June 1977

This document describes the fundamentals of the FORTRAN 1V and
FORTRAN [V-PLUS language elements, as implemented for the PDP-11
systems. Shaded text pertains only to FORTRAN IV-PLUS features.
Information pertaining to VIRTUAL arrays applies only to FORTRAN IV.

PDP-11
FORTRAN

Language Reference Manual

Order No. DEC-11-LFLRA-C-D
Including DEC-11-LFLRA-C-DN1

SUPERSESSION/UPDATE INFORMATION: This manual contains information concerning

FORTRAN IV V02 and FORTRAN IV-PLUS
V02 as of June 1977.

OPERATING SYSTEM AND VERSION: RSX-11M V3

RSX-11D V6.2
RSTS/E V6B
IAS V2

RT-11 V3

SOFTWARE VERSION: FORTRAN IV V2
FORTRAN IV-PLUS V2.6

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

digital equipment corporation - maynard, massachusetts

First Printing, June 1974
Revised: December 1974
December 1975

June 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C)1374, 1975, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECSYSTEM-20 TYPESET-11

7/77-14

CHAPTER

CHAPTER

CONTENTS

[

INTRODUCTION TO PDP-11 FORTRAN

LANGUAGE OVERVIEW
ELEMENTS OF A FORTRAN PROGRAM
Statements
Comments
The FORTRAN Character Set
FORMATTING A FORTRAN LINE
Using FORTRAN Coding Forms
Using a Text Editor
Statement Label Field
Comment Indicator
Debug Statement Indicator
Continuation Field
Statement Field
Sequence Number Field
PROGRAM UNIT STRUCTURE
INCLUDE STATEMENT

AU WWWN W N
N =

= e e b e e
© o e s e e bt o o 8 o o o o o

VB WWWWWWWWWwoNND N

(3]

FORTRAN STATEMENT COMPONENTS

INTRODUCTION TO FORTRAN STATEMENT COMPONENTS
SYMBOLIC NAMES
DATA TYPES
CONSTANTS
Integer Constants
Real Constants
Double Precision Constants
Complex Constants
Octal Constants
Logical Constants
Hollerith Constants
Alphanumeric Literals
Data Type Rules for Hollerith Constants
Radix-50 Constants
VARIABLES
Data Type Specification
Data Type by Implication
ARRAYS
Array Declarators
Subscripts
Array Storage
Data Type of an Array
Array References without Subscripts
Adjustable Arrays
EXPRESSIONS '
Arithmetic Expressions
Use of Parentheses
Data Type of an Arithmetic Expression

® e 5 e o o e+ s s e o

N =

* + o o o ¢ e o o o
o o

e e s * o » e

NN JOOOAO AR UTOUIUN D B B D D BB DD W N

NMRNRODONMOMOMMOMMOMOMDOMOLDOMDNMODODNONRDNODONNIRRN NN

® ® & & & * o o e s o * & 2 e e .

Ll ol o AU bW SN o ONINJO UL WK

N =

iii

Il
lg
(0]

HHHHHHHHTHHHHHHH =
ONNIJoOo O UIMdLWWW W [oad

N
I

[} | I I I |
HHEHOWOOODIIAULE SN [

o

-

DNDRONRODNODNDNODNDODNODNNNNDNDNDNNDNDND
|

I
o
[Ny

2-13

N
1
[
w

2-14
2-14
2-15
2-16
2-16
2-18
2-19

2.7.2 Relational Expressions
2.7.3 Logical Expressions

CHAPTER 3 ASSIGNMENT STATEMENTS
3.1 ARITHMETIC ASSIGNMENT STATEMENT
3.2 LOGICAL ASSIGNMENT STATEMENT
3.3 ASSIGN STATEMENT
CHAPTER 4 CONTROL STATEMENTS
4.1 GO TO STATEMENTS
4,1.1 Unconditional GO TO Statement
4,1.2 Computed GO TO Statement
4.1.3 Assigned GO TO Statement
4.2 IF STATEMENTS
4.2.1 Arithmetic IF Statement
4.2.2 Logical IF Statement
4.3 DO STATEMENT
4,3.1 DO Iteration Control
4,3.2 Nested DO Loops
4,3.3 Control Transfers in DO Loops
4.3.4 Extended Range
4.4 CONTINUE STATEMENT
4.5 CALL STATEMENT
4.6 RETURN STATEMENT
4.7 PAUSE STATEMENT
4.8 STOP STATEMENT
4.9 END STATEMENT
CHAPTER 5 INPUT/OUTPUT STATEMENTS

OVERVIEW
1 Input/Output Devices and Logical Unit Numbers
2 Format Specifiers
3 Input/Output Records

INPUT/OUTPUT LISTS
1 Simple Lists
2
1
2

o o o

Implied DO Lists
UNFORMATTED SEQUENTIAL INPUT/OUTPUT
Unformatted Sequential READ Statement
Unformatted Seqguential WRITE Statement
FORMATTED SEQUENTIAL INPUT/OUTPUT
Formatted Sequential READ Statement
Formatted Sequential WRITE Statement
Formatted ACCEPT Statement
Formatted TYPE Statement
Formatted PRINT Statement
UNFORMATTED DIRECT ACCESS INPUT/OUTPUT
Unformatted Direct Access READ Statement
Unformatted Direct Access WRITE Statement
FORMATTED DIRECT ACCESS INPUT/OUTPUT
1 Formatted Direct Access READ Statement
2 Formatted Direct Access WRITE Statement
LIST~-DIRECTED INPUT/OUTPUT
é List-Directed READ Statement
3

e o o o @
N (S0 OV E SN

List-Directed WRITE Statement
List-Directed ACCEPT Statement

oo ,m

e« 8 ® & o & ® 6 & s e o o s & & o e s s ¢ s & s & =

ANNNOOONUTUI S S DB BWWWR NN

iv

N A N R N
MRV RWWNNDHE [

w

[O UL UL
AdWWWNNE

e L L L s

noaag 't{ltinmmmmmmmmmmmmmm
]

cuuiotunnonunnn

5.7.4 List-Directed TYPE Statement 5-17
5.7.5 List-Directed PRINT Statement 5-18
5.8 TRANSFER OF CONTROL ON END-OF-FILE OR ERROR
CONDITIONS 5-18
5.9 AUXILIARY INPUT/OUTPUT STATEMENTS 5-19
5.9.1 REWIND Statement 5-19
5.9.2 BACKSPACE Statement 5-20
5.9.3 ENDFILE Statement 5=-20
5.9.4 DEFINE FILE Statement 5-20
5.9.5 FIND Statement 5-21
5.9.6 OPEN Statement 5-22
5.9.6.1 UNIT Keyword 5-24
5.9.6.2 NAME Keyword 5-24
5.9.6.3 TYPE Keyword 5-24
5.9.6.4 ACCESS Keyword 5-24
5.9.6.5 READONLY Keyword 5-25
5.9.6.6 FORM Keyword 5-25
5.9.6.7 RECORDSIZE Keyword 5-25
5.9.6.8 ERR Keyword 5-25
5.9.6.9 BUFFERCOUNT Keyword 5-26
5.9.6.10 INITIALSIZE Keyword 5-26
5.9.6.11 EXTENDSIZE. Keyword 5-26
5.9.6.12 NOSPANBLOCKS Keyword 5-26
5.9.6.13 SHARED Keyword 5-26
5.9.6.14 DISPOSE Keyword 5-27
5.9.6.15 ASSOCIATEVARIABLE Keyword 5=-27
5.9.6.16 CARRIAGECONTROL Keyword 5-27
5.9.6.17 MAXREC Keyword 5-27
5.9.6.18 BLOCKSIZE Keyword 5-28
5.9.6.19 OPEN Statement Examples 5-28
5.9.7 CLOSE Statement 5-28
5.10 ENCODE AND DECODE STATEMENTS 5-29
CHAPTER 6 FORMAT STATEMENTS 6-1
6.1 OVERVIEW 6-1
6.2 FIELD DESCRIPTORS 6-2
6.2.1 I Field Descriptor 6-2
6.2.2 O Field Descriptor 6-3
6.2.3 F Field Descriptor 6-4
6.2.4 E Field Descriptor 6-5
6.2.5 D Field Descriptor 6-6
6.2.6 G Field Descriptor 6-6
6.2.7 L Field Descriptor 6-8
6.2.8 A Field Descriptor 6-8
6.2.9 H Field Descriptor 6-9
6.2.9.1 Alphanumeric Literals 6-10
6.2.10 X Field Descriptor 6-10
6.2.11 T Field Descriptor 6-10
6.2.12 Q Field Descriptor 6-11
6.2.13 $ Descriptor 6-11
6.2.14 : Descriptor 6-11
6.2.15 Complex Data Editing 6-12
6.2.16 Scale Factor 6-12
6.2.17 Grouping and Group Repeat Specifications 6-14
6.2.18 Variable Format Expressions 6-14
6.2.19 Default Field Descriptors 6-15
6.3 CARRIAGE CONTROL 6-16
6.4 FORMAT SPECIFICATION SEPARATORS
6.5 EXTERNAL FIELD SEPARATORS 6-17

6
6
6
6
6
6
CHAPTER 7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
CHAPTER 8
8
8
8
8
8
8
8
8
8
8
8
8
8
APPENDIX A
A
A
A
APPENDIX B
B
B
B
APPENDIX C

. . . L[] . . L) L] L . - L] L] .
WOoOJOUnUuiuld b bW

o ooom ~N

WWWWNOHNRONDNRN DN N -

W N =

wN -

N

W Ut o b N

wr =

[SS I S o

N =

OBJECT TIME FORMAT
FORMAT CONTROL INTERACTION WITH
INPUT/OUTPUT LISTS
SUMMARY OF RULES FOR FORMAT STATEMENTS
General
Input
Output

SPECIFICATION STATEMENTS

IMPLICIT STATEMENT
TYPE DECLARATION STATEMENTS
DIMENSION STATEMENT
COMMON STATEMENT
Blank Common and Named Common
COMMON Statements with Array Declarators
EQUIVALENCE STATEMENT
Making Arrays Equivalent
EQUIVALENCE and COMMON Interaction
EQUIVALENCE and LOGICAL*l Arrays
EXTERNAL STATEMENT
DATA STATEMENT
PARAMETER STATEMENT
PROGRAM STATEMENT

SUBPROGRAMS

SUBPROGRAM ARGUMENTS

USER-WRITTEN SUBPROGRAMS
Arithmetic Statement Function (ASF)
FUNCTION Subprogram
SUBROUTINE Subprogram
ENTRY Statement
ENTRY in Function Subprograms
ENTRY and Array Declarator Interaction
BLOCK DATA Subprogram

FORTRAN LIBRARY FUNCTIONS
Processor-Defined Function References
Generic Function References
Generic and Processor-Defined Function Usage

CHARACTER SETS

FORTRAN CHARACTER SET
ASCII CHARACTER SET
RADIX-50 CHARACTER SET
FORTRAN LANGUAGE SUMMARY
EXPRESSION OPERATORS

STATEMENTS
LIBRARY FUNCTIONS

FORTRAN PROGRAMMING EXAMPLES

vi

| U T I I |
VO

qqqqqquqqqqqq,q
HMHHOOOAVMTUINSEW N

]
HHEROYOVONAOAARASWNHE -

Q00O 00 00 00 G0 0O Q0 OO O O © =]
1
o

b
|
i}

d
]
—

A-2
A-3

Page

APPENDIX D VIRTUAL ARRAYS D-1
D.1 INTRODUCTION TO VIRTUAL ARRAYS D-1
D.2 VIRTUAL STATEMENT D-1
D.3 SIZE OF VIRTUAL ARRAYS D-2
D.4 RESTRICTIONS ON VIRTUAL ARRAY USAGE D-2
D.5 VIRTUAL ARRAY REFERENCES IN SUBPROGRAMS D-3

vi.l June 1977

FIGURES

FIGURE 1-1 FORTRAN Coding Form
1--2 Required Order of Statements and Lines
2-1 Array Storage
4-1 Nesting of DO Loops
4--2 Control Transfers and Extended Range
6-1 Variable Format Expression Example
7=1 Equivalence of Array Storage
7--2 Equivalence of Arrays with Non-Unity Lower Bounds
8-1 Multiple Functions in a Single Function Subprogram
8--2 Multiple Function Name Usage
TABLES
TABLE - Classes of Symbolic Names

Data Type Storage Reguirements

Conversion Rules for Assignment Statements
List-Directed Input Conversion Rules

Keywords in the OPEN Statement

Effect of Data Magnitude on G Format Conversions
Default Field Descriptor Values

Carriage Control Characters

Generic Function Name Summary

FORTRAN Library Functions

Generic and Processor-Defined Functions

H

wtnmonh?knmunuw
NHEWN R e

vii

)
]
o

FONNHWOWORKOM
o>

L L I
(8]

DO~

w

ANV UNTWNN
FHEHNMDEDWN
~=ovo,m w N

FREFACE

FORTRAN is a problem oriented language designed to permit scientists
and engineers to express mathematical operations in & form with which
they are familiar. It is also wused 1in a variety of applications
including process control, information retrieval, and commercial data
processing.

This document describes the form of the basic elements of the FORTRAN
program, the FORTRAN statements. The document is a reference manual,
and, while it can well be used by an inexperienced FORTRAN programmer,
it is not designed to function as a tutorial manual.

Because this document serves as the FORTRAN Language Reference Manual
for several of the operating systems which run on the PDP-1l1 family of
computers, it makes no reference to s3zystem dependent information.
Associated with this document, however, should be the FORTRAN User's
Guide containing the necessary information for running a FORTRAN
program on a.specific operating system.

DOCUMENTATION CONVENTIONS

Throughout this manual the following notations are used to denote
special non-printing characters:

- Tab character (TAB key or CTRL/I Kkey
combination)

A (delta) Space character (SPACE bar)
This document serves as the FORTRAN language reference manual for two
PDP-11 FORTRAN processors: FORTRAN IV and FORTRAN IV-PLUS.
FORTRAN IV--PLUS is a superset of FORTRAN IV, with one exception: the
VIRTUAL array feature, described in Appendix D and mentioned at several
points in the main portion of the manual, pertains only to FORTRAN 1IV.
Language elements common to both processors are presented without

background shading. Language elements available only in FORTRAN
IV-PLUS are printed against a shaded background.

ix June 1977

SYNTAX NCTATION

The following conventions are wused in the description of FORTRAN
statement syntax.

1.

Upper case words and letters, as well as punctuation marks
other than those described in this section, are written as
shown.

Lower case words indicate that a value is to be substituted.
The accompanying text specifies the nature of the item to be
substituted, e.g., integer variable or statement label.
Square brackets ([]) enclose optional items.

An ellipsis (...) indicates that the preceding item or
bracketed qgroup can be repeated any number of times.

For example, if the description were

then all

CALL sub [(al,al...)]
of the following would be correct:
CALL TIMER

CALL INSPECT (I,J,3.0)
CALL REGRES (A)

This page intentionally left blank.

Xi June 1977

CHAPTER 1

INTRODUCTION TO PDP-11 FORTRAN

1.1 LANGUAGE OVERVIEW

The PDP-11 FORTRAN language conforms to the specifications for
American National Standard FORTRAN X3.9-1966. The following
enhancements to American National Standard FORTRAN are included in
PDP-11 FORTRAN:

1. Any arithmetic expression can be used as an array subscript.
If the expression is not of type Integer, it is converted to
Integer form.

2, Alphanumeric 1literals (character strings bounded by
apostrophes) can be used in place of Hollerith constants.

3. Mixed-mode expressions can contain elements of any data
type, including Complex.

4. The statement label list in an assigned GO TO statement is
optional.

5. The following Input/Output statements have been added:

ACCEPT

TYPE Device~oriented I/O

PRINT }

DEFINE FILE

READ (u'r)

WRITE (u'r) Unformatted Direct Access I/0
FIND (u'r)

6. The specifications END=n and/or ERR=n can be included in any
READ or WRITE statement to transfer control to the specified
statement upon occurrence of an end-of-file or error
condition.

7. The following additional data type is provided:
LOGICAL*1

8. The IMPLICIT statement redefines the implied data type of
symbolic names. :

9. Any FORTRAN statement can be followed, in the same line, by
an explanatory comment that begins with an exclamation
point.

10.

11.

12.

13.

14‘

15.

16.

INTRODUCTION TO PDP-11 FORTRAN

Statements can be included in a program for debugging
purposes by placing the 1letter D in column 1. These
statements are compiled only when the associated compiler
option switch is set; otherwise, they are treated as
comments.

Undersized input data fields can contain external field
separators to override the FORMAT field width specifications
for those fields (called "short field termination").

Any arithmetic expression can be used as the initial value,
increment, or limit parameter in the DO statement, or as the
control parameter in the computed GO TO statement.

The value of the DO statement increment parameter can be
negative.

Constants and expressions are permitted in the I/0 lists of
WRITE, TYPE, and PRINT statements.

A PROGRAM statement can be used in a main program.

An optional comma is allowed in DO statements for better
readability and reduced user errors.

For example

DO 5, I=1,10

INTRODUCTION TO PDP-11 FORTRAN

1.2 ELEMENTS OF A FORTRAN PROGRAM

A FORTRAN program consists of FORTRAN statements and optional
comments. The statements are organized in logical units called
program units. A program unit is a sequence of statements terminated
by an END statement that defines a computing procedure. A program
unit can be either a main program or a subprogram. ©One main program
and possibly one or more subprograms comprise the executable program.

1.2.1 Statements

Statements are grouped into two general classes: executable and
nonexecutable. Executable statements describe the action of the
program; nonexecutable statements describe data arrangement and
characteristics, and provide editing and data conversion information.

Statements are divided into physical sections called lines. A line is
a string of up to 72 characters. If a statement is too long to be
contained on one line, it can be continued on one or more additional
lines, called continuation lines. A continuation line is identified
by the presence of a continuation character in the sixth column of
that line. (For further information concerning continuation
characters, see Section 1.3.4, Continuation Field.)

A statement can be identified by a statement label so that other
statements can refer to it, either for the information it contains or
to transfer control to it. A statement label has the form of an
integer number placed in the first five columns of a statement's
initial line.

1.2.2 Comments

Comments do not affect the meaning of the program in any way, but are
a documentation aid to the programmer. They should be used freely to
describe the actions of the program, to identify program sections and
processes, and to provide greater ease in reading the source program
listing. The letter C in the first column of a source line identifies
that 1line as a comment. Also, if an exclamation point (!) is placed
in the statement portion of a source line, the rest of that 1line |is
treated as a comment.

1.2.3 The FORTRAN Character Set

The FORTRAN character set consists of:

INTRODUCTION TO PDP-11 FORTRAN
1. The upper case letters A through Z and the lower case letters
a through z
2. The numerals 0 chrough 9

3. The following special characters:

Character Name
A Space or Blank or Tab
= Equals
+ . Plus
- Minus
* Asterisk
/ Slash
(Left Parenthesis

) Right Parenthesis

’ Comma
. Decimal Point
! Apostrophe

" Double Quote

$ Dollar Sign

Colon

P

In PORTRAN ‘TV-PLUS,
use&z ¥ S

Other printable characters may appear in a FORTRAN statement only as
part of a Hollerith constant or alphanumeric literal. Any printable
character can appear in a comment.

Except in alphanumeric literals and Hollerith constants, the compiler
makes no distinction between upper and lower case letters.

1.3 FORMATTING A FORTRAN LINE

The formatting of a FORTRAN line is the same for lines punched into
cards or paper tape and for lines entered from a terminal using a text
editor. Only the method of formatting differs.

INTRODUCTION TO PDP-11 FORTRAN

1.3.1 Using FORTRAN Coding Forms

A FORTRAN 1line is divided into fields for statement labels,
continuation indicators, statement text and seguence numbers. Each
column represents a single character. The usage of each type of field
is described in the following sections.

FO RTRAN CODER DATE PAGE
CODING FOtm PROBLEM
£ ooncor]?
8 Booieon |} FORTRAN STATEMENT JDENTIFICATION
el
1234 5/6/78910111213141518171819202122232425262728293031323334353617M3040414243444544647484950515253545556575059606162636406568676069707172|7374757677 7879 8]
TH1S, PROGRAM CALCULATES PRIME NUMBERS FROM 11 1O 50, bbbt b4 bt it
(S IUHIN PRI PR A DA AR L e L o S o O N O W S Y S A S O
J.=1 L i I B I i Sk e I SR S R I e e R e e e o
4, J=d 2 + B A S e B e e A e a F [S S B S S S S S SN [IO S P S S iV S S G O (PR PR SN Oy
= j R +
=LA, PR ER - A S A ST
L=1/J + PPN - +
1. F (B), .5, ,10.,.5 ST Ly,
5, 1F (J LT . SQRT (FLOAT (1))) GO TQO 4 .
TYPE 105, 1, ., ettt -
10 :QNTINUE B e e g o SR IR B i S e o) i e B e +
+ + 4+ 4 RERER o o e A o e I e + ettt 4+
1,05 FORMAT, (1 4. 1S PRIME. ") s o P P
NR. +
et et e
At 4 — Attt
- B T T R Y T P AU S RSN UUNEN GNP
ettt -+ L e I B B T B e i e e e B e Attt b+ b Attt A+
4 R B T T e o e e o e S S i s S S T S S SO S T o Sy
e R e I e B B e B B B e B e R o o 10 T I NS U BN 5 B S O SU U O B SO SO ST O W W e
At 4t + 44 + e B Tk o S0 1 R F S SN S B WS B WP S PRI P
+ ++ + R L o S 2 2 3 4+t 44
bbb b e bt 4 ded b A b e e bbb b A A ded .
12343(4[709 100 121314131617 101920212223 4 252827282930 31 3233 34 153637104041 424144434647 484930 315253545550 57583960 61626164 4566 &7 6408 70 7 721 737473 7877 7R 79 80]
PG-3 DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS
Figure 1-1

FORTRAN Coding Form

1.3.2 Using a Text Editor

When creating a source program via a terminal, using a text editor,
the wuser can type the lines on a "character-per-column" basis, or use
the TAB character to facilitate formatting the lines.

If a TAB character appears at the beginning of a 1line, possibly
preceded by a statement label or a D in column 1, and the following
character is a digit, the compiler treats the digit as a continuation
indicator and the character following as the beginning of the
statement text. If the character following the initial TAB is not a
digit, the compiler treats it as the first character of the statement
text. If the continuation indicator is a "O0" the line is an initial
line.

While many text editors and terminals advance the terminal print
carriage to a predefined print position when the TAB character is
typed, this action is not related to the interpretation of the TAB
character described above.

INTRODUCTION TO PDP-11 FORTRAN

Formatting of the following lines can be accomplished in either of the
following ways:

- 1AHOLD ,MOVE , DECODE or AAAAA)AHOLD ,MOVE ,DECODE

C-ﬁINITIALIZEAARRAYS or CAAAAAINITIALIZEAARRAYS

10-+| w=3 or 10A0AAAW=3

- SEL(1)=111200022D0 or AAAPAASEL(1)=111200022D0
where:

-| represents a TAB character (CTRL/I), and
A represents a space character (SPACE bar) .

The space character can be used in a FORTRAN statement to improve
legibility of the line; the compiler ignores all spaces in a
statement field except those within a Hollerith constant or
alphanumeric 1literal (e.g., GO TO and GOTO are equivalent). The TAB
character in a statement field is treated the same as a space by the
compiler. In the source listing produced by the compiler, the TAB
causes the character that follows to be printed at the next tab stop
(located at columns 9,17,25,33, etc.).

1.3.3 Statement Label Field

A statement label or statement number consists of one to five decimal
digits placed in the first five columns of a statement's initial line.
Spaces and leading zeros are ignored. An all-zero statement label is
illegal.

Any statement to which reference is made by another statement must
have a label. No two statements within a program unit can have the
same label.

1.3.3.1 Comment Indicator - The letter C can be placed in column one
to indicate that the 1line 1is a comment. The compiler prints the
contents of that line in the source program listing, then ignores the
line.

1.3.3.2 Debug Statement Indicator - Debug statements are designated
by a D “in column one. The initial line of the debug statement can
contain a statement label in columns two through five. If a debug
statement is continued onto more than one 1line, then every
continuation line must contain a D in column one as well as a
continuation character in column six.

The debug statement can be treated either as source text to be
compiled or as a comment, depending on the setting of a compiler
command switch. When the switch is set, debug statements are compiled
as a part of the source program; when it is not set, debug statements
are treated as comments.

INTRODUCTION TO PDP-11 FORTRAN

1.3.4 Continuation Field

Column six of a FORTRAN line is reserved for a continuation indicator.
Any character except zero or space in this column is recognized as a
continuation indicator. A statement can be divided into distinct
lines at any point. The characters beginning in column seven of a
continuation line are considered to follow the last character of the
previous line as if there were no break at that point.

Comment lines cannot be continued. All comment lines must begin with
the letter C in column one. Comment lines must not intervene between
a statement's initial line and its continuation 1line(s), or between
successive continuation lines.

1.3.5 Statement Field

The text of a FORTRAN statement is placed in columns 7 through 72.
Because the <compiler ignores the TAB character and spaces (except in
Hollerith constants and alphanumeric literals), the user can space the
text in any way desired for maximum legibility.

1.3.6 Segquence Number Field

A seguence number or other identifying information can appear in
columns 73-80 of any 1line in a FORTRAN program. The characters in
this field are ignored by the compiler.

NOTE
Text is ignored with no warning message

printed if a line accidentally extends
beyond character position 72,

1.4 PROGRAM UNIT STRUCTURE

Figure 1-2 provides a graphic representation of the rules for
statement ordering. In this figure, vertical lines separate statement
types which may be interspersed, such as DATA and executable
statements; horizontal lines indicate statement types that can not be
interspersed, such as DATA and PARAMETER statements.

INTRODUCTION TO PDP-11 FORTRAN

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement
IMPLICIT
Statements
PARAMETER
Comment Statements
Lines Other Specification
FORMAT Statements
and
ENTRY
Statement
Statements Function
DATA Definitions
Statements
Executable Statements
END Line
Figure 1-2

Required Order of Statements and Lines

ICLUDE ‘

1.5 INCLUDE STATEHENT

The INCLUDE statement specxfles that the contenta of ‘a designated file
are to- be incorporated in the FORTRAN cempilation directly follow1n9
the INCLUDE statement. : :

§
The INCLUDE statement has the form:
INCLUDE 'fllspec[/[NOILIST]'

«filspec is a character string that specxfles the"filﬁo
A ©. included -in the compilation. This file specification
- must be acceptable ta the operating system.fr~

FORTRAN IV-PLUS User's Guide for the ‘for:
specification.)

The option specification /LIST indlcates that the
included file are to be 1listed 1in the compilatlon source
preceded by an asterisk (*). The /NOLIST option. specificatio
indicates that the included statements are not to. be listed
compilatién source listing. The /LIST option is assumed if
optxon xs specxfxed. k

When the compxler encounters an INCLUDE statement,f it sto :
statements from the current file and compiles the statementa‘
included file. When the end of the included file 1s reache
compilation resumes with the statement “following . th
statement. B =

INTRODUCTION TO PDP-11 FORTRAN

ile can. not begin wit a
be co pietely conta1neﬂ

LUDE statement can appear anywh, ‘
s 11ustrated “in Figure 1-2. Any
ded file; however, the include
ther atatements -of the

= blank COMMON block and the

CHAPTER 2

FORTRAN STATEMENT COMPONENTS

2,1 INTRODUCTION TO FORTRAN STATEMENT COMPONENTS

The basic components of FORTRAN statements are:

1. Constants
A constant represents a fixed, self-describing value.

2. Variables
A variable is a symbolic name that represents a stored value.

3. Arrays
An array is a group of values, stored contiguously, that can
be referred to individually or collectively. The individual
values are called array elements. A symbolic name is used to
refer to the array.

4, Expressions
An expression can be a single constant, variable, array
element, or function reference, or it can be a combination of
those components and certain other elements, called
operators, that specify computations to be performed on the
values represented by those components to obtain a single
result.

5. Function References
A function reference is the name of a function followed by a
list of arguments which,performs the computation indicated by
the function definition. The resulting value is wused in
place of the function reference. Function references are
treated in detail in Chapter 8.

2.2 SYMBOLIC NAMES

Symbolic names are used to identify many entities within a FORTRAN
program unit.

A symbolic name is a string of letters and digits, the first of which
must be a letter. The name can be of any length, but characters after
the sixth are ignored. Examples of valid and invalid symbolic names
are:

Valid Invalid

NUMBER 5Q (Begins with a numeral)

K9 B.4 (Contains a special character)
X

FORTRAN STATEMENT COMPONENTS

Table 2-1 indicates the types of entities which are identified by
symbolic names.

Within one program unit, the same symbolic name cannot be used to
identify more than one entity, except as noted. Within an executable
program, the same symbolic name can be used to identify only one of
the entities indicated as "Unique in Executable Program" in Table 2-1.

Each entity indicated as "Typed" in Table 2-1 has a data type. The
means of specifying the data type of a name are discussed in Sections
2.5.1 and 2.5.2.

Within a subprogram, symbolic names are also used as dummy arguments.
A dummy argument can represent a variable, array, array element,
constant, expression, or subprogram.

Table 2-1
Classes of Symbolic Names
Unigue in
Entity Typed Executable Program
Variables yes no
Arrays yes no
Arithmetic statement functions yes no
Processor-defined functions yes yes
Function subprograms yes yes
Subroutine subprograms no yes
Common blocks no yes
Main programs no yes
Block data subprograms no yes
Function entries ol yes] yes
Subroutine entries il ne ‘ yes. ..
Parameter constants ' | ‘yes oMo

2.3 DATA TYPES

Each basic component represents data of one of several different
types. The data type of a component can be inherent in its
constructcion, implied by convention, or explicitly declared. The data
types available in FORTRAN, and their definitions, are as follows:

1. Integer - A whole number.

2. Real -~ A decimal number; it can be a whole
number ,’ a decimal fraction, or a
combination of the two.

3. Double Precision - Similar to real, but with more than
twice the degree of accuracy 1in its
representation.

4. Complex — A pair of real values that represents a
complex number; the first represents
the real part of that number, the second
represents the imaginary part.

5. Logical - The logical value "true" or "false".

FORTRAN STATEMENT COMPONENTS

An important attribute of each type of data is the amount of memory
required to represent a value of that type. Variations on the basic
types affect either the accuracy of the represented value or the
allowed range of values.

Hollerith constants and alphanumeric literals have no data type. They
assume the data type of the context in which they appear. See Section
2.4.7.2 for details.

Standard FORTRAN specifies that a "storage wunit" is the amount of
storage needed to represent a Real, Integer or Logical value. Double
Precision and Complex values occupy two storage units. In PDP-11
FORTRAN a storage unit corresponds to four bytes (two words) of
memory.

PDP-11 FORTRAN provides additional types of data for optimum selection
of performance and memory requirements. Table 2-2 lists the data
types available, the names associated with each data type, and the
amount of storage required. The form *n appended to a data type name
is called a data type length specifier.

Table 2-2 :
Data Type Storage Requirement

DATA TYPE FORTRAN IV
(Bytes)

INTEGER 2 or 4 (Note 1)

INTEGER*2 2

INTEGER*4 4 (Note 3)

REAL 4

REAL*4

DOUBLE PRECISION 8

REAL*8

COMPLEX 8

COMPLEX*8

LOGICAL 4

LOGICAL*1 1l (Note.5)

BYTE

LOGICAL*2 Not Available

LOGICAL*4 4

FORTRAN STATEMENT COMPONENTS

NOTES:

1. Either two or four bytes are allocated according to a
compiler command specification. The default allocation is
two bytes. In either case only two bytes are used to
represent the integer value. The 4-byte allocation is
provided to simplify use of programs developed on other
FORTRAN systems. (Consult the FORTRAN IV User's Guide for
details.)

2. Either two or four bytes are allocated depending on a
compiler command specification. The default allocation is
two bytes. When four bytes are allocated, all four bytes are
used to represent the integer value. Hence 4-byte integers
can store a larger range of values than 2-byte integers.
(4-byte integers can also simplify the use of programs
developed on other FORTRAN systems.)

3. Four bytes are allocated but only the first two are used to
represent the integer value. The range of possible values is
therefore the same as for INTEGER*2 variables.

4, Either two or four bytes are allocate? depending on a
compiler command specification. Two by*eg is the normal
case.

5. The l-byte storage area can contain the logieq! walues true
or false, a single Hollerith character, or !ii:2gers in the
range =128 to +127.

Additional descriptions of these data types and their representations
are presented in the sections that follow.

2.4 CONSTANTS

A constant represents a fixed value. A constant can represent a
numeric value, a logical value, or a character string.

2.4.1 1Integer Constants

An integer constant is a whole number with no decimal point. It can
have a leading sign and is interpreted as a decimal number.

An integer constant has the form:
snn

where nn is a string of numeric characters and s is an optional sign.
Leading zeros, if any, are ignored.

A negative integer constant must be preceded by a minus symbol; a
positive constant can optionally be preceded by a plus symbol (an
unsigned constant is presumed to be positive).

Except for a 1leading algebraic sign, an integer constant cannot
contain any character other than the numerals 0 through 9.

The absolute value of an integer constant cannot be greater than 32767
in FORTRAN IV or 2147483647 in FORTRAN IV-PLUS.

FORTRAN STATEMENT COMPONENTS

Examples
valid Invalid
Integer Constants Integer Constants
0 99999999999 (Too large)
-127 3.14 (Decimal point and

+32123 32,767 comma not allowed)

2.4.2 Real Constants

A basic real constant is a string of decimal digits with a decimal
point.

A basic real constant has the form:
S.nn CR snn.nn OR snn.

where nn is a string of numeric characters and s is an optional sign.
The decimal point can appear anywhere in the string. The number of
digits is not 1limited, but only the 1leftmost eight digits are
significant. Leading zeros (zeros to the left of the first non-zero
digit) are ignored when counting the leftmost eight digits. Thus in
the constant 0.000012345678 all of the non-zero digits are
significant.

A basic real constant must contain a decimal point.

A real constant is a basic real constant or an integer constant or
basic real constant followed by a decimal exponent of the form:

Esnn

where nn is a 1- or 2-digit integer constant and s is an optional
sign. It represents a power of ten by which the preceding real or
integer %onstant is to be multiplied (e.g., 1lE6 represents the value
1.0 x 109).

A real constant occupies two words (i.e., four bytes) of PDP-11
storage and 1is interpreted as a real number having a degree of
precision slightly greater than seven decimal digits.

A minus symbol must appear between the letter E and a negative
exponent; a plus symbol is optional for a positive exponent.

Except for algebraic signs, a decimal point, and the letter E (if
used), a real constant cannot contain any character other than the
numerals 0 through 9.

FORTRAN STATEMENT COMPONENTS

If the letter E appears in a real constant, a 1l- or 2-digit integer
constant must follow; the exponent field cannot be omitted, but can
be zero. ‘

The magnitude of a real cggstant cannot be smaller than 0.29 x 10—38
nor greater than 1.7 x 10°%.
Examples
Valid Invalid
Real Constants Real Constants
3.14159 1,234,567 (Commas not allowed)
621712. 325E-75 (Too small)
-.00127 -47.E47 (Too large)
+5.0E3 100 (Decimal point missing)
2E-3 $25.00 (Special character

not allowed)

2.4.3 Double Precision Constants

A double precision constant is a basic real constant or an integer
constant followed by a decimal exponent of the form:

Dsnn

where nn is a 1- or 2-digit integer constant and s is an optional
sign. The number of digits that precede the exponent is not limited,
but only the leftmost 17 digits are significant.

A double precision constant occupies four words of PDP-1l1 storage and
is interpreted as a real number having a degree of precision
approximately equal to 17 significant digits.

A negative double precision constant must be preceded by a minus
symbol; a positive constant can optionally be preceded by a plus
symbol. Similarly, a minus symbol must appear between the letter D
and a negative exponent; a plus symbol is optional for a positive
exponent.

The exponent field following the letter D cannot be omitted, but can
be zero.

The magnitude of a double precision constant cannot be smaller than
0.29 x 10~38, nor greater than 1.7 x 10 8,

Examples

1234567890D+5
+2.71828182846182D00
-72.5D-15

1D0

FORTRAN STATEMENT COMPONENTS

2.4.4 Complex Constants

A complex constant is a pair of real constants separated by a comma
and enclosed in parentheses. The first real constant represents the
real part of that number and the second represents the imaginary part.
A complex constant has the form:
(rc,rc)

where rc is a real constant. The parentheses and comma are part of
the constant and must be present. The rules for the constituent real
constants are given in Section 2.4.2,

A complex constant occupies four consecutive words of storage and is
interpreted as a complex number.

Examples

(1.70391,-1.70391)
(+12739E3,0.)

2.4.5 Oc¢tal Constants

An octal constant is an alternate way of representing an integer
constant and can be used in a like manner.

An octal constant has the form:
llnn

where nn is a string of octal digits.

Except for the leading double guote, which must be present} an octal

constant cannot contain any character other than the numerals 0

through 7.

An octal constant cannot be smaller than zero, nor greater than 177777
in FORTRAN IV or 37777777777 in FORTRAN IV-PLUS.

Examples
Valid Invalid
Octal Constants Octal Constants
"7213 32767 (Double gquote missing)
"l "184 (Illegal cheracter)
"17776 -

FORTRAN STATEMENT COMPONENTS

2.4.6 Logical Constants

A logical constant specifies a logical value, "true" or "false".
Therefore, there are only two possible logical constants. They appear
as:

.TRUE. e
and

.FALSE.

The delimiting periods are part of each constant and must be present.

2.4.7 Hollerith Constants

>

A Hollerith constant is a string of ASCII characters preceded by a
character count and the letter H.

A Hollerith constant has the form:

anlczc3 cee cn

where n is an unsigned, non-zero integer constant stating the number
of characters in the string (including spaces and tabs), and each c is
an ASCII character. The maximum number of characters is 255.

Hollerith constants are stored as byte strings, one character per
byte.

Hollerith constants have no data type. They assume the data type of
the context in which they appear.

Examples
Valid Invalid
Hollerith Constants Hollerith Constant
16HTODAY 'SADATEAIS: 3HABCD (Wrong number of characters)
1HA

2.4.7.1 Alphanumeric Literals - An alphanumeric literal is an
alternate form of Hollerith constant.

~An alphanumeric literal has the form:

‘clczc3 cee Cn

where each ¢ 1is a printable ASCII character. Both delimiting
apostrophes must be present. The maximum number of characters in an
alphanumeric literal is 255.

Within an alphanumeric 1literal, the apostrophe character is
represented by two consecutive apostrophes.

Examples
'CHANGEAPRINTERAPAPERATOAPREPRINTEDAFORMANO. A721"

'TODAY ' 'SADATEAIS: AA'

FORTRAN STATEMENT COMPONENTS

2.4.7.2 Data Type Rules for Hollerich Constants -~ When an
alphanumeric 1literal or Hollerith constant is used in an expression,
the data type assumed for the constant is governed by the following
‘rules.

l. In combination with a binary operator, including the
assignment operator, the type of the constant is the type of
the other operand.

Examples:

Statement Data Type Length of Constant
REL = 'ABCD' REAL*4 4
TF(I.EQ.'XY') GO TO 3 INTEGER*2 2
M =N - 'ABC' INTEGER*2 2
X =1'2" REAL*4 4

2. 1In contexts where a specified data <ype is required,
generally integer, that type is assumed for the constanc.

Example:
Y(IX)=Y('ABC')+3. INTEGER*2 2

3. When the constant is used as an actual argument, no data type
is assumed.

Example:
CALL APAC ('ABCDEFGHT') 9
4. 1In all other contexts, INTEGER*2 type is assumed.

Examples:

IF ('AB') 1,2,3 INTEGER*2 2
I= 'C'-'A" INTEGER*2 2
J= .NOT. 'B' INTEGER*2 2

When the length of the constant is less than the length implied by the
data type, spaces are appended to the constant on the right. When the
length of the constant is greater than the length implied by the data
type, the constant is truncated on the righc.

The number of characters required for each data type is illustrated in
Table 2~2. Each character occupies one byte of storage.

2.4.8 Radix-50 Constants

Radix~50 is a special character data representation in which up ¢to
three characters from the Radix-50 character set (a subset of the
ASCII character set) can be encoded and packed into a single PLP-11
word. Radix~50 constants can only be used in DATA statements.

2-9 June 1977

FORTRAN STATEMENT COMPONENTS

A Radix-50 constant has the following form:

I'IRC:LC2 «oe Cn

where n is an unsigned non-zero integer constant that states the
number of characters to follow, and each ¢ is a character from the
Radix-50 character set. The maximum number of characters is twelve.
The character count must include any spaces that appear in the
character string (the space character is a valid Radix-50 character).

The internal numeric value of any combination of one, two, or three
Radix-50 characters is tabulated in Appendix A.

The Radix-50 characters and their code values are:

Radix-50 Value

Character (Octal)
Space 0
A -1z 1-32
$ 33
. 34

(not used) 35
0 -9 36-47

Examples

4RABCD

6RAATOAA

4RDKO: (Invalid; colon is not a Radix-50 character)

2.5 VARIABLES

A variable is a symbolic name that is associated with a storage
location. The value of the variable is the value currently stored in
that location; that value can be changed by assigning a new value to
the variable. (The form of a symbolic name is given in Section 2.2.)

Variables are classified by data type, just as constants are. The
data type of a variable indicates the type of data it represents, its
precision, and its storage requirements. When data of any type is
assigned to a variable, it is converted, if necessary, to the data
type of the variable. The data type of a variable may be established
either by type declaration statements, IMPLICIT statements, or
predefined typing rules.

Two or more variables are associated with each other when each is
associated with the same storage location; or, partially associated,
when part (but not all) of the storage associated with one variable is
the same as part or all of the storage associated with another

FORTRAN STATEMENT COMPONENTS

variable. Association and partial association occur through the use
of COMMON statements, EQUIVALENCE statements, and through the use of
actual arguments and dummy arguments in subprogram references.

A variable is said to be defined if the storage with which it is
associated contains a datum of the same type as the name. A variable
can be defined prior to program execution by means of a DATA statement
or during execution by means of assignment or input statements.

If variables of differing types are associated (or partially
associated) with the same storage location, then defining the value of
one variable (for example, by assignment) cauvses the value of the
other variable to become not defined.

2.5.1 Data Type Specification

Type declaration statements (Section 7.2) specify that given variables
are to represent specified date types. For example:

COMPLEX VAR1
DOUBLE PRECISION VAR2

These statements indicate that the variable VARl is to be associated
with a 4-word storage location that is to contain complex data, and
that the variable VAR2 is to be associated with a 4-word double
precision storage location.

The IMPLICIT statement (Section 7.l1) has a broader scope: it states
that any variable having a name that begins with a specified letter,
or any letter within a specified range, is to represent a specified
data type, in the absence of an explicit type declaration.

The data type of a variable can be explicitly specified only once. An

explicit type specification takes precedence over the type implied by
an IMPLICIT statement.

2.5.2 Data Type by Implication

In the absence of any IMPLICIT statements, all variables having names
beginning with I, J, K, L, M, or N are assumed to represent integer
data. Variables having names beginning with any other letter are
assumed to be real varisbles. For example:

Real Variables Integer Variables
ALPHA KOUNT
BETA ITEM
TOTAL NTOTAL

2.6 ARRAYS

An array is a group of contiguous storage locations associated with a
single symbolic name, the array name. The 1individual storage
locations, called array elements, oare referenced by a subscript
appended to the array name. Subscripts are discussed in Section
2.6.2,

FORTRAN STATEMENT COMPONENTS

An array can have from one to seven dimensions. A column of figures
is an example of a l-dimensional array. Several columns of figures
would represent a 2-dimensional array; to refer to a specific value
in this array, both its entry (or row) number and its column number
must be specified. Tf this table of figures covered several pages,
cthe array would be 3-dimensional. To locate a value 1In a
3-dimensional array, the row number, a column number, and a page (or
level) number must be specified.

The following FORTRAN statements establish arraysi
1. Type declaratidn statements (Section 7.2),
2. DIMENSION stcatement (Section 7.3),

3. COMMON statement (Section 7.4), and

4. VIRTUAL statement (Appendix D)
These statements, containing array declarators (array declarators are
discussed in the following sub-section), define the name of the array,

cthe number of dimensions in the array, and the number of elements in
each dimension.

2.6.1 Array Declarators

An array declarator specifies the symbolic name that identifies an
array within a program unit and indicates the properties of cthat
array.

An array declarator has the form:
a (da[.,d] ...)

a is the symbolic name of the array -- the array name.
(The form of a symbolic name is given in Section 2.2.)

d is a dimension declaractor.

The number of dimension declarators indicates the number of dimensions
in the array. The minimum number of dimensions is one and the maximum
number is seven.

The value of a dimension declarator specifies the number of elements
in that dimension. For example, a dimension declarator value of 50
indicates that the dimension contains 50 elements. The dimension
declaracors can be constant or variable. variable dimension
declarators are used to define adjustable arrays (see Section 2.6.6).
The number of elements in an array is equal to the product of the
number of elements in each dimension.

An array name can appear in only one array declarator within a program
unit.

2-12 June 1977

FORTRAN STATEMENT COMPONENTS

2.6.2 Subscripts

A subscript qualifies an array name. A subscript is a 1list of
subscript expressions enclosed in parentheses that determines which
element in the array is referenced. The subscript is appended to the
array name it qualifies.

A subscript has the form:
(sl,s]l...)
s is a subscript expression.
In any subscripted array reference, there must be one subscript
expression for each dimension defined for that array {(one for each
dimension declarator). For example, the following entry could be used
to refer to the element located in the first row, third column, second
level of the array COS in Figure 2-1 (which is the element occupying
memory position 16).
Co0s(1,3,2)
Each subscript expression can be any valid arithmetic expression. If

the value of a subscript expression is not of type Integer, it is
converted to Integer before use.

2.6.3 Array Storage

As discussed earlier in this section, it is convenient to think of the
dimensions of an array as rows, columns, and levels or planes.
However, the FORTRAN system always stores arrays in memory as a linear
sequence of values. A l-dimensional array is stored with its first
element in the first storage location and its last element in the last
storage location of the sequence. A multi-dimensional array is stored
such that the leftmost subscripts vary most rapidly. This is called
the "order of subscript progression". For example, consider the
following array declarators and the arrays that they create:

FORTRAN STATEMENT COMPONENTS

l-Dimensional Array ARC(6)

[[I[ARC(1) [2[ARC(2) | 3] ARC(3) [4] ARC(4) [5[ARC(5) [6 |ARC(6) |

Memory Positions

2-Dimensional Array TAN(3;4)

1] TAN(1,1)| 4] TAN(1,2)[7| TAN(1,3) |10 |TAN(]1,4

2 TaN(2,1)| 5| TaN(2,2) [B| TAN(2,3) [11|TAN(2,4

3 TanN(3,1)[6] TAN(3,2) | 9| TAN(3,3) [12[{TAN(3,4
}

Memory Positions

3-Dimensional Array COS(3,3,3)

19]cos(1,1,3)[22]|COoS(1,2,3)]25|COS

1,3.3
20]COS (2,1,3)]23]COS(2,2,3)]26/COS(2,3,3
T0TCo5 (1, 1,2)] 13 cos(1,2,2) 16]Co3(1,3,2)] 27/ cos(3,3,3)
11]cos(2,1,2)| 14[CC8(2,2,2)[17]COS(2,3,2)
i]cos(1,1,1)]4]cOS(1,2,1 COS (L,.3,.1) 18]COS (3,3,2)
3{cos(2,1,1)|5(co5(2,2,1) [3[C0OS(2,3,1)
3[coa(3,1,1) [6]cos(3,2,1) [9]COS (3,3,1)
)

Memory Positions

Figure 2-1
Array Storage

2.6.4 Data Type of an Array

The data type of an array is specified in the same way as the data
type of a variable; that is, implicitly by the initial letter of the
name, or explicitly by a type declaration statement.

All of the values in an array are of the same data type. Any value
assigned to an array element 1is converted to the data type of the
array. If an array is named in a DOUBLE PRECISION statement, for
example, the compiler allocates a 4-word storage location for each
element of the array. When a value of any type 1is assigned to any
element of that array, it is converted to double precision.

The compiler stores LOGICAL*1l array elements in adjacent bytes.

2.6.5 Array References without Subscripts

In the following types of statements, an array name can appear without
a subscript to specify that the entire array is to be used (or
defined).

2-14

FORTRAN STATEMENT COMPONENTS

Type declaration statements
COMMON statement
DATA statement
EQUIVALENCE statement
FUNCTION statement
SUBRCUTINE statement
CALL statement
Input/Output statements
Unsubscripted array names can also be used as actual arguments. The

use of unsubscripted array names in all other types of statements is
illegal.

2.6.6 Adjustable Arrays

Adjustable arrays are used within a single subprogram to process
arrays with different dimension bounds by specifying the bounds as
well as the array name as subprogram arguments.

An adjustable array declarator has variable dimension declarators. 1In
such an array declarator, each dimension declarator must be either an
integer constant or an integer dummy aragument, and the array name thus
declared must also appear as & dummy argument. (Consequently,
adjustable array declarators can not be used in main program units.)

On entry to a subprogram containing adjustable array declarators, each
dummy argument used in a dimension declarator must become associated
with an integer actual argument. The values of the associated actueal
arguments are used together with any constants appearinag in the array
declarators to form an effective array declarator which determines the
properties of the adjustable array for that execution of the
subprogram.

The values of dummy arguments used in adjustable array declarators
must not be changed within the subprogram.

The effective size of the dummy array must be ecual to or less then
the actual size of the associated array.

The function in the following example computes the sum of the elements
of a two-dimensional array. Note the use of the parameters M and N to
control the iteration.

FUNCTION SUM(A,M,N)
DIMENSION A (M,N)

SUM = 0.0
DO 10, I = 1,M
DO 10, J = 1,N
10 SUM = SUM + A(I,J)
RETURN
END

FORTRAN STATEMENT COMPONENTS

Following are sample calls on SUM:

DIMENSION A1(10,35), A2(3,56)
SUM1 = SUM(A1l,10,35)
SUM(A2,3,56)
SUM(Al1,10,10)

1]

SUM2
SUM3

2.7 EXPRESSTONS

An expression represents a single value. 1Tt cen be a single basic
component, such as a constant or variable, or a combination of basic
components with one or more operators. Operators specify computations
to be performed, using the values of the basic components, to obtain a
single value.

Expressions can be classified as arithmetic, relational, or logical.

Arichmetic expressions vyield numeric values; relational and logical
expressions produce logical values.

2.7.1 Arithmetic Expressions

Arithmetic expressions are formed wicth arithmetic elements and
arichmecic operators. The evaluacion of such an expression yields a
single numeric value.

2-16 June 1977

FORTRAN STATEMENT COMPONENTS

An arithmetic element may be any of‘the following:
l. A numeric constant
2. A numeric variable
3. A numeric array element
4. An arithmetic expression enclosed in parentheses

5. An arithmetic function reference (Functions and function
references are described in Chapter 8.)

The term "numeric" in these cases can also be interpreted to include
logical data, since data of this type is treated as integer data when
used in an arithmetic context.

Arithmetic operators specify a computation to be performed using the
values of arithmetic elements; they produce a numeric value as a
result. The operators and their meanings are:

Operator Function
* ok Exponentiation
* Multiplication
/ Division
+ Addition and Unary Plus

- Subtraction and Unary Minus

The above are called binary operators, because each is wused 1in
conjunction with two elements. The + and - symbols can also be used
as unary operators when written immediately preceding an arithmetic
element to denote a positive or negative value.

Any arithmetic operator can be used in conjunction with any valid
arithmetic element except for certain restrictions noted below.

A value must be assigned to a variable or array element before it can
be used in an arithmetic expression.

The following table illustrates the permitted combinations of base and
exponent data type for the exponentiation operator.

EXPONENT
BASE
Integer Real Double Complex
Integer Yes No No No
Real Yes Yes Yes No
Double Yes Yes Yes No
Complex Yes No No No

FORTRAN STATEMENT COMPONENTS

In addition, a negative element can only be exponentiated by an
integer element; an element having a value of =zero cannot be
exponentiated by another zero-value element.

In any valid exponentiation, the result is of the same data type as
the base element, except 1in the case of a real base and a double
precision exponent: the result in this case is double precision.

Arithmetic expressions are evaluated in an order determined by a
precedence associated with each operator. The precedence of the
operators is:

Operator Precedence
* % First
* and / Second
+ and - Third

Whenever two or more operators of equal precedence (such as + and . -)
appear, they can be evaluated in any order chosen by the compiler so
long as the actual order of evaluation is algebraically egquivalent to
a left to right order of evaluation. Exponentiation, however, is
evaluated right to left. For example A**B**C is evaluated as
A** (B**C) ,

2.7.1.1 Use of Parentheses - Parentheses can be used to override the
normal evaluation order. An expression enclosed in parentheses is
treated as a single arithmetic element. That is, it 1is evaluated
first to obtain its value, then that value is used in the evaluation
of the remainder of the larger expression of which it is a part. An
example of the effect of parentheses is shown below (the numbers below
the operators indicate the order in which the operations are
performed) .

4

N o>+
* = > %
[N}

L g |
0
L}

(4+3) 11
*

W N W TN

P

1 2

(4 3

+
*
2

* Lol
[\S]
w =+

((4+3)
+

BN s TN

w > 1

1 2

Evaluation of expressions within parentheses takes place according to
the normal order of precedence.

FORTRAN STATEMENT COMPONENTS

Nonessential parentheses, such as in the expression
4 + (3*2) - (6/2)
have no effect on the evaluation of the expression.

The use of parentheses to specify the evaluation order is often
important in high accuracy numerical programs where evaluation orders
that are algebraically egquivalent might not be computationally
equivalent when carried out on a computer.

2.7.1.2 Data Type of an Arithmetic Expression - If every element 1in
an arithmetic expression is of the same data type, the value produced
by the expression is also of that type. If elements of different data
types are combined in an expression, the evaluation of that expression
and the data type of the resulting value are dependent on a rank
associated with each data type. The rank assigned to each data type
is as follows:

Data Type Rank
Logical 1 (Low)
Integer 2

Real 3
Double Precision 4
Complex 5 (High)

The data type of the value produced by an operation on two arithmetic
elements of differing type is the same as that of the highest-ranked
element in the operation. The data type of an expression is the same
as the data type of the result of the 1last operation in that
expression. The way in which the data type of an expression is
determined is as follows:

1. Integer operations - Integer operations are performed only on
integer elements. (When used in an arithmetic context, octal
constants and logical entities are treated as integers.) 1In
integer arithmetic, any fraction that <can result from
division is truncated, not rounded. For example, the wvalue
of the expression

1/73 + 1/3 + 1/3
is zero, not one.

2. Real operations - Real operations are performed only on real
elements or a combination of real and integer elements. Any
integer elements present are converted to real type by giving
each a fractional part equal to zero. The expression is then
evaluated using real arithmetic. Note, however, that in the
statement Y = (I/J)*X, an integer division operation is
performed on I and J and a real multiplication is performed
on the result and X.

FORTRAN STATEMENT COMPONENTS

3. Double Precision operations - Any real or integer element in
a double precision operation is converted to double precision
type by making the existing element the most significant
portion of a double precision datum; the least significant
portion is zero. The expression is then evaluated in double
precision arithmetic.

NOTE

The conversion of a real element to
double precision does not increase its
accuracy. For example, the real number
0.3333333 becomes 0.3333333000000000
when converted, not 0.3333333333333333.
Also note that real and double precision
elements are only approximate
representations of actual numbers.
Values resulting from a real or double
precision expression are only as
accurate as the degree of precision for
that data type.

4. Complex operations - In an operation that contains any
complex element, integer elements are converted to real type
as previously described. Double precision elements are
converted to real type by the rounding of the least
significant portion. The real element thus obtained is
designated as the real part of a complex number; the
imaginary part is zero. The expression 1is then evaluated
using complex arithmetic and the resulting value is of type
complex.

2.7.2 Relational Expressions

A relational expression consists of two arithmetic expressions
separated by a relational operator. The value of the expression is
either true or false, depending on whether or not the stated
relationship exists.

A relational operator tests for a relationship between two arithmetic
expressions. These operators are:

Operator Relationship
.LT. Less than
.LE. Less than or equal to
.EQ. Egual to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

The delimiting periods are part of each operator and must be present.

2-20

FORTRAN STATEMENT COMPONENTS

Complex expressions can be related by the .EQ. and .NE. operators
only. (If one complex expression is present, the other is converted
to complex type.) Complex entities are equal if their corresponding
real and imaginary parts are both equal.

In a relational expression, the arithmetic expressions are evaluated
first to obtain their wvalues. Those values are then compared to
determine if the relationship stated by the operator exists. For
example, the expression:

APPLE+PEACH .GT. PEAR+ORANGE

states the relationship, "The sum of the real variables APPLE and
PEACH 1is greater than the sum of the real variables PEAR and ORANGE."
If that relationship does in fact exist, the value of the expression
is true; 1if not, the expression is false.

All relational operators have the same precedence. Thus, if two or
more relational expressions appear within an expression, the
relational operators are evaluated from 1left to right. Arithmetic
operators have a higher precedence than relational operators.

Parentheses can be used to alter the evaluation of the arithmetic
expressions in a relational expression exactly as in any other
arithmetic expression; but since arithmetic operators are evaluated
before relational operators, it is unnecessary to enclose the entire
arithmetic expression in parentheses.

When two expressions of different data: types are compared by a
relational expression, the value of the expression having the
lower-ranked data type is converted to the higher-ranked data type
before the comparison is made.

2.7.3 Logical Expressions

A logical expression may be a single logical element, or may be a
combination of 1logical elements and 1logical operators. A logical
expression yields a single logical value, true or false.
A logical element can be any of the following:

1. An Integer or Logical constant

2. An Integer or Logical variable

3. An Integer or Logical array element

4, A relational expression

5. A logical expression enclosed in parentheses

6. An Integer or Logical function reference (Functions and
function references are described in Chapter 8.)

FORTRAN STATEMENT COMPONENTS

The logical operators are:

Operator Example Meaning
.AND. A .AND. B Logical conjunction. The expression is true

if, and only if, both A and B are true.

.OR. A .OR. B Logical disjunction (inclusive OR). The
expression is true if, and only if, either A
or B, or both, is true.

. XOR. A .XOR. B Logical exclusive OR. The expression is
true if A 1is true and B is false, or vice
versa, but is false if both elements have
the same value.

LEQV. A .EQV. B Logical equivalence. The expression is true
if, and only if, both A and B have the same
logical value, whether true or false.

.NOT. .NOT. A Logical negation. The expression is true
if, and only if, A is false.

The delimiting periods of logical operators must be present.

When a logical operator is used to operate on 1logical elements, the
resulting value 1is of type logical. When a logical operator is used
with integer elements, the logical operation is carried out bit-by-bit
on the corresponding bits of the internal (binary) representation of
the integer elements. The resulting value has type integer. When
integer and 1logical values are combined with a logical operator, the
logical value is first converted to an integer value, then the
operation 1is carried out as for two integer elements. The resulting
type is integer.

Evaluation of a logical expression is performed according to an order
of precedence assigned to its operators. Some logical expressions can
be evaluated without evaluating all sub-expressions; for example, if
A is .FALSE. then the expression A .AND. (F(X,Y¥) .GT. 2.0) .AND. B
is .FALSE.. The value of the expression can be determined by testing
A without evaluating F(X,Y). With this method of evaluation, the
function subprogram F is not necessarily called and side-effects
resulting from the call can not occur.

A summary of all operators that may appear in a logical expression,
and the order in which they are evaluated follows.

FORTRAN STATEMENT COMPONENTS

Operator

* %
*,/
+,-

Relational
Operators

.NOT.
.AND,
.OR.

.XOR., .EQV.

Evaluated

First
Second

Third

Fourth
Fifth
Sixth
Seventh

Eighth

Operators of equal rank are evaluated from left to right.

of the
follows:

seguence

in which

A*B+C*ABC .EQ. X*Y+DM*ZZ

is evaluated as:

An example

a logical expression is evaluated is as

.AND.,

.NOT, K*B .GT. TT

(((A*B)+(C*ABC)) .EQ. ((X*Y)+(DM*ZZ))) .AND. (.NOT. ((K*B) .GT.TT))

Parentheses may be used to alter the normal

just as in arithmetic expressions.

Two logical operators cannot appear consecutively,

second operator is

.NOT..

sequence of

except

evaluation,

where the

CHAPTER 3

ASSIGNMENT STATEMENTS

Assignment statements define the value of a variable or array element
by evaluating an expression and assigning the resulting value to the
variable or array element.
There are three types of assignment statements:

1. Arithmetic assignment statement

2. Logical assignment statement

3. ASSIGN statement

3.1 ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement assigns the value of the
expression on the right of the equal sign to the variable or array
element on the left of the equal sign. The previous value of the
variable, if any, is lost.

The arithmetic assignment statement has the form:

v = e
v is a numeric variable name or array element name.
e is an expression.
The equal sign does not mean "is equal to", as in mathematics. It

means "is replaced by". Thus, the statement:
KOUNT = KOUNT + 1

means, "Replace the current value of the integer variable KOUNT with
the sum of that current value and the integer constant 1".

Although the symbolic name to the 1left of the equal sign can be
undefined, values must have been previously assigned to all symbolic
references in the expression.

The expression must yield a value that conforms to the requirements of
the variable or array element to which it is to be assigned (for
example, a real expression that produces a value greater than 32767 is
illegal if the entity on the left of the equal sign is an INTEGER*2
variable).

3-1

ASSIGNMENT STATEMENTS

If the data type of the variable or array element on the left of the

equal sign is the same as that of the expression on the right, the
statement assigns the value directly. If the data types are
different, the value of the expression is converted to the data type

of the entity on the left of the equal sign before it is assigned. A
summary of data conversions on assignment is shown in Table 3-1.

Table 3-1
Conversion Rules for Assignment Statements

EXPRESSION (E)
VARIABLE INTEGER, REAL DOUBLE COMPLEX
OR ARRAY LOGICAL, PRECISION
ELEMENT OR
(V) OCTAL CONSTANT
Truncate real
part of E to
Truncate E to Truncate E to integer and
INTEGER Assign E to V integer and integer and assign to Vi
assign to V assign to V imaginary part
of E is not used
Assign MS Assign real
Append fraction portion of E to |part of E to V;
REAL (.0) to E and Assign E to V V; LS portion imaginary part
assign to V of E is rounded |of E is not used
Append fraction Assign real
(.0) to E and Assign E to MS part of E to
DOUBLE assign to MS portion of V; MS portion of
PRECISION portion of V; LS portion of Assign E to V V; LS portion
LS portion of V is zero of V is zero,
V is zero imaginary part
of E is not used
Append fraction Assign MS
(.0) to E and Assign E to portion of E
assign to real real part of V; | to real part of
COMPLEX part of V; imaginary part V; LS portion Assign E to V
imaginary part of V is 0.0 of E is rounded;
of V is 0.0 imaginary part
of V is 0.0
MS = Most Significant (high-order)
LS = Least Significant (low-order)

ASSIGNMENT STATEMENTS

Examples

Valid Statements

BETA = -1./(2.*X)+A*A/(4.* (X*X))
PI = 3.14159
SUM = SUM+1,

Invalid Statements

3.14 = A-B (Entity on the left must be a
variable or array element.)

-J = I*%*4 (Entity on the left must not be
signed.)

ALPHA = ((X+6)*B*B/(X-Y) (Invalid; left and right
parentheses do not balance.)

3.2 LOGICAL ASSIGNMENT STATEMENT

The logical assignment statement is similar to the arithmetic
assignment statement, but operates with logical data. The logical
assignment statement evaluates the expression on the right side of the
equal sign and assigns the resulting logical value to the variable or
array element on the left.

The logical assignment statement has the form:

v = e
\ is a variable or array element of type Logical.
e is a logical expression.

The variable or array element on the left of the equal sign must be of
type Logical; its value can be undefined.

Values, either numeric or logical, must have been previously assigned
to all symbolic references that appear in the expression. The
expression must yield a logical value.

Examples

PAGEND .FALSE.

PRNTOK LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A .GT. B .AND. A ,GT. C .AND. A .GT. D

3-3

ASSIGNMENT STATEMENTS

\SSIGN

3.3 ASSIGN STATEMENT

The ASSIGN statement is used to associate a statement label with an

integer wvariable. The variable can then be used as a transfer
destination in a subsequent assigned GO TO statement (see Section
4.1.3).

The ASSIGN statement has the form:

ASSIGN s TO v

s is the label of an executable statement in the same program
unit as the ASSIGN statement. (It must not be the label of a
FORMAT statement.)

v is an integer variable.

The ASSIGN statement assigns the statement number to the variable in a
manner similar to that of an arithmetic assignment statement, with one
exception: the variable becomes defined for use as a statement label
reference and becomes undefined as an integer variable.

The ASSIGN statement must be executed before the assigned GO TO
statement (s) in which the assigned variable is to be used. The ASSIGN
statement and the assigned GO TO statement (s) must occur in the same
program unit.

The statement

ASSIGN 100 TO NUMBER

associates the wvariable NUMBER with the statement label 100.
Arithmetic operations on the variable, such as in the statement

NUMBER = NUMBER+1

then become invalid, since a statement label cannot be altered. The
statement:

NUMBER = 10
dissociates NUMBER from statement 100, assigns it an integer value 10,
and returns it to its status as an integer variable. It can no longer
be used in an assigned GC TO statement.
Examples

ASSIGN 10 TO NSTART

ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR (ERROR must have been defined as an
integer variable.)

CHAPTER 4

CONTROL STATEMENTS

Statements are normally executed in the order in which they are
written. However, it is freguently desirable to interrupt the normal
program flow by transferring control to another section of the program
or to a subprogram. Transfer of control from a given point in the
program may occur every time that point 1s reached in the ©program
flow, or may be based on a decision made at that point.

Transfer of control, whether within a program unit or to another
program unit, is performed by control statements. These statements
also govern iterative processing, suspension of program execution, and
program termination. The various types of control statements are:.

GOTO

IF

DO
CONTINUE
CALL
RETURN
PAUSE
STOP

END

GO TC

4.1 GO TO STATEMENTS

GO TO statements transfer control within a program unit, either to the
same statement every time or to one of a set of statements, based on
the value of an expression.
The three types of GO TO statements are:

l. Unconditional GO TO statement

2. Computed GO TO statement

3. Assigned GO TO statement

CONTROL STATEMENTS

4.1.1 Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same
statement every time it is executed.

The unconditional GO TO statement has the form:

GO TO s

s is the label of an executable statement in the same program
unit as the GO TO statement.

The unconditional GO TO statement transfers control to the statement
identified by the specified label. The statement label must identify

an executable statement in the same program unit as the GO TO
statement.

Examples
GO TO 7734
GO TO 99999

GO TO 27.5 (Invalid; the statement label is improperly
formed.)

4.1.2 Computed GO TO Statement

The computed GO TO statement transfers control to a statement based on
the value of an expression within the statement.

The computed GO TO statement has the form:
GO TO (slist)[,] e

slist is a 1list of one or more executable statement labels
separated by commas. The 1list of labels 1is called the
transfer list.

e is an arithmetic expression the value of which falls within
the range 1 to n (where n is the number of statement labels
in the transfer list).

The computed GO TO statement evaluates the expression e and, if
necessary, converts the resulting value to integer type. The GO TO
statement then transfers control to the e'th statement label in the
transfer list. That is, if the list contains (30,20,30,40), and the
value of e is 2, the GO TO statement transfers control to statement
20, and so on.

If the value of the expression is less than 1, or greater than the
number of labels in the transfer list, control transfers to the first
executable statement following the computed GO TO.

CONTROL STATEMENTS

Examples
' GO TO (12,24,36),INCHES
GO TO (320,330,340,350,360) SITU(J,K)+1

‘4.1.3 MAssigned GO TO Statement

The assigned GO TO statement transfers control to a statement label
that is represented by a variable. Because the relationship between
the variable and a specific statement label must be established by an
ASSIGN statement, the transfer destination may be changed, depending
upon which ASSIGN statement was most recently executed.

The assigned GO TO statement has the form:
GO TO v[[,](slist)]
v is an integer variable.

slist (when present) is a 1list of one or more executable
statement labels separated by commas.

The assigned GO TO statement transfers control to the statement whose
label was most recently assigned to the wvariable v by an ASSIGN
statement.

The variable v must be of Integer type and must have been assigned a
statement 1label wvalue by an ASSIGN statement (not an arithmetic
assignment statement) prior to the execution of the GO TO statement.
The assigned GO TO statement and its associated ASSIGN statement(s)
must exist in the same program unit. Statements to which control is
transferred must be executable statements in the same program unit.
Examples

GO TO IGO

GO TO INDEX, (300,450,1000,25)

of not present
1) 5 -contro ransfers to the
5ig ed GO TO statement.

4.2 IF STATEMENTS

An IF statement causes a conditional control transfer or the
conditional execution of a statement. There are two types of IF
statements:

1. Arithmetic IF statement

2. Logical IF statement

IF

CONTROL STATEMENTS

In either type, the decision to transfer control or to execute the
statement is based on the evaluation of an expression within the IF
statement.

4.2.1 Arithmetic IF Statement

The arithmetic IF statement is used for conditional control transfers.
It can transfer control to one of three statements, based on the value
of an arithmetic expression.

The arithmetic IF statement has the form:
IF (e) sl, s2, s3
e is an arithmetic expression.

sl,s2,s3 are the labels of executable statements in the same program
unit.

All three labels must be present. They need not refer to three
different statements. If desired, one or two labels can refer to the
statement that immediately follows the IF statement.

The arithmetic IF statement first evaluates the expression in
parentheses and then transfers control to one of the three statement
labels in the transfer list, as follows:

If the Value is: Control Passes to:
Less than 0 Label sl
Equal to 0 Label s2
Greater than 0 Label s3

Examples

IF (THETA-CHI) 50,50,100
This statement transfers control to statement 50 if the real variable
THETA 4s less than or equal to the real variable CHI. Control passes
to statement 100 only if THETA is greater than CHI.

IF (NUMBER/2*2-NUMBER) 20,40,20

This statement transfers control to statement 40 if the value of the
integer variable NUMBER is even and to statement 20 if it is odd. 1In
this case, the third statement label must be present although it is
not used, since the expression can have only negative or zero values.

4,2.2 Logical IF Statement

A logical IF statement causes a conditional statement execution. The
decision to execute the statement is based on the value of a logical
expression within the statement.

CONTROL STATEMENTS

The logical IF statement has the form:
IF (e) st
e is a logical expression.
st is a complete FORTRAN statement. The statement c¢en be any

executable statement except a DO statement or another logical
IF statement.

The logical IF statement first evaluates the logical expression. If
the value of the expression is true, the contained statement is
executed. If the value of the expression is false, control transfers
to the next executable statement following the logical IF without
executing the contained statement.

Examples
IF (J .GT. 4 .OR. J .LT. 1) GO TO 250
IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K)*(-1D0)
IF (ENDRUN) CALL EXIT

DO

4.3 DO STATEMENT

DC statements are used to specify iterative processing. The DO
statement causes the statements in its range to be repeatedly executed
a specified number of times.

The DO statement has the form:
DO s[,] i=el,e2[,e3]

s is the label of an executable statement. The statement
must physically follow in the same program unit.

i is an integer variable.
el,e2,e3 are integer expressions.

The variable i is called the control variable of the DO and el,e2,e3
are called the initial, terminal, and increment parameters
respectively. If the increment parameter is omitted, a default
increment value of 1 is used.

The terminal statement of a DO loop is identified by the 1label that
appears in the DO statement. It must not be a GO TO statement, an
arithmetic IF statement, a RETURN statement, or another DO statement.
A logical IF statement 1is acceptable as the terminal statement,
provided it does not contain any of the above statements.

The statements that follow the DO statement, up to and including the
terminal statement are in the range of the DO loop.

CONTROL STATEMENTS

' . il y,vf,‘!r:' P
In FORTRAN IV-PLUS, the control variable can
INTEGER*4, REAL, or DQUBLE PRECISION,
increment parameters can be of any type .
to the type of the control variable,

The DO statement first evaluates the expressions el, e2, e3 to
determine values for the initial, terminal, and increment parameters.
The value of the initial parameter is then assigned to the control
variable. The executable statements in the range of the DO loop are
then executed repeatedly.

1f the increment parameter is positive, the value of the terminal
parameter must not be less than that of the inicial parameter.
Conversely, if the increment parameter is negative, the value of the
terminal parameter must not be greater cthan that of the initial
parameter. The value of the increment parameter must not be zero.

The number of executions of the DO range, called the iteration count,
is given by

e2 - el
—_—_— +1
el

where [X] represents the largest integer whose magnitude does not
exceed the magnitude of X and whose sign is the same as that of X.

If the iteration count is zero or negative, then the loop is executed
once.

4.3.1 DO Iteration Control

For each iteration of the DO loop, following execution of the terminal
statement, the DO iteration control is executed:

1. The value of the increment parameter is algebraically added
to the control variable.

2. The iteration count is decremented.

3. If the iteration count value is greater than zero, control is
transferred to the first executable statement following the
DO statement for another iteration of the range.

4. If the iteration count 1is =zero, execution of the DO
terminates.

The execution of a DO can also be terminated by a statement within the
range that transfers control outside the loop. The control variable
of the DO remains defined with its current value.

When execution of a DO loop terminates, if other DO loops share this
terminal statement, control transfers outward to the next most
enclosing DO loop in the DO nesting structure (Section 4.3.2). 1If no
other DO loop shares this terminal statement, or if this DO is the
outermost DO, control transfers to the first executable statement
following the terminal statement.

CONTROL STATEMENTS

The value of the control variable, terminal parameter, or increment
parameter must not be altered within the range of the DO statement.
The control variable is available for reference as a variable within
the range.

The range of a DO loop can contain other DO statements, as long as
those "nested" DO loops conform to certain reguirements (see Section
4.3.2).

Control can be transferred out of a DO loop, but cannot be transferred
into a loop from elsewhere in the program. Exceptions to this rule
are described in Sections 4.3.3 and 4.3.4.

Examples

DO 100 K=1,50,2 (25 iterations, K=49 during final
iteration)

DO 350 J=50,-2,-2 (27 iterations, J=-2 during final
iteration)

DO 25 IVAR=1,5 (5 iterations, IVAR=5 during final
iteration)

DO NUMBER=5,40,4 (Invalid; statement label missing)
DO 40 M=2.10 (Invalid; decimal point instead of comma)

The last example illustrates a common clerical error. It is a wvalid
arithmetic assignment statement in the FORTRAN language:

DO40M = 2.10

4.3.2 Nested DO Loops

A DO loop may contain one or more complete DO loops. The range of an
inner nested DO must lie completely within the range of the next outer
loop. Nested loops may share the same terminal statement.

CONTROL STATEMENTS

Correctly Nested Incorrectly Nested

DO LOOpS DO LOOPS
™ DO 45 K=1,10 DO 15 K=1,10
DO 35 L=2,50,2 r DO 25 L=1,20

L 35 CONTINUE 15 CONTINUE
DO 45 M=1,20 -~ DO 30 M=1,15

| L a5 conrInuE .
L | 25 CONTINUE
L30 CONTINUE

Figure 4-1
Nesting of DO Loops

4.3.3 Control Transfers in DO Loops

Within a nested DO loop structure, control can transfer from an inner
loop to an outer loop. A transfer from an outer loop to an inner loop
is illegal.

If two or more nested DO loops share the same terminal statement,
control can be transferred to that statement only from within the
range of the innermost loop. Any other transfer to that statement
constitutes a transfer from an outer loop to an inner loop because the
shared statement is part of the range of the innermost loop.

4.3.4 Extended Range

A DO loop is said to have an extended range if it contains a control
statement that transfers control out of the loop and if, after the
execution of one or more statements, another control statement returns
control back into the 1loop. In this way the range of the loop is
extended to include all of the executable statements between the
destination statement of the first transfer and the statement that
returns control to the loop.

CONTROL STATEMENTS

Vvalid Invalid
Control Transfers Control Transfers
= DO 35 K=1,10 GO TO 20

DO 15 1=2,20 DO 50 K=1,10
GO TO 20 20 A=B+C
15 CONTINUE DO 35 L=2,20

20 A=B+C 30 D=E/F

DO 35 M=1,15 35 CONTINUFE

GO TO 50 GO TO 40
30 X=A*D B DO 45 M=1,15
9 35 CONTINUE 40 X=A*D

. _ 45 CONTINUE
50 D=E/F y .

Extended . L 50 CONTINUE
Range . .

GO TO 30 GO TO 30

Figure 4-2
Control Transfers and Extended Range

The following rules govern the use of a DO statement extended range:
1. A transfer into the range of a DO statement 1is permitted
only if the transfer is made from the extended range of that

DO statement.

2. The extended range of a DO statement cannot change the
control variable or parameters of the DO statement.

CONTI

4.4 CONTINUE STATEMENT

The CONTINUE statement simply transfers control to the next executable
statement. It is used primarily as the terminal statement of a DO
loop when that loop would otherwise end with a GO TO, arithmetic IF,
or other prohibited control statement.

The CONTINUE statement has the form:
CONTINUE

CALL

4.5 CALL STATEMENT

The CALL statement causes the execution of a SUBROUTINE subprogram;
it can also specify an argument list for use by the subroutine. (The
definition and use of subroutines is treated in detail in Chapter 8.)

CONTROL STATEMENTS

The CALL statement has the form:
CALL s[(lall,[al]l...)]

s is the name of a SUBROUTINE subprogram, a user-written
assembly language routine, or a DEC-supplied system
subroutine, or a dummy argument associated with one of the
above.

a is an actual argument. Actual arguments are described fully
in Section 8.1,

The CALL statement associates the values in the argument list (if the
list is present) with the dummy arguments in the subroutine and then
transfers control to the first executable statement of the subroutine.

The arguments in the CALL statement must agree in number, order, and
data type with the dummy arguments in the subroutine definition. They
can be variables, arrays, array elements, constants, expressions,
alphanumeric 1literals, or subprogram names (if those names have been
specified in an EXTERNAL statement, as described in Section 7.6). An
unsubscripted array name in the arqgument list refers to the entire

array.
Examples
CALL CURVE (BASE,3.14159+X,Y,LIMIT,R(LT+2))
CALL PNTOUT (A,N, 'ABCD')
CALL EXIT
ETURN

4.6 RETURN STATEMENT

The RETURN statement is used to return control from a subprogram unit
to the calling program unit.

The RETURN statement has the form:
RETURN

When a RETURN statement in a FUNCTION subprogram is executed, it
returns control to the statement that contains the function reference
(see Section 8.2.2). When a RETURN statement in a SUBROUTINE
subprogram is executed, it returns control to the first executable
statement following the CALL statement which initiated execution of
the subprogram.

A RETURN statement must not appear in a mein program unit.

Example
SUBROUTINE CONVRT (N,ALPH,DATA,PRNT,K)
DIMENSION DATA (N) ,PRNT (N)
IF (N .LT. 10) GO TO 100
DATA (K+2) = N-(N/10)*N
N = N/10
DATA (K+1) = N
PRNT (K+2) = ALPH(DATA (K+2)+1)
PRNT (K+1) = ALPH(DATA (K+1)+1)
RETURN

100 PRNT (K+2) = ALPH (N+1)

RETURN
END

CONTROL STATEMENTS

4.7 PAUSE STATEMENT PAUS

The PAUSE statement temporarily suspends program execution to permit
some action on the part of the user.

The PAUSE statement has the form:
PAUSE [disp]

disp is a decimal digit string containing one to five digits, an
alphanumeric literal, or an octal constant.

The PAUSE statement prints the display (if one has been specified) at
the user's terminal, suspends program execution, and waits for user
response. When the user enters the appropriate control command,
program execution resumes with the first executable statement
following the PAUSE.

Examples
PAUSE "13731
PAUSE 'MOUNT TAPE REEL #3'
4.8 STOP STATEMENT STOP

The STOP statement is used to terminate program execution.
The STOP statement has the form:
STOP [disp]
disp is a decimal digit string containing one to five digits, an

alphanumeric literal, or an octal constant.

The STOP statement prints the display (if one has been specified) at
the user's terminal, terminates program execution, and returns control
to the operating system.
Examples
STOP 98
sTOP "7777
99999 STOP

STOP 'END OF RUN'

4-11

CONTROL STATEMENTS

END

4.9 END STATEMENT

The END statement marks the end of a program unit. The END statement
must be the last source line of every program unit.

The END statement has the form:
END
In a main program, if control reaches the END statement, execution of

the program is terminated; in a subprogram, a RETURN statement is
implicitly execuced.

CHAPTER 5

INPUT/OUTPUT STATEMENTS

5.1 OVERVIEW

Inpuct of data by a FORTRAN program is performed by READ and ACCEPT
Statements. Output is per formed by WRITE, TYPE, and PRINT
statements. Some forms of these statements are wused in conjunction
with format specifications which control translation and editing of
the data between internal representation and character (readable)
form.

Each READ or WRITE statement contains a reference to the logical unit
to or from which data transfer is to take place. A logical unit can
be connected to a device or file. The TYPE and ACCEPT statements have
no such reference, as they cause data transfer between the processor
and an implicit logical unit that is normally connected to the user's
terminal. Similarly, the PRINT statement outputs data to an implicit
logical unit that is normally connected to the line printer.

READ and WRITE statements fall into the following categories:
1. Unformatted Seguential 1/0

Unformatted sequential READ and WRITE statements transmit
binary data without translation.

2. Formatted Seguential 1/0
Formatted sequential READ and WRITE statements transmit
character data using format specifications to control the
translation of data to characters on output, and to internal
form on input.

3. Unformatted Direct Access I/0

Unformatted direct access READ and WRITE statements transmit
binary data without translation to and from direct access
files.,

5-1 June 1977

INPUT/OUTPUT STATEMENTS

5. List-Directed Sequential T1/0

List-directed sequential READ and WRITE statements transmit
character data. The translation to internal form on input
and to characters on output is controlled by the data type of
the corresponding 1I/0 list element.

Any type of READ or WRITE statement can transfer control to another
statement if an error condition or end-of-file condition is detected.

The auxiliary I/0 statements, REWIND, FIND, and BACKSPACE do not
perform data transfer, but do file positioning functions. The ENDFILE
statement writes a special form of record that will cause an
end-of-file condition (and END= transfer) when read by an input
statement. The DEFINE FILE statement declares a logical unit to be
connected to a direct access file and specifies the characteristics of
the file. Finally, there are the ENCODE and DECODE statements, which
perform data transfer and translation within memory.

PDP-11 FORTRAN provides two additional auxiliary I/0 statements:
OPEN and CLOSE. The OPEN statement establishes a connection between a
logical unit and a file or device and it declares the attributes
needed for READ and WRITE operations. The CLOSE statement terminates
the connection between a file or device and a logical unit.

5.1.1 Input/Output Devices and Logical Unit Numbers

PDP-11 FORTRAN uses the I/0 services of the operating system and thus
supports all peripheral devices that are suppor ted by the operating
system. 1I/0 statements refer to 1/0 devices by means of logical unit
numbers. A logical unit number is an integer constant or var iable
with a positive value.

Some forms of I/0 statements do not contain a logical unit number.
These statements use an implicit logical unit number that is system
specific. Consult the appropriate FORTRAN User's Guide for dectails.

5.1.2 Format Specifiers

Format specifiers are used in formatted 1I/0 statements. A format
specifier is either the statement label of a FORMAT statement or the
name of an array containing Hollerith data interpretable as a format.
Chapter 6 discusses FORMAT statements.

5-2 June 1977

INPUT/OUTPUT STATEMENTS

The asterisk character (*) can be used as a format specifier to denote

list-directed formatting. Section 5.7 describes list-directed
formats.

5.1.3 1Input/Output Records

Input/Output statements transmit all data in terms ot records. The
amount of information that can be contained in one record, and the way
in which records are separated, depend on the medium involved.

For unformatted I/0O, the amount of data to be transmitted is specified
by the 1/0 statement. The amount of information to be transmitted by
a formatted I/0 statement is determined jointly by the 1I/0 statement
and specifications in the associated format specification.

The beginning of execution of an input or output statement initiates
the transmission of a new record. 1If an input statement requires only
part of a record, the excess portion of the record is lost. In the
case of formatted sequential input or output, one or more additional
records can be transmitted by a single I/0 statement.

5.2 INPUT/OUTPUT LISTS

An 1/0 list specifies the data items to be manipulated by the
statement containing the 1list. The I/0 list of an input or output
statement contains the names of variables, arrays, and array elements
whose values are to be transmitted. 1In addition, the I/0 list of an
output statement can contain constants and expressions.

An I/0 list has the form:
s[,8] ...
where each s is a simple 1list or an implied DO list. The TI/0

statement assigns input values to, or outputs values from, the list
elements in the order in which they appear, from left to right.

5.2.1 Simple Lists

A simple X/0 1list element consists of a single variable, array
reference, array element, constant, or expression. A simple I/0 list
consists either of a simple I/O list element or a group of two or
more simple I/0 list elements separated by commas and enclosed by
parentheses.

When an unsubscripted array name appears in an I/0 1list, a READ or
ACCEPT statement inputs enough data to fill every element of the
array; a WRITE, TYPE, or PRINT statement outputs all of the values
contained in the array. Data transmission begins with the initial
element of the array and proceeds in the order of subscript
procgression, with the leftmost subscript varying most rapidly. For
example, if the unsubscripted name of a 2-dimensional array defined
as:

ARRAY (3,3)
5-3 June 1977

INPUT/OUTPUT STATEMENTS

appears in a READ statement, that statement assigns values from the
input record(s) to ARRAY(1,1), ARRAY(2,1), ARRAY (3,1), ARRAY(1,2),
and so on, through ARRAY(3,3).

In a READ or ACCEPT statement, variables in the I/0 list may be used
in array subscripts later in the list. I1f, for example, the
statement:

READ (1,1250) J,K,ARRAY(J,K)
1250 FORMAT (Il1,X,I1,X,F6.2)

was executed and the input record contained the values:
1,3,721.73

the value 721.73 is assigned to ARRAY(1,3). The first input value 1is
assigned to J and the second to K, thereby establishing the actual
subscript values for ARRAY(J,K). Variables that are to be used as
subscripts in this way must appear to the left of their use in the
array subscript.

Any valid expression can be included in an output statement I/0 list.
However, the expression must not cause further 1/0 operations to be
attempted. A reference in an output statement I/0 list expression to
a function subprogram that itself performs input/output is an example
of this prohibited case.

An expression must not be included in an input statement I/0 list
except as a subscript expression in an array reference.

5.2.2 1Implied DO Lists

Implied DO lists are used to specify iteration within an I/O list, to
transmit only part of an arrey, or to transmit array elements in a
sequence other than the order of subscript progression. This type of
list element functions as though it were a part of an I/0 statement
that resides in a DO loop, and that uses the control variable of the
imaginary DO statement to specify which value or values are to be
transmitted during each iteration of the loop.

An implied DO list has the form:

(list,i=el,e2([,e3])

list is an I/0 list.
i is a control variable definition.
el,e2,e3 are parameter definitions.

i, el, e2 and e3 have the same form as that used in the DO statement.
The rules for the initial, terminal, and increment parameters, and for
the control variable of an implied DO list are the same as those for
the DO statement (see Section 4.3). An expression may be used for the
initial, terminal, or increment parameter of an implied DO 1list, as
long as it conforms to the rules in Section 4.3. The list may contain
references to the control variable as long as the value of the control
variable 1is not altered. The range of the implied DO is the list.
For example:

INPUT/OUTPUT STATEMENTS

WRITE (3,200) (A,B,C, I=1,3)
WRITE (6,15) L,M,(I,(J,P(I),Q(I,J),J=1,L),I=1,M)
READ (1,75) (((ARRAY(M,N,I), I=2,8), N=2,8), M=2,8)

The first control variable definition is equivalent to the innermost
DO of a set of nested loops, and therefore varies most rapidly. For
example, the statement:

WRITE (5,150) ((FORM(K,L), L=1,10), K=1,10,2)
150 FORMAT (F10.2)

is similar to:

DO 50 K=1,10,2

DO 50 L=1,10

WRITE (5,150) FORM(K,L)
150 FORMAT (F10.2)
50 CONTINUE

Since the inner DO loop is executed ten times for each iteration of
the outer loop, the second subscript, L, advances from one through ten
for each increment of the first subscript. This is the reverse of the
order of subscript progression. Also, since K is incremented by two,
only the odd-numbered columns of the array will be output.

The entire 1list of the implied DO is transmitted before the
incrementation of the control variable. For example:

READ (3,999) (pP(I), (Q(1,J), J=1,10), I=1,5)
assigns input values to the elements of larrays P and Q in the order:

P(l)r Q(lll)l Q(l,Z), o ’ Q(lllo)l
P(2), Q(2,1), Q(2,2), ... , Q(2,10),

P(5), Q(5,1), Q(5,2), ... , Q(5,10)
When processing multidimensional arrays, it 1is possible to use a
combination of fixed subscripts and subscripts that vary according to
an implied DO. For example:

READ (3,5555) (BOX(1,J), J=1,10)

assigns input values to BOX(1l,1) through BOX(1,10), then terminates
without affecting any other element of the array.

It is also possible to output the wvalue of the control variable
directly, as in the statement:

WRITE (6,1111) (I, I=1,20)

which simply prints the integers one through twenty.

INPUT/OUTPUT STATEMENTS

5.3 UNFORMATTED SEQUENTIAL INPUT/OUTPUT

Unformatted input and output is the transfer of data in internal
(binary) format without conversion or editing. Unformatted I/0 is
generally used when data output by a program is to be subsequently
input by the same program (or a similar program). Unformatted I/0
saves execution time by eliminating the data conversion process,
preserves greater precision in the external data, and usually
conserves file storage space.

READ

5.3.1 Unformatted Sequential READ Statement

The unformatted sequential READ statement inputs one unformatted
record from the specified logical unit and assigns the fields of the
record without translation to the I/O list elements in the order in
which they appear, from left to right. The amount of data each
element receives is determined by its data type.

The unformatted sequential READ statement has the form:
READ (u[,END=s][,ERR=s])[list]

u is a logical unit number.

s is an executable statement label.

list is an I/0 list.
An unformatted sequential READ statement reads exactly one record. If
the I/O 1list does not use all of the values in the record, the
remainder of the record is discarded. If the contents of the record
are exhausted before the 1I/0 list is satisfied, an error condition
results.
If an unformatted seguential READ statement contains no I/0 1list, it
skips over one full record, positioning the file to read the following
record on the next execution of a READ statement.

The -unformatted sequential READ statement must be used only to read
records that were created by unformatted sequential WRITE statements.

Examples
READ (1) FIELD1l, FIELD2 (Read one record from logical
unit 1; assign values to
variables FIELDl and FIELD2.)
READ (8) (Advance logical unit 8 one
record.)
WRITE

5.3.2 Unformatted Seqguential WRITE Statement

The unformatted sequential WRITE statement outputs the values of the
elements in the 1I/0 1list to the specified logical unit without
translation, as one unformatted record.

INPUT/OUTPUT STATEMENTS

The unformatted sequential WRITE étatement has the form:
WRITE (u[,ERR=s]) [list]
u is a logical unit number.
s is an executable statement label.
list is an I/0O list.

If an unformatted WRITE statement contains no I/0 1list, one null
record is output to the specified unit.

Examples
WRITE (1) (LIST(K),K=1,5) (Output the contents of elements
1 through 5 of array LIST to
logical unit 1.)

WRITE (4) (Write a null record on logical
unit 4.)

5.4 FORMATTED SEQUENTIAL INPUT/OUTPUT

Formatted input and output statements are used in conjunction with
FORMAT statements (or format specifications stored in arrays) to
translate and edit data on output for ease of interpretation, and, on
input, to convert data from external format to internal format.

READ

5.4.1 Formatted Sequential READ Statement

The formatted segquential READ statement transfers data from the
specified 1logical wunit. The characters transmitted are converted to
internal format as specified by the format specification. The
resulting values are assigned to the elements of the I/O list.
The formatted sequential READ statement has the forms:

READ f[,list]

READ (u,f[,END=s][,ERR=s])[list]

u is a logical unit number.
f is a format specifier.
s is an executable statement label.

list is an I/0 list.

If the FORMAT statement associated with a formatted input statement
contains a Hollerith constant or alphanumeric literal, input data will
be read and stored directly into the format specification. For
example, the statements

READ (5,100)
100 FORMAT (5HADATA)

INPUT/OUTPUT STATEMENTS

cause five characters to be read and stored in the Hollerith format
descriptor. If the characters were HELLO, statement 100 would become:

100 FORMAT (5HHELLO)
A statement of the form:
READ 200, ALPHA,BETA,GAMMA
causes data to be read from a system dependent logical unit.

If the number of elements in the I/0 list is less than the number of
fields 1in the input record, the excess portion of the record is
discarded. If the number of list elements exceeds the number of input
fields, an error condition results unless the format specifications
state that one or more additional records are to be read (see Sections
6.4 and 6.8).

If no I/0 list is present, data transfer is between the record and the
format specification.

Examples
READ (1,300) ARRAY (Read a record from
300 FORMAT (20F8.2) logical unit 1, assign
fields to ARRAY.)
READ (5,50) (Read 25 characters

50 FORMAT (25HAPAGEAHEADINGAGOESAHEREAA) from logical unit 5,
place them
in the FORMAT
statement.)

WRITE

5.4.2 Formatted Sequential WRITE Statement

The formatted sequential WRITE statement transfers data to the
specified 1logical wunit. The I/0 list specifies a sequence of values
which are converted to characters and positioned as specified by the
format specification.

The formatted sequential WRITE statement has the form:

WRITE (u,f[,ERR=s]){list]

u is a logical unit number.
f is a format specifier.
s is an executable statement label.

list is an I/0 list.

If no I/0 list is present, data transfer 1is entirely between the
record and the format specification.

The data transmitted by a formatted sequential WRITE statement
normally constitutes one formatted record. The format specification
can, however, specify that additional records are to be written during
the execution of that same WRITE statement.

INPUT/OUTPUT STATEMENTS

Numeric data output under format control is rounded during the
conversion to external format. (If such data is subsequently input
for additional calculations, loss of precision may result. In this
case, unformatted output is preferable to formatted output.)

The records transmitted by a formatted WRITE statement must not exceed
the length that can be accepted by the specified device. For example,
a line printer typically cannot print a record that is longer than 132
characters.

Examples
WRITE (6, 650) (Output the contents of the
650 FORMAT ('AHELLO,ATHERE') FORMAT statement to logical unit
6.)
WRITE (1,95) AYE,BEE,CEE (Write one record of three
95 FORMAT (F8.5,F8.5,F8.5) fields to logical unit 1.)
WRITE (1,950) AYE,BEE,CEE (Write three separate records
950 FORMAT (F8.5) of one field each to 1logical

unit 1.)

In the last example, format control arrives at the rightmost
parenthesis of the FORMAT statement before all elements of the 1/0
list have been output. Each time this occurs, the current record is
terminated and a new record 1is initiated. Thus, three separate
records are written. (See Section 6.7.)

ACCEF

5.4.3 Formatted ACCEPT Statement

The function of the ACCEPT statement is identical to that of the
formatted READ statement, except that input is read from a logical
unit normally connected to the terminal keyboard.
The ACCEPT statement has the form:
ACCEPT f[,list]

£ is a format specifier.

list is an I/0 list.
The rules for the format reference and I/0 list of an ACCEPT statement

are the same as those for the formatted READ statement (Section
5.4.1).

Examples
ACCEPT 100, NUMBER (Accept one Integer value from
100 FORMAT (I4) terminal keyboard.)
ACCEPT 200 (Read 13 characters from

200 FORMAT ('PUTADATAAHERE') keyboard, place them in the FORMAT
statement.)

INPUT/OUTPUT STATEMENTS

TYPE

5.4.4 Formatted TYPE Statement

The TYPE statement functions
statement except that
connected to the terminal printer.

The TYPE statement has the form:
TYPE f[,list]
f is a format specifier.

list is an I/0 list.

The rules for the format reference and I/O list of

identically
output is directed to a logical unit normally

to the formatted WRITE

a TYPE statement

are the same as those for the formatted WRITE statement (Section
5.4.2).
Examples
TYPE FMT, BOLD (Display the contents of
BOLD on terminal in the
format specified by contents
of array FMT. See Section
5.4)
TYPE 400 (Type message from FORMAT
400 FORMAT ('AMOUNTANEWATAPEAREEL') statement on terminal.)
PRINT
5.4.5 Formatted PRINT Statement
The function of the PRINT statement 1is the same as that of the
formatted WRITE statement and TYPE statement, except that output is

directed to a logical unit normally connected to a line printer.

The PRINT statement has the form:
PRINT £[,list]
f is a format specifier.

list is an I/0 list.

The format reference and I/0 list in a PRINT statement follow the same

sequential WRITE statement

(Print the page number in
upper right-hand corner of new

page.)

rules as specified for the formatted
(Section 5.4.2).
Examples
PRINT 999, NPAGE
999 FORMAT (1H1,100X,'PAGEAA',I3)
PRINT 222
222 FORMAT ('AENDAOFALISTING')

(Print the contents of
statement on line printer.)

FORMAT

INPUT/CUTPUT STATEMENTS

5.5 UNFORMATTED DIRECT ACCESS INPUT/OQUTPUT

Unformatted direct access READ and WRITE statements are used to
perform direct access :I/0 with a file on a direct access device. The
DEFINE FILE or OPEN statement is wused to establish the number of
records, and the size of each record, in a file to which direct access
I/C is to be performed. Each direct access READ or WRITE statement
contains an integer expression that specifies the number of the record
to be accessed. The record number must not be less than one nor
greater than the number of records defined for the file.

READ

5.5.1 Unformatted Direct Access READ Statement

The unformatted direct access READ statement positions the input file
to a specified record and transfers the fields in that record to the
elements in the I/0 list without translation.

The unformatted direct access READ statement has the form:

READ (u'r[,ERR=s]) [list]

u is a logical unit number.
r is the record number.
s is an executable statement label.

list is an I/0 list.

If there are more fields in the input record than elements in the 1I/0
list, the excess portion of the record is discarded. 1If there is
insufficient data in the record to satisfy the requirements of the I/0
list, an error condition results.

The unit number in the unformatted direct access READ statement must
refer to a unit that has been previously defined for direct access

processing.
Examples

READ (1'10) LIST(1l),LIST(8) (Read record 10 of a file on
logical unit 1, assign two
Integer values to specified
elements of array LIST.)

READ (4'58) (RHC(N) ,N=1,5) (Read record 58 of a file on
logical wunit 4, assign five
Real values to array RHO.)

TNPUT/OUTPUT STATEMENTS
WRITE

5.5.2 Unformatted Direct Access WRITE Statement

The unformatted direct access WRITE statement transmits the values of
the elements in the I/0 list to a particular record of a direct access
file. The data is written in internal format without translation.

The unformatted direct access WRITE statement has the form:

WRITE (u'r[,ERR=s]) [list]

u is a logical unit number.
r is the record number.
s is an executable statement label.

list is an 1I/0 list.

If che amount of data to be transmitted exceeds the record size, an
error condition results. If the WRITE statement does not completely
fill the record with data, the contents of the unused portion of the
record are zero-filled.

Examples

WRITE (2'35) (NUM(K),K=1,10) (Output ten Integer values to
record 35 of the file
connected to logical unit 2.)

WRITE (3'J) ARRAY (Output the entire contents
of ARRAY to the file
connected to logical unit 3
into the record indicated by
the value of J.)

5.6 FORMATTED DIRECT ACCESS INPUT/QUTPUT

Formatted direct access READ and WRITE statements are used to perform
direct access T1/0 of character data with a file on a direct access
device. The OPEN statement is used to establish the attributes of the
file. Each READ or WRITE contains an expression that specifies the
number of the record to be accessed. :The record number must. not be
ﬁess than one nor greater than the number of records defined for the
lleo . . SR

READ

5.6.1 Formatted Dlrect Access READ Statement

The formatted dlrect access READ statement znputs the epeclfxe& re,c
from - the direct access file currently connected to the unit. Th
characters in the record are converted as specified by the format
specification. The . resulting values are assigned to the eleme‘ts

SPECiflEd by the llst. L :

INPUT/OUTPUT STATEMENTS

5.7 LIST-DIRECTED INPUT/OUTPUT

List-directed input and output statements provide a method for
obtaining simple sequential formatted input or output without the need
for FORMAT statements. On input, values are read from the unit,
converted ¢to internal format, and assigned to the elements of the 1/0
list. On output, values in the I/0 list are converted to characters
and wrictten in a fixed format according to the data type of the value.
The I/0 list must be present. Records written by list-directed output
statemencs are suitable for input by list-directed input statements
provided they do not contain alphanumeric literals or Hollerith
constants.

5-13 June 1977

INPUT/OUTPUT STATEMENTS

Both formatted and list-directed I/0 statements can refer to the same
unic. All operations permitted for formatted seguential T1/0 are
supported with list-directed T1/0 statements; however, backspacing
over list-directed records leaves the file position undefined. When
files are read that contain both formatted and list-directed records,
the user program must assure that each record is read properly.

READ

5.7.1 List~-Directed READ Statement

The list-directed READ statement transfers data from the specified
unit, translates from external to internal format, and assigns the
input values to the elements of the I/0 list in the order in which
they appear, from_left to right.
The list-directed READ statement has the form:

READ *,list

READ (u,*[,END=s][,ERR=s]) list

u is a logical unit number.
* indicates list-directed formatting.
S is an executable statement label.

list is an 1/0 list.

The external record contains a sequence of values and value
separators.

A value can be:
1. A constant

Each input constant has the form of the corresponding FORTRAN
constcantc. A complex constant has the form of a pair of real
or integer constants separated by a comma and enclosed in
parentheses. Spaces can occur between the open parenthesis
and the first constant, around the separating comma and
between the second constant and the close parenthesis. A
logical constant is either T for .TRUE. or F for .FALSE.
Hollerith, octal, and alphanumeric constants are not
permitted.

2. A null value

A null value is specified by two consecutive commas with no
intervening constant. Spaces can be embedded between the
commas. A null value specifies that the corresponding list
element is to remain unchanged. A null value cannot be used
for either part of a complex constant, but can represent an
entire complex constant.

3. A repetition of constants in the form r*c
The form r*c indicates r occurrences of ¢ where r is a
non-zero, unsigned integer constant and c is a constant.

Spaces are not permitted except within the constant c¢ as
specified above. :

5-14 June 1977

INPUT/OUTPUT STATEMENTS

4. A repetition of null values in the form r*

The form r* indicates r occurrences of null where r is an
unsigned integer constant.

A value separator can be:
l. one or more spaces or tabs
2. a comma with or without surrounding spaces or tabs
3. a slash with or without surrounding spaces or tabs

A slash separator causes termination of processing on the
input statement and record; all remaining I/0 list elements
are unchanged.

The end of a record is eqguivalent to a space character. Spaces at the
beginning of a record are ignored.

The types of acceptable input constants are: integer, real, double
precision, 1logical and complex. The data type of the value and the
conversion from external to internal form is determined by the form of
the constant. If fthe data types of the 1list element and the
corresponding constant do not match, conversion is performed according
to the rules for arithmetic assignment described in Table 3-1.

Each input statemeni will read one or more records as reguired to
satisfy the I/0 list. 1If all of the values in a record are not used,
either because a slash separator is encountered or the TI/0 1list is
exhausted, the remaining values in the record are lost.

Example
If the program unit consists of

DOUBLE PRECISION T

COMPLEX C,D

LOGICAL L,M

READ (1,*) T,R,C,D,L,M,J,K,S,T,A,B

and the record read contains:
4A6.3A(3.4,4.2) ,0(3,A2)A,AT,F,,3*%14.640/
The following values are assigned to the I/O list elements:

4

6.3
(3.4,4.2)
(3.0,2.0)
. TRUE.
.FALSE.
14

14.6
14.6 DO

HNO=RIZCOOoOOX A
Hwwmnnnmnmn

A, B and J will be unchanged.

5-15 June 1977

INPUT/OQUTPUT STATEMENTS

/RITE

5.7.2 List-Directed WRITE Statement

The list-directed WRITE stactement transmits the elements in the T1/0
list to the specified wunit, translating and editing each value
according to the data type of the value.

The list-directed WRITE statement has the form:

WRITE (u,*[,ERR=s]) list

u is a logical unit number.
* indicates list-directed formatting.
s is an executable statement label.

list is an 1/0 list.

The forms of cthe output values produced are the same as that reguired
for input as described for the list-directed READ statement (Section
5.7.1). 1In addition, alphanumeric literals and Hollerith constants
can be output; these constants are not delimited by apostrophes. The
values produced are separated by one space. Each value is transmitted
in a default format as illustrated in Table 5-1.

Table 5-1
List-Directed Output Formats

Cata Type Qutput format

Logical*l 15

Logical*2 - - L2:

Logical*4 L2

Integer*2 17

Integer*4 112 .

Real*4 1PGl5.7

Real*8 1PG25.16

Complex*8 1X,'(',1pGl4.7, ',', 1PGl4.7,")"'
Alphanumeric literals 1X,nAl (n=length of the

literal string)

Ocral values, null values, slash (/) separators, and repeated forms
are not produced. Each output record begins with a space for carriage
control. Each output statement writes one or more complete records.
Each value is contained within a single record, except for
alphanumeric literals which are longer than a record.

Example

The program unit
DIMENSION A(5)
DATA A/5*3.4/

WRITE (l1,*) 'ARRAYAVALUESAFOLLOW'
WRITE (1,*) A,5

-16 June 1977

(921

INPUT/OUTPUT STATEMENTS

writes the following records:

ARRAYAVALUES AFOLLOW
‘AAA3.400000AAAAAAA3.400000AAAAAAA3.400000AAAAAAA3. 400000
AAA3.400000AAAAAADAAAS

ACCEF

5.7.3 List-Directed ACCEPT Statement

The list-directed ACCEPT statement functions identically to the
list~directed READ statement, except that input is read from a logical
unit normally connected to the terminal keyboard.
The list~directed ACCEPT statement has the form:
ACCEPT *, list
* indicates list-directed formatting.
list is an 1/0 list.
The rules for the form of the external records read by the
list~-directed ACCEPT statement are the same as those for the
list-directed READ statement (Section 5.7.1).

Examples

ACCEPT *,1,J,K,A(1,J,K)
ACCEPT *,1,(Q(J),Jd=1,1)

TYPE

5.7.4 List~-Directed TYPE Statement

The list-directed TYPE statement functions identically to the
list-directed WRITE statement, except that output is directed to a
logical unit normally connected to the terminal printer.
The list-directed TYPE statement has the form:
TYPE *, list
* indicates list-directed formatting.
list is an 1I/0 list.
The form of the output values of a list-directed TYFE statement are
the same as those for the 1list~directed WRITE statement (Section
5.7.2).

Examples

TYPE *,'THEAANSWERAIS',I
TYPE *,(T1,XX(T),I=1,10)

5~17 June 1977

INPUT/OUTPUT STATEMENTS

JRINT

5.7.5 List-Directed PRINT Statement

The list-directed PRINT statement functions identically to
list-directed WRITE statement, except that output is directed
logical unit normally connected to a line printer.
The list-directed PRINT statement has the form:
PRINT *, list
* indicates list-directed formatting.
list is an 1/0 list.

The form of the output values of a list-directed PRINT statement

the
to a

are

the same as those for the list-directed WRITE statement (Section

5.7.2).
Examples

PRINT *,((QQ(M,N),M=1,100),N=1,100)
PRINT *,'THEAARRAYAZAIS',Z

5.8 TRANSFER OF CCNTROL ON END-OF-FILE OR ERROR CONDITIONS

Any type of READ or WRITE statement can contain a specification that
control is to be transferred to another statement if che I/0 statement
encouncers an error condition or the end of the file. These
specificacions have the form:
END=sg
and
ERR=8g
] is the label of an executable statement to which control is
to be transferred.
A READ or WRITE statement can contain either or both of the above

specifications, in either order. Any such specification must follow

the unit number, record number, and/or format specification.

1f an end-of-file condition is encountered during an I/0 operation,
the READ statement transfers control to the statement named in the

END=s specification. TIf no such specification is present, an

error

condition results. An end-of-file <condition occurs when no more
records exist in a sequential file, or when an end-of-file record

produced by the ENDFILE statement is read.

If a READ or WRITE statement encounters an error condition during

an

I/0 operation, it transfers control to the statement whose label

appears in the ERR=s specification. 1f no ERR=s specification

present, the I/0 error causes program execution to terminate.

The statement label in the END=s or ERR=s specification must refer

is

to

an executable statement that exists within the same .program unit as

the 1I/0 statement.

5-18 June 1977

INJUT/OUTPUT STATEMENTS

Examples of I/0 statements containing END=s and ERR=s specifications
follow:

READ (8,END=550) (MATRIX(K),K=1,100) (Pass control to statement
j 550 when end-of-file is

encountered on logical unit
8.)

WRITE (5,50,ERR=390) (Pass control to statement
390 on error.)

READ (1'INDEX,ERR=150) ARRAY (Pass control to statement
150 on error.)

NOTE

An end-of-file condition can not occur
during direct access READ or WRITE
statements. Attempting to READ or WRITE
a record using a record number greater
than the maximum specified for the unit
is an error condition.

The FORTRAN User's Guide describes system subroutines that can control
processing of error conditions and obtain information from the I/0
system concerning the type of error condition that has occurred.

5.9 AUXILIARY INPUT/OUTPUT STATEMENTS

The statements in this category are used to perform file management
functions.

REWIN

5.9.1 REWIND Statement

The REWIND statement causes a currently open sequential file to be
repositioned to the beginning of the file.

The REWIND statement has the form:
REWIND u
u is a logical unit number.
The unit number in the' REWIND statement must refer to a
gisig;?ry—structured device (e.g., disk). A file must be open on that

Example

REWIND 3 (Reposition logical wunit 3 to beginning of
currently open file.)

5-19

INPUT/OUTPUT STATEMENTS

SPACE

5.9.2 BACKSPACE Statement

The BACKSPACE statement repositions a currently open sequential file
backward one record and repositions to the beginning of that record.
On the execution of the next I/O statement for that unit, that record
is available for processing.
The BACKSPACE statement has the form:
BACKSPACE u
u is a logical unit number.

The unit number must refer to a directory-structured device (e.g.,
disk). A file must be open on that device.

Example

BACKSPACE 4 (Reposition open file on logical unit 4 to
beginning of the previous record.)

JFILE

5.9.3 ENDFILE Statement

The ENDFILE statement writes an end-file record to the specified
sequential unit.

The ENDFILE statement has the form:

ENDFILE u
u is a logical unit number.
Example
ENDFILE 2 (Output an end-file record to logical unit 2.)
NE FILE

5.9.4 DEFINE FILE Statement

The DEFINE FILE statement establishes the size and structure of a file
upon which direct access_I/O is to be performed.

The DEFINE FILE statement has the form:
DEFINE FILE u (m,n,U,v) [,u(m,n,U,v)]}...

u is an integer constant or integer variable that specifies the
logical unit number.

m is an integer constant or integer variable that specifies the
number of records in the file. :

n is an integer constant or integer variable that specifies the
length, in words, of each record.

U specifies that the file is unformatted (binary). The letter
U is the only acceptable entry in this position.

INPUT/OQUTPUT STATEMENTS

\ is an integer variable, called the associated variable of the
file. At the conclusion of each direct access I/0 operation
the record number of the next higher numbered record in the
file is assigned to v.

The DEFINE FILE statement specifies that a file containing m
fixed-length records of n words each exists, or is to exist, on
logical unit u. The records in the file are sequentially numbered
from 1 through m.

The DEFINE FILE statement must be executed before the first
direct access I/0 statement that refers to the specified file.

The DEFINE FILE staktement also establishes the integer variable v as
the associated variable of the file. At the end of each direct access
I/0 operation, the FORTRAN I/0 system places in v the record number of
the record immediately following the one just read or written. Since
the associated variable always points to the next sequential record in
the file (unless it is redefined by an assignment, input or FIND
statement), direct access 1/0 statements can be used to perform
sequential processing of the file, by using the associated variable of
the file as the record number specifier.

If the file is to be processed by more than one program unit, or in an
overlay environmeni, the associated variable should be placed in a
resident named COMMON block.

Example

DEFINE FILE 3 (1000,48,U,NREC)

This statement specifies that logical unit 3 is to be connected to a
file of 1000 fixed-length records, each record of which is 48 words
long. The records are numbered sequentially from 1 through 1000, and
are unformatted. After each direct access I/0 operation on this file,
the integer variable NREC will contain the record number of the record
immediately following the one just processed.

FIND

5.9.5 FIND Statement

The FIND statement positions a direct access file on a specified unit
to a particular record and sets the associated variable of the file to
that record number. No data transfer takes rlace.

The FIND statement has the form:

FIND (u'r)
u is a logical unit number.
r is the record number.

INPUT/QUTPUT STATEMENTS
The unit number in the statement must refer to a unit that must have
been previously defined for direct access processing.

The record number must not be less than 1 nor greater than the number
of records defined for the file.

Examples
FIND (1'1l) (Position logical unit 1, and its associated
variable, to the first record of the file.)
FIND (4'INDX) (Position the file and associated wvariable
to record identified by contents of INDX.)
OPEN

5.9.6 OPEN Statement

An OPEN statement can be used to connect an existing file to a logical
unit, or to create a new file and connect it to a logical unit. 1In
addiction, the statement can contain specifications for file attributes
that will direct the creation and/or subsegquent processing.

The OPEN statement has the form:

OPEN (p[,P]...)

P is a specification in one of the following forms:
key key is a keyword.
key=e e is a numeric expression.
key=s s is an executable statement label.

key=lit 1lit is an alphanumeric literal of special
significance.

key=v v is an integer variable name.

key=n n is an array name, variable name, array element
name, or alphanumeric literal.

The keywords available for attribute specifications are summarized in
Table 5-2, and described in detail in the following sections.

Atcribute specifications can appear in any order. In most cases,
attr ibute specifications are optional and if not present, default
specifications will be provided.

In the discussions that follow, a numeric expression can be any
integer, real or double precision expression. The value of the
expression will be converted to integer type prior to use in the OPEN
statemenc.

NOTE

All OPEN statement keywords and options
are accepted by all PDP-11 FORTRAN
processors. Some keywords and options
may hot be supported on a specific
operating system. Consult the
appropriate FORTRAN User's Guide for
information on system-specific options.

5-22 June 1977

INPUT/OUTPUT STATEMENTS

Table 5-2
Keywords in the OPEN Statement
KEYWORD FUNCTION VALUES
UNIT logical unit number e
NAME file specification n
TYPE file type 'OLD’
'NEW'
'SCRATCH'
'UNKNOWN'
ACCESS access method 'SEQUENTIAL'
- 'DIRECT'
'"APPEND'
READONLY read-only file access
FORM file format 'FORMATTED'
'UNFORMATTED'
RECORDSTIZE direct access record length e
ERR error condition transfer label s
BUFFERCOUNT number of buffers e
INITIALSIZE file allocation size e
EXTENDSTZE file extension increment e
NOSPANBLOCKS unspanned records
SHARED shared file access
DISFOSE file disposition ' :SAVE:
DISP KEEP
'PRINT'
'DELETE'
ASSOCTATEVARIABLE| associated variable name v
CARRIAGECONTROL carriage control type 'FORTRAN'
'LIST!
'"NONE'
MAXREC number of direct access records e
BLOCKSTIZE physical block size e
e is a numeric expression.
n is a variable name, array name, array element name, Or
alphanumeric literal.
s is an executable statement label.
\ is an integer variable name.

5-23 June 1977

INPUT/OUTPUT STATEMENTS

5.9.6.1 UNIT Reyword

The form

UNIT = u
specifies the logical unit to which a file is to be connected; u is a
numer ic expression. The unit specification must appear in the list.

There must not be a file connected to the logical unit at the time the
OPEN statement is executed.

5.9.6.2 NAME Keyword

The form
NAME = fln
specifies the name of the file to be connected to the unit; fln may

be an alphanumeric literal, variable name, array name or array element
name. The name can be any file specification acceptable to the
operating system. Default file name conventions are described in the
appropriate FORTRAN User's Guide.

I1f the file name is stored in a variable or array, the name must be
terminated by an ASCII null character (zero byte).

5.9.6.3 TYPE Keyword

The form
TYPE = typ

specifies the type of the file to be opened; typ is a literal of the
form 'OLD', ‘'NEW', 'SCRATCH', or 'UNKNOWN'. If 'OLD' is specified,
the file must already exist. Tf 'NEW' is specified, a new file will
be created. If 'SCRATCH' is specified a new file is created and
connected to the specified unit for use by the executable program;
the file is deleted at the execution of a CLOSE statement referring to
the same unit or at the termination of the executable program. 1f
'"UNKNOWN' is specified the processor will first try 'OLD' and if the
file is not found it will then try 'NEW', thereby creating a new file.
The default is 'NEW'.

5.9.6.4 ACCESS Keyword

The form
ACCESS = acc

specifies whether the file is direct access or sequential; acc is a
literal of the form: '‘DIRECT', 'SEQUENTIAL', or 'APPEND'. 'DIRECT'
specifies a direct access file. 'SEQUENTTAL' specifies a sequential
file. '"APPEND' implies a sequential file and positioning after the
last record of the file. The default is 'SEQUENTIAL'.

5~24 June 1977

INPUT/OUTPUT STATEMENTS

5.9.6.5 READONLY Keyword

The form
READONLY

specifies that an existing file is to be read and prohibits writing to
that file.

5.9.6.6 FORM Keyword

The form
FORM = ft

specifies whether the file being opened is to be read and written
using formatted or unformatted READ or WRITE statements; ft is a
literal of the form 'FORMATTED' or 'UNFORMATTED'. For sequential
files, ' FORMATTED' ig the default. For direct access files,
'UNFORMATTED' is the default.

5.9.6.7 RECORDSIZE Keyword

The form

RECORDSTIZE = rl
specifies the length of each logical record of a direct access file;
rl is a numeric expression. 1If the records are formatted, the length

is the number of characters; if the records are unformatted, the
length is the number of storage units (double words).

5.9.6.8 ERR Keyword
The form
ERR = s
specifies a transfer on error condition; s is an executable statement
label. The ERR= option as specified in the OPEN statement applies

only to that OPEN and not to subsequent I/0 operations on the unit.
If an error condition occurs, no file is opened or created.

5-25 June 1977

INPUT/OUTPUT STATEMENTS

5.9.6.9 BUFFERCOUNT Keyword

The form
BUFFERCCUNT = bc
specifies the number of buffers to be associated with the unit for

multi-buffered 1/0; bc is a numer ic expression. If not specified, or
zero, the system defaulc (normally one) is assumed.

5.9.6.10 INITIALSIZE Keyword

The form
INITTIALSTIZE = is

specifies the number of blocks in the initial allocation of space for
a new file on a disk unit; 1is is a numer ic expression. This keyword
can be used only for new files and only for allocation to a disk unit.
If zero or not present, the system default initial allocation will be
used.

5.9.6.11 EXTENDSIZE Keyword

The form
EXTENDSIZE = es
specifies the number of blocks by which to extend a file when

addicional file storage must be allocated; es 1s a numeric
expression. If zero or not present, the system default will be used.

5.9.6.12 NOSPANBLOCKS Keyword

The form
NOSPANBLOCKS
specifies that records are not to cross disk block boundar ies. TIf any

record exceeds the size of a physical block, an error condition
results.

5.9.6.13 SHARED Keyword

The form

SHARED
specifies that the file is to be opened for shared access by more than
one program executing simultaneously. Consult the appropriate FORTRAN

User's Guide for additional information on the implications of this
specifier.

5-26 June 1977

INPUT/OUTPUT STATEMENTS

5.9.6.14 DISPOSE Keyword

The forms

DISPOSE = dis

DISP = dis
determine the disposition of the file when the unit is closed; dis is
a literal of the form 'SAVE', 'KEEP', 'PRINT', or 'DELETE’'. The
default value is 'SAVE'. 'SAVE' causes the file to be retained after
the unit is closed; 'KEEP' is a synonym for 'SAVE'. 'DELETE' causes

the file to be deleted when the unit is closed. 'PRINT' causes the
file to be printed on the system line printer. On some systems,
'PRINT' implies deletion after printing; consult the appropriate
FORTRAN User's Guide for further information. A read-only file cannot
be printed or deleted. A scratch file cannot be printed or saved.

5.9.6.15 ASSOCIATEVARIABLE Keyword
The form .
ASSOCTIATEVARIABLE = asv
specifies the integer variable asv, that, at the conclusion of each
direct access 1/0 operation, contains the record number of the next

sequential record in the file. This specifier is ignored for a
sequential file.

5.9.6.16 CARRIAGECONTROL Keyword

The form
CARRTAGECONTROL = cc

determines the kind of carriage control processing to be wused when
printing a file; cc is a literal of the form 'FORTRAN', 'LIST', or

'NONE'. The default for formatted files is 'FORTRAN"'; for
unformatced files, 'NONE'. '"FORTRAN' specifies no;mal FORTRAN
interpretation of the first character; 'LIST' specifies single

spacing between records and 'NONE' specifies no implied carriage
control.

5.9.6.17 MAXREC Keyword

The form
MAXREC = mr
specifies the maximum number of records to be permitted in a direct

access file; mr is a numeric expression. The default is no maximum
number of records. This specifier is ignored for a sequential file.

5-27 June 1977

INPUT/OUTPUT STATEMENTS

5.9.6.18 BLOCKSIZE Keyword .

The form

BLOCKSIZE = bks
specifies the physical block size to be used for the unit; bks 1is a
numer ic expression. This specifier only has effect for magnetic tape

files; it has no effect for disk files. The default is the system
default for the device.

5.9.6.19 OPEN Statement Examples

Examples

OPEN (UNTIT=3,TYPE='SCRATCH',ACCESS='DIRECT',
INITTALS1%E=50,RECORCSTZE=64)

Create a 50 block direct access file for temporary storage.
The file is deleted at program termination.

OPEN (UNIT=1,NAME='MT0:DATA.DAT',BLOCKSIZE=8192,
TYPE='NEW' ,ERR=14)

Create a file on magnetic tape with a large blocksize for
efficient processing.

OPEN (UNIT=1,NAME='MTO0:DATA.DAT',6READONLY,
TYPE='OLD',BLOCKSTZE=8192)

Open the file created in the previous example for input.

CLOSE

5.9.7 CLOSE Statement

The CLOSE statement has the form:

CLOSE (UNIT=u [, {DISPOSE} =p] [,ERR=S])

DISP
u is a logical unit number.
p is a literal that determines the disposition of the file.
Its values are 'SAVE', 'KEEP', 'DELETE', and 'PRINT'.

'SAVE' and 'KEEP' are synonyms; if either is specified, the
file is retained after the CLOSE. If 'DELETE' is specified

the file ceases to exist after the CLOSE. 'PRINT' causes
the file to be printed by the system line printer. For
scratch files the default is 'DELETE'; for all other files

the default is 'SAVE'.
s is an executable statement label.

The CLOSE statement disconnects a file from a unit. The disposition
specified in a CLOSE statement supersedes the disposition specified in
the OPEN statement, except that a file opened as a scratch file can
not be saved or printed nor can a file opened for read-only access be
printed or deleted.

5-28 June 1977

INPUT/CUTPUT STATEMENTS

Examples
CLOSE (UNIT=1, DISPOSE='PRINT')
Close the file on unit 1 and submit the file for printing.
CLOSE (UNIT=J,DISPOSE="DELETE"',ERR=99)

Close the file on unit J and delete it.

5.10 ENCODE AND DECODE STATEMENTS

These two statements perform data transfers according ¢to format
specifications, translating data from internal format to character
format, or vice versa. Unlike conventional formatted I/O statements,
however, these data transfers take place entirely between variables or
arrays in the FORTRAN program.

The ENCODE and DECODE statements are written as follows:
ENCODE (¢ ,f,b[,ERR=s])[list]

DECODE (c,f,b[,ERR=s]) [list]

c is an integer - expression representing the number of
characters (bytes) that are to be converted or that are to
result from the conversion. (This is analogous to the

length of an external record.)

f is a format specifier. 1f the format specifies more than
one record, an error condition results.

b is the name of an array, array element or variable. 1In the
ENCOPE statement, this entity receives the characters. 1In
the DECODE statement, it contains the characters that are to
be translated to internal format. b must not be the name of
a VIRTUAL array or a VIRTUAL array element.

s is an executable statement label.

list is an I/0 list. 1In the ENCODE statement, the I/0 list
contains the data that is to be converted to characters. In
the DECODE statement, the list receives the data that has
been translated from characters to internal format.

The ENCODE statement causes the I/0 list elements to be translated to
character format according to the format specification and stored in
the entity b, in an analogous fashion to a WRITE statement.

The DECODE statement causes character data in the entity b to be
interpreted and converted according to the format specification and
assigned to the I/O list elements; this processing is analogous to a
READ statement.

If cthe entity b is an array, the elements of that array are processed
in the order of subscript progression.

5-29 June 1977

ENC(
DECC

INPUT/OUTPUT STATEMENTS

The number of characters that can be processed by the ENCODE or DECCDE
statement is dependent on the data type of the entity b in that
statement. An INTEGER*2 array, for example, can contain two
characters per element, so the maximum number of characters is twice
the number of elements in that array.

The interaction between format control and the I/O list is the same as
for a formatted I/0 statement.

Example
DIMENSION A(3),k(3)
DATA A /'1234','5678','9012"'/
DECODE (12,100,A) K
100 FORMAT (314)

Execution of the DECODE statement causes the 12 characters in array A
to be converted to Integer format (specified by statement 100) and
stored in array K, as follows:

K(l) = 1234
K(2) = 5678
K(3) = 9012

CHAPTER 6

FORMAT STATEMENTS

6.1 OVERVIEW

FORMAT statements are nonexecutable statements used in conjunction
with formatted 1I/0 statements and with ENCODE and DECODE statements.
The FORMAT statement describes the format in which data fields are
transmitted, and the data conversion and editing to be performed to
achieve that format.

The FORMAT statement has the form: FORM!/
FORMAT (qlflslfzsz e fnqn)

where each f is a field descriptor, or a group of field descriptors

enclosed in parentheses, each s is a field separator and each g is

zero or more slash (/) record terminators. The entire 1list of field

descriptors and field separators including the parentheses is called
the format specification. The list must be enclosed in parentheses.

A field descriptor in a format specification has the form:
[rl1Cw][.d]
r represents a repeat count which specifies that the field
descriptor 1is to be applied to r successive fields. If the

repeat count is omitted, it is assumed to be 1. See Section
6.2.17 for further discussion of field repetition.

C is a format code.
w specifies the field width.

d specifies the number of characters to the right of the
decimal point.

The terms r, w, and d must all be unsigned integer constants less than
or equal to 255.

The field separators are comma and slash. A slash has the additional
function of being a record terminator. The functions of the field
separators are described in detail in Section 6.4.

The field descriptors used in format specifications are as follows:

1. Integer: Iw, Ow

2. Logical: Lw
3. Real, Double
Precision, Complex: Fw.d, Ew.d, Dw.d, Gw.d
4. Literal and editing: Aw, nH, '...', nX, Tn, Q, $, :

(In the alphanumeric and editing field descriptors, n specifies a
number of characters or character positions.)

Any of the F, E, D, or G field descriptors can be preceded by a scale
factor of the form:

nP

where n is an optionally signed integer constant in the range -127 to
+127 that specifies the number of positions the decimal point is to be
scaled to the left or right. The scale factor is described in Section
6.2.15,

During data transmission, the format specification is scanned from
left to right. Data conversion is performed by correlating the values
in the I/0 list with the corresponding field descriptors. 1In the case
of H field descriptors and alphanumeric literals, data transmission
takes place entirely between the field descriptor and the external
record. The interaction between the format specification and the I/0
list is described in detail in Section 6.7.

6.2 FIELD DESCRIPTORS

The individual field descriptors that can appear in a format
specification are described in detail in the following sections. The
field descriptors ignore leading spaces in the external field, but
treat embedded and trailing spaces as zeros.

6.2.1 I Field Descriptor

The I field descriptor governs the translation of integer data. It
has the form:

Iw

The I field descriptor causes an input statement to read w characters
from the external record and to assign them as an integer value to the
corresponding integer element of the I/O list. The external data must
be an integer; it must not contain a decimal point or exponent field.
The I field descriptor interprets an all-blank field as a zero value.
If the value of the external field exceeds the range of the
corresponding integer list element, an error occurs. If the first
non-blank character of the external field is a minus symbol, the I
field descriptor causes the field to be stored as a negative value; a
field preceded by a plus symbol, or an unsigned field, is treated as a
positive value. For example: .

FORMAT STATEMENTS

Format External Field Internal Representation

I4 2788 2788
I3 ~-26 ~26
19 AAAAAA3]L2 312
I9 3.12 not permitted; error

The I field descriptor causes an output statement to transmit the
value of the corresponding integer I/O list element to an external
field w characters in length, right justified, replacing any 1leading
zeros with spaces. If the value of the list element is negative, the
field will have a minus symbol as its leftmost non-blank character.
Space must therefore be included in w for a minus symbol if any are
expected. Plus symbols, on the other hand, are suppressed and need
not be accounted for in w. If w is too small to contain the output

value, the entire external field is filled with asterisks. For
example:
Format Internal Value External Representation

I3 284 284

14 -284 -284

I5 174 AA174

I2 3244 * %k

I3 -473 * ok k

17 29.812 not permitted; error

6.2.2 O Field Descriptor

The O field descriptor governs the transmission of octal values. It
has the form:

Ow

The O field descriptor causes an input statement to read w characters
from the external record and to assign them as an octal value to the
corresponding I/0 list element. The list element must be of integer
or 1logical type. The external field must contain only the numerals 0
through 7; it must not contain a sign, a decimal point, or’ an
exponent field. For example:

Internal
Format External Field Octal Representation
05 32767 32767
04 16234 1623
06 13AAAA 130000
03 974 not permitted; error

The O field descriptor causes an output statement to transmit the
value of the corresponding I/0 list element, right justified, to a
field w characters long. If the data does not fill the field, leading
spaces are inserted; if the data exceeds the field width, the entire
field is filled with asterisks. No signs are output; a negative
value 1is transmitted in its octal (two's complement) form. The I/0
list element must be of integer or logical type. For example:

FORMAT STATEMENTS

Format Internal (Decimal) Value External Representation
o6 32767 A77777
06 -32767 100001
02 14261 *x
04 27 AA33
05 13.52 not permitted; error

6.2.3 F Field Descriptor

The F field descriptor specifies the data conversion and editing of
real or double precision values, or the real or imaginary parts of
complex values. It has the form:

Fw.d

On input, the F field descriptor causes w characters to be read from
the external record and to be assigned as a real value to the
corresponding I/O list element. If the first non-blank character of
the external field is a minus sign, the field is treated as a negative
value; a field that is preceded by a plus sign, or an unsigned field,
is considered to be positive. An all-blank field is considered to
have a value of zero. In all appearances of the F field descriptor, w
must be greater than or equal to d+l.

If the field contains neither a decimal point ‘nor an exponent, it is
treated as a real number of w digits, in which the rightmost d digits
are to the right of the decimal point. If the field contains an
explicit decimal point, the location of that decimal point overrides
the location specified by the field descriptor. If the field contains
an exponent (in the same form as described in Section 2.4.2 for real
constants or Section 2.4.3 for double precision constants), that
exponent is used in establishing the magnitude of the value before it
is assigned to the list element. For example:

Format External Field Internal Representation
F8.5 123456789 123.45678

F8.5 -1234.567 -1234.56

F8.5 24.77E+2 2477.0

F5.2 1234567.89 123.45

On output, the F field descriptor causes the value of the
corresponding I/O0 1list element to be rounded to d decimal positions
and transmitted to an external field w characters 1in 1length, right
justified. If the converted data consists of fewer than w characters,
leading spaces are inserted; if the data exceeds w characters, the
entire field is filled with asterisks.

The total field width specified must be large enough to accommodate a
minus sign, if any are expected (plus signs are suppressed), at least
one digit to the left of the decimal point, the decimal point itself,
and d digits to the right of the decimal. For this reason, w should
always be greater than or equal to (d+3). Examples follow:

FORMAT STATEMENTS

Format Internal Value External Representation
F8.5 2.3547188 A2.35472

F9.3 8789.7361 AB789.736

F2.3 51.44 *x

F10.4 -23.24352 AA-23.2435

F5.2 325,013 *okk ok &

F5.2 -.2 -0.20

6.2.4 E Field Descriptor

The E field descriptor specifies the transmission of real or double
precision values in exponential format. It has the form:

Ew.d
The E field descriptor causes an input statement to input w characters

from the external record. It interprets and assigns that data in
exactly the same way as the F field descriptor. For example:

Format External Field Internal Representation
E9.3 734.432E3 734432.0

El2.4 AA1022.43E-6 1022.43E-6

E15.3 52.3759663AAAAA 52.3759663
El2.5 210.5271D+10 210.5271E10

Note that in the last example the E field descriptor disregards the
double precision connotation of a D exponent field indicator and
treats it as though it were an E indicator.

The E field descriptor causes an output statement to transmit the
value of the corresponding 1list element to an external field w
characters in width, right justified. If the number of characters in
the converted data 1is less than w, leading spaces are inserted; |if
the number of characters exceeds w, the entire field is filled with
asterisks. The corresponding I/O list element must be of real, double
precision, or complex type.

Data output under control of the E field descriptor is transmitted in
a standard form, consisting of a minus sign if the value is negative
(plus signs are suppressed), a zero, a decimal point, d digits to the
right of the decimal, and a 4-character exponent of the form:

E+nn
or

E-nn
where nn is a 2-digit integer constant. The d digits to the right of
the decimal point represent the entire value, scaled to a decimal
fraction.
Because w must be large enough to include a minus sign (if any are
expected), a zero, a decimal point, and an exponent, in addition to d

digits, w should always be equal to or greater than (d+7). Some
examples are:

FORMAT STATEMENTS

Format Internal Value External Representation
E9.2 475867.,222 A0.48E+06

E12.5 475867.222 A0.47587E+06
El2.3 0.00069 AAAQ.690E-03
E10.3 -0.5555 -0.556E+00

E5.3 56.12 *kkkk

6.2.5 D Field Descriptor

The D field descriptor specifies the transmission of real or double
precision values. It has the form:

Dw.d
On input, the D field descriptor functions exactly as an equivalent E

field descriptor, except that the input data is converted and assigned
as a double precision entity, as in the following examples:

Format External Field Internal Representation
D10.2 12345AAAAA 12345000.0D0

D10.2 AA123.45AA 123.45D0

D15.3 367.4981763D+04 3.674981763D+06

On output the effect of the D field descriptor is identical to that of
the E field descriptor, except that the D exponent field indicator is
used in place of the E indicator. For example:

Format Internal Value External Representation
D14.3 0.0363 AAAAAD.363D-01

D23.12 5413.87625793 AAAAAD.541387625793D+04
D9.6 1.2 dhkhkhkkk

6.2.6 G Field Descriptor

The G field descriptor transmits real, double precision, or complex
data in a form that is in effect a combination of the F and E field
descriptors. It has the form:

Gw.d

On input, the G field descriptor functions identically to the F field
descriptor (see Section 6.2.3).

On output, the G field descriptor causes the value of the
corresponding I/0 list element to be transmitted to an external field
w characters in length, right justified. The form in which the value
is output is a function of the magnitude of the value, as described in
Table 6-1.

6-6

FORMAT STATEMENTS

Table 6-1
Effect of Data Magnitude on G Format Conversions
Data Magnitude Effective Conversion
m < 0.1 Ew.d
0.1 <m< 1.0 F(w=-4).d, 'AAAA'
1.0 < m < 10.0 F(w-4).(d-1), 'AAAA'
10d-2 < m < 104-1 F(w=4).1, '"AAAA'
108-1 < m < 104 F(w-4).0, 'AAAA'
m > 104 Ew.d

The 'AAAA' field descriptor, which is (in effect) inserted by the G
field descriptor for wvalues within its range, specifies that four
spaces are to follow the numeric data representation.

The field width, w, must include space for a minus sign, if any are
expected (plus signs are suppressed), at least one digit to the left
of the decimal point, the decimal point itself, 4 digits to the right
of the decimal, and (for values that are outside the effective range
of the G field descriptor) a 4-character exponent. Therefore, w
should always be equal to or greater than (d+7). Examples of G output
conversions are:

Format Internal Value External Representation
Gl3.6 0.01234567 A0.123457E-01
Gl3.6 -0.12345678 -0.123457AAAA
Gl3.6 1.23456789 AA1.23457AAAA
Gl3.6 12.34567890 AA12,.3457AAAA
Gl3.6 123.45678901 AA123,457AM00A
Gl3.6 -1234.56789012 A-1234.57AAAA
Gl3.6 12345.67890123 AA12345.7AAAA
Gl3.6 123456.78901234 AA123457.0AAA
Gl3.6 -1234567.89012345 -0.123457E+07

For comparison, consider the following example of the same values
output under the control of an equivalent F field descriptor.

Format Internal Values External Representation
F13.6 0.01234567 AAAAAG,012346
F1l3.6 -0.12345678 AAAA-0.123457
F13.6 1.23456789 AAAAAL.234568
Fl3.6 12.34567890 AAAA12.345679
F13.6 123.45678901 AAA123,456789
F13.6 -1234.56789012 A-1234.567890
F1l3.6 12345.67890123 A12345.678901
F13.6 123456.78901234 123456.789012
Fl13.6 -1234567.89012345 FREk kK deokkkkhk

FORMAT STATEMENTS

6.2.7 L Field Descriptor

The L field descriptor specifies the transmission of logical data. It
has the form:

Lw

The L field descriptor causes an input statement to read w characters
from the external record. If the first non-blank character of that
field is the 1letter T, the wvalue .TRUE. is assigned to the
corresponding I/0 1list element. (The corresponding I/0 list element
must be of logical type.) If the first non-blank character of the
field is the letter F, or if the entire field is blank, the value
.FALSE. is assigned. Any other value in the external field causes an
error condition.

The L field descriptor causes an output statement to transmit either
the letter T, if the wvalue of the corresponding list element is
.TRUE., or the letter F, if the value is .FALSE., to an external field
w characters wide. The letter T or F is in the rightmost position of
the field, preceded by w-1 spaces. For example:

Format Internal Value External Representation
LS .TRUE. AAAAT
Ll .FALSE. F

6.2.8 A Field Descriptor

The A field descriptor specifies the transmission of alphanumeric
data. It has the form:

Aw

On input, the A field descriptor causes w characters to be read from
the external record and stored in ASCII format in the corresponding
I/0 list element. (The corresponding I/O list element may be of any
data type.) The maximum number of characters that can be stored in a
variable or array element depends on the data type of that element, as
follows:

I/0 List Maximum Number
Element of Characters

Logical*1l 1
Logical*2 2 (FORTRAN IV-PLUS only)
Logical*4 4
Integer*2 2
Integer*4 4
Real 4
Double Precision 8
8

Complex

If w is greater than the maximum number of characters that can be
stored in the corresponding I/O list element, only the rightmost one,
two, four, or eight characters (depending on the data type of the
variable or array element) are assigned to that entity:; the leftmost
excess characters are lost. If w is less than the number of
characters that can be stored, w characters are assigned to the list

6-8

FORMAT STATEMENTS

element, left justified, jand trailing spaces are added to fill the
variable or array element/. For example:

Format External Field Internal Representation
A6 'PAGEA# # (Logical*1l)
A6 PAGEA# A# (Integer*2)
A6 PAGEA# GEA# (Real)
A6 PAGEA# PAGEA#AA (Double Precision)

On output, the A field descriptor causes the contents of the
corresponding I/0 list element to be transmitted to an external field
w characters wide. If the 1list element contains fewer than w
characters, the data appears in the field right-justified with leading
spaces. If the list element contains more than w characters, only the
leftmost w characters are transmitted. For example:

Format Internal Value External Representation
A5 : OHMS AOHMS
A5 VOLTSAAAA VOLTS
A5 AMPERESA AMPER

6.2.9 H Field Descriptor

The H field descriptor has the form of a Hollerith constant:

anlczc:3 coe cn

n specifies the number of characters that are to be
transmitted

c is an ASCII character.

When the H field descriptor appears in a format specification, data
transmission takes place between the external record and the field
descriptor itself.

The H field descriptor causes an input statement to read n characters
from the external record and to place them in the field descriptor,
with the first character appearing immediately after the letter H.
Any characters that had been in the field descriptor prior to input
are replaced by the input characters.

The H field descriptor causes an output statement to transmit the n
characters in the field descriptor following the letter H to the
external record. An example of the use of H field descriptors for
input and output follows:

TYPE 100

100 FORMAT (41HAENTERAPROGRAMATITLE, AUPATOA20ACHARACTERS)
ACCEPT 200

200 FORMAT (20HAATITLEAGOESAHEREAAA)

The TYPE statement transmits the characters from the H field
descriptor in statement 100 to the user's terminal. The ACCEPT
statement accepts the response from the keyboard, placing the input
data in the H field descriptor in statement 200. The new characters
replace the words TITLE GOES HERE; if the user enters fewer than 20
characters, the remainder of the H field descriptor is filled with
spaces to the right.

FORMAT STATEMENTS

6.2.9.1 Alphanumeric Literals - An alphanumeric literal can be used
in place of an H fleld descriptor. Both types of format specifiers
function identically.

The apostrophe character is written within an alphanumeric literal as
two apostrophes. For example:

50 FORMAT ('TODAY''SADATEAIS:A',12,'/',12,'/',12)

A pair of apostrophes used in this manner is considered to be a single
character.

6.2.10 X Field Descriptor

The X field descriptor has the form:
nX

The X field descriptor causes an input statement to skip over the next
n characters in the input record.

The X field descriptor causes an output statement to transmit n spaces
to the external record. For example:

WRITE (5,90) NPAGE
90 FORMAT (13H1PAGEANUMBERA,I2,16X,23HGRAPHICAANALYSIS,ACONT.)

The WRITE statement prints a record similar to:

PAGE NUMBER nn GRAPHIC ANALYSIS, CONT.
where "nn" is the current value of the variable NPAGE. The numeral 1
in the first H field descriptor is not printed, but is used to advance

the printer paper to the top of a new page. Printer carriage control
is explained in Section 6.3.

6.2.11 T Field Descriptor

The T field descriptor is a tabulation specifier. It has the form:

Tn
where n indicates the character postion of the external record. The
value of n must be greater than or equal to one, but not greater than
the number of characters allowed in the external record.
On input, the T field descriptor causes the external record to be
positioned to its nth character position. For example, if a READ
statement inputs a record containing:

ABCAAAXY?Z
under control of the FORMAT statement:

10 FORMAT (T7,A3,T1,A3)

the READ statement would input the characters XYZ first, then the
characters ABC,

FORMAT STATEMENTS

On output to devices other than the line printer or terminal, the T
field descriptor states that subsequent data transfer is to begin at
the nth character position of the external record. For output to a
printing device, data transfer begins at position (n-1). The first
position of a printed record is reserved for a carriage control
character (see Section 6.3) which is never printed. For example the
statements: .

PRINT 25
25 FORMAT (T51,'COLUMNA2',T21, 'COLUMNAL’)

would cause the following line to be printed:
Position 20 Position 50

COLUMN 1 COLUMN 2

6.2.12 Q Field Descriptor

The Q field descriptor, which is simply the 1letter Q, is wused to
obtain the number of characters in the input record remaining to be
transmitted during a READ operation. The I/0 list element
corresponding to the Q field descriptor must be of Integer type.

As an example, the statements:

READ (4,1000) XRAY,KK,NCHRS, (ICHR(I),I=1,NCHRS)
1000 FORMAT (E15.7,14,Q,80A1)

reads two fields into the variables XRAY and KK. The number of
characters remaining in the record is stored in NCHRS and exactly that
many characters are read into the array ICHR. By placing the Q
descriptor first in the format specification, the actual length of the
input record can be determined.

When the Q field descriptor is used with an output statement it has no
effect except that the corresponding list item is skipped.

6.2.13 §$ Descriptor

The character $ (dollar sign) appearing in a format specification
modifies the carriage control specified by the first character of the
record. The $ descriptor is intended primarily for interactive 1I/0
and causes the terminal print position to be left at the end of the
text written (rather than returned to the left margin) so that a typed
response will appear on the same line following the output.

6.2.14 : Descriptor

The character : (colon) appearing in a format specification causes
termination of format Gcontrol if there are no more items in the I/0
list. It has no effect if there are I/0 list items remaining. For
example the statements:

FORMAT STATEMENTS

PRINT 1,3

PRINT 2,4
1 FORMAT ('AI="',12, 'AJ=',12)
2 FORMAT ('AK="',I2:,'AL="',12)

print the following 2 lines:

I=A3AJ=
K=44

Section 6.7 describes format control in detail.

6.2.15 Complex Data Editing

Since a complex value is an ordered pair of real values, input or
output of a complex entity is governed by two real field descriptors,
using any combination of the forms Fw.d, Ew.d, Dw.d or Gw.d.

On input, two successive fields are read and assigned to a complex I/0
list element as its real and imaginary parts, respectively. For
example

Format External Fields Internal Representation
F8.5,F8.5 1234567812345.67 123.45678, 12345.67
E9.1,F9.3 734.432E8123456789 734.432E8, 12345.678

On output, the constituent parts of a complex value are transmitted
under the control of repeated or successive field descriptors.
Nothing intervenes between those parts unless explicitly stated by the
format specification. For example:

Format Internal Values External Representation
2F8.5 2.3547188, 3.456732 A2.35472A3.45673
E9.2,'A,A' ,E5.3 47587.222, 56,123 AQ.4BE+06A, Ax**x*k*

6.2.16 Scale Factor

The location of the decimal point in real and double precision values,
and in the constituent parts of complex values, can be altered during
input or output through the use of a scale factor. The scale factor
has the form:

nP

n is a signed or unsigned integer constant in the range -127 to
+127 specifying the number of positions the decimal point is
to be moved to the right or left.

A scale factor may appear anywhere in a format specification, but must
precede the field descriptors with which it is to be associated. It
has the forms:

nPFw.d nPEw.d nPDw.d nPGw.d

FORMAT STATEMENTS

Data input under control of one of the above field descriptors is
multiplied by 107" before it is assigned to the corresponding I/0 list
element. For example, a 2P scale factor multiplies an input value by
.01, moving the decimal point two places to the left; a -2P scale
factor multiplies an input value by 100, moving the decimal point two
places to the right. ‘If the external field contains an explicit
exponent, however, the scale factor has no effect. For example:

Format External Field Internal Representation
3PE10.5 AAA37.614A .037614
3PE10.5 AA37.614E2 3761.4

-3PE10.5 AAAA3T7.614 37614.0

The effect of the scale factor on output depends on the type of field
descriptor with which it is associated. For the F fﬁeld descriptor,
the value of the I/0 list ielement is multiplied by 10 before being
transmitted to the external record. Thus, a positive scale factor
moves the decimal point to the right; a negative scale factor moves
the decimal point to the left.

Values output under control of an E or D field descriptor with scale
factor are adjugted by multiplying the basic real constant portion of
each value by 10 and subtracting n from the exponent. Thus a
positive scale factor moves the decimal point to 'the right and
decreases the exponent; a negative scale factor moves the decimal
point to the left and increases the exponent.

The effect of the scale factor is suspended while the magnitude of the
data to be output is within the effective range of the G field
descriptor, since it suppliies its own scaling function. The G field
descriptor functions as an E field descriptor when the magnitude of
the data value is outside its range; the effect of the scale factor
is therefore the same as described for that field descriptor.

Note that on input, and on output under control of an F field
descriptor, a scale factor actually alters the magnitude of the data;
on output, a scale factor attached to an E, D, or G field descriptor
merely alters the formin which the data is transmitted. Note also
that on input a positive scale factor moves the decimal point to the
left and a negative scale |factor moves the decimal point to the right,
while on output the effect is just the reverse.

If no scale factor is attached to a field descriptor, a scale factor
of zero is assumed. Once a scale factor has been specified, however,
it applies to all subsequent real and double precision field
descriptors in the =samg format specification, unless another scale
factor appears; that scalle factor then assumes control. Note that
format reversion (Section 6.7) has no effect on the scale factor. A
scale factor of zero can only be reinstated by an explicit OP
specification.

Some examples of scale factor effect on output are:

Format Inteﬁnal Value External Representation
1PE12.3 -270.139 AA-2,701E+02
1PE12.2 -270.139 AAA-2,T70E+02

-1PE12.2 ~-270.139 AAA-0.03E+04

6-13

FORMAT STATEMENTS

6.2.17 Grouping and Group Repeat Specifications

Any field descriptor (except H, T, P, or X) can be applied to a number
of successive data fields by preceding that field descriptor with an
unsigned integer constant, called a repeat count, that specifies the
number of repetitions. For example, the statements:

20 FORMAT (E12.4,E12.4,E12,.4,15,15,1I5,15)
and

20 FORMAT (3E12.4,415)
have the same effect.
Similarly, a group of field descriptors can be repeatedly applied to
data fields by enclosing those field descriptors in parentheses, with
an unsigned integer constant, called a group repeat count, preceding
the left parenthesis. For example:

50 FORMAT (218,3(F8.3,E15.7))

is equivalent to:

50 FORMAT (I8,18,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7)
(Nl MRl J
1 2 3

An H or X field descriptor, which could not otherwise be repeated, can
be enclosed in parentheses and treated as a group repeat
specification, thus allowing it to be repeated a desired number of
times.

If a group repeat count is omitted, it is assumed to be 1.

FORMAT STATEMENTS

6.2.19 Default Field Descriptors

1f the field descriptors 1, 0, L, F, E, D, G, or A are written without
any field width wvalue (e.g., F), a default value for w and 4 is
supplied based upon the data type of the I/0 list element.

The values for w and 4 are shown in Table 6-2.

Table 6-2

Cefault Field Descriptor Values
Field Descriptor List Element w 4
T or O INTEGER*2 7
I or O INTEGER*4 12
L LOGICAL 2
F,E,G or D REAL, COMPLEX 15 7
F,E,G or D COUBLE PRECISTON 25 16
A LOGICAL*] 1
A LOGICAL*2, INTEGER*2 2
A LOGICAL*4,INTEGER*4 4
A REAL,COMPLEX 4
A COUBLE PRECISTION 8

Note that for A format, the actual length of the corresponding 1/0
list element is used.
6-15 June 1977

FORMAT STATEMENTS

6.3 CARRIAGE CONTROL

The first character of every record transmitted to a printing device
is . never printed; instead, it is interpreted as a carriage control
character. The FORTRAN I/0 system recognizes certain characters for
this purpose; the effects of these characters are shown in Table 6-3.

Table 6-3
Carriage Control Characters

Character Effect
A space Advances one line
0 zero Advances two lines
1 one Advances to top of

next page

+ plus Does not advance
(allows overprinting)

$ dollar sign Advances one line before printing
and suppresses carriage

return at the end of the

record

Any character other than those described in Table 6-3 1is treated as
though it is a space, and is deleted from the print line.

6.4 FORMAT SPECIFICATION SEPARATORS

Field descriptors in a format specification are generally separated
from one another by commas. The slash (/) record terminator can also
be used to separate field descriptors. A slash causes the input or
output of the current record to be terminated and a new record to be
initiated. For example:

WRITE (5,40) K,L,M,N,O,P
40 FORMAT (306/16,2F8.4)

is equivalent to:

WRITE (5,40) K,L,M
40 FORMAT (306)

WRITE (5,50) N,O,P
50 FORMAT (16,2F8.4)

It is possible to bypass input records or to output blank records by
the use of multiple slashes. If n consecutive slashes appear between

FORMAT STATEMENTS

two field descriptors, they cause (n-1) records to be skipped on input
or (n-1) blank records to be output. (The first slash terminates the
current record; the second slash terminates the first skipped or
blank record, and so on.) If n slashes appear at the beginning or end
of a format specification, however, they result in n skipped or blank
records, because the initial and terminal parentheses of the format
specification are themselves a record initiator and record terminator,
respectively. An example of the use of multiple record términators is
as follows:

WRITE (5,99)
99 FORMAT ('1'T51'HEADINGALINE'//T51'SUBHEADINGALINE'//)

The above statements output the following:
Column '50, top of page
HEADING LINE
(blankK line)
SUBHEADING LINE

(blanﬁ line)
{blank line)

6.5 EXTERNAL FIELD SEPAﬂATORS

A field descriptor such ds Fw.d specifies that an input statement is
to read w characters from the external record. If the data field in
question contains fewer than w characters, the input statement would
read some characters from the following field unless the short field
were padded with leading zeros or spaces. To avoid the necessity of
doing so, an input fﬂeld containing fewer than w characters may be
terminated by a comma, which overrides the field descriptor's field
width specification. This practice, called short field termination,
is particularly useful when entering data from a terminal keyboard.
It may be wused in caonjunction with I, O, F, E, D, G, and L field
descriptors. For example:

READ (6,100) 1,J,A,B
100 FORMAT (216,2F10.2)

If the external record input by the above statements contains:

1,-2,1.0,35

Then the following assignments take place:

I =1

J = -2

A =1.0
B = 0.35

Note that the physical end of the record also serves as a field
terminator. Note also jthat the d part of a w.d specification is not
affected as illustrated by the assignment to E.

FORMAT STATEMENTS

Only fields of fewer than w characters can be terminated by a comma.
If a field of w characters or greater is followed by a comma, the
comma will be considered to be part of the following field.

Two successive commas, or a comma following a field of exactly w
characters, constitutes a null (zero-length) field. Cepending on the
field descriptor in question, the resulting value assigned is 0, 0.0,
0D0, or .FALSE..

A comma cannot be used to terminate a field that is to be read under
control of an A, H, or alphanumeric literal field descriptor. If the
physical end of the record is encountered before w characters have
been read, however, short field termination is accomplished and the
characters that were input are assigned successfully. Trailing spaces
are appended to fill the corresponding 1/0 list element or the field
descriptor.

6.6 OBJECT TIME FORMAT

Format specifications may be stored in arrays. Such a format
specification (termed an object time format) can be constructed or
altered during program execution. The form of a format specification
in an array is identical to a FCRMAT statement, except that the word
FORMAT and the statement label are not present. The initial and
terminal parentheses must appear, however. Object-time formats may
not be stored in VIRTUAL arrays. An example of object-time format is:

REAL TARLE(S,3)

DOUBLE PRECISION FORRAY(20)sRFARsFRIG,FMEDsFOML
DATA FORRAY(1)sRPAR//(7r")’/

NATA FBIGYFMED:FSML/‘FB.2r s 'FPeds »'FPubr’/

[0 20 J=1+5
0o 18 I=1,95
FORRAY(I+1) = FMED
IF (TABLE(IsJ) .GE. 100) FORRAY(I+1) = FRIG
IF (TABRLE(I»J) JLE. 0.1) FORRAY(I+1) = FSML

18 CONTINUE
FORRAY(I+1) = RFAR
WRITE (S5»FORRAY) (TABLE(KrJ)sK=1+35)
20 CONTINUE
ENID

In this example, the DATA statement assigns a left parenthesis to the
first element of FORRAY and assigns a right parenthesis and three
field descriptors to variables for later use. The proper field
descriptors are then selected for inclusion in the format
specification, based on the magnitude of the individual elements of
array TABLE. A right parenthesis is then added to the format
specification just before its use by the WRITE statement. Thus, the
format specification changes with each iteration of the DO loop.

6.7 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT LISTS

Format control is initiated with the beginning of execution of a
formatted I/0 statement. Each action of format control depends on
information provided jointly by the next element of the I/0 1list (if

6-18 June 1977

FORMAT STATEMENTS

one exists) and the next field descriptor of the FORMAT statement or
format array. Both the I/O list and the format specification, except
for the effects of repeat c¢ounts, are interpreted from left to right.

If the I/O statement conﬁains an I/0 1list, at 1least one field
descriptor of a type other than H, X, T or P must exist in the format
specification. An execution error occurs if this condition 1is not
met.

When a formatted input statement is executed, it reads one record from
the specified unit and initiates format control; thereafter,
additional records can be read as indicated by the format
specification. Format ¢ntrol demands that a new record be input
whenever a slash is encounﬁered in the format specification, or when
the 1last outer right parenthe51s of the format spe01f1cat10n is
reached and I/0 list elements remain to be filled. Any remaining
characters in the «current record are discarded at the time the new
record is read. :

When a formatted output statement is executed, it transmits a record
to the specified unit as format control terminates. Records may also
be output during format cohtrol if a slash appears in the format
specification or if the!last outer right parenthesis is reached and
more I/0 list elements remain to be transmitted.

Each field descriptor of types I, ©, F, E, D, G, L, A, and Q
corresponds to one element in the I/0 list. No 1list element
corresponds to an H, X, P, T, or alphanumeric literal field
descriptor. In the case of H and alphanumeric 1literal field
descriptors, data transfer takes place directly between the external
record and the format spec1f1cat10n.

When format control encounters an I, O, F, E, D, G, L, &, or Q field
descriptor, it determines if a corresponding element ex1sts in the I/O
list. If so, format control transmits data, appropriately converted
to or from external format, between the record and the list element,
then proceeds to the next fleld descriptor (unless the current one is
to be repeated). If there is no corresponding list element, format
control terminates.

When the last outer right parenthesis of the format specification is
reached, format control determines whether or not there are more I/0
list elements to be processed. If not, format control terminates. If
additional 1list elements‘ remain, however, the current record is
terminated, a new one 1n1t;ated and format control reverts to the
rightmost top-level group repeat specification (the one whose left
parenthesis matches the next-to-last right parenthesis of the format
specification). (This concept 1is known as format reversion.) If no
group repeat specification exists in the format specification, format
control returns to the ‘initial 1left parenthesis of the format
specification. Format control continues from that point.

6.8 SUMMARY OF RULES FOR FORMAT STATEMENTS

The following is a summary| of the rules pertaining to the construction
and use of the FORMAT statement or format array and its components,
and to the construction of; the external fields and records with which
a format specification communicates.

6.8.1

6.8.2

FORMAT STATEMENTS

General

1.

2.

1.

A FORMAT statement must always be labeled.

In a field descriptor such as rIw or nX, the terms r, w, and
n must be unsigned integer constants greater than zero. The
repeat count and field width specification may be omitted.

In a field descriptor such as Fw.d, the term d must be an
unsigned integer constant. It must be present in F, E, D,
and G field descriptors even if it 1is zero. The decimal
point must also be present. The field width specification,
w, must be greater than or equal to d. The w and d must
either both be present or both omitted.

In a field descriptor such as nHc,c e c v exactly n
characters must be present following“the H format code. Any
ASCII character may appear in this field descriptor (an
alphanumeric 1literal field descriptor follows the same
rule).

In a scale factor of the form nP, n must be a signed or
unsigned integer constant in the range =127 to 127
inclusive. Use of the scale factor applies to F, E, D, and
G field descriptors only. Once a scale factor has been
specified, it applies to all subsequent real or double
precision field descriptors in that format specification
until another scale factor appears; an explicit oP
specification is reguired to reinstate a scale factor of
zero. Note that format reversion has no effect on the scale

- fasror.

No repeat count is permitted in H, X, T or alphanumeric
literal descriptors unless those field descriptors are
enclosed in parentheses and treated as a group repeat
specification.

If an I/0 list is present in the associated I/0 statement,
the format specification must contain at least one field
descriptor of a type other than H, X, P, T or alphanumeric
literal.

A format specification in an array must be constructed
identically to a format specification in a FORMAT statement,

"including the initial and terminal parentheses. When a

format array name 1is wused in place of a FORMAT statement
label in an 1I/0 statement, that name must not be
subscripted.

Input

An external input field with a negative value must be
preceded by a minus symbol; a positive value may optionally
be preceded by a plus sign.

An external field whose input conversion is governed by an I
field descriptor must have the form of an integer constant.
An external field input under control of an O field
descriptor must have the form of an octal constant (Section
2.4.5), without a leading double quote. Neither can contain
a decimal point or an exponent.

6.8.3

1.

FORMAT STATEMENTS

An external field whose input conversion is handled by an F,
E, or G field descriptor must have the form of an integer
constant or a real or double precision constant (Section
2.4.2). It can <contain a decimal point and/or an E or D
exponent field.

If an external field contains a decimal point, the actual
size of the fractional part of the field, as indicated by
that decimal point, overrides the d specification of the
corresponding real or double precision field descriptor.

If an external f;eld contains an exponent, it causes the
scale factor (if any) of the corresponding field descriptor
to be inoperative for the conversion of that field.

The field width/ specification must be 1large enough to
accommodate, in addition to the numeric character string of
the external fielld, any other characters that can be present
(algebraic sign, decimal point, and/or exponent).

A comma is the ohly character that is acceptable for use as
an external field separator. It is used to terminate input
of fields that are shorter than the number of characters
expected, or to designate null (zero-length) fields.

Output

A format specification must not demand the output of more
characters than can be contained in the external record (for
example, a line printer record cannot contain more than 133
characters including the carriage control character).

The field width specification, w, must be large enough to
accommodate all characters that may be generated by the
output conversioh, including an algebraic sign, decimal
point, and exponent (the field width specification in an E
field descriptor), for example, should be 1large enough to
contain (d+7) characters).

The first character of a record output to a line printer or
terminal is used for carriage control; it is never printed.
The first character of such a record should be a space, 0,1,
$, or +. Any other character is treated as a space and is
deleted from the record.

CHAPTER 7

SPECIFICATION STATEMENTS

This chapter discusses ' the FORTRAN specification statements.
Specification statementsg are nonexecutable. They provide the
information necessary for the proper allocation and initialization of
variables and arrays, and define other characteristics of the symbolic
names used in the program.

IMPLIC

7.1 IMPLICIT STATEMENT

The IMPLICIT statement overrides the implied data type of symbolic
names, in which all namés that begin with the letters I, J, K, L, M,
or N are presumed to represent integer data and all names beginning
with any other letter are presumed to be real.

The IMPLICIT statement has the form:
IMPLICIT typ{al,al...)[,typ(al,al...)]...
typ is one of the following data type specifiers:

INTEGER
INTEGER*2
INTEGER*4
REAL
REAL*4
REAL*8
DOUBLE PRECISION
COMPLEX
‘COMPLEX*8
BYTE
LOGICAL
LOGICAL*1
LOGICAL*4

a is an alphabetic specification in either of the general form
c
or

c,-C

1 72

c is an alphabetic character.

SPECTIFICATION STATEMENTS

The lacter form specifies a range of letters, from ¢l through c2,
which must occur in alphabetical order.

The IMPLICIT statement assigns the specified data type to all symbolic
names that begin with any specified letter, or any letter within a
specified range, and which have no explicit type declaration. For
example, the statements:

IMPLICIT INTEGER (I1,J,K,L,M,N)
IMPLTICTIT REAL (A-H, 0-2)

represent the default in the absence of any data type specifications.
IMPLICIT statements must not be labeled.
Examples

IMPLICIT DOUBLE PRECISION D
IMPLICIT COMPLEX (S,Y), LOGICAL*1l (L,A-C)

: DEC-

ATION 7.2 TYPE DECLARATION STATEMENTS

Type declaration statements explicitly define the data type of
specified symbolic names.

Type declaration statements have the form:
eyp vI.,vl...
typ is one of the following data type specifiers:

BYTE
LOGICAL
LOGICAL*1
LOGICAL*4
INTEGER
INTEGER*2
INTEGER*4
REAL
REAL*4
REAL*8
DOUBLE PRECISION
COMPLEX
COMPLEX*8

e oy

v is the symbolic name of a variable, array, statement
function or FUNCTION subprogram, or an array declarator.

A type declaration statement causes the specified symbolic names to
have the specified data type; it overrides the data type implied by
the initial letter of a symbolic name.

A type declaration statement can define arrays by including array
declarators (see Section 2.6) in the list. 1In each program unit, an
array name can appear only once in an array declarator.

SPECIFICATION STATEMENTS

A symbolic name can be followed by a data type length specifier of the
form *s, where s is one of the acceptable lengths for the data type
being declared. Such a specification overrides, for the item with
which it was specified, the length attribute implied by the statement.
For example: :

INTEGER*2 I, J, K, M12*4, ¢, IVEC*4(10)
REAL*8 WX1, WXZ, WX3*4, WX5, WX6*8

Type declaration statéments should precede all executable statements
and all specification statements except the IMPLICIT statement. It
must precede the first use of any symbolic name it defines.
The data type of 2 symbolic name can be explicitly declared only once.
Type declaration statements must not be labeled.
Examples

INTEGER COUNT, MATRIX(4,4), SUM

REAL MAN, IABS
LOGICAL SWITCH

DIMEMN

7.3 DIMENSION STATEMENT

The DIMENSION statement defines the number of dimensions in an array
and the number of elements in each dimension.

The DIMENSION statement has the form:
DIMENSION a(d)[,a(d)]...
a is the symbolic neme of an array.
d is a dimensipn declarator.
Each a(d) is an array declarator as described in Section 2.6.

The DIMENSION statement allocates a number of storage locations, one
for each element in eéch dimension, to each array named in the
statement. Each storage location is one, two, four or eight bytes in
length, as determined by the data type of the array. The total number
of locations assigned to an array is equal to the product of all
dimension declarators in the array declarator for that array. For

example:
DIMENSION ARRAY (4,4), MATRIX(5,5,5)

defines ARRAY as having 15 real elements of two words each, and MATRIX
as having 125 integer elements of one word each.

For further information concerning arrays and the storage of array
elements, see Section 2.6,

COMMON statements; howeve#, in each program unit, an array name can

Array declarators can also appear in type declaration, VIRTUAL, and
appear in only one array declarator.

CIMENSION statements must not be labeled.

7-3 June 1977

SPECIFICATION STATEMENTS

Examples
DIMENSION BUD(12,24,10)
DIMENSION X(5,5,5),Y(4,85),2(100)
DIMENSION MARK(4,4,4,4)

AMON

7.4 COMMON STATEMENT

A COMMON statement defines one or more contiguous areas (blocks) of
storage. Each block is identified by a symbolic name; in addition,
one common block is also called the blank common block. A COMMON
statement also defines the order of variables and arrays that are part
of each common block.

Data in COMMON can be referenced from different program units by the
same block name.

The COMMON statement has the form:
CCMMON [/[cbl/] nlist[[,]1/[cb]l/ nlist]...

cb is a symbolic name, called a common block name, or is blank.
If the first cb is blank, the first pair of slashes can be
omitted.

nlist is a 1list of variable names, array names, and array
declarators separated by commas.

A common block name can be the same as a variable or array name;
however, it cannot be the same as the name of a function or a
subroutine, or a function or subroutine entry, in the executable
program.

Common blocks with the same name that are declared in different
program units all share the same storage area when those program units
are combined into an executable program.

Because assignment of components to common is on a one-for-one storage
basis, components assigned by a COMMON statement in one program unit
should agree in data type with those placed in common by another
program unit. For example, if one program unit contains th=~
statement:

COMMON CENTS
and another program unit contains the statement:
COMMON MONEY

incorrect results can occur since the l-word integer variable MONEY is
made to correspond to the high-order word of the real variable CENTS.

Care must be taken when LOGICAL*1 elements are assigned to common, to
ensure that any data of other types, assigned following the LOGICAL*1
data, is allocated on a word boundary. All common blocks start on a
word (even) boundary.

SPECIFICATION STATEMENTS

Example
Main Program Subprogram
CCMMON HEAT,X/BLK1/KILO,Q SUBROUTINE FIGURE
. COMMON /BLK1/LIMA,R/ /ALFA,BET
CALL FIGURE :
. RETURN
. END

The COMMON statement in the main program places HEAT and X in blank
common and places KILO. and Q in a labeled common block, BLKl. The
COMMON statement in the subroutine causes ALFA and BET to correspond
to HEAT and X in blank cdmmon and makes LIMA and R correspond to KILO
and Q in BLK1.

A COMMON statement must not contain the names of VIRTUAL arrays or
VIRTUAL array declarators.

7.4.1 Blank Common and Named Common

There can be only one blank common block in an entire executable
program. COMMON statements can be used to establish any number of
named common blocks. '

7.4.2 COMMON Statements wWith Array Declarators

Array declarators can be used in the COMMON statement to define
arrays. Array names must not be otherwise subscripted (individual
array elements cannot be assigned to common). In a program unit, an
array name can appear only once in an array declarator.

EQUIV.
7.5 EQUIVALENCE STATEMENT LENCE

The EQUIVALENCE statement declares two or more entities to be
associated (either totally or partially) with the same storage
location. The EQUIVALENCE statement references components that exist
in the same program unit.

The EQUIVALENCE statement has the form:
EQUIVALENCE (nlist) [,(nlist)]...

nlist is a list of wvariables and array elements, separated by
commas. At least two components must be present in each
nlist.

The EQUIVALENCE statement causes all of the variables or array
elements in one parenthesized list to be allocated beginning in the
same storage location. Note that an Integer variable made equivalent
to a Real variable shares storage with the high-order word of that
variable. Mixing of data types in this way is permissible. Multiple
components of one data . type can share the storage of a single
component of a higher-ranked data type. For example:

7-5 June 1977

SPECIFICATION STATEMENTS

DOUBLE PRECISION DVAR

INTECER*2 IARR(4)

EQUIVALENCE (DVAR,IARR(1l))
The EQUIVALENCE statement causes the four elements of the integer
array IARR to occupy the same storage as the double precision variable
DVAR.

The EQUIVALENCE statement can also be used to equate variable names.
For example, the statement

EQUIVALENCE (FLTLEN, FLENTH, FLIGHT)

causes FLTLEN, FLENTH and FLIGHT to have the same definition provided
they are also of the same data type.

An EQUIVALENCE statement in a subprogram must not contain dummy
arguments. An EQUIVALENCE statement must not contain the names of
VIRTUAL arrays or VIRTUAL array elements.

Examples

ECUIVALENCE (A,B), (B,C) (has the same effect as
EQUIVALENCE (A,B,C}))

EQUIVALENCE (A(1l),X), (A(2),Y), (A(3),2)

7.5.1 Making Arrays Eguivalent

When an element of an array is made eguivalent to an element of
another array, the EQUIVALENCE statement also sets eauivalences
between the corresponding elements of the two arrays. Thus, if the
first elements of two equal-sized arrays are made equivalent, both
entire arrays are made to share the same storage space. If the third
element of a 5-element array is made equivalent to the first element
of another array, the last three elements of the first array overlap
the first three elements of the second array.

The EQUIVALENCE statement must not attempt to assign the same storage
location to two or more elements of the same array, nor to assign
memory locations in any way that 1is inconsistent with the normal
linear storage of array elements (for example, making the first
element of an array equivalent with the f£first element of another
array, then attempting to set an equivalence between the second
element of the first array and the sixth element of the other).

In the EQUIVALENCE statement only, it is possible to identify an array
element with a single subscript (i.e., the linear element number) ,
even though the array has been defined as a multi-dimensional array.

For example, the statements:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)
EQUIVALENCE (TABLE(4), TRIPLE(7))

result in the entire array TABLE sharing a portion of the storage
space allocated to array TRIPLE as illustrated in Figure 7-1.

7-6 June 1977

SPﬁCIFICATTON STATEMENTS

Array TRIPLE Array TABLE
Array ‘ Element Array Element
Element Number Element Number
TRIPLE(1,1,1) | 1
TRIPLE(2,1,1) | 2
TRIPLE(1,2,1) 3
TRIPLE(2,2,1) 4 TABLE(1,1) 1
TRIPLE(1,1,2) 5 TABLE(2,1) 2
TRIPLE(2,1,2) 6 TABLE (1, 2) 3
TRIPLE(1,2,2) 7 TABLE (2, 2) 4
TRIPLE(2,2,2) 8

Figure 7-1

Equivalence of Array Storage
Figure 7-1 also illwstraﬂes that the statements
EQUIVALENCE (TNBLE(I),TRIPLE(4))
and
EQUIVALENCE (TRIPLE(1,2,2), TABLE (4))

result in the same alignment of the two arrays.

{251)
B(4,1)
By

SPECIFICATION STATEMENTS

7.5.2 EQUIVALENCE and COMMON Interaction

When components are made equivalent to entities stored in common, the
common block can be extended beyond 1its original boundaries. An
EQUIVALENCE statement can only extend common beyond the last element
of the previously established common block. It must not attempt to
increase the size of common in such a way as to place the extended
portion before the first element of existing common. For example:

Valid Extension of Common

DIMENSION A(4),B(6) A(l) | A(2) | A(3) | A(4)

COMMON A

EQUIVALENCE (A(2),B(1l)) B(l) | B(2) | B(3) | B(4)]| B(S) | B(6)
Existing Extended
Common Portion

Illega” Fxtension of Common

1
DIMENSION A (4),B(6) A(l) |A(2) |A(3) | A(4)
COMMON A i
EQUIVALENCE (A(2),B(3)) ‘ By. 22y | B(3) | B(4) | B(5) | B(6)
A —~ N —/
Extended Existing Common Extended
Portion Portion

If two components are assigned to the same or different common blocks,
they must not be made equivalent to each other.

7.5.3 EQUIVALENCE and LOGICAL*]1 Arrays

If an element of a LOGICAL*1l array that is not aligned on a word
boundary is equivalenced to an array or variable of another data type,
it can cause that variable or all elements of that array not to be
aligned on word boundaries. If this occurs, an attempt to reference
that variable or those array elements causes an error during execution
of the program.

ERNAL

7.6 EXTERNAL STATEMENT

The EXTERNAL statement permits the use of external procedure names
(functions, subroutines, and FORTRAN Library Functions) as actual
arguments to other subprograms.
The EXTERNAL statement has the form:
EXTERNAL v/[,v]...
v is the symbolic name of a subprogram or the name of a dummy
argument which is associated with a subprogram name.

7-8

SFECTFICATION STATEMENTS

The EXTERNAL statement detlares each name in the list to be the name
of an external procedure. Such a name can then appear as an actual
argument t0 a subprogram.: The subprogram can then use the associated
dummy argument name in a function reference or a CALL statement.

Noce, however, that a complete function reference used as an argument
(such as CALL SUBR(A,SQRT(B),C), for example) represents a value, not
a subprogram name; the function name need not be defined in an
EXTERNAL statement.

Example
Main Program Subprograms
EXTERNAL SIN,COS, TAN SUEROUTINE TRIG (X,F,Y)
. Y = F(X)
. RETURN
CALL TRIG (ANGLE,SIN,SINE) END

CALL TRIG (ANGLE,COS,COSINE)

FUNCTTION TAN (X)

CALL TRIG (ANGLE,TAN,TANGNT) TAN = SIN(X) / COS(X)
. RETURN
. END

The CALL statements pass the name of a function to the subroutine
TRIG. The function is subsequently invoked by the function reference
F(X) in the second statement of TRIG. Thus, the second statement
becomes in effect:

SIN(X),
COs (X), or

Y
Y
Y TAN (X)

depending upon which CALL 'statement invoked TRIG (the functions SIN
and COS are examples of trigonometric functions supplied in the
FORTRAN Library.)

SPECIFICATION STATEMENTS

DATA

7.7 DATA STATEMENT

The DATA initialization statement permits the assignment of initial
values to variables and array elements prior to program execution.

The DATA statement has the form:
CATA nlist/clist/[[,]Inlist/clist/]...

nlist is a list of one or more variable names, array names, Or
array element names separated by commas. Subscript
expressions must be constant.

clist is a list of constants.
Constants in a clist have the form:
value
or
n * value

n is a nonzero unsigned integer constant that specifies the
number of times the same value is to be assigned to successive
entities in the associated nlist.

The DATA statement causes the constant values in each clist to be
assigned to the entities in the preceding nlist. Values are assigned
in a one-to-one manner in the order in which they appear, from left to
right.

When an unsubscripted array name appears in a DATA statement, values
are assigned to every element of that array. The associated constant
list must therefore contain enough values to fill the array. Array
elements are filled in the order of subscript progression.

When Hollerith data is assigned to a variable or array element, the
number of characters that can be assigned depends on the data type of
the component, as shown in Table 2-2. If the number of characters 1in
a Hollerith constant or alphanumeric literal is less than the capacity
of the variable or array element, the constant is extended on the
right with spaces. If the number of characters in the constant is
greater than the maximum number that can be stored, the rightmost
excess characters are not used. :

When a Radix-50 constant is assigned to a variable or array element,
the number of bytes that can be assigned depends on the data type of
the component, as shown in Table 2-2. If the number of bytes of the
Radix-50 constant is less than the length of the component, ASCII null
characters (zero bytes) are appended on the right. If the number of
bytes of the constant exceeds the length of the component, the
rightmost excess bytes are not used.

The number of constants in a constant list must correspond exactly to
the number of entities specified in the preceding name list. The data
types of the data elements and their corresponding symbolic names must
agree (except in the case of alphanumeric and Radix-50 data).

The DATA statement must not be used to assign initial values to
VIRTUAL arrays or to VIRTUAL array elements.

7-10 June 1977

SPECIFICATION STATEMENTS

Example

INTEGER A(10),BEL§
DATA A,BELL,STARS/10%0,7, '***%1/

The DATA statement assigns zero to all ten elements of array A, the
value 7 to the variable BELL, and four asterisks. to the real variable

STARS.

pea type
expressions

SPECIFICATION STATEMENTS

OGRAM

7.9 PROGRAM STATEMENT

The PROGRAM statement, if used, assigns a name to a main program unit.
The PROGRAM statement has the form:

PROGRAM nam

nam is a symbolic name.

The PROGRAM statement must be the first statement in the main program;
its wuse 1is optional. The symbolic name may not be the same as the
name of any entity within the main program and it must not be the same
as the name of any subprogram, entry, or common block in the same
executable program.

CHAPTER 8

SUBPROGRAMS

FORTRAN subprograms are divided into two general classes: those that
are written by the user and those that are supplied by the FORTRAN
system. Subprograms are also grouped into the categories of
functions, which includes both arithmetic statement functions and
FUNCTION subprograms, and subroutines.

8.1 SUBPROGRAM ARGUMENTS

Arguments to subprograms are represented in two ways: dummy arguments
and actual arguments. Dummy arguments are used in the subprogram
definition to represent the corresponding actual argument. Dummy
arguments appear in the FUNCTION statement, SUBROUTINE statement or
arithmetic statement function definition as unsubscripted variable
names. Actual arguments appear in the function reference or CALL
statement that references the subprogram and provide actual values to
be used for computation. Actual arguments can be constants,
variables, arrays, array elements, expressions or subprogram names.

Actual and dummy arguments become associated at the time control is
transferred to the subprogram. Actual and dummy arguments that become
associated must agree in data type. A dummy argument declared as an
array can only become associated with an array or array element.

If an actuwal argument is a constant, expression or subprogram name,
the subprogram must not alter the value of the corresponding dummy
argument.

Dummy arguments must not appear in COMMON, EQUIVALENCE or DATA
statements.

8.2 USER-WRITTEN SUBPROGRAMS

Control is transferred to a function by means of a function reference
while control is transferred to a subroutine by a CALL statement. A
function reference is the name of the function, together with its
arguments, appearing in an expression. A function always returns a
value to the calling program. Both functions and subroutines may
return additional wvalues via assignment to their arguments. A
subprogram can reference other subprograms, but it cannot, either
directly or indirectly, reference itself.

SUBPROGRAMS

8.2.1 Arithmetic Statement Function (ASF)

An arithmetic statement function is a computing procedure defined by a
single statement, similar in form to an arithmetic assignment
statement. The appearance of a reference to the function within the
same program unit causes the computation to be performed and the
resulting value to be made available to the expression in which the
ASF reference appears.

The arithmetic statement function definition has the form:

£ (lpl,pl...])=e

£ is the name of the ASF.
P is a dummy argument.
e is an expression.

The expression is an arithmetic expression that defines the
computation to be performed by the ASF.

A function reference to an ASF has the form:

» f (lpl,pl...1)
where f is the name of the ASF, and each p is an actual argument.

When a reference to an arithmetic statement function appears in an
expression, the values of the actual arguments are associated with the
dummy arguments in the ASF definition. The expression in the defining
statement is then evaluated and the resulting value 1is used to
complete the evaluation of the expression containing the function
reference.

The data type of an ASF is determined either implicitly by the initial
letter of the name or explicitly in a type declaration statement.

Dummy arguments in an ASF definition serve only to indicate the
number, order, and data type of the actual arguments. The same names
may be used to represent other entities elsewhere in the program unit.
Note that with the exception of data type, declarative information
(such as placement in COMMON or declaration as an array) associated
with such an entity is not associated with the ASF dummy arguments.
The name of the ASF cannot be used to represent any other entity
within the same program unit.

The expression in an ASF definition may contain function references.
If a reference to another ASF appears in the expression, that function
must have been defined previously.

Any reference to an ASF must appear in the same program unit as the
definition of that function.

An ASF reference must appear as, or be part of, an expression; it
must not be used as the left side of an assignment statement.

Actual arguments must agree in number, order, and data type with their
corresponding dummy arguments. Values must have been assigned to them
before any reference to the arithmetic statement function.

SUBPROGRAMS

Examples

ASF Definitions

VOLUME (RADIUS) = 4.189*RADIUS**3
SINH (X) = (EXP(X)-EXP(-X))*0.5

AVG(A,B,C,3.) = (A+B+C)/3. (Invalid; constant as dummy
argument not permitted)

ASF References

AVG(A,B,C) = (A+B+C)/3. (Definition)

GRADE = AVG(TEST1,TEST2,XLAB)
IF (AVG(P,D,Q).LT.AVG(X,Y,2)) GO TO 300
FINAL = AVG(TEST3,TEST4,LAB2) (Invalid; data type of third

argument does not agree with
dummy argument)

8.2.2 FUNCTION Subprogram

A FUNCTION subprogram is a program unit that consists of a FUNCTION
statement followed by a series of statements that define a computing
procedure. Control is transferred to a FUNCTION subprogram by a
function reference and returned to the calling program unit by a
RETURN statement.
A FUNCTION subprogram returns a single value to the «callin., program
unit by assigning that value to the function's name. The data type of
the value returned is determined by the function's name.
The FUNCTION statement has the form:
[typ] FUNCTION nam[*n][(Ipl,pl...]1)]

typ 1is a data type specifier.

nam is a name of the function.

*n is a data type length specifier.

p is a dummy argument.

A function reference that transfers control to a FUNCTION subprogram
has the form:

nam ([p[,pl...])

where nam is the symbolic name of the function, and each p is an
actual argument.

SUBPROGRAMS

When control is transferred to a FUNCTION subprogram, the values
supplied by the actual arguments (if any) are associated with the
dummy arguments (if any) in the FUNCTION statement. The statements in
the subprogram are then executed. The name of the function must be
assigned a value before a RETURN statement is executed in that
function. When control is returned to the calling program unit, the
value thus assigned to the function's name is made available to the
expression that contains the function reference, and 1is used to
complete the evaluation of that expression.

The type of a function name may be specified implicitly, explicitly in
the FUNCTION statement, or explicitly in a type declaration statement.
The type of the function name as defined in the FUNCTION subprogram
must be the same as the type of the function name in the calling
program unit.

The FUNCTION statement must be the first statement of a function
subprogram. It must not be labeled.

A FUNCTION subprogram must not contain a SUBROUTINE statement, a BLOCK
DATA statement, or a FUNCTION statement other than the initial
statement of the subprogram.

Example

FUNCTION ROOT (A)
X =1.0
2 EX = EXP (X)
EMINX = 1./EX
ROOT = ((EX+EMINX)*.5+COS (X)-A)/((EX - EMINX) *.5-SIN (X))
IF (ABS (X~ROOT).LT.1lE-6) RETURN

X = ROOT
GO TO 2
END

The function in this example uses the Newton—Raphson iteration method
to obtain the root of the function:

F(X) = cosh(X) + cos(X) - A =20

where the value of A is passed as an argument. The iteration formula
for this root is:

cosh (Xi) +cos (Xi)-A
Xi+l = Xi -

sinh(Xi)=-sin (Xi)
which is repeatedly calculateg until the difference between Xi and

Xi+l is 1less than 1 x 107 The function makes use of the FORTRAN
Library functions EXP, SIN, COS, and ABS.

8.2.3 SUBROUTINE Subprogram

A SUBROUTINE subprogram is a program unit that consists of a
SUBROUTINE statement followed by a series of statements that define a
computing procedure. Control 1is transferred to a SUBROUTINE
subprogram by a CALL statement and returned to the calling program
unit by a RETURN statement.

SUBPROGRAMS

The SUBROUTINE statement has the form:
SUBROUTINE nam [([p[,pl...])]
nam is the name of the subroutine.
p is a dummy argument.
The form of the CALL statement is described in Section 4.5.

When control is transferred to the subroutine, the values supplied by
the actual arguments (if any) in the CALL statement are associated
with the corresponding dummy arguments (if any) in the SUBROUTINE
statement. The statements in the subprogram are then executed.

The SUBROUTINE statement must be the first statement of a subroutine;
it must not have a statement label.

A SUBROUTINE subprogram cannot contain a FUNCTION statement, a BLOCK
DATA statement, or a SUBROQUTINE statement other than the initial
statement of the subprogram.

Example
Main Program

COMMON NFACES,EDGE, VOLUME
ACCEPT 65, NFACES,EDGE

65 FORMAT (I2,F8.5)
CALL PLYVOL
TYPE 66, VOLUME

66 FORMAT ('AVOLUME=',F)
STOP
END

SUBROUTINE | Subprogram

SUBROUTINE PLYVOL
COMMON NFACES, EDGE, VOLUME
CUBED = EDGE**3
GoTo (6,6,6,1,6,2,6,3,6,6,6,4,6,6,6,6,6,6,6,5,6) ,NFACES
1 VOLUME = CUBED * 0.11785
RETURN :
2 VOLUME = CUBED
RETURN :
3 VOLUME = CUBED * 0.47140
RETURN :
4 VOLUME = CUBED * 7.66312
RETURN
5 VOLUME = CUBED * 2.18170
RETURN '
6 TYPE 100, NFACES
100 FORMAT (' NO REGULAR POLYHEDRON HAS ',I3,'FACES.'/)
RETURN
END

The subroutine in this example computes the volume of a regular
polyhedron, given the number of faces and the length of one edge. It
uses the computed GO TO statement to determine whether the polyhedron
is a tetrahedron, cube, dctahedron, dodecahedron, or icosahedron, and
to transfer control to the proper procedure for calculating the

SUBPROGRAMS

is a tetrahedron, cube, octahedron, dodecahedron, or icosahedron, and
to transfer control to the proper procedure for - calculating the
volume. TIf the number of faces of the body is other than 4,6,8,12, or
20, the subroutine displays an error message on the user's terminal.

~,stetamenk provides multipla entty‘ poin
It is not executable and can appea ’witﬁi%*a
program after the FUNCTION -or . . S8UBR

_Of a subprogram referenced by an entry nan gi
xtcutabie ‘statement following the ENTRY statement.

w;thin a DQ loog?

in ENTRY statemenbs
hprégrams ‘myst be referenced by CALL statements, and :
ar ing in ENTRY statements within FUNCTION subprogram
nced as ixternal function references.

argument~‘
'tgument

stetementsylth&t -physical
ede nhe:appearance of the entry name in an. EﬁTRY statement

1@ _order numbez. type and names of the dummy arguments”in an - ENTRY
itewent - can be different from the order, number, type and names o
: ummy a:guments in the FUNCTION statement, SUBROUTINE sta
d other ENTRY statements in the same subprogram. - Howeve:
ferenge to a function, subroutine, or entry must use an ac
ument list that agrees in order, number and type with ‘
gument list in the corresponding FUNCTION, SUBROUTINE,;

ENTRY in ?unction Subprograms - All entty “name
suobprogram are assoclated with the name of
m. - Therefore, definition of any entry name or . th
bien subptogram causes definition of all the assoc

§ 4

‘Eype to become undefined. ‘The function and entr
‘<dﬂt0 be’ the same type, but at the exécution of
‘ ~§rogr

ned

SUBPROGRAMS

SUBPROGRAMS

‘RETURN

’cousura'sina
 ENTRY SINH(X)
SINH = ?SINH&X) / 2. a
'RETURN e
7conpurs cosﬁf

5}ssra¥“¢cs&(i}

NnaOo

=

BLOCK
DATA

8.2.5 BLOCK DATA Subprogram

The BLOCK DATA subprogram is used to assign initial values to entities
in labeled common blocks, at the same time establishing and defining
those blocks. It consists of a BLOCK DATA statement followed by a
series of specification statements.

The BLOCK DATA statement has the form:’
BLOCK DATA [nam]

nam is a symbolic name.
The statements allowed in a BLOCK DATA subprogram are: Type
Declaration, IMPLICIT, DIMENSION, COMMON, EQUIVALENCE, and DATA
statements.
The specification statements in the BLOCK DATA subprogram establish
and define common blocks, assign variables and arrays to those blocks,
and assign initial values to those components.

A BLOCK DATA statement must be the first statement of a BLOCK DATA
subprogram. It must not be labeled.

SUBPROGRAMS

A BLOCK DATA subprogram must not contain any executable statements.

|
If any entity in a labeléd common block is initialized in a BLOCK DATA
subprogram, a complete set of specification statements to establish
the entire block must be present, even though some of the components
in the block do not appear in a DATA statement. 1Initial values can be
defined for more than one block by the same subprogram.

Example

BLOCK DATA

INTEGER §,X

LOGICAL T,W

DOUBLE PRECISION U

DIMENSION R(3)

COMMON /AREAl/R,S,T,U/AREA2/W,X,Y

DATA R/1.0,2*2.0/,T/.FALSE./,U/0.214537D-7/,%W/.TRUE./,¥Y/3.5/
END

8.3 FORTRAN LIBRARY FUNCTIONS

The FORTRAN library functions are listed in Appendix B. Function
references to FORTRAN library functions are written in the same form
as function references to user-defined functions. For example,

R = 3.14159 * ABS(X-1)

causes the absolute value of X-1 to be calculated, multiplied by the
constant 3.14159, and assigned to the variable R.

The data type of each library function and the data type of the actual
arguments is specified in Appendix B. Arguments passed to these
functions may not be array names or subprogram names.

SUBPROGRAMS

1 tl *réfa , “,ara ﬁbcai to the program unxk in
fdo not affect or preclude the use of ‘the name for
ther program unhl

sﬂyrovide a means by whic& BOm £
B . ean»“bg called with: e}ectxon‘o :
13ed QQsea on’ the type of the argument &
ference. For example, if X is a real vatiable, then
ice the real valued sine function; while if D is a.
:Variable then SIN(D) - will reference the double?
; ‘it is not necessary to write DSIN{B)W e

electlon ‘ig pezformed independentiy for ’eachf
: that in the example abeve, both SI&(X) and
" % unit ‘ o o

Ay 1ch generic nam selgction wzll be” pesformed
} ?@ple 8~1, Generic function seiectxon may only be used
xpes ‘gshown in the table.* : :

i me ﬁTable 8»1 w111 lose the eneric function selection
- pr ﬁé ty f usec in a prcgram unit in any [s3 the followxng ways. V

Yy zglm?ﬁn,t.«.,??“?"{v common bIock _name, la

SUBPROGRAMS

8-11

SUBPROGRAMS

’SUBRQUTWE COHPUT{Y‘.
T ai-BREAL%S m.¥¢
E 3: MAKE IN
" EXTERNAL SIN

.o /COMMON v (3)
C ﬂOTE 43 GEHﬁRIC Rﬁfﬁg
T 'V(I) = SIN(Y)
C NOTE 5: PDF SINE AS ACTUAL ARGUHENT. o
T carn gﬁa(r SIN)
END

,cg TO D P SINE

susnourrn sua(Ag i
,,(Agﬂnans oﬁ vsza FUNCTION

DECLARE SIN .
'REAL*§ if sr&

o0 o0

SUBPROGRAMS

APPENDIX A

CHARACTER SETS

A.l1 FORTRAN CHARACTER SET

The FORTRAN character set consists of:
l. The letters A through Z and a through z
2. The numerals 0 through 9

3. The following special characters:

Character Name
A Space or Blank or Tab
= Equals
+ Plus
- Minus
* Asterisk
/ Slash
(Left Parenthesis

) Right Parenthesis

, Comma
. Decimal Point
' Apostrophe

" Double Quote

$ Dollar Sign

: Colon

CHARACTER SETS

Other printable characters may app
a Hollerith constant or alphanumeric literal.

part of

character may appear in a comment.

ear in a FORTRAN statement only
Any printable

as

A.2 ASCII CHARACTER SET
ASCII ASCII ASCII
Decimal Char- Decimal Char- Decimal Char-
Value acter Usage Value acter Usage Value acter Usage
") NUL FILL character 43 + 86 \'4
1 SOH 44 + COMMA 87 W
2 STX 45 - 88 X
3 ETX CTRL/C 46 . 89 Y
4 EOT 47 / og Z
5 ENQ 48 g 91 {
6 ACK 49 1 92 \ Backslash
7 BEL BELL 5@ 2 93]
8 BS 51 3 94 ~ or *
9 HT HORIZONTAL TAB 52 4 95 _or +
19 LF LINE FEED 53 5 96 . Grave accent
11 VT VERTICAL TAB 54 6 97 a
12 FF FORM FEED 55 7 98 b
13 CR CARRIAGE RETURN 56 8 29 c
14 [{e] 57 9 199 4a
15 SI CTRL/O 58 H 181 e
16 DLE 59 H 192 f
17 DCl (5] < 1923 g
18 DC2 61 = 194 h
19 DC3 62 > 125 i
20 DC4 63 ? 1g6 j
21 NAK CTRL/U 64 Q 147 k
22 SYN 65 A 1¢8 1
23 ETB 66 B 199 m
24 CAN 67 o 119 n
25 EM 68 D 111 o
26 SUB CTRL/Z 69 E 112 P
27 ESC ESCAPE! 79 F 113 q
28 FS 71 G 114 r
29 GS 72 H 115 s
3@ RS 73 I 116 t
31 us 74 J 117 u
32 SP SPACE 75 K 118 v
33 ! 76 L 119 w
34 " 77 M 129 X
35 # 78 N 121 y
36 $ 79 o 122 z
37 % 8@ P 123 {
38 s 81 Q 124 1 Vertical Line
39 ' APOSTROPHE 82 R 125
49 (83 s 126 ~ Tilde
41) 84 T 127 DEL RUBOUT
42 * 85 u

translated internally into ESCAPE.

LALTMODE (ASCII 125) or PREFIX (ASCII 126) keys which appear on some terminals are

CHARACTER SETS

A.3 RADIX-50 CHARACTER SET

Radix-50 is a special character data representation in which up to
three characters from the Radix-50 character set (a subset of the
ASCII character set) can be encoded and packed into a single PDP-11
storage word.

The Radix-50 characters and their corresponding code values are as
follows:

ASCII Octal Radix-50 Value
Character Equivalent (Octal)
Space 40 0
A -3 101 - 132 1 - 32
$ 44 33
. 56 34
(Unassigned) 35
0 -9 60 - 71 36 — 47

Radix-50 values are stored, up to three characters per word, by
packing them into single numeric values according to the formula:

((1 * 50 + §) * 50 + k)

where "i", "j", and "k" represent the code values of three Radix-50
characters.

The maximum Radix-50 value is, thus,

47*50*%50 + 47*50 + 47 = 174777
The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,

given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X = 113000
2 = 002400
B = 000002
X2B = 115402

CHARACTER SETS

Radix-50 Character/Position Table

Single Char.
or Second Third
First Char. Character Character
Space 000000 Space 000000 Space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 s 001370 S 000023
T 076400 T 001440 T 000024
6] 101500 U 001510 U 000025
\Y 104600 \Y 001560 \Y/ 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
2 121200 2 002020 Z 000032
$ 124300 S 002070 $ 000033
. 127400 . 002140 . 000034
UNUSED 132500 UNUSED 002210 UNUSED 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

APPENDIX B

FORTRAN LANGUAGE SUMMARY

B.1 EXPRESSION OPERATORS

Operators in each type are shown in order of descending precedence.

Type Operator Operates Upon
Arithmetic **x exponentiation arithmetic or logical
*,/ multiplication, constants,
division variables, and
+,- addition, subtraction expressions

unary plus and minus

Relational .GT. greater than arithmetic or logical
.GE. greater than or constants, variables,
egual to and expressions
.LT. less than (all
.LE. less than or relational operators
equal to have equal priority)
.EQ. equal to
.NE. not equal to
Logical .NOT. .NOT.A is true if and logical or integer

only if A is false

.AND. A.AND.B is true if
and only if A and B
are both true

.OR. A.OR.B is true if and
only if either A or
B or both are true

.EQV. A.EQV.B is true if and
only if A and B
are both true or A
and B are both false.

. XOR. A.XOR.B is true if and
only if A is true and
B is false or B is
true and A is false.

constants, variables,
and expressions

(precedence same
as .XOR.)

(precedence same
as .EQV.)

FORTRAN LANGUAGE SUMMARY

B.2 STATEMENTS

The following summary of statements available in the PDP-11 FORTRAN
language defines the general format for the statement. If more
detailed information is needed, the reader is referred to the
Section(s) in the manual dealing with that particular statement.

Manual
Statement Formats Effect Section
ACCEPT See READ, Formatted Sequential 5.4.3
See READ, List-Directed 5.7.3
Arithmetic/Logical Assignment 3.1
3.2
v=e
v is a variable name or an array element name.
e is an expression.
The value of the arithmetic or logical
expression is assigned to the variable.
Arithmetic Statement Function 8.2.1
f(lpl,pl...1)=e
f is a symbolic name.
P is a symbolic name.
e is an expression.
Creates a user-defined function having
the variables p as dummy arguments.
when referenced, the expression is
evaluated using the actual arguments in
the function call.
ASSIGN s TO v 3.3
s is an executable statement label.
v is an integer variable name.

Associate the statement number s with

the integer variable v for later use in
an assigned GO TO statement.

FORTRAN LANGUAGE SUMMARY

BACKSPACE u

5.9.2
u is an integer variable or constant.
The currently open file on logical wunit
u is backspaced one record.
BLOCK DATA [nam] 8.2.5
nam is a symbolic name.
Specifies the subprogram which follows
as a BLOCK DATA subprogram.
CALL s ([all,[a)]l...)] 4.5
S is a subprogram name.
a

is an expression, a procedure name, or an array name.

Calls the SUBROUTINE subprogram with the
name specified by s, passing the actual
arguments a to replace the dummy
arguments in the SUBROUTINE definition.

CLOSE (p[,p]...)

5.9.7

p is one of the following forms:

UNIT = e

DISPOSE = 'SAVE' or DISP = 'SAVE'

DISPOSE = ‘'KEEP' or DISP = 'KEEP'

DISPOSE = 'DELETE' or DISP = 'DELETE'

DISPOSE = 'PRINT' or DISP = 'PRINT'

ERR = 8

e is a numeric expression

s is an executable statement label

Closes the specified file.
COMMON [/[cb]/] nlist [[,]/[cb]l/nlist]... 7.4

cb is a common block name.
nlist is a list of one or more variable names, array names, Or

array declarators separated by commas.

Reserves one or more blocks of storage
space under the name specified to
contain the variables associated with
that block name.

B-3 June 1977

FORTRAN LANGUAGE SUMMARY

CONTINUE 4.4

Causes no processing.

DATA nlist/clist/[[,] nlist/clist/]... 7.7
nlist is a list of one or more variable names, array names, O
array element names separated by commas. Subscript

expressions must be constant.

clist is a list of one or more constants separated by commas,
each optionally preceded by j*, where j is a nonzero,
unsigned integer constant.

Causes elements in the list of values to
be initially stored in the corresponding
elements of the list of variable names.

DECODE (c,f,b[,ERR=s]) [list] 5.10
c is an integer expression.
f is a FORMAT statement label or array name.
b is a variable name, array name, or array element name.
s is an executable statement label.
list is an I/0O list.

Changes the elements in the 1I/0 list
from character into internal format; ¢
specifies the number of characters, £
specifies the format, and b is the name
of the entity containing the characters
to be converted.

DEFINE FILE u(m,n,U,v)[,u(m,n,U,v)]... 5.9.4
u is an integer variable name or integer constant.
m is an integer variable name or integer constant.
n is an integer variable name or integer constant.
v is an integer variable name.

Defines the record structure of a
direct access file where u 1is the
logical unit number, m is the number of
fixed length records in the file, n is
the length in words of a single record,
U is a fixed argument, and v is the
associated variable.

FORTRAN LANGUAGE SUMMARY

DIMENSION a(d){[,a(d)]...

a(ad)

el

is

is

is

an array declarator.

Specifies storage space requirements for
arrays.

el,e2[,e3]

the label of an executable statement.

a variable name.

are integer expressions.

To execute the DO loop:
1. Set i = el

2. Execute statements through
statement number s

3. Evaluate i = i+e3
4., Repeat 2 through 3 for

MAX (1, INT((e2 - el)/e3) + 1)
iterations

ENCODE (c,f,b[,ERR=s]})[1list]

list

END

END FILE u

u

is
is
is
is

is

is

an integer expression.

a FORMAT statement label or an array hame.

a variable name, array name, or array element name.

an executable statement label.
an I1/0 list.

Changes the elements in the 1list of
variables into characters; ¢ specifies
the number of characters in the buffer,
f specifies the format statement number,
and b is the name of the entity to be
used as a buffer.

Delimits a program unit.

an integer variable or constant.

An end-file record is written on logical
unit u.

FORTRAN LANGUAGE SUMMARY

END=s,ERR=s 5.8

s is an executable statement label.

(Transfer of Control) on end-of-file or
error condition 1is an optional element
in each type of 1/0 statement allowing
the program to transfer to statement
number s on an end-of-file (END=) or
error (ERR=) condition.

EQUIVALENCE (nlist)[,(nlist)]... 7.5
nlist is a list of two or more variable names, array names, oOr
" array element names separated by commas. Subscript
expressions must be constant.
Each of the names (nlist) within a set

of parentheses is assigned the same
storage location.

EXTERNAL v[,v]... 7.6

v is a subprogram name.

Defines the names specified as FUNCTION
or SUBROUTINE subprograms.

FORTRAN LANGUAGE SUMMARY
|

FIND (u'r) 5.9.5
u is an integer variable name or integer constant.
r is an integer expression.
Positions the file on logical unit u to
record r and sets associated variable to
record number r.
FORMAT (field specification,...) 6.1 - 6.8
Describes the format in which one or

more records are to be transmitted; a
statement label must be present.

[typ] FUNCTION nam[*n) [([{p[,p}...1)] 8.2.2
typ is a data type specifier.
nam is a symbolic name.
*n is a data type length specifier.
P is a symbolic name.

Begins a FUNCTION subprogram, indicating
the program name and any dummy argument
names, p. An optional type
specification can be included.

GO TO s 4.1.1
s is an executable statement label.

(Unconditional GO TO) Transfers control
to statement number s.

GO TO (slist)[,] e 4,1.2

slist is a list of one or more executable statement labels
separated by commas.

e is an integer expression,

(Computed GO TO) Transfers control to
the statement label specified by the
value of expression e. (If e=1 control
transfers to the first statement label.
If e=2 it transfers to the second
statement label. etc.) If e is less
than 1 or greater than the number of
statement labels present, no transfer
takes place.

FORTRAN LANGUAGE SUMMARY

GO TO v [[,](slist)] 4.1.3
v is an integer variable name.
slist is a list of one or more executable statement labels
separated by commas.
(Assigned GO TO) Transfers control to
the statement most recently associated
with v by an ASSIGN statement.
IF (e) sl1,s2,s3 4.2.1
e is an expression.
si are executable statement labels.
(Arithmetic IF) Transfers control to
statement number si depending upon the
value of the expression. If the wvalue
of the expression 1is less than zero,
transfer to sl; if the wvalue of the
expression is equal to zero, transfer to
s2; 1if the value of the expression 1is
greater than zero, transfer to s3.
IF (e) st 4,2.2
e is an expression.
st is any executable statement except a DO or logical IF

IMPLICIT typ

typ

a

statement.

(Logical IF) Executes the statement if
the logical expression is true.

(al,al...)[,typlal,al...)]... 7.1
is a data type specifier.

is either a single letter, or two letters in alphabetical
order separated by a dash (i.e., x-y).

The elements a represent single (or a
range of) letter(s) whose presence as
the 1initial letter of a variable
specifies the variable to be of that
type.

FORTRAN LANGUAGE SUMMARY

OPEN (pl[.,pl...) 5.9.6

P is one of the following forms:
UNIT = e
NAME = n
TYPE 'OLD’
TYPE 'NEW'
TYPE = 'SCRATCH'
TYPE = 'UNKNOWN'
ACCESS 'SEQUENTIAL'
ACCESS 'DIRECT'
ACCESS = 'APPEND'
READONLY
FORM = 'FORMATTED'
FORM = 'UNFORMATTED'
RECORDSTIZE = e
ERR = s
BUFFERCOUNT
INITIALSIZE
EXTENDSIZE = e
NGCSPANBLOCKS
SHARED
DISPOSE 'SAVE! or DISP
DISPOSE 'KEEP' or DISP
DISPOSE = 'DELETE' or DISP
DISPOSE 'PRINT' or DISP
ASSOCTIATEVARIARLE = v
CARRTAGECONTROL = 'FORTRAN'
CARRTIAGECONTROL 'LIST'
CARRTAGECONTROL 'NONE'
MAXREC = e
BLOCKSTIZE = e

[l}

fl

e
e

[}

'SAVE'
'KEEP'
'DELETE'
'PRINT'

1]
Il

is an integer expression.

is an executable statement label.

is an integer variable name.

is an array name, variable name, array element name, or
alphanumeric literal.

S<uno

Opens a file on the specified logical
unit according to the parameters
specified by the keywords.

B-9 June 1977

FORTRAN LANGUAGE SUMMARY

PAUSE [disp] 4,7
disp is a decimal digit string containing one to five digits,
an alphanumeric literal, or an octal constant.
Suspends program execution and prints
the display, if one is specified.
PRINT See WRITE, Formatted Sequential 5.4.5
See WRITE, List-Direcced 5.7.5
PROGRAM nam 7.9
nam is a symbolic name.
Specifies a name for the main program.
5.4.1

READ (u,f[,END=s][,ERR=s])[list]

READ f[,list]

ACCEPT f[,list]
is an integer variable or constant.

u

£ is a FORMAT statement label or an array name.
S is an executable statement label.

list is an 1/0 list.

(Formatted Sequential) Reads one or more
logical records from unit u and assigns
values cto the elements in the list,
conver ted according to format

specification f.

FORTRAN LANGUAGE SUMMARY

READ(u[,END=s] [,ERR=8]) [list] 5.3.1
u is an integer variable or constant.
s is an executable statement label.
list is an 1/0 list.
(Unformatted Seguential) Reads one

unformatted record from unit u, and
assigns values to the elements 1in cthe

list.
READ(u'r [,ERR=s]) [list] 5.5.1
u is an integer variable or constant.
r is an integer expression.
s is an executable statement label.
list is an 1/0 list.

(Unformatted Direct Access) Reads record
r from unit u, and assigns values to the
elements in the list.,

READ (u,*[,END=s][,ERR=s])1list 5.7.1
READ *,list

ACCEPT *,list

u is an integer variable or constant.
* denotes list-directed formatting.

s is an executable statement label.
list is an 1/0 list.

(List-Directed) Reads one or more
logical records from unit u and assigns
values to the elements in the list,
converted -according to the data type of
the list element.

B-~-11 June 1977

FORTRAN LANGUAGE SUMMARY

RETURN
Returns control to the calling program
from the current subprogram.
REWIND u
u is an integer variable or constant.
Repositions logical wunit u to the
beginning of the currently opened file.
STOP [disp]
disp is a decimal digit string containing one to five

an alphanumeric literal, or an octal constant.

Terminate program execution and print
the display, if one is specified.

SUBROUTINE nam[([p{,pl...]1)]

nam is a sywmholic name.
o is a symbolic name.
Begins a SUBROUTINE subprogram,

indicating the program name and any
dummy argument names, p.

TYPE See WRITE, Formatted Seguential
See WRITE, List-Directed

Type Declaration
typ vi,v]...
typ is a data type specifier.

v is a variable name, array name, function or
entry name, or an array declarator. The
optionally be followed by a data type length
(*n) .

The symbolic names, v, are assigned the
specified data type in the program unit.

typ is one of:

DOUBLE PRECISION
COMPLEX
COMPLEX*8

REAL

4.8

digits,

(52]
o o
o« .
-

~1

7.2

function
name
specifier

can

FORTRAN LANGUAGE SUMMARY

REAL*4
REAL*8
INTEGER
INTEGER*2
INTEGER*4
BYTE
LOGICAL
LOGICAL*1
LOGTICAL*4

VIRTUAL a(d) [,a(d)]...

D.]
a(d) is an array declarator that specifies storage
space for a VIRTUAL array.
WRITE (u,f[,ERR=s])[list] 5.4.2

PRINT f[,list]

TYPE f[,list]

u is an integer variable or constant.

f is a FORMAT statement label or an array name.
s is an executable statement label.

list is an I/0 list.

(Formatted Seguential) Writes one or
more logical records to unit u
containing the values of the elements in
the 1list, converted according to format
specification f£.

B-13 June 1977

FORTRAN LANGUAGE SUMMARY

WRITE (u[,ERR=s])[list]

u is an integer variable or constant.
s is an executable scatement label.
lisc is an I/0 list.
(Unformatted Segquential) Writes one

unformatted record to unit u containing
the values of the elements in the list.

WRITE (u'r{,ERR=s]) [list]

u is an integer variable or constant.
r is an integer expression.
s is an executable statement label.
list is an 1/0 list.
(Unformatted Direct Access) Writes

record r to unit u containing the values
of the elements in the list.

WRITE (u,*[,ERR=s])1list
PRINT *,list

TYPE *,list

u is an integer variable or constant.
* denotes list-directed formatting.

s is an executable statement label.
lisc is an I/0 list.

(List-Directed) Writes one or more
logical records to unit u containing the
values of the elements 1in the list,
converted according to the data type of
the list element.

June 1977

FORTRAN LANGUAGE SUMMARY

Table B-1
FORTRAN Library Functions

ARGUMENT RESULT

FORM DEFINITION TYPE TYPE
ABS (X) Real absolute value Real Real
IABS5 (1) Integer absolute value Integer Integer
DABS (X) Double precision absolute value Double Double
CABS (2) Complex to Real, absolute value

where Z=(x,y)

CABS (2) = (x2+y2)1/2 Complex Real
FLOAT (I) Integer to Real conversion Integer Real
IFIX(X) Real to Integer conversion

IFIX(X) is eguivalent to INT(X) Real Integer
SNGL (X) Double to Real conversion Double Real
DBLE (X) Real to Double conversion Real Double
REAL (2) Complex to Real conversion,

obtain real part Complex Real
AIMAG (Z) Complex to Real conversion,

obtain imaginary part Complex Real
CMPLX (X,Y) Real to Complex conversion

CMPLX (X,Y)=X+i*Y Real Complex

Truncation functions return the sign of
the argument * largest integer < |arg

AINT (X) Real to Real truncation Real Real
INT (X) Real to Integer truncation Real Integer
IDINT (X) Double to Integer truncation Double Integer

Remainder functions return the remainder
when the first argument is divided by
the second.

AMOD (X, Y) Real remainder Real Real
MOD(I,J) Integer remainder Integer Integer
DMOD (X, Y) Double precision remainder Double Double

Maximum value functions return the
largest value from among the argument
list; 2 2 arguments.

AMAX@(I,J,...) Real maximum from Integer list Integer Real
AMAX1(X,Y,...) Real maximum from Real list Real Real
MAX@(I,J,...) Integer maximum from Integer list Integer Integer
MAX1(X,Y,...) Integer maximum from Real list Real Integer
DMAX1(X,Y,...) Double maximum from Double list Double Double

Minimum value functions return the small-
est value from among the argument list;
2 2 arguments.

AMIN@ (I,J,...) Real minimum of Integer list Integer Real
AMIN1(X,Y,...) Real minimum ¢f Real list Real Real
MING(I,J,...) Integer minimum of Integer list Integer Integer
MIN1(X,Y,...) Integer minimum of Real list Real Integer
DMINL (X,Y,...) Double minimum of Double list Double Double

FORTRAN LANGUAGE SUMMARY

Table R-1 (Cont.)
TORTRAM Library Functions

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE
The transfer of sign functions return
(sign of the second argument) * (absolute
value of first argument).
SIGN(X,Y) Real transfer of sign Real Real
ISIGN(I,J) Integer transfer of sign Integer Integer
DSIGN(X,Y) Double precision transfer of sign Double Double
Positive difference functions return the
first argument minus the minimum of the
two arguments.
DIM(X,Y) Real positive difference Real Real
IDIM(I,J) Integer positive difference Integer Integer
Exponential functions return the value
of e raised to the argument power.
EXP (X) e Real Real
DEXP (X) e, Double Double
CEXP (Z) e Complex Complex
ALOG (X) Returns log (X) Real Real
ALOGlg (X} Returns lcglg(x) Real Real
DLOG (X) Returns logg (X) Double Double
DLOG1@ (X) Returns 1ogl¢(x) Double Double
CLOG (Z) Returns loge of complex argument Complex Complex
SQRT (X) Square root of Real argument Real Real
DSQRT (X) Square root of Double precision argument Double Double
CSQRT (2) Square root of Complex argument Complex Complex
SIN(X) Real sine Real Real
DSIN (X) Double precision sine Double Double
CSIN(2) Complex sine Complex Complex
COS (X) Real cosine Real Real
DCOS (X) Double precision cosine Double Double
CC0OS (2) Complex cosine Complex Complex
TANH (X) Hyperbolic tangent Real Real
ATAN (X) Real arc tangent Real Real
DATAN (X) Double precision arc tangent Double Double
ATAN2(X,Y) Real arc tangent of (X/Y) Real Real
DATAN2 (X,Y) Double precision arc tangent of (X/Y) Double Double
CONJG (Z) Complex conjugate, if Z=X+i*Y
CONJG (2)=X-1i*Y Complex Complex
RAN(I,J) Returns a random number of uniform distri- Integer Real

bution over the range @ to 1.

tially to @. Resetting I and J to @ re-
generates the random number sequence.

Alternate starting values for I and J will
generate different random number sequences.

See also Appendix C.3.

I and J must
be integer variables and should be set ini-

FORTRAN LANGUAGE SUMMARY

FORTRAN LANGUAGE SUMMARY

18

[ev]
[

FORTRAN LANGUAGE SUMMARY

| PDF ... Ihtg’fnil B
'} Name ..{ Name . -

. TIDIM | SIDIM
CJIDIM) SIDIM)
| DIM . | SDIM -

) DDIM - | $DDIM .- |:

| 1IDIM | SIDIM .
| JIDIM |- $JIDIM

SFLOAT -

_gg};m

$REAL

“Integer-2] -
| . Integer-4 | Integer<4]| .)
| Real . | “Real . | AMOD $AMOD
Double -~ | ‘Double . DMOD | $DMOD

. Integex=2'

“Integer-2 | IISIGN | $ISIGN
. Integex~4| JISIGN | $JISIGN
| Real SIGN $SIGN
- pouble DSIGN | SDSIGN

 Integer-2

| ‘Integer-2 | 1nteger-2| rrsren| srsian
. Integer-4 | “Integer-4| JBIGN | $JISIGN

FORTRAN LANGUAGE SUMMARY

B-20

FORTRAN LANGUAGE SUMMARY

APPENDIX C

FORTRAN PROGRAMMING EXAMPLES

Four examples of FORTRAN programs are given below. These examples are
intended to show possible methods of handling input/output, iterative
calculations, the FORTRAN Library functions, and subprogram usage in
the context of problems likely to face a FORTRAN programmer. These
particular programs should not be considered as the correct or optimal
approach to the specified problems since many other methods are
possible in each case.

The program in example one performs linear regression on a set of X,Y
coordinates. The program uses standard formulae to calculate the
slope and intercept of the 1line which best fits the data points
entered. The program listing and a sample run follow:

EXAMPLE 1 LISTING:

TYPE 10
S TYPE 20

ACCEPT 30N

IF (N .LE. O) 8TOP

TYPE AO0sN

SIGMXY = O

816MX = O

EIOCMY = O

SIOMXX = O

00 100y Jmi,N
ACCEPT S0¢XoY
S8IGMXY = SIGMXY + XxY
SIGMX = SIGMX + X
SIGMY = SIGMY + Y
BIGMXX = SIGMXX + XxX

100 CONTINUE

A = (SIBMXY-SIOMXRSIGMY/N) / (SIGMXX-B8IGMXKSIGMX/N)

P = (SIGHMY-ARSIGMX)/N

TYPE 60rAYB

GO TO S

FORMAT STATEMENTS

aono

10

20
30
40
50

FORTRAN PROGRAMMING EXAMPLES

FORMAT (//’ TH18 PROGRAM FERFORMS LINEAR REGRESSION’/
1 / THE LINE WHICH BEST FITS A SET OF X»Y PAIRS IS CALCULATED.’)

FORMAT (/’ TYPE IN THE NUMBER OF X»Y PAIRS! ’‘$)

FORMAT (I2)
FORMAT (’ TYPE IN ’»12,’ LINES OF XsY PAIR8.’/)

FORMAT (2F8.3)
FORMAT (/’ THE BEST FIT IS Y='/,F8.3s’ X=’»F8,3)

END

FORTkAN PROGRAMMING EXAMPLES
EXAMPLE 1 SAMPLE RUN:
MCR>RUN EXMPL1S
THIS PROGRAM PERFORMS LINEAR REGRESSION

THE LINE WHICH BREST FITS A SET OF X»Y PAIRS IS CALCULATED,

TYPE IN THE NUMBER OF XrY PAIRS!: 17
TYPE IN 17 LINES OF X»Y PAIRS.

1.1 4.7
2.2 ?.4
4.1 ?.9
.3 14,6
6.7 23.1
8.0 29.9
10.1 37.1
11.5 41,3
13.6 54,7
1.8 89,2
17.9 64,7

19,85 71.2
22,3 79.8
23.1 81.4
25.3 #88.8
26.9 91.9
27,3 95.4

THE BEST FIT IS Y= Je837 X= 0.340

TYPE IN THE NUMBER OF XY PAIRS! 4
TYPE IN & LINES OF X»Y PAIRS.

0041 "403
0099 ”702
0.31 -3.4
0.02 ~0.7
0.76 -5.9
0.43 -4.4

THE BEST FIT I8 Y= =46.304 X= -1,282

TYFE IN THE NUMBER OF XsY PAIRS! O
EXMPL1L -~ STOP

The program in example two manipulates data representing test

scores.

The scores are read from the source file, placed in descepding order,
and sent to an output file. Then the absolute total and hlstogram of
the test scores in each 10-point interval are output on the terminal.

The program listing and a sample run follow:

FORTRAN PROCRAMMING EXAMPLES

EXAMPLE 2 LISTING:

LOGICALX1 STARS(80)
INTEGER ARRAY(200)sHIST(10)
DATA STARS /80X’ %’/
DATA HIST / 10%0/
D0 100y I=1,200
READ(1,205END=105) ARRAY(I)
100 CONT INUE
105 ISIZE = I-1
no 120, J=1,181ZE-1
D0 110s K=J+1,ISIZE
IF CARRAY (J) +GE,ARRAY (K)) GO TO 110
ITMF = ARRAY ()

ARRAY (J) = ARRAY(K)
ARRAY(K) = ITHP

110 CONTINUE

120 CONTINUE

Do 12%, K=1,ISIZE
WRITE(2y20) ARRAY(K)
125 CONTINUE
00 130, K=1,I8IZE
N = (MINO(ARRAY(K)y99) - 1) / 10 + 1
HIST(N)Y = HIST(N) + 1
130 CONTINUE
TYFE 335
no 150y K=10-,100+10
TYFE 40y HIST(K/10)y K~-%y K
IF(HIST(K/10) .EQ., 0) GO TO 150
TYPE 45, (STARS(M)y M=1 HIBT(K/10))

150 CONTINUE
TYFE S0+ ISIZE
STOF

C

C FORMAT STATEMENTS

Cc

20 FORMAT(I3)

315 FORMAT(//1X»*The number of test scores and a histodram’/
1 in each 10 point interval follows!’/)

40 FORMAT(/1X»I3»’ in the range ‘sI3s’ to ‘si3sH)

45 FORMAT(LH+»2Xy80A1)

50 FORMAT(//’ The total number of test scores = ’»I3)
ENID

c-4 June 1977

FORTRAN PROGRAMMING EXAMPLES

EXAMPLE 2 SAMPLE RUN:

MOR=RUN EXMFL2$

The mumber of test scorves and a8 histodram
in each 10 roint interval follows:

1 in the rande 1 to 10 X%

8]

in the range 11 to 20 %X

58]

in the rande 21 to 30 XX

10 in the rande 31 to 40 kkkkKXKKKK

13 in the range 41 to S0 kkxkokkRkkkk

11 irm the rande 51 to 60 kKKKKKKRKKXK

19 in the rande 61 to 70 XKKKKKKKKKKRKKKKKKK

35 in the range 71 to 80 XROKKIORKKKKKIKOKKKKKKKRKKKKAORK KKK K KKK

40 in the randge 81 to F0 KKKKKIOKKKKKKK KKK KK KK KKK KKK KK KK KK KKK KKK

17 in the rande 91 to 100 kkRkERKKKKKKKKKKK

The total rnumber of test scores = 150

Example three shows a method of calculating the prime factors of an
integer. A simple table 1look-up method was used to determine the
necessary primes. Note the unusual use of FORTRAN carriage control to
facilitate the prime factor output. MOD is a Library function and is
described in Appendix B. The program 1listing and a sample run
follow:

EXAMPLE 3 LISTING:

INTEGER PyHOLD
TYFE G0
80 TYPE 100
ACCEFT 1035, NUMBER
IF (NUMBER .LE. 0) STOF
TYPE 110
ISART = SART(FLOAT(NUMEBER))
Po=1
IFLAG = 0
HOLD = NUMBER
IF (HOLD .LE. 3) GO TO 240
200 P = NPRIME(P)
205 IREM = MOD(HOLL»F)
IF (IREM .EQ. 0) GO TO 400
IF (F JLE. ISQGRT) GO TO 200
IF (IFLAG .NE. 0) GO TO 300
240 TYPE 250yNUMRER
60 TO 80

Cc~5 June 1977

FORTRAN PROGRAMMING EXAMPLES

300 IF (HOLD .G6T, 1) TYPE 350,HOLD
GO TO 80
400 IFLAG = 1

HOLD = HOLD/P
IF (HOLD ,EQ. 1) GO TO 3500

TYPE 450.P
GO TO 205

500 TYPE 350sP
GO TO 80

c

c FORMAT STATEMENTS

c

50 FORMAT (//1Xs’/THIS IS A PROGRAM TO FIND THE PRIME FACTORS OF’,
1 / AN INTEGER < 32767.’/’ ENTERINO A NEGATIVE OR ZERO’»
2 ‘ NUMBER TERMINATES EXECUTION.’/)

100 FORMAT (//’ ENTER % ‘%)

105 FORMAT (I5)

110 FORMAT (/)

250 FORMAT (1H+s15’ IS A FRIME NUMBER)

350 FORMAT (1H+,I5,%)

450 FORMAT (1H+»ISe "% »$)

END

FUNCTION NPRIME(OLD)

DIMENSION MPRIME(44)

INTEGER OLD

DATA MPRIME/2:39S5y7911913917919,23+29931:37941943947y
1 53,59 ,41167r71973979983,89+979101,103,1079109¢113»
2 1927,131,1379139r149,1519157»163+,167,173,179+181

3 191,193,197:199/

IF (OLD +EQs 1) N = O

N =N+ 1

NPRIME = MPRIME(N)

RETURN

END

EXAMPLE 3 SAMPLE RUN:

MCR>RUN EXMPL3$

THIS IS A PROGRAM TO FIND - PRIME FACTORS OF AN INTEGER < 32767.
ENTERING & NEGATIVE OR ZERU “UMBER TERMINATES EXECUTION.

~

ENTER # 3983

7% 549

ENTER # 32761
181% 181

ENTER # 32749

32749 1S A PRIME NUMBER

ENTER &
2%

ENTER &
3%

ENTER &
7%

ENTER #

FORTRAN PROGRAMMING EXAMPLES

8192
2% 2% 2% 2% 2% 2% 2%

32751
3% 3% 1213

32747
Jix 151

4099

4099 I8 A PRIME NUMBER

ENTER #
EXMPL3

0
-~ STOP

2% 2% 2%

Example four demonstrates a simple way to generate random numbers in a

given range using the FORTRAN Library function RAN,

and sample run follow:

EXAMPLE

100

10

20
30
40
50
60

4 LISTING:

REAL MAXsMIN

TYPE 10

TYPE 20

ACCEPT 30sJ

TYPE 40

ACCEPT 60» MIN

TYPE %0

ACCEPT 40, MAX

L =0

M=0

DO 100s K=1,.)
X = RAN(LsM) % (MAX-MIN) + MIN
TYPE 60» X
WRITE (2+60) X

CONTINUE

8TOP

FORMAT STATEMENTS

A program listing

FORMAT(//1X»’THI8 I8 A PROGRAM TO BENERATE A FILE OF’,

1 / RANDOM #’’8 IN A GIVEN RANGE.’/)

FORMAT(1X» ‘ENTER THE NUMBER OF RANDOM #’‘8 TO GENERATE!’($)

FORMAT(I3)

FORMAT(1X» ‘ENTER THE MINIMUM VALUES‘»$)
FORMAT (1X» ‘ENTER THE MAXIMUM VALUE!’r$)
FORMAT(F10.4)

END

FORTRAN PROGRAMMING EXAMPLES

EXAMPLE 4 SAMPLE RUN:

MCR>RUN EXMPLAS

THIS 18 A PROGRAM TO GENERATE A FILE OF RANDOM #‘8 IN A GIVEN RANGE.

ENTER THE NUMBER OF RANDOM #’8 TO GENERATE!40
ENTER THE MINIMUM VALUE!-5.0
ENTER THE MAXIMUM YALUE!S.0
-4,8445
-4,53846
~3.46130
‘009307
~2,4673
2.6721
~1.,7612
~-4,46161
-1.84%59
0.4490
-0.35726
2.3432
-0.7876
4,1861
2.20446
‘404474
3.4746
0.,8739
3.9721
‘450326
0.0559
-3.3713
-0.7312
-4,0458
2,3062
0.2498
0.7423
2.2060
-3.,4453
-0 .52%4
-2+.1444
1.8604
0.44644
‘309575
2.0757
-1.9288
-0,2538
-4.14638
-2.46987
1.2823
EXMPL4 -- STOP

APPENDIX D

VIRTUAL ARRAYS

D.1 INTRODUCTION TO VIRTUAL ARRAYS

User programs executing on a PDP-11 family computer can directly
address at most 65,536 bytes (64K bytes) of main memory at any
instant. This main memory can contain a mixture of FORTRAN compiled
code, variables and arrays, and external procedures. Program overlays
permit larger programs to be executed in the directly-addressable main
memory. Virtual arrays provide another mechanism for processing large
arrays that would otherwise exceed the 64K byte limit on
directly-addressable memory.

A virtual array is an array whose storage is allocated in physical
main memory outside of the program's directly-addressable main memory.
The use of virtual arrays in a program frees directly-addressable
memory for executable code and other data storage.

NOTE

Virtual arrays are not supported in all
PDP-11 FORTRAN implementations. Virtual
arrays are available in Version 2 of the
FORTRAN IV compiler for the RSX-11M and
RT-11 operating systems.

D.2 VIRTUAL STATEMENT

The VIRTUAL statement defines the number of dimensions in a wvirtual
array and the number of elements in each dimension. The VIRTUAL
statement is similar in form and wusage to the DIMENSION statement
(Section 7.3).

The VIRTUAL statement has the form:
VIRTUAL a(d) [, a(d)]...

a is the symbolic name of an array.

d is a dimension declarator.
Each a(d) is an array declarator as described in Section 2.6.1.
The VIRTUAL statement allocates a number of (virtual) storage
locations to each array named in the statement. For further
information concerning arrays and the storage of array elements, see
Section 2.6.

The data type of a virtual array is specified in the same way as the
data type of a variable or an array; that is, implicitly by the

pD-1 June 1977

VIRTUAL ARRAYS
initial letter of the name, or explicitly by a type declaration
statement.
The name of a virtual array can appear in a type declaration
statement; however, in each program unit, an array name can appear in
only one array declarator. The name of a virtual array cannot appear
in a COMMON statement, EQUIVALENCE statement, or DATA statement.
VIRTUAL statements must not be labeled.

Examples

VIRTUAL A(100), B(100,100)
VIRTUAL C(4,4,4,4,4)

D.3 SIZE OF VIRTUAL ARRAYS

The VIRTUAL statement allocates a number of storage locations for each
element in each dimension of the array. Each storage location is one,
two, four or eight bytes in length, as determined by the data type of
the array. The total number of elements in the array is equal to the
product of all dimension declarators in the array declarator.

A VIRTUAL array can have a maximum of 32767 elements; each element
requires from one to eight bytes of storage. Thus a maximum size
LOGICAL*1 virtual array requires 32767 bytes of physical main memory;
a maximum size REAL*8 virtual array requires 262,136 bytes of physical
main memory.

The declaration of a virtual array does not significantly reduce
directly-addressable memory available to the program. VIRTUAL arrays
are constrained, however, by the total amount of physical main memory
available in the system. If adequate memory 1is not available to
contain all virtual arrays declared in a program, the program cannot
be executed. Refer to the appropriate FORTRAN User's Guide for
additional information on size constraints.

D.4 RESTRICTIONS ON VIRTUAL ARRAY USAGE

The names of virtual arrays and virtual array elements must not be
used in some contexts:

1. A virtual array name must not be used in a COMMON statement
(Section 7.4).

2. The name of a virtual array or virtual array element must not
be used in an EQUIVALENCE statement (Section 7.5).

3. A virtual array or virtual array element cannot. be assigned
an initial value by a DATA statement (Section 7.7).

4. Virtual arrays cannot be used to contain object time format
specifications (Section 6.6). The name of a virtual array or
virtual array element must not appear as a format specifier
in a READ, WRITE, PRINT, TYPE, ACCEPT, ENCODE or DECODE
statement.

5. The name of a virtual array or virtual array element must not

be specified as the buffer argument (third argument inside
parentheses) of an ENCODE or DECODE statement (Section 5.10).

D=2 June 1977

VIRTUAL ARRAYS

6. The name of a virtual array element must not be used as an
actual argument to a subprogram if the subprogram assigns a
value to the corresponding dummy argument.

Examples
Valid Usage

VIRTUAL A(1000), B(2000)
READ(1,*) A
DO 10,I=1,1000

10 B(I)=-A(I)*2
WRITE(2,*) (A(I),I=1,1000)
CALL ABC(A,B)

Invalid Usage

DIMENSION B(10)
VIRTUAL A(10)
DATA A(l)/2.5/ (Used in DATA statement)

COMMON /X/ A (Used in COMMON statement)
EQUIVALENCE (B,A) (Used in EQUIVALENCE statement)
EQUIVALENCE (A(1),X) (Used in EQUIVALENCE statement)
WRITE(1,A) (B(I),I=1,10) (Used as format specifier)
ENCODE (4,100,A(3)) X,Y (Used as ENCODE output buffer)

D.5 VIRTUAL ARRAY REFERENCES IN SUBPROGRAMS

Actual and dummy arguments become associated at the time control is
tranferred to a subprogram (Section 8.1). Actual and dummy arguments
that become associated must agree in data type. A dummy argument
declared as a non-virtual array can only become associated with an
actual argument that is a non-virtual array or array element. A dummy
argument declared as a virtual array can only become associated with
an actual argument that is also the name of a virtual array.

An actual argument which is a reference to a virtual array element can
only become associated with a dummy argument which is declared as a
simple variable (Section 2.2). 1In effect, an actual argument that is
a virtual array element 1is treated as an expression. A value must
have been assigned to the element before it is wused as an actual
argument. The subprogram must not alter the value of the
corresponding dummy argument. Note that neither of these restrictions
applies to the use of a non-virtual array element as an actual
argument.

D-3 June 1977

VIRTUAL ARRAYS

Examples
Valid Usage
VIRTUAL A(1000) ,B(1000)

WRITE(5,*) SCALE(A,1000,B(3))
END

REAL FUNCTION SCALE (X,N,W)
VIRTUAL X(N)
$=0.
DO 10, I=1,N
10 S=S+X(I)*W
SCALE=$§
END

Invalid Usage
VIRTUAL A(1000)

REAL B(4000)
CALL ABC(A, B, A(3))

END

SUBROUTINE ABC(X,Y,Z)

REAL X(1000) (Invalid; actual argument is wvirtual)

VIRTUAL Y (4000) (Invalid; actual argument is
non-virtual)

Z=2.3 (Invalid; actual argument is virtual

array element)
END

D-4 June 1977

A

A field descriptor, 6-8, 6-9
A format, 6-15
Absolute value of integer
constant, 2-4
ACCEPT statement, B-2, B-10,
B-11
formatted, 5-9
list-directed, 5-17
Acceptable input constants,
5-15
ACCESS keyword, 5-23, 5-24
Access, shared, 5-26
Actual arguments, 2-11, 8-1,
8-2, 8-7
Actual arguments, associating
dummy and, 8-1
Actual record length, 5-25
Addition, 2-17
Adjustable array declarator,
2-15
Adjustable arrays, 2-15, 8-7
Alignment, word boundary, 7-8
All-blank field, 6-2, 6-4
Allocation,
default, 2-4

4-pbyte, 2-4
Allocating storage locations,
7-3

All-zero statement label, 1-6
Alphanumeric data, trans-
mission of, 6-8
Alphanumeric literal field
descriptor, 6-20
Alphanumeric literals, 1-1,
2-3, 2-8, 2-9, 5-7, 5-16,
6-10
Altering format specifications
during program execution,
6-18
American National Standard
FORTRAN X3.9-1966, 1-1
.AND., 2-22
Angle brackets, 6-14
Apostrophe character, 2-8,
5-16, 6-10
Appended spaces, 2-9
Area, l-byte storage, 2-4
Arguments,
actual, 2-11, 8-1, 8-7
associating dummy and
actual, 8-1
defined, 2-11

INDEX

Arguments, (cont.)
dummy, 2-11, 4-10, 8-1, 8-7
function references used as,
7-9
in an ENTRY statement,
dummy , 8-6
integer dummy, 2-16
in the CALL statement, 4-10
list, 4-10
subprogram, 8-1
actual, 8-1
dumnmy, 8-1
values, dummy, 2~15
Arithmetic
assignment statement, 3-1
elements, 2-16, 2-17
expression, 2-16, 2-20, 8-2
.expression, data type of an,
2-19
IF statement, 4-4
operators, 2-16, 2-17, B-1
statement functions (ASF),
2-2, 8-2, B-2
Arithmetic/logical assignment,
B-2 :
Array, data type of an, 2-14
Array declarator, 2-12, 7-3,
7-5, 7-11
adjustable, 2-15
interaction, ENTRY and, 8-7
Array elements, 2-1, 2-11
assigning values to variables
and, 7-10
filling, 7-10
storage, LOGICAL*1l, 2-14
transmitting, 5-4
Array format specifications,
constructing, 6-20
Array name, 2-12, 2-13, 7-5
unsubscripted, 2-15, 4-10,
7-10
Array reference, 5-4
Array reference, subscripted,
2-13
Array references without sub-
scripts, 2-14
Array size, dummy, 2-15
Array storage, 2-13, 2-14,
equivalence, 7-7
Array, unsubscripted, 5-3
Arrays, 2-1, 2-2, 2-11, 2-12,
5-2, 6-18
l-dimensional, 2-12
2-dimensional, 2-12
3-dimensional, 2-12

Index-1

INDEX (Cont.)

Array,
adjustable, 2-15, 8-7
defining, 7-2
defining dimensions in, 7-3
making equivalent, 7-6
packing, 5-3
processing multidimensional,
5-5
with non-unity lower bounds,
equivalencing, 7-7
ASCII
characters, 2-8, 6-20
character set, A=-2
null character, 5-24
octal equivalents of Radix-50
characters, A-3
ASF (Arithmetic Statement Func-
tion), 8-2
dummy arguments in, 8-2
reference, 8-2
ASSIGN statement, 3-4, 4-3,
Assigned GO TO statement, 4-
Assigning,
data types, 7-2
initial values in common
blocks, 8-8
LOGICAL*1l elements to
COMMON, 7-4
storage locations, 7-6
values, 3-2
values to list elements, 5-3
values to variables and
array elements, 7-10
Assignment,
arithmetic/logical, B=-2
Assignment operator, 2-9
Assignment statements, 3-1
arithmetic, 3-1
conversion rules for, 3-2
logical, 3-3

B-2
3

Associated variables, 2-10, 5-21

ASSOCIATEVARIABLE keyword,
5-23, 5-27

Associating dummy and actual
arguments, 8-1

Asterisk (*), 1-8, 5-3, 6-3,
6-4, 7-9

Attribute specifications, 5-22

Auxiliary I/0 statement, 5-2

BACKSPACE statement, 5-20, B-3
Backspacing over list-directed
records, 5-14

Base elements, 2-18
Basic component, 2-16
Basic real constant, 2-5, 2-6
Beginning of a record, 5-15
Binary data, 5-1
Binary operator, 2-9, 2-17
Blank, ~
see Space or Space character
Blank COMMON, 7-5
Blank common block, 7-4
Block, blank common, 7-4
boundaries, crossing disk,
5-26
common, 2-2
see also common blocks
data subprograms, 2-2
name, common, 7-4
size, physical, 5-28
BLOCK DATA statement, 8-4, B-3
BLOCK DATA subprogram, 8-8
statements allowed in, 8-8
specification statements in,
8-8 ‘
BLOCKSIZE keyword, 5-23, 5-28
Blocks of storage, 7-4
Bound,
dimensions, 2-15
lower, 2-12
upper, 2-15
Boundary alignment, word, 7-8
Boundary, even, 7-4
Boundary, word, 7-4
Brackets, angle, 6-14
left, 1-4
right, 1-4
BUFFERCOUNT keyword, 5-23, 5-26
Bypassing input records, 6-16
Byte, 2-3
Byte strings, 2-8
Byte, zero, 5-24

C

C (letter), 1-3, 1-6
Calculations, iterative, C-1
CALL statement, 4-9, 4-10, 7-9,
8-1, 8-4, B-3
CALL statement, argument in the,
4-10 '
Calling program unit, 4-10
Carriage control, 6-21
Carriage control character,
6-11
Carriage control characters,
6-16
table, 6-16

Index-2

INDEX (Cont.)

Carriage control processing,
5-27
CARRIAGECONTROL keyword, 5-23,
5-27
Case,
lower, x
upper, X
Character,
apostrophe, 2-8
carriage control, 6-11, 6-16
colon (:), 6-11
count, 2-8, 2-10
dollar sign ($), 6-11
first of output record, 6-21
first record, 6-16
form, 5-1
position 72, 1-7
position of the external
record, 6-10
printable, 1-4
Radix~50, 2-10
space, ix, 1-6, 2-10
special, 1-4
tab, ix, 1-6
Character set,
ASCII, A-2
FORTRAN, 1-3, A-1l
Radix~50, A-3
Characters,
maximum number stored in
variable, 6-8
non-printing, ix
remaining input, 6-11
Classes of symbolic names, 2-2
CLOSE statement, 5-28, B-3
Code values, Radix-50, 2-10
Coding form, FORTRAN, 1-5
Coding forms, using FORTRAN,
1-5
Colon (:) character, 6-11
Colon (:) descriptor, 6-1l1
Column
number, 2-12
one, l-6
one through five, 1-6
six, 1-7
seven, 1-7
seven through 72, 1-7
seventy-two, 1-7
Commas, 5-15, 6-16
as a null field designator,
6~21
consecutive, 5-14
successive, 6-18
Comment, 1-6
line, 1-7, 1-9
indicator, 1-6

Index-3

Comments, 1-3
COMMON,
assigning LOGICAL*1 elements
to, 7-4
blank, 7-5
block, 2-2, 2-16, 7-4
blank, 7-4
extending, 7-8
name, 7-4
blocks, assigning initial
values in, 8-8
interaction, EQUIVALENCE
and, 7-8
named, 7-5
referencing data in, 7-5
statements, 2-11, 7-4, 7-5
B-3
Complex, 2-2, 2-3, 2-19
constant, 2-7, 5-14
data editing, 6-12
expressions, 2-21
number, 2-7
operations, 2-20
value, 6-12
Complex*8, 2-3
Components, FORTRAN statement,
2-1
Computed GO TO statement, 4-2
Computing procedure, 1-3, 8-2
Condition,
end-of-file, 5-2
error, 5-2
Conditional
control transfers, 4-4
statement execution, 4-4
Consecutive commas, 5-14
Consecutive slashes, 6-16
Conserving file storage space,
5-6
Constant, 2-4, 5-14
absolute value of an integer,
2-4
complex, 2-7, 5-14
double precision, 2-6
Hollerith, 2-8
input, 5-14
integer, 2-4, 2-5, 2-7
logical, 2-8, 5-14
magnitude of a real, 2-6
negative double precision,
2-6
negative integer, 2-4
octal, 2-7
positive integer, 2-4
Radix-50, 2-9, 2-10
real, 2-5

INDEX (Cont.)

Constant, (Cont.)
truncated, 2-9
values, 7-10
Constants, 2-1, 7-10
acceptable input, 5-15
data types of symbolic
names as, 7-11
giving symbolic names to,
7-11
integer, 2-16
parameter, 2-2
octal, 2-19
repetition of, 5-14
Constructing array format
specifications, 6-20
Contiguous storage areas, 7-4
Contiguous storage locations,
2-11
Continuation
field, 1-7
indicator, 1-7
lines, 1-3, 1-9
CONTINUE statement, 4-9, B-4
Control
character, carriage, 6-11,
6-15
DO iteration, 4-6
format
see format control
interaction with I/O lists,
format, 6-18
statements, 4-1
transferring, 4-1
transfers, 4-9, 8-1
conditional, 4-4
in DO loops, 4-8
variable, 4-5, 4-6, 5-4
Conventions, documentation, ix
Conversion,
data, 6-1
double precision, 2-20
rules for assignment state-
ments, 3-2
Converting data to internal
format, 5-7
Count, character, 2-10
group repeat, 6-14
Hollerith, 6-14
iteration, 4-6
repeat, 6-1, 6-14
Creating a source program, 1-5
Crossing disk block boundaries,
5-26

D

D exponent field indicator, 6-5
D field descriptor, 6-6
D, (letter), 1-6, 2-6
D specification, overriding, 6-21
Data, 5-12
alphanumeric, transmission of,
6-8
conversion, 6-1, 6-2, 6-4
editing complex, 6-12
field format, 6-1
fields, undersized input, 1-2
integer, 2-11
logical, 2-17
magnitude, effect on G format
conversions, 6-7
referencing in COMMON, 7-4
rounding numeric, 5-9
statement, 2-9, 2-11, 7-10, B-4
transfer, 5-2, 5-8, 5-29
translation of, 6-2
transmission, 5-3, 6-2
transmission of, 6-8
Data type, 2-2, 2-8, 2-10, 2-11,
2-19, 5-2, 6-8, 6-15, 8-1
by implication, 2-11
INTEGER*2, 2-5
INTEGER*4, 2-5
length specifier, 2-3
of an arithmetic expression,
2-19
of an array, 2-14
rank, 2-19
specification, 2-11
storage requirements, 2-3
Data types,
assigning, 7-2
default, 7-2
defining, 7-2
of symbolic names, 7-2
of symbolic names as constants,
7-11
of the list element, 5-15
overriding, 7-2
overriding implied, 7-1
Debug statement indicator, 1-6
Debugging statements, 1-2
Decimal point, 2-4, 6-12, 6-20
moving, 6-12, 6-13
Declaration, explicit type, 2-11
Declaration statements, type,
7-2, 7-3
Declarator,
adjustable array, 2-15
array, 2-12, 7-11

Index-4

INDEX (Cont.)

Declarator, (Cont.) Direct access (Cont.)
dimension, 2-12, 2-16 READ statement
variable dimension, 2-15 formatted, 5-12
DECODE statement, 5-29, B-4 unformatted, 5-11
Default WRITE statement
allocation, 2-4 formatted, 5-13
data types, 7-2 unformatted, 5-12
field descriptors, 6-15 Directory-structured device, 5-20
field descriptor values, 6-15 Disconnecting a file, 5-28
table, 6-15 Disk file, 5-28
formats, 5-16 Disk unit, 5-26
DEFINE FILE statement, 5-20, Display, printing the, 4-11
5-21, B-4 DISPOSE keyword, 5-23, 5-27
Defined variable, 2-11 Division, 2-17
Defining DO iteration control, 4-6
arrays, 7-2 DO list, implied, 5-4
data types of symbolic names, DO loop, 5-4, 8-6
7-2 control transfers in a, 4-8
dimensions in an array, 7-3 nested, 4-7, 4-8
DELETE, 5-27 range of the, 4-5, 4-6, 4-7
Delimiting periods, 2-8, 2-20, terminal statement, 4-5
2-22 DO range, executions of the, 4-6
Descriptor, DO statement, 4-5, 4-6, 5-4, B-5
(colon), 6-11 extended range rules, 4-9
$§ (dollar), 6-11 Documentation conventions, ix
field, 6-1, 6-2 Dollar sign ($)
see also Field descriptor character, 6-11, 6-16
Designating user-supplied sub- descriptor, 6-11
programs, 7-9 Double precision, 2-2, 2-3, 2-18,
Designator, null field, 2-19, 6-6
comma as, 6=21 constant, 2-6
Destination statement, 4-8 conversion, 2-20
Determining the field width negative constant, 2-6
specification, 6-21 operations, 2-20
Device, Double quote, leading, 2-7, 6-20
direct access, 5-11 Dummy array size, 2-15
directory-structured, 5-20 Dummy arguments, 2-2, 2-11, 4-10,
1/0, 5-~2 7-6, 8-1, 8-7
peripheral, 5-2 and actual arguments,
Dimension associating, 8-1
bound, 2-15 in an ASF, 8-2
declarator, 2-12, 2-16 in an ENTRY statement, 8-6
lower bound, 2-13 integer, 2-15, 2-16
upper bound, 2-13 values, 2-15

variable, 2-15
statement, 7-3, B-5
Dimensions, 2-12

Dimensions in an array, E
defining, 7-3
Direct access - E field descriptor, 6-5
device, 5-11 Editing, complex data, 6-12
files, 5-1, 5-21, 5-25, 5-27 Editor, using a text, 1-5
1/0 Effect of
formatted, 5-1, 5-12 data magnitude on G format
statement, 5-21 conversions, 6-7
unformatted, 5-1, 5-11 exponent in an external
field, 6-21

Index-~5

INDEX (Cont.)

Effect of, (Cont.)
parentheses, 2-18
the scale factor, 6-13
Elements,
arithmetic, 2-16, 2-17
array, 2-1
see also Array elements
assigning values to list, 5-3
logical, 2-21
of a FORTRAN program, 1-3
Ellipsis (...), x
ENCODE statement, 5-29, B-5
End of a
program unit, 4-12
record, 5-15
End-of-file
condition, 5-2, 5-18, 5-19
record, 5-18, 5-20
transfer of control on, 5-18
END= specification, 1-1, 5-18,
B-6
END statement, 1-3, 4-12, B-5
ENDFILE statement, 5-20, B-5
Entries,
function, 2-2
subroutine, 2-2
ENTRY
and array declarator inter-
action, 8-7
in function subprogram, 8-6
names, 8-6
function, 8-6
points within a subprogram,
multiple, 8-6
statement, 1-2, 8-6, b-u
dummy arguments in, 8-6
.EQ., 2-20
Equal sign, 3-1
EQUIVALENCE
and COMMON interaction, 7-8
and LOGICAL*4 arrays, 7-8
of array storage, 7-7
statements, 2-11, 7-5, 7-6,
7-8, B-6
Equivalencing arrays with non-
unity lower bounds, 7-7
Equivalent, making arrays, 7-6
LEQV., 2-22
ERR keyword, 5-23, 5-25
ERR= specification, 1-1, 5-18,
B-6
Error condition, 5-2, 5-18
transfer of control on, 5-18
Evaluation of operators, 2-23
Evaluation order, 2-19
Evaluation, order of, 2-18
Even boundary, 7-4

Example, Newton-Raphson itera-
tion method, 8-4
Examples,
FORTRAN programming, C-1
OPEN statement, 5-28
Exclamation point, 1-1, 1-3
Executable program 1-3, 7-4
Executable statements, 1-3, 8-9
Execution,
conditional statement, 4-4
of a formatted input statement,
6-19
of a formatted output state-
ment, 6-19
of the DO range, 4-6
resuming program 4-11
suspending program, 4-11
terminating program, 4-11
Explicit type declaration, 2-11
Exponent, 6-4, 6-20
effect of in an external field,
6-21
field, 2-6
field indicator, D, 6-5
Exponential format, 6-5
Exponentiation, 2-17, 2-18
operator, 2-17
Expressions, 2-1, 2-9, 2-16,
5-4, 6-14
arithmetic, 8-2
complex, 2-21
logical, 2-16, 2-21
mixed-mode, 1-1
numeric, 5-22
operators, B-1
relational, 2-16, 2-20
subscript, 2-13, 5-4
variable format, 6-14
External
field, 6~21
effect of exponent in, 6-21
separators, 6-17
input field, 6-20
procedure names, 7-8
record, 5-14
record, character position of,
6-10
statement, 7-8, B-6
statement, use of PDF name
in, 8-10
Extended range, 4-8, 4-9
DO statement rules, 4-9
Extending a file, 5-26
Extending the common block, 7-8
EXTENDSIZE keyword, 5-23, 5-26

Index-6

INDEX (Cont.)

F

F field descriptor, 6-4, 6-13

Factor, scale, 6-2, 6-12
inoperative, 6-21

False, 2~-8, 2-20, 2-21

.FALSE., 2-8

Field,

Files, (Cont.)

formatted, 5-27

Include, 1-8, 1-9
magnetic tape, 5-28

open sequential, 5-19
position, undefined, 5-14
positioning functions, 5-2
printing, 5-27

all-blank, 6-2, 6-4
continuation, 1-7
descriptor, 6-1, 6-2, 6-16,
6-19, 6-20
A, 6-8, 6-9

S
1

6-13
6-13

»
¥

- =

r .
11 ¥ L]
HWoONOA_UIO

H
-
(2o We e We We) We W We Wo Wo Y
' .
1]

descriptors,
alphanumeric literal, 6-20
default, 6-15
using scale factors, 6-20
values, default (table), 6-15
designator, comma as null, 6-21
external input, 6-20
fractional part of, 6-21
null (zero-length), 6-18
separators, 6-1
separators, external, 6-17
sequence number, 1-7
statement, 1-7
statement label, 1-6
termination, short, 1-2, 6-17
width,
optional, 6-20
spgc%fication, determining,
-21
value, 6-15

Fields,

transferring record, 5-11
zero-length, 6-21
see also record fields

Files,

direct access, 5-1, 5-21, 5-25,
5-27

disconnecting a, 5-28

disk, 5-28

extending, 5-26

processing in an overlay
environment, 5-21
read-only, 5-27
scratch, 5-27, 5-28
sequential, 5-25, 5-27
size and structure, 5-20
storage space, conserving, 5-6
unformatted, 5-27
Filling array elements, 7-10
FIND statement, 5-21, B-7
First character of an output
record, 6-21
First record character, 6-16
Fixed-length records, 5-21
Form,
character, 5-1
FORTRAN coding, 1-5
keyword, 5-23, 5-25
*n, 2-3
r*, 5-15
r*c, 5-14
readable, 5-1
Format,
A, 6-15
control, 5-9, 6-18, 6-19
control interaction with I/O
lists, 6-18
conversions, effect of data
magnitude on G, 6-7
data field, 6-1
expression, variable, 6-14
list-directed output, 5-16
object time, 6-18
reversion, 6-13, 6-19, 6-20
specifications, 5-1, 6-1, 6-16
constructing array, 6-20
separators, 6-16
Format
specifiers, 5-2
statements, 6-1, 6-14, 6-20,
B-7
statements, summary of rules
for, 6-19
Formatted
ACCEPT statement, 5-9
direct access I/0, 5-1, 5-12

Index-7

INDEX

Formatted (Cont.)
direct access READ state-
ment, 5-12
direct access WRITE state-
ment, 5-13

files, 5-27
input statement, execution
of, 6-19
I/0 statement, 5-3
output statement, execution
of, 6-19
PRINT statement, 5-10
records, 5-8
sequential 1/0, 5-1, 5-7
sequential READ statement,
5-7
sequential WRITE statement,
5-8
TYPE statement, 5-10
Formatting a FORTRAN line, 1-4
Formatting, list-directed, 5-3,
5-16
FORTRAN, ix, 5-27
character set, 1-3, A-1
coding form, (figure), 1-5
coding form, using, 1-5
language summary, B-1l
library function names, 8-9
library functions, 8-9, C-1
function references to, 8-
line, 1-5
line, formatting a, 1-4
processors, PDP-11, ix
program, 1-3
elements of a, 1-3
statement components, 2-1
statements, 1-3
subprograms, 8-1
FORTRAN 1V, ix
FORTRAN IV-PLUS, ix
FORTRAN X3.9-1966, American
National standard, 1-1
Four bytes (two words), 2-3
Fractional part of the field,
6-21
Functicn,
Arithmetic Statement (ASF),
8-2, B-2
entries, 2-2
entry name, 8-6
file positioning, 5-2
name, generic use of, 8-10
name summary, generic, 8-11
names, 8-10

9

(Cont.)

Function, (Cont.)
reference, 4-10, 8-1, 8-2, 8-3
generic, 8-10
references, 2-1
processor-defined, 8-9
to FORTRAN library functions,
8-9
used as arguments, 7-9
FUNCTION
statement, 8-3, 8-4, B-7
subprogram, 2-2, 4-10, 8-3
subprograms, ENTRY in, 8-6
Functions,
FORTRAN library, 8-9, B-17, C-1
function references to, 8-9
non-generic FORTRAN, 8-10
processor-defined, 2-2

G

G field descriptor, 6-6, 6-13
G format conversions, effect of
data magnitude on, 6-7

.GE., 2-20
Generic and processor-defined
function usage, 8-11
Generic function
name summary, 8-11
name, use of, 8-10
reference, 8-10
selection, 8-10
Giving constants symbolic names,
7-11
GO TO statement, 4-1, B-7, B-8
assigned, 4-3
computed, 4-2
types of, 4-1
unconditional, 4-2
Group repeat
count, 6-14
specification, 6-14, 6-20
Grouping, 6-14
.GT., 2-20

H

H field descriptor, 6-9
H, (letter), 2-8
Hollerith constants, 1-1, 2-3,
2-8, 2-9, 5-7, 5-16
data type rules for, 2-9
Hollerith count, 6-14
Hollerith data, 7-10

Index-8

INDEX (Cont.)

I field descriptor, 6-2
1/0,
formatted direct access, 5-1
formatted sequential, 5-1
list, 5-3, 5-6, 5-8, 5-11,
5-29
elements, 5-29, 6-15
rule, 6-20
simple, 5-3
list-directed sequential, 5-2
multi-buffered, 5-26
statement,
auxiliary, 5-2
direct access, 5-21
formatted, 5-3
unformatted, 5-3
direct access, 5-1
sequential, 5-1
see also Input/Output
IF statement, 4-3, B-8
arithmetic, 4-4
logical, 4-4, 4-5
Imaginary part, 2-2, 2-7
Implication, data type by, 2-11
see also Data type
Implicit logical unit, 5-1
number, 5-2
IMPLICIT statements, 2-10, 2-11,

7-1, B-8
Implied data types, overriding,
7-1

Implied DO lists, 5-4
Include file, 1-8, 1-9
INCLUDE statement, 1-3, 1-8,
1-9, B-9
Increment parameter, 4-5
Indicator,
comment, 1-6
continuation, 1-7
debug statement, 1-6
Information, system dependent,
ix
Initial space allocation, 5-26
INITIALSIZE keyword, 5-23, 5-26
Inner loop, 4-8
see also DO loop
Inoperative scale factor, 6-21
Input
characters, remaining, 6-11
constant, 5-14
conversion, 6-20, 6-21
field, external, 6-20

Input, (Cont.)
file, 5-11
statements, 2-11
statements, execution of
formatted, 6-19
Input/Output,
devices, 5-2
formatted direct access, 5-12
formatted sequential, 5-7
list-directed, 5-13
see List~directed
lists, format control interac-
tion with, 6-18
methods of handling, C-1
records, 5-3
statements, 5-1, 5-3
unformatted direct access, 5-11
unformatted sequential, 5-6
Integer, 2-2, 2-3, 2-19
constant, 2-4, 2-5, 2-7, 2-15,
2-16
absolute value of an, 2-4
negative, 2-4
unsigned, 6-20
data, 2-11
data, translation of, 6-2
dummy argument, 2-15, 2-16
operations, 2-19
type, 4-2
value, 2-22
variable, 2-16
variables, 2-11
INTEGER*2, 2-3
data type, 2-5
INTEGER*4, 2-3
data type, 2-5
Interaction, ENTRY and array
declarator, 8-7
Interaction, EQUIVALENCE and
COMMON, 7-8
Internal format, converting
data to, 5-7
Internal representation, 2-22,
5-1
Initial parameter, 4-5
Iteration
control, DO, 4-6
count, 4-6
method example, Newton-Raphson,
8-4
Iterative calculations, C-1

Index-9

INDEX (Cont.)

K

Keyboard, terminal, 5-17
Keyword, 5-22

Keyword, ERR, 5-25

Keywords in the OPEN statement,

5-23
L
L field descriptor, 6-8
Label,

all-zero statement, 1-6
field, statement, 1-6
list, statement, 1-1
reference, statement, 3-4
statement, 1-3, 1-6, 8-5
Language summary, FORTRAN, B-1
.LE., 2-20
Leading double quote, 2-7, 6-20
Leading spaces, 6-2, 6-4
Left angle bracket, 1-4
Length attributes of symbolic
names, overriding, 7-3
Length specifier, data type,
2-3
Letters,
lower case, 1-4
upper case, 1l-4
Level number, 2-12
Library functions, FORTRAN,
8-9, B-17, C-1
function references to, 8-9
Line, 1-3 -
comment, 1-9
continuation, 1-3, 1-9
formatting a FORTRAN, 1-4
FORTRAN, 1-5
printer, 5-10
/List, 1-8
List,
arguments, 4-10
element, data types or the,
5-15
elements, assigning values to,
5-3
implied DO, 5-3
1/0, 5-3, 6-20
keyword, 5-27
rule, I/0, 6-20
simple I/0, 5-3
statement label, 1-1

List-directed
ACCEPT statement, 5-17
formatting, 5-3, 5-16
1/0, 1-3, 5-13
output formats, 5-16
PRINT statement, 5-18
READ statement, 5-14
records, backspacing over, 5-14
sequential I/0, 5-2
TYPE statement, 5-17
WRITE statement, 5-16
Literals, alphanumeric, 1-1, 2-8
see also Alphanumeric literal
Locations, storage
allocating, 7-3
assigning, 7-6
Logical, 2-2, 2-3, 2-19
assignment statement, 3-3
constant, 2-8, 5-14
data, 2-17, 3-3
data, transmission of, 6-8
elements, 2-21.
expressions, 2-16, 2-21, 4-5
IF statement, 4-4, 4-5
operators, 2-21, 2-22, 2-23,
B-1
record length, 5-25
unit, 5-1, 5-6
implicit, 5-1
number, implicit, 5-2
numbers, 5-2
value, 2-22, 3-3
values, 2-16
LOGICAL*1l, 2-3
array, 7-8
array element storage, 2-14
elements, assigning to
COMMON, 7-4
LOGICAL*2, 2-3
LOGICAL*4, 2-3
Loop,
nested DO, 4-7, 4-8
range of the DO, 4-6
see also DO loop
lLoss of precision, 5-9
Lower bound, 2-12
dimension declarator, 2-13
equivalencing arrays with
non-unity, 7-7
Lower case letter, x, 1-4
.LT., 2-20 '

Index-10

INDEX (Cont.)

M
Magnetic tape, files, 5-28
Magnitude,
effect on G format conversions,
data, 6-7

of a real constant, 2-6
of the value, 6-4
see also Data type storage
requirements
Main program, 1-3, 2-2, 4-12
unit, 4-10, 7-12
units, 2-15
Making arrays equivalent, 7-6
Maximum number of characters
stored in a variable, 6-8
Maximum Radix-50 value, A-3
MAXREC keyword, 5-23, 5-27
Memory requirements for data
types
see Data Type Storage
Requirements
Methods of handling input/output,
c-1
Minus, unary, 2-17
Mixed-mode expressions, 1«1
Moving the decimal point,
6-12, 6-13
Multi~buffered I1/0, 5-26
Multi-dimensional arrays,
processing, 5-5
Multiple entry points within
a subprogram, 8-6
Multiple functions in a single
function subprogram, 8-8
Multiplication, 2-17

NAME keyword, 5-23, 5-24
Named common, 7-5
Names,
classes of symbolic, 2-2
common block, 7-4
external procedure, 7-8
generic function, 8-10, 8-11
giving to constants, symbolic,
7-11
summary of generic function,
8-11
symbolic, 2-1
use of generic function, 8-10
.NE., 2-20

Negative
double precision constant, 2-6
integer constants, 2-4
see also Constant
Nested DO loops, 4-7, 4-8
see also DO loop
NEW, 5-24
Newton-Raphson iteration method
example, 8-4
/NOLIST, 1-8
NONE, 5-27
Nonexecutable statements, 1-3,
7-1
Non-generic FORTRAN functions,
8-10
Non-printing character, ix
Non-unity lower bounds,
equivalencing arrays with, 7-7
NOSPANBLOCKS keyword, 5-23, 5-26
.NOT., 2-22
Notation, syntax, X
Null
character, ASCII, 5-24
field designator, comma as,
6-21
record, 5-7
value, 5-14
values, repetition of, 5-15
zero-length field, 6-18
Number,
column, 2-12
complex, 2-7
implicit logical unit, 5-2
level, 2-12
logical unit, 5-2
of blocks, 5-26
page, 2-12
row, 2-12
statement, 11-6
Numerals, 2-4
Numeric
data, rounding, 5-9
expression, 5-22
values, 2-16

o)

0 field descriptor, 6-3

Object time format, 6-18

Octal constant, 2-7, 2-19

Octal values, transmission of,
6-3

OLD, 5-24

Index-11

INDEX (Cont.)

One character, 6-16
Open sequential file,
OPEN statement, B-9,
examples, 5-28
keywords in the, 5-23
Operand, 2-16
Operators, 2-16
arithmetic, 2-16, B-1
assignment, 2-9
binary, 2-9, 2-17
evaluation of, 2-23
exponentiation, 2-17
expression, B-1l
logical, 2-21, 2-22, B-~-1
precedence, 2-18, 2-23
relational, 2-20, B-1
unary, 2-17
Optional
field width, 6-20
repeat count, 6-20
see also Repeat count
.OR., 2-22
Order of evaluation, 2-18, 2-19
Order of subscript progression,
2-13
Ordering rules, statement, 1-7
Outer loop, 4-8
see also DO loop
Output formats, list-directed,
5-16
see also Statements, list-
directed and List-directed
format
Output record,
of, 6-21
see also Record
Output statement, execution
of formatted, 6-~19
see also statement,
formatted and I/0 statement
Overlay environment, file
processing in an, 5-21
Overriding
data types, 7-2
implied data types, 7-1
length attributes of symbolic
names, 7-3
the D specification, 6-21

5-19
5-22

first character

P

Packing arrays, 5-3

Page number, 2-12

Parameter,
increment, 4-5
initial, 4-5

Parameter, (Cont.)
terminal, 4-5
constants, 2-2
see also Constants
PARAMETER statements, 1-2, 7-11,
B-9
Parentheses, 2~21, 2-23, 6-1,
6-14
effect of, 2-18
use of, 2-18
Part,
imaginary, 2-2
real, 2-2
Partial records, 5-3, 5-8, 5-13
see also Records
PAUSE statement, 4-11, B-10
PDF names (processor-defined
function), 8-9
in EXTERNAL statement, use
of, 8-10
see also Function, Processor-
defined and Processor-
defined function
PDP-11 FORTRAN processors, ix
Periods, delimiting, 2-8, 2-20,
2-22
Peripheral devices, 5-2
Physical block size, 5-28
see also Block
Physical end of record, 6-17
see also Record
Plus, unary, 2-17
Plus character, 6-16
Point, decimal
see Decimal point
Points, multiple entry within
subprogram, 8-6
Positive constant, 2-4
integer, 2-4
see also Constant
Precedence, 2-18, 2-21, 2-22
operator, 2-23
Precision,
see Double Precision or
Data type storage requirements
Precision, loss of, 5-9
PRINT, 5-27
PRINT statement, B-10, B-13,
B-14
formatted, 5-10
list-directed, 5-18
see also Statement
Printable character, 1-4
Printer,
line, 5-10
terminal, 5-10, 5-17
Printing the display, 4-11
Printing a file, 5-27

Index-12

INDEX (Cont.)

Procedure, computing, 1-3 Radix~50 (Cont.)
Procedure names, external, 7-8 code values, 2-10
Procedure names as subprogram constant, 2-9, 2-10, 7-10
arguments, 7-9 maximum value, A-3
Processing, Range,
carriage control, 5-27 extended, 4-8
see also Carriage control of the DO loop, 4-5, 4-6, 4-7
iterative, 4-5 see also DO loop range
multi-dimensional arrays, 5-5 rules, DO statement extended,
termination of, 5-15 4-9
Processors, PDP-11 FORTRAN, ix Rank, data type, 2-19
Processor-defined function READ statement, B-10, B-1ll
(PDF), 2-2, 8-9 formatted direct access, 5-12
names, 8-9 formatted sequential, 5-7
references, 8-9, 8-10 list-directed, 5-14
Program, unformatted direct access, 5-11
creating a source, 1-5 unformatted sequential, 5-6
elements of a FORTRAN, 1-3 Readable form, 5-1
executable, 1-3, 7-4 Read-only file, 5-27
execution, READONLY keyword, 5-23, 5-25
altering format specifications Real, 2-2, 2-3, 2-19
during, 6-18 constant, 2-5
resuming, 4-11 . constant, magnitude of a, 2-6
suspending, 4-11 operations, 2-19
terminating, 4-11 part, 2-2, 2-7
FORTRAN, 1-3 variables, 2-11
main, 1-3, 2-2 REAL*4, 2-3
statement, 2-12, B-10 REAL*8, 2-3
Program unit, 1-3, 3-4, 5-21, Record, 5-6, 5-12
7-4, 7-5, 8-3, 8-4, 8-9 see also Records
calling, 4-10 beginning of a, 5-15
end of a, 4-12 character, first, 6-16
main, 2-15, 4-10, 7-12 end-file, 5-20
structure, 1-7 end of a, 5-15
Programming examples, external, character position
FORTRAN, C-1 of, 6-10
Progression, order of sub- fields, transferring, 5-11
script, 2-13 first character of an output,
6-21

initiator, 6-17
length, actual, 5-25

Q length, logical, 5-25
number, 5-11, 5-19
Q field descriptor, 6-11 number specifier, 5-21
Quantity, 32-bit signed, 2-=5 physical end of, 6-17
Quote, leading double, 2-7, terminator, 6-1, 6-17
6-20 terminator, slash (/), 6-16

Records, 5-3, 5-9
formatted, 5-8
fixed length, 5-21

R input/output, 5-3
number of, 5-11
Radix-50 partial, 5-3, 5-8, 5-13
character set, A-3 size of, 5-11
characters, 2-10 transmitting, 5-9
characters and ASCII octal zero-filled, 5-12

equivalents, A-3

Index-13

INDEX (Cont.)

RECORDSIZE keyword, 5-23, 5-25 Scale factor, (Cont.)
Reference, field descriptors using a,
array, 5-4 6-20
function, 8-1, 8-3 inoperative, 6-21
generic function, 8-10 reinstating a zero, 6-20
function used as-arguments, Scratch file, 5-27, 5-28
7-9 SCRATCH keyword, 5-24
processor-defined function, Selection, generic function, 8-10
8-9 Separators,
statement label, 3-4 external field, 6-~17
subprogram, 8-1 field, 6-1
Referencing data in COMMON, 7-4 format specification, 6-16
Reinstating a zero scale factor, slash, 5-15
6-20 value, 5-15
Relational Sequence number field, 1-7
expression, 2-20 Sequential file, 5-25, 5-27
expressions, 2-16, 2-21 open, 5-19
operations, 2-21 Sequential 1/0,
operators, 2-20, B-1 formatted, 5-1, 5-7
Remaining input characters, 6-11 list-directed, 5-2
Repeat count, 6-1, 6-14 unformatted, 5-1, 5-6
group, 6-14 Sequential READ statement,
optional, 6-20 formatted, 5-7
Repeat specifications, group, unformatted, 5-6
6-14, 6-20 Sequential WRITE statement,
Repetition of formatted, 5-8
constants, 5-14 unformatted, 5-6, 5-7
null values, 5-15 Shading, ix
Representation, internal, 5-1, Shared access, 5-26
5-22 SHARED keyword, 5-23, 5-26
Requirements, data type storage, Sharing storage space, 7-6
2-3 Short field termination, 1-2,
see also Data type 6-17
Resuming program execution, 4-11 Signed quantity,
see also Program execution l6-bit, 2-5
RETURN statement, 4-10, 8-3, 32-bit, 2-5
8-4, B-12 Simple I/0 list, 5-3
Reversion, format, 6-13, 6-19, Size, dummy array, 2-15
see also Format reversion Size, specifying the physical
REWIND statement, 5-19, B-12 block, 5-28
Right angle bracket, 1-4 Slash (/), 5-15, 6-1, 6-19
Rounding numeric data, 5-9, 6-4 consecutive, 6-16
Row number, 2-12 ' record terminator, 6-16
see also Number separator, 5-15
Rule, I/0 list, 6-20 Source
Rules, DO statement extended line, 4-12
range, 4-9 program, creating a, 1-5
for format statements, summary, text, 1-6
6-19 Space,
statement ordering, 1-7 allocation, initial, 5-26

appended, 2-9
character, ix, 1-6, 2-10, 6-16
sharing storage, 7-6

S Spaces, 5-14, 5-15
see also space character
SAVE, 5-27 leading, 6-2, 6-4
Scale factor, 6-2, 6-12 trailing, 6-2

effect of, 6-13

Index-14

INDEX (Cont.)

Special characters, 1-4
Specification,
attribute, 5-22
data type, 2-11
determining field width, 6-21
format, 5-1, 6-1
group repeat, 6-14, 6-20
separators, format, 6-16
statements, 7-1
statements in BLOCKDATA
subprogram, 8-8
Specifier, data type length, 2-3
Specifiers, formats, 5-2
Square brackets, ([1), x
Statement,

Statement, (Cont.

)
FUNCTION, 8-3, 8-4, B-7
GO TO, 4-1, 4-2, 4-3, B-7
IF, 4-3, B-8
IMpLICIT, 2-10, 2-11, 7-1, B-8
INCLUDE, 1-3, 1-8, 1-9, B-9

/0, 5-1, 5-3
list-directed,

ACCEPT, 5-17

PRINT, 5-18

READ, 5-14

TYPE, 5-17

WRITE, 5-16
logical assignment, 3-3
logical IF, 4-4, 4-5

ACCEPT, 5-9, 5-17, B-2, B-10,
B-11
arithmetic assigrnment, 3-1
ASSIGN, 3-4, 4-3, B-2
assigned GO TO, 4-
BACKSPACE, 5-20, B-3
BLOCK DATA, 8-4, B-3
CALL, 4-9, 4-10, 7-9
8~-4, B-3
CLOSE, 5-28, B-3
COMMON, 2-11, 7-4, 7-5, B-3
computed GO TO, 4-2
CONTINUE, 4-9, B-4
control, 4-1
DATA, 2-11, 7-10, B-4
DECODE, 5-29, B-4
DEFINE FILE, 5-20, 5-21, B-4
destination, 4-8
DIMENSION, 7-3, B-5
DO, 4-5, 4-6, B-5
ENCODE, 5-29, B-5
END, 1-3, 4-12, B-5
END=, 5-18, B-6
ENDFILE, 5-20, B-5
ENTRY, 1-2, 8-6, B-6
EQUIVALENCE, 2-11, 7-5, B-6
ERR=, 5-18, B-6
EXTERNAL, 7-8, B-6
execution of formatted input,
6-19
execution of formatted output,
6-19
FIND, 5-21, B-7
FORMAT, 6-1, B-7
formatted,
ACCEPT, 5-9
direct access READ, 5-12
I1/0, 5-3
PRINT, 5-10
sequential READ, 5-7
TYPE, 5-10

OPEN, 5-22, B-9
PARAMETER, 1-2, 7-11, B-9
PAUSE, 4-11, B-10
PRINT, 5-10, 5-18, B-10, B-13,
B-14
PROGRAM, 7-12, B-10
READ, 5-6, 5-7, 5-11, 5-12,
5-14, B-10
RETURN, 4-10, 8-3, 8-4, B-12
REWIND, 5-19, B-12
sTOP, 4-11, B-12
SUBROUTINE, 8-4, 8-5, B-12
terminal, 4-9
TYPE, 5-10, 5-17, B-12, B-13,
B-14
type declaration, 2-11, B-12
unconditional GO TO, 4-2
unformatted
direct access READ, 5-11
direct access WRITE, 5-12
sequential READ, 5-6
sequential WRITE, 5-7
VIRTUAL, B~13, D-1
WRITE, 5-7, 5-8, 5-12, 5-13
5-16, B-13, B-14
Statement components, FORTRAN,
2-1
Statement execution, conditional,
4-4
Statement field, 1-7
Statement function, arithmetic
(ASF), 8-2
Statement label, 1-3, 1-6, 4-3,
5-2, 5-18, 8-5
all-zero, 1-6
field, 1-6
list, 1-1
reference, 3-4
Statement number, 1-6
Statement ordering rules, 1-7
Statements, 1-3
allowed in a BLOCK DATA sub-
program, 8-8

Index-15 June 1977

INDEX (Cont.)

Statements, (Cont.)
assignment, 3-1
conversion rules for assign-
ment, 3-2
executable, 1-3, 8-9
format, summary of rules, 6-19
non-executable, 1-3, 7-1
specification, 7-1
summary of, B-2
summary of rules for format,
6-19
type declaration, 2-10, 7-2,
7-3
STOP statement, 4-11, B-12
Stop, tab, 1-6
Storage,
area, l-byte, 2-4
allocating locations, 7-3
block of, 7-4
contiguous areas, 7-4
location, 7-5
locations, allocating, 7-3
locations, assigning, 7-6
locations, contiguous, 2-11
LOGICAL*1 array elements, 2-14
requirements, data type, 2-3
space, sharing, 7-6
unit, 2-3
units, 5-25
Storage, array, 2-13, 2-14
equivalence of, 7-7
Strings, byte, 2-8
Structure, program unit, 1-7
Subprogram, 1-3, 2-15, 4-12, 7-6
actual arguments, 8-1
arguments, using procedure
name as, 7-9
block data, 2-2
dummy arguments, 8-1
execution, 8-6
FUNCTION, 4-10, 8-3
multiple entry points within,
8-6
multiple functions in a single
function, 8-8
references, 8-1
SUBROUTINE, 4-9, 4-10, 8-4, 8-5
usage, C-1
Subprograms, designating user-
supplied, 7-9
ENTRY in function, 8-6
function, 2-2
subroutine, 2-2
user-written, 8-1
Subroutine entries, 2-2
SUBROUTINE statement, 8-4, 8-5,
B-12

SUBROUTINF subprogram, 2-2, 4-9,
4-10, 8-4, 8-5
Subscript, 2-13
expression, 2-13, 5-4
progression, 5-5, 5-9, 7-10
order of, 2-13
Subscripted array reference, 2-13
Subscripts, array references
without, 2-14
Subtraction, 2-17
Successive commas, 6-18
Summary,
FORTRAN language, B-1
generic function names, 8-11
of rules for format state-
ments, 6-19
of statements, B-2
Suspending program execution,
4-11
Symbolic name, 2-1, 2-10, 2-11
classes, 2-2
defining data types of, 7-2
giving to constants, 7-11
overriding length attributes
of, 7-11
Syntax notation, X
System dependent information, ix

T

T field descriptor, 6-10
TAB character, ix, 1-5, 1-6
Tab stop, 1-6
Tabs, 5-15
Tabulation specifier, 6-10
Terminal
keyboard, 5-9, 5-17, 6-17
parameter, 4-5
printer, 5-10, 5-17
statement, 4-8, 4-9
statement of a DO loop, 4-5
Terminating program execution,
4-11
Termination of processing, 5-15
Termination, short field, 6-17
Terminator, record, 6-1
slash (/), 6-16
Text Editor, using a, 1-5
Trailing spaces, 6-2
Transfer of control on
end-of-file, 5-18
error conditions, 5-18
Transferring control, 4-1, 8-1
Transferring record fields, 5-11
Transfers, conditional control,
4-4

Index-16

INDEX (Cont.)

Translation of integer data, 6-2
Transmission, data, 5-3
alphanumeric, 6-8
logical, 6-8
octal values, 6-3
Transmitting array elements, 5-4
Transmitting records, 5-9
True, 2-8, 2-20, 2-21
.TRUE., 2-8
Truncated constant, 2-9
Type,
by implication, data, 2-11
data see Data type
declaration, explicit, 2-11
declaration statement, 2-10,
2-11, 7-2, 7-3, B-12
keyword, 5-23, 5-24
of GO TO statements, 4-1
specification, data, 2~11
statement, B-12, B-13, B-14
formatted, 5-10
list-directed, 5-17

U

Unary
minus, 2-17
operators, 2-17
plus, 2-17
Unconditional GO TO statement,
4-2
Undefined file position, 5-14
Undersized input data field,
1-2
Unformatted
direct access 1/0, 5-1, 5-11
READ statement, 5-11
WRITE statement, 5-12
files, 5-27
1/0, 5-3
sequential I/0, 5-1, 5-6
READ statement, 5-6
WRITE statement, 5-6, 5-7
Unlit’
implicit logical, 5-1
keyword, 5-23, 5-24
logical, 5-1 .
main program, 7-12
UNKNOWN, 5-24
Unsigned constant, 2-4
integexr, 6-20
Unsubscripted array, 5-3
name, 2-15, 4-10, 7-10

Index-17

Upper bound, 2-12
Upper bound dimension declarator,
2-13
Upper case letters, x, 1-4
Use of generic function name,
8-10
parentheses, 2-18
PDF name in an EXTERNAL state-
ment, 8-10
User-supplied subprograms,
designating, 7-9
User-written subprograms, 8-1
Using
a text editor, 1-5
FORTRAN coding forms, 1-5
procedure names as subprogram
arguments, 7-9

\'J

Value, 2-17, 5-14
field width, 6-15
integer, 2-22
magnitude of, 6-4
null, 5-14
of the variable, 2-10
Radix-50 maximum, A-3
separator, 5-15
Values,
assigning, 3-2
assigning to variables and
array elements, 7-10
default field descriptor, 6-15
dummy argument, 2-15
in common blocks, assigning
initial, 8-8
logical, 2-16, 2-22, 3-3
numeric, 2-16
Variable,
control, 4-5, 4-6
dimension declarators, 2-15
format expression, 6-14
value of the, 2-10
variables, 2-1, 2-2, 2-10, 2-11,
5-4
assigning values to array
elements and, 7-10
associated, 2-10, 5-21
integer, 2-11, 2-16
maximum number of characters
stored in, 6-8
real, 2-11
Virtual array, D-1
VIRTUAL statement, B-13, D-1

June 1977

INDEX (Cont.)

w y4

width value, field, 6-15 Zero

Word boundary, 7-4 byte, 5-24

Word boundary alignment, 7-8 character, 6-16

WRITE statement, B-13, B-14 scale factor, reinstating, 6-20
formatted direct access, 5-13 Zero-filled records, 5-12
formatted sequential, 5-8 Zero-length field (null), 6-18
list-directed, 5-16 Zero-length fields, 6-21
unformatted direct access,

5-12
unformatted sequential, 5-7
l-dimensional array, 2-12
l-byte storage area, 2-4
2-dimensional array, 2-12

X 3-dimensional array, 2-12
4-byte allocation, 2-4
X field descriptor, 6-10 32-bit signed quantity, 2-5
.XOR., 2-22 16-bit signed quantity, 2-5

Index-18

