BASIC-11
Language Reference Manual

Order No. DEC-11-LIBBB-A-D

digital equipment corporation - maynard, massachusetts

First Printing, September 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its softwaré on equipment that is not supplied by
DIGITAL.

Copyright () 1976, by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem~-20 TYPESET-11

1/78-14

CONTENTS

Page
PREFACE vii
DOCUMENTATION CONVENTIONS ix
CHAPTER 1 PROGRAMMING IN BASIC 1-1
1.1 INTRODUCTION 1-1
1.2 STRUCTURE OF A BASIC PROGRAM 1-1
1.3 BASIC CHARACTER SET 1-2
1.4 LINE FORMAT : 1-3
1.5 STATEMENTS 1-4
1.5.1 Single and Multi-Statement Lines 1-5
1.6 DOCUMENTING PROCEDURES (REM STATEMENT) 1-6
1.7 ENTERING BASIC PROGRAMS 1-7
1.8 USING BASIC WITHOUT WRITING A PROGRAM 1-9
(IMMEDIATE MODE)
CHAPTER 2 ELEMENTS OF BASIC 2-1
2.1 TERMINOLOGY 2-1
2.2 CONSTANTS 2-1
2.2.1 Numeric Constants 2-1
2.2.2 Integer Constants 2-3
2,2.3 String Constants 2-3
2.3 VARIABLES 2-4
2.3.1 Numeric Variables 2-5
2.3.2 Integer Variables 2-5
2.3.3 String Variables 2-6
2.3.4 Subscripted Variables 2-7
2.4 FORMING EXPRESSIONS 2-8
2.4.1 Arithmetic Expressions 2-8
2.4.2 String Expressions . 2-10
2.4.3 Relational Expressions 2-11
2.4.4 Functions 2-12
2.5 ASSIGNING VALUES TO VARIABLES (LET STATEMENT) 2-13
2.6 ARRAYS 2-14
2.6.1 Dimensioning Arrays (DIM Statement) 2-16
CHAPTER 3 INPUT AND OUTPUT 3-1
3.1 SUPPLYING DATA 3-1
3.1.1 INPUT Statement 3-1
3.1.2 LINPUT Statement 3-4
3.1.3 READ, DATA, and RESTORE Statements 3-5
3.2 CHECKING OUTPUT (PRINT STATEMENT) 3-8
3.2.1 Printing Zones - The Comma and the Semicolon 3-9
3.2.2 Output Format for Numbers and Strings 3-12
3.2.3 Printing with the TAB Function 3-13
CHAPTER 4 CONTROL STATEMENTS 4-1
4.1 SHIFTING CONTROL OF THE PROGRAM 4-1
4.1.1 Unconditional Transfer (GO TO Statement) 4-1

iii

CHAPTER

CHAPTER

CONTENTS (Cont.)

4.1.2 Multiple Branching (ON GO TO and ON THEN
Statements)

4.1.3 Conditional Transfer (IF THEN and IF GO TO
Statements

4.2 EXECUTION OF LOOPS

4.2.1 FOR and NEXT Statements

4.2.2 Nested Loops

4.3 STOPPING PROGRAM EXECUTION (END AND STOP

STATEMENTS)

4.4 SUBROUTINES

4.4.1 GOSUB and RETURN Statements

4.4.2 ON GOSUB Statement

5 FUNCTIONS

5.1 TYPES OF FUNCTIONS AVAILABLE

5.2 NUMERIC FUNCTIONS

5.2.1 Trigonometric Functions (SIN, COS, ATN, and
PI Functions)

5.2.2 Algebraic Functions

5.2.2.1 Square Root Function (SQR Function)

5.2.2.2 Exponential and Logarithm Functions (EXP,
LOG, and LOG10 Functions)

5.2.2.3 integer Function (INT Function)

5.2.2.4 Absolute Value Function (ABS Function)

5.2.2.5 Sign Function (SGN Function)

5.2.3 Random Numbers (RND Function and RANDOMIZE
Statement)

5.3 STRING FUNCTIONS

5.3.1 String Manipulation Functions

5.3.1.1 Finding the Length of a String (LEN
Function)

5.3.1.2 Trimming Trailing Blanks Off a String
(TRMS$ Function)

5.3.1.3 Finding the Position of a Substring (POS
Function)

5.3.1.4 Copying Segments from a String (SEGS$
Function)

5.3.2 Conversion Functions

5.3.2.1 Character and ASCII Code Conversions (ASC
and CHR$ Functions)

5.3.2.2 Numbers and Their String Representation
Conversions (VAL and STR$ Function)

5.3.2.3 Binary and Octal to Decimal Conversions
(BIN and OCT Functions)

5.4 USER~-DEFINED FUNCTIONS (DEF STATEMENT AND FN
FUNCTION)

5.5 DATE AND TIME FUNCTIONS (DATS$ AND CLKS$
FUNCTIONS)

6 WORKING WITH DATA FILES

6.1 INTRODUCTION TO DATA FILES

6.2 FILE CONTROL STATEMENTS

6.2.1 Opening a File (OPEN Statement)

6.2.2 Closing a File (CLOSE Statement)

6.3 USING SEQUENTIAL FILES

6.3.1 Reading Data from a Sequential File (INPUT #
and LINPUT # Statements)

6.3.2 Storing Data in a Sequential File
(PRINT # Statement)

6.3.3 Checking for the End of Input File
(IF END # Statement)

6.3.4 Restoring a File to the Beginning

iv

Page
4-3
4-3
4-6
4-7
4-11
4-12

4-13
4-14
4-17

i
HFHEMH VOO &bk NHPE P

[S SV

wn (S, 8, N¥] UIU'IU'I(:'I (G NF 0] aun O

W
1
I
w W

5-15

5-16
5-17

5-18
5-20
5-21

(S
|
N
[+

] 1
Ul B WNhHPE =

~

)
@

CHAPTER

CHAPTER

CHAPTER

NNN ~ [0«)} Ao
. . L] (]

WD NN N DN

NNSNNNS N ~

e o+ s o & o

NNNNNN
¢« o o s o e

[SE NS, I Y Bwwwww

NNNNN
»

CONTENTS (Cont.)

(RESTORE # Statement)

USING VIRTUAL ARRAY FILES
Dimensioning Virtual Arrays (DIM #
Statement)

RENAMING A FILE (NAME STATEMENT)
DELETING A FILE (KILL STATEMENT)

FORMATTED OUTPUT - THE PRINT USING STATEMENT

INTRODUCTION TO PRINT USING
PRINTING NUMBERS WITH PRINT USING
Specifying the Number of Digits
Specifying the Location of the Decimal
Point
Printing a Number That is Larger Than the
Field
Printing Numbers with Special Symbols
Printing Numbers with a Trailing Minus
Sign
Printing Numbers with Asterisk Fill
Printing Numbers with Floating Dollar Signs
Printing Numbers with Commas
Printing Numbers in E Format
Fields Which Exceed BASIC's Accuracy
PRINTING STRINGS WITH THE PRINT USING
STATEMENT
1-Character String Fields
Printing Strings in Left-Justified Format
Printing Strings in Right-Justified Format
Printing Strings in Centered Fields
Printing Strings in Extended Fields
SUMMARY OF THE PRINT USING STATEMENT
FORMAT
Format of Numeric Fields
Format of String Fields
PRINT USING STATEMENT ERROR CONDITIONS
Fatal Error Conditions
Nonfatal Error Conditions

PROGRAM SEGMENTATION

SEGMENTING PROGRAMS WITH THE CHAIN STATEMENT
Preserving Variables Through CHAIN
(COMMON Statement)
MERGING PROGRAM SEGMENTS (OVERLAY STATEMENT)
CALLING A ROUTINE WRITTEN IN ANOTHER LANGUAGE
(CALL STATEMENT)

BASIC-11 COMMANDS

KEY COMMANDS

LISTING YOUR PROGRAM (LIST AND LISTNH

COMMANDS)

EXECUTING A PROGRAM (RUN AND RUNNH

COMMANDS)

DELETING PROGRAM LINES (DEL COMMAND)

ERASING THE PROGRAM (NEW, SCR, AND CLEAR
COMMANDS)

PROGRAMS IN FILES

Saving the Program in a File (SAVE and REPLACE

Commands)

Restoring a Program from a File (OLD and
APPEND Commands)

Running a Program from a File

oo g
1 11 o
wo g

[5)

= O

1 |
> wwN = [l = =

~ ~ NN ~ oy &
|

i UL
[ocleeJaolEN Neplie)) (58,]

P
HEHEEWYVWYVY
o

NNNNN NNNNN
I

~
!

[

w

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

TABLE

e o & o s o

o LW WOWWwWw W
[l ol < >IN B <))
|l =4

o

O WDww
w N -

o CC o«
|
w N Lad

CONTENTS (Cont.)

Page
Deleting a Program File (UNSAVE Command) 9-8
CHANGING THE PROGRAM NAME (RENAME COMMAND) 9-8
EDITING A LINE (SUB COMMAND) 9-9
RESEQUENCING A PROGRAM (RESEQ COMMAND) 9-10
SAVING A COMPILED PROGRAM (COMPILE COMMAND) 9-13
CHECKING THE LENGTH OF A PROGRAM 9-13
(LENGTH COMMAND)
ERROR MESSAGES A-1

SUMMARY OF BASIC-11 STATEMENTS,
COMMANDS

SUMMARY of BASIC-11 STATEMENTS
SUMMARY of BASIC-11 FUNCTIONS
SUMMARY of BASIC-11 COMMANDS

ASCII CHARACTER SET

FIGURES

Segmenting a Program

with the CHAIN Statement
CHAIN with COMMON

Segmenting a Program with the
OVERLAY Statement

TABLES

Number Notations

Arithmetic Operators

Arithmetic Operator

Precedence

Arithmetic Relational Operators
String Relational Operators
Format Characters for '
Numeric Fields

Format Characters for

String Fields

BASIC-11 Key Commands
Abbreviated Error Messages
BASIC-11 Error Messages

Error Conditions in Functions
Summary of Statements

Summary of Arithmetic Functions
Summary of String Functions
Summary of Commands

ASCII Character Set

vi

FUNCTIONS, AND B-1

Index-1

1
|38

o0 o]
[}
~

PREFACE

This manual describes the features of the BASIC-11l language. This
manual assumes you are familiar with the standard Dartmouth BASIC
language and have a knowledge of programming concepts. If you are
totally wunfamiliar with BASIC, you should read an introduction to
BASIC before reading this manual.
This manual describes:

@ Structure of BASIC-11 programs

e Elements of BASIC-11

® BASIC-11 statements

e BASIC-11 functions

® BASIC-11 commands

® BASIC-11 error messages
This manual describes the features common to all versions of BASIC-11,

but it does not document system-dependent features and procedures.
For this information, see your system's BASIC-11 user's guide.

vii

DOCUMENTATION CONVENTIONS

These are the documentation conventions which are used throughout this
manual.

The following symbols have special meaning.

Symbol Meaning
While pressing the CTRL key, type the letter indicated
after the slash
Type the RETURN key
Rusout Type the RUBOUT key

In addition, this manual uses certain conventions when describing the
format of statements, functions, and commands.

These are:

Convention Meaning

H jﬂ The enclosed elements are optional. For example:

H%Eéﬂ variable=expression

‘ A choice of one element among two or more
possibilities, for example:

THEN line number
GO TO line number

THEN statement
IF relational expression

.o Preceding element can be repeated as indicated.
For example:

CLOSE #exprl,#expr2,...

Items in Type these elements exactly as they appear in the
capital format, for example:
letters and
special LET
symbols RUN
#

Items in capital letters are called keywords.

Items in Replace these elements according to the
lower case description provided in text. See below for list
letters - of commonly used lower case items.

This list describes some lower case items commonly used 1in format
descriptions. The general meaning of each item is given. Unless a
specific format description places restrictions on an item, its
general meaning applies.

ix

DOCUMENTATION CONVENTIONS (Cont.)

Lower Abbreviation Meaning
Case Item
expression expr Any valid BASIC~11
expression. It 1is always a
numeric expression (see
Section 2.4.1) unless the
description specifically

states that it can be a
numeric or string expression
(see Section 2.4.2). For
example: (5*SIN(X))"Y

file specification - A file specification in the
format described in your
BASIC-11l user's guide.

integer int Any positive integer number
constant or any positive
numeric constant that could
be an integer 1if a percent
sign was put after it. For
example: 5%, 3%, 2, 7

line number - Any line number as described
in Section 1.4, For
example: 10, 100, 32767

string - Any string expression (see
Section 2.4.2). - For
example: '"ABC",
CS+SEGS (AS$,3,4)

variable var A floating point, integer or
string variable (see Section
2.3)

If there is more than one lower case word in a format, the words are
numbered 1, 2, 3, etc.. For example:

CLOSE #exprl,#expr2,#expr3,...

Throughout this manual, the term BASIC means BASIC-11 or any BASIC-11
system.

To differentiate between what BASIC prints and what you type, the user
type-in is printed in red ink. For example:

Feeinlit

WHAT NUMBERST $.10
THE S8UM I8 13

REALDY

All user type-in is terminated by the key unless the text
indicates a different terminator.

CHAPTER 1

PROGRAMMING IN BASIC

1.1 INTRODUCTION

BASIC (Beginner's All-purpose Symbolic Instruction Code) is a computer
language developed at Dartmouth College under the direction of
Professors J. G. Kemeny and Thomas E. Kurtz. It is one of several
compiler languages used to translate symbolic language programs into a
form that a computer can execute. Because the BASIC language is
composed of easily understood statements and commands, it is one of
the simplest programming languages to learn.

BASIC provides an interactive human/machine relationship by allowing
you to communicate directly with its processor. It is a
conversational programming language which uses simple English-1like
statements and familiar math notations to perform an operation.

BASIC-11, a BASIC language available on PDP-11 systems, is an

outgrowth of Dartmouth BASIC. It encompasses both the elementary
statements used to write simple programs and many new and advanced
features. These new features, not found in standard Dartmouth BASIC,

allow you to write and execute more complex and efficient programs.

1.2 STRUCTURE OF A BASIC PROGRAM

A BASIC program consists of a set of statements using certain language
elements and syntax described in the following chapters. Expressions,
line numbers, and statements are joined to solve a particular problem,
with each line containing instructions to BASIC.

A BASIC program can be one line or several 1lines long. This 1is a
complete program: ’

10 FRINT *THIS IS A 1-LINE PROGRAM.®

Each line begins with a number that identifies the line as a statement
and indicates the order of statement execution. Each statement starts
with a word specifying the type of operation to be performed.

Examine the following program. What is the result of adding the value
of the variable B to the value of the variable C?

10 FOR I=1 TO 3

20 INPUT BsC

30 LET A=R+C

40 PRINT "R+C= "5A
50 NEXT [

&0 END

PROGRAMMING IN BASIC
Look at the structure of this program. There are 1line numbers,
calculations, instructions, and a statement to stop the program.

In lines 10 and 50, you establish a loop through which the program
runs five times and then stops.

In line 20, the program requests input from you. You supply the
values of the variables B and C during program execution.

JAED IRV TERH B N - S
In line 30, you place the result of the addition in variable A.
ERTEN B B D A5 N

Without line 40, your program would run but you would not see the
results.

Sa PEITOTRET v an

Line 60 ends your program. The END statement is optional.

S TR

Shifting and transferring control, looping and supplying data are all
part of a BASIC program.

1.3 BASIC CHARACTER SET
If you look closely at a BASIC program, such as the one previously
shown, you will notice that it consists of letters, numbers, and
symbols arranged in a certain syntax. These characters can be
considered the alphabet of the BASIC language.
BASIC uses the full ASCII (American Standard Code for Information
Interchange) character set for its alphabet (see the ASCII Table in
Appendix C). This set consists of:

1. Upper-case letters A through Z

2. Lower-case letters a through z

3. Numbers 0 through 9

4. Special characters

5. Nonprinting characters
This character set enables you to include any ASCII character as part
of a program. BASIC translates what you type. Some characters are
processed and some are ignored.

BASIC translates characters in the following manner:

1. Letters a through z - BASIC translates all lower-case ASCII
characters to upper-case characters.

PROGRAMMING IN BASIC
2. Non-printing (i.e., control characters) and null characters
(i.e., space, tab) - BASIC ignores them.

3. All other characters - BASIC accepts these characters
unchanged.

String constants are a different matter (as described in Section
2.2.3). Everything you type into a string constant is interpreted
literally by BASIC. Consequently, in a string constant:

1. All lower-case alphabetics (a,b,c) remain lower-case.

2. All non~-printing and null characters are accepted, including
spaces and tabs.

BASIC also accepts all characters in a REM statement (see Section
1.6).

System editing characters affect terminal output format only.
Therefore, you need not be concerned, at this point, with the way

BASIC handles them. (System editing characters, such as CTRL/U are
described in Section 9.1.)

1.4 LINE FORMAT

The format of a line in a BASIC program is as follows:

line statement statement line
number keyword body terminator
10 LET R=SQR (X" 2+Y"2)

Every line in a BASIC program must begin with a number. This number
must be a positive integer within the range 1 to 32767 inclusive. A
BASIC line number is a label that distinguishes one line from another
within a program. Consequently, each line number in the program must
be unique.

Leading zeroes, as well as spaces, have no effect on the number. For
example, these numbers are all the same to BASIC:

00010
10
010
There are several reasons why BASIC requires line numbers:
1. To tell BASIC the order in which to execute the program.

2. To aid you in correcting and updating a program.

3. To provide a reference for conditional and unconditional
transfers of control. (See Chapter 4)

PROGRAMMING IN BASIC

You can use consecutive line numbers like 1,2,3 and 4. For example:

however, a useful practice is to write line numbers in increments of
10. This method allows you to insert additional statements between
existing lines. The following program illustrates line number
increments.

This program assigns values to two variables, adds them, and places
the result in variable C. If you want the program to print the
results of line 30, add the PRINT statement with a line number in the
range 31 to 39 inclusive. For example, if you add a line numbered 33,
the program looks like this:

i
20 H
30
33
40

Unlike integer constants (see Section 2.2.2), line numbers cannot have
a percent sign (%).

BASIC ignores blanké, spaces, and tabs within a 1line (unless in a
string enclosed by quotation marks or in a REM statement). Therefore,
you need not worry about typing spaces in a program. For example:

1O LET A=R4C
can also be typed

G LETA=RL0

or

L0 LOE T A s + ¢
These three lines are the same to BASIC; they will all be listed as:

LOOLET A=R+C

In BASIC, you terminate a line by pressing the RETURN key. Pressing
this key provides a carriage return/line feed sequence.

1.5 STATEMENTS

BASIC statements consist of English-like words called keywords (words
recognized by BASIC) that you use in conjunction with the elements of
the language set: constants, variables, operators, and functions.
These statements divide into two major groups: executable statements
and non-executable statements:

PROGRAMMING IN BASIC

1. Executable statements specify the action of a program by
telling BASIC what operation to perform (i.e. PRINT, GO TO,
READ) .

2. Non-executable statements describe the characteristics and
arrangement of data, editing information, and statement

functions that you include in your program (i.e., DATA and
REM) .

1.5.1 Single and Multi-Statement Lines
You have the option, with BASIC, of writing either one statement or
many statements on one line. However, you cannot continue a BASIC
statement from one line to the next.
A single statement line consists of:

1. A line number from 1 to 32767

2. A statement keyword

3. The body of the statement

4. A line terminator (RETURN key)
When typing your program, end each line by pressing the RETURN Kkey.
This is a single statement line:

10 LET a=R¥C/G%F
To enter more than one statement on a single 1line (multi-statement
line), separate each complete statement with a backslash (\). This
backslash symbol is the statement separator (or terminator). You must
type it after every statement except the last in a multi-statement
line. For example, the following line contains three complete PRINT
statements:

10 PRINT A N PRINT V N FPRINT G
There is only one line number for a multi-statement line.
Consequently, you should take this into consideration if you plan to
transfer control to a particular statement within a program. For
instance, in the previous example, you cannot execute Jjust the
statement

PRINT V
without executing PRINT A and PRINT G.

Most statements can appear in a multi-~statement line. The exceptions
are noted in the discussion of individual statements in this manual.

PROGRAMMING IN BASIC

A multi-statement line consists of:
l. A line number from 1 to 32767
2. A statement keyword
3. The body of the statement
4. A backslash (\)
5. As many repetitions of 2, 3, and 4 as you want
6. A statement keyworad
7. The body of the statement

8. A line terminator (RETURN key)

1.6 DOCUMENTING PROCEDURES (REM STATEMENT)

BASIC allows you to document your methods, insert notes and comments,
or leave yourself messages in your program. This type of
documentation is known as a remark or comment. BASIC provides the REM
statement for this purpose. The REM statement has the following
format:

REM comment
where:
comment is anything you want to say.

You may place a REM statement anywhere in your program because it does
not affect program execution. Remarks do, however, use memory area
which you may need for exceptionally long programs.

The REM statement can be either the only statement on the line
10 REM THIS IS AN EXAMFLE

or it can be one of several statements in a multi-statement line.
20 LET A=5 \ PRINT A \ REM THE VALUE OF A IS 5

BASIC ignores anything in a line following the keyword REM until it
reaches a backslash (\) or a 1line terminator. The backslash
terminates the REM statement as it does all other statements in BASIC.
Obviously, the only printing character you should not include in a
remark is a backslash.

You can use the line number of a REM statement in a reference from
another statement (i.e., GO TO); however, in this case, BASIC ignores
the REM statement and proceeds to execute the next non-REM statement
following the 1line referenced. (See Section 4.1.1 for the GO TO
statement.) -

Remember that BASIC prints the remarks on the terminal only when you
list the program. (See Section 9.2 for a description of the LIST
command.)

PROGRAMMING IN BASIC

1.7 ENTERING BASIC PROGRAMS

It is very easy to enter BASIC programs. Simply type the program
lines in the format described in Section 1.4. (Start each line with a
line number and terminate with the RETURN key.) You can type the lines
in any order, BASIC stores them in numeric order by line number. For
example, you can type:

10
20
30
A0
50

Or‘you can type:

H0OEND

20 B=10

4G PRINT ©
10 A=d

b
EO C=adR

They are equivalent to BASIC.

If you type a line and want to change it, simply type a new line with
the same line number. BASIC replaces the old line with the new. For
example, if you type the program listed above and want to change line
30 to be A*B instead of A+B, simply type:

X0 Cwhxkp

If you want to delete a line completely, simply type the 1line number
followed by a RETURN key. To delete line 50, the statement that ends
the program, type:

50

If you are typing a line and realize that you have made a mistake
before you type the RETURN key, there are two ways to correct the
error. You can type the RUBOUT key, which deletes the last character
that you typed, until you have deleted the characters which were
errors and then retype the rest of the line. Or you can type CTRL/U
which tells BASIC to ignore the entire line. See Section 9.1 for more
information on these and other key commands.

BASIC stores your program in an area in the computer's memory. Each
time you enter a new line, BASIC stores it in your area. Each time
you delete a line, BASIC erases it from your area. Each time you
replace a 1line, BASIC erases the existing line and stores the new
line.

BASIC has a set of commands which allow you to list, execute, or
modify the program in your program storage area. BASIC commands
consist of a keyword followed by optional specifications. Do not type
a line number before a command. (See Section 1.8 for a description of
immediate mode statements, statements which are not preceded by a line
number.)

One BASIC command is the LIST command. If you want to see the program
lines that you have already entered, type the LIST command. Type

LIST

PROGRAMMING IN BASIC

BASIC prints out a header line followed by the lines you have typed.
When it is done, it prints the READY message. The READY message means
that BASIC is ready to accept a program line, command, or immediate
mode statement. For example:

LI&T

NONAME FO~-JUL-76 15143327
10 A=5
20 R=10
30 C=0%R
AL PRINT ©
READY
Another BASIC command is the RUN command. If you want BASIC to

execute your program, type the RUN command. After BASIC executes your
program, it prints the READY message. For example:

HRS I

NUNAME 0= J~FE 18143144

1Y)

REATY
If you want BASIC to list the program lines or to execute your program
without printing the header line, type LISTNH or RUNNH, respectively
(NH stands for No Header).
BASIC has commands to:

e List your program (LIST and LISTNH).

® Execute your program (RUN and RUNNH).

® Delete program lines (DEL).

® Erase your program (NEW, SCR, and CLEAR).

® Save your program (SAVE and REPLACE) to a file.

® Restore your program (OLD and APPEND) from a file.

® Delete programs saved in files (UNSAVE).

® Change the program name (RENAME).

e Edit a line that you have entered (SUB).

® Resequence the line numbers in your program (RESEQ).

® Save a compiled program (COMPILE).

e Find out how big your program is (LENGTH).
See Chapter 9 for a complete description of these commands.

BASIC always prints the READY message when it completes execution of a
command.

PROGRAMMING IN BASIC

1.8 USING BASIC WITHOUT WRITING A PROGRAM (IMMEDIATE MODE)

You do not have to write a program to use BASIC. BASIC can execute
most statements as soon as you type them. To have BASIC execute a
statement immediately, type the statement without a 1line number.
Statements typed without a line number are called immediate mode
statements. Immediate mode statements differ from commands in that
you can type the same statement with a line number but a command with
a line number is meaningless.

If you type the statement PRINT 4+5 with a line number, BASIC stores
the program line for later execution. For example:

L0 FRTNT 445

But if you type the line without a line number BASIC executes the line
and then prints the READY message.

PRINT 445
9

REATY

You can enter several immediate mode statements in a row. For
example:

LT fsl

REALY
PRINT a8 l2
&0

READY

Or you can enter several immediate mode statements on one line.
Separate each statement with a backslash. When you type the RETURN
key, BASIC executes all the statements on the line. For example:

G o Fe sl oy D LETER N PRITNT AER.BIMIC
70 + 364138

READY

You can use BASIC as a powerful calculator by using immediate mode.
For example after typing the previous immediate mode statement, type:

FiaTEe " THE MPTOHT TSP IEFELNCC Y0 “METERER

THE HEIGHT I8 10,1004 METER

b

READY

PROGRAMMING IN BASIC

You can use FOR-NEXT loops (see Section 4.2.1) in immediate mode if
you can enter the entire loop on one line. For example:

F?H F== 1 T0 10 } FRINT T» BQRCTY NNEXT I

2 1.41421
3 1.73205
4 2

% 2.23607
é 2.44949
7 264575
8 2.82843
? 3

10 14228

READY

Another use of immediate mode is to debug (find and correct the errors
in) your program. First you execute your program with a RUN command.
Then you can use immediate mode PRINT statements to find the values of
variables in the program. You can also use the LIST command to look
at the program lines. After making any needed changes you can
continue the program with an immediate mode GO TO statement (see
Section 4.1.1). For more information on program debugging, see the
description of the STOP statement in Section 4.3 and the description
of error messages in Appendix A.

You can use most BASIC statements in immediate mode. You can not use
the INPUT or LINPUT statement (see Sections 3.1.1 and 3.1.2) in
immediate mode. If you do, BASIC prints the ?ILLEGAL IN IMMEDIATE
MODE (?IIM) error message. Certain other immediate mode statements,
though they do not cause an error message, are ignored by BASIC.
These immediate mode statements that are ignored are COMMON, DATA,
DEF, and DIM.

1-10

CHAPTER 2

ELEMENTS OF BASIC

2.1 TERMINOLOGY

In order to write programs in BASIC, you must be familiar with the
terms and phrases used to describe the program elements. You will
probably recognize most of these terms from previous experience;
however, the following sections define these terms within the context
of BASIC.

2.2 CONSTANTS

A constant is a quantity with a fixed value. In BASIC, you can enter
a constant as part of a program or have BASIC read it from another
file during program execution.

There are three types of constants in the BASIC language:

1. Numeric constants (floating point numbers also called real
numbers)

2. Integer constants (whole numbers)

3. String constants (alphanumeric and/or special characters)

2.2.1 Numeric Constants
A numeric constant is one or more decimal digits, either positive or
negative, in which the decimal point is optional. BASIC assumes a
decimal point exists to the immediate right of the number if you do
not include one. For example, the numeric constant

184
is equivalent to

184.

The following are all valid numeric constants:

5 42861
74 -125
6. .95

ELEMENTS OF BASIC

BASIC accepts numeric constants within the approximate range
107~38<n<10"+38

where n is the numeric constant you specify.

If you type a numeric constant in a program that is outside this

range, BASIC prints a fatal error message to that effect. This means

that your program will not execute until you replace the numeric
constant with one in the proper range.

However, you can input very 1large numbers and very small numbers

(within this range) by using a method similar to scientific notation.
Use the following format:

(] somef(1] o

5.24016E-3
where:
+ or - is the sign of the number. The plus sign (+) is optional

with positive numbers; ‘the minus sign (-) is mandatory
with negative numbers.

X is a digit from 0 to 9.

. is the decimal point.

E represents the words "times 10 to the power of",

nn is the 2-digit exponential value (the power of 10).

This method of mathematical shorthand is called E notation. It is
BASIC's way of representing scientific notation. To use this format,
append the letter E to the number. Then follow the E with an
optionally signed whole number. The integer constant is the exponent.
It can be 0 but never blank. Thus you can type:

6000000 as 6E6 and .000005 as 5E-6
You are actually positioning the decimal point internally by using E
notation. A positive exponent moves the decimal point to the right;
a negative exponent moves the decimal point to the 1left. For
instance, if you type the number

5.2041E-3
BASIC interprets it as .0052041.

Table 2-1 shows the different methods of writing the same number.

Table 2-1
Number Notations
STANDARD NOTATION SCIENTIFIC NOTATION E NOTATION
1000000 1 X 1076 1.00000E+06
10000000 1 X 1077 1.00000E+07
100000000 1X1078 1.00000E+08
1000000000000 , 1 X 10712 1.00000E+12

2-2

ELEMENTS OF BASIC

BASIC uses floating point format when storing and calculating most
numbers. Integers, however, are handled in a slightly different
manner. (See Section 2.2.2.)

The following are examples of numeric constants:

.84103E-06 -377 -12345
6.64 5E+03 8.0E-03
-9.4177 6562 25

BASIC stores numbers to a certain degree of accuracy (or precision).
See your BASIC-11 user's guide for the accuracy of numbers.

2.2.2 Integer Constants

An integer constant is a whole number (no fractional part) written
without a decimal point. BASIC adds a decimal point internally to the
right of the integer. Therefore, to distinguish a numeric constant
(floating point number) from an integer constant (whole number), type
an integer constant as one or more decimal digits terminated by a
percent sign (%). For example, the following numbers are all integer
constants {(whole numbers):

29% -8%
3432% 1%
12345% 205%

The following are not integer constants:

1.6 .08%
754.2% 5.2041E+06
34 1/2 95

You should use integers instead of floating point numbers to store
whole numbers because integer storage requires less memory and integer
arithmetic operations take less execution time than the -equivalent
floating point operations. Saving space is most important when you
are using large arrays (see Section 2.6). ’

In BASIC you can type integer constants within the range
-32768% to +32767%

If you specify a number outside this range, BASIC prints a fatal error
message telling you that you must replace the number with one within
the proper limits.

2.2.3 String Constants

A string constant (also called a literal) is one or more alphanumeric
and/or special characters enclosed by double quotation marks ("text")
or single quotation marks ('text'). You can include double quotation
marks within a string constant delimited by single quotation marks and
vice versa.

Each character in a string constant can be a letter, a number, a
space, or any ASCII character except a line terminator (RETURN key).
The value of the string constant is determined by all the characters
between the delimiters including spaces.

2-3

ELEMENTS OF BASIC

BASIC prints every character between quotation marks exactly as you
type it into the source program, including:

1. Lower-case letters (a-z)
2. Leading, trailing, and embedded spaces
3. Tabs

Note, however, that BASIC does not print the delimiting quotation
marks when the program is executed.

LISTNH
LO PRINT "DIGITAL"
20 END

READY
FeLiMNH

DIGITAL
REALDY

In order to make BASIC print quotation marks, you must enclose them
within another pair of quotation marks, either double or single.

LESTMH
1O PFRINT “HE @AIDy G000 MORNING!"
20 END

RE&TY
FiIMMH

HE SAIDy "GOON MORNINGD®
REALIY
Here are some examples of string constants:

"THIS IS A STRING CONSTANT."
'SO IS THIS.'
"TONY'S TENNIS RACKET"

Include both the starting and ending delimiters when typing a string
constant in a program. These delimiters must be of the same type
(both double quotation marks or both single quotation marks).

These examples are incorrect:

"WRONG TERMINATOR'
' SAME HERE"
"NO TERMINATOR

2.3 VARIABLES

A variable is an unknown quantity that may change during program
execution. In BASIC, each variable refers to a distinct location in
the computer’'s memory. Each location holds one value at any one time.
The number it holds is the value of the variable corresponding to the
location.

ELEMENTS OF BASIC

Depending on the operations you specify in a program, the value of a
variable may change from line to line. BASIC uses the most recently
assigned value of a variable when performing calculations. This value
remains the same until a statement is encountered that assigns a new
value to that variable.

BASIC accepts three types of variables:
1. Simple numeric variables (floating point)
2. Integer variables

3, String variables

2.3.1 Numeric Variables

A numeric variable is a named location in which a single numeric value
(floating point number) is stored. You name a numeric variable with a
single letter or a single letter followed by a single digit. For
example, the following are simple numeric variables:

Cl L
M B5
F6 722

The following are not numeric variables:

6 A.2
BC .E
4D 25
Before program execution, BASIC sets all numeric variables to 0. If

you require an initial value other than 0, you can assign it with the
LET statement (Section 2.5). Otherwise, you can declare the wvalue
implicitly by just typing the variable in a program.

NOTE

Because other BASIC implementations may
not set all variables to 0 before
program execution, you should not rely
on this feature. A good programming
practice to follow is to set all
variables to 0 at the beginning of the
program. You can do this with a series
of LET statements (see Section 2.5) ox
by using READ and DATA statements (see
Section 3.1.3).

You can assign a new value to a variable at any point in your program.
BASIC always uses the most recent value that you have assigned.

2.3.2 Integer Variables

An integer variable (like a numeric variable) is a named location in
which a single value can be stored. Using an integer variable in your
program indicates that the value forthcoming is a whole number (no
fractional part).

ELEMENTS OF BASIC

You name an integer variable with a single letter or a single letter
and a single digit, terminated by a percent sign (%). For example,
the following are integer variables:

A% C8%
Blg D%

The following are not integer variables:

A B2
1B% 123%

If you include an integer variable in a program, then the value you
supply for it must be an integer constant. If a numeric constant
(floating point number) is assigned to an integer variable, BASIC
drops the fractional portion of the value. The number is not rounded
to the nearest integer; it is truncated. Consider the following
example:

B% = 5.7

BASIC assigns the wvalue 5 to the integer variable, not 6.
Consequently, vyou should not assign a nonintegral value to an integer
variable, but if you do you must be aware how the truncation will
affect your calculations.

You can use an integer variable anywhere that you can use a numeric
variable as long as you only plan to store whole number values in the
range -32768 to 32768.

If you assign an integer constant to a numeric variable, BASIC prints
the integer value as an integer but stores the real number internally.
This method takes more storage space because of the fraction that
BASIC must maintain.

NOTE
You can use numeric and integer
variables with the same leading
alphanumerics in the same program. D1
and D1% represent two different

variables.

2.3.3 String Variables

A string variable is a named location used to store alphanumeric
strings. You name a string variable with a letter, an optional digit,
and a dollar sign ($). The dollar sign ($) must be the last character
in the name. The following are examples of string variables:

Cc1s$
LS
722$
M$
F6S

ELEMENTS OF BASIC

These are not string variables:
Cl

L
272$
$M
Fé

The dollar sign ($) not only represents a string variable to BASIC,
but it also indicates a string variable to anyone who reads the
program.

BASIC initializes all string variables to a length of 0 (null string)
before the start of each program execution. During execution, the
length of a character string associated with a string variable can
vary from 0 (signifying a null or empty string) to 255 characters.

Note that a simple numeric variable, an integer variable, and a string
variable that begin with the same alphanumeric characters can
represent three distinct variable names. The following names are all
legal within a single BASIC program:

A5 a simple numeric variable
A5% an integer variable
A58 a string variable

2.3.4 Subscripted Variables

A subscripted variable is a numeric variable, an integer variable, or
a string variable with one or two subscripts appended to it. The
subscripts can be any positive expression (see Section 2.4.1). The
value of the subscript can be 0 to 32767.

The subscript, in a subscripted variable, is a pointer to a specific
location in a list or table in which an unknown value is stored. (See
Section 2.6 for more information on lists and tables, also Kknown as
arrays.) You designate the pointer with either one or two subscripts
enclosed by parentheses. If there are two subscripts, separate them
with a comma. The value stored can be numeric, integer, or string
data.

To name a subscripted variable, start with a simple numeric, integer,
or string variable name:

A A% AS

To refer to an element in a list (one dimension), follow the variable
name with one subscript within parentheses. For example:

A(6) A%(6) A$ (6)

A(6) refers to the seventh item in this list because the 1lists start
with the item with a 0 subscript:

>
b
»

A(0) A(l) A(2) A(3) 4) 5) 6)

10 20 0 40 50 60 70

|
|
|

(o%)

To refer to an element in a table (two dimensions) follow the variable
name with two subscripts. The first subscript designates the row
number, and the second subscript designates the column number.

ELEMENTS OF BASIC

Separate the two subscripts with a comma. For example:
A(7,2) A%(4,6) A$(17,23)

In the following table, the arrow indicates the element pointed to by
the subscripted variable A%(4,6):

0000CO0O0OO
0000000
00000O0OO
0 000O0O0O
000000 0*——n%(4,6)

Notice that all the elements in this table have a value of 0.
BASIC accepts the same alphanumeric characters for a simple numeric
variable and a subscripted variable within the same program. However,
do not use the same alphanumeric characters for two arrays (Section
2.6) with a different number of subscripts.
This is acceptable in the same program:

D simple numeric variable

D(8) subscripted variable
This is not acceptable in the same program:

D(8) one subscript

D(3,6) two subscripts

2.4 FORMING EXPRESSIONS

An expression is a symbol or a group of symbols that BASIC can
evaluate. These . symbols can be numbers, strings, constants,
variables, functions (Section 2.4.4), array references (Section 2.6),
or any combination of these, separated by one of the following:

1. Arithmetic operators (to form arithmetic expressions)
2. Relational operators (to form relational expressions)

3. 8String operators (to form string expressions)

2.4.1 Arithmetic Expressions

BASIC allows you to perform addition, subtraction, multiplication,
division, and exponentiation with the following operators:

" Exponentiation
Multiplication
Division

Addition, Unary +
Subtraction, Unary -

LI N

Performing an operation on two arithmetic expressions of the same data
type yields a result of that same type. For example:

A%+B%
G3*M5

an integer expression
a floating point expression

2-8

ELEMENTS OF BASIC

If you combine an integer quantity with a floating point quantity, the
result will be floating point. For example:
A*B% = a floating point expression

6.8*5% = 34.0

The value of an integer expression is truncated. For example 3%/5% is
equal to 0% not .6.

Table 2-2 provides examples of arithmetic operators and their meaning.

Table 2-2
Arithmetic Operators

OPERATOR EXAMPLE MEANING

+ A+ B Add B to A

- A -8B Subtract B from A

* A *B Multiply A by B

/ A/B Divide A by B

- A"B Calculate A to the power B

Note that in general, you cannot place two arithmetic operators
consecutively in the same expression. The exception is the unary
minus. For example:

A*-B is valid and A*(-8) is valid.

BASIC evaluates expressions according to operator precedence. Each
arithmetic operator joining an expression has a predetermined position
in the hierarchy of operators. The operator's position tells BASIC

when to evaluate the operator in relation to the other operators in
the same expression.

In the case of nested parentheses (one set of parentheses within
another), BASIC evaluates the innermost expression first, then the one
immediately outside it, and so on. The evaluation proceeds from the
inside out until all parenthetical expressions have been evaluated.
For example:

B = (25+(16*%(972)))

Because (972) is the innermost parenthetical expression, BASIC
evaluates it first, then (16*81), and then (25+1296).

Table 2-3 lists the arithmetic operators in the order BASIC evaluates
them:

ELEMENTS OF BASIC

Table 2-3
Arithmetic Operator
Precedence
© HIGHEST
- (unary minus)
x,/
+,~- LOWEST

Operators shown on the same 1line have equal precedence. BASIC
evaluates operators of the same precedence level from left to right.
Note that BASIC evaluates A"B"C as (A"B)"C.

BASIC evaluates expressions enclosed in parentheses first even when
the operator enclosed in parentheses is on a lower precedence level
than the operator outside the parentheses. Consider the following
example:

A = 157241272~ (35%*8)

BASIC evaluates this expression in five ordered steps:

1. (35*8) = 280 Parenthetical expression

2. 1572 = 225 Exponentiation (left-most expression)
3. 1272 = 144 Exponentiation

4. 225+144= 369 Addition (left-most expression)

5. 369-280= 89 Subtraction

2.4.2 String Expressions

BASIC provides the plus sign (+) (and the equivalent ampersand (&)) as
an operator for string expressions. By using this operator you can
attach one string to the end of another. This operation is called
concatenation.

Consider the following example:

PP

O Cest G000+ "BYE "
20 PRINT 0%

0 FND

REATY
ENIRIRIE]

GOOLEYE
READY

A$S + B$ or AS & B$ both mean concatenate string B$ to the end of
string AS.

2-10

ELEMENTS OF BASIC

2.4.3 Relational Expressions

A relational operator is a symbol used to compare one value of a
variable or expression to another within a BASIC program, thus
creating a relational expression. As explained in Section 4.1.3, |use
relational expressions with the IF THEN statement to create
conditional transfers.

NOTE

It is illegal to compare a numeric or
integer expression to a string
expression using a relational operator.
In a relational expression, both
expressions being operated on must be of
the same data type, string or numeric.
But you can compare an integer
expression to a floating point
expression and vice versa.

Table 2-4 provides examples of arithmetic relational operators and
their meaning.

Table 2-4
Arithmetic Relational Operators

OPERATOR EXAMPLE MEANING

= A =B A is equal to B

< A<KB A is less than B

> A>B A is greater than B
<=, =< A<= B A is less than or equal to B
>=, => A>= B A is greater than or equal to B
<>, XX A<>B A is not equal to B

BASIC accepts =< but converts it to <=; => to >= and >< to <>.

When you use a relational operator to compare the value of one or more
alphanumeric characters, you «create a relational string expression.
BASIC uses the ASCII character collating sequence to determine which
character is greater or lesser in value than the other. (See Appendix
C for the ASCII Table.) The comparison is made, character by
character, left to right, according to the ASCII values until BASIC
finds a difference in value.

When applied to strings, relational operators compare characters for
alphabetic sequence. Consider the following program:

10 Ag=raRoe

20 W=D

AGOIF A%CRe GO OTO S0
S0 FRINT BS N GO TO &0
SBOOFRINT A

&GO END

ELEMENTS OF BASIC

When BASIC executes 1line 30, it compares strings A$ and BS$ to
determine if AS$ occurs first in alphabetic sequence. 1In this case, it
does, and the program shifts control to line 50 (see Section 4.1 for
shifting control of a program). If string B$ occurred before string
AS$, program execution would continue to the next statement following
the comparison (i.e., line 40).

BASIC compares strings just as you compare words in alphabetical
order, BASIC compares the first two characters, A and D. The letter
A precedes the letter D in the ASCII table; therefore, string AS$
precedes string B$ in alphabetic sequence. If the first two
characters are equal, BASIC proceeds to the second two characters,
until a difference is found. For example:

ABC
AEF

BASIC compares A to A and finds them equal in value. Then BASIC
compares B and E and finds B less than E. The comparison ends here,
and BASIC concludes that ABC occurs before AEF in alphabetic sequence.

Table 2-5 provides examples of string relational operators and their

meaning.

Table 2-5
String Relational Operators

OPERATOR EXAMPLE . MEANING
= A$ = B$ Strings A$ and B$ are equal
< A$ < BS$ String A$ occurs before string B$ in

alphabetic sequence

> AS$ > BS String AS$ occurs after string BS$ in
. alphabetic sequence

<=,=< AS$<=BS$ String A$ is equal to or precedes string
B$ in alphabetic sequence

>=,=> A$>=BS String A$ is equal to or follows string
B$ in alphabetic sequence

<>,>< AS<>BS String A$ is not equal to string BS

When comparing strings of different lengths, BASIC treats the shorter
string as if it were padded with trailing blanks to the length of the
longer string. This means that "DIGITAL" is equal to "DIGITAL ".

2.4.4 Functions

Functions perform a series of mathematical or string operations. You
provide the arguments, the input to the function, and the .function
computes the result. You can use functions instead of doing tedious
calculations yourself.

ELEMENTS OF BASIC

To use a function, simply include the function name and argument 1list
in any expression. The function name is usually three letters, for
example, SQR, SIN, and POS. The argument list follows the function
name and is enclosed in parentheses. The number and type of arguments
are listed in the description. You use a function in an expression in
the same way that you include a constant or a variable in an
expression.

The function calculates and returns the result &0 BASIC. BASIC
continues to evaluate the expression as if you had specified the
result in place of the function. Consider the following examples
which demonstrate the SQR function which returns the square root of
the argument.

Program with SQR Function Program with Numeric Constant
LIETNH LISTNH
10 A=L0%XBAR(49)4+5 10 A=]10%74+5
20 PRINT A 20 FRINT A
REALY REALY
FebiN FUINNH
g 7
REATY READY

The séuare root of 49 is 7. 1In the example on the left, BASIC treats
the 7 that the function returns in the same way that it treats the 7
specified by the user in the program on the right.

BASIC provides mathematical and string functions and, in addition,

lets you define your own functions. See Chapter 5 for a complete
description of all BASIC functions.

2.5 ASSIGNING VALUES TO VARIABLES (LET STATEMENT)

The LET statement enables you to assign a value to a variable. The
LET statement has the following format:

H;Eiﬂvariable = expression

where:
variable is assigned a new value.
expression specifies the new value.

The variable and expression can either both be numeric or both be
string data types. (The keyword LET is optional.)

The LET statement replaces the variable on the left of the equal sign
(=) with the value on the right. Hence, the equal sign (=) signifies
the assignment of a value and not algebraic equality. Here 1is an
example:

10 LEYT A=482.5

This statement gives the value 482.5 to the variable A. You can also
write the statement this way:

1O A=482.0

2-13

ELEMENTS OF BASIC

BASIC also evaluates any formula you assign:
10 A={X+Y)-84

BASIC calculates the expression (X+Y)-84 and then assigns the
resulting value to the variable A.

In addition, BASIC converts the mode of the value to whatever the mode
of the variable ils, floating point or integer. For example,

10 AX=9.5
is the same as
10 A=
Refer to Section 2.3 for a description of variables.

You can also assign a string expression to a variable as well as a
numeric expression. However, you cannot mix strings and numeric
expressions in the same LET statement. If you do, BASIC prints the
?NUMBERS AND STRINGS MIXED (?NSM) error message. The following is an
example of a string assignment:

LSRN

10 Ad="HELLOY
20 PRINT A%
X0 END

REATTY
RN

HELL.Q
FEADY
Refer to Sections 2.2.3 and 2.3.3 for information on strings.

Note that you can place a LET statement anywhere in a multi-statement
line:

Lo TEM ACEY N T=42 N PRINT I

2.6 ARRAYS

An array is like a group of variables. Each element in the array,
like a variable, 1is an unknown quantity. BASIC stores the current
value of each element of the array in a location in memory in the same
way that it stores a value for a variable. An element of an array is
different from a variable in that all the elements of an array share
the same name but each variable has its own name. You specify which
element you want in an array by specifying its subscript (see Section
2.3.4).

Arrays break down into two types: 1lists and matrices. A 1list is a
horizontal or vertical group of items (l-dimensional); a matrix is a
table of items consisting of rows and columns (2-dimensional). Both
types can store either numeric or string data.

You should reserve space for any array you use with a DIM statement.

But if you do not reserve space, BASIC reserves space for arrays with
a maximum subscript(s) of 10 (i.e., A(10) and A(10,10).

2-14

ELEMENTS OF BASIC

BASIC starts counting elements from 0, not 1; therefore, you have an
additional element for a list and an additional row and column for a
table.

For example, dimensioning the array A(6) gives you seven storage areas
in the list, not six:

ROW 0 A(0)
1 A(l)
2 A(2)
3 A(3)
4 A(4)
5 A(5)
6 A(6)

Array B(3,3) contains storage space for 16 elements, This is the
layout of array B(3,3):

COLUMN U 1 2 3
ROW O B(0,0) B(0,1) B(0,2) B(0,3)
1 B(1,0) B(1,1) B(1,2) B(1,3)
2 B(2,0) B(2,1) B(2,2) B(2,3)
3 B(3,0) B(3,1) B(3,2) B(3,3)

Figure 2-1 ARRAY B

Note that if vyou reference an array with the wrong number of
subscripts, BASIC prints the ?INCONSISTENT NUMBER OF SUBSCRIPTS (?INS)
message.

You should use an array instead of many variables when you are going
to be doing the same operations to each element. This allows you to
use loops (see Section 4.2) to perform the operation. Consider these
two examples:

Program with Array Program with Separate Variables

S oDl Acdaor

As you can see, the program with the array is much shorter. (See
Section 2.6.1 for a description of the DIM statement.) With larger
arrays the difference would be even greater. Arrays also require less
memory to store than an equivalent number of variables.

ELEMENTS OF BASIC

Remember that it is possible to use the same alphanumerics to name
both a simple variable and an array within the same program. But
using the same name for two arrays with a different number of
subscripts 1is 1illegal within the same program (i.e., A(5) and A(3,4)
are illegal in the same program).

2.6.1 Dimensioning Arrays (DIM Statement)
The DIM statement allows you to set up the dimensions of an array in
your program. By using the DIM statement, you reserve storage space
to be filled with values of either numeric or string data.
The DIM statement has the following format:

line number DIM list

where:

list is a 1list of array specifications separated by
commas. Each array specification is in the form:

variable(integerl [,integerZ])
where each integer must be a whole number constant
(no decimal point) but does not have to have a
percent sign.
In the DIM list, you are specifying:
1. Thne name of the array
2. The number of subscripts (one or two)
3. The maximum value of each subscript
Here is an example of a DIM statement:
10 pIM A(25),B(3,5),C%(7,16) ,D$(15)
No array can have more than two subscripts. If you do not specify a
subscript in the second position, only one subscript is permitted for

that variable name in future references.

Arrays are stored as if the right-most subscript varied the fastest.
For example:

R L LS DR

provides storage space like this:
0,0 0,1 0,2 0,3 0,4 0,5 1,0 1,1 ... 2,4 2,5

When using the DIM statement to set the maximum values for the
subscripts, you are not obligated to fill every storage space you
allocate.

Because the DIM statement is not executed, you may place it anywhere
in the program. It can also be one of several statements in a
multi-statement line.

ELEMENTS OF BASIC

The following example sets up storage for a matrix with 20 elements:

10 DIM A(3s4)

The storage addresses look like this:

0,0 o, 0,2 0,3 0,4
i,0 1,1 1,2 1,3 1,4
2,0 2,1 2,2 2,3 2,4
3,0 3,1 3,2 3,3 3,4
Notice that reading across left to right, the second subscript

increases first.

As stated previously, the first element of every array begins with a
subscript of 0. If you dimension a matrix C(6,10), you set up storage

for 7 rows and 11 columns. The 0 element is illustrated in the
following program:

LIS TNH

10 REM MATRIX CHECK FROGRAM

20 DIM G100

30 FOR I=0 TO é

40 LET CCLsQi=]

50 FOR J=0 TO 10

60 LET CCOsJyad

70 PRINT C(Isld)s

80 NEXT J N FRINT N NEXT I

0 END

READY

LM

O 1 2 3 4 5 & 7 8 9 10
1 0 0 0 0 0 0 0 0 0 O
20 0 0O 0 0 0 0 O 0 0
30 0 0 0 0 0 0 0 0 0
4 0 O 0 0 0O O 0 o 0O 0O
s 0 0 0O 0 0 0 0 0 0 0
& 0 O 0O 0 0 0 0 0 0 0
READY

Notice that a variable has a value of 0 until you assign it another

value.

2-17

ELEMENTS OF BASIC

You can also dimension string arrays
example:

LISTNH

10 DIM A${E)

20 FOR I=0 TO

30 INPUT A%CTD

40 NEXT I

GO OPRINT A$C0Y v AB(E)

REALDY
FLINMH

TONAME
P oACOOUNT

i
P ORALANCE

TETATUS
TOLOCATEON
NAME LOCATION

READY

) 2-18

with the

DIM

statement,

for

CHAPTER 3

INPUT AND OUTPUT

3.1 SUPPLYING DATA
BASIC has three methods of supplying data to a program:

1. The INPUT statement —~ requires that you interact with the
computer while the program is running.

2. The READ, DATA, and RESTORE statements - require that you
build a data block within the program.

3. The file statements - require that you manipulate files

outside the main program. See Chapter 6 for information on
file input and output.

3.1.1 INPUT Statement

The INPUT statement allows you to enter and process data while the
program is running.

The INPUT statement has the following format:

INPUT variablel [,variablez, variable3,...]
where:

variable(s) are assigned the value(s) that you enter.
The variables can be numeric, integer, string, or subscripted
variables or any combination of these separated by commas. Consider
the INPUT statement as another means of assigning values to variables.
When you run your program, BASIC stops at the line designated by the
INPUT statement and prints a question mark (?). BASIC then waits for
you to type one value for each variable requested in the INPUT

statement. Separate the values with commas. Press the RETURN key
after you finish typing all the values.

3-1

INPUT AND OUTPUT

The following example requires that you type three values after the
question mark (?).

LESTNH
10 INPUT AsEsC
20 END

READY
FRUNMH

P Viedae 7 Your Response
READY

The INPUT statement tells BASIC to accept the forthcoming data from
the user terminal. BASIC accepts the values left to right. When you
type all the necessary data, type a line terminator RET) ' The
program continues using the values you supply. Therefore, in the
previous example

A=5
B=6
C=7

You must supply the same number of values as there are variables in
the INPUT request. If you do not type enough data, BASIC lets you
know by printing another question mark (?) when you press the RETURN
key.

P LETMH
1O INFUT AR
20 END

READY
RN

READY

On the other hand, if you supply more values than there are variables
to be defined, BASIC ignores the excess and prints a warning message
to that effect.

LTSTMH

1O INPUT AR 0
LG FRINT AB0C

200 END

READY

NS

'? & v (') v L3 H

FEXCESS INPUT IGNORED AT LINE 10
bt & 7

REALY

The extra value entered (8) is ignored.

INPUT AND OUTPUT

The values you supply must be the same data type as the variables in
the INPUT statement, (i.e., strings for string variables, integers for
integer variables). You can type strings with or without quotation
marks. For example, :

L TETHH

10 TNFUT AvB$C
20 PRINT A+CsES
FOOINPUT Ads RS
40 PRINT Ad

S0 PRINT &4

READRY
Felipdpdl

REATY

If you include quotation marks delimiting a string, be sure to type
both beginning and ending delimiters. If you forget the end quotation
mark, BASIC reads the rest of the line as the entire string. You will
also receive an ?INPUT STRING ERRODR (?ISE) message. For example:

LT
PO INPUT A% B
A0 BN

o TALD T

FIMPUT STRING ERROR AT LINE 10

BASIC reads ABC,5 as the string for variable A$, and then requests
data for variable B.

If you type a string without gquotation marks, BASIC ignores any
leading or trailing spaces.

You must specify a whole number (with or without a percent sign) for
an integer variable. If you specify a number with a decimal point or
a fraction for an integer variable, BASIC prints the ?BAD DATA RETYPE
(?BRT) error message and requests the input again.

You may wonder how you can tell what kind of data to respond with when
all you see is a question mark (?). By adding a PRINT statement (see
Section 3.2) you clarify the program's request for data. This is
useful because

1. You may not remember the number of variables or their type
(numeric or string).

2. Someone else may be running your program and does not Kknow
what the program is asking.

INPUT AND OUTPUT

Preceding the INPUT statement with a PRINT statement is good
programming practice. Following the INPUT statement with a PRINT
statement allows you to see the results of your computations.

LITETNH

20 PRINT "PLEASE TYFE 3 INTEGERS"S
0 INFUT BECHyDZ

35 AX=RALCHADN

40 FRINT a%

SO END

READY
FRLINNK

FLEASE TYPE 3 INTEGERS?T 255078
150

READY

NOTE

The INPUT 4# statement (see Section
6.3.1) 1is used to input values from a
file. Logical wunit 0 is the user
terminal.

1O INFUT #0y XeYed
is equivalent to

1O INPUT XeYy 2
except that a question mark (?) does not

print on the terminal with the first
form,

3.1.2 LINPUT Statement
The LINPUT statement has essentially the same function as the INPUT
statement. However, LINPUT is used exclusively for string data. Use
the following format:

LINPUT string variablel [,string variablez,...]

where:

string variable(s) assigned the value(s) of all the characters
you type up to the line terminator(s).

All variables must be string variables in a LINPUT statement.

INPUT AND OUTPUT

The LINPUT statement accepts and stores all characters including
quotation marks and commas except the line terminator. The terminator
is not stored with the string.

LISTNH
107 LINFUT R
20 OFRINT B
O CIND

REAIY
Frdied M

& POy DO MERE DT SATI0 JOHN.
"HOWe LOOK HERE!D®» SAID JOHN.

[READY
If you try to type the string shown above, in response to an INPUT
statement, you will receive a ?EXCESS INPUT IGNORED (?EII) error

message from BASIC. The INPUT would take the comma after the word
"HERE!", as the delimiter of the string.

3.1.3 READ, DATA, and RESTORE Statements
Another way you can supply data to a program is to build a data block
for BASIC to read during execution. This means that you do not
interact with BASIC while the program is running. Instead, you supply
a pool of data to the program-in advance. Two statement keywords are
involved in this process: READ and DATA.
The READ statement has the following format:

READ variablelf,variable2,variable3,...]
where:

variable (s) are assigned the value(s) listed in the DATA
statements.

All variables should be separated by commas.
1O READ Ay BXe Ddy DOEH)e K

The READ statement directs BASIC to read from a list of values built
into a data block by a DATA statement.

The DATA statement has the following format:
line number DATA constantl [,constantz,constant3,...ﬁ
where:

constant(s) can be numeric, integer, or string (quoted or
unquoted) constants.

The order of the data types of the constants must be the same as the
data types of the variables when they are read. The format of the
constant is the same format you use for the INPUT statement.

INPUT AND OUTPUT

The program will run faster with READ and DATA statements as opposed
to the INPUT statement simply because you do not have to wait the
extra time it takes for BASIC to stop and request data. The data is
already within the program.

A READ statement causes the variables listed in it to be given the
next available constants, in sequential order, from the collection of
data statements. BASIC has a data pointer to keep track of the data
being read by the READ statement. Each time the READ statement
requests data, BASIC retrieves the next available constant indicated
by the data pointer.

A READ statement is not legal without at 1least one DATA statement,
However, you can have more than one DATA statement as long as there is
one READ statement in the program.

10 READ Ay BeColivfeF
20 PRINT ©

30 NATA L7y25:30

40 DATA AZv 76029

A READ statement can be placed anywhere in a multi-statement line.

A DATA statement, however, must be the last or only statement on a
line.

If you build your READ statement with more variables than you include
in the data block, BASIC prints the ?0UT OF DATA (?00D) error message.

The following is an example of a READ and DATA sequence.

10 READ AvByCLyD2yE4»YEeZho 216
20 NATA 2.3y~4, 26043 ~6y 12y "CAT" » NIOG» "MOUSE "
O FRINT AsBeCloD2vEds Yo Zhe 21

BASIC assigns values as follows:

A=2.3
B=-4.2654
Cl=3
D2=-6
E4=12
Y$=CAT
2$=DOG
21$=MOUSE

When you run the program, you get the following results:
PN

2.3 - 246G4 3 & 12
CaT JEERIES MOUSE
REARY

READ and DATA are useful to initialize the values of variables and
arrays at the beginning of your program. To do this place your READ
statements at the beginning of the program. You <can put the DATA
statements anywhere in the program but it is useful to put them all at
the end of the program just before the END statement.

INPUT AND OUTPUT

You can read a numeric constant into a string variable. For example:

L4 ST N

10 READ A%
20 FRINT A%
30 DATA 8.2%
40 END

REALY
FaLENH

8,20
READY

But if you try reading a string constant into a numeric variable or a
floating point number into an integer variable, BASIC prints the ?BAD
DATA READ (?BDR) error message.

In some programs you may need to read the same data more than once.
BASIC provides the RESTORE statement for this purpose.

The format of the RESTORE statement is:
RESTORE

The RESTORE statement resets the data pointer to the beginning of the
first DATA statement in the program. The values are read as though
for the first time; therefore, the same variable names may be used
the second time through the data. Consider this example:

10 READ ReCoD

20 RESTORE

30 REAL EoFel

40 DATA 60394072952
HOOEND

The READ statement in line 10 reads the first three values in the DATA
statement, line 40.

B=6
C=3
D=4

Then the RESTORE statement on line 20 resets the pointer to the
beginning of 1line 40, so that the second READ on line 30 reads the
first three values. BASIC reads these values as though for the first
time.

6
3
4

E
F
G

If RESTORE was not there, READ on line 30 would read the 1last three
values.

Q=
[
N

INPUT AND OUTPUT

NOTE

The RESTORE # statement (see Section
6.3.4) is used to restore files to their
beginning.

3.2 CHECKING OUTPUT (PRINT STATEMENT)

Another useful statement to include in your program is the PRINT
statement. The PRINT statement has the following format:

PRINT [nst]]
where:

list contains the items to be printed. They can be any
string or numeric expressions or TAB functions (see
Section 3.2.3) and can be separated by commas or
semicolons (see Section 3.2.1).

The PRINT statement prints a list of elements on the terminal when you
execute your program. In this way, you can see the results of your
computations or add comments to clarify your requests for input. (The
PRINT statement can be placed anywhere in a multi-statement line.)

Using the PRINT statement without arguments causes a blank 1line to
appear in the output.

PEOTHH

10 PRINT "THIS EXAMPLE LEAVES A BLANK LINE®
20 PRINT

30 PRINT "RETWEEN TWO LINES®

40 ENI

READRY

FLUNNH

THIS EXAMPLE LEAVES & BLANK LINMNE

BETWEEN TWI LINES
FEADY
You can print blank lines to improve the readability of your output.

When an element in the list is an expression rather than a simple
variable or constant, BASIC evaluates the expression before printing
the value. Therefore, the PRINT statement performs two functions in
one, calculating expressions and printing the results. For example:

LTS TMEH

1O desqll N B=ES
Q¢ OPRINT AR
J0 END

100G

REATY

INPUT AND OUTPUT

After running this program, BASIC prints 100 on your terminal, not
45+55. If you put guotes around the variables this is what happens:

LIGTNH
10 A=45 N\ RB=30
20 PRINT "A4+R®
J0END

READY
FUNNH

AtE
REAIY

If you plan to have someone else run your program, you can clarify
your requests for _input with a PRINT statement. (Refer to Section
3.1.1 for more information on the INPUT statement.) Include 1literal
strings (Section 2.2.3) as in the following example:

10 FPRINT "WHAT ARE YOUR VALUES OF XeYs ANDL Z"3
20 INFUT X»YeZ

30 LET R=SAR{X724+YT24Z72)

40 PRINT "THE RANIUS VECTOR EQUALS"S

4% PRINT R

B0 END

When you run this program, BASIC prints:
RN

WHAT ARE YOUR VALUES OF XY 27 25,4050
THE RADTUS VECTOR EQUALS 48,7386

REALY
\

Notice that you enclose the strings in quotation marks so that BASIC
prints them exactly as you type them in. In line 40 of the previous
example, a semicolon ends the 1list of expressions. Placing a
semicolon or a comma after the string makes BASIC print the
expressions in the next PRINT statement (line 45) on the same line as
the string. If the separator is not there, BASIC performs a carriage
return/line feed and begins printing in the first column of the next
line.

THE RADIUS VECTOR EQUALS
&8, 73848

See Section 3.2.1 for more information on commas and semicolons.

3.2.1 Printing Zones - The Comma and the Semicolon

A terminal line consists of an integral number of zones, each zone
containing 14 spaces. When you use the PRINT statement, you can
control the placement of your output within these zones by using the
legal separators, comma (,) and semicolon (;). (See Section 7.1 for a
description of the PRINT USING statement for more flexibility in
formatting output.)

INPUT AND OUTPUT

The comma signals BASIC to move the printing element to the beginning
of the next print zone and begin printing there. 1If the last print

zone on the line is filled, BASIC prints the output beginning at the
first print zone on the next line. For example:

LITGTNH
5 INPUT AyRByCoDeEsF
10 PRINT AeByCoDoEsF
20 END

L 10 15 20 238
36
REALY

If you place more than one comma between list elements, you will skip
one print zone for each extra comma. The following example prints the
value of A in the first zone and the value of B in the third zone.

PTave
PO A=0N B=10
20 PRINT AeeR
S0 END

FE ALY
Pel i

u 10
FEADY

To print an output line in a more compact format, use the semicolon as

the separator between variables. A semicolon in a PRINT statement
causes no motion of the printing element.

Lo
O =0 N R=10
S0 FRINT AfR
30 END

READY
AR

500
READY

Placing a comma or semicolon after the last item in a PRINT statement

causes the terminal printer to remain at the same line in anticipation
of another PRINT statement.

3-10

INPUT AND OUTPUT

In the following example, BASIC prints the current values of X,Y and 2
on the same terminal line because a comma appears as the last item in
line 20:

LISTNH

10 INPUT XsYsZ
20 PRINT XsY»
30 PRINT Z

40 END

READY
FRUNNH

TR TR

b 10 135
READY

The following example illustrates the three options you have for
placing either a comma, a semicolon, or nothing after the last item of
the PRINT statement:

LIGTNH

10 FOR I=1 TO 10

20 PRINT I

30 NEXT I N PRINT
40 FOR J=1 TO 10

S50 PRINT J»

SO NEXT J N PRINT
70 FOR K=1L T0O 10

80 FRINT Kj

QO NEXT K

100 END

READY
FUNNH

1
)
.

3
4

9
4

7

&

4

10

1 2 3 4 t]
é 7 & K4 10
L 2 3 4 5 & 7 8 9 10

READY

3-11

INPUT AND OUTPUT

Commas and semicolons also allow you to control the placement of
string output. For example:

PLSETHH
10 PRINT "FIRST ZONE"»» "THIRD ZONE"y s "FIFTH ZONE®
20 END

READY
FRUNMEH

FIRST ZONE THIRI ZONE FIFTH ZONE
READY

Because of the extra comma between strings, BASIC skips every other
printing zone before stopping to print each string. (Placing a
semicolon between string constants is optional.)

3.2.2 Output Format for Numbers and Strings

BASIC prints numbers and strings according to a specific format.
Strings are printed exactly as you type them with no leading or
trailing spaces. (Quotation marks are not printed unless delimited by
another pair.)

LFOTHNH
1O FRINT PRINTING "QUOTATION® MARKS?
20 END

READY
BN H

FRINTING "QUOTATION" MARKS
READY

BASIC precedes negative numbers with a minus sign and positive numbers
with a space. A space is always placed after the right-most digit of
a number. BASIC does not print a percent sign after printing an
integer.

i Telid

10 PRINT ~1

20 PRINT 253507
30 END

REALY
FrHRRT
-1

25 BO

READY
BASIC does not add any spaces to strings.
The number of spaces occupied by the decimal representation of a
number varies according to the magnitude and type of the number.
BASIC prints the results of computations as decimal numbers either
integer or numeric if they are within the range

.01<n<999999
where n is the number BASIC prints. Otherwise, BASIC prints them in E

notation.
3-12

INPUT AND OUTPUT

BASIC prints decimal digits as illustrated below:

Value You Type Value BASIC Prints

.01 .01

.0099 9.90000E-03
999999 999999
1000000 1.00000E06

If more than six digits are dgenerated during a computation, BASIC
prints the result of that computation in E notation.

The following example shows how BASIC prints various numbers:

LISETHH
10 FOR I=1 TO 20
20 PRINT 27(~-T)»1,277

30 NEXT I
40 EMD
READY
PR
1 2
2
3
4
5
&
y 1O - 7
B POERGE O 2
) @
P FHNALIE 10
4, 88281E-04 11
244141 E-04 12 4096
L 22070F 13 8192
&, LOIE2I 14 146384
2 0H176E~08 15 327468
15258805 14 GEH3E
: 17 131072
X - 18 2462144
L PO73GE~Q6 19 524288
S BIATAE-0F 20 L. 04858E+06

READY

3.2.3 Printing with the TAB Function

Another method of positioning the terminal printer is to use the TAB
function in conjunction with the PRINT statement.

This function has the following format:
PRINT TAB (expression);

where expression is the number of the desired printing position.
BASIC evaluates the expression and truncates the result to an integer.

The TAB function does not cause anything to be printed; it positions
the terminal print head. Then the PRINT statement takes over and
begins printing in the column denoted by the argument with the TAB.

INPUT AND OUTPUT

With the TAB function, you move the terminal printer to the right to
any desired column. The first column at the left margin is column .0.
Therefore, n can be 0 to whatever the right margin is on your
terminal, or anywhere in between.

The TAB function can only be used to position the terminal printer
from 1left to right, not right to left. If you specify a column that
is to the left of the current column position BASIC ignores the TAB.

You can use more than one TAB function in the same PRINT statement by
placing them between elements.

The following is an example of several TAB functions in conjunction
with one PRINT statement:

LISTNH
10 PRINT "NAME"$TARCLE) "ADDRESS"$TAR(30) # "PHONE NO."
20 END

REALDY
FLINNH

NAME ALTRESS FHONE NO.
READY
Column 0 Column 15 Column 30
Without tabs 15 and 30, BASIC would print
RUNNH
NAMEADDRESSPHONE NO.
READY
Here is an example of printing numbers:
LISTNH

1O A=100 N\ B=29 N\ (=335
Q0 FRINT A3TARCIQISRITARCA0) IO

A0 END
BEALDY
RUNNKH
330 29 35
Py
t t
Column 0 Column 10 Column 40

Notice that semicolons act as separators in the preceding example.

3-14

INPUT AND OUTPUT

Compare the following examples. The first one uses commas as
separators; the second one uses semicolons.

LTETNH

10 A=100

20 B=200

3¢ C=300

40 PRINT AsTAR(Z7)yRsTAR(14)+C

READY
LI

100 200 300
READY
The extra commas move the printer to the next zone (see Section
3.2.1), then the printer is past the position indicated by TAB and
BASIC ignores the TAB. '

Change line 40 to:

A0 PFRINY AasTABITIRITARILAYIC
FeLhiigi

100 200 300
READY

3-15

CHAPTER 4

CONTROL STATEMENTS

4.1 SHIFTING CONTROL OF THE PROGRAM

In a BASIC program, control ordinarily passes from one statement to
the next statement in ascending order according to line numbers.

10 A=ERP42 N\ k L LE6/7 N C=akk
20 PRINT *C = "iC

30 FRINT

A0 END

However, you may alter the normal sequence of statement execution to:
1. Repeat a set of statements
2. Stop and check the values
3. Terminate the program
You can divert execution from the main stream to another portion of a
program; execution will continue from that point. This transferring

of control is known as branching.

The following sections describe the statements that allow you to Shlft
control and change the sequence of execution.

4.1.1 Unconditional Transfer (GO TO Statement)
The GO TO statement causes the statement which it identifies to be
executed next, regardless of that statement's position within the
program.
The format of the GO TO statement is:

GO TO line number
where:

line number specifies the next program line to be executed.
The specified line number can be smaller or larger than the 1line
number of the GO TO statement. Thus, you have the option to skip any

number of lines in either direction.

BASIC executes the statement at the line number specified by GO TO and
continues the program from that point. Consider the example:

B0 TD 119

CONTROL STATEMENTS

When BASIC executes line 30, it branches control to line 110. BASIC
interprets the statement exactly as it is written. Go to line 110.
It is a simple imperative instruction. There are no rules or
conditions governing the transfer.

Consider the following sample program with a GO TO statement:
LISTNH
10 A=2
20 GO TO 40
30 A=SQR(A+14)
40 FRINT AsAXA
50 END

REALY
RLINNH

2 4

READY
In this program, control passes in the following sequence:

1. BASIC starts at line 10 and assigns the value 2 to the
variable A.

2. Line 20 sends BASIC to line 40.

3. BASIC executes the PRINT statement.

4. BASIC ends the program at line 50.
Notice that line 30 is never executed.

Make sure that the GO TO statement is either the only statement on the
line or the last statement in a multi-statement line. If you place a
GO TO in the middle of a multi-statement line, BASIC does not execute
the rest of the statements on the line.

209 A=ATN(RI) N GO TO 50 N PRINT A

BASIC never executes the PRINT statement on line 25 because the GO TO
statement shifts control to line 50.

If you specify a non-executable statement in a GO TO statement such as
a REM statement, BASIC transfers control to the next executable
statement after the one specified. For example:

LLIETNH

10 A=2

20 GO TO 40

30 A=SARATLS)

40 REM NOW FRINT THE RESULTS
SO PRINT AsAkA

60 END

REALIY
RUNMH

2 4
READIY

At line 20, BASIC transfers control to line 40. Line 40 1is a REM
statement, a nonexecutable statement. BASIC executes the next
sequential statement, line 50. So that the statement GO TO 40 in this
case is equivalent to a statement GO TO 50.

4-2

CONTROL STATEMENTS

NOTE

Before you use the GO TO statement, be
sure you know how to use the CTRL/C key
command to stop your program from
running in an infinite loop. See
Section 9.1 for information on CTRL/C.

4.1.2 Multiple Branching (ON GO TO and ON THEN Statements)

The ON GO TO statement is another means of transferring control within
a program. Like the GO TO statement, ON GO TO allows you to transfer
control to another line of the program; however, ON GO TO also allows
you to specify several line numbers as alternatives depending on the
result of a numeric expression.

The ON GO TO statement has the following format:

ON expression {GO To}line numberl [,line number2,..]
THEN

where the expression is any legal BASIC numeric expression. The
keywords GO TO and THEN are interchangeable. Line numbers must be
separated by commas.

The ON GO TO statement is also known as a computed GO TO because of
its dependency on the value of the numeric expression. When BASIC
executes the ON GO TO statement, it first evaluates the numeric
expression. The value is then truncated to integer (if necessary).
If the value of the expression is equal to 1, BASIC passes control to
the first line number in the list; if the value of the expression is
equal to 2, BASIC passes control to the second line number in the
list; and so on. If the value is less than 1 or greater than the
number of line numbers in the list, BASIC prints the ?CONTROL VARIABLE
OUT OF RANGE (?CVQ) error message.

Consider this example:
200 ON A GO TO 5052051005300

If A=1, go to line 50 (first line number in the list).
If A=2, go to line 20 (second line number in the list).
If A=3, go to line 100 (third line number in the list).
If A=4, go to line 300 (fourth line number in the list).
If A1

or BASIC prints an error message.
If A>4

As you can see, the line numbers in the list can be in any order.

4.1.3 Conditional Transfer (IF THEN and IF GO TO Statements)

The IF THEN statement provides a transfer of control depending on the
truth of a relational expression (see Section 2.4.3).

The format of the IF THEN statement is:
GO TO line number}

IF relational expression{THEN line number
THEN statement

4-3

CONTROL STATEMENTS

where:
relational expression is the condition to be tested. It can
either be an arithmetic or string
relational expression.
line number specifies the line to be executed if the
condition is true.
statement is executed if the condition is true.

The statement can be any BASIC statement
including another IF THEN statement.

If you specify a 1line number and the value of the relational
expression 1is true, then control is transferred to the specified line
number. For example:

20 IF A=X THEN 200

When A is equal to 3 (the relation is true), control passes to line
200. The implication is that when A is not equal to 3, control does
not pass to line 200. Instead, control passes to the next sequential
statement after line 20.

You can also use string expressions as in this example:
IGO0 IF Ce="0UTRUT" GO TO 10

If the value of the string variable C$ is equal to the ASCII value of
"OUTPUT", control passes to line 10. See Section 2.4.3 for string
relational expressions.

If you specify a statement after THEN and the value of the relational
expression 1is true, the statement is executed. If the value of the
relational expression is false, the statement is not executed and
control is passed to the next program line. For example:

1O IF A=l THEN FRINT "f=i®

Here is a complete program illustrating the IF THEN statement:

LLGTHE

S OREM PROGRAM TO COMPARE TWO NUMBERS
LOOFRINT "INPUT UALUE QF A" N INFUT A

20 FRINT "INPUT UALUE OF B*% N INPUT R
A0OIF A= THEN FRINT "A BQUALE B" N GO TO 80
A0 IF ACE THEN &0

HBOOPRINT "R I8 LESS THAN A" N GO TO 80
GO PRINT ® A4 T8 LESS THAN B"

80 END

REALY
Pt

ERFUT VALUE OF AT -
INFUT UaLUE OF By
BOIS LESYS THAN A

FEADY

Care should be taken placing the IF THEN statement in a
multi-statement line. The following rules govern the transfer of
control:

CONTROL STATEMENTS

If THEN is followed by a line number:

If the THEN clause contains a line number and the condition
is true, control passes to that line number. 1If, however,
the condition is false, control passes to the statement
following the THEN clause. For example:

LISTNH

10 A=3

20 IF A=2 THEN 30 N FRINT A \ GO TO 40

30 FRINT °"THE CONRITION IS TRUE.®

40 END

READY
RLIMMNH

&

READY

Because the condition is false, BASIC executes the statement
following the THEN clause. If you interpret the backslash,
in this case, to mean "otherwise", you can see the
alternatives:

If A is equal to 2, transfer control to 1line 30;
otherwise, print the value of A and then transfer
control to line 40.

If THEN is followed by a statement:

Execution of the physically last THEN clause determines
the execution of the rest of the statements on the line.
If the THEN clause is executed, the next statement or
statements following it are executed. If the THEN
clause is not executed, the statements following it are
not executed, and control passes to the next line
number. For example:

5 OINPUT A
A0 IF A=) THEN PRINT A5 N FRINT. "TRUE CABE" N GO To 20
15 PRINT "NOT=1Y
20 END
If A is equal to 1, BASIC prints:

FeUNMH
Ty
1 TRUE CASE

READY

CONTROL STATEMENTS

Because the relation is true, BASIC executes the rest of line
20, which includes a branch to line 20.
If A is not equal to 1, BASIC prints:

RUNNH ‘

ne
P

NOT=1
READY

Because the relation is false, BASIC skips the rest of the
statements on line 10 following the keyword THEN and proceeds
to execute line 15.

All other THEN clauses are considered to be followed by the
next line of the program:

1GOOINPUT AsRe0

20 IF AXR THEN IF R
20 FRINT "Ad=
30 END

C THEN FRINT "R<C" N\ GO TO 30
B OOR Be=C"

¥
"

The statement GO TO 30 is executed only if A is greater than
B and B is less than C. If A is either less than or equal to

B or B is greater than or equal to C, then 1line 25 is
executed.

RUNMH

ol Oe X020

AmE 0K Bl

Renany

4.2 EXECUTION OF LOOPS

At some point, you may find that you are typing the same statements
many times in a program. Instead of typing them over and over again,
make BASIC execute them over and over again. .You can accomplish this
by building a loop in your program.

A loop is the repeated execution of a set of statements. Placing a
loop in a program saves you from duplicating and enlarging a program
unnecessarily.

CONTROL STATEMENTS

For example, consider the following two programs to print the numbers
from 1 to 10.

Program Without Program With
Loop Loop

LESTNH LIETNM

10 PRINT 1 1O TH=1%

20 PRINT 2 20 PRINT IZ
30 PRINT 3 30 TA=TXA+1% -
40 FRINT 4 40 IF ITZu=10%4 THEN 20
50 FRINT 5 50 END

40 PRINT 6

70 FRINT 7 READY

80 FRINT 8 RUNNH

?0. FRINT»9

100 FRINT 10 1

110 END 2

3
READY 4
FUNNH 3
é

1 7

2 8

3 @

4 10

5

é READY

7

8

9

10
READY

The program on the right first initializes a control variable, I%, in
line 10. It then executes the body of the loop, line 20. Finally, it
increments the control variable in line 30 and compares it to a final
value in line 50.

The following section shows you how to build a loop with the FOR and
NEXT statements.

4.2.1 PFOR and NEXT Statements

Without some sort of terminating condition, a program can run through
a loop indefinitely. The FOR and NEXT statements allow you to set up
a loop wherein BASIC tests for a condition automatically each time it
runs through the loop. You decide how many times you want the loop to
run, and you set the terminating condition.

The FOR statement has the following format:

FOR variable = exprl TO exprzﬂ?TEP expriﬂ

CONTROL STATEMENTS

where:

variable is a simple numeric variable known as the loop index.

exprl is the initial value of the index and can be any
numeric expression.

expr2 is the terminating condition and can be any numeric
expression.

expr3 is the incremental value of the index. The STEP size

is optional; if specified, it can be positive or
negative. If not specified, the default is +1. Expr3
can be any numeric expression.

The NEXT statement has the following format:
NEXT variable
where:

variable must be the same variable named in the corresponding
FOR statement.

For example:

2OOFOR M o» J30TO R0 STER 3
T NEXT M

M is given the initial value of 30, and BASIC tests to determine if M
is 1less than or equal to the terminating value of 90. The loop is
executed because M is less than 90. When the NEXT statement is
encountered, the value of M is incremented by 3. BASIC tests again to
see if M is greater than 90. When BASIC reaches the NEXT statement
and M has a value of 87, BASIC adds 3 to M and tests the result
against the terminating value. The result, 90, is not greater than
the terminating value, also 90, so BASIC executes the loop again.
When BASIC reaches the NEXT statement again, it adds 3 to M, producing
93. Because this is greater than the terminating value, BASIC
terminates the loop. BASIC terminates the loop by subtracting 3 from
M, which returns M to its last value used in the loop, 90, and then by
transferring control to the next sequential statement after the NEXT
statement.

The FOR and NEXT statements must be used together. You cannot use one
without the other. If you do, an error condition results. The FOR
statement defines the beginning of the 1loop; the NEXT statement
defines the end. You are actuallly building a counter in your program
to determine the number of times the loop is to execute.

CONTROL STATEMENTS

Place the statements you want repeated in between the FOR and NEXT
statements. Consider the following example:

LIETHM

1o FOR IX = 14 TO 1074
20 PRINT IX

30 NEXT IX

40 FRINT I7%

H0 END

READY
SARE]

&
4
10
10

REALY

In this program, the initial value of the index variable is 1. The
terminating value is 10, and the STEP size is +1 (the default).

Every time BASIC goes to line 30, it increments the loop index by 1
(the STEP size) until the terminating condition is met. Therefore,
this program prints the values of I% ten times. When the 1loop is
completed, execution proceeds to line 40.

Notice that when control passes from the loop, the last value of the
loop variable 1is retained. Although BASIC increments the control
variable until it 1is greater than the terminating value, BASIC
subtracts the STEP value to return the control variable to the value
last used in the body of the loop. Therefore, I% equals 10 on line
40.

You can modify the index variable within the loop.

10 FOR I = 2 to 44 STER 2
20 LET T = 44

30 NEXT I

40 END

The loop in this program only executes once, because at 1line 20 the
value of I is changed to 44 and the terminating condition is reached.

If the initial value of the index variable is greater than the
terminal value, the loop is never executed.

1O FOR T = 20 TQ 2 STEF 2

CONTROL STATEMENTS

This loop cannot execute because you cannot decrease 20 to 2 with
increments of +2. You can, however, accomplish this with increments
of -2,

10 FOR T = 20 to 2 STEPR -2
The STEP size can also be a number with a fractional part.

10 FOR K = 1,85 TO 7.7 STEF 1.32

NOTE

You cannot transfer control into a loop
that has not been initialized with a FOR
statement. The following is illegal in
@ BASIC program:

10 REM THIS IS ILLEGAL
20-6G0 TO 40

30 FOR I=1 TO 20

40 FPRINT I

GO ONEXT I

40 END

Line 20 shifts control to 1line 40,
bypassing line 30. This is illegal in
BASIC.

You can place the FOR and NEXT statements anywhere in a
multi-statement line. For example:

LISTNH

10 FOR T=L1 TO 10 STEF 5 N NEXT I N PRINT "% =93]
20 END

READY
PN

T = &
READY

The calculation of the index values (initial, final, and step size) is
subject to precision limitations inherent in the computer. These
index values are represented in the computer by binary numbers. When
the values are integer, they can be represented exactly in binary;
however, it is not always possible to represent decimal values ‘exactly
in binary when they contain a fractional part. Consider the following
example:

LESTNH

20 FOR X=0 TO 10 8TEF .14
30 T=X+T

40 NEXT X

U0 O PRINT "Xe" e "Tm$T
REATY

FLIMMH

X 9.9 Ts 495
READY

4-10

CONTROL STATEMENTS

The loop established in line 20 executes 100 times instead of 101
because the internal value of 0.1 is not exactly 0.1. After the 100th
execution of the loop and X is incremented, X is not exactly equal to
10. It is slightly larger than 10, so the loop stops. Whenever
possible, it is advisable to use indices that have integer values
because the loop will then be executed the correct number of times.

BASIC evaluates all expressions in the FOR statement before it assigns
a value to the loop variable. For example:

10 I=10
20 FOR T=1 TO Tk
30 MEXT T

BASIC evaluates I*2 in line 20 and calculates a value of 20 before it
assigns a value of 1 to I. The previous example is equivalent to

20 FOR D=L TO 102
30 ONEXT 1

4.,2.2 Nested Loops

A loop can contain one or more loops provided that each inner loop is
completely contained within the outer loop. Using one loop within
another is called nesting. Each loop within a nest must contain its
own FOR and NEXT statements, and the inner loop must terminate before
the outer loop, i.e., the one that starts first must be completed
last. Lcops cannot overlap.

The following example shows legal and illegal forms of nested loops:

LEGAL LEGAL ILLEGAL
4] 1% —— L0 FOR AX-1 TO 10 Lo FOR Ml TO LG
Eﬁﬁ FOR B=2 TO 20 20 FOR N=2 TO 20
A0 MEXT R 0 MEXT M
40 FOR CH=3 T0O 30 40 MEXT N

S0 FOR U4 TD 40
[€0 FOR E=5 70 5¢
FOONEXT K

BOOMEXT I
POOHEXT L4
—— 10O NEXT aX

CONTROL STATEMENTS

The following is a program with a nested loop:

LISTNH

10 PRINT "I"y"J*

15 PRINT

20 FOR IZ=1 TO 2

30 FOR JZ=1 TO 3

40 PRINT IX»J% } INSIDE LOOP OUTSIDE LOOP
S0 NEXT J%

60 NEXT IX

70 END
READY

FUINNF

I J

1 1

1 2 INSIDE LOOP
i 3 QUTSIDE LOOP
2 1

2 2 } INSIDE LOOP
2 3
READY

FOR and NEXT statements are commonly used to initialize arrays as
illustrated in this example:
L IETMH
5 O0IM X(5010)
10 FOR A=1 TO &
20 FOR B=2 TO 10 STEF 2
FO XAy RI=ALR
40 NEXT R
50 NEXT A
55 PRINT X(35100
&0 END

REAY
NRIRT

14

READRY

4.3 STOPPING PROGRAM EXECUTION (END AND STOP STATEMENTS)
There are three methods of halting program execution:
1. Using the END statement

2, Executing the program line with the highest line number (the
end of the program)

3. Using the STOP statement
The END statement has the following format:

END

CONTROL STATEMENTS

The END statement is optional. If you include an END, it must have
the 1largest 1line number in the program. Transferring control to an
END statement via a GO TO or IF THEN statement terminates program
execution and closes all files (see Chapter 6 for a description of
data files).

An END statement does not cause BASIC to print a message on the
terminal. If a message is desired, use the STOP statement.

If you do not execute a STOP or an END statement in a program,
executing the 1last statement of the program terminates program
execution and closes all files. This is equivalent to executing an
END statement,

The STOP statement has the following format:
STOP

This statement causes program execution to halt, at which point BASIC
prints a message:

STOP AT LINE n
where n is the line number of the STOP statement.

You can place several STOP statements at various points in a single
program. The flow of logic can then be seen throughout the program.
This is a useful debugging tool in determining program flow in large
programs.

After execution of a STOP statement, you can print variables, change
values of variables, and then continue execution with an immediate
mode GO TO statement. (See Section 1.8 for a discussion of immediate
mode commands.) .

The STOP statement halts execution but it does not «close files. To
cause BASIC to <close files after program termination, use the END
statement or no terminating statement.

4.4 SUBROUTINES

A subroutine is a block of statements that performs an operation and
then returns control of the program to the point from which it came.
Including a subroutine in a program allows you to repeat a procedure
in several places without writing the procedure several times.

Subroutines are like functions (Section 2.4.4) in that you reference
them in another part of the program. However, unlike functions, you
do not name a subroutine or specify an argument. Instead, you include
the GOSUB and RETURN statements which transfer control of the program
to a subroutine and then return control from that subroutine to the
normal course of program execution,

In BASIC, you can enter more than one subroutine in the same program.
Subroutines are easier to locate (for debugging purposes) if you place
them near the end of the program, before any DATA statements, and
before the END statement (if present). Also, assign distinctive line
numbers to subroutines. For example, if the main program has 1line
numbers ranging from 10 to 190, begin the subroutines with line
numbers 200, 300, 400 and so on.

CONTROL STATEMENTS

The first line of a subroutine can be any 1legal BASIC statement
including a REM statement. Note that you do not have to transfer to
the first line of the subroutine. 1Instead, you can include several
entry points and returns in and out of the same subroutine.
Similarly, you can nest subroutines (one subroutine within another) up
to 20 levels.

The following sections describe the building of subroutines with the
GOSUB and RETURN statements. For more flexibility in using
subroutines, see Section 4.4.2, the ON GOSUB statement.

4.4.1 GOSUB and RETURN Statements
The GOSUB statement has the following format:
GOSUB line number
where:
line number specifies the entry point in the subroutine.

When BASIC executes the GOSUB statement, it stores the location of the
next sequential statement after the GOSUB statement and then it
transfers control to the line specified.

BASIC executes the subroutine until it encounters a RETURN statement,
which causes BASIC to transfer control back to the statement
immediately following the calling GOSUB statement. (A subroutine can
exit only through a RETURN statement.)

The RETURN statement has the following format:
RETURN

BASIC has a table where it can store up to 20 locations of statements
following a GOSUB. Each time a GOSUB 1is executed, BASIC stores
another location on the list. Each time a RETURN is executed, BASIC
retrieves the last location entered on the list and transfers control
to it. In this way, no matter how many subroutines there are or how
many times they are called, BASIC always knows where to transfer
control. For example:

LERTHM

10 INPUT AvR.C

189 IF A=-9999 GO TO 70

20 GHEUR 40

BOOPRINT O

E& 60 TO 10

A0 REM - THIS I8 A SUBROUTINE
B0 DB~

60 RETURN

FOOEND

REALDY
LN

READY

CONTROL STATEMENTS

When BASIC executes line 20, it stores the location of the next

statement,

The following

10
20
30
40
S50
70
80
&0
2%

A0

GOSUR
GOsUR
GOSUR
GO TD

FOR I:=

LET A
MNEXT
FRINT

PRINT D.

Then it transfers control to line 40. When it
reaches the RETURN statement at line 60,
statement after the GOSUB (e.g.,

it transfers control to the

the PRINT D statement).

is an example of several calls to the same subroutine:

=5

=y

&0 N A
a0 N A
&0

116G
LT 5
=R
I

3]

100 RETURN
LiO EN

The same subroutine on line 60 is called
only one RETURN statement is necessary.

15

three times. Notice that

CONTROL STATEMENTS

The following program is another illustration of the GOSUB and RETURN
statements:

LISTNH

10 REM —- THIS FROGRAM ILLUSTRATES GOSUR AND RETURN
20 DEF FNAO =ARSIINT (X))

J0 FRINT "THIS SURROUTINE USES THE QUADRATIC FORMULA."
40 FRINT “ENTER THREE COEFFICIENTS"S:

S50 INFUT AsBsC

G35 PRINT

60 FRINT "SOLUTIONS FOR COEFFICIENTS ENTERED ARE®
70 PRINT "SHOWN FIRSTy THEN SOLUTIONS FOR ARSOLUTE®
80 PRINT * VALUE COEFFICIENTS.®

8% FRINT

90 GOSUR 1460

10O LET A=FNA(A)

110 LET B=FNA(R)

120 LET C=FNACD)

130 FRINT

140 GOSUR 160

1A% PRINT

180 GO 1O 310

140 REM--~THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
170 REM~~0F THE EQUATION AXX"2+EXX+C=0

180 FPRINT *THE EQUATION I8 "SAS"XX™2 & "iRi" %X + "3C
190 LET D=RER-4%ka%0

200 IF D0 THEN 230

210 PRINT "ONLY ONE SOLUTION. ¢ o X="§-R/(2XA)

220 RETURN

230 IF <0 THEN 270

240 PRINT "TWO SOLUTIONS. . « X=("§

250 PRINT (~B48ARDI/(2%AIF") AND ("5 (~B~-8ARID 3/ (2%A) ") "
260 RETURN

270 PRINT "IMAGINARY SOLUTION. . X=("$

280 FRINT ~B/(RRAI 4" 5E8QR-ID /(2%AY 5 1) "

280 FPRINT ® AND ("3

290 PRINT ~RBA(R¥AIF"-"38AR(-TD/(2KAXF "XI) "3

300 RETURN

310 END

REALRY
RUNNEH

THIS SUBROUTINE USES THE QUATRATIC FORMULA.
ENTER THREE COEFFICIENTS? Xy-%,-4

SOLUTIONG FOR COEFFICIENTS ENTERED ARE
SHOWN FIRSTy THEN SOLUTIONS FOR ARSOLUTE
VaLUE COEFFICIENTS.

THE EQUATION I8 3 &™2 4+ -5 kX + -6
TWO SOLUTIONS . o o X=(2.47481 » AND (~.808143)

THE EQUATION I8 3 *X™2 4+ & kX + 6

ITMAGTNARY SOLUTION. . o X=(~ 833333 + 1.14261 D)
AND (- B33IZZF ~ 1.,14261 %I

RE ALY

For more versatility in using subroutines, see the next section, the
ON GOSUB statement.

CONTROL STATEMENTS

4.4.2 ON GOSUB Statement

The ON GOSUB statement is used to conditionally transfer control to
one of several subroutines or to one of several entry points into one
or more subroutines. The ON GOSUB statement has the following format:

ON expression GOSUB line numberl[}line numberZ,..{D

where the expression is any legal BASIC expression. Line numbers must
be separated by commas.

The ON GOSUB statement works like the ON GO TO statement (Section
4.1.2). When BASIC executes the ON GOSUB statement, it first
evaluates the numeric expression. The value is then truncated to
integer, if necessary. If the value of the expression is 1, control
passes to the first line number specified; if it is 2, control passes
to the second 1line number specified; 1if it is 3, control passes to
the third line number specified; and so on. If the expression is
less than 1 or greater than the number of line numbers in the 1list,
BASIC prints the ?CONTROL VARIABLE OUT OF RANGE (?CVQ) error message.
The following is an example of an ON GOSUB statement:

20 ON AR GOSUR 200300120

If A+B=1, enter the subroutine at 1line 200 (first 1line number in
list).

If A+B=2, enter the subroutine at line 300 (second 1line number in
list). :

If A+B=3, enter the subroutine at 1line 400 (third 1line ndmber in
list). :

If A+B<1
or BASIC prints an error message.
If A+B>4

The line numbers to which BASIC branches can be either the first 1line
of a subroutine or an entry point to a subroutine.

CHAPTER 5

FUNCTIONS

5.1 TYPES OF FUNCTIONS AVAILABLE

Functions perform a series of numeric or string operations on the
arguments you specify and return a result to BASIC (see Section
2.4.5). BASIC provides mathematical functions, string functions,
functions that you can define, and functions that give you the current
day and time.

5.2 NUMERIC FUNCTIONS

BASIC provides numeric functions to perform standard mathematical
operations. For example, it is often necessary to find the sine of an
angle. You can do this by looking it up in a table of sine values or
by using BASIC's SIN function. If you are not familiar with the
mathematical functions described in this chapter, see a trigonometry
or algebra textbook.

BASIC provides the following trigonometric functions:

1. Sine function (SIN)
2. Cosine function (COS)
3. Arctangent function (ARC)

In addition BASIC provides a special function, PI, which returns the
value of pi (™), a frequently used trigonometric constant.

BASIC provides algebraic functions to find:

1. The square root of a number (SQR)

2. The value of e, an algebraic constant, raised to any power
(EXP)

3. The logarithm of a number (LOG and LOG10)

4. The integral part of a number (INT)

5. The absolute value of a number (ABS)

6. The sign of a number (SGN)

BASIC also provides a function RND which returns a random number. You
can use this function when you are trying to simulate an unpredictable
situation with a BASIC program.

FUNCTIONS

All BASIC's numeric functions return floating point values, not
integer values. It is important that these functions return values in
floating point format to determine whether an expression is integer or
floating point (see Section 2.4.1). All functions have a 6-digit
accuracy.

5.2.1 Trigonometric Functions (SIN, COS, ATN, and PI Functions)

BASIC provides functions, SIN and COS, to find the sine and cosine of
an angle, In addition you can use the ATN function to find the
arctangent of a number, the angle whose tangent is equal to the
number. BASIC also provides the PI function, which returns a value of
3.14159, an approximation of pi. Pi is a transcendental number and
can only be approximated in a decimal fraction. The format of these
functions are:

SIN(expression)
COS (expression)
ATN(expression)
PI

Note that the PI function cannot have an argument. If you specify an
argument with PI, BASIC prints the ?SYNTAX ERROR (?SYN) messadge.

Although BASIC does not have a tangent function, vyou can find the
tangent of a number by using the following trigonometric equation:

sine (angle)

tangent (angle) =
cosine (angle)

BASIC requires that the arguments for the SIN and COS function be
expressed as angles in radian measure. It also returns the value of
the arctangent in radians in the range -pi/2 to pi/2. radians. (There
are 2 *pi radians in a full circle.) If you want to measure angles in
degrees (360 degrees in a full circle), you can use the following
equation:

degrees *pi

radians =
180

Consider the following program which converts an angle in degrees to
an angle in radians and then calculates and prints the sine, cosine,
and tangent of the angle. Finally the program prints the arctangent
of the value returned by the tangent function. The arctangent should
be the same as the original angle.

FUNCTIONS

L TSTNH

10 PRINT *SUFPFLY AN ANGLE IN DEGREES®
20 PRINT "ENTER -9999 TO END®

23 PRINT

30 PRINT "ANGLE"y "SIN®"»"COS"» "TAN"y "ATN"
AG PRINT "IN RANIANG®»y sy "IN RADIANG"
4% PRINT

S50 PRINT "ANGLE IN DEGREES"S

&0 INFUT X

A% TF X=-999%9 THEN 327467

70 R=X¥F1/7180

80 IF ARS(COS(RI .01 THEN 200

Q0 T=8IN(RI/COS(R)

100 PRINT Ry SIN(R)y COS(RIs Ty ATNC(T)
110 60 TO S50

200 PRINT "COSINE I8 TOO CLOSE T0O ZERQ®
210 GO TO GO

32747 END

READY
BeLIMNH

SUFPLY AN ANGLE IN DREGREES
ENTER ~999% T0O END

ANGLE GIM cos THN ATN
IN RADTANG IN RADIANS
ANGLE IN DEGREES? O

0 O 1 0 O
ANGLE IN DEGREEST 445

785398 fFO7LOT fFO7107 1 L 785398
ANGLE IN DEGREES? 10

1L 74EER + 1734648 84808 1786327 174533
ANGLE TN DEGREES? pv.99
COSINE I8 TOO CLOSE TO ZERD
ANGLE TN DEGREEST -9

REAIY

At lines 50 and 60, BASIC requests that you enter an angle in degrees.
At line 65 BASIC checks to see if you have entered -9999 to end the
program. If you have not entered -9999, BASIC converts the angles to
radians, at line 70. At line 80 BASIC checks to see if the cosine of
the angle is close to 0 (this happens when the angle is close to pi/2
or 90 degrees). If the cosine is close to 0, calculating the tangent
would involve division by 0, which would produce the ?DIVISION BY ZERO
(?DV0) error message. Next BASIC calculates the tangent of the angle,
at line 90. Finally, BASIC prints the angle in radians, 1its sine,
cosine and tangent, and the arctangent of the tangent (which should
equal the angle).

NOTE

When using this program, you type -9999
to terminate it. -9999 was chosen
because it is unlikely to be entered as
a value in this context., Throughout
this chapter many examples include this
method of program termination,

FUNCTIONS

5.2.2 Algebraic Functions
BASIC provides the following algebraic functions:

Square root function (SQR)
Exponential function (EXP)
Logarithm function (LOG and LOG10)
Integer function (INT)

Absolute Value function (ABS)

Sign function (SGN)

5.2.2.1 Square Root Function (SQR Function) - The SQR function
returns the square root of the expression you specify. A square root
of a number times itself (squared) equals the original number. The
format of the SQR function is:

SQR(expression)

You use this function in BASIC instead of the mathematical notation
for square root (V).

If the value of the expression is negative, BASIC prints the nonfatal
message ?NEGATIVE SQUARE ROOT (?NGS) and returns a value of 0. For
example:

LESTHH

1O PRINT "THE SQUARE", *I1g*
A0 PRINT “ROQT QF"

FOOFRINT 14280R1LA)D

A0 FRINT ~100y8QR-1000

U0 XK=31 . 6228%3L . 62028

A0 PRINT Xe8QR(X)

REATYY
(RIS
THE SQUARE 18
ROOT OF
KRY) 4
~ 1 O0Q THNEGATIVE SQUARE ROOT AT LINE 40
O
1300 X1 6228
RE &Y

Notice that when BASIC tries to calculate the square root of -100 it
prints the error message and then prints 0 on the next line.

5.2.2.2 Exponential and Logarithm Functions (EXP, LOG, and LOG1l0
Functions) - The exponential function returns e, an algebraic constant
raised to the power specified. For example EXP(l) is equal to e ,
approximately 2.71828, and EXP(2) is equal to e"2. The format of the
EXP function is:

EXP(expression)

The LOG function returns the logarithm to the base e of the specified
expression. The format of the LOG function is:

LOG (expression)

EXP and LOG are related functions.

of LOG.

FUNCTIONS

Specifically, EXP

is the inverse

The following formula describes their relationship.

LOG(EXP(X)) = X

Conside

r the following

examples.

Note that the

example is used as input for the other.

(I
10
15

20

EXP Function

ST

INFUT X
IF X = ~9999
FRINT EXF(X)

THEN 100

LOG Function

LISTHH

10 INPUT X
189 IF X
20 PRINT LOGOX)

output from one

m 9999 THEN 100

30 GO TO 10
100 END

READY

[RUREH

A
?]

54,5981
7 T

22026.5
PO AT
123449

NESESTATS)

il

REATY

You can convert logarithms to
using the following formula:

log, (N)
log,(N) = = ——
1oge(a)

LIGTNH

1O REM ~ CONVERT BASE
20 PRINT "WHAT BASE®S

IO OTNPUT B

SO PRINT "UGLLIEY » "BABE
B O INPUT X

SO IF X o=
7O OPRINT
0 PRINT
O PRINT

100 GO TA
200 END

=QQUO THEN 200
Xy
LOGOKA Y
LOGX»/Z1L.0DGCR?
30

FEADY
RUMNM

WA
L UE

RAGET 2
BASE B LOG
1. 38429

H.82146

b 1460944
-T2

REALRY

B L0G

0 GO TO
LOG END

READY
IR

10

' "
oL R
4
P,
IRV N T

10
o aTRAn
9. 42101
[I ’ \4‘.‘ Cl} 3

RE ALY

the base e to

where you are trying to find the log of N to the base a.
following examples which calculate logs to any base.

TO ANY

BASE 2 LOG

-~y
A

7L REGTE

232193

5-5

BAGE

any other base

L.OG.

EOLOG" y "RASE " SRS "LOGT

log by

Consider the

FUNCTIONS

However, you need not use this formula to find the logarithm to the
base 10 of a number. BASIC provides the LOGl0 function which does
this. The form of the LOG1l0 function is:

LOG10 (expression)

You use the LOGl0 the same way that you use the LOG function. The
only difference is that LOGl0 returns the logarithm to the base 10
instead of to the base e.

If you specify an expression in the LOG or LOG1l0 function whose value
is negative or equal to 0, BASIC prints the nonfatal message ?BAD LOG
(?BLG) and the function returns a value of 0.

5.2.2.3 1Inteqger Function (INT Function) - The integer function
returns the value of the greatest integer that is less than or equal
to the expression you specify. The format of the integer function is:

INT (expression)
For example:

L FETNR
10 FRINT INT(34.47)
20 FPRINT INT(33000.9)

READY
LI

34
JEG0O0

READY

The INT function always returns the value of the greatest integer that
is less than or equal to the specified expression. A consequence of
this is that when you specify a negative number, INT produces a number
whose absolute value is larger. For example:

LESTNH

1O PRINT INT(-23.45)
20 PRINT INT(~14.7)
30 PRINT INT(-11)

READY
FLINMH

w3
w1 G

=11
REAIY

Note that the value returned by INT is a whole number in floating
point format, not an integer.

FUNCTIONS

You can use the INT function to round off numbers to the nearest
integer by adding 0.5 to the argument. For example:

LTSTNH
10 PRINT INT(34.67+.5)
20 PRINT INT(-G.1+.35)

READY
Rl

33

REALY

You can also use INT to round off a number to any given decimal place
or any integral power of 10. Do this by using the formula:

number rounded off = INT(number*10°P+.5)/10"P
where P represents the number of places of accuracy.

Consider the following example which rounds numbers to the number of
decimal places specified by the user. Note that P should have a
positive value (tested in line 135) in the formula (which is in line
150) for P to determine the digits of accuracy to the right of the
decimal point.

Lob e TNH

5O REM PROGRAM TO ROUND OFF DECIMAL NUMBERS

100 PRINT "WHAT NUMBER DO YOU WISH TO ROQUND OFF®§

110 INFUT N

1% IF N o= ~92999 THEN 100

120 PRINT *T0O HOW MANY PLACES"S

LEG INFUT P

140 PRINT

150 LET A=INT(NELO™F+.S) /70107 Round the number
LA PRINT N'="A'TOF"DECIMAL PLACES.® ’ -

1720 PRI

180 GO TO 100
1000 END

READY
P ipit

WHAT NUMBER 00 YOU WISH TO ROUND OFF® S5.1937
T HOW MANY FLACEST -

H& L1237 = 54,12 TO 2 DECIMAL PLACES.

WHAT NUMEER 00 YOU WISH TO ROUND QFF7 & 149
TO HOW MANY FLACEST !

8.449 = 8.4 TO 1| DECTMAL FLACES.

WG

WHAT NUMBER DO YOU WISH TO ROUND OFFT?

RE AT

FUNCTIONS

And consider this program which prints numbers to the nearest
thousandth (1073). Note that in this program, P has a constant value
of -3 in the formula (on 1line 40). Because P is negatlve, the
accuracy is three digits to the left of the decimal point, that is the
numbers are rounded to the nearest thousand.

LTSTHNH

10 REM FROGRAM TO ROUND TO NEAREST 1000

20 PRINT "WHAT NUMBER 00 YOU WANT TO ROUNDT
30 INPUT N

35 IF N=-9999 THEN 1000

AQ B=TNTINKLO™ (304,53 /107 (~3)

SO PRINT NS"="§A5"T0 THE NEAREST THOUSAND®
GS OPRINT

60 GO TO 20

1000 END

READY
P TN

WHAT NUMEBER DO YOU WANT TO ROUND? S4339
F4339 = 34000 TO THE NEAREST THOUSAND

WHAT NUMEER DO YOU WANT TO ROunne 11749
11749 = 12000 TO THE NEAREST THOUSAND

(,HN\\

WHAT NUMRBER 1O yOu WANT TO ROUND? ™

RE&DY

5.2.2.4 Absolute Value Function (ABS Function) - The ABS function
returns the absolute value of the specified expression. The form of
the ABS function is:

ABS (expression)

The absolute value of a number, by mathematical deflnltlon, is always
positive. The absolute value of a positive number is equal to the
number, but the absolute value of a negative number is equal to -1
times the number. For example:

LITSTNH

1O INFUT X

15 IF X=-9999 THEN 100
20 X=ARS(X)

30 PRINT X

40 GO TO 10

100 END

READY
FUMMEH

SUERG

2 JOO(+3
- LOBEESSY

: LY
r', (,) \ VO

RESDY

FUNCTIONS

Note that the ABS function returns a floating point number even if the
argument is an integer. 1In that case, it returns a whole number in
floating point format.

5.2.2.5 8Sign Function (SGN Function) - You can use the sign function
to determine if an expression is positive, negative, or equal to 0.
The format of the SGN function is:

SGN (expression)

If the expression you specify is positive, SGN returns a +1; if it is
negative, SGN returns a -1; and if it is equal to 0, SGN returns a 0.
For example:

LT
1 () Dy 2 7 N : :?
20 K

"Amt G Ay "R=" Ry CETS0
"GEN(AY =" FEENCA)
TSGN(BY="SSONCR)
70 FRINT "SGN(CY="3$SGN(C)

READY
IREEINE

B, 44 Gm= Q
BONCRY= 1 BOEN(CY= O

REALRY

Note that SGN returns these values as real numbers, not integers.

5.2.3 Random Numbers (RND Function and RANDOMIZE Statement)

It is often useful to get a series of random numbers in a BASIC
program. A series of random numbers is a series of numbers which are
not related to each other in any way. You can use random numbers in
simulating a situation in the world which is not predictable.

It is impossible for a computer to produce a series of totally random
numbers because computers always produce the same results given the
same starting comditions. Instead, BASIC uses complex calculations to
produce a predictable series of numbers that seem unrelated. This is
called a pseudo-random series,

The RND function returns a number from this pseudo-random series each
time vyou use it. It starts from the beginning of the series whenever
you initialize your program (OLD, NEW, SCR, or RUN command or CHAIN
statement) .

In addition, BASIC provides the RANDOMIZE statement. Every time that
BASIC executes the RANDOMIZE statement it starts the RND function at a
new, unpredictable (based on the current time of day) location in the
series. When you are testing and changing your program you should not
use the RANDOMIZE statement. If you do, you will not know if changes
in the results are caused by changes in the program or the series
starting off in a new location. If, on the other hand, you have
tested vyour program and are using it, use the RANDOMIZE statement
because it produces less predictable series.

5-9

FUNCTIONS

The format of the RND function is:

RND

The function returns a random number in the open range 0 to 1. (An
open range means the extremes, 0 and 1 in this case, are never
reached.)

You can also specify an expression in RND, for example, RND(0), but do
not do this. BASIC ignores the expression and only allows it because
you may have written a program with another version of BASIC which
requires an expression after RND.
The format of the RANDOMIZE statement is:

RANDOMIZE

Consider the following examples which contrast RND without and with
RANDOMIZE.

RND without RANDOMIZE

LELSETMH
10 FPRINT RNIDs RNI RNy RN

READY

UMMM

+Q407319 L528293 803172 0643910
READY

FRLIMNH

+0407319 L28293 +803172 0643915
READY

RUNNH

+ Q407319 S28293 LBO3L72 Q643915
REALY

As you can see, every time the program without RANDOMIZE is run, RND
produces the same series of values.

RND with RANDOMIZE

LETSTHH
5 RANDOMIZE
1O PRINT RNDs RNIN RNXy RND

READY
FebinM

4, S53806E-03 ALY cATIAR2T LQB71EB7T7

READY
FUH

L 2U8322 « 1810464 74614808 «PIPEZ

READY
FUNNM

494162 L 88BIGH4 8684043 3070046

REALY
5-10

FUNCTIONS

Each time the program with RANDOMIZE is run, RND produces a different
random series of numbers.

You can also use the RND function to produce a series of random
numbers over any given open range. To produce random numbers in the
open range.A to B, use the following general expression:

(B-A) * RND+A

For example, to produce 10 numbers in the open range 4 to 6, use this
program

LISTHH

10 FOR I=1 TO 10

20 PRINT (6-4)RRNDH4
BO ONEXT I

REALY
BUINMH
4.08146 H5.05659 G.460634 4,12878 4,31561
4.73461 H5.856717 4. FP1EA A.5447 4, 74433
REATY

Note that in line 20 of the program the general expression is wused
with a value of 4 for B and a value of 6 for A. .

To obtain a series of random integers in the range of 0 to 40, use the
expression

INT((41-0) *RND+0)
or the equivalent
INT (41*RND)

41 is used instead of 40 so that the expression can return a value of
40.

The following example produces 15 random integer values in the range 0
to 40.

LTHETHH

10 FOR L o= 1 TQ 13
20 PRINT INTC4LRRNIY»
FOONEXT I

REALY
SRR INIS |
i 21 32 2 &
15 32 14& 13 15
13 26 4w 16 26
READY
5-11

FUNCTIONS

5.3 STRING FUNCTIONS

BASIC provides string functions that allow you to examine and modify
strings and perform certain string to numeric conversions.

String functions that return a string have a dollar sign ($) at the

end of their name. String functions that return floating point or
integer numbers do not have a dollar sign.

5.3.1 String Manipulation Functions
BASIC's string operations allow you to concatenate and to compare
strings, but only by also using the string manipulation functions can
you analyze what a string is composed of. You can wuse string
functions to:

1. Determine the length of a string (LEN).

2. Trim off trailing blanks from a string (TRMS).

3. Search for the position of a set of characters within a
string (POS).

4. Copy a segment from a string (SEGS).

5.3.1.1 Finding the Length of a String (LEN Function) - You can use

the LEN function to find the length, or number of characters, of a

string. The LEN function returns an integer value equal to the length

of the string you specify. The format of the LEN function is:
LEN(string)

Consider the following example which prints the length of a string
containing all the letters in the alphabet:

RS RS
10 Ak="ARCHEFGHIJRKLMNOPARSTUVWXYZ®
20 PRINT LENCAS)

READY
AR

26

READY

5-12

FUNCTIONS

5.3.1.2 Trimming Trailing Blanks Off a String (TRM$ Function) - The
TRM$ function returns the same string that you specify except that any
trailing blanks are removed. The format of the TRM$ function is:

TRMS$ (string)

Consider the following example in which two strings are concatenated
and printed, both before and after trailing blanks have been trimmed:

PSR

10 A%="ARCH "

20 RBe=CEFG"

30 PRINT "REFORE TRIMMING:"y»O$+ES$

40 PRINT *AFTER TRIMMING?®» TRM$ (A$)+ES

REATY
L

FEFORE TRIMMING? ABCD EFG
AFTER TRIMMINGS ARCIEFG
READY

5.3.1.3 Finding the Position of a Substring (POS Function) - Use the
POS function to find the 1location of a group of characters, or
substring, within a string. The format of the POS function is:

POS(stringl,string2,expression)

where:
stringl is the string being searched.
string2 is the substring.

expression is the character position at which BASIC starts the
search.

The POS function searches for and returns the first occurrence of
string2 in stringl starting with the character position specified by
expression. If POS finds the specified substring, it returns the
character position of the first character of the substring. If POS
does not find the specified substring, it returns a 0.

The POS function always returns an integer value.

FUNCTIONS

Consider the following example which translates each name of a month
to its numeric equivalent (e.g., DEC to 12):

LIGETNH

10 Té=" JANFERMARAFRMAY JUNJULAUGSEFQUTNOUREC"

100 FRINT "TYFE THE FIRST 3 LETTERS OF A MONTH®;
110 INFUT M4$

120 IF Mé="END* THEN 32767

130 IF LEN(M$)<>3 THEN 200

140 M=(POS(TS s Mb» 1242 /3

150 ITF M<=INTOMY THEN 200

160 PRINT M$3" I8 MONTH NUMEER®"$M

170 GO TO 100

200 PRINT "INVALID ENTRY - TRY AGAIN" \GO TO 100
32767 ENIP

REALDY
FLINMNE

TYPE THE FIRST 3 LETTERS OF A MONTH? NOU
NOV I8 MONTH NUMRBER 11

TYFE THE FIRST 3 LETTERS OF A MONTH? May
MAY I8 MONTH NUMRBER 9§

TYFE THE FIRSYT 3 LETTERS OF A MONTH? Jun
TNVALTD ENTRY ~ TRY AGAIN

TYPE THE FIRST 3 LETTERS OF A MONTH? END
REMDY

In line 140 the POS function returns the position of the input string,
M$, in the string containing the first three letters of each month,
Tso

If the program finds the month you specify, it prints the number of
the month. If it does not find the month, it requests you to try
again.

Using the POS function to translate a string to a number corresponding
to the string's location in a larger string is called a table look-up.
The table string is stringl and the string to be mapped is string2 in
the POS function format.

There are certain possible error conditions dependent on the values of
the strings and the expression:

1. 1If string2 (the substring) is null and stringl (the table
string) 1is nonnull then the function returns the lesser of
the value of the expression and the length of stringl plus 1.

2. If stringl is null, then the function returns 0.

3. 1If the expression has a value less than 1, then the function
assumes a value of 1 and starts the search at the first
character.

4. 1If the value of the expression is greater than the length of
stringl and string2 is nonnull, then the function returns 0.

FUNCTIONS

5.3.1.4 Copying Segments from a String (SEG$ Function) - Use the SEG$
function to copy a segment (or substring) from a string. The SEGS$
function returns a string consisting of the characters in the string
you specify between the character positions you also specify. The
original string is unchanged. The format of the SEG$ function is:

SEG$ (string,expressionl,expression2)
where:
string is the string from which the segment is copied.

expressionl specifies the starting character position of the
segment

expression2 specifies the last character position of the
segment.

For example:

LESTHH
1O PRINT SEGS("ARCIEF" ¢ 3200

REALDY

NN
(NI
SEGDY

There are several error conditions based on the values of the
expressions and the string:

1. If expressionl is less than 1, BASIC assumes a value of 1.

2. If expressionl is greater than expression2 or the 1length of
string, SEGS returns a null string.

3. If expression2 is greater than the length of the string, SEGS$
returns the characters from expressionl to the end of the
string.

4. If expressionl equals expression2, then SEG$ returns the
character at position expressionl.

By using the SEGS function and the string concatenation operator (+),
you can replace a segment of a string. Consider the following
example:

LTSTNH

10 A% ARCUEFG"

FCASr Ly 23 HTXYZ U HSEGE (A% 69 7)
X FRINT O%

REALDY
FeldNNM

ARXYZFG

RESIY

5-15

FUNCTIONS
Line 20 replaces the characters CDE in the string A$ with Xyz.
Examine line 20:
20 C$=SEGS$ (AS$,1,2)+"XYZ"+SEGS (AS$,6,7)

You can use similar string expressions to replace any given characters
in a string.

A general formula to replace the characters in positions n through m
of string A$ with B$ is:

C$=SEGS (A$,1,n-1)+B$+SEGS (A$,m+1,LEN(AS))

For example, to replace the sixth through ninth characters of the
string "ABCDEFGHIJK" with "123456", enter the following program:

Lol

10 AS="ARCDEFGHIJK"

20 Re="1234546"

30 Co=8EGE A%y Ly T)HRSFEEGE(AS» 1O LENCAS))
A0 PRINT C#

f
]

[

Eany

P
ARCTEL23456.UK
REALY

The following formulas are more specific applications of the general
formula.

To replace the first n characters of AS$ with B$:
C$=B$+SEGS (A$,n+1,LEN(AS))

To replace all but the first n characters of A$ with B$:
C$=SEG$ (A$,1,n)+B$

To replace all but the last n characters of A$ with BS$:
C$=BS$+SEGS$ (A$,LEN(A$) ~n+1,LEN(AS))

To replace the last n characters of A$ with BS
C$=SEGS$ (A$,1,LEN(AS)-n) +BS

To insert B$§ in A$ after the nth character in A$:

C$=SEGS$ (A$,1,n) +B$S+SEGS (AS,n+1l,LEN(AS))

5.3.2 Conversion Functions

BASIC provides several string functions to convert strings to numbers
and numbers to strings.

5-16

FUNCTIONS

You can use BASIC's functions to make the following conversions:
1. Character to ASCII code (ASC)
2. ASCII code to character (CHRS)
3. Number to its string representation (NUMS)
4. String representation of a number to a number (VAL)
5. String representing a binary number to a decimal number (BIN)
6. String representing an octal number to a decimal number (OCT)

These functions provide flexibility in manipulating both strings and
numbers.

5.3.2.1 Character and ASCII Code Conversions (ASC - and CHRS
Functions) - BASIC uses the ASCII code to represent characters
internally. The ASC function returns the decimal ASCII code of a
l-character string that you specify. The CHR$ function returns the
l-character string which has the ASCII value you specify. Both
functions handle eight-bits of internal representation (decimal 0 to
255). The ASC and CHR$ functions can be used with the SEG$ function
to analyze the character in a string.

The format of the ASC function is:
ASC(string)
where string must be a l-character string. If string is a null string
or contains more than one character, BASIC prints the ?ARGUMENT ERROR
(?ARG) error message.
The ASC function returns an integer value.
The format of the CHR$ function is:
CHRS (expression)
Only one character is generated at a time.

The expression must be 0 or greater. BASIC treats arguments greater
than 255 modulo 256 (=.9., BASIC treats 256 as a 0, 257 as a 1, etc.).

FUNCTIONS

Consider the following example:

L TETMH

10 REM THIS PROGRAM WILL RETURN AN INFUT LETTER AND THE 2

20 REM FOLLOWING IT ALFPHARETICALLY

J0 FRINT "ENTER A LETTER A THRU 2y ENTER END WHEN FINISHED®

40 PRINT "LETTER®y "NEXT LETTER"y "3RI LETTER®

50 INPUT X4

G OIF X$=CENDT G0 TO 999

O TF X$"a™ GO TO 190

FOO0F X$x"Z® 60 TO 190

80 FOR F=ABCIX$) TO ABCIX$EI+2 Returns ASCII value of X$
Q0 IF CHR&O="Z" GO TO 150 Uses CHR$ to produce next
100 PRINT CHR$C(FYy 3 character

LRO NEXT F

120 FRINT

130 GO TO 50

150 PRINT "END OF ALPHARET®

16O GO TO 50

190 FRINT “EMTRY IS NOT A LETTER A THRU 2"

210 GO TO 30

QP END

FEALY
P

ENTER A LETTER & THRU Zy ENTER END WHEM FINTISHED
ETT NEXT LETTER 3RD LETTER

E F G

?

2} B C

Y

Y Z END OF ALPHARET
X

ENTRY 18 NOT A LETTER A THRU 2
ENTER A LETTER A THRU Zy ENTER END WHEN FINISHED
LETTE NEXT LETTER 3RD LETTER

READY

NOTE

The CHR$ function produces all printing
and non-printing characters with ASCII
values from 0 to 127. ASCII wvalues
between 127 and 255 produce the same
character as the ASCII value minus 128,
but the string produced is not equal and
differs in the internal representation.

5.3.2.2 Numbers and Their String Representation Conversions (VAL and
STR$ Function) - Two functions, VAL and STR$, convert numbers to their
string representation and vice versa. You can use these functions
when you want to input a numeric value in a string variable or to
print a number without the spaces around it.

FUNCTIONS

Consider these programs:

String Representations Numbers
LEBTHH LIGTNH
10 FRINT "23°* 10 PFRINT 25
20 PRINT "28+1" 20 PRINY 2541
READY READY
FLIMMNH RLIMNMH
25 25
2541 26
READY READY

The program on the left prints the string representation of numbers,
but the program on the right prints the numbers themselves. Note how
the "25+1" on the left is printed as it is while the 25+1 on the right
is evaluated to be 26.

The VAL function returns the number represented by the specified
string. The format of the VAL function is:

VAL (string)
where:

string may contain the digits 0 through 9, the letter E
(for E notation) and the symbols + (plus), -
(minus), and . (decimal point) and must be a
string representation of a number. The string
must be a numeric constant not a numeric
expression.

The STR$ function converts a number to its string representation. The
format of the function is

STRS (expression)

The STR$ function returns the value of expression as it would be
printed by a PRINT statement but without a leading or trailing space.
Use the STR$ function when you want to print a number without spaces
before and after it or when you want to perform string operations or
functions on a number.

5-19

FUNCTIONS

Consider the following example:

LIETNH

SOPRINT "PROGRAM TO CALCULATE
1O PRINT "TYPE IN AMOUNT®$

20 INFUT M$

20 IF FOSMSy "$" 1)1 THEN 100
40 AS=SEGHE (M$ 2o LENIM$))

B0 M=VAL (A%)

460 I=,005%M

70 ITH=8TR$ECT)

&0 EGS (TS Ly 24POS(Tdhe "o "yl)
895

PO FRINT "84 INTEREST QF"iM$s
100 PRINT I8 $"314

27267 END

REATY

ERRIS I

FROGRAM TO CALCULATE 5% INTEREST
TYFE IN AMOUNT® 1730090

SAOINTEREST OF $308.90 18 $1%.44

RE®SDIY

5.3.2.3 Binary and Octal to
Functions) - The BIN function
number.
spaces.
of the digits.

BIN(string)

Decimal Conversions
returns the decimal value of a binary
The binary number is represented as a string of 1s,

The BIN function ignores spaces, allowing convenient spacing
The format of the BIN statement is:

S% INTEREST®

Input string in form $xxx.xx.
Check to see that a $ is present.
Strip § from number.
Convert string to number.
Compute interest.
Convert it to string.
Truncates interest to
dollars and cents.
Print results.

Note that there is
no space before 15.44.

(BIN and ocT

0s, and

The BIN function returns an integer value.

The binary number is treated as a signed 2's
absolute value may not be larger than 2715-1.

its

Py
1O PRINT RIN
200 PRINT BRIN (")

("100101001")
CEE U EE A E R R
REAIY
RIOE

257

=1

REALY

The OCT function returns the decimal value of an octal number.
is represented as a string containing the digits from 0
The OCT function ignores spaces allowing
The format of the OCT function is:

octal number
to 7 and spaces.
grouping of the digits.

OCT(string)

complement integer and

For example:

Lraey

The

convenient

The OCT function returns an integer value.

FUNCTIONS

The octal number is treated as a signed 2's complement integer. Its
absolute value may not be larger than 2715-1.

For example:

PISTMH

10 FRINT QCT("451")

20 FRINT QOCTC 177 777%)
READY

PLINRH

@7

= 13

REALY

5.4 USER-DEFINED FUNCTIONS (DEF STATEMENT AND FN FUNCTION)

In some programs you may want to execute the same sequence of
mathematical formulas in several places. You can define a sequence of
operations as a user-defined function and can use this function as you
use the functions BASIC provides, such as SIN and SEGS$.

Names of user-defined functions consist of the letters FN, followed by
a third letter, and optionally followed by a percent sign or a dollar
sign. If you end the function name with a percent sign, it returns an
integer. If you end the function name with a dollar sign, it returns
a string. If you do not end the function name with either a percent
sign or a dollar sign, then it returns a floating point number.

Legal User-Defined Illegal User-Defined
Function Names Function Names
FNA FN1
FNC% FNA2
FNRS FNA%S

You must define each user-defined function once in a program with a
DEF statement. You can define it anywhere in the program. The format
of the DEF statement is:

%
DEF FNletter { } (list) =expression
$

where:
letter is an alphabetic character that becomes part of
the function name.
% indicates the function returns an integer and
becomes part of the function name.
$ indicates the function returns a string and

becomes part of the function name.

neither $ nor % indicates the function returns a
real number.

5-21

FUNCTIONS

list contains between one and five dummy variables.
These can be integer, floating point, or string
variables. The list is in the format:
variablel E,Variable2,...,variables]
expression is evaluated each time the function is used. It
may contain any of the dummy variables or any
other variables in the program.
Ensure that the expression is the same data type, string or numeric,
as indicated by the function name. If the expression is real and the

function name is integer or vice versa, BASIC converts the expression
to the type specified by the function name.

Once you have defined the function anywhere in the program, you can
use (or call) the function. The format for calling the function is:
%
FNletter (expressionl ﬂ,expressionz,...,expressionsﬂ)
$
where the number of expressions must be the same as the number of
dummy variables in the DEF statement.
Each expression in a function call corresponds to a dummy variable in
the DEF statement. When BASIC evaluates a function call, it evaluates
the defining expression in the DEF statement with the expressions
listed in the function call in the place of the corresponding dummy
variables.
For example, the line:
LG NEF FNA{S=8"2
causes a later statement:
20 LET R=FN&4)
to assign a value of 16 (472) to R.

Consider the following two programs:

Program #1 Program #2

LoTSTMH LLETHH

10 DEF FNSAY=ATA 10 DEF FNS(X)y=X"X
20 FOR I=1 TO % 20 FOR I=1 TO %

Jd PRINT ToFNSCD BO PRINT TFNSCI)
A0 NEXT I 40 NEXT I
50 END 30 END
REARY REALDY

L FLiNMH

1 1 1 1

2 4 2 4

X 27 3 27
4 2954 4 256
% 3125 5 3125
READY REALY

5-22

FUNCTIONS

As you can see, these two programs produce the same output. The
actual names of the arguments in the DEF statement have no
significance; they are strictly dummy variables. But the data types
of the variables are significant. If the DEF statement specifies a
string variable, the corresponding argument must be a string. If the
DEF statement specifies a numeric variable, the corresponding argument
must be numeric. BASIC converts, as necessary, a numeric argument to
the type, floating point or integer, specified by the name in the DEF
statement.

The defining expression can contain any constants, variables,
BASIC~-supplied function, or another wuser-defined function. For
example:

LO NEF FNAX)=X"243%X+4

20 NEF FNRXI=FNA(XI/2HFNAX)

30 DEF FNC(X)y=8QR{X+4)4+1
You can include any variables in the defining expression. If the
expression contains variables that are not in the dummy variable list,

they are not dummy variables. That is, when the user-defined function
is evaluated, the variables have the value currently assigned to them.

Consider the following example:

LIGTNH

10 UEF FNROA»BIY=A+XT2 Define function.
20 X=1 Assign value to X.
IO FPRINT FNR(L4:87) Evaluate function.
40 Xm2 Change value of X.
H5O O FRINT FNRECL4287) Evaluate function again.
A27H7 END

READY

FUNMH

15 14 + 172

18 14 + 272

REALY

Note that in this example the second argument (the dummy variable B
and the actual argument 87) is unused.

The expression does not have to contain any of the variables. For
example:

LITSTMH

10 GEF FNA (X)=442 Note this function always returns
20 LET R=FNACLOI+1 a value of 6 no matter what

X0 PRINT R the value of the argument

40 END is.

READY

FLIRE

READY

5-23

FUNCTIONS

Consider the following example:

FESTNH

1 REM MODULUS ARITHMETIC PROGRAM

5 OREM FIND X MOD M

10 DEF FNMXeMy=X-MEXINT(X/M) Define FNM to
15 REM X MOD M.

20 REM FIND A+R MOD M

28 DEF FNAMAyReMI=FNM{A+Rs M) Define FNA to
30 REM A+B MOD M usin
38 REM FIND AR MOO M

A0 DEF FNRAyRyM)=FNMOAKER M) Define FNB to
41 REM A*B MOD M usin
485 PRINT

SO PRINT "ALDITION AND MULTIPLICATION TARLES MO M®

58 PRINT "GIVE ME AN M"5 N OINPUT M

GO FRINT N PRINT "AlDITION TARLES MOU*3M

&8 GOSUE 800

FOOFOR I=0 TO M-l

PEH OPRINT I8 "3

89 FOR J=0 T0 M-l

2% FRINT FNACT»JeMY 5 Call FNA.

G0 NEXT J N FRINT N ONEXT ¥

10C FRINT N PRINT N

L10 PRINT "MULTIPLICATION TARLES MOD"$M

120 6GOSUR 800

L3I0 FO T=0 7O M-l

LA FRINT Le* "3

1850 FOR J=0 7O M-1

LEQ FRINT FNRCT v JeMY S Call FNB.

L2090 NEXT J N PRINT N NEXT I

180 GO TO Z2767 Subroutine prii
SO0 REM SURBRQUTINE FOLLOWS? table headings
L0 FRINT N PRINT TARCSI 304

820 FOR I=0 TO M-1

B30 FRINT Ii N NEXT I N PRINT

840 FOR I=1 TO 3%M+a

8H0 PRINT "8 N NEXT T N PRINT

8460 RETURM

3767 EMD

RE&TY

FUNCTIONS

FRUNNH

ATMITION AND MULTIPLICATION TABRLES MOD M

GIVE ME AN M? 7

ANRTITION TARLES MOD 7

O 1 2 3 4 3 6

0 0 1 2 3 4 5 6
1 L2 3 4 3 6 0
2 2 3 4 % & 0 1
3 2% 05 & 0 1 2
4 4 5 & O 1 2 3
] 5 06 0 1 2 3 4
é 6 0 1 2 3 4 9

MULTIFLICATION TARLES MO 7

0 1 2 3 4 9 6

et

o
o
F]

0 O ¢ 0 0 0 0 0
1 o 1 2 3 4 5 6
2 0O 2 4 & 1 3 0
3 ¢ 3 6 2 G 1 4
4 o 4 1 % 2 6 3
o] 6 4

& 3 2

S
[e &
A
o

READY

You can put DEF statements anywhere in a program. They do not have to
appear before the functions are used. BASIC defines functions when a
program is run. Consider this example:

10 TEF FRA GO =X"2 Enter DEF statement
FRINT FNACE) Try calling function in

immediate mode
PUNDEFINED FUNCTION Error message produced.

READY
RN Run program, causing
function to be defined.
REARY
PFRINT FRNACS) Now it works!
9
REALY

If you enter a DEF statement in immediate mode, BASIC ignores it.

If the same function is defined more than once in a program, BASIC
prints the ?ILLEGAL DEFINE (?IDF) error message. Note that FNA, FNA%,
and FNAS$ are all different functions.

FUNCTIONS

5.5 DATE AND TIME FUNCTIONS (DAT$ AND CLK$ FUNCTIONS)

BASIC provides two functions to return the current date and time.

format of these functions are:

DATS$
CLK$

For example:
L.ESTNH
10 FRINT "TODAY IS"iDATH
20 PRINT “THE TIME 18*5CLKS

REARY
FELIMNH

TOnAY 18 27-MAY~76
THE TIME I8 1015530

READY

5-26

The

CHAPTER 6

WORKING WITH DATA FILES

6.1 INTRODUCTION TO DATA FILES

you can use files to store data for future use. If you store data in
your area of memory (such as with DATA statements), the data is lost
each time you enter a new program. Data stored in files on peripheral
devices can be used by many different programs, can be saved for
future use, and can even be taken to another computer system.

There are two different kinds of BASIC data files, sequential files
and virtual array files.

BASIC treats sequential files in the same way that it treats terminal
input and output. When BASIC executes an INPUT statement, it requests
a value from you through the terminal. When BASIC executes an INPUT #
statement, it requests a value from a sequential file. When BASIC
executes a PRINT statement, it writes data on the terminal. When
BASIC executes the PRINT # statement, it writes data in a file. One
difference between sequential files and terminal input and output is
that once a file has been written BASIC can read the data.

BASIC treats virtual array files in the same way that it treats arrays
in your area of memory. As you can access the elements in an array in
memory in any order, you can access the elements of a virtual array
file in any order. This is called random access. For comparisons of
sequential files and virtual array files and arrays in memory and
virtual array files, see Section 6.4.

This chapter describes data files. It is also possible to store BASIC
programs in files (see Section 9.6).

6.2 FILE CONTROL STATEMENTS

Before you can access a sequential or virtual array file, you must
open it, that is, associate the file with a channel number. Use the
OPEN statement to do this.

1f you open any files in your program, you should close them, that is,
disassociate them from their channel numbers, when the program
terminates. Use the CLOSE statement to do this.

WORKING WITH DATA FILES

6.2.1 Opening a File (OPEN Statement)

The OPEN statement can either open an existing file or create a new
one. The OPEN statement associates the file with a channel number,
which you use to access the file.

The format of the OPEN statement is:

OPEN string ”:{FOR INPUT }]]AS FILE([#]Jexpression

FOR OUTPUT
where:

string is a file specification. It can be any string
expression. See your BASIC-11 user's guide for a
complete description of the file specification
format.

FOR INPUT specifies opening an existing file.

FOR OUTPUT specifies creation of a new file.

expression is the channel number of the file. The channel

number can have any integer value between 1 and
the maximum allowed by the system (see your
BASIC-11 wuser's guide). If the value of the
expression is not an integer, BASIC truncates it
to an integer.

The OPEN statement opens a sequential file unless the channel number
specified in the OPEN statement is also specified in a DIM# statement
(see Section 6.4.1). 1In this case, BASIC opens a virtual array file.

If you specify FOR INPUT, BASIC opens an existing file and you can
only read information from it to memory.

If you specify FOR OUTPUT, BASIC creates a new file. Any existing
file with the same file specification is superseded when the new file
is closed (see Section 6.2.2). What actually happens to the old file
is system dependent; see the BASIC-11 user's guide for your system.
If you specify FOR OUTPUT for a sequential file, you can only write to
the file. However, if you specify FOR OUTPUT for a virtual array
file, you can either write to or read from the file (see Section 6.4).

Specifying neither FOR INPUT nor FOR OUTPUT for an existing sequential
file 1is equivalent to specifying FOR INPUT. If the sequential file
does not exist, specifying neither is equivalent to specifying FOR
OUTPUT.

If you specify neither FOR INPUT nor FOR OUTPUT for an existing
virtual array file and the file exists, the existing file is opened,
but, unlike specifying FOR INPUT, you can both write to and read from
it. To wupdate an existing virtual file, open it with neither FOR
INPUT nor FOR OUTPUT specified. Specifying neither FOR INPUT nor FOR
OUTPUT for a virtual array file that does not exist is equivalent to
specifying FOR OUTPUT.

Consider these examples of the OPEN statement.
10 OFEN "DATAL" FOR INFUT A8 FILE 41

Opens the existing file specified by DATAl and associates it
with channel 1. You can only read from the file.

WORKING WITH DATA FILES

20 OPEN "MONEY® FOR OUTPUT A8 FILE N

Creates a new file and supersedes any existing file
specified by MONEY and associates it with channel 5.

30 OPEN "LPI® FOR QUTRUT AS FILE #2
Opens the line printer for output and associates it with
channel 2. Note that to use a write-only device such as the
line printer, you must specify FOR OUTPUT.
You can also use some system-dependent options in the OPEN statement.

These allow greater flexibility in accessing files. The complete
format of the OPEN statement is:

OPEN string EFOR INPUTﬂ AS FILE Mexpr ﬂz)OUBLE BUF]](IZRECORDSIZE expr]][MODE exp{[]l]EFILESIZE expr:l)
FOR OUTPUT

The effects of DOUBLE BUF, RECORDSIZE, MODE, and FILESIZE are
described in your BASIC-11 user's guide.

6.2.2 Closing a File (CLOSE Statement)

The CLOSE statement closes the files specified and disassociates them

from their channel numbers. After you <close a file, you can not

access the file until you re-open it.

All programs that open files should close them before terminating. If

you do not close your file, you can accidently delete it. An existing

file with the same file specification is not superseded until the new

file is closed.

The format of the CLOSE statement is:
CLOSEHH}Bexpression,[{Bexpression,H}Bexpression,..]

where:

expression specifies the channel number of a file to be
closed.

If no expressions are specified, then BASIC closes all open files.
Consider these examples of CLOSE statements:
LOO CLOSE 41
Closes the file associated with channel 1.

100 B4
120 CLOSE #2844

Closes the files associated with channels 2,4, and 7.
130 CLOSE
Closes all open files.
If a program opens but does not close files, BASIC closes all files

when it executes a CHAIN (see Section 8.1) or END statement or when it
terminates the program after executing the highest numbered 1line in

6-3

WORKING WITH DATA FILES

the program. BASIC does not close files after executing a STOP
statement.

6.3 USING SEQUENTIAL FILES

You use sequential files in the same way that you use terminal input
and output. However, sequential files allow you to manipulate much
larger amounts of data in a much shorter time than do terminal input
and output.

BASIC accesses data stored in sequential files serially; you must
read the entire file to read the last item of data.

You can open a sequential file for input or for output, but you can
not do both at the same time. To update an existing sequential file
you must open it for input, open a new file for output, then read the
data from the input file and write the data including any changes you
want to the output file.

The INPUT #expression and the LINPUT #expression statement (see
Section 6.3.1) read data from a sequential file opened for input.
Data is read from the file in the same way that it is read from the
terminal.

The PRINT #expression statement (see Section 6.3.2) prints data to a
sequential file opened for output. The expression after the # (number
sign) must have the same value as the expression specified in the OPEN
statement. BASIC stores the same data in a file that it would print
on a terminal, including spaces and line terminators.

Once you have opened a data file for input, you can test for the
end-of-file condition with the IF END # expression statement (see
Section 6.3.3) and you can restore it to the beginning with the
RESTORE # expression statement (see Section 6.3.4).

6.3.1 Reading Data from a Sequential File (INPUT # and LINPUT #
Statements)

The INPUT # statement reads data from a file and assigns values to the
specified variables. The format of the INPUT # statement is:

INPUT #expression,variablel[,variablez,variable3,...]

where:
expression is the channel number of the file except if the
value of the expression is 0, the values are input
from the user's terminal.
variable(s) are assigned the value(s) read in from the file.

The variables can be any string, integer, floating
point, or subscripted variables.

You can also use a colon (:) instead of a comma after the expression.
If the line of data in the file contains more data than there are
variables, BASIC ignores the excess data. If there is not enough
data, BASIC looks for more data on the next line.

Consider the following example which reads 10 numbers from a file and
prints the sum.

6-4

WORKING WITH DATA FILES

LIS TNH
10 OFEN *NUMBER® FOR INFUT AS FILE #1
20 FOR I=1 TO 10

30 INFUT #1s N

40 T=T+N

50 NEXT I

60 PRINT °*THE TOTAL IS"5T

70 CLOSE #1

100 END

READY
FRUNNH

THE TOTAL I8 187.3

READY
The LINPUT # statement inputs a string from a file. BASIC treats
LINPUT # just as it treats LINPUT; all characters on the input line,
including commas and quotation marks, are assigned to the string. The
format of the LINPUT # statement is:

LINPUT #expression,variablelﬂ}variablez,variable3,...]

where:
expression specifies the channel number of the file except if
it is 0, BASIC inputs a 1line from the user's
terminal.
variable (s) are assigned the value(s) of all the characters

read from the file up to the line terminator(s).
The variables can only be string variables or
subscripted string variables.

You can also use a colon (:) instead of a comma after the expression.

NOTE
The INPUT # statement and the LINPUT #

statement cannot be used in immediate
mode.

6.3.2 Storing Data in a Sequential File (PRINT # Statement)

The PRINT # statement prints data to the specified file. The format
of the statement is:

PRINT #expressionﬂ;listﬁ

where:
expression is the channel number of the file except if the
value of the expression is 0, data is printed on
the user's terminal.
list contains the items to be printed. It can contain

any numeric and string expressions and TAB
functions. Items can be separated by commas or
semicolons with the resulting output format the
same as the format of the simple PRINT statement.

6-5

WORKING WITH DATA FILES

You can use a colon (:) instead of a comma after the expression.

If there are no items in the list, BASIC prints a blank 1line to the
file. When there are no items in the list, you need not specify the
comma or colon after the expression.

Consider the following example, which creates a sequential file from
data stored in DATA statements.

LISTNH

10 OPEN "NAMES" FOR OUTFUYT a8 FILE &1 Opens file.

20 READ A%sA Reads data from

25 REM program.

30 IF A%=""THEN 32000 Checks to see if it
3H REM is the last data.
40 PRINT #1.A%5"y"5A Prints two data

4% REM items

S9060 TO 20 separated by a

Ha REM comma.

QOO0 DATA "SARAH®y 187,32y *JOE"y 117.45

25010 DATA "JANME"s 200, "JIM"y 89

DEGIC DATA "MALCOLM"y 129

2H0Z0 LATA "'y O

32000 CLOSE #1 Closes the file to
2767 FEND make it permanent.

READY
FeLENNH

READY

After you run this program, the file specified by NAMES contains:

SARAH, 187.2
JOE, 117.45
JANE, 200
JIM, 89
MALCOLM, 125

You should print a comma (in a string constant) between each data item
on a line. 1If you do not do this, you will not be able to input the
data items from the file.

Consider the following example, which reads the data file created in
the previous program and prints the results on the terminal.

() "NAMES " A% FILE 42 Opens existing file.
20 INFUT #2sNBoN Inputs data from file.
A0 PRINT N$sN Prints results.

A0 GO TO 20

REATY

FelIMH

SakaH 187.2

SOE 117,48

JANE J00

SIM 89

MALCOLM 125

TOUT OF DaTa AT LINE 20 All data in file has been read.
REALDY

WORKING WITH DATA FILES

Note that the line reading the file has the same number of variables
as the line printing the file has data values.

Program line reading the file Program line creating the file
20 INPUT #2sN$W 40 PRINT #1lsA%5 9 50

See Section 6.3.3 for a way to detect the end of the file before BASIC
prints an error message.

The PRINT #expression USING statement prints formatted data to a file
(see Chapter 7).

6.3.3 Checking for the End of Input File (IF END # Statement)

Use the IF END # statement, a special form of the IF statement, to
check for the end of a file. The form of the statement is:

THEN statement }

IF END[}]expression{THEN line number
GO TO line number

where:

expression is the channel number of the file. The wvalue of
expression can not be 0 and the file associated
with the expression can not be a terminal.

If the next attempt to input a value would produce the 20UT OF DATA
(?00D) error message, BASIC executes the statement after the THEN or
transfers control to the specified 1line number. Otherwise BASIC
transfers control to the next statement as it does with an IF
statement (see Section 4.1.3).

Consider the following example:

LITGTHH

10 OFEN "NAMES" A5 FILE #1

R0 IF END #L THEN PRINT "END OF FILE® N GO TO 32000
FOOINPUT #1068

40 PRINT a%eA

S50G0O TO 2G

2000 CLOSE 41

J2767 END

READY

RLINNE

SaRkak 187.2
JSOE 117,45
JANE 200
JIM g9

AL COLM 1%
ENDOF FILE

REALY

Line 20 checks for the end-of-file condition.

WORKING WITH DATA FILES

Note that the IF END # statement tests if there is one more data item.
If there 1is one data item left when IF END checks and your INPUT #
statement requests two data items, BASIC prints the ?20UT OF DATA
(?00D) error message.

6.3.4 Restoring a File to the Beginning (RESTORE # Statement)

The RESTORE # statement resets the specified sequential input file
from its current position to its beginning. The format of the RESTORE
$ statement is:

RESTORE #expression
where:

expression is the channel number of the file to be restored.

6.4 USING VIRTUAL ARRAY FILES

Use virtual array files when you want to randomly access the data in a
file or when an array is too large to fit in memory.

Virtual array files have several advantages over sequential files:

1. You can access them in a random, non-sequential manner. The
last element in a virtual array can be accessed as quickly as
any element. Contrast this with a sequential file where you
must read the entire file before reading the last element.

2. When BASIC stores data in virtual arrays, it does not convert
them to ASCII characters but rather stores them in internal
binary representation. Consequently, there is no loss of
precision caused by data conversion. There is some loss of
precision with sequential files.

3. You can update virtual array files without copying the entire
file.

Virtual array files also have several advantages over arrays stored in
memory:

1. vVirtual array files allow you to create much larger arrays
than can be stored in available memory.

2. Data can be stored in virtual array files.

Virtual arrays also have several restrictions, which do not apply to
arrays in memory:

1. Virtual array files are slower because BASIC must read the
file before manipulating the data.

2. Although BASIC strings in memory can have any length (up to
255 characters), you cannot use these dynamic length strings
in virtual arrays. Strings in virtual array files have a
fixed maximum 1length, which you specify in the DIM #
statement. The maximum character length can be any number
from 1 to 255, Strings longer than the maximum are
truncated. Strings shorter than the maximum are padded with
trailing nulls. When you access an array element, all
trailing nulls are removed.

6-8

WORKING WITH DATA FILES

3. You can only have one virtual array dimensioned in each DIM #
statement.

4. You cannot use a virtual array element to store a result from
a CALL statement (see Section 8.3).

6.4.1 Dimensioning Virtual Arrays (DIM # Statement)

To use a virtual array file, place a DIM # statement and an OPEN
statement with the same channel in a program. After the file is
opened, the elements of the array can be used in the same way as
elements of an array in memory.

The form of the virtual array DIM statement is:
DIM #integerl, array [=integer2]
where:

integerl is an integer constant (with or without a percent
sign) that specifies the channel number of the
file.

array is any 1- or 2-dimensional array. It has the same
format as in the standard DIM statement,
specifically:

variable(integer[,integer])

where the variable can be any string, integer, or
floating point variable name and the integer (s)
represents the subscripts.

integer2 is an integer constant (with or without a percent
sign) that specifies the maximum length for
elements in a virtual string array. Its value
must be in the range 1 to 255. If it is omitted
for a string array, the maximum length is 16.

To access the data in an existing virtual array file, ensure that the
DIM ¢ statement specifies the same data type and subscripts that are
specified in the program that created the file. The variable name
associated with the file can be different from the original as long as
it is the same variable type.
Consider the following examples:

L NEM B A (20000
A0 OPEN UINTRWT FOR WO oAk FTLE 1

Creates a new 200l-element integer virtual array file. The

virtual array is named A% in this program. You can assign
values to the element and then use the values.

PO Dle #2-F9 0100 100

D00 DFEN CRARAYY FOR D DRPUT AR FILE B2
Opens an existing 2-dimensional, £floating point virtual
array file. The virtual array is named F9 in this program.
Only input is allowed; if you try to assign a value to an
element of the array, BASIC prints the ?ILLEGAL 1I/O
DIRECTION (?IID) error message.

WORKING WITH DATA FILES

L0 0IM #2086 C100 =32

20 OFEN "STRNGS" AS FILE #2
Opens a l-dimensional string virtual array file where the
maximum string length is 32 characters. The virtual array
is named A$ in this program. If the file specified by
STRNGS already exists, it is opened for updating. If no
file exists, then a new one is created.

You should close a virtual file when your program terminates. If you
do not close an output virtual array, it does not become permanent.
If you do not close an updated virtual array, the assignments you have
made may not be incorporated into the file.

As an example of a use of virtual array files, consider the problem of
an information retrieval system for a small organization. Assume each
employee needs a 128-character record containing name, home address,
home phone, work station and phone extension. If this information is
maintained in a long sequential file, it would take a 1long time to
locate the information for any employee and it would be impossible to
update without rewriting the file for every update. Alternatively,
these records can be maintained in a virtual array file. 1In this case
some index is needed to associate a particular employee with a record.

In the example below, an index file containing badge numbers is used
to find the record in the master file. The employee's badge number is
in the same position in the index file as the record is in the master
file. It 1is faster to search through the index file than to search
through the master file because the data elements are much shorter and
less time 1is spent reading data from the file. This example program
prints the employee's name based on the badge number.

OO 0IM 1 BECLOOGO) 1001 elements in badge
7 REM number file.

YORIM B2y RECLOOGI= 128 1001 elements in master
25 REM file.

A0 OFEN "RBANGE" A8 FILE 4#1 Open badge file.

A0 OFEN "MASTER® A8 FILE #3 Open master file.
SHOOPRINT "WHAT I8 THE BADGE NUMEBER®"S: Specify a badge number.

&0 TNPLT N

F0OF0R TE=1 TO 1000 Search for a match in
SO IF BEOLEY =N THEN 200 the badge number

SO OMNEXT IX file.

LOG FRIMT "NO SUCH EMPLOYER® If a match is not found
LiG G0 70 E32700 print message and

1% REM terminate.

200 PRINT "NAME 19 "$SEGEREIIX) o 105302 If a match 1is found,

JATOC CLOSE L2 get record of employee,

ZA7ET MDD BS$S(I%), and extract the
name from the record
(the name is stored
from the 10th to the
30th characters). Then
terminate.

6.5 RENAMING A FILE (NAME STATEMENT)

Use the NAME statement to change the name of data files. The NAME
statement does not alter the contents of the file. The format of the
NAME statement is:

NAME stringl TO string2

WORKING WITH DATA FILES

where:

stringl is a file specification of the file to be renamed.
string2 is the new file specification. 1If you specify a

device 1in stringl, you must specify the same
device in string2.

For example:
10 NAME "MONEY" TO "ACCNTS®
Changes the name of the file specified by MONEY to ACCNTS.

See your BASIC-11 user's guide for information on system dependent
file specifications.

6.6 DELETING A FILE (KILL STATEMENT)

Use the KILL statement to delete data files. The format of the KILL
statement is:

line number KILL string
where:
string is a file specification of the file to be deleted.
After you delete a file, you can not open or access it in any wvay.
For example:
10 KILL "DATA®
Deletes the file specified by DATA.

See your BASIC-11 user's guide for information on system dependent
file specifications.

6-11

CHAPTER 7

FORMATTED OUTPUT - THE PRINT USING STATEMENT

7.1 INTRODUCTION TO PRINT USING

When the format as well as the content of output is important, use the
PRINT USING statement rather than the PRINT statement. The PRINT
USING statement allows you to control the appearance and location of
data on the output 1line, and thus enables you to create formatted
lists, tables, reports, and forms.

The following examples print a series of numbers. One program uses
the PRINT statement and the other uses the PRINT USING statement.

PRINT PRINT USING
LISTNH LISTNH
10 PRINT 1 10 PRINT USING

] "ol o By L
20 PRINT 100 20 PRINT USING]

ko B 2 100

30 PRINT 1.00000E+04 30 PRINT USING F o T » 1L o QOOGOELHCS
A0 PRINT 100.3 AQ PRINT USING "Sdbdidd. bE* » 100.3
S0 PRINT 0123454 HO O FRINT USING "Sdddddd. 54" . 01234056
READY READY
FRUNNH RN

1 1.00

100 100.00

1:00000E4+064 1000000.00

100.3 100.30

1. 234G56E~02 .01

REATY READY

Note that PRINT left-justifies numbers and prints certain numbers in E
format. These characteristics make it difficult to compare numbers.
In contrast, PRINT USING allows you to format the numbers so that the
decimal points are aligned making it much easier to compare the column
of numbers.

You can designate the following formats with PRINT USING:
1. Numbers

a. Number of digits

b. Location of decimal point

c. Inclusion of symbols (trailing minus signs,
asterisks, dollar signs, commas)

d. Exponential format

FORMATTED OUTPUT - THE PRINT USING STATEMENT

2. Strings

a. Number of characters
b. Left-justified format
¢c. Right-justified format
d. Centered format

e. Extended field format

The format of the PRINT USING statement is:

PRINT USING string, list

where:
string is a coded format image of the line to be printed.
The string is called the format string. If it is
a string constant, it must be enclosed in double
quotation marks, not single quotation marks.
list contains the items to be printed.

Consider the following example.

10 PRINT USING *HI ‘LLLLL YOU WEIGH #48%.% LES."y"PAUL*y14%
The format string is:

"HI 'LLLLL YOU WEIGH ###.# LBS."
and the list contains two data items:

the string constant "PAUL"
the integer 145

In the format string there are two fields corresponding to the two
data items. The first field is 'LLLLL, which corresponds to the first
data item, "PAUL" and the second field is ###.#, which corresponds to
the second data item, 145. When BASIC prints the line it prints each
data item in the same position as its field and in the format
specified by the field. The rest of the format string, namely "HI

YOU WEIGH . LBS." is just a message that is printed. The
output of this example is:

LLLETNH
1O PFRINT USING "HI LLLLL YOU WEIGH $#d.4 LES, " "FAUL "y 145

READY
RUMNH

HI FAUL YOU WETGH 14%,0 LES,
READY

The way to use format strings to print items is described in Sections
7.2 and 7.3 and is summarized in Section 7.4.

7.2 PRINTING NUMBERS WITH PRINT USING

You can use PRINT USING to print numbers in the format that you want.
You can specify the number of digits reserved for a number, the
location of the decimal point, certain special symbols to be printed
with the number, or that the number be printed in E format.

7-2

FORMATTED OUTPUT - THE PRINT USING STATEMENT

7.2.1 Specifying the Number of Digits

With PRINT USING, you specify the number of places reserved for digits
in a field. Specify the number of places with a corresponding number
of number signs (#).

For example:

LIBTNH
10 PRINT USING “#44*,123 Three digits reserved.
20 PRINT USING "Hdddd 12345 Five digits reserved.

READY
RUNNH
123

12345

READY

If there are not enough digits to fill the field specified, BASIC
prints spaces before the first digit. For example:

LISTM

10 PRINT USING “$#4EEE" 1

20 PRINT USING "$&d44" 10
0 PRINT USING "#dd#Ed" 1709
40 PRINT USING "$dRd4"» 12345

READY
IDARIRIRIS |

1
~10

1709

132345

REATY
BASIC rounds numbers printed with the PRINT USING statement. For
example:

LTSTei

10 PRINT USING "4 1267

20 PRINT USING "$" 5,9
F0 PRINT USING "#"+5.4

REANY

IR

a7 126.7 is rounded to 127.
& 5.9 is rounded to 6.

W 5.4 is rounded to 5.
RESDY

7.2.2 Specifying the Location of the Decimal Point

You can reserve places for any number of digits on both sides of the
decimal point. Specify the location of the decimal point by placing a
decimal point in the number signs (#) in a field. BASIC always prints
the digits to the right of the decimal point even if they are Os.
Consider the following example:

FORMATTED OUTPUT - THE PRINT USING STATEMENT

LISTNH
10 PRINT USING "4#%. 48" y35.72
20 PRINT USING "#%.$4%",39.37358

REALY
FUINNH
5,720 Note that BASIC with 5.72 prints spaces to the
39.376 left of the decimal point, as necessary, but
prints 0s to the right of the decimal point. Also
READY note that 39.3758 is rounded to 39.376.

If there are any number signs to the left of the decimal point, BASIC
prints at 1least one digit to the left of the decimal point. It is 0
as necessary.

An exception to this format rule is when you specify only one number
sign to the left of the decimal point for a number that is negative.
In that case BASIC prints the minus sign to the left of the decimal
point instead of a 0.

7.2.3 Printing a Number That is Larger Than the Field

If you have not reserved enough digits for a number, BASIC prints a
percent sign (%) followed by the number and it ignores the format
specified by the field. BASIC prints the number in the standard PRINT
statement format. After BASIC prints the number, it completes the
rest of the PRINT USING statement as usual. Consider the following
example:

LTETHH

LO PRINT USING “4dd. 44"y 256 . 786 Enough digits reserved.

20 PRINT USING "#4.#4" 256,784 Not enough digits reserved.

READY

Fetdind pii

aEme The number is printed correctly (with rounding).

WL A There are only two number signs to the left of the
decimal point; therefore, the number does not fit.

READY The number is printed in the usual PRINT statement

format, with a space before and after it and with
no rounding.

Be sure to enter a number sign to the left of the decimal point for
every digit in the number to the left of the decimal point. Also add
one extra for the sign if the number may be negative. (For an
alternative method for reserving a place for the minus sign, see
Section 7.2.4.1).

For example:

Field There are enough places for But not enough places for

.44 100.569 -100.569
$ 331 .12579 -.12579

FORMATTED OUTPUT - THE PRINT USING STATEMENT

A number can also become larger than its field because rounding
increases the number of places needed. For example:

LoESTHH

10 PRINT USING * @8y 999 Enough places reserved.

20 FRINT USING ".4E"» . 999 Rounds to 1.00; not enough
25 PRINT places reserved.

30 PRINT USING "H.dE"y 999 Enough places reserved.

READY

FeLIM M

P99 Format as specified by field.

%999 % followed by number in PRINT
statement format.

100 Enough places reserved and the
number is printed, correctly

REALY rounded.

7.2.4 Printing Numbers with Special Symbols

You can use the PRINT USING statement to print a .number with a
trailing minus sign (instead of the minus sign appearing before the
number), with asterisks filling blanks before the first digit, with a
dollar sign printed before the first digit or with commas inserted
every three digits.

7.2.4.1 Printing Numbers with a Trailing Minus Sign - To print the
minus sign - for negative numbers after the number instead of before
it, specify a trailing minus sign in a field. The trailing minus sign
is often used to indicate a debit but can be used with any numbers.
You must use the trailing minus sign to print a number in an asterisk
fill or floating dollar sign field (see Sections 7.2.4.2 and 7.2.4.3).

If a field contains a trailing minus sign, BASIC prints a negative
number as the number followed by a minus sign and prints a positive
number as the number followed by a space.

Consider the following examples.

Standard Fields Fields with Trailing Minus Signs

LTs TN LTETHH
10 PRINT USING "##5.$5"y~10,54 10 PRINT USING "“$#F.E-"»~10.54
20 PRINT USING “#4E.$5"» 10.54 20 PRINT USING “#4.¥8-"»10.54

=10.54 1O G4
10.54 LG54
READY READY

FORMATTED OUTPUT - THE PRINT USING STATEMENT

7.2.4.2 Printing Numbers with Asterisk Fill - To print a number with
asterisks (*) filling any blank spaces before the first digit, start
the field with two asterisks. For example:

LIGETNH

10 FRINT USING "Xokdd.$4" 27,95
20 FRINT USING “dokdd. 8" 107

30 PRINT USING "“dokkd.d#%»1007.5

READY

FELININE

KK27 ., 95 Asterisks fill two blank spaces.
X107.00 Asterisk fills one blank space.
1007.50 No blank spaces.

READY

Note that the asterisks cause asterisk fill and reserve places for two
digits.

To print a number which can be negative, as well as positive, in an
asterisk fill field, specify a trailing minus sign in the field. For

example:

LT TN

1O PRINT USING "dokddk o b 927,99
20 PRINT USING “¥okddh . #-"y~107 .
30 PRINT USING “dokdd. " s~1007 .5

REALY
FLENH

XK27.935
X107 .00~
1007 ,50~

READY

If you attempt to print a negative number in an asterisk £ill £field
that does not include a trailing minus sign, BASIC halts execution and
prints the ?PRINT USING ERROR (?PRU) message (see Section 7.5.1).

7.2.4.3 Printing Numbers with Floating Dollar Signs - To print a
number with a dollar sign ($) before the first digit, start the field
with two dollar signs. If the number can be negative as well as
positive, end the field with a trailing minus sign. Consider the

following example:

FORMATTED OUTPUT - THE PRINT USING STATEMENT

L TGTMH

10 PRINT USING
20 PRINT USING
30 PRINT USING

g RE" y 77 44
"EEEEEE 304,58
"shkd.EE" 2211 .42

There are enough
places reserved in line 10
and 20 but not 30.

35 FRINT
40 PRINT USING "$44%.%$-"y-125,6 Negative value in floating
4% REM dollar sign with trailing
47 REM minus field.
50 PRINT USING "$$&E.FE5-" 127.82 Positive number in same field
as line 40.
READY
(AR INEE]
$77 .44
$304 .55
“OR2211.42 There were not enough places
to print $ and 2211.42.
$125, 60~ Trailing minus printed.
$127.82 Trailing space printed.
READY
Note that the dollar signs reserve places for the dollar sign and one
digit; the dollar sign is always printed. Contrast this with the
asterisk fill field where BASIC prints asterisks only if there would

have been leading spaces.

If you attempt to print a negative number in a dollar sign field which
does not include a trailing minus sign, BASIC halts execution and
prints the ?PRINT USING ERROR (?PRU) message (see Section 7.5.1).

7.2.4.4 Printing Numbers with Commas - To have commas, inserted in a
number, place a comma anywhere in the field to the left of the decimal
point (including an assumed decimal point). BASIC then prints a comma
every third digit to the left of the decimal point. 1If there is no
digit to be printed to the left of the comma, BASIC does not print the
comma. For example:

[IRRCR RN

Lo FRINT USING
20 PRINT USING
30 PRINT USING
40 FPRINT USING
S50 PRINT USING

Commas can be combined
with $$ and **,

A comma can be anywhere
in the field to the left

e kBT 0 2EHEEG

FEATY of the decimal point.
PG|
LO Q00 Comma printed.
759 Comma not printed because
$252 694,30 no digit would appear
¥kT 2 259 to its left.
25223900
RE&DY

FORMATTED QUTPUT - THE PRINT USING STATEMENT

7.2.5 Printing Numbers in E Format

To print a number in E format, place four circumflexes (~°"", also
called up-arrows) at the end of the field. The four circumflexes
reserve space for the capital letter E, followed by a plus or minus
sign (which indicates a positive or negative exponent, respectively),
and then the 2-digit exponent. 1In exponential format the digits to
the left of the decimal point are not filled with spaces. 1Instead the
first nonzero digit is shifted to the leftmost place and the exponent
is equal to the number of digits that the decimal point is shifted
from the number in standard notation (see Section 2.2.1). Consider
the following example:

LTS THNH
10 FRINT USING *Rdd 777700
20 PRINT USING “#&&. 5477771000

READY

FLIMMH

500, 00E~02 Note that 5 is shifted to the

100.00E+01 left but 1 is shifted to the
right. Each exponent is
adjusted. ‘

READY

You must reserve a place for a minus sign to the left of the decimal
point.

You cannot use exponentlal format with asterisk fill, floatlng -dollar
sign, or trailing minus formats. .

7.2.6 Fields Which Exceed BASIC's Accuracy

If a field contains more places than there are digits of accuracy,
BASIC prints 0s in all the places following the last significant
digit. See your BASIC-1l1l user's guide for the number of digits of
accuracy in your system.

7.3 PRINTING STRINGS WITH THE PRINT USING STATEMENT

By using the PRINT USING statement, you can specify whether strings
are printed in a left-justified, right-justified, or centered format.
String fields start with a single gquotation mark ('). The single
quotation mark is optionally followed by a contiguous series of
uppercase Ls, Rs, Cs, or Es representing left-justified,
right-justified, centered, and extended string fields, respectively.

If a string is larger than its specified string field, BASIC prints as
much of the string as fits and ignores the rest. The only exception
is that for extended fields BASIC prints the entire string.

FORMATTED OUTPUT - THE PRINT USING STATEMENT

7.3.1 1l-Character String Fields

A string field consisting of only a single gquotation mark is a
l-character string field. BASIC prints the first character of the
string expression corresponding to the l-character string field and
ignores all following characters. For example:

LI&T M
10 PRINT USING " 7 "y "ARCDE"®

READY
Pl i
A BASIC ignores the characters
BCDE.
READY

7.3.2 Printing Strings in Left-Justified Format

If you specify a left-justified field, BASIC prints the string
starting at the leftmost position. If there are any unused places in
the field, BASIC prints spaces after the string. If there are more
characters than places in the field, BASIC truncates the string and
does not print the excess characters.

A left-justified field 1is specified by a single quotation mark
followed by a series of capital Ls. For example:

PIETNH

1O PRINT USING *LLLLLL"» "ARCH"

20 PFRINT USING "/LLLL"» ARG

30 PRINT USING "LLLLY» " 12345478"

READY

ESRIRIN L]

ARCD

ARG

12345 BASIC ignores the excess
characters 678.

REASDY

7.3.3 Printing Strings In Right-Justified Format

If you specify a right-justified field, BASIC prints the string so
that the last character of the string is in the rightmost place of the
field. If there are any unused places before the string, BASIC prints
spaces to f£ill the field. 1If there are more characters than places in
the field, BASIC prints the string as if it were in an equivalent
left-justified string field.

FORMATTED OUTPUT -~ THE PRINT USING STATEMENT

A right-justified field is specified by a single quotation mark
followed by a series of capital Rs. For example:

LIBTMH

10 FRINT USING " “RRRRRR"s"ABRCD®
20 PRINT USING " RRRRRR"y"A"

30 FRINT USING " /RRRRRR"y"XYZ"

READY
FrLlpin

ARCH
A
XYZ

REALY

If there are more characters than places, BASIC left-justifies the
string and does not print the excess characters.

7.3.4 Printing Strings In Centered Fields

If you specify a centered field, BASIC prints the string so that the
center of the string is in the center of the field. If the string
cannot be exactly centered, such as a 2-character string in a
5-character field, BASIC prints the string one character off center to
the left. If there are more characters than places in the field,
BASIC prints the string as if it were in an equivalent left-justified
string field.

A centered field is specified by a single quotation mark followed by a
series of capital Cs. For example:

LTOTMM

1O FRINT USING " CCCCCE"s "A®
20 PRINT USING " CCCCOC"y "aRp®
30 PRINT USING "/CCCOCC "y "ARE®
40 PRINT USING "/CCCCCC"y "aRCn®
S50 FRINT USING "/CCCCCC"y "ARCDE"

READY
FrirH

A
AR
ARC
ARCT
ARCHE

READY

If there are more characters than there are places in the field, BASIC
left-justifies the string and does not print the excess characters.

FORMATTED OUTPUT - THE PRINT USING STATEMENT

7.3.5 Printing Strings In Extended Fields

The extended field is the only field that ensures
If you specify an extended
the string as it does for a left-justified
more characters than there are places
the field and prints the entire

entire string.

has

other items to be misaligned.

An extended field is specified by a single

a series of capital Es.

Consider the following example which
right-justified, and centered fields.

[LTETHH

string.

uses

the printing of the
BASIC left-justifies
But, if the string
field, BASIC extends
extension may cause

field,
field.
in the
This

quotation mark followed by

extended, left-justified,

100 F&="44/COCCHH EEEE+/ LLLL A4+’ RRREH
110 INFUT A%

120 IF A%$="STOF* GO TO 150

130 FRINT USING FSvA%sASsASs A%
140 GOTO 110

150 END

READY

FeUNHH

Tomaen

+HARCT HHABCT +4ARCT +4 ARCIH+

T OARCOFFG

FHARCDE++ARCHEF G4+ ARCHE++ARCDE 4+ The underlined field has been
Ton extended. Note how the rest of
4+ A 44A 446 +4 At the 1line is displaced two
P places.
+4+ AR AR ++Ak + 4 AR
TowTor
READY
7.4 SUMMARY OF THE PRINT USING STATEMENT FORMAT
The format of the PRINT USING statement is:
PRINT ([#expr,] USING string, list
where:
expr specifies the channel number. If it is omitted
output is to the user's terminal.
string is a coded format image of the line to be printed.
The string is called the format string. It can be
any string expression; however, if it is a string
constant, it should be delimited with double
quotation marks, not single quotation marks.
list contains the items to be printed. The items can
be any string or numeric expressions. They are
separated by either commas or semicolons.
Optionally, the 1list can end with a comma or

semicolon to suppress the printing of the carriage

return.

7-11

FORMATTED OUTPUT - THE PRINT USING STATEMENT

The format string contains a series of fields corresponding to the
items 1in the list. Fields correspond to items based on the order in
which they appear. BASIC prints the item at the location in the 1line
and according to the format specified by its corresponding field.

The type (string or numeric) of each field must be the same as the
type of its corresponding item.

The format string is a template of the 1line to be printed. Each
character in a field reserves one place for the data item. Any
character not in a field is printed exactly as it is. Consider the
following example:

LISTMH
1O FRINT USING *THERE ARE #&#%& CHIPS AND $44 RRRR." 327527 "FING®

READY
LM

THERE ARE 337 CHIFS AND 27 FINS.
READY
Compare the format string and the printed line:

format string: THERE ARE #### CHIPS AND ### 'RRRR.
printed line: THERE ARE 327 CHIPS AND 27 PINS.

Each column in the format string corresponds to the same column in the
printed 1line. (The only exception is when extended string fields are
used; these fields expand to the size of the string.)

It is not necessary to have the same number of fields in the format
string as items in the list. If there are fewer fields than items,
BASIC uses the same format string again on a new 1line for the
remaining items. For example:

LITETHH

1O X=5 N Y=10 N O=17 \ D=18%
20 FRINT USING "#4 + #4% = #5585 XY X+Y s CrDs C4D
READY

FeLIMMH

R S U IR £

17 4 185 = 209

REALY

The format string in line 20 contains three format fields:
"H#E + FEE = HEEET
1 2 3
but there are six data items:
X Y X+Y C D C+D

1 2 3 4 5 6

7-12

FORMATTED OUTPUT - THE PRINT USING STATEMENT

BASIC prints the first three data items:
5+ 10 = 15
and then repeats the format string on a new line for the other three:
17 + 185 = 202
But if there are more fields than items, BASIC ignores the excess
fields. Any characters following the first unused field are not

printed. For example:

I RN T
10 PRINT USING *THERE aRE #4F FPALS IN THE ‘LLLLL STOCKROOM"» 23

RE&DY
BURMH

THERE aARE 25 PAUS IN THE

RE AT
There are two fields, ### and 'LLLLL, but only one data item.
Consequently BASIC ignores the second field ('LLLLL) and does not
print any of the characters after it (STOCKROOM).

The items in the list are separated by either commas or semicolons.
It does not matter which you use.

If the output of a PRINT USING statement is longer than one line,
BASIC prints the remainder of the statement on the next line.

7.4.1 Format of Numeric Fields
Numeric fields are composed of the special characters described in
Table 7-1.

Table 7-1
Format Characters For Numeric Fields

Character Effect on Format
number sign Reserves place for one digit.
. decimal point Determines location of decimal point.
, comma Causes a comma to be printed between every

third digit.

** two asterisks Cause leading asterisks to be printed before
the first digit. The field formed is called
an asterisk fill field. Asterisks also
reserve places for two digits.

$$ two dollar signs Cause a dollar sign to be printed before the
first digit. The field formed is called a
dollar sign field. Dollar signs also reserve
places for one dollar sign and one digit.

FORMATTED OUTPUT - THE PRINT USING STATEMENT

Table 7-1 (Cont.)
Format Characters For Numeric Fields

Character Effect on Format

Annn~

four circumflexes Cause number to be printed in E format.
Circumflexes also reserve four places for the
E notation.

- minus sign Causes a trailing minus sign to be printed
when number is negative. Printing a negative
number in an asterisk fill or a dollar sign
field requires that the field also have a
trailing minus sign.

valid fields can be formed by combining these characters in this
format:

v mra [|}

Each number sign (#) in the above format represents any number of
number signs. One exception to this format is that neither two dollar
signs nor two asterisks can be combined with four circumflexes.

For example:

valid Fields Sample Output Description
SSHEH. 4 $1234.50 Dollar sign field
i 3 33 kkkk]2 Asterisk £ill field
T 1,242 Comma in field
#4477 20.72E-02 E (exponential) format field
Invalid Fields Reason
LAt T 3% M ** can not be combined with ~"°°
.4 ,4 Comma is to the right of the decimal point
SS**EHH 4 $$ can not be combined with **

7.4.2 Format of String Fields
Sstring fields are composed of a single quotation mark optionally

followed by a contiguous series of capital Ls, Rs, Cs, or Es. These
characters' effect on the format are described in Table 7-2.

7-14

FORMATTED OUTPUT - THE PRINT USING STATEMENT

Table 7-2
Format Characters for String Fields

Character Effect on Format

' single quotation| Starts string field and reserves place
mark for one character.

L Causes string to be left-justified and
reserves place for one character.

R Causes string to be right-justified and
reserves place for one character.

C Causes string to be centered in field and
reserves place for one character.

E Causes string to be left-justified, expands
field, as necessary, to print the entire
string and reserves place for one character.

For example:

valid String Fields Sample Output Description

'LLLLL ABC 6-character, left-justified
string field

'CCccee ABC 7-character,
’ . centered string
field

! A single character
string field

Invalid String Fields Reason
'LLRRR Cannot combine two letters in one field.
"RRRR Field must start with single quotation
mark.
'ccee! A single quotatibn mark should only be at

the beginning of the field.

7.5 PRINT USING STATEMENT ERROR CONDITIONS

There are two types of PRINT USING error conditions, fatal and
nonfatal. when a fatal error occurs, BASIC stops executing the
program and prints the ?PRINT USING ERROR (?PRU) message. When a
nonfatal error occurs, BASIC continues to execute the program,
although the resulting output may not be in the format intended.

7-15

FORMATTED OUTPUT - THE PRINT USING STATEMENT

7.5.1 Fatal Error Conditions

The ?PRINT USING ERROR (?PRU) error message is produced if:

1.
2.
3.

The format string is not a legal string expression.
There are no valid fields in the format string.

A string is printed in a numeric field.

A number is printed in a string field.

A negative number is printed in a floating dollar sign or
asterisk fill field which does not specify a trailing minus.

The items in the list are separated by characters other than
a comma or semicolon.

7.5.2 Nonfatal Error Conditions

Nonfatal error conditions occur if:

1.
2.
3.
4.

A number does not fit in the field.
A string does not fit in the field.
A field contains an illegal combination of characters.

Text to be printed forms a valid field.

If a number is larger than the field allows, BASIC prints a percent
sign followed by the number in the standard PRINT format.

If a string is larger than any field other than an extended field,
BASIC truncates the string and does not print the excess characters.

If a field contains an illegal combination of characters, the first

illegal

character and all characters to its right are not recognized

as part of the field. They may form another valid field or they may
be considered text. If the illegal characters form a new valid field,
this unintended field may cause a fatal error condition.

7-16

FORMATTED OUTPUT - THE PRINT USING STATEMENT

Consider the following examples of illegal combinations of characters
in numeric fields.

Illegal Combinations

L LETHNH

10 PRINT USING "$$kkdd 4" 2541

READY
LN

$ORELSH. 30

REALY

LT >HM

1630

Two dollar signs are combined
with two asterisks. $$ is a
complete field and

**44.## forms a second valid
field. $5 is printed by $$
and **16.30 1is printed by
bl 1 8 3 38

10 FRINT USING "$edoldd8d LLL"»T.41y "ARCY

READY
UL

$15

FRRINT USING ERROR AT LINE 10

READY

PreTH

L0 PRINT USING "4 4777 v S, 43000E+Q?

REALY

LN

A H.4R0Q0E4QPTTT

READY

LTSTHNH

10 FRINT USING " LLEEE"y "WWXYZ"

READY
Pl

WK

iy

The same illegal combination
appears here, but the next
data item is a string. BASIC
produces the fatal error
message after trying to
print the string "ABC" in the
unintended numeric field
kil 3 3% 3 2%

Field has only three not
four circumflexes. The
number does not fit in

the field ##.4#, a percent
sign and the number are
printed followed by the
three circumflexes.

Two letters can not be
combined in one field. EEE
is printed as it is.

FORMATTED OUTPUT - THE PRINT USING STATEMENT
Attempting to print characters as text produces errors when the
characters form a valid field. For example:
10 PRINT USING "THERE ARE #4% #l$$ FENNY NAILS"312354v16+4
is an attempt to print

THERE ARE 123 # 4 PENNY NAILS
THERE ARE 16 # 6 PENNY NAILS

but instead produces

FUINNH

THERE ARE 123 4 1é6 FENNY NAILS

THERE ARE é

REEADY
To correctly print characters that would form a valid field, use a
string field and place the characters as a string constant in the
list. For example:

ST

10 A%="THE BALANCE OF ACCOUNT ‘#4%% is Sedbd. "

20 PRINT USING Ady"H" 356349107 .56

READY

BN
THE B&LANCE OF ACQOUNT #5634 is $107.56
RE &Y

This is also the only way to print a single or double quotation mark
character with the PRINT USING statement. For example:

LTS THH
10 PRINT USING "HE SAINy 1M GOING. "p " pm/myrn/

READY
FLippE

HME SATIDy "I'M GOING."

REALDY

7-18

CHAPTER 8

PROGRAM SEGMENTATION

8.1 SEGMENTING PROGRAMS WITH THE CHAIN STATEMENT

Segmenting a program is the process of breaking one large program into
two or more smaller programs. You should segment a program if it is
too large to fit in your area of memory. Another reason for
segmenting programs is that it 1is easier to debug several small
programs than to debug one large program. Once you have segmented a
large program, you can debug each segment independently.

You can use the CHAIN statement to break up a program into segments.
You create each segment as you create any program except that you end
each segment (except the last) with a CHAIN statement. When BASIC
executes the CHAIN statement, it transfers control from the current
segment to a program segment stored in a file. (See Section 9.6 for
information about storing programs in files.)

When BASIC executes the CHAIN statement, it closes any open files,
changes the program name to the name in the file specification, and
deletes the current program segment from your area. The program
segment includes all program lines, variables (floating point,
integer, and string), arrays, and user-defined functions (see Section
5.4) but does not include any variables or arrays that are listed in
COMMON statements (see Section 8.1.1). Then BASIC loads and executes
the program segment in the file you specify.

The memory required to run the entire program is the amount of memory
required by the largest segment. Figure 8-1 shows how a program can
be broken into three segments and how the memory required by the
program can be reduced.

8-1

PROGRAM SEGMENTATION

Before After
Segmentation Segmentation
NS T
Segment Segment
1 1 Segment
Segment
__________ 3 Memory
CHAIN 2 required
, after
Segment Memory | | i H segmentation
2 required I Unused : CHAIN L Unused =]
before ——————=—=— — " TTT==T===== -

__________ , | segmentation

\

Figure 8-1 Segmenting a Program with the CHAIN Statement

Before the 1large program is separated into segments, the three
segments are stored in your area of memory at the same time, as
indicated on the left. After segmenting, the program starts with only
segment 1 stored in your area of memory. After BASIC runs segment 1,
segment 1 chains to segment 2, that is BASIC erases segment 1,
replaces it with segment 2, and then runs segment 2. After BASIC runs
segment 2, segment 2 chains to segment 3. The entire segmented
program fits in the amount of memory required by the largest segment,
segment 2.

The format of the CHAIN statement is:

CHAIN string [LINE expression]

where:
string is a file specification. It specifies the file
containing the next program segment. The string
can be any string expression.
expression specifies the line number at which BASIC starts

execution in the next program segment.

If BASIC cannot find the file you specify, it closes all open files,
changes the program name, and prints the ?FILE NOT FOUND (?FNF) error
message. In this case BASIC does not delete any program lines,
variables, arrays, or user-defined functions.

If you omit LINE and the expression, BASIC starts execution at the
lowest numbered line in the next program segment.. If you specify LINE
and an expression whose value is not a 1legal 1line number (integers
from 1 to 32767), BASIC prints the ?SYNTAX ERROR (?SYN) error message
and stops program execution before it reads in the next segment. If
you specify LINE and an expression and the line number is not found in
the next program segment, BASIC prints the ?UNDEFINED LINE NUMBER
(?ULN) error message and stops program execution after it reads in the
next segment.

PROGRAM SEGMENTATION

Consider the following example:

The file specified by "SEG1l" contains:

5 PRINT *SEGL I8 WORKING® Prints identifying message.
10 OFEN "DATAL" FOR OUTPUT A8 FILE #1 Opens output file,

20 FOR I=1 TO 100 Writes out all the

30 PRINT #1s2%1 even numbers 2 to 200

40 MEXT I to the file.

50 CLOSE #1 Closes the file.

&0 CHAIN "SGR Chains to the next

70 END segment,

The file specified by "“SEG2" contains:

TOPRINT "SEG2 IS WORKING® Prints identifying message.
1O OFEN "DATAL®" FOR INPFUT A8 FILE 41 Opens existing file.

20 FOR I=1 TO 100 Inputs the numbers

30 INPUT #1s.J from the files

A0 T=T4J and adds them together,

S0 NEXT I storing the total in T.

G0 PRINT "THE TOTAL IS8T Prints the total on the

A% REM terminal.

70 CLOSE #) Closes the input file.

80 END

A run of these programs produces the following output:

3l Run the first segment.

I8 WORKING Segment 1 executes and
GEGZ I8 WORKING chains to segment 2.
1 TOTAL I8 10100 Prints the total.
READY

Remember to save (see Section 9.6.1) a program containing a CHAIN
statement before running it. Otherwise BASIC erases the program from
your area in memory and you will not have a copy of it.

NOTE

It is faster to chain to programs which
have been compiled. See Section 9.10
for a description of the COMPILE
command.

8.1.1 Preserving Variables Through CHAIN (COMMON Statement)

The COMMON statement preserves data when one BASIC program chains to
another, Any variables or arrays listed in COMMON statements retain
the same variable names and values after CHAIN is executed.

COMMON allows one segment of a program to preserve data needed by
another segment. The only alternative way for chained programs to
preserve data is by file storage. However, preserving data in memory
with a COMMON statement is much faster and simpler than first writing
the data out to a file and then, after chaining, reading it back in.
Consequently, when you want to preserve data through a CHAIN
statement, use the COMMON statement.

PROGRAM SEGMENTATION

Figure 8-2 shows how data is preserved in COMMON after the CHAIN
statement.

COMMON COMMON | COMMON
Segment
Segment 2
1
CHAIN

Figure 8-2 CHAIN with COMMON

At the left, segment 1 including the COMMON statements is in memory.
When BASIC executes the CHAIN statement in segment 1, it erases all of
segment 1 except the variables and arrays listed in COMMON statements,
as 1illustrated in the center. Then, at the right, BASIC brings
segment 2 into memory and merges it with the preserved variables and
arrays.

The format of the COMMON statement is:
COMMON list
where:

list specifies the variables and arrays to be preserved
after execution of the CHAIN statement. It is in
the general form:

var ﬂ:(int[[, int]])]] [[,var [[(int([, int]])]] reo]]

When BASIC executes the CHAIN statement all the variables and arrays
listed in COMMON statements are preserved.

When BASIC brings in the new program segment, it checks to see that
the new segment has corresponding COMMON statements. The lists in the
COMMON statements of the new segments must contain the same variable
names, data types, and array dimensions in the same order as the lists
in the previous segment. You can change the 1line numbers and the
number of items specified in each list but you cannot change the order
of the variables and arrays.

Consider these examples:
Program 1 Program 2 Program 3
L0 COHUN A B OF L0 COMMON el LO COMMOM A B 05 0100

T DUMMOM DX OO O COMMON CH.0X01000 082y 0 COMMOM CH
FOOUOMMON GROED FOOCOMMON G403

Programs 1 and 2 contain equivalent COMMON statements. However,
program 3 does not contain equivalent COMMON statements because
D%(100) appears before CS$S.

If in the new program you do not list the variables and arrays in
COMMON statements as in the original, BASIC prints the ?COMMON OUT OF
ORDER (?CO0) error message and stops program execution.

PROGRAM SEGMENTATION

Consider the following examples:
The file specified by "SEGC1" contains:
10 COMMON I(100) Preserves the array I(100) (in COMMON).

20 DIM JOL00) Dimensions array J(100) (not in COMMON).
30 FRINT "SEGCL" Prints identifying message.

40 FOR K=1 TO 100 Assigns the values

50 TK)=K¥2 of the even numbers

40 SR =K% between 2 and 200 to

70 NEXT K the elements of each array.

80 CHAIN "SEGC2* Chains to the next segment,

100 END

The file specified by "SEGC2" contains:

10 COMMON T(1000 COMMON statement equivalent to original.
20 NIM JC100) Dimensions new array J(100).

30 PRINT "SEGC2" Prints identifying message.

40 FOR K=1 TO 100 Adds all the elements of

50 Ti=T1l+I(K) I(100) and
60 T2=T24+IIK) J(100) stored in Tl
70 NEXT K and T2, respectively.

80 PRINT "Ti="3§T1L
PO PFRINT "T2=*3T2
100 END

A run of these programs produces the following output.
KU SF GO
SEGEL
SEGC2
Ti= 10100
Ta= 0
READY
Note that BASIC preserves I(100) but does not preserve J(100).

It is possible to extend COMMON by placing additional variables and
arrays after the existing ones. For example,

Program Segment 1 Program Segment 2
10 COMMON A»RZEC1I00) 10 COMMON AsRXCLOO)
20 COMMON C$(5) 20 COMMON CH{5) o FROL00)

IO COMMON A$(30)

Program segment 2 contains the same variables and arrays in COMMON as
program 1 but also extends program segment l1's COMMON statements with
F9(100) and AS$(30).

When program segment 2 chains, BASIC preserves all variables and
arrays listed in the extended COMMON statements.

If a program containing COMMON statements chains to a program that has
no COMMON statement, BASIC erases all the wvariables and arrays
including those listed in the COMMON statements.

If a program segment containing COMMON statements chains to another
program segment containing COMMON, all the variables and arrays in the
original COMMON statements should appear in the new statements. But
if the new COMMON statements contain some of the variables and arrays
(in the correct order) but not all of them, BASIC does not produce an

8-5

PROGRAM SEGMENTATION

error message. Instead BASIC preserves all the variables specified in
the original COMMON statements. Even though no error message 1is
produced, this situation should be avoided because variables are
preserved that do not appear in the new program segment's COMMON
statements.

BASIC allows you to list up to 255 variables and arrays in COMMON
statements. If a program contains more than 255 variable and array
names, BASIC prints the ?2TOO MANY ITEMS 1IN COMMON (?TIC) error
message.

BASIC automatically dimensions arrays specified in COMMON statements.
If you list an array in a COMMON statement, do not also dimension it
with a DIM statement. If an array is in both a COMMON and a DIM
statement, BASIC prints the ?ILLEGAL DIMENSION (?IDM) error message
and stops program execution.

You cannot specify virtual array files (see Section 6.4) in COMMON
statements. An alternative 1is to pass the file specification in a
string variable listed in COMMON and have the new program reopen the
virtual array file.

BASIC erases any existing COMMON area when the user types a RUN, OLD
or SCR command or when a new program segment has no COMMON statements.

The COMMON statement is meaningless in immediate mode.
NOTE

The COMMON statement does not provide
any communication with programs written
in languages other than BASIC (see
Section 8.3).

8.2 MERGING PROGRAM SEGMENTS (OVERLAY STATEMENT)

You can use the OVERLAY statement to segment programs as you use the
CHAIN statement. The OVERLAY statement allows easier communication
between segments than the CHAIN statements. When you use the OVERLAY
statement the values of all variables and arrays are preserved and all
open files remain open. However, you must ensure 'that the 1line
numbers of the segments merge correctly, which you need not do with
CHAIN.

The OVERLAY statement merges the current program with a program
segment stored in a file.

When BASIC reads a line of the program segment from the file, it
interweaves the 1line into the current program. If a line with the
same line number already exists, BASIC deletes the existing 1line and
replaces it with the line from the new program segment. During this
process all variables and arrays retain their current values, and all
open files remain open. When all lines of the program segment in the
file are read into memory and merged with the original program lines,
BASIC continues execution of the merged program.

NOTE

The OVERLAY statement is not a standard

feature in DIGITAL's BASICs. If you are

concerned with transportability of

programs and ease of upgrading, do not

use the OVERLAY statement. Use only the

CHAIN statement for segmenting programs.
8-6

PROGRAM SEGMENTATION

To segment a program with the OVERLAY statement, break the program
into one main program and several overlay segments.

The total memory required by a program segmented with the OVERLAY
statement is the size of the main program plus the size of the largest
overlay as illustrated in Figure 8-3.

Before After
Segmentation Segmentation
T T
Main Main Main Main
Program Program Program Program
Overlay Memory Overlay Overlay Memory
1) 1 Overlay 3 .
___________ required 2 required
before “"6‘;5;\;' = . after
Overlay segmentation Statement Main segmentation
> |1 p—— - - Program
Main Overlay
----------- Statement
Overlay Program
3 U d Main U d
e nuse nuse
-------- Program
Main e e Y
Program |

Figure 8-3 Segmenting a Program with the OVERLAY Statement

You must ensure that all 1line numbers in an overlay segment are
repeated 1in each subsequent segment, Otherwise the parts of the
previous segment will still be in memory.

The format of the OVERLAY statement is:

OVERLAY string [LINE expression]

where:
string is a file specification and can be any string
expression.
expression specifies the line to start execution in the new

program.

If you omit LINE and the expression, BASIC starts execution at the
next sequential line number after the OVERLAY statement. Note that if
you enter the OVERLAY statement on a multi-statement 1line, BASIC
ignores all subsequent statements on the line. If you specify LINE
and an expression but the value of the expression in not a valid 1line
number, BASIC prints the ?SYNTAX ERROR (?SYN) error message and stops
execution before reading the program segment. If you specify LINE and
an expression but the 1line number specified does not exist in the
merged program, BASIC prints the ?UNDEFINED LINE NUMBER (?ULN) error
message and stops program execution after merging the new segment.

PROGRAM SEGMENTATION

Consider the following examples:

The file specified by "MAINPR" contains:

The

3 0IM ACLO)

10 FRINT "MAIN PROGRAM®

20 FOR I=1 TO 100

30 ACI=T%3

40 NEXT I

GO0 PRINT "STILL IM MAIN PROGRAM®

LOO PRINT "SEGMENT 1°¢

110 FOR I=1 TO 100

120 IF AT A2INTOACTY A2

130 T=T4a ()

140 NEXT I

150 PRINT

120G QUERLAY
GO TR B0

200
300 END

THEM 140

CTHE SUM T8"ST
R L

file specified by "OVL" contains:

100
110
120
130
P A0
L
140

FRINT
FOR Tl
T=T4H (T
NEXT 1
FRINT
GOOT0

"SEGMENT 20

T 100

"THE
00

UM

e o
T8

A run of these programs produces:

Feon i e T
MATN PROGRAM

S|TTLL

TR MATN PROGRAM
FENT 1
TonU I8
GTVLL TN MAT
PMENT 2
AN I B

R
FHEQ

HOPROGENAM

LSHLS0

Dimension array A(100)
Print message.

Fill array A with

every third number

from 3 to 300.

Print message.

Segment 1 prints message.

Skip all odd values of A
Add the rest to T.

Print result.

Overlay to second segment.
End of main

program.

Print message.
Reinitialize T.
Add all numbers
in array.

Print result.
Go to end.

After BASIC executes the OVERLAY statement, the program in memory is:

EDIM A1)

1O FRIMNT "MAIN FROGRAM®
20 FOR T=1 TO 100

SO RO I

a0 NEXT
B0 F
LOG PRINT
i s
1A FI
L3ECG T
140 &

“STILL IN MAIN PROGRAM®
YHEGMENT 2°

100

[N THE
aloTO B0
QUERL &Y "L
HETO S0
TN

SLIM

rgesT

BASIC continues execution at the
statement, which is line 200.

next

statement after the OVERLAY

PROGRAM SEGMENTATION

Any user-defined function defined in the main program remains defined
after the OVERLAY statement is executed if the line defining function
is not replaced by a line in the overlay segment.

The overlay segment in the file should not contain any DIM or DEF
statements. BASIC ignores these statements when reading in an overlay
segment.

NOTE

Do not specify a compiled file with the
OVERLAY statement. BASIC will not be
able to merge the programs and will
produce a ?LINE TOO LONG (?LTL) or ?2TOO
LONG TO TRANSLATE (?TLT) error message.

8.3 CALLING A ROUTINE WRITTEN IN ANOTHER LANGUAGE (CALL STATEMENT)

The CALL statement causes BASIC to execute a routine written in
another 1language. The routine, usually written in assembly language,
must have been incorporated previously into the BASIC language itself.
The procedure for incorporating the routines into BASIC and the
interface for the routines are described in your BASIC-11 user's
guide.

The format of the CALL statement is:

CALL string [[(list)]]

where:
string specifies the name of the routine. The string can
only be a string constant.
list is the optional argument 1list. It can contain

constants, variables, expressions, and arrays. An
array is listed as a variable name followed by a
left parenthesis and a right parenthesis. For
example; A%() specifies the integer array A which
can have one or two dimensions.

Consider these examples:

Lo Al YANDT OAE BN 03X

Calls the routine AND. The variable 1list contains three
integer variables.

F0OCALL TIERDT AN

Calls the routine ZERO. The argument 1list contains an
integer array.

B0 Call "RUVERS (Ah e DH C{F 3
Calls the routine REVERS. The argument 1list contains the
string variables A$ and D$ and the array C beginning with
the ninth element.
BASIC automatically allocates room for an undimensioned array when it
first encounters a reference to it, but BASIC cannot do this when the

8-9

PROGRAM SEGMENTATION

reference to the array first occurs in a CALL statement. In this
case, BASIC prints the ?UNDIMENSIONED ARRAY 1IN CALL (?UAC) error
message.

BASIC cannot return a result from a routine to an element of a virtual
array file, If the routine returns a result in an argument, do not
specify a virtual array element in that position. It is not possible
to pass an entire virtual array to a routine for any reason.

8-10

9.1 KEY COMMANDS

CHAPTER 9

BASIC-11 COMMANDS

BASIC has a set of key commands that delete characters and lines being
typed, stop printout from programs, and interrupt execution of BASIC
programs. Table 9-1 describes the key commands.

NOTE

A CTRL (control) key command is typed by
pressing the CTRL key while typing the
appropriate letter. For example, to
type CTRL/C, press the CTRL key and type

C.

Table 9-1
BASIC-11 Key Commands

Key

Explanation

CTRL/C

CTRL/O

CTRL/S

CTRL/Q

Interrupts execution of a command or program.
This 1is the key to type when your program is
running and you want to stop it. BASIC prints a
STOP messagde. CTRL/C also cancels the effect of
CTRL/0 and CTRL/S. Be sure to see your BASIC-11
user's guide for more information on using CTRL/C
on your system.

Stops output to the terminal but does not
interrupt execution of the program. Printing on
the terminal resumes after BASIC executes an INPUT
statement, the program ends, or after you type
another CTRL/0. Typing CTRL/O cancels any message
that BASIC is printing. CTRL/O is different than
CTRL/S. After you type CTRL/0, BASIC continues
executing the program but you will not see
anything printed on the terminal. After you type
CTRL/S, BASIC waits for you to type CTRL/Q. When
you have typed CTRL/Q, BASIC continues to print on
the terminal; no information is lost.

Temporarily interrupts the printing on the
terminal. Printing resumes after CTRL/Q or CTRL/C
is typed. (See description of CTRL/0.)

Continues the printing on the terminal after a
CTRL/S has interrupted it.

9-1

BASIC-11 COMMANDS

Table 9-1 (Cont.)
BASIC-11 Key Commands

Key Explanation

CTRL/U Deletes the entire 1line being typed. If you
notice a mistake on the line you are typing before
you type the RETURN key, type CTRL/U and BASIC
ignores the line. CTRL/U can be used when typing
in program lines or when responding to the INPUT
or LINPUT statement,

RUBOUT Deletes the last character typed. If you mean to
type:

10 FOR I=1 TO 3
but instead type:
10 FOR I=3 TO

press the RUBOUT key four times to delete the
incorrect characters:

10 FOR I=3 TO
t41tt (arrows indicate deleted
characters)
and then complete the line by typing:

1 TO 3

9.2 LISTING YOUR PROGRAM (LIST AND LISTNH COMMANDS)
Use the LIST command to print the program lines you have entered. To
list your entire program, type:

LIST
BASIC first prints a header line which consists of the program name,
date, and the BASIC version number. BASIC then prints your entire

program. After BASIC prints your program, it prints the READY
message.

You can also list sections of the program, individual lines, groups of
lines, or any combination of these. The format of the LIST command
is:

LISTﬂ;ine specification, line specification, ...]
where each line specification can be:

line number Lists specified line.

line number-line number Lists all lines in range specified.

line number- Lists all line numbers from the
specified line to the end.

~line number Lists all the 1line numbers from the
beginning to the specified line number.

The LISTNH command is the same as the LIST command except that BASIC
does not print the header line.

9-2

BASIC-11 COMMANDS

Consider these examples:

LISTNH Lists the entire program without a
header line.

LEST 235 Lists a header line and line 25.

LIBT 2550 100~2005%00~ Lists lines 25 and 50, all lines from

100 through 200, and all lines from 500
through the end of the program.
Remember a comma is equivalent to "and"
and a dash is equivalent to "through".
NOTE
To list a program to a file or to a line

printer, use the SAVE command (see
Section 9.6.1).

9.3 EXECUTING A PROGRAM (RUN AND RUNNH COMMANDS)
After you have entered your program, you can execute it by typing:

RUN
When BASIC executes the RUN command, it first prints a header line.
Then it scans the program, reserving space in memory for all arrays in
DIM or COMMON statements, defining any user-defined functions in DEF
statements, and initializing all numeric variables and arrays to 0 and
all strings to the null string. Finally BASIC starts executing the
program at the lowest numbered line.

The RUNNH command has the same effect as the RUN command except that
BASIC does not print the header line.

See Section 9.6.3 for a description of executing a program that is
stored in a file.

9.4 DELETING PROGRAM LINES (DEL COMMAND)
In addition to deleting a line by typing the line number followed by
the RETURN key, you can delete lines with the DEL command. The format
of the DEL command is:

DEL line specificationﬂ}line specification,...]

where the line specification can take the same form that it does in
the LIST command (see Section 9.2).

For example:
oEL 10 Deletes line 10.

HFL 100500 Deletes lines 100 and 500.

B0
Deletes lines 25 and 75 and all the
lines between 100 and 150, inclusively,
and between 275 and 300, inclusively.
Note that the 1lines do not have to be
specified in order.

9-3

OEL @8 OG- 10070

BASIC-11 COMMANDS

9.5 ERASING THE PROGRAM (NEW, SCR, AND CLEAR COMMANDS)

The NEW command erases your program storage area in memory. It
deletes all program 1lines, variables, arrays, and definitions of
user-defined functions. It also changes the program name to the one
specified.

The format of the NEW command is:
NEW program name

where program name can contain the letters A through Z and the digits
0 through 9.

If you type:

without a program name, BASIC requests the new name by printing:
MEW FITLE NOME--—

If you type a name, BASIC uses it for the new program name. However,
if you type the RETURN key, BASIC changes the name to the default
program name, NONAME,

After BASIC erases the program and changes the program name, it prints
the READY message.

For example:
Wi MGy Erases all your program information and
changes the program name to MONEY.

Be sure to type the NEW command when you start writing a program. It
erases any existing program lines.

The SCR or scratch command does the same thing as the NEW command
except that it always changes the program name to NONAME. Use the SCR
command instead of the NEW command when you do not care what the
program name is. The format of the SCR command is:

SCR
BASIC prints READY when it is finished erasing the program.
The CLEAR command erases the contents of all variables and arrays but
does not erase any program lines. The CLEAR command returns the space
used by arrays so that it can be used for program lines. The CLEAR
command does not change the program name.
The format of the CLEAR command is:

CLEAR

BASIC prints the READY message when it is done.

9.6 PROGRAMS IN FILES

Up to this point, all the commands have manipulated the programs in
your area of memory (see Section 1.7), but this section describes how
to transfer programs between your area of memory and a file. You can
store in a file the program that is in your area, and you can transfer
a program from a file to your area.

9-4

BASIC-11 COMMANDS

Programs stored in files are in the same format as sequential data
files but you use different statements and commands to access program
files and sequential data files (see Chapter 6 for a description of
data file statements and see your BASIC-11 user's guide for more
information on differences between program and data files). The
following list describes the statements which access program files.

Statement Transfers Program
CHAIN From a file to your area and executes it.
OVERLAY From a file to your area and merges it with your

current program.

The following list describes the commands which access program files.

Command Transfers Program

SAVE From your area to a file.

REPLACE From your area to a file, deleting an existing
file, if necessary.

OLD From a file to your area.

APPEND From a file to your area and merges it with your

current program.
RUN From a file to your area and executes it.
In addition, you can use the UNSAVE command to delete a program file.

The COMPILE command transfers a program in a special format from your
area to a file (see Section 9.10).

9.6.1 Saving the Program in a File (SAVE and REPLACE Commands)

The SAVE command saves the BASIC program that is currently in your
area in memory. BASIC transfers the program from your area to the
file you specify. BASIC writes to the file the same ASCII characters
that it would print on the terminal if you typed LISTNH. The format
of the SAVE command is:

SAVE [file specificatioﬁ]

If you omit the file specification, BASIC uses the current program
name as a default specification.

After BASIC saves the file, it prints the READY message. Once you
save a file, you can read it into memory by typing the OLD or APPEND
command (see Section 9.6.2). Alternatively, you can run it from the
file by typing the RUN file specification command (see Section 9.6.3)
or by having BASIC execute the CHAIN or OVERLAY statement (see
Sections 8.1 and 8.2).

For example:

SAVE FROGI Stores the current program in the file
specified by PROGl.

SAVE LI Stores (lists) the current program on
the line printer.
9-5

BASIC-11 COMMANDS

The SAVE command does not delete an existing file with the same file
specification. If a file with the same specification exists and if
creating a new file would delete the original one, BASIC prints the
?USE REPLACE (?RPL) error message. To save the program, you should
either use a different file specification or use the REPLACE command.

The REPLACE command is like the SAVE command except that REPLACE saves
a program even if it means deleting an existing file. This difference
between the SAVE and REPLACE commands helps to prevent you from
inadvertently deleting program files that you have previously saved.

The format of the REPLACE command is:
REPLACE ([file specification])

If you omit the file specification, BASIC wuses the current program
name as the default specification.

For example:
REPLACE PROGL Saves the current program in the file
specified by PROG1, deleting any

existing file with the same file
specification.

9.6.2 Restoring a Program from a File (OLD and APPEND Commands)
The OLD command first erases your area in memory and changes the
program name (like the NEW command) and then reads in the program from
the specified file.
The format of the OLD command is:
OLD [file specification]
If you type only:
.
BASIC requests the file specification by printing:
OLE FTLE NAME--
Then type the file specification. 1If you type only the RETURN key,
BASIC assumes the file specification NONAME (BASIC looks for a program
stored in the file specified by NONAME).
For example:
Erases the program currently in memory
and reads in the program in the file
specified by PROGI.
NOTE
If BASIC cannot find the file you
specify in an OLD command, it changes
the program name and prints the ?FILE
NOT FOUND (?FNF) error message.

However, BASIC does not delete the
program in your area.

9-6

BASIC-11 COMMANDS

The APPEND command merges the program currently in memory with the
program in the specified file. BASIC reads in the specified file and
sorts the new program lines into the current program. If one of the
new lines has the same line number as an existing line, BASIC deletes
the existing line.
The format of the APPEND command is:

APPEND [file specification]
If you type only:

falF N
BASIC requests the file specification by printing:

GLIY FILE NAME -

You then type the file specification. If you just type the RETURN
key, BASIC assumes the file specification NONAME.

Entering the APPEND command has the same effect as entering the new
lines at the terminal and also as entering an immediate mode OVERLAY
statement.

9.6.3 Running a Program from a File

If you want to run a program from a file, specify a file after the RUN
command.

The format of the command is:
RUN file specification

When you specify a file with the RUN command, BASIC erases all program
lines and the contents of all variables, changes the program name
(equivalent to the NEW command, see Section 9.5) reads in the
specified program (equivalent to the OLD command, see Section 9.5) and
finally starts the execution of the program.

The RUN file specification command does not print a header line and is
equivalent to the RUNNH file specification command.

See Section 9.3 for a description of the RUN and RUNNH commands
without a file specification.

For example:

RUN SRk, Erases the program currently in memory,
changes the program name to SPCWR, reads
in the file specified by SPCWR, and
starts execution of the program.

BASIC-11 COMMANDS

NOTE

If BASIC cannot find the file specified
in a RUN command, it changes the program
name and prints the ?FILE NOT FOUND
(?FNF) error messagde. However, BASIC
does not delete the program in your
area. This may happen if you mistype
the RUNNH command, such as RUNHN: BASIC
interprets this as a RUN HN command
where HN is the file specification.

If the file specification. begins with
NH, BASIC will assume that the NH is
part of the RUNNH command. For example,
BASIC interprets a RUN NHT command as
RUNNH T. To run a program whose file

specification begins with NH, use the
RUNNH command.

9.6.4 Deleting a Program File (UNSAVE Command)

The UNSAVE command deletes the specified program file. The format of
the UNSAVE command is:

UNSAVE file specification

BASIC deletes the file specified and then prints the READY message.
When the file is deleted, it cannot be restored.

For example:

LINBAVE MONEY Deletes the program file specified by
MONEY.

The UNSAVE command has the same effect as the KILL statement except
that the KILL statement deletes data files instead of program files.

9.7 CHANGING THE PROGRAM NAME (RENAME COMMAND)

The RENAME command changes the program name to the one specified but,
unlike the NEW command, does not erase the program.

The format of the RENAME command is:
RENAME[?rogram name]

If you just type:
PN A

BASIC requests the new name by printing:
NEW FILE NAME--

You then type the new program name. If you type only the RETURN Kkey,
BASIC changes the program name to NONAME.

BASIC-11 COMMANDS

9.8 EDITING A LINE (SUB COMMAND)

You can change a program line that you have already typed without
retyping the whole 1line by using the SUB command. The SUB command
substitutes the specified characters on the specified 1line with new
characters.

The format of the SUB command is:

SUB line number xstringlxstringzmx[}ntegeﬁjﬂ

where

line number specifies the line to be edited.

X can be any character to delimit the strings. X
must not appear in the strings. The character @
is a good choice for a delimiting character
because it is not used in BASIC programs except in
string constants.

stringl is the o0ld series of characters to be deleted. Do
not delimit the string with quotation marks.

string2 is the new series of characters to be inserted.
Do not delimit the string with quotation marks.

integer specifies the occurrence of stringl in the 1line.

If the integer is omitted, the first occurrence is
substituted. You do not have to type the percent
sign after the integer.

After the changes are made, the new line is printed.

For example, if the current line 10 is:

LTSHTH L
10 LETYT fA-FkC

PEATY
then type the SUB command:

SOl L @ fe @
SO LET A=RED

REATY

BASIC makes the correction to the line and then prints out the new
line.

If the current line is

LoTSTME 00

P00 FOumBIN(XIHFS

REALY

BASIC-11 COMMANDS

and you want to change the second occurrence of F9 to I%, type the SUB
command :

SUR LO0RFPETHER
100 FP=AXEIN(X)+IX

READY

SUB can be used to change the line number. For example if the current
line 20 is:

LISTMM 20
20 PRINT AsRBsCyD

READY

and you wish to change the line number to 100, type the following SUB
command :

GUR 20 @20@1000
100 FRINT A»RByCHD

READY .
BASIC makes the correction and then prints the new line. Note that
BASIC does not delete the 0ld line but merely copies it.

However, you cannot use the SUB command to delete the entire 1line
number (change a program line to an immediate mode statement). If you
try to do this, BASIC prints the ?SUBSTITUTE ERROR (?SUB) message and
does not execute the command. This message is also produced if you
enter the SUB command in the wrong format (such as omitting the
delimiting character ending stringl).

BASIC uses the first character after the 1line number on the SUB
command as the delimiting character, but it ignores all spaces and
tabs until it finds a character. Consequently you cannot use space
nor tab as a delimiting character. Neither can you use a digit as the
delimiting character, because BASIC will consider it part of the 1line
number.

If BASIC cannot find the old string you specify, it reprints the line
with no changes.

NOTE

You must type stringl exactly as BASIC
lists it; consequently, it is useful to
list a line before entering the SUB
command.

9.9 RESEQUENCING A PROGRAM (RESEQ COMMAND)

You can use the RESEQ command to resequence your program or sections
of your program. If you have inserted so many lines in your program
that your line numbers are incremented by 1 and you need to insert a
new line, you should resequence the program.

9-10

BASIC~-11 COMMANDS

When BASIC resequences a program, it changes the 1line numbers
specified and it also changes any references to the changed line
numbers (i.e. in GO TO, ON GO TO, IF THEN, IF GO TO, GOSUB, and ON
GOSUB statements).

You can use the RESEQ command to resequence your entire program or a
segment of the program. You specify the new line number at which you
want the segment (or the entire program) to start, the range of line
numbers that you want resequenced (the old line numbers), and the
increment to be used between each line number. You do not have to
specify all the values: BASIC uses a default value when you omit one.

The format of the RESEQ command is:

RESEQ [new],[oldﬂﬂ}oldé] H}incremenﬁ]

where

new specifies the starting new line number.

oldl specifies the lowest existing line number to be
resequenced.

old2 specifies the highest existing line number to be
resequenced.

increment specifies the increment to be used between each
line.

If you do not specify new, the new starting line number, BASIC uses
the highest existing line number less than oldl.

For example if you type
REGEC L0200 10

and the highest line number under 105 is 100, BASIC starts the first
new line at 100 plus the increment 10, or 110.

If you do not specify the oldl, BASIC starts resequencing at the
beginning of the program.

If you do not specify 0l1d2, BASIC resequences the program until its
end.

If you do not specify the increment, BASIC uses an increment of 10.
If you type only:
Pl sEQ

BASIC resequences the entire program, giving the first line the 1line
number 10 and incrementing each line by 10.

BASIC-11 COMMANDS

For example, if your current program is:

LIGTNH

10 FRINT "CHECK BALANCING FROGRAM®
13 FRINT "LAST BALANCE"S$

14 INFUT R

13 PRINT “NEXT CHECK"$

20 INFUT C

21 IF C=0 THEN 133

25 B=R-Q

30 GO TO 1S

13 FRINT "NEXT DEFOSIT®S

140 INPUT I

141 IF =0 THEN 1000

1435 RB=R4+0

180 6O TO 133

1000 PRINT "SERVICE CHARGE®S

1001 INFUT 8§

1002 RB=R-§

LOOH FRINT "RALANCE IS"iR
L1100 END

READY
The command
FESER 200y 135-150,20

resequences lines 135, 140, 141, 145, and 150 to line numbers 200,
220, 240, 260, and 280 respectively. 1Instead of line 21 being IF C=0
THEN 135, it is changed to IF C=0 THEN 200.

The program now is:

LISTNH

1O PRINT "CHECK BALANCING FROGRAM®
13 PRINT "LAST RALANCE"S

14 INPUT R

LS PRINT "NEXT CHECK"$

20 INFUT ©

21 IF C=0 THEN 200

28 R=R-C

30 GO TO 15

200 PRINT "NEXT DEPOSIT®S
BA20OINPUT D

240 IF =0 THEN 1000

260 B=R4D

280 60O TO 200

LOOO PRINT "SERVICE CHARGE®S

LoolL] 8

1002

100% P "RALANCE I8 iR
1010

REALY

Note that the 0ld line 150 (now is line 280) is GO TO 200 instead of
the original GO TO 135.

If you type:
BEGER LG0y o 50

BASIC resequences the entire program with the new starting line of 100
and an increment of 50.

9-12

BASIC-11 COMMANDS

If you specify a combination of line numbers that would change the
order of 1lines, BASIC prints the ?RESEQUENCE ARGUMENT ERROR (?RES)
message and ignores the command. For example, if in the original
example in this section you type:

RES L0Q 1030

BASIC would try to resequence lines 10, 13, 14, 15, 20, 21, 25, and 30
as lines 100, 110, 120, 130, 140, 150, 160, and 170, respectively.
But because there is already a line 135, this would change the order
of the program lines. Consequently, BASIC would print the error
message.

9.10 SAVING A COMPILED PROGRAM (COMPILE COMMAND)

BASIC does not store the program exactly the way you type it but
instead compresses or compiles each 1line. This allows you to fit
larger programs in your area than you could if BASIC did not compile
each line. Whenever you 1list or save your program, BASIC actually
translates the program from the form in which it is stored to the form
that you entered.

The COMPILE command saves a copy of the internal image that BASIC uses
to store programs. Once you have saved this image, BASIC can read it
into memory much faster than it can read a file saved by the SAVE
command.

The format of the COMPILE command is:
COMPILE [file specification]

If you omit the file specification, BASIC uses the current program
name as the default file specification.

The compiled file can be read in by the OLD or RUN command or by the
CHAIN statement, but it cannot be read by the APPEND command or the
OVERLAY statement.

NOTE

The file created by the COMPILE command
should only be used on the same system
on which it was created. If you want to
use a compiled file on another version
of BASIC, you must restore the compiled
file with an OLD command on the system
that it was created and then store a new
file with the SAVE command. The SAVE
command creates files that can be wused
by other versions of BASIC.

9.11 CHECKING THE LENGTH OF A PROGRAM (LENGTH COMMAND)

Use the LENGTH command to find the amount of storage required by the
BASIC program in memory. This information is useful in determining
the minimum area in which a specific program can run. The form of the
command is:

LENGTH

BASIC-11 COMMANDS

The LENGTH command causes BASIC to produce this message:

mmm WORDS USED, nnn FREE

where:
mmm is the number of words currently occupied by your
program.
nnn is the number of words remaining free in your area

in memory.

The number of words in use includes memory currently needed by the
BASIC program itself, arrays, string variables, and file buffers. To
determine the size of the program alone, enter the LENGTH command
immediately after an OLD or CLEAR command. Arrays are created after
the RUN command, and file buffers are created when the OPEN statement
is executed.

.The memory required for string variables and string arrays varies with
the current values of the strings; consequently, the LENGTH command
returns the current memory requirements, which may be smaller than the
maximum memory requirements.

BASIC prints several error messages when the program exceeds the
amount of memory available: ?2ARRAY TOO LARGE (?ATL), ?BUFFER STORAGE
OVERFLOW (?BSO), ?PROGRAM TOO BIG (?PTB), and ?STRING STORAGE OVERFLOW
(?8s80) . To reduce program size, follow one or more of the following
procedures:

1. Eliminate or reduce unnecessary items such as REM statements,
long printed messages, and optional keywords such as LET.

2. Make maximum use of multiple statement lines.

3. Make efficient use of program loops, subroutines,
user-defined functions, and multiple branching.

4, Split up large programs into several smaller programs by
using the CHAIN statement.

5. Reduce the size of arrays in memory to the size required (DIM
statement) .

6. Reduce the number of variables and arrays in a program by
reusing them when their contents are no longer needed,
instead of creating new variables or arrays.

7. Reduce the number of simultaneously open files by opening a
file just before it 1is needed and closing it immediately
after the last use.

8. Substitute virtual array files for large arrays in memory.
After deleting program lines, store the program with the SAVE command

and restore it with the OLD command to further minimize program memory
requirements.

APPENDIX A

ERROR MESSAGES

When BASIC finds an error in a program line, immediate mode statement,
or command, it prints an error message. This signals that an error
has occurred and that you should correct the error. Error messages
are an aid in debugging your program (see Section 1.9).

When BASIC detects an error in a program 1line it prints the error
message in the format:

?message AT LINE XXXXX
where xxxxx is the line number of the statement containing the error.

When BASIC detects an error in an immediate mode statement or command,
it prints the error message in the format:

?message

Most of the error messages are fatal error messages; that is, after
BASIC prints the error message, it interrupts execution of the program
line, immediate mode statement or command and then prints the READY
message.

Certain arithmetic and input errors are nonfatal. When BASIC finds a
nonfatal arithmetic error, it substitutes a default value for the
operation causing the error and continues execution. When BASIC finds
a nonfatal input error, it prints a message and continues execution.
After certain nonfatal input errors, BASIC requests more input.

BASIC detects most errors when it is executing a program line,
immediate mode statement, or command. BASIC does, however, detect
these errors when you are typing in your program.

?LINE TOO LONG (?LTL)
?LINE TOO LONG TO TRANSLATE (?TLT)
?PROGRAM TOO BIG (?PTB)

Some versions of BASIC use an abbreviated 3-letter error message.
These messages and their corresponding long forms are listed in Table
A-1. See your BASIC-11 user's guide for a description of the error
messages your system prints.

Table A-2 lists the long form of the error messages and provides a
description of each. (The abbreviated forms are listed in
parentheses.) You can assume an error message is fatal unless the
first word of the description is “nonfatal."

ERROR MESSAGES

Table A-1
Abbreviated Error Messages

Abbreviated
Form Long Form
?ARG ?ARGUMENT ERROR
?ATL ?ARRAY TOO LARGE
?BDR ?BAD DATA READ
?BLG ?BAD LOG
?BRT ?BAD DATA - RETYPE FROM ERROR
?BSO ?BUFFER STORAGE OVERFLOW
?2CAO ?CHANNEL ALREADY OPEN
?CCP ?CHECKSUM ERROR IN COMPILE PROGRAM
?CDF ?CANNOT DELETE FILE
?CIE ?CHANNEL I/0 ERROR
?2CNO ?CHANNEL NOT OPEN
?2C00 ?COMMON OUT OF ORDER
?2CV0 ?CONTROL VARIABLE OUT OF RANGE
?DVO0 ?DIVISION BY ZERO
?ECC ?ERROR CLOSING CHANNEL
?EER ?EXPONENTATION ERROR
?EII ?EXCESS INPUT IGNORED
?ENL ?END NOT LAST
?2ETC ?EXPRESSION TOO COMPLEX
?FAD ?FUNCTION ALREADY DEFINED
?FAE ?FILE ALREADY EXISTS
?FNF ?FILE NOT FOUND
?2FOV ?FLOATING OVERFLOW
?FPV ?FILE PRIVILEGE VIOLATION
?2FSV ?NESTED FOR STATEMENTS WITH SAME CONTROL VARIABLE
?FUN ?FLOATING UNDERFLOW
?FWN ?FOR WITHOUT NEXT
?ICN ?ILLEGAL CHANNEL NUMBER
?1IDF ?ILLEGAL DEF
?IDM ?ILLEGAL DIM
?2IDT ?ILLEGAL DATA TYPE
?2IEF ?ILLEGAL END OF FILE IN COMPILE PROGRAM
?IFL ?ILLEGAL FILE LENGTH
?IFS ?ILLEGAL FILE SPECIFICATION
?1ID ?ILLEGAL I/0 DIRECTION
?21IIM ?ILLEGAL IN IMMEDIATE MODE
?INS ?INCONSISTENT NUMBER OF SUBSCRIPTS
210V ? INTEGER OVERFLOW
?1IRS ?ILLEGAL RECORD SIZE
?1ISE 2INPUT STRING ERROR
?ISL ?ILLEGAL STRING LENGTH
?LTL ?LINE TOO LONG
?MSP ?MISSING SUBPROGRAM
?NER ?NOT ENOUGH ROOM
?NGS ?NEGATIVE SQUARE ROOT
?NSM ?NUMBERS AND STRING MIXED
2NVD ?NOT A VALID DEVICE
?NWF ?NEXT WITHOUT FOR
200D ?0UT OF DATA
?PRU ?PRINT USING ERROR
?PTB ?PROGRAM TOO BIG
?RES ?RESEQ ARGUMENT ERROR
?RPL ?USE REPLACE
?RWG ?RETURN WITHOUT GOSUB

ERROR MESSAGES

Table A-1 (Cont.)
Abbreviated Error Messages

Abbreviated
Form Long Form
?S0B ?SUBSCRIPT OUT OF BOUNDS
2580 ?STRING STORAGE OVERFLOW
?STL ?STRING TOO LONG
?SUB ?SUBSTITUTE ERROR
?SYN ?SYNTAX ERROR
?TIC ?TO0 MANY ITEMS IN COMMON
?TLT ?LINE TOO LONG TO TRANSLATE
?2TMG ?2T00 MANY GOSUB'S
2UAC ?UNDIMENSIONED ARRAY IN CALL
?UFN ?UNDEFINED FUNCTION
?ULN ?UNDEFINED LINE NUMBER
?2VCU ?VIRTUAL ARRAY CHANNEL ALREADY IN USE

Table A-2
BASIC-11 Error Messages

?ARGUMENT ERROR (?ARG)

Arguments in a function do not match, in number, range, or type,
the arguments defined for the function. Ensure that there are
the correct number of arquments, that their values are in the
correct range, and that they are the correct type.

?ARRAYS TOO LARGE (?ATL)

?BAD

?BAD

?BAD

Not enough memory is available for the arrays specified in the
DIM statements. Reduce the size of the arrays or reduce the size
of the program (see Section 9.11).

DATA READ (?BDR)

Data item input from a DATA statement or from a file is the wrong
data type. Ensure that the DATA statement or the file contains
the same data type as specified in the READ or INPUT # statement.

DATA - RETYPE FROM ERROR (?BRT)

Nonfatal. Item entered in response to an INPUT or INPUT #0
statement is the wrong data type. Retype item and program will
continue.

LOG (?BLG) .
Nonfatal. Expression in LOG or LOGl0 function is 0 or negative.
The function returns 0 and BASIC continues execution of the
program.

?BUFFER STORAGE OVERFLOW (?BSO)

Not enough room available for file buffer in your area. Reduce
program size (see Section 9.11).

ERROR MESSAGES

Table A-2 (Cont.)
BASIC-11 Error Messages

?CANNOT DELETE FILE (?CDF)

The file specified in a KILL statement or UNSAVE command cannot
be deleted. See your BASIC~-1l1l user's guide for more information.

?CHANNEL ALREADY OPEN (?CAO)

OPEN statement specifies a channel that is already associated
with an open file. Ensure that OPEN statements specify correct
channel numbers and that files that should be closed are closed.

?CHANNEL I/0 ERROR (?CIE)

Accessing data in a file produces an error. Ensure that your
peripheral devices and their storage media are working correctly.
One possible cause is that the file accessed has 0 length.

?CHANNEL NOT OPEN (?CNO)

A PRINT #, PRINT # USING, INPUT #, IF END $#, or CLOSE statement,
or a reference to a virtual array file specifies a channel number
not associated with an open file. Check that the OPEN statement
has been executed and that it specifies the same channel number
as the program line with the error.

?CHECKSUM ERROR IN COMPILED PROGRAM (?CCP)

File produced by the COMPILE command contains a format error.
Use a copy of the program created by a SAVE or REPLACE command.

?COMMON QUT OF ORDER (?COO0)
Variables and arrays in a COMMON statement are not listed in the
same order as those 1in a previous segment. Ensure that all
segments have equivalent COMMON statements.

?2CONTROL VARIABLE OUT OF RANGE (?CVO)

Expression in an ON GOTO or ON GOSUB statement is 0 or negative
or has a value greater than the number of line numbers listed.
Ensure that expression has a value in the correct range.

?DIVISION BY ZERO (?2DV0)
Nonfatal. An expression includes a division by 0. BASIC
substitutes a value of 0 for that operation and continues
execution of the program.

?END NOT LAST (?ENL)

END statement is not the highest numbered program 1line. This
error message 1is printed when the END statement is executed.
Ensure that there is only one END statement in program and that
it has the highest line number.

?ERROR CLOSING CHANNEL (?ECC)

Closing a channel produces an error. Ensure that your peripheral
devices and their storage media are working correctly.

ERROR MESSAGES

Table A-2 (Cont.)
BASIC-11 Error Messages

?EXCESS INPUT IGNORED (?EII)

Nonfatal. There are more data items than required by an INPUT or
INPUT #0 statement. BASIC ignores the excess items and continues
execution of the program. Ensure that data items did not contain
an unintended comma (e.g., 1,430 instead of 1.430).

?EXPONENTIATION ERROR (?ERR)

Nonfatal. An expression includes the operation of raising a
negative value to a nonintegral power (e.g., (-1)".5). This
would produce a complex number, which can not be represented in
BASIC. This message is also produced when a negative value is
raised to an integral value that has an absolute value greater
than 255 (e.q. (-1)"256) . In both cases, BASIC substitutes a
value of 0 for the operation and continues execution.

?EXPRESSION TOO COMPLEX (?ETC)

An expression is too complex for BASIC to evaluate in the area it
uses for calculations (called the stack). This condition is
usually caused by including user-defined functions or nested
functions in an expression. The degree of complexity that causes
this error varies according to the amount of space available in
the stack at the time. Breaking the statement up into several
statements containing simpler expressions may eliminate the
error.

?FILE ALREADY EXISTS (?FAE)

Creating a file would cause an existing file to be deleted and
this deletion is not allowed. See your BASIC-1l user's guide for
more information.

?FILE NOT FOUND (?FNF)

BASIC cannot find the specified file. Ensure that the file
specification was typed correctly and that the file exists.

?FILE PRIVILEGE VIOLATION (?FPV)

This operation includes a restricted file operation. See your
BASIC-11 user's guide for more information.

?FLOATING OVERFLOW (?FOV)

Nonfatal. The absolute value of the result of a computation is
greater than the largest number that can be stored by BASIC
(approximately 10738). BASIC substitutes a value of 0 for the
operation and continues execution of the program.

?FLOATING UNDERFLOW (?FUN)

Nonfatal. The absolute value of the result of a computation is
smaller than the smallest number that BASIC can store
(approximately 107 (-38)). BASIC substitutes a value of 0 for
operation and continues execution of the program.

ERROR MESSAGES

Table A-2 (Cont.)
BASIC-11 Error Messages

?FOR WITHOUT NEXT (?FWN)

The program contains a FOR statement without a corresponding NEXT
statement to terminate the loop. Ensure that each loop in the
program is terminated with a NEXT statement.

?FUNCTION ALREADY DEFINED (?FAD)

The user-defined function is previously defined. Ensure that
each function is defined only once and has a unique name.

?ILLEGAL CHANNEL NUMBER (?ICN)

The channel specified is not in the range allowed or the 1IF END
statement specifies a file on a terminal. See your BASIC-1l1
user's guide for information about the range of valid channel
numbers.

?ILLEGAL DEF (?IDF)

There is an error in the DEF statement. Check the format and
data types in the argument list and defining expression.

?ILLEGAL DIM (?IDM)

A subscript in a DIM or COMMON statement is not an integer, an
array 1is dimensioned more than once, or an array has more than
two dimensions. Ensure that an array specification is in the
correct forirnat and appears only once in the COMMON and DIM
statements in the program.

?ILLEGAL END OF FILE IN COMPILED PROGRAM (?IEF)

File produced by the COMPILE command contains a format error.
Use a copy of the program created by a SAVE or REPLACE command.

?ILLEGAL FILf LENGTH (?IFL)
The FILE LENGTH specified in an OPEN statement is invalid. See
your BASIC-11 user's guide for information on the valid range of
FILE LENGTH.

?ILLEGAL FILE SPECIFICATION (?IFS)

The file specification is invalid. See your BASIC-11 user's
guide for information on the format of a file specification.

?ILLEGAL IN IMMEDIATE MODE (?IIM)

The INPUT or INPUT # statement cannot be entered in immediate
mode. Enter the statement in a program line (followed with a
STOP statement) and execute the statement with an immediate mode
GO TO statement.

ERROR MESSAGES

Table A-2 (Cont.)
BASIC-11 Error Messages

?2ILLEGAL I/O DIRECTION (?IID)

Statement attempts to write to an input file or read an output
file. Ensure that the channel number specified specifies the
correct file. 1If the statement assigns a value to an element of
a virtual array file, ensure that the file's OPEN statement does
not specify “FOR INPUT."

?2ILLEGAL RECORD SIZE (?IRS)

The RECORDSIZE specified in an OPEN statement is invalid. See
your BASIC-11 user's guide for information on the valid range for
RECORDSIZE.

? INCONSISTENT NUMBER OF SUBSCRIPTS (?INS)

The array is dimensioned with one subscript and referenced by
two, or vice versa. Ensure that the DIM statement and array
references are consistent.

2 INPUT STRING ERROR (?ISE)

Nonfatal. A string entered in response to an INPUT statement
begins with a quotation mark but is not terminated by the
appropriate end quotation mark. BASIC assigns to the string all
the characters between the initial qguote and the line terminator
and continues execution of the program.

2 INTEGER OVERFLOW (2IOV)

An integer variable is assigned a value greater than 32767 or
less than -32768 or an integer expression produces a result which
exceeds this range. Change the variable or expression to a
floating point format.

?2LINE TOO LONG (?LTL)

The line entered is longer than BASIC allows; the 1line is
ignored. If this message occurs when BASIC is reading a program
from a file, BASIC stops reading the file. A possible cause is
that you entered a line near the maximum size with no spaces, but
when you save the program, BASIC adds spaces making the line too
long. Split the line into several smaller lines.

?LINE TOO LONG TO TRANSLATE (?TLT)

Lines are translated as they are entered; the line just entered
exceeds the area reserved for translating. The line is ignored.
If this message is produced while BASIC is reading a program from
a file, BASIC stops reading the file. Split the line into
several smaller lines.

?MISSING SUBPROGRAM (?MSP)
The CALL statement specifies a nonexistent routine name. Ensure

that the name is typed correctly (it must consist of upper case
letters).

ERROR MESSAGES

Table A-2 (Cont.)
BASIC-11 Error Messages

?NEGATIVE SQUARE ROOT (?NGS)

Nonfatal. The expression in the SQR (square root) function has a
negative value. The function returns a value of 0. BASIC
continues execution of the program.

?NESTED FOR STATEMENTS WITH SAME CONTROL VARIABLE (?FSV)

A FOR statement specifies the same control variable as that
specified by a FOR NEXT loop that the FOR statement is inside.
Change onerof the control variables to a different variable name
(in both the FOR and the corresponding NEXT statement) .

?NEXT WITHOUT FOR (?NWF)

A NEXT statement is without a corresponding FOR statement.
Ensure that each loop starts with a FOR statement and ends with a
NEXT statement which specifies the same variable. This error
message 1is also produced if <control is transferred into the
middle of a loop. FOR NEXT loops should only be entered by
executing the FOR statement.

?NOT A VALID DEVICE (?NVD)

File specification contains an invalid device. See your BASIC-11
user's guide for information about file specifications.

?NOT ENOUGH ROOM (?NER)

There is not enough room for the file. See your BASIC-11 user's
guide for more information.

?NUMBERS AND STRINGS (?NSM)

String and numeric values appear in the same expression or they
are set equal to each other; for example, A$=2. Change either
the data type of the variable (e.g., A=2) or the expression
(e.g., A$="2") so that they are consistent.

?0UT OF DATA (200D)

The data 1list 1is exhausted and a READ statement requests
additional data or the end of a file is reached and the INPUT #
statement requests additional data. FEnsure that there is
sufficient data or test for the end-of-file condition with the IF
END statement.

?PRINT USING ERROR (?PRU)

There is -an error in the PRINT USING statement caused when the
format specification is not a valid string, or is null, or does
not contain one valid field. The error is also caused when an
attempt 1is made to print a numeric value in a string field, a
string value in a numeric field, or a negative number in a
floating asterisk or floating dollar sign field that does not
also specify a trailing minus sign. The message is also printed
if the items in the 1list are not separated by commas or
semicolons.

ERROR MESSAGES

Table A-2 (Cont.)
BASIC-11 Error Messages

?PROGRAM TOO BIG (?PTB)

The line just entered causes the program to exceed the user area
in memory; the 1line 1is ignored. Reduce program size (see
Section 9.11). 1If this error occurs when BASIC is reading a
program from a file, BASIC stops reading the file.

?RESEQUENCE ERROR (?RES)

Resequencing the program would cause lines to overlap or existing
lines to be deleted, or would create an illegal line number.
Reenter the command with different arguments.

?RETURN WITHOUT GOSUB (?RWG)

A RETURN is encountered before execution of a GOSUB statement.
Do not transfer control to a subroutine except by executing a
GOSUB or an ON GOSUB statement.

?STRING STORAGE OVERFLOW (?SSO)

Not enough memory is available to store all the strings used 1in
the program. Reduce program size (see Section 9.11).

?STRING TOO LONG (?STL)

The maximum length of a string in a BASIC statement is 255
characters. Split string into several smaller strings.

?SUBSCRIPT OUT OF BOUNDS (?SOB)

The subscript computed is less than zero or is outside the bounds
defined in the DIM statement. Ensure that expression specifying
the subscript is in the correct range.

?SUBSTITUTE ERROR (?SUB)

There was no separator between the strings in the SUB command or
the command would create an immediate mode statement. Retype SUB
command.

?8YNTAX ERROR (?SYN)

BASIC has encountered an unrecognizable element. Common examples
of syntax errors are misspelled commands, unmatched parentheses,
and other typographical errors. This message can also be
produced by attempting to read in a program from a file
containing illegal characters, in which case BASIC stops reading
the file. Retype program line or ensure that file contains a
valid BASIC program.

?2TO0 MANY GOSUBS (?TMG)
More than 20 GOSUBS have been executed without a corresponding

RETURN statement. Change the program logic so that less GOSUB
statements are executed.

ERROR MESSAGES

Table A-2 (Cont.)
BASIC-11 Error Messages

?2TO0 MANY ITEMS IN COMMON (?TIC)

There are more than 255 variable and array names in COMMON (A,
A(100), A%, A%(10, 10), AS, and AS$(5) are all considered
different names). Reduce the number of items in COMMON by
converting individual variables to elements of an array or by
passing fewer items to the next program segment.

?UNDEFINED FUNCTIONS (?UFN)

A user-defined function has been used and not defined. Define
the function. A function is defined only after the RUN command
or CHAIN statement is executed.

?UNDEFINED LINE NUMBER (?ULN)

The line number specified in an IF, GO TO, GOSUB, ON GO TO, ON

GOSUB, or CHAIN statement does not exist anywhere in the program.

Ensure that the line number specified exists in the program.
?UNDIMENSIONED ARRAY IN CALL (?UAC)

The first reference to an undimensioned array appears in a CALL
statement. Dimension the array with the DIM statement.

?USE REPLACE
Saving the program would have caused an existing file to be
deleted. Use either a different file specification or the
REPLACE command.

2VIRTUAL ARRAY CHANNEL ALREADY IN USE (?VCU)
The DIM # statement specifies a channel number which has already
appeared in a DIM # statement. Specify another channel number.

Using BASIC functions improperly causes error messages to be printed.
Table A-3 1lists the functions and describes under which conditions
BASIC functions produce errors.

A-10

ERROR MESSAGES

Table A-3
Error Conditions in Functions
All functions
The argument used is the wrong type. For example, the argument
is numeric and the function expects a string expression. This

condition produces ?ARGUMENT ERROR (?ARG).

All functions
The wrong nuiber of arguments is used in a function, or the wrong
character is used to separate them. For example, PRINT SIN (X,Y)
produces a syntax error because the SIN function has only one
argument. This condition produces ?SYNTAX ERROR (?SYN).
ASC(string)

String is not a 1l-character string. This condition produces
?ARGUMENT ERROR (?ARG).

BIN(string)

Character other than blank, 0, or 1 in string or value is greater
than 2716. This condition produces ?ARGUMENT ERROR (?ARG).

CHRS (expr)

Expression is not in the range 0 to 32767. This condition
produces ?ARGUMENT ERROR (?ARG).

EXP (expr)

Value of expression is greater than 87. This condition produces
?EXPONENTIATION ERROR (?EER).

FNletter
The function Filetter is not defined (function cannot be defined
by an immediate mode statement)., This condition produces
?UNDEFINED FUNCTION (?UFN).

LOG (expr)

Expression is negative or 0. The function returns a value of 0.
This condition produces ?BAD LOG (?BLG).

LOG10 (expr)

Expression is negative or 0. The function returns a value of 0.
This condition produces ?BAD LOG (?BLG).

OCT(string)
Character other than blank or digits 0 through 7 appears in

string, or value is greater than 2716. These conditions produce
ARGUMENT ERROR (?ARG) .

A-11

ERROR MESSAGES

Table A-3 (Cont.)
Error Conditions in Functions
PI

An argument is included. This condition produces ?SYNTAX ERROR
(?S¥YN) .

SEGS$ (string,exprl,expr2)
No additional error conditions.
SOR (expr)

Expression is negative. The function returns a value of 0. This
condition produces ?NEGATIVE SQUARE ROOT (?NGS).

TAB
Expression is not in the range 0 to 32767. This condition
produces ?ARGUMENT ERROR (?ARG).

VAL (string)

String is not a numeric constant. This condition produces
?ARGUMENT ERROR (?ARG).

A-12

APPENDIX B

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS

B.1 SUMMARY OF BASIC-11 STATEMENTS

Table B-1 1lists the BASIC-11 statements and provides a brief
description of each. For more information see the section of this
manual specified on the right.

Table B-1
Summary of Statements

Section

CALL "routine name"ﬂ]argument listﬂ] 3.3
Calls assembly language routines from a BASIC program.

CHAIN string E;INE expression] 8.1

Terminates execution of the program, loads the program
specified by string, and begins execution at the lowest line
number or at the line number specified by expression. The
string is a file specification.

CLOSE“({Bexprl,[fﬂexprz,[}]expr3, ...ﬂ 6.2.2

Closes the file(s) associated with the channel number (s) and
virtual file channel number(s) specified. 1If no channel
number is specified, closes all open files.

COMMON list 8.1.1
Preserves values and names of specified variables and arrays
when the CHAIN statement 1is executed. Both string and
arithmetic variables and arrays can be passed. The

statement also dimensions the specified arrays. List is in
the general format:

varl [[(expr [[,expr]]):I] ,var2 ﬂ:(expr [[, expr]ﬂ], cee

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS

" Table B-1 (Cont.)
Summary of Statements

Section

DATA list 3.1.3

Used in conjunction with READ to input listed data into an
executing program. Can contain any mixture of strings and
numbers. Items must be separated by commas.

$
DEF FNletter { (varlﬂ}varz,...,varS])=expression 5.4
%
Defines a user function. Letter may be any single letter A
through 2.

DIM list
Reserves space in memory for arrays according to the
subscript(s) specified after the variable name. List is in
the general format:

varl (expr [[,expr]]) [l}varZ (expr [[,expr:[]) P]]

DIM #integerl,variable(integer2[,integeri])[éintegeréﬂ 6.4.1
Dimensions the virtual array file associated with the
channel number specified by integerl. 1Integer4 specifies
the string size for string virtual arrays.

END 4.3
Optional. Placed at the physical end of the program to
terminate execution.

FOR var=exprl TO expr2 HSTEP exprj] 4.2.1
Sets up a loop to be executed the specified number of times.
GOSUB line number 4.4.1
Unconditionally transfers control to specified 1line of

subroutine.

GO TO line number 4.1.1

Unconditionally transfers control to specified line number.

THEN statement
IF relational expression THEN line number
GO TO line number

Conditionally executes the specified statement or transfers
control to specified line number. When the condition is not
true and a statement is specified, execution continues at
the next sequential 1line. When the condition is not true
and a line number is specified, execution continues at the
next sequential statement. The expressions and the
relational operator must all be string or all be numeric.

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS

Table B-1 (Cont.)
Summary of Statements

Section
THEN statement
IF END #expr THEN line number 6.3.3

GO TO line number

Tests for end-of-file condition of input sequential file
associated with channel number specified by expression.

INPUT [#expr,]variablelﬁ}variablez,...] 3.1.1 and 6.3.1
Inputs data froam your terminal or from the file associated
with the channel number specified by expression. Variables
may be arithmetic or string.

KILL string 6.6
Deletes file specified by string.

HLET] variable=expression 2.5
Assigns value of expression to the specified variable.
Variable and expression must be of the same type, either
numeric or string.

LINPUT [}expr{ﬂstring varl[}string var2,...] 3.1.2 and 6.3.1
Inputs string data from the terminal or from the file

associated with channel number specified by expression.
Variables can only be string variables.

NAME stringl TO string2 6.5
Renames file specified by stringl to name specified by
string2.

NEXT variable 4.2.1

Placed at end of FOR 1loop to return control to FOR
statement.

ON expressioan GOSUB line numberlﬂ;line number2,line number3,...}] 4.4.2
Conditionally transfers control to subroutine at one 1line
number specified in 1list. Value of expression determines
the line number to which control is transferred.

ON expression GO TO line numberlﬂ;line number2,line number3,...| 4.1.2
Conditionally transfers control to one line number in the
list. Value of expression determines the line number to
which control is transferred.

ON expression THEN line numberlﬂ,line numberz,...]

Equivalent to ON GO TO.

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS

Table B-1 (Cont.)
Summary of Statements

Section

OPEN string [iFOR INPUTH AS FILE ﬁt]]expr[ﬁ)OUBLE BUFE“[]:,RECORDSIZE exprMl:MODE expx}[[FILESIZE expr:ﬂ
FOR OUTPUT!

6.2.1

Opens a file specified by string for input or output as
specified (assumes input if neither specified) and
associates file with the channel number specified by exprl.
String is a file specification.

OVERLAY string [LINE expression] 7.2

Overlays or merges the program currently in memory with the
program in the file specified by string, and when overlay is
completed, transfers control to either the next sequential
BASIC line number or the 1line number specified by
expression. String is a file specification.

PRINT E}expr{ﬂ[list] 3.2 and 6.3.2
Prints items in 1list on the terminal or to the file
associated with channel number specified by expression.

List can consist of string and arithmetic expressions and

the TAB function. Items can be separated by either commas
or semicolons.

PRINT [#expr,]JUSING string, list 7.4
Prints items in 1list on the terminal or to the file
associated with channel number specified by expr in the
format determined by string. List can consist of string and
arithmetic expressions. Items can be separated by either
commas or semicolons.

RANDOMIZE 5.2.3

Causes the random number generator (RND function) to produce
different random numbers.

READ variablel[[,variablez,...]] 3.1.3

Assigns values listed in DATA statements to specified
variables. Variables may be string or numeric.

REM comment 1.6

No effect on execution of program. Contains explanatory
comments about the BASIC program.

RESET[}exp{D
Equivalent to RESTORE.

RESTORE(#expr | 3.1.3 and 6.3.4
Resets either the data pointer or, when specified, the input
file associated with the specified channel number to the
beginning.

B-4

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS

Table B-1 (Cont.)
Summary of Statements

RETURN 4.4.1

Terminates a subroutine and returns control to the statement
following the last executed GOSUB statement.

STOP 4.3

Terminates execution of the program. Placed at 1logical
end(s) of the program.

B.2 SUMMARY OF BASIC-11 FUNCTIONS
ARITHMETIC FUNCTIONS
Table B-2 lists the BASIC-11 arithmetic functions and provides a

description of each. For more information about a function, see the
section of this manual specified on the right.

Table B-2
Summary of Arithmetic Functions

Section

ABS (expr) 5.2.2.4
Returns the absolute value of the expression.

ATN (expr) - 5.2.1

Returns the arctangent of the expression as an angle in
radians in the range + or - pi/2.

COS (expr) 5.2.1

Returns the cosine of the angle specified by the expression
in radians.

EXP(expr) 5.2.2.2

Returns the value of e raised to the expression power where
e 1s (approximately) 2.71828.

INT (expr) 5.2.2.3
Returns the greatest integer less than or equal to the
expression.

LOG (expr)- 5.2.2.2

Returns the natural logarithm of the expression.

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS

LOG10 (expr)
Returns
PI
Returns
RND [[(expr)]
Returns
SGN (expr)
Returns
SIN(expr)

Returns

radians.

SQOR (expr)
Returns

TAB (expr)

specified

Table B-2 (Cont.)
Summary of Arithmetic Functions

statements).

Table

B-3 1lists

Section
5.2.2.2
the base 10 logarithm of the expression.
5.2.1
the value of pi (3.141593).
5.2.3
a random number between 0 and 1.
5.2.2.5
a value indicating the sign of expression.
5.2.1
the sine of the angle specified by expression 1in
5.2.2.1
the square root of the expression.
3.2.3
Causes the terminal type head to tab to column number
by the expression (valid only in PRINT
the BASIC-11 string functions and provides a
of each. For more information about a function, see the

description

section in this manual specified on the right.

ASC(string)

Returns
value)

BIN(string)

Table B-3
Summary of String Functions
Section
5.3.2.1
as a decimal number the 8-bit internal code (ASCII
for the l-character string expression.
5.3.2.3

Converts a string expression containing a binary number to a

decimal

CHRS (expr)

Generates a l-character striang

value. Blanks are ignored.

5.3.2.1

whose ASCII value 1is the

low-order 8 bits of the integer value of the expression.

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS

Table B-3 (Cont.)
Summary of String Functions
Section
CLKS$ 5.5

Returns the time as a string in the <form hh:mm:ss (for
example 12:30:15).

DATS 5.5

Returns the date as a string in the form dd-mon-yr (for
example 07-FEB-75).

LEN(string) - 5.3.1.1
Returns the number of characters in the string.
OCT(string) 5.3.2.3

Converts a string expression containing an octal number to a
decimal value. Blanks are ignored.

POS(stringl,string2,expr) 5.3.1.3
Searches for and returns the position of the first
occurrence of string2 in stringl. The search starts at the
character position specified by expression.

SEGS (string,exprl,expr2) 5.3.1.4

Returns the string of characters in position specified by
expressionl through the position specified by expression2.

STRS (expr) 5.3.2.2
Returns the string which represents the numeric value of the
expression.

TRMS (string) 5.3.1.2

Returns string without trailing blanks.
VAL (string) 5.3.2.2

Returns the value of the decimal number contained in the
string.

B.3 SUMMARY OF BASIC-11 COMMANDS

Table B-4 lists the BASIC-1l commands and provides a description of
each. For more information about a command, see the section of this
manual specified on the right.

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS

Table B-4
Summary of Commands

Section

APPEND [file specificatiod] 9.6.2

Merges the program in your area in memory with the program
specified by the file specification.

CLEAR 9.5

Initializes all variables to 0 and all string variables to
nulls and deletes arrays.

COMPILE ([file specification]) 9.10
Saves a compiled version of the program.

DEL line specificationﬂ}line‘specification,...] 9.5
Deletes specified lines.

LENGTH 9.11

Prints on your terminal the size of the program in memory
and the size of the remaining free memory.

LIST[N&][line specificationl,line specificationz,..] 9.2
Prints on the terminal the specified line(s) of the program
currently in memory. NH suporesses the printing of the
header 1line.

NEW Eprogram namé] 9.5

Erases your storage area and sets the current program name
to the one specified.

OoLD [file specificatioﬁ] 9.6.2

Erases your storage area and inputs the program from the
specified file.

RENAME program name 9.7
Changes the current program name to the one specified.

REPLACE [[file specification]) 9.6.1
Replaces the specified file with the current program.

RESEQ@bew line numbeﬁn,[old line numberﬂM}old line numberé],[ﬁncremenﬁjﬁ
Resequences program as specified. 2+

RUN(NH | 9.3

Executes the program in memory. NH suppresses the printing
of the header line.

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS

Table B-4 (Cont.)
Summary of Commands

Section

RUN[NH]Jfile specification 9.6.3
Erases your storage area, inputs the program £from the
specified file, and then executes the program. Does not
print header line in any case.

SAVE [file specification] 9.6.1

Outputs the program in memory to the specified file.

SCR 9.5
Erases your storage area and changes the program name to
NONAME .

SUB line numberxstringlxstringZ[xintegeﬁB 9.8

Substitutes the integer occurrence of stringl with string2
on line specified. X 1s a delimiter and can be any
character such as d@.

UNSAVE file specification 9.6.4

Deletes specified file.

Key Commands

CTRL/C 9.1
Interrupts execution of a command or program and causes
BASIC to print the READY message. See your BASIC-11 user's
guide for more information about CTRL/C.

CTRL/O 9.1
Causes all further terminal output to be discarded. If an
INPUT statement is encountered, CTRL/O is retyped, or the
program is terminated, printing resumes.

CTRL/Q 9.1
Continues output to the terminal; cancels effect of CTRL/S.
CTRL/S 9.1
Temporarily suspends all output to terminal until CTRL/Q is
typed; allows alphanumeric display terminals to be read or

photographed before data is moved off screen.

CTRL/U 9.1

Deletes the entire current input line (provided the RETURN
key has not been typed).

RUBOUT 9.1
Deletes the last character typed.

B-9

APPENDIX C

ASCII CHARACTER SET

The following table shows, with the corresponding octal and decimal
codes, the 1l28-character ASCII (American Standard Code for Information
Interchange) character set. These codes are used to store ASCII data
in files and to store them internally.

The BASIC user can convert an ASCII value to the corresponding string
character with the CHR$ function and can convert a string character to
the corresponding ASCII value with the ASC function (see Section
5.3.2.1).

BASIC also uses the ASCII values of the characters in string
comparisons (see Section 2.4.3).

The octal code is provided for reference. BASIC does not support
octal numbers except through the OCT function (see Section 5.3.2.3).

ASCII characters are stored internally and in files in eight bits.
The eighth (high order) bit is normally 0.

Table C-1
ASCII Character Set
ASCII
ASCII 7-Bit
Decimal Octal
Code Code Character
0 000 NUL (CTRL/@)
1 001 SOH (CTRL/A)
2 002 STX (CTRL/B)
3 003 ETX (CTRL/C)
4 004 EOT (CTRL/D)
5 005 ENQ (CTRL/E)
6 006 ACK (CTRL/F)
7 007 BEL (CTRL/G)
8 010 BS (CTRL/H)
9 011 HT (CTRL/I or TAB)
10 012 NL (NEW LINE or LINE FEED)
11 013 VT (Vertical TAB)
12 014 FF (Form Feed)
13 015 RT (Return)
14 016 SO (CTRL/N)
15 017 SI (CTRL/O)
16 020 DLE (CTRL/P)
17 021 DC1 (CTRL/Q)
18 022 DC2 (CTRL/R)

c-1

ASCII CHARACTER SET

Table C-1 (Cont.)
ASCII Character Set

ASCII
ASCII 7-Bit
Decimal Octal
Code Code Character
19 023 DC3 (CTRL/S)
20 024 DC4 (CTRL/T)
21 025 NAK (CTRL/U)
22 026 SYN (CTRL/V)
23 027 ETB (CTRL/W)
24 030 CAN (CTRL/X)
25 031 EM (CTRL/Y)
26 032 SUB (CTRL/Z)
27 033 ESC (ESCAPE)
28 034 FS (CTRL/\)
29 035 GS (CTRL/1)
30 036 RS (CTRL/")
31 037 US (CTRL/)
32 040 SP (space bar)
33 041 !
34 042 "
35 043 #
36 044 $
37 045 %
38 046 &
39 047 !
40 050 (
41 051)
42 052 *
43 053 +
44 054
45 055
46 056 .
47 057 /
48 060 0
49 061 1
50 062 2
51 063 3
52 064 4
53 065 5
54 066 6
55 067 7
56 070 8
57 071 9
58 072 :
59 073 H
60 074 <
ol 075 =
62 076 >
63 077 ?
64 100 @
65 101 A
66 102 B
67 103 C
68 104 D
69 105 E
70 106 F
71 107 G
72 110 H

¢
N

ASCII CHARACTER SET

Table C-1 (Cont.)
ASCII Character Set

ASCII

ASCII 7-Bit

Decimal Octal

Code Code Character
73 111 I
74 112 J
75 113 K
76 114 L
77 115 M
78 116 N
79 117 0
80 120 P
81 121 Q
82 122 R
83 123 S
84 124 T
85 125 U
86 126 v
87 127 W
88 130 X
89 131 Y
90 132 Z
91 133 [
92 134 \
93 135 1
94 136 ~
95 137 —
96 140 N
97 141 a
98 142 b
99 143 c
100 144 d
101 145 e
102 146 f
103 147 g
104 150 h
105 151 i
106 152 j
107 153 k
108 154 1
109 155 m
110 156 n
111 157 (e}
112 160 P
113 161 g
114 162 r
115 163]
116 164 t
117 165 u
113 166 \
119 167 w
120 170 X
121 171 y
122 172 zZ
123 173 {
124 174 1
125 175 }
126 176 ~
127 177 RUBOUT

Abbreviated error messages, A-2
to A-3
ABS function, 5-8
Absolute value function, 5-8
Accessing data in sequential
files, 6-4
Accuracy, digits of, 7-8
Addition, 2-8
Algebraic functions, 5-1
Alphabetical order, comparing
strings in, 2-11 to 2-12
Alphanumeric strings, 2-6
Ampersand, string concatenation
operator, 2-10
APPEND command, 9-6
Area in memory, program storage,
1-7
Arithmetic
expressions, 2-8 to 2-10
functions, 2-13, 5-1 to 5-11
functions, summary, B-5, B-6
operator precedence, 2-10
operators, 2-8 to 2-10
relational expressions, 2-11
relational operators, 2-11
Arrays, 2-7, 2-14 to 2-18
compared to virtual array
files, 6-8
dimensioning, 2-16 to 2-18
dimensioning virtual, 6-9
first element in, 2-15
initializing, 9-4
numeric, 2-17
reserving space for, 2-16
storage order of, 2-16
string, 2-18
ASC function, 5-17
Ascending order, execution of
statements in, 1-3, 1-7, 4-1
ASCII, C-1
character set, 1-2, C-1 to C-3
code conversions, 5-17
values, C-1 to C-3
values in comparing strings,
2-12
Assembly language routines, 8-9
Assigning values to variables,
2-13
Asterisk
£fill in PRINT USING statement,
7-6
multiplication operator, 2-8
ATN function, 5-2

INDEX

Backslash, 1-5, 1-6
Base a log, 5-5
Base e log, 5-5
Base 10 log, 5-6
BASIC, x, 1-1
character set, 1-2
program structure, 1-1
BASIC-11, x, 1-1
Beginning of arrays, 2-15
BIN function, 5-20
Binary functions, 5-20
Blank lines, printing, 3-8
Block I/0, 6-8
Braces, ix
Brackets, square, ix
Branch, computed, 4-3
Branching, 4-1 to 4-3
Branching, multiple, 4-3

C in PRINT USING statement, 7-10
Calculating expressions in the
PRINT statement, 3-8
Calculator, using BASIC as a, 1-9
CALL statement, 8-9
Calling
routines, 8-9
user-defined functions, 5-22
Centered format, 7-10
Centering strings, 7-10
Chain, preserving variables through,
8-3
CHAIN statement, 8-1 to 8-6
Chaining to compiled programs,
8-3
Changing a program line, 1-7, 9-9
Changing the program name, 9-8
Channel number, file, 6-2 to 6-5,
6-7
Characters
ASCIii, 1-2, c-1
BASIC, 1-2
conversion, 5-17
nonprinting, 1-2
Checking
for the end of input file, 6-7
the length of a program, 9-13
CHRS$ function, 5-17
Circumflex, exponentiation operator,
2-8
CLEAR command, 9-4
CLK$ function, 5-26
CLOSE statement, 6-3

Index-1

INDEX (Cont.)

Closing files, 6-3, 6-10 Copying segments from a string,
Closing virtual arrays, 6-10 5-15
Comma in PRINT statement, 3-9 C08 function, 5-2
to 3-12 Cosine function, 5-2
Commands, 1-8, 9-1 to 9-14 Counter in loops, 4-8
APPEND, 9-6 Creating files, 6-2
CLEAR, 9-4 CTRL keys
COMPILE, 9-13 CTRL/C, 9-1
DEL, 9-3 CTRL/0O, 9-1
key, 9-1 CTRL/Q, 9-1
LIisT, 1-8, 9-2 CTRL/S, 9-1
LISTNH, 9-2 CTRL/U, 9-2
NEW, 9-4
OoLD, 9-~6
RENAME, 9-8
REPLACE, 9-5 DATS function, 5-26
RESEQ, 9-10 to 9-13 Data
RUN, 1-8, 9-3 excess, 3-2
RUN file specification, 9-7 files, 6-1 to 6-11
RUNNH, 9-3 items, format of, 3-5
SAVE, 9-5 pointer, restoring the, 3-7
SCR, 9-4 reading, 3-5 to 3-7
SuB, 9-9 storing, 6-1, 6-6 to 6-7
summary of, B-8 to B~9 supplying, 3-1 to 3-7
summary of key, B-9 DATA statement, 3-5 to 3-7
UNSAVE, 9-8 Date function, 5-26
Commas in PRINT USING statement, Decimal point
7-7 in numeric constants, 2-1
Comment, 1-6 in PRINT USING statement, 7-3
COMMON statement, 8-3 to 8-6 DEF statement, 5-21
order of, 8-4 Defining functions, 5-21
Communicating data between in immediate mode, 5-25
program segments, 8-4, 8-6, DEL command, 9-3
8-9 Deleting
Comparing strings, 2-12 to 2-13 data files, 6-11
COMPILE command, 9-13 program files, 9-8
Compiled programs program lines, 9-3
chaining to, 8-3 Digits in PRINT USING statement,
efficiency of, 9-13 number of, 7-3
Computed Digits of accuracy, 7-8
branch, 4-3 DIM statement, 2-16 to 2-18
GO TO statement, 4-3 DIM # statement, 6-9
GOSUB statement, 4-17 Dimensioning
Concatenation, string, 2-10 arrays, 2-16 to 2-18
Conditional transfer, 4-3 to virtual arrays, 6-9
4-6 Direct 1I/0, 6-8
Constants, 2-1 to 2-4 Division, 2-8
integer, 2-1, 2-3 Documentation conventions, ix to x
numeric, 2-1 Documenting procedures, 1-6
string, 2-1, 2-3 Dollar signs
Control in PRINT USING statement, 7-6
shifting, 4-1 in string function names, 5-12
statements, 4-1 to 4-17 in string names, 2-6
variable in ON GO TO statement, in user-defined function name,
4-3 5-21
Conventions, documentation, ix Double quotation marks, 2-3
to x Dummy variables, 5-22
Conversions

ASCII code, 5-17
character, 5-17
functions, 5-16 to 5-21
Index-2

INDEX (Cont.)

E format, printing numbers in,
E in PRINT USING statement, 7-11
E notation, 2-2, 7-8
E, an algebraic constant, 5-4
Editing a program line, 9-9
Efficiency of compiled programs,
9-13
Ellipsis, ix
End of file, 6-7
END statement, 4-12
Entering BASIC programs, 1-7
Entering data, 3-1
Equal sign
in LET statement, 2-13
relational operator, 2-11
Erasing programs, 9-4
Error conditions
in functions, A-1l to A-1l2
in PRINT USING statement, 7-3,
7-15 to 7-18
Error messages, A-l1l to A-12
abbreviated, A-2 to A-3
fatal, A-1
nonfatal, A-1l
summary, A-3 to A-11
Evaluating expressions, 2-9
Excess data, 3-2
Executing a program, 9-3
Execution
of loops, 4-6
stopping program, 4-12 to 4-13
EXP function, 5-4
Exponential function, 5-4
Exponentiation, 2-8
Expr, x
Expression, ix
Expressions, 2-8 to 2-13
arithmetic, 2-8 to 2-10
arithmetic relational, 2-11
evaluating, 2-9 to 2-10
floating point, 2-8 to 2-9
in the PRINT statement, 3-8
integer, 2-9
mixed mode, 2-9
relational, 2-11 to 2-13
string, 2-10
Extended string fields, 7-11
Extracting a segment from a
string, 5-16

Fatal error messages, A-l
Fields
centered, 7-10
extended, 7-11
format of numeric, 7-13
format of string, 7-14
numeric, 7-3

Index=-3

Fields (cont.),
one-character string, 7-9
string, 7~8
Files, 6-1 to 6-10, 9-4 to 9-8
channel number, 6-2 to 6-5, 6-7
closing, 6-3
control statements, 6-1 to 6-4
data, 6-1 to 6-10
deleting, 6-11, 9-8
program, 6-1, 8-1, 9-4 to 9-8
renaming, 6-10
resetting, 6-8
restoring program, 9-6
running programs from, 9-7
sequential, 6-1
specification, x, 6-2
using, sequential, 6-4
writing, 6-5
Finding
a square root, 5-4
the length of a string, 5-12
the position of a substring,
5-13
First element in arrays, 2-15
Floating point
expressions, 2-9
format, 2-3
numbers, 1-10, 2-5
FN function, 5-21
FOR INPUT in OPEN statement, 6-2
FOR NEXT loops, 4-7 to 4-12
in immediate mode, 1-10
STEP value in, 4-9% to 4-10
terminating condition of, 4-8
FOR OUTPUT in OPEN statement, 6-2
FOR statement, 4-7 to 4-12
Format
centered, 7-10
data items, 3-5
error messages, A-1
floating point, 2-3
line, 1-3
numeric fields, 7-13
numeric output, 3~12
output, 3-12
string fields, 7-14
strings, left-justified, 7-9
strings, right-justified, 7-9
strings with PRINT, 3-12
Formatted output, 3-9 to 3-12,
7-1 to 7-18
Functions, 2-12 to 2-13, 5-1 to
5-26
ABS, 5-8
algebraic, 5-1, 5-4 to 5-9
ASC, 5-17
ATN, 5-2
BIN, 5~20
CHRS$, 5-17
CLKS$, 5-26

INDEX (Cont.)

Functions (cont,), Initializing (cont.),
conversion, 5-16 variables, 2-5, 9-4
cos, 5-2 your area, 9-4
DATS, 5-26 Input
error conditions in, A-11 entering, 3-1
EXP, 5-4 leading spaces in string, 3-3
FN, 5-21 string, 3-4
INT, 5-6 INPUT statement, 3-1 to 3-3
integer, 5+6 INPUT # statement, 6-4
LOG, 5-4 INPUT #@ statement, 3-4
LOGlg, 5-6 Int, x
numeric, 5-1 to 5-11 INT function, 5-6
ocT, 5-20 Integer, x, 1-10, 2-3, 2-5
POS, 5-13 constants, 1-10, 2-3
RND, 5-9 constants, range of, 2-3
SEGS, 5-15 expression, 2-9
SGN, 5-9 function, 5-6
SIN, 5-2 random, 5-11
SQR, 5-4 variables, 2-5
STRS, 5-18 Items
string, 5~12 to 5-21 in capital letters, ix
summary of arithmetic, B-5 in lower-case letters, ix
summary of string, B-6
TAB, 3-13
trigonometric, 5-1 to 5-3
TRMS$, 5-13 Key commands, 9-1, B-9
types of, 5-1 CTRL/C, 9-1
user-defined, 5-21 to 5-23 CTRL/0, 9-1
VAL, 5-18 CTRL/Q, 9-1

CTRL/S, 9-1
CTRL/U, 9-2

GO TO statement, 4-1 to 4-3 RUBOUT, 9«2
computed, 4-3 Keywords, ix, 1-3, 1-4
GOSUB statement, 4-14 KILL statement, 6-11

Greater than or equal to
relational operator, 2-11
Greater than relational operator, .
2-11 L in PRINT USING statement, 7-9
Leading spaces in string input, 3-3
Left angle bracket relational
: operator, 2-11
Halting program execution, 4-12 Left-justified format strings,

Header lines, 1-8, 9-2, 9-3 7-9
Highest line number in program, Length of a string, 5-12
4-12 Less than or equal to relational

operator, 2-11
Less than relational operator,

2-11
IF END # statement, 6-7 LET statement, 2-13
IF THEN statement, 2-11, 4-3 to Letters
4-6 lower-case, 1-2
Immediate mode statements, 1-9 upper-case, 1l-2
to 1-10 Line
defining a function in, 5-25 format, 1-3
Index values in FOR NEXT loop, multi-statement, 1-6
4-10 number, x, 1-3
Infinite loop, 4-3 single statement, 1-5
Initializing terminator, 1-3
arrays, 2-5, 9-4 LINPUT statement, 3-4
program storage, 9-4 LINPUT # statement, 6-5

Index-4

LIST command, 1-8, 9-2
Listing programs, 9-2
LISTNH command, 9-2
Lists, 2-7, 2-14
LOG function, 5-4
LOGlg function, 5-6
Logarithm functions, 5-4
Logic, program, 4-1
Loops
execution of, 4-6
FOR NEXT, 4-7
infinite, 4-3
nested, 4-11
overlapping, 4-11

STEP value in FOR NEXT, 4-10

Lower-case letters, 1-2

Mathematical functions, 2-13,

5«1 to 5-11
Matrices, 2-14
Memory

program storage area in, 1-7

saved by reducing program
size, 9-14

saved by segmenting programs

with CHAIN, 8-1

saved by segmenting programs

with OVERLAY, 8-7
Merging program segments, 8-6
Messages

error, A-l
fatal, error, A-l
nonfatal, error, A-l
READY, 1-8
sTOP, 4-13
Minus sign
subtraction operator, 2-8
trailing, 7-5
unary, 2-8
Mixed mode expressions, 2-9
Multi-statement line, 1-6
Multiple
branching, 4-3
GOSUB statement,
Multiplication, 2-8

4-17

NAME statement, 6-10
Nested
loops, 4-11
parentheses, 2-9
NEW command, 9-4
NEXT statement, 4-7
NONAME program name, 9-~4
Nonfatal error messages, A-l
Nonprinting characters, 1-2

Index-5

INDEX (Cont.)

Not equal to relational operator,

2-11
Notations, numeric, 2-2
Number
of digits in PRINT USING state-
ment, 7-3

of subscripts, 2-16
signs in PRINT USING statement,
7-3

Numbers
floating point, 1-10
output format of, 3-12
random, 5-9
real, 1-10
rounding off of, 5-7
string representation of, 5-18
truncating, 5-6
whole, 5-6

Numeric
arrays, 2-17
constants, 1-10
constants, range of,
field, 7-3
field, format of, 7-13
functions, 5-1
output format,
variables, 2-5

2-2

3-12

OCT function, 5-20
Octal
ASCII code, C-1
function, 5-20
OLD command, 9-6
One-character string fields,
7-9
One-dimensional arrays, 2-14
ON GO TO statement, 4-3
ON GOSUB statement, 4-17
ON THEN statements, 4-3
OPEN statement, 6-2
Opening a file, 6-2
Operators
arithmetic, 2-8
arithmetic relational, 2-11
equal sign relational, 2-11
greater than or equal to rela-
tional, 2-11
greater than relational, 2-11
left angle bracket relational,
2-11

less than or equal to relational,

2-11
less than relational, 2-11
not equal to relational, 2-11
precedence of arithmetic, 2-10
right angle bracket relational,
2-11

INDEX (Cont.)

Operators (cont.),
string, 2-10
string relational, 2-12
Order of
array storage, 2-16
common statements, 8-4
entering program lines, 1-7
evaluating expressions, 2-10
Output, 3-8
format of numbers, 3-12
format of strings, 3-12
formatted, 3-9, 3-13, 7-1 to
7-18
Overlapping loops, 4-11
OVERLAY statement, 8-6
Overlaying programs, 8<6

Parenthesis, nested, 2-9
Percent signs
in integer constants, 2-3
in integer wvariable names,
2-6
in PRINT USING statement, 7-4
in user-defined function name,
5-21
PI function,
Plus sign
addition operator, 2-8
string concatenation operator,
2-10
unary, 2-8
POS function, 5-13
Position of a substring, 5-13
Precedence of arithmetic opera-
tors, 2-10
Preserving variables through
CHAIN, 8-3
PRINT statement, 3-8 to 3-15
compared to PRINT USING, 9-1
separators in, 3-9
PRINT # statement, 6-5
Printing, 3-8 to 3-15, 7-1 to
7-18
data to a file,
7-11
quotation marks, 2-4, 7-18
zones, 3-9
PRINT USING statement, 7-1 to 7-18
compared to PRINT, 7-1
format of, 7-2, 7-11 to 7-15
error conditions in, 7-15 to
7-18
printing numbers, 7-2 to 7-8
printing strings, 7-8 to 7-10

5-2

6-5 to 6-7,

Program lines
deleting, 9-3
editing, 9-9
format of, 1-5
order of entering, 1-7
spaces in, 1-4
Programs
changing the name of, 9-8
checking the size of, 9-13 to

9-14
deleting, 9-8
in files, 6-1, 8~1, 9-4 to 9-8
initializing 4

, 9-
listing of, 9-2
logic of, 4-1
merging, 8-6
overlaying, 8-6
reducing the size of, 9-14
resequencing, 9-10 to 9-13
restoring, 9-6
running, 1-8, 9-3, 9-7
saving compiled, 9-+13
segmentation, 8-1 to 8-10
stopping, 4-12 to 4-13
storage area in memory, 1-7
structure of, x

termination of, 4-12 to 4-13

Question mark in INPUT statement,
3-1
Quotation marks, 2-3 to 2-4
in string input, 3-3
printing, 2-4
printing with PRINT USING, 7-18

R in PRINT USING statement, 7-10
Radians, 5-2
Random

access files, 6-8

integers, 5-11

numbers, 5-9 to 5-11
RANDOMIZE statement, 5-9 to 5-13
Range of

integer constants, 2-3
numeric constants, 2-2
subscripts, 2-7

READ statement, 3-5

Reading
data from a file, 6-4 to 6-5
data values, 3-5
program files, 9-6

READY message, 1-8

Index~6

INDEX (Cont.)

Real numbers, 1-10 Segmentation function, 5-15
Red ink, x Segmenting programs, 8-1 to 8-10
Reducing program size, 9-14 with CALL statement, 8-9 to 8-10
Relational with CHAIN statement, 8-1 to 8-6
arithmetic expressions, 2-11 with OVERLAY statement, 8-6 to
expression, 2-11, 4-3 8-9
operators, 2-11 Semicolon in PRINT statement, 3-9
REM statement, 1-6 Separators in PRINT statement, 3-9
transferring control to, 4-2 Sequence of statement execution,
RENAME command, 9~8 4-1
Renaming Sequential files, 6-1, 6-4 to 6-8
files, 6-10 compared to virtual array files,
programs, 9-8 6-8
REPLACE command, 9-5 SGN function, 5-9
Replacing a segment of a program Shifting control, 4-1 to 4-17
line, 9-9 Sign function, 5-9
Representation of numbers, Signed 2's complement integer,
string, 5-18 5-20, 5-21
RESEQ command, 9-10 to 9-13 Simple numeric variables, 2-5
Resequencing a program, 9-10 SIN function, 5-2
to 9-13 Sine function, 5-2
Reserving Single quotation marks, 2-3
digits in PRINT USING statement, in PRINT USING statement, 7-9
7-3 Single statement line, 1-5
space for arrays, 2-16 Size, reducing program, 9-14
Resetting a file, 6-8 Slash, division operator, 2-8
RESTORE statement, 3-7 Spaces in program lines, 1-4
RESTORE # statement, 6-8 Special characters, 1-2
Restoring Special symbols, ix
data pointer, 3-7 in PRINT USING statement, 7-5
files, 6-8 Specification, file, 6-2
program files, 9-6 SQR function, 5-4 :
Results, printing the, 3-8 Square brackets, ix
Retrieving program files, 9-6 Square root function, 5-4
RETURN Statements
key, 3-2 CALL, 8-9 to 8-10
statement, 4-14 CHAIN, 8-1 to 8-6
Right angle bracket relational CLOSE, 6-3
operator, 2-11 COMMON, 8-3 to 8-6
Right-justified format strings, control, 4-1 to 4-17
7-9 DATA, 3-5 to 3-7
RND function, 5-9 DEF, 5-21 to 5-25
Rounding off numbers, 5-7 DIM, 2-16 to 2-18
Routines, assembly language, 8-9 DIM #, 6-9
RUBOUT key, 1-7, 9-2 END, 4-12
RUN command, 1-8, 9-3, 9-7 execution sequence of, 4-1
with file specification, 9-7 file control, 6-1
RUNNH command, 9-3 FOR statement, 4-7 to 4-12
Running a program from a file, GOSUB, 4-14 to 4-16
9~7 GO TO, 4-1 to 4-2

IF END, 6-7 to 6-8
IF THEN, 2-11, 4-3 to 4-6

SAVE command, 9-5 immediate mode, 1-9 to 1-10
Saving in IF THEN statement, 4-4
compiled programs, 9-13 INPUT, 3-1 to 3-3
programs, 9-5 INPUT 48, 3-4
SCR command, 9-4 KILL, 6-11
Search, string, 5-13 LET, 2-13 to 2-14
SEG$ function, 5-15 LINPUT, 3-4 to 3-5

Index-7

INDEX (Cont.)

Statements (cont.),
LINPUT #, 6-5
NAME, 6-10
NEXT, 4-7 to 4-12
non-executable, 1-4
ON GOSUB, 4-17
ON GOTO, 4-3
OPEN, 6-2
OVERLAY, 8-6 to 8-9
PRINT, 3-8 to 3-15
PRINT USING, 7-1 to 7-18
RANDOMIZE, 5-9
READ, 3-5 to 3-7
REM, 1-6
RESTORE, 3-7
RESTORE #, 6-8
RETURN, 4-14 to 4-16
sTOP, 4-12 to 4-13
summary of, B-l1 to B-5
STEP value in FOR NEXT loops,
4-10
STOP
message, 4-13
statement, 4-12 to 4-13
Stopping program execution, 4-12
Storage order of arrays, 2-16
Storing data, 6-1, 6-5
STR$ function, 5-18
Sstring, x, 1-3, 2-3 to 2-6, 2-10
alphanumeric, 2-6

arrays, 2-17

centering, 7-10

concatenation, 2-10

constants, 1-3, 2-1, 2-3 to 2-4

copying segments from a, 5-15
expressions, 2-10

extracting segments from a, 5-16

fields, 7-8 to 7-14
finding the length of a, 5-12
functions, 2-13, 5-12
input, 3-3, 3-4 to 3-5
input with leading spaces, 3-3
input with trailing spaces, 3-3
left-justified format, 7-9
operators, 2-10
output format, 3-12
relational operators,
2-12
representation of numbers,
5-18
right-justified format, 7-9
search, 5-13
summary of functions, B-6 to
B-7
variables, 2-5, 2-6
Structure of a BASIC program,
to 1-2
SUB command,
Subroutines,

2-11 to

1-1

9-9
4-13

Subscripted variables, 2-7
Subscripts, 2-7

number of, 2-16

range of, 2-7
Substring, finding the position

of a, 5-13
Subtraction, 2-8
Summaries

arithmetic functions, B-5 to B-6
commands, B-8 to B-9
error message, A-3 to A-10
key commands, B-9
statements, B~l to B-5
string functions, B~6
Supplying data, 3-1, 3-5 to 3-7
Symbols, special, ix
asterisk multiplication opera-
tor, 2-8
backslash, 1-5, 1-6
braces, v
circumflex exponentiation
operator, 2-8
dollar sign, in string names,
2-6
double quotation marks, 2-3

equal sign in LET statement, 2-13

equal sign relational operator,
2-11

minus sign, unary, 2-8

plus sign, unary, 2-8

single quotation marks, 2-3

slash division operator, 2-8

square brackets, v

TAB function, 3-13
Tables, 2-~7
Tangent function, 5-2
Terminating
condition of FOR NEXT loops,
4-8

the program, 4-12
Time functions, 5-26
Trailing spaces
in string comparison, 2-12
in string input, 3-3
trimming, 5-13
Transcendental number,
Transfers
conditional, 4-3 to 4-6
data between program segments,
8-4
to a REM statement, 4-2
unconditional, 4-1 to 4-2
Trigonometric functions, 5-1
Trimming trailing blanks on
strings, 5-13
TRMS$ function, 5-13
Truncating numbers, 5-6
Two~dimensional arrays, 2-14

5-2

Index-8

INDEX (Cont.)

Type-in, user, X
Types of functions, 5-1

Unary ~

minus sign, 2-8

plus sign, 2-8
Unconditional transfer, 4-1
UNSAVE command, 9-8
Upper-case letters, 1-2
User-defined function, 5-21 to

5-25

Using sequential files, 6-4

VAL function, 5-18

Values, ASCII, C-1 to C-3

Var, x

Variable, x

Variables, 2-4 to 2-8
assigning values to, 2-13
dummy, 5-22
initializing, 9-4
integer, 2-5 to 2-6
numeric, 2-5
preserving through CHAIN, 8-3

Variables (Cont.)
simple numeric, 2<5
string, 2-5, 2-6 to 2-7
subscripted, 2-7 to 2-8, 2-14
Virtual array files, 6-1, 6-8
to 6-10
closing, 6-10
compared to arrays in memory,
6-8
compared to sequential files,
6-8
dimensioning, 6-9

Whole numbers, , 5-6

2-3
Writing files, 6-5

Zone, printing, 3-9 to 3-12

Index-9

Please cut alo

BASIC-11
Language Reference Manual
DEC-11-LIBBB-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Performance Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

E] Assembly language programmer

E] Higher-level language programmer

E] Occasional programmer (experienced)

E] User with little programming experience

[student programmer

E] Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. [j

Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltall

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

