3 Open File for Read (.OPENR)

	5.5.24 Parse a String (.PARSE)
	5.5.25 Purge File (.PURGE)
	5.5.26 Read a Record (.READ)
	5.5.27 Return from a Subroutine (.RETURN)
	5.5.28 Set Numeric Symbol to Decimal or Octal (.SETD/.SETO)
	5.5.29 Set Symbol to Logical Value (.SETL)
	5.5.30 Set Symbol to Numeric Value (.SETN)
	5.5.31 Set Symbol to String Value (.SETS)
	5.5.32 Set Symbol to True or False (.SETT/.SETF)
	5.5.32.1 .SETT Directive
	5.5.32.2 .SETF Directive

	5.5.33 Terminating Processing (.STOP)
	5.5.34 Test a Symbol (.TEST)
	5.5.35 Test for Installed Device (.TESTDEVICE)
	5.5.36 Test for File (.TESTFILE)
	5.5.37 Obtain Volume Identification (.VOL)



	Part III Text Editing
	Chapter 6 Text Editor (EDIT)
	6.1 Calling EDIT
	6.2 Modes of Operation
	6.3 Special Key Commands
	6.4 Command Structure
	6.4.1 Arguments
	6.4.2 Command Strings
	6.4.3 Current Location Pointer
	6.4.4 Character- and Line-Oriented Command Properties
	6.4.4.1 Character-Oriented Commands
	6.4.4.2 Line-Oriented Commands

	6.4.5 Command Repetition

	6.5 Memory Usage
	6.6 Editing Commands
	6.6.1 File Open and Close Commands
	6.6.1.1 Edit Read
	6.6.1.2 Edit Write
	6.6.1.3 Edit Backup
	6.6.1.4 End File

	6.6.2 File Input/Output Commands
	6.6.2.1 Read
	6.6.2.2 Write
	6.6.2.3 Next
	6.6.2.4 Exit

	6.6.3 Pointer Relocation Commands
	6.6.3.1 Beginning
	6.6.3.2 Jump
	6.6.3.3 Advance

	6.6.4 Search Commands
	6.6.4.1 Get
	6.6.4.2 Find
	6.6.4.3 Position

	6.6.5 Text Listing Commands
	6.6.5.1 List
	6.6.5.2 Verify

	6.6.6 Text Modification Commands
	6.6.6.1 Insert
	6.6.6.2 Delete
	6.6.6.3 Kill
	6.6.6.4 Change
	6.6.6.5 Exchange

	6.6.7 Utility Commands
	6.6.7.1 Save
	6.6.7.2 Unsave
	6.6.7.3 Macro
	6.6.7.4 Execute Macro
	6.6.7.5 Edit Version
	6.6.7.6 Uppercae and Lowercase Commands


	6.7 Display Editor
	6.7.1 Using the Display Editor
	6.7.2 Immediate Mode

	6.8 EDIT Example
	6.9 EDIT Error Conditions


	Appendix A Monitor Command Abbreviations and System Utility Program Equivalents
	INDEX


