January 1980

This document describes how to use the MACRO-11. relocatable assembler to
develop PDP-11 assembly language programs. Aithough no prior knowledge of
MACRO-11 is required, the user should be familiar with the PDP-11 processor
addressing modes and instruction set. This manual presents detailed descriptions
of MACRO-11’s features, including source and command string control of assembly
and listing functions, directives for conditional assembly and program sectioning,
and user-defined and system macro libraries. The chapters on operating proce-
dures previously were found in two separate manuals (the PDP-11 MACRO-11
Language Reference Manual and the IAS/RSX MACRO-11 Reference Manual). This
manual should be used in conjunction with a system-specific user’s guide as well as
a Linker or a Task Builder manual.

PDP-11 MACRO-11

Language Reference Manual
Order No. AA-5075B-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes previous
editions, Order Numbers
AA-5075A-TC, published 1977, and
DEC-11-OIMRA-A-B-D, published
1976.

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

First Printing, August 1977

Revised:

January 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment

Corporation.

Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright <:> 1977, 1980 by Digital Equipment Corporation

The postage-prepaid READER'S
document requests the user's
paring future documentation.

The following are trademarks

DIGITAL
DEC

PDP

DECUS
UNIBUS
COMPUTER LABS
COMTEX

DDT
DECCOMM
ASSIST~11
VAX
PECnet
DATATRIEVE

COMMENTS form on the last page of this
critical evaluation to assist us in pre-

of Digital Equipment Corporation:

DECsystem~10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL

INDAC

LAB-~8
DECSYSTEM~20
RTS-~8

VMS

IAS

TRAX

11/80-14

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET~8
TYPESET-11
TMS-11
ITPS-10
SBI

nhm
LUl

TO THE READER

“ .
N =

NN NN N ==
¢ s s s e
=W N -

. .
WD NDND N
« e e

w
P . .
w N =

N =

e o e o o

WWWWwWwwwwbwwwwwwww

- . s e o e s e

WONAUTE WNDNDN
.

-~

w

. e .
HRERPHFHRFWOWOIO OIS WN -

WO

[S2 OIS N, O N E O, N S S NG NC NS,]
« e s e . . . e

CONTENTS

THE MACRO-11 ASSEMBLER

ASSEMBLY PASS 1
ASSEMBLY PASS 2

SOURCE PROGRAM FORMAT

PROGRAMMING STANDARDS AND CONVENTIONS
STATEMENT FORMAT

Label Field

Operator Field

Operand Field

Comment Field
FORMAT CONTROL

SYMBOLS AND EXPRESSIONS

CHARACTER SET
Separating and Delimiting Characters
Illegal Characters
Unary and Binary Operators
MACRO-11 SYMBOLS
Permanent Symbols
User-Defined and Macro Symbols
DIRECT ASSIGNMENT STATEMENTS
REGISTER SYMBOLS
LOCAL SYMBOLS
CURRENT LOCATION COUNTER
NUMBERS
TERMS
EXPRESSIONS

RELOCATION AND LINKING
ADDRESSING MODES

REGISTER MODE

REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE

INDEX DEFERRED MODE
IMMEDIATE MODE

ABSOLUTE MODE

RELATIVE MODE

RELATIVE DEFERRED MODE
BRANCH INSTRUCTION ADDRESSING
USING TRAP INSTRUCTIONS

iii

L R N Y T N T O IR O R R B |
H RO WW

WWwwuwwwwwwwwwww

-

w
[

OO NUVTONU DB WNDN

ootttk

CHAPTER 6 GENERAL ASSEMBLER DIRECTIVES 6-1
6.1 LISTING CONTROL DIRECTIVES 6-4
6.1.1 .LIST and .NLIST Directives 6-9
6.1.2 .TITLE Directive 6-15
6.1.3 .SBTTL Directive 6-15
6.1.4 .IDENT Directive 6-17
6.1.5 .PAGE Directive/Page Ejection 6-18
6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL 6-18
6.3 DATA STORAGE DIRECTIVES 6-21
6.3.1 .BYTE Directive 6-21
6.3.2 .WORD Directive 6-22
6.3.3 ASCII Conversion Characters 6-23
6.3.4 .ASCII Directive 6-24
6.3.5 .ASCIZ Directive 6-26
6.3.6 .RAD50 Directive 6-27
6.3.7 Temporary Radix-50 Control Operator 6-28
6.3.8 .PACKED Directive 6-29
6.4 RADIX AND NUMERIC CONTROL FACILITIES 6-29
6.4.1 Radix Control and Unary Control Operators 6-29
6.4.1.1 .RADIX Directive 6-30
6.4.1.2 Temporary Radix Control Operators 6-30
6.4.2 Numeric Directives and Unary Control

Operators 6-31
6.4.2.1 Floating-Point Storage Directives 6-33
6.4.2.2 Temporary Numeric Control Operators:

"C and 'F 6-33
6.5 LOCATION COUNTER CONTROL DIRECTIVES 6-34
6.5.1 .EVEN Directive 6-35
6.5.2 .ODD Directive 6-35
6.5.3 .BLKB and .BLKW Directives 6-35
6.5.4 .LIMIT Directive 6-36
6.6 TERMINATING DIRECTIVES 6-37
6.6.1 .END Directive 6-37
6.6.2 .EOT Directive 6-37
6.7 PROGRAM SECTIONING DIRECTIVES 6-37
6.7.1 .PSECT Directive . ' 6-38
6.7.1.1 Creating Program Sections 6-42
6.7.1.2 Code or Data Sharing 6-43
6.7.1.3 Memory Allocation Considerations 6-44
6.7.2 .ASECT and .CSECT Directives 6-44
6.7.3 .SAVE Directive 6-45
6.7.4 .RESTORE Directive 6-46
6.8 SYMBOL CONTROL DIRECTIVE 6-48
6.9 CONDITIONAL ASSEMBLY DIRECTIVES 6-49
6.9.1 Conditional Assembly Block Directives 6-49
6.9.2 Subconditicnal Assembly Block Directives 6-52
6.9.3 Immediate Conditional Assembly Directive 6-54
6.9.4 PAL-11R Conditional Assembly Directives 6-55

CHAPTER 7 MACRO DIRECTIVES 7-1
7.1 DEFINING MACROS 7-1
7.1.1 .MACRO Directive 7-1
7.1.2 .ENDM Directive 7-2
7.1.3 .MEXIT Directive 7-3
7.1.4 MACRO Definition Formatting 7-4
7.2 CALLING MACROS 7-4
7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO

CALLS 71-4
7.3.1 Macro Nesting 7-5
7.3.2 Special Characters in Macro Arguments 7-6
7.3.3 Passing Numeric Arguments as Symbols 7-1
7.3.4 Number of Arguments in Macro Calls 7-8

iv

7.3.5 Creating Local Symbols Automatically
7.3.6 Keyword Arguments
7.3.7 Concatenation of Macro Arguments
7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND
.NTYPE
7.4.1 .NARG Directive
7.4.2 .NCHR Directive
7.4.3 .NTYPE Directive
7.5 .ERROR AND .PRINT DIRECTIVES
7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND
.IRPC
7.6.1 .IRP Directive
7.6.2 .IRPC Directive
7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR
7.8 MACRO LIBRARY DIRECTIVE: .MCALL
CHAPTER 8 IAS/RSX~-11M/RSX-11M-PLUS OPERATING PROCEDURES
8.1 RSX-11M OPERATING PROCEDURES
8.1.1 Initiating MACRO-~11 Under RSX-11M/RSX~-11M-
PLUS
8.1.1.1 Method 1 - Direct MACRO-11 Call
8.1.1.2 Method 2 - Using RUN Facility
8.1.1.3 Method 3 - Single Assembly
8.1.1.4 Method 4 - Install, Run Immediately, and
Remove On Exit
8.1.1.5 Method 5 -~ Using Indirect Filename Facility
8.1.2 RSX-11M Command String
8.1.3 RSX-11M File Specification Switches
8.2 OPERATING PROCEDURES APPLICABLE ONLY TO THE
RSX-11M-PLUS SYSTEM
8.2.1 Initiating MACRO-11] Under RSX-11M-PLUS
8.2.2 RSX-11M-PLUS Command String Examples
8.3 IAS MACRO-11 OPERATING PROCEDURES
8.3.1 Initiating MACRO-11 Under IAS
8.3.2 IAS Command String
8.3.3 IAS Indirect Command Files
8.3.4 IAS Command String Examples
8.4 CROSS-REFERENCE PROCESSOR (CREF)
8.5 IAS/RSX-11 FILE SPECIFICATION
8.6 MACRO-11 ERROR MESSAGES UNDER IAS/RSX-11M
CHAPTER 9 RSTS/RT-11 OPERATING PROCEDURES
9.1 MACRO-11 UNDER RSTS
9.1.1 RT-11 Through RSTS
9.1.2 RSX Through RSTS
9.2 INITIATING MACRO-11 UNDER RT-11
9.3 RT-11 COMMAND STRING
9.4 FILE SPECIFICATION OPTIONS
9.5 CROSS-REFERENCE (CREF) TABLE GENERATION
OPTION
9.5.1 Obtaining a Cross~Reference Table
9.5.2 Handling Cross-Reference Table Files
9.5.3 MACRO-11 Error Messages Under RT-11l
APPENDIX A MACRO-11 CHARACTER SETS
Al ASCII CHARACTER SET
A.2 RADIX-50 CHARACTER SET

Co 0 O
[| UL
UTwhhnN N =

0 00 00 0

W WY Wwww

111 i
NN

WO WY
N~ oro

—

b4 D|> >
ks

APPENDIX B MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES

’ SPECIAL CHARACTERS

SUMMARY - OF ADDRESS MODE SYNTAX

ASSEMBLER DIRECTIVES

w N

.1 OP CODES ;
2 MACRO-11 DIRECTIVES

B
B
B
APPENDIX C PERMANENT SYMBOL TABLE (PST)
C
C
D

APPENDIX ERROR MESSAGES

APPENDIX E SAMPLE CODING STANDARD

LINE FORMAT
COMMENTS
NAMING STANDARDS
Registers
General Purpose Registers
Hardware Registers
Device Registers
Processor Priority
Symbols*
Symbol Examples
Local Symbols
Global Symbols
Macro Names
General Symbols
PROGRAM MODULES
The Module Preface
The Module
Module Example
Modularity
Calling Conventions (Inter-Module/
Intra-Module)
Exiting
Success/Failure Indication
Module Checking Routines
CODE FORMAT
Program Flow
Common Exits
Code with Interrupts Inhibited
Code in System State
INSTRUCTION USAGE
Forbidden Instructions
Conditional Branches
PROGRAM SOURCE FILES
PDP-11 VERSION NUMBER STANDARD
Displaying the Version Identifier
Use of the Version Number in the Program

BB ERPRPOWWWWWWWWWWWWHN -
.

« o .
w N

« o
.
. .

.
WWWWWwWwWwNHFH

.
U W N -

* s s s
e s o e

oW N

.
—

'mmmmmmmmmmmmmmmmmmmm

o b

“ e s e e

..
« o .
> W

.
.
= wN e

....
N

s e e B o Y B s o Il s B o > s s
.
OO0~ UTWLI U1 U U ks

.
[\]

APPENDIX

o]

ALLOCATING VIRTUAL MEMORY

o - O - T

F.l GENERAL HINTS AND SPACE-SAVING GUIDELINES
F.2 MACRO DEFINITIONS AND EXPANSIONS
F.3 OPERATIONAL TECHNIQUES

WRITING POSITION INDEPENDENT CODE

INTRODUCTION TO POSITION INDEPENDENT CODE
EXAMPLES

vi

| T T T R O I O Y O T A I |
axJuUuuuds bbb WWNDNDNODNDODNDNDEF

Mmoo @moEmE@EnDEoOEED@EDEESEm

(O I N R R I L R I L
= = O WO WO OO

R RN N N NN Rl ol N N
[
Ul W W

I
—

m*?ﬂl
RN

[u}

OG;)O
N =

[

"
i

FIGURES

FIGURE 3-1 Assembly Listing Showing Local Symbol Block
3-2 Sample Assembly Results

6-1 Example of Line Printer Assembly Listing
6-2 Example of Teleprinter Assembly Listing
6-3 Listing Produced with Listing Control
Directives

Assembly Listing Table of Contents
Example of .ENABL and .DSABL Directives
Example of .BLKB and .BLKW Directives
Example of .SAVE and .RESTORE Directives
Example of .NARG Directive

Example of .NCHR Directive

Example of .NTYPE Directive in Macro
Definition

Example of .IRP and .IRPC Directives
Sample CREF Listing

Example of Position-Dependent Code
Example of Position-Independent Code

NIy
|
WRN I U

Q0o
[I
N

TABLES

TABLE Special Characters Used in MACRO-11
Legal Separating Characters

Legal Argument Delimiters

Legal Unary Operators

Legal Binary Operators

Addressing Modes

Symbols Used in Chapter 5

Directives in Chapter Six

Symbolic Arguments of Listing Control
Directives

Symbolic Arguments of Function Control
Directives .
Symbolic Arguments of .PSECT Directive
Program Section Default Values

Legal Condition Tests for Conditional Assembly
Directives

Subconditional Assembly Block Directives
File Specification Default Values
MACRO-11 File Specification Switches for
RSX-11M

RSX-11M-PLUS Command Qualifiers
RSX-11M-PLUS Parameter Qualifiers
Operational Error Messages; IAS/RSX-11M
Default File Specification Values

File Specification Options

/C Option Arguments

O UUTWWWWW
1
NN O WN -

|
w

AV (=)}
LU
[« & -4

o O O
1
NS RN |

\O O O 0 00
!

I
WM U W

vii

NP O S W

(=)} OOV WWwWwww

@ O OV
LI I I I | [
~N o N o

OV > WO (SN 0]

O WO W o oo

TO THE READER

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is intended to enable users to develop programs coded in
the MACRO-11 V4.0 assembly language.

No prior knowledge of the MACRO-11l Relocatable Assembler is assumed,
but the reader should be familiar with the PDP-11 processors and
related terminology, as presented in the PDP-11 Processor Handbooks.
The reader 1is also encouraged to become familiar with the linking
process, as presented in the applicable system manual (see Section
0.3), because 1linking is necessary for the development of executable
programs.

If a terminal is available to the reader, he/she 1is advised to try
some o©0f the examples in the manual or to write a few simple programs
that illustrate the concepts covered. Even experienced programmers
find that working with a simple program helps them to understand a
confusing feature of a new language.

The examples in this manual were done on an RT-11 system. MACRO-11
V4.0 may also be used on IAS/RSX-11M, RSX-11M-PLUS and RSTS systems
(see Part IV for information about operating procedures).

It can be assumed that all references to RSX-11M also apply to

RSX-11M-PLUS with the exception of those in Chapter 8, which deals
with each system individually.

0.2 STRUCTURE OF THE DOCUMENT

This manual has four parts and eight appendices.

Part I introduces MACRO-11.
Chapter 1 lists the key features of MACRO-11.
Chapter 2 identifies the advantages of following programming
standards and conventions and describes the format used in coding

MACRO-11 source programs.

Part II presents general information essential to programming with the
MACRO-11 assembly language.

Chapter 3 lists the character set and de ibes the symbols,
t

scr
terms, and expressions that form he elements of MACRO-11
instructions.

viii

Chapter 4 describes the output of MACRO-11 and presents concepts
essential to the proper relocation and linking of object modules.

Chapter 5 describes how data stored in memory can be accessed and
manipulated wusing the addressing modes recognized by the PDP-11
hardware.

Part III.describes the MACRO-1l1l directives that control the processing
of source statements during assembly.

Chapter 6 discusses directives used for generalized MACRO-11
functions.

. \ - < o L - . a T o
Chapter i discusses directives used in the derfinition ang

expansion of macros.

Part IV presents the operating procedures essential to the assembly,
linking, and initiating of MACRO-11 programs.

Chapter 8 covers the IAS, RSX-11M and RSX-11M-PLUS systems.
Chapter 9 covers the RSTS/RT-11 systems.

Appendix A lists the ASCII and Radix-50 character sets used in
MACRO-11 programs.

Appendix B 1lists the special characters recognized by MACRO-11,
summarizes the syntax of the various addressing modes used in PDP-11
processors, and briefly describes the MACRO-11 directives in
alphabetical order.

Appendix C lists alphabetically the permanent symbols that have been
defined for use with MACRO-11.

Appendix D lists alphabetically the error codes produced by MACRO-11
to identify various types of errors detected during the assembly
process.

Appendix E contains a coding standard that is recommended practice in
preparing MACRO-11 programs.

Appendix F discusses several methods of conserving dynamic memory
space for users of small systems who may experience difficulty in
assembling MACRO-11 programs.

Appendix G is a discussion of position-independent code (PIC).

Appendix H contains an assembly and cross-reference listing.

0.3 ASSOCIATED DOCUMENTS

For descriptions of documents associated with this manual, refer to
the applicable documentation directory listed below:

IAS Documentation Directory
RSX-11M-PLUS Documentation Directory
RSX-11M/RSX-11S Documentation Directory

RT-11 Documentation Directory

ix

0.4 DOCUMENT CONVENTIONS

The portions of text that are pertain to features that
are not available in the 8K version of MACRO-11.

The portions of text that are
available only to wusers of.
subseguent versions):

pertain ‘to features
operating systems (or
RT-11 Version 4.0
RSTS Version 7.0

The color red is used in command string examples to indicate user
type-in.

The symbols defined below are used throughout this manual.

Symbol Definition

[1 Brackets indicate that the enclosed argument is
optional.

. Ellipsis indicates optional continuation of an argument

list in the form of the last specified argument.

UPPER-CASE Upper-case characters indicate elements of the language
CHARACTERS that must be used exactly as shown.

lower-case Lower-case characters indicate elements of the language
characters that are supplied by the programmer.

(n) In some instances the symbol (n) is used following

a
number to indicate the radix. For example, 100(8)
indicates that 100 is an octal wvalue, while 100{10)
indicates a decimal value.

PART I

MACRO-11: ASSEMBLY AND FORMATTING

CHAPTER 1

THE MACRO-11 ASSEMBLER

MACRO-11 provides the following features:
1. Source and command string control of assembly functions
2. Device and filename specifications for input and output files

3. Error listing on command output device

4. Alphabetized, formatted symbol table 1listing;
‘cross~reference listing. ymbols

5. Relocatable object modules

6. Global symbols for linking object modules
7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries
10. Comprehensive system macro library

1l. Extensive source and command string control of 1listing
functions.

statements 1into a single relocatable binary object file. The output
of MACRO-11 consists of a binary object file and a file containing the
table of contents, the assembly listing, and the symbol table. Aan
optional cross-reference listing of symbols and macros is available.
A sample assembly listing is provided in Appendix H.

1.1 ASSEMBLY PASS 1

During pass 1, MACRO-11 locates and reads all required macros from
libraries, builds symbol tables and program section tables for the
program, and performs a rudimentary assembly of each source statement.

In the first step of assembly pass 1, MACRO-11 initializes all the
impure data areas (areas containing both code and data) that will be

used internally for the assembly process. These reas include all
dynamic storage and buffer areas used as f i

=LQrLa L1180 itas

THE MACRO-11 ASSEMBLER

MACRO-11 then calls a system subroutine which transfers a command line
into memory. This command line contains the specifications of all
files to be used during assembly. After scanning the command line for
proper syntax, MACRO-11 initializes the specified output files. These
files are opened to determine if valid output file specifications have
been passed in the command line.

MACRO-11 now initiates a routine which retrieves source lines from the
input file. 1If no input file is open, as is the case at the beginning
of assembly, MACRO-11l opens the next input file specified 1in the
command line and starts assembling the source statements. MACRO-11
first determines the length of the instructions, then assembles them
according to length as one word, two words, or three words.

At the end of assembly pass 1, MACRO-11 reopens the output files
described above. Such information as the object module name, the
program version number, and the global symbol directory (GSD) for each
program section are output to the object file to be used later in
linking the object modules. After writing out the GSD for a given
program section, MACRO-11 scans through the symbol tables to find all
the global symbols that are bound to that particular program section.
MACRO-11 then writes out GSD records to the object file for these
symbols. This process is done for each program section.

1.2 ASSEMBLY PASS 2

On pass 2 MACRO-11 writes the object records to the output file while
generating both the assembly llstlng and the symbol table listing for
the program. 2 . g

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACRO-1ll-detected errors are flagged with an error code as the
assembly listing file is created. The object file that is created as
the final conseguence of pass 2 contains all the object records,
together with relocation records that hold the information necessary
for linking the object file.

The information in the object file, when passed to the Task Builder or
Linker, enables the global symbols in the object modules to be
associated with absolute or virtual memory addresses, thereby forming
an executable body of code.

The user may wish to become familiar with the macro object file format
and description. This information 1is presented in the appllcable
system manual (see Section 0.3 in the Preface).

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Programming standards and conventions allow code written by a person
(or group) to be easily understood by other people. These standards
also make the program easier to:

Plan
Comprehend
Test
Modify
Convert

The actual standard used must meet local user requirements. A sample
coding standard 1is provided in Appendix E. Used by DIGITAL and its
users, this coding example simplifies both communications and the
continuing task of software maintenance and improvement.

2,2 STATEMENT FORMAT

A source program is composed of assembly-language statements. Each
statement must be completed on one line. Although a line may contain
132 characters (a longer line causes an error (L) in the assembly
listing) a line of 80 characters is recommended because of constraints
imposed by listing format and terminal 1line size. Blank 1lines,
although legal, have no significance in the source program.

A MACRO-11l statement may have as many as four fields. These fields
are identified by their order within the statement and/or by the
separating characters between the fields. The general format of a
MACRO-11 statement is:

[Label:] Operator Operand [;Comment (s)]

The label and comment fields are optional. The operator and operand
fields are interdependent; in other words, when both fields are
present in a source statement, each field is evaluated by MACRO-11 in
the context of the other.

A statement may contain an operator and no operand, but the reverse is
not true. A statement containing an operand with no operator is
illegal and is interpreted by MACRO-11 during assembly as an implicit
.WORD directive (see Section 6.3.2).

MACRO-11 interprets and processes source program statements one by
one. Each statement causes MACRO-11 either to perform a specified
assembly process or to generate one or more binary instructions or
data words.

SOURCE PROGRAM FORMAT

2.2.1 Label Field

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The current location counter is used by MACRO-11 to assign
memory addresses to the source program statements as they are
encountered during the assembly process. Thus, a label is a means of
symbolically referring to a specific statement.

When a program section is absolute, the value of the current 1location
counter is absolute; its value references an absolute virtual memory
address (such as location 100). Similarly, when a program section is
relocatable, the value of the current location counter is relocatable;
a relocation bias calculated at link time is added to the apparent
value of the current location counter to establish its effective
absolute virtual address at execution time. (For a discussion of
program sections and their attributes, see Section 6.7.)

If present, a label must be the first field in a source statement and
must be terminated by a colon (:). For example, if the value of the
current location counter is absolute 100(8), the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. If the 1location counter
value were relocatable, the final value of ABCD would be 100(8)+K,
where K represents the relocation bias of the program section, as
calculated by the Task Builder or Linker at link time.

More than one label may appear within a single 1label field. Each
label so specified is assigned the same address value. For example,
if the value of the current location counter is 100(8), the multiple
labels in the following statement are each assigned the value 100(8):

ABC: $DD: A7.7: MOV A,B

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
$SDD:
A7.7: MOV A,B

likewise cause the same value to be assigned to all three labels.
This second method of assigning multiple labels is preferred because
positioning the fields consistently within the source program makes
the program easier to read (see Section 2.3).

A double colon (::) defines the 1label as a global symbol. For
example, the statement

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
{see Secticn 6.8) or by independently assembled object modules.
References to this label in other modules are resolved when the
modules are linked as a composite executable image.

2-2

SOURCE PROGRAM FORMAT

The legal characters for defining labels are:

A through Z
0 through 9
(Period)
$ (Dollar Sign)

NOTE

By convention, the dollar sign ($) and
period (.) are reserved for use in
defining DIGITAL system software
symbols. Therefore these <characters
should not be used in defining labels in
MACRO-11 source programs.

A label may be any length; however, only the first six characters are
significant and, therefore, must be unigue among all the labels in the
source program. An error code (M) is generated in the assembly
listing if the first six characters in two or more labels are the same
(see Appendix D).

A symbol used as a label must not be redefined within the source
program. If the symbol 1is redefined, a label with a multiple
definition results, causing MACRO-11 to generate an error code (M) in
the assembly listing (see Appendix D). Furthermore, any statement in
the source program which references a multi-defined label generates an

error code (D) in the assembly listing (see Appendix D).

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call. Chapters 6 and 7 describe these three types of
operators.

When the operator is an instruction mnemonic, a machine instruction is
generated and MACRO-11 evaluates the addresses of the operands which
follow. When the operator is a directive MACRO-1l1 performs certain
control actions or processing operations during the assembly of the
source program. When the operator is a macro call, MACRO-1l1 inserts
the code generated by the macro expansion.

Leading and trailing spaces or tabs in the operator field have no
significance; such characters serve only to separate the operator
field from the preceding and following fields.

An operator is terminated by a space, tab, or any non-RAD50
character?®*,
as in the following examples:

MOV A,B s THE SPACE TERMINATES THE OPERATOR

;s MOV,
MOV A,B ;s THE TAB TERMINATES THE OPERATOR MOV.
MOV@A,B ;THE @ CHARACTER TERMINATES THE

; OPERATOR MOV.

Although the statements above are all equivalent in function, the
second statement 1is the recommended form because it conforms to
MACRO-11 coding conventions.

* Appendix A.2 contains a table of Radix-50 characters.

2-3

SOURCE PROGRAM FORMAT

2.2.3 Operand Field

When the operator is an instruction mnemonic (op code), the operand
field contains program variables that are to be evaluated/manipulated
by the operator. The operand field may also supply arguments to
MACRO-11 directives and macro calls, as described in Chapters & and 7,
respectively.

Operands may be expressions or symbols, depending on the operator.
Multiple expressions used in the operand field of a MACRO-11 statement
must be separated by a comma; multiple symbols similarly used may be
delimited by any legal separator (a comma, tab, and/or space). An
operand should be preceded by an operator field; if it 1is not, the
statement 1is treated by MACRO-11 as an implicit .WORD directive (see
Section 6.3.2).

When the operator field contains an op code, associated operands are
always expressions, as shown in the following statement:

MoV RO ,A+2 (R1)
On the other hand, when the operator field contains a MACRO-11

directive or a macro call, associated operands are normally symbols,
as shown in the following statement:

.MACRO ALPHA SYM1,SYM2
Refer to the description of each MACRO-11 directive (Chapter 7) to
determine the type and number of operands required in issuing the
directive.

The operand field is terminated by a semicolon when the field Iis
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ;s COMMENT FIELD
the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the

beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the

end of the 1line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage-return, line-feed,
vertical-tab or form-feed. All other characters appearing in the

comment field, even special characters reserved for use in MACRO-11,
are checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

SOURCE PROGRAM FORMAT

All comment fields must begin with a semicolon (;). When lengthy
comments extend beyond the end of the source line (column 80), the
comment may be resumed in a following line. Such a line must contain
a leading semicolon, and it is suggested that the body of the comment
be continued in the same columnar position in which the comment began.
A comment 1line can also be included as an entirely separate line
within the code body.

Comments do not affect assembly processing or program execution.

However, comments are necessary in source listings for later analysis,
debugging, or documentation purposes.

2.3 FORMAT CONTROL
Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source program.
DIGITAL's standard source line format is shown below:

Label - begins in column 1

Operator - begins in column 9

Operands - begin in column 17

Comments - begin in column 33.
These formatting conventions are not mandatory; free-field coding 1is
permissible. However, note the increased readability after formatting
in the example below:
REGTST:BIT#MASK,VALUE; COMPARES BITS IN OPERANDS.
1 9 17 33 (columns)
REGTST: BIT #MASK ,VALUE ;s COMPARES BITS IN OPERANDS.

Page formatting and assembly listing considerations are discussed in
Chapter 6 in the context of MACRO-11 directives that may be specified
to accomplish desired formatting operations. Appendix E contains a
sample coding standard.

PART II

PROGRAMMING
IN MACRO-11 ASSEMBLY
LANGUAGE

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO-11 instructions: the

character

set, the conventions observed in constructing symbols, and

the use of numbers, operators, terms and expressions.

3.1 CHARACTER SET

The following characters are legal in MACRO-11 source programs:

1. The letters A through Z. Both upper- and 1lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2, .ENABL LC).

2. The digits 0 through 9.

3. The characters . (period) and $ (dollar sign). These
characters are reserved for wuse as Digital Egquipment
Corporation system program symbols.

4, The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in MACRO-11
Character Designation Function
: Colon Label terminator.
HH Double colon Label terminator; defines the
label as a global label.
= Equal sign Direct assignment operator and
macro keyword indicator.
== Double equal Direct assignment operator;
sign defines the symbol as a global
symbol.
=: Equal sign colon¥* Direct assignment operator;
macro keyword indicator;
causes error (M) in listing if
an attempt is made to change
the value of the symbol.
* RT-11 v4.0 only. (continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-

1

(Cont.)

Special Characters Used in MACRO-11

Character Designation Function
==3 Double equal Direct assignment operator;
sign colon* defines the symbol as a global
symbol; causes error (M) in
listing if an attempt is made
to <change the value of the
symbol.

% Percent sign Register term indicator.

Tab Item or field terminator.
Space Item or field terminator.

Number sign Immediate expression
indicator.

@ At sign Deferred addressing indicator.

(Left parenthesis Initial register indicator.

) Right parenthesis Terminal register indicator.

. Period Current location counter.

’ Comma Operand field separator.

H Semicolon Comment field indicator.

< Left angle Initial argument or expression

bracket indicator.

> Right angle Terminal argument or

bracket expression indicator.

+ Plus sign Arithmetic addition operator
or autoincrement indicator.

- Minus sign Arithmetic " subtraction
operator or autcdecrement
indicator.

* Asterisk Arithmetic multiplication
operator.

/ Slash Arithmetic division operator.

& Ampersand Logical AND operator.

Exclamation point

Double guote

Logical inclusive OR operator.

Double character

indicator.

ASCII

*

RT-11 V4.0 only.

(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)
Special Characters Used in MACRO-11

Character Designation Function
! Single quote Single ASCII character
indicator; or concatenation

indicator.

Up arrow or Universal unary operator or
circumflex argument indicator.
\ Backslash Macro call numeric argument

indicator.

3.1.1 Separating and Delimiting Characters
Legal separating characters and legal argument delimiters are defined
in Tables 3-2 and 3-3 respectively.

Table 3-2
Legal Separating Characters

T

Character | Definition Usage
Space One or more spaces A space is a legal separator
and/or tabs between instruction fields and
between symbolic arguments

within the operand field.
Spaces within expressions are
ignored (see Section 3.9).

Comma A comma is a legal separator
between symbolic arguments
within the operand field.
Multiple expressions used in
the operand field must be
separated by a comma.

3.1.2 1Illegal Characters
A character is illegal for one of two reasons:

1. 1If a character is not an element of the recognized MACRO-11
character set, it 1is replaced in the listing by a guestion
mark, and an error code (I) 1is printed in the assembly
listing (see Appendix D). The exception to this is an
embedded null which, when detected, terminates the scan of
the current line.

2. If a legal MACRO-11 character is used in a source statement

with 1illegal or questionable syntax, an error code (Q) is
printed in the assembly listing.

3-3

SYMBOLS AND EXPRESSIONS

Table 3-3
Legal Argument Delimiters

followed by an
argument that is

Character Definition Usage

<evu? Paired angle Paired angle brackets may be
brackets used anywhere in a program to

enclose an expression for
treatment as a single term,
Paired angle brackets are also
used to enclose a macro
argument, particularly when
that argument contains
separating characters (see
Section 7.3).

"X...X Up-arrow (unary This construction is
operator) con- equivalent 1in function to the
struction, where paired angle brackets
the up-arrow is described above and is

generally used only where the
argument itself contains angle

bracketed by any brackets.-
paired printing
characters (x).
3.1.3 Unary and Binary Operators
Legal MACRO-11 unary operators are described in Table 3-4. Unary

operators

are used in connection with

single terms {arguments or

operands) to indicate an action to be performed on that term during
Because a term preceded by a unary operator is considered
to contain that operator, a term so specified can be used alone or as
an element of an expression.

assembly.

Table 3-4
Legal Unary Operators

Unary
Operator | Explanation Example Effect
+ Plus sign +A Produces the positive
value of A.
- Minus sign -A Produces the negative

(2's complement)
value of Aa.

(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-4 (Cont.)
Legal Unary Operators
Unary
Operator | Explanation Example Effect
- Up-arrow, universal ~c24 Produces the 1's
unary operator. complement value of
(This usage is 24 (8).
described in
detail in “Diz7 Interprets 127 as a
Section 6.4.) decimal er

"034 Interprets 34 as an
octal number.
"B11000111 Interprets 11000111
as a binary number.
"RABC Evaluates ABC in
| Radix-50 form.

Unary operators can be used adjacent to each other or in constructions

involving multiple terms, as shown below:

-"D5¢ {Equivalent to -<"D50>)
“C"012 (Eguivalent to "C<"012>)
Legal MACRO-11 binary operators are described in Table 3-5. In

contrast

to unary

operators, binary operators specify actions to be

performed on multiple items or terms within an expression.

Table 3-5
Legal Binary Operators

Binary

Operator Explanation Example

+ Addition A+B

- Subtraction A-B

* Multiplication A*B (signed 1l6-bit
product returned)

/ Division A/B (signed 1l6-bit
quotient returned)

& Logical AND A&B

! Logical inclusive OR AlB

SYMBOLS AND EXPRESSIONS

All binary operators have equal priority. Terms enclosed by angle
brackets are evaluated first, and remaining operations are performed
from left to right, as shown in the examples below:

.WORD 1+2%3 ; EQUALS 11(8).
.WORD 1+<2*3> ;EQUALS 7(8).

3.2 MACRO-11 SYMBOLS

MACRO-11 maintains a symbol table for each of the three symbol types
that may be defined in a MACRO-11 source program: the Permanent
Symbol Table (PST), the User Symbol Table (UST), and the Macro Symbol
Table (MST). The PST contains all the permanent symbols defined
within (and thus automatically recognized by) MACRO-11 and is part of
the MACRO-11 1image. The UST (for user-defined symbols) and MST (for
macro symbols) are constructed as the source program is assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO-11 directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACRO-11] image and need not
be defined before being wused in the operator field of a MACRO-11
source statement (see Section 2.2.2),.

3.2.2 User-Defined and Macro Symbols

User—defined symbols are those symbols that are eguated to a specific
value through a direct assignment statement (see Section 3.3), appear
as labels (see Section 2.2.1), or act as dummy arguments (see Section
7.1.1). These symbols are added to the User Symbol Table as they are
encountered during assembly.

Macro symbols are those symbols used as macro names (see Section 7.1).
They are added to the Macro Symbol Table as they are encountered
during assembly.

The following rules govern the creation of user-defined and macro
symbols:

1. Symbols can be composed of alphanumeric characters, dollar
signs ($), and periods (.) only (see Note below).

2. The first character of a symbol must not be a number (except
in the case of local symbols; see Section 3.5).

3. The first six characters of a symbol must be unigue. A
symbol can be written with more than six legal characters,
but the seventh and subseguent characters are checked only
for ASCII legality and are not otherwise evaluated or
recognized by MACRO-11.

4. Spaces, tabs, and illegal characters must not be embedded

within a symbol. The legal MACRO-11 character set is defined
in Section 3.1.

3-6

SYMBOLS AND EXPRESSIONS

NOTE

The dollar sign ($) and period (.)
characters are reserved for wuse in
defining Digital Equipment Corporation
system software symbols. For example,
READS is a file-processing system macro.
The wuser 1is cautioned not to employ
these characters in constructing
user-defined symbols or macro symbols in
order to avoid possible conflicts with
existing or future Digital Equipment
Corporation system software symbols.

The value of a symbol depends upon its use in the program. A symbol
in ‘the operator field may be any one of the three symbol types
described above; permanent, user-defined, or macro. To determine the
value of an operator-field symbol, MACRO-11 searches the symbol tables

in the following order:

1. Maqro Symbol Table

2. Permanent Symbol Table

3. User-Defined Symbol Table
This search order allows permanent symbols to be used as macro
symbols. But the wuser must keep in mind the seguence in which the

search for symbols 1is performed in order to avoid incorrect
interpretation of the symbol's use.

When a symbol appears in the operand field, the search order is:
1. User-Defined Symbol Table
2. Permanent Symbol Table

Depending on their use in the source program, user-defined symbols
have either a 1local (internal) attribute or a global (external)
attribute.

Normally, MACRO-11 treats all user-defined symbols as local, that is,
their definition 1is 1limited to the module in which they appear.
However, symbols can be explicitly declared to be global symbols
through one of three methods:

1. Use of the .GLOBL directive (see Section 6.8).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double egual sign (==) or double equal colon sign
==:) in a direct assignment statement (see Section 3.3)*,

All symbols within a module that remain undefined at the end of
assembly are treated as default global references.

* RT-11 V4.0 only.

SYMBOLS AND EXPRESSIONS

NOTE

Undefined symbols at the end of assembly
are assigned a value of 0 and placed
into the user-defined symbol table as
undefined default global references. If
the .DSABL GBL directive is in effect,
however, (see Section 6.2) the statement
containing the undefined symbol is
flagged with an error code (U) in the
assembly listing (see Appendix D).

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the image. Such symbols are referenced from other source
modules in order to transfer control throughout execution. These
global symbols are resolved at link time, ensuring that the resulting
image is a logically coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS
The General Format for a direct assignment statement is:
symbol=expression
or
symbol==expression

where: expression - can have only one level of forward reference
(see 5. below).

- cannot contain an undefined global reference.
The Colon Format* for a direct assignment statement is:
symbol=:expression
or
symbol==:expression

where: expression = can have only one level of forward reference
(see 5. below).

- cannot contain an undefined global reference.

All the direct assignment statements above allow the user to equate a
symbol with a specific value. After the symbol has been defined it is
entered into the User-Defined Symbol Table. 1If the general format is
used (= or ==) the value of the symbol may be changed in subseguent
direct assignment statements. If, however, the colen format is used
(=: or ==:) any attempt to change the value of the symbol will
generate an error (M) in the assembly listing.

A direct assignment statement embodying either the double e
gign or the double egqual colon (==:) eign, as shown ahove, 4
symbol as global (see Section 6.8).

* RT-11 V4.0 only.

3-8

SYMBOLS AND EXPRESSIONS

The following examples illustrate the coding of direct assignment
statements.

Example 1:
A=10 ;DIRECT ASSIGNMENT
==30 ;GLOBAL ASSIGNMENT
A=15 ; LEGAL REASSIGNMENT
L=:5 ;EQUAL COLON ASSIGNMENT*
M==:A+2 ;DOUBLE EQUAL COLON ASSIGNMENT¥*
;M BECOMES EQUAL TO 17
L=4 ; ILLEGAL REASSIGNMENT

+M ERROR IS GENERATED

Example 2:

C:
D=. +THE SYMBROL D IS EQUATED TQ ., AND
E: MOV #1 ,ABLE ; THE LABELS C AND E ARE ASSIGNED A

; VALUE THAT IS EQUAL TO THE LOCATION
;OF THE MOV INSTRUCTION.

The code in the second example above would not usually be used and is
shown only to illustrate the performance of MACRO-11 in such
situations. See Section 3.6 for a description of the period (.) as
the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

l. An equal sign (=), double equal sign (==), equal colon sign*
(=:) or double egual colon sign* (==:) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4. A direct assignment statement may be followed only by a
comment field.

5. Only one 1level of forward referencing is allowed. The
following example would cause an error code (U) in the
assembly listing on the line containing the illegal forward
reference:

X=Y (Illegal forward reference)
Y=z (Legal forward reference)
z2=1

* RT-11 V4.0 only.

3-9

SYMBOLS AND EXPRESSIONS

Although one 1level of forward referencing is allowed for 1local
symbols, no forward referencing 1is allowed for global symbols. 1In
other words, the expression being assigned to a global symbol can
contain only previously defined symbols. A forward reference in a
direct assignment statement defining a global symbol will cause an
error code (A) to be generated in the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 processor are numbered 0
through 7 and can be expressed in the source program in the following
manner:

where % indicates a reference to a register rather than a 1location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.

The register definitions listed below are the normal default values
and remain valid for all register references within the source
program.

R0=%0 ;REGISTER 0 DEFINITION.
R1=%1 ;REGISTER 1 DEFINITION.
R2=%2 ;REGISTER 2 DEFINITION.
R3=%3 ;REGISTER 3 DEFINITION.
R4=%4 ;REGISTER 4 DEFINITION.
R5=%5 ;REGISTER 5 DEFINITION.
SP=%6 ; STACK POINTER DEFINITION.
PC=%7 ;s PROGRAM COUNTER DEFINITION.

Registers 6 and 7 are given special names because of their unigue
system functions. The symbolic default names assigned to the
registers, as listed above, are the conventional names used in all
DIGITAL-supplied PDP-11 system programs. For this reason, you are
advised to follow these conventions.,

A register symbol may be defined in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value between 0 and 7, inclusive, or
an error code (R) will appear in the assembly listing. Although you
can reassign the standard register symbols through the use of the
.DSABL REG directive (see Section 6.2), this practice 1is not
recommended. An attempt to redefine a default register symbol without
first specifying the .DSABL REG directive to override the normal
register definitions causes that assignment statement to be flagged
with an error code (R) 1in the assembly listing. All non-standard
register symbols must be defined before they are referenced in the
source program.

3-10

SYMBOLS AND EXPRESSIONS

The % character may be used with any legal term or expression

specify a register. For example, the statement
CLR $3+1
is equivalent in function to the statement
CLR %4
and clears the contents of register 4.
In contrast, the statement
- CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

to

" Local symbols are specially formatted symbols used as labels within a
block of coding that has been delimited as a local symbol block.

Local symbols are of the form n$, where n is a decimal integer from 1

to 65535, inclusive. Examples of local symbols are:

1s
278
598
1048

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists

those

statements between two normally-constructed symbolic labels

(see Figure 3-1). Note that a statement of the form:

ALPHA=expression

is a direct assignment

not oraa+a A 1Tahal anAd
11U T CLilakic d 4+4auTa dilid

local symbol block.

2. The range of a local symbol block is normall
encountering a .PSECT, .CSECT, .ASECT, or .
in the source program (see Figure 3-1).

3. The range of a 1local symbol block 1is delimited

MACRO-11 directives, as follows:
Starting déiimiter: .ENABL LSB (see Section 6.2)
Ending delimiter: .ENABL LSB

or

one of the following:

Symbolic label (see Section 2.2.1)

.PSECT (see Section 6.7.1)
.CSECT (see Section 6.7.2)
i 6.7.2

encountered after a .DSABL LSB

Section 6.2).

3-11

terminated upon
directive

through

(see

SYMBOLS AND EXPRESSIONS

Local symbols provide a convenient means of generating labels for
branch instructions and other such references within a local symbol
blocks. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. 1In addition,
the use of local symbols differentiates entry-point labels from 1local
labels, since 1local symbols cannot be referenced from outside their
respective local symbol blocks. Thus, local symbols of the same name
can appear in other 1local symbol blocks without conflict. Local
symbols do not appear in cross-reference 1listings and require less
symbol table space than other types of symbols. Their use is
recommended.

When defining local symbols, use the range from 1§ to 63$ first, then
the range from 128$% to 65535$. Local symbols within the range 64$
through 127$, inclusive, can be generated automatically as a feature
of MACRO-11. Such local symbols are useful in the expansion of macros
during assembly (see Section 7.3.5).

Be sure to avoid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 10$ is defined
two or more times within the same local symbol block, each symbol
represents a different address value. Such a multi~-defined symbol
causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

1 it

2 i Simrle illustration of locazl sumbolsi the second block is delimited

3 5 bw the label XCTPAS,

4 P=

S

4 000000 012700 XCTFRG! MOV #IMPURERO iPoint to impure ares
0000006

7 000004 005020 183 CLR (RO} + iClear a3 word

8 000006 020027 CMP RO #IMPURT iTest if at tor of area
0000006

9 000012 001374 BNE 1s iIterate if not

10 iFall in to rerform ra3ss initialization

i1

12 000014 012700 XCTFAS: MOV $IMPPAS/RO iFfoint to rass storade ares
0000006

13 000020 005020 1%! CLR (RO + 3iClear the sres

14 000022 020027 CMP RO #IMPPAT iTest if at tor of area
0000006

15 000026 001374 BNE 1% ilterate of not

16 000030 000207 RTS PC iReturn if so

Figure 3-1 Assembly Listing Showing Local Symbol Block

3.6 CURRENT LOCATION COUNTER

The period (.) is the symbol for the current location counter. When
used in the operand field of an instruction, the period represents the
address of the first word of the instruction, as shown in the first
example below. When used in the operand field of a MACRO-11
directive, it represents the address of the current byte or word, as
shown in the second example below.

SYMBOLS AND EXPRESSIONS

A: MOV #.,R0 ; THE PERIOD (.) REFERS TO THE ADDRESS
;OF THE MOV INSTRUCTION.

{The function of the # symbol is explained in Section 5.9.)

SAL=0
.WORD 177535,.+4,SAL ;THE OPERAND .+4 IN THE .WORD
sDIRECTIVE REPRESENTS A VALUE
s THAT IS STORED AS THE SECOND
;OF THREE WORDS DURING
;ASSEMBLY.
Assume that the current value of the location counter is
assembly, MACRO-11 reserves storage in response to the .WORD directive
(see Section 6.3.2), beginning with location 500. The operands
accompanying the .WORD directive determine the values so stored. The
value 177535 is thus stored in location 500. The value represented by
.+4 is stored in location 502; this value is derived as the current
value of the location counter (which is now 502), plus the absolute
value 4, thereby depositing the value 506 in location 502. Finally,
the value of SAL, previously eguated to 0, is deposited 1in location
504.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS
500 177535
502 506
504 0

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO-11l resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the 1location
counter can be changed through a direct assignment statement of the
following form:

.=expression

The current location counter symbol (.) 1is either absolute or
relocatable, depending on the attribute of the current program
section.

The attribute of the current location counter can be changed only
through the program sectioning directives (.PSECT, .ASECT, .CSECT and
:) , as described in Section 6.7. Therefore, assigning to the
counter an expression having an attribute different than that of the
current program section will generates an error code (A) in the
assembly listing.

Furthermore, an expression assigned to the counter may not contain a
forward reference (a reference to a symbol that is not previously

L01Wal scicicliCT (= LCcicici:LT e [0 2 20 =2

defined). The user must also be sure that the expression assigned
will not force the counter into another program section, even if both
sections involved have the same relocatability. Either of these
conditions generates an error code (A) in the assembly listing.

SYMBOLS AND EXPRESSIONS

The following coding illustrates the use of the current location
counter:

.ASECT
.=500 ;SET LOCATION COUNTER TO
;sABSOLUTE 500 (OCTAL) .
FIRST: MOV .+10,COUNT ;THE LABEL "FIRST" HAS THE VALUE

500 (OCTAL) .
;.+10 EQUALS 510 (OCTAL). THE
: CONTENTS OF THE LOCATION
;510 (OCTAL) WILL BE DEPOSITED
;IN THE LOCATION "COUNT."
.=520 " ;THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
:ABSOLUTE 520 (OCTAL) .
SECOND: MOV ., INDEX ; THE LABEL SECOND HAS THE
: ; VALUE 520 (OCTAL) ..
_; THE' CONTENTS OF LOCATION
;520 (OCTAL) , THAT IS, THE BINARY
i CODE FOR THE INSTRUCTION :
;ITSELF, WILL BE DEPOSITED IN THE
; LOCATION "INDEX." ;
.PSECT '
.=.+20 ;SET LOCATION COUNTER TO
;RELOCATABLE 20 OF THE
; UNNAMED PROGRAM SECTION.
THIRD: .WORD 0 ;THE LABEL THIRD HAS THE
+VALUE OF RELOCATABLE 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the following statements:

.=.+40
or
.BLKB 40
or
.BLKW 20
reserves 40(8) bytes of storage space in the source program. The

.BLKB and .BLKW directives, however, are the preferred ways to reserve
storage space (see Section 6.5.3).

3.7 NUMBERS

MACRO-11 assumes that all numbers in the source program are to be
interpreted in octal radix, unless otherwise specified. An exception
to this assumption is that operands associated with Floating Point
Processor instructions and Floating Point Data directives are treated
as decimal (see Section 6.4.2). This default radix can be altered
with the .RADIX directive (see Section 6.4.1.1). Also, individual
numbers can be designated as decimal, binary, or octal numbers through
temporary radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the current radix, an error code (N) is generated in the
assembly listing. However, MACRO-11l continues with the scan of the
statement and evaluates each such number encountered as a decimal

~ 1
vazue,

SYMBOLS AND EXPRESSIONS

Negative numbers must be preceded by a minus sign; MACRO-11
translates uch numbers into two's complement form. Positive numbers

may (but need not) be preceded by a plus sign.

A number containing more than 16 significant bits (greater than
177777(8)), 1is truncated from the left and flagged with an error code
(T) in the assembly listing.

Numbers are always considered to be absolute values; therefore, they
are never relocatable.

3.8 TERMS

A term is a component of an expression and may be one of the
following:

1. A number, as defined in Section 3.7, whose 1l6-bit wvalue is
used.

2. A symbol, as defined in Section 3.2. Symbols are evaluated
as follows:

a. A period (.) specified in an expression causes the value
of the current location counter to be used.

b, A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

c. A permanent symbol's basic value is wused, with =zero
substituted for the addressing modes. (Appendix C lists
all op codes and their values.)

d. An undefined symbol is assigned a value of zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. 1If the .DSABL GBL directive
(see Section 6.2) 1is in effect, the automatic global
reference default function of MACRO-11l is inhibited, and
the statement containing the undefined symbol is flagged
with an error code (U) in the assembly listing.

3. A single quote followed by a single ASCII character, or a
double quote followed by two ASCII characters. This type of
expression construction is explained in detail in Section
6.3.3.

3-15

SYMBOLS AND EXPRESSIONS

4. An expression enclosed in angle brackets (<>). Any
expression so enclosed is evaluated and reduced to a single
term before the remainder of the expression in which it
appears 1is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to apply a unary operator to an
entire expression (as in -<A+B>).

5. A unary operator followed by a symbol or number.

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators (see Table 3-5). Expressions reduce to a 16-bit value. The
evaluation of an expression includes the determination of its
attributes. A resultant expression value may be any one of four types
(as described 1later in this section): relocatable, absolute,
external, or complex relocatable.

Expressions are evaluated from left to right with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator is considered
to contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:

-+-2
is equivalent to:
—<+<~A>>

A missing term, expression, or external symbol is interpreted as a
zero. A missing or illegal operator terminates the expression
analysis, causing error codes (A) and/or (Q), to be generated in the
assembly 1listing, depending on the context of the expression itself.
For example, the expression:

A+ B 177777
is evaluated as
A+ B
because the first non-blank character following the symbol B is not a

legal binary operator, an expression separator (a comma), or an
operand field terminator (a semicolon or the end of the source line).

SYMBOLS AND EXPRESSIONS

NOTE
Spaces within expressions can serve as

delimiters only between symbols. In
other words, the expressions

are not (B 17 is not a single symbol).

At assembly time the value of an external (global) expression is egqual

to the

value of the absolute part of that expression. For example,

the expression EXTERN+A, where "EXTERN" is an external symbol, has a

value

at assembly time that 1is equal to the value of the internal

(local) symbol A. This expression, however, when evaluated at 1link
time takes on the resolved value of the symbol EXTERN, plus the value
of symbol A.

Expressions, when evaluated by MACRO-11, are one of four types:
relocatable, absolute, external, or complex relocatable. The
following distinctions are important:

1.

An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears; it will have an offset value added at 1link time.
Terms that contain labels defined 1in relocatable program
sections will have a relocatable value; similarly, a period
(.} in a relocatable program section, representing the value
of the current location counter, will also have a relocatable
value.

An expression 1is absolute if its value 1is fixed. An
expression whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable
expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
is an absolute expression. This is because every term in a
program section has the same relocation bias. When one term
is subtracted from another, the resulting bias is zero.
MACRO-11 can then treat the expression as absolute and reduce
it to a single term upon completion of the expression scan.
Terms that contain labels defined in an absolute section will
also have an absolute value.

An expression is external (or global) if it contains a single
global reference {plus cor minus an absclute expression value)
that is not defined within the current program. Thus, an
external expression 1s only partially defined following
assembly and must be resolved at link time.

SYMBOLS AND EXPRESSIONS

4. An expression is complex relocatable if any one of the
following conditions applies:

It contains a global reference and a relocatable symbol.
It contains more than one global reference.

It contains relocatable terms belonging to different
program sections.

The value resulting from the expression has more than one
level of relocation. For example, if the relocatable
symbols TAGl and TAG2, associated with the same program
section, are specified in the expression TAGl+TAG2, two
levels of relocation will be introduced, since each symbol
is evaluated in terms of the relocation bias in effect for
the program section.

An operation other than addition 1is specified on an
undefined global symbol.

An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time.

3-18

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO-11l is an object module that must be processed or
linked before it can be loaded and executed. Essentially, linking
fixes (makes absolute) the values of relocatable or external symbols
in the object module, thus transforming the object module, or several
object modules, into an executable image.

To allow the value of an expression to be fixed at link time, MACRO-11
outputs certain instructions in the object file, together with other
required parameters. For relocatable expressions in the object
module, the base of the associated relocatable program section is
added to the value of the relocatable expression provided by MACRO-11.
For external expression values, the value of the external term in the
expression (since the external symbol must be defined in one of the
other object modules being 1linked together) is determined and then
added to the absolute portion of the external expression, as provided
by MACRO-11.

All instructions that require modification at link time are flagged in
the assembly 1listing, as 1illustrated in the example below. The
apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is reguired; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis at link time is required in order to fix the value
of the expression.

EXAMPLE:
005065 CLR RELOC (R5) ;ASSUMING THAT THE VALUE OF THE
000040" ; SYMBOL "RELOC", 40, IS RELOCATABLE
; THE RELOCATION BIAS
sWILL BE ADDED TO THIS VALUE.
005065 CLR EXTERN (R5) ; THE VALUE OF THE SYMBOL "EXTERN" IS
000000G sASSEMBLED AS ZERO AND IS
; RESOLVED AT LINK TIME.
005065 CLR EXTERN+6 (R5) ; THE VALUE OF THE SYMBOL "EXTERN"
000006G ;IS RESOLVED AT LINK TIME

;AND ADDED TO
; THE ABSOLUTE PORTION (+6) OF
; THE EXPRESSION.

005065 CLR -<EXTERN+RELCC> (R5) ;THIS EXPRESSION IS COMPLEX
0oooo00C ; RELOCATABLE BECAUSE IT REQUIRES

; THE NEGATION OF AN EXPRESSION
; THAT CONTAINS A GLOBAL "EXTERN"
s REFERENCE AND A RELOCATABLE TERM.

For a complete description of object records output by MACRO-11l, refer
to the applicable system manual (see Section 0.3 in the Preface).

4-1

CHAPTER 5

ADDRESSING MODES

To understand how the address modes operate and how they assemble, the
action of the program counter must be understocod. The key rule to
remember is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed."

The PC always contains the address of the next word to be fetched.
This word will be either the address of the next instruction to be
executed, or the second or third word of the current instruction.

Table 5-1 lists the address modes, and Table 5-2 1lists the symbols
used in this chapter to describe the address modes. Each mode of
address in the chapter is illustrated using either the single operand
instruction CLR or the double operand instruction MOV.

L
=

* %

Table 5-1
Addressing Modes
Section
Mode Form Reference
Register mode* R 5.1
Register deferred mode* @R or (ER) 5.2
Autoincrement mode* (ER) + 5.3
Autoincrement deferred mode* @(ER) + 5.4
Autodecrement mode* - (ER) 5.5
Autodecrement deferred mode¥* @-(ER) 5.6
Index mode** E (ER) 5.7
Index deferred mode** QE (ER) 5.8
Immediate mode** #E 5.9
Absolute mode** Q#E 5.10
Relative mode** E 5.11
Relative deferred mode** QE 5.12
Branch Address 5.13

Adds one word to the instruction length for each occurrence of

operand of this form.

Does not increase the length of an instruction.

an

ADDRESSING MODES

Table 5-2
Symbols Used in Chapter 5

Symbol Explanation
E Any expression, as defined in Chapter 3.
R A register expression; in other words, any

expression containing a term preceded by a percent
sign (%) or a symbol previously equated to such a
term, as shown below:

RO=%0 ; GENERAL REGISTER 0.
R1=RO+1 ;GENERAL REGISTER 1.
R2=1+%1 ;GENERAL REGISTER 2.

This symbol may also represent any of the normal
default register definitions (see Section 3.4).

ER A register expression or an absolute ekpression in
the range 0 to 7, inclusive.

5.1 REGISTER MODE
Format:

R

The register itself (R) contains the operand to be manipulated by the
instruction.

Example:

CLR R3 ;CLEARS REGISTER 3.

5.2 REGISTER DEFERRED MODE
Format:

@R or (ER

)
’

The register (R) contains the address of the operand to be manipulated
by the instruction.

Examples:
CLR @R1 ;ALL THESE INSTRUCTIONS CLEAR
CLR (R1) s THE WORD AT THE ADDRESS
CLR (1) ;s CONTAINED IN REGISTER 1.

5-2

ADDRESSING MODES

5.3 AUTOINCREMENT MODE
Format:

(ER)+

The contents of the register (ER) are incremented immediately

being used as the address of the operand

Examples:

(see Note below).

CLR (RO)+) ; EACH INSTRUCTION CLEARS
CLR (R4) + sTHE WORD AT THE ADDRESS
CLR (R2) + ; CONTAINED IN THE SPECIFIED

sREGISTER AND

INCREMENTS

; THAT REGISTER'S CONTENTS

;BY TWO.

NOTE

Certain special instruction/address mode
combinations, which are rarely or never

used, do not operate the

same on all

PDP-11 processors, as described below.

In the autoincrement mode,

both the JMP

and JSR instructions autoincrement the

register before its use on

the PDP-11/40

but not on the PDP-11/45 or 11/10.

In double operand instructions having

the addressing form
Rn,-(Rn), where the
destination registers are

Rn, (Rn) + or
source and
the same, the

source operand 1is evaluated as the
. autoincremented or autodecremented

value, but the destination

register, at

the time it is used, still contains the
originally intended effective address.

In the following example,
the PDP-11/40, Register
contains 100(8):

an Avasnitad An
as e€xXefuted on

0 originally

MOV RO, (RO) + ' : THE QUANTITY 102 IS MOVED
; TO LOCATION 100.

MOV RO, - (RO) ; THE QUANTITY 76 IS MOVED
;TO LOCATION 100.

The wuse of these forms

should be

avoided, since they are not compatible

with the entire family
processors.

of PDP-11

An error code (Z) 1is printed in the
assembly 1listing with each instruction

which is not compatible

among all

members of the PDP-11 family.

after

ADDRESSING MODES

5.4 AUTOINCREMENT DEFERRED MODE
Format:

@ (ER) +
The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as
pointer.
Example:

CLR @(R3)+ ; THE CONTENTS OF REGISTER 3 POINT

;TO THE ADDRESS OF A WORD TO BE

;s CLEARED BEFORE THE CONTENTS OF THE
;REGISTER ARE INCREMENTED BY TWO.

5.5 AUTODECREMENT MODE
Format:
- (ER)

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note in Section 5.3).

Examples:
CLR - (RO) ;DECREMENT THE CONTENTS OF THE SPECI-
;FIED REGISTER (0, 3, OR 2) BY TWO
CLR -(R3) ; BEFORE USING ITS CONTENTS
CLR -(R2) ;AS THE ADDRESS OF THE WORD TO BE
; CLEARED.

5.6 AUTODECREMENT DEFERRED MODE
Format:
@-(ER)

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Example:

CLR @-(R2) ;DECREMENT THE CONTENTS OF
;REGISTER 2 BY TWO BEFORE
;USING ITS CONTENTS AS A POINTER
;TO THE ADDRESS OF THE WORD TO BE
; CLEARED.

ADDRESSING MODES

5.7 1INDEX MODE
Format:
E(ER)

An expression (E), plus the contents of a register (ER), yields the
effective address of the operand. 1In other words, the value E is the
offset of the instruction, and the contents of register ER form the
base. (The value of the expression (E) is stored as the second or
third word of the instruction.)

CLR X+2 (R1) ; THE EFFECTIVE ADDRESS OF THE WORD
:TO BE CLEARED IS X+2, PLUS THE
; CONTENTS OF REGISTER 1.

MOV RO,-2 (R3) ; THE EFFECTIVE ADDRESS OF THE
;DESTINATION LOCATION IS -2, PLUS
; THE CONTENTS OF REGISTER 3.

5.8 INDEX DEFERRED MODE
Format:
E(ER)

An expression (E), plus the contents of a register (ER), yields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base. (The value of the expression (E) is stored as the
second or third word of the instruction.)

Example:

CLR @114 (R4) ;IF REGISTER 4 CONTAINS 100, THIS
;VALUE, PLUS THE OFFSET 114, YIELDS
; THE POINTER 214. 1IF LOCATION 214

;CONTAINS THE ADDRESS 2000, LOCATION
;2000 WOULD BE CLEARED.

NOTE

The expression @(ER) may be used, but it
will be assembled as if it were written
@0 (ER), and a word will be used to store
the 0.

5.5 IMMEDIATE MODE
Format:
$E

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. The number sign (#) is an
addressing mode indicator. Appearing in the operand field this
character specifies the immediate addressing mode, indicating to
MACRO-11 that the operand itself immediately follows the instruction
word. This mode is assembled as an autoincrement of the PC.

5-5

ADDRESSING MODES

Examples:
MOV #100,R0 ;MOVE THE VALUE 100 INTO REGISTER O.
MOV #X,R0O ;s MOVE THE VALUE OF SYMBOL X INTO

;REGISTER 0.

The operation of this mode can be shown through the first example,
MOV #100,R0, which assembles as two words:

Location 20: 01 2 7 00
Location 22: 0 00100
Location 24: Next instruction

The source operand (the value 100) is assembled immediately following
the instruction word. Upon execution of the instruction, the
processor fetches the first word (MOV) and increments the PC by 2 so
that it points to the second word, location 22, which contains the
source operand.

After the next fetch and increment cycle, the source operand (100) is
moved 1into register 0, leaving the PC pointing to location 24 (the
next instruction).

5.10 ABSOLUTE MODE

Format:
@#E

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. 1In other words, the
value immediately following the instruction word 1is taken as the
absolute address of the operand. Absolute meode is assembled as an
autoincrement deferred of the PC.

Examples:
MOV @#100,RO ; MOVE THE CONTENTS OF ABSOLUTE
; LOCATION 100 INTO REGISTER RO.
CLR Q#X ;CLEAR THE CONTENTS OF THE LOCATION

;WHOSE ADDRESS IS SPECIFIED BY
; THE SYMBOL X.

The operation of this mode can be shown through the first example,
MOV @#100,R0, which assembles as two words:

Location 20: 01 3 7 00
Location 22: 0 0 010 O
Location 24: Next instruction

The absolute address 100 is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so that it
points to the second word, location 22, which contains the absolute
address of the source operand. After the next fetch and increment
cycle, the contents of absolute address 100 (the source operand) are
moved into register 0, leaving the PC pointing to 1location 24 (the
next instruction).

ADDRESSING MODES

5.11 RELATIVE MODE
Format:
E

Relative mode is the normal mode for memory references within vyour
program. it is assembled as index mode, using the PC as the index
register. The offset for the address calculation is assembled as the
second or third word of the instruction. This value is added to the
contents of the PC to yield the address of the source operand.

Examplies:

CLR 100 ;CLEAR ABSOLUTE LOCATION 100
MOV RO,Y ;MOVE THE CONTENTS OF REGISTER 0
; TO LOCATION Y

The operation of relative mode can be shown with the statement
MOV 100,R3, which assembles as two words:

Location 20: 0 1 6 7 0 3
Location 22: 0 0 0 0 5 4
Location 24: Next instruction

The offset, the constant 54, is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so that it
points to the second word, location 22, containing the value 54.
After the next fetch and increment cycle, the processor calculates the
effective address of the source operand by taking the contents of
location 22 (the offset) and adding it to the current value of the PC,
which now points to location 24 (the next instruction). Thus, the
source operand address is the result of the calculation
OFFSET+PC = 54+24 = 100(8), causing the contents of location 100 to be
moved into register 3.

The index mode statement:
MOV 100-.-4(PC) ,R3

is equivalent to the relative mode statement:
MOV 100,R3.

100-.-4 is the offset for the index mode statement. The current
location counter (.) holds the address of the first word of the
instruction (20, in this case) and the PC has to move down 4 bytes to
reach location 24 (the next instruction). So, the offset could be
written as 100-20-4 or 54(8).

Therefore, for the index mode, the offset (54(8)) added to the
PC(24(8)) yields the effective address (54 + 24 = 100 (8)) of the
operand.

Thus, both statements move the contents of location 100 into register
3.

ADDRESSING MODES

NOTE

The addressing form @#E differs from
form E in that the second or third word
of the instruction contains the absolute
address of the operand, rather than the
relative distance between the operand
and the PC (see Section 5.10). Thus,
the instruction CLR @#100 clears
absolute location 100, even 1if the
instruction is moved from the point at
which it was assembled. See the
description of the .ENABL AMA function
in Section 6.2, which causes all
relative mode addresses to be assembled
as absolute mode addresses.

5.12 RELATIVE DEFERRED MODE
Format:

@E
The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. 1In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.
Example:

MOV €X,R0 ; RELATIVE TO THE CURRENT VALUE OF
;THE PC, MOVE THE CONTENTS OF THE
; LOCATION WHOSE ADDRESS IS POINTED
;TO BY LOCATION X INTO REGISTER O.

5.13 BRANCH INSTRUCTION ADDRESSING
The branch instructions are l-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO-11 performs the reverse operation to form the word offset from
the specified address.

Word offset = (E-PC)/2 truncated to eight bits,

When the offset is added to the PC, the PC is moved to the next word
(PC=.4+2). Hence the -2 in the following calculation.

Word offset = (E-.-2)/2 truncated to eight bits.

5-8

ADDRESSING MODES

The following conditions generate an error code (A) in the assembly
listing:

1. Branching from one program section to another

2. Branching to a 1location that 1is defined as an external
{(global) symbol

3. Specifying a branch address that is out of range, meaning
that the branch offset is a value that does not lie within
the range -128(10) to +127(10).

5.14 USING TRAP INSTRUCTIONS

Since the EMT and TRAP instructions do not use the low-order byte of
the instruction word, information is transferred to the trap handlers
in the low-order byte. 1If the EMT or TRAP instruction is followed by
an expression, the value of the expression is stored in the low-order
byte of the word. Expressions greater than 377(8) are truncated to
eight bits, and an error code (T) 1is generated in the assembly
listing.

For more information on traps see the PDP-11 Processor Handbook and
the applicable system manual (see Section 0.3 in the Preface).

5-9

PART III

MACRO-11 DIRECTIVES

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

A MACRO-11 directive is placed in the operator field of a source line.
Only one directive 1is allowed per source line, Each directive may
have a blank operand field or one or more operands. Legal operands
differ with each directive.

General assembler directives are divided into the following
categories:

2, Function control

3. Data storage

4, Radix and numeric control

5. Location counter control

6. Terminators

7. Program boundaries

8. Program sectioning

9. Symbol control
10. Conditional assembly
11. PAL-11R conditional assembly.

Each is described in its own section of this chapter (see Table 6-1

for an alphabetical 1listing of the directives and the associated
section reference).

Table 6-1
Directives in Chapter Six
Section
Directive Function Reference
.ASCII Stores delimited string as a sequence 6.3.4
of the 8-bit ASCII code of their
characters.
.ASCIZ Same as .ASCII except the string is 6.3.5
followed by a zero byte.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Directives in Chapter Six

Section
Directive Function Reference
.ASECT Similar to .PSECT. 6.7.2
.BLKB Allocates bytes of data storage. 6.5.3
.BLKW Allocates words of data storage. 6.5.3
.BYTE Stores successive bytes of data. 6.3.1
.CSECT Similar to .PSECT. 6.7.2
.DSABL Disables specified assembler 6.2
functions.
.ENABL Enables specified assembler functions. 6.2
.END Indicates end of source input. 6.6.1
.ENDC Indicates end of conditional assembly 6.9.1
block.
.EOT End of tape, 1ignored under RSX-11M, 6.6.2
RSX-11M-PLUS, RT-11, RSTS and IAS
systems.
.EVEN Ensures that current value of the 6.5.1
location counter is even.

Defines listed symbols as global.

. IDENT Provides additional means of 1labeling 6.1.5
an object module.

.IF Assembles block if specified condi- 6.9.1
tions are met.

.IFF Assembles block 1if condition tests 6.9.2
false.

LIFT Assembles block if condition tests 6.9.2
true.

LIFTF Assembles block regardless of whether 6.9.2

condition tests true or false.

IIF Permits writing a one line conditional 6.9.3
assembly block.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Directives in Chapter Six

Section
Directive Function Reference
LLIMIT Allocates two words for storage. At 6.5.4
link time puts the lowest address of
the load image in one of the saved
words and the address of the first
free word following the image in the
other.
LLIST Increments listing count or 1lists 6.1.1
certain types of code.
NLIST: Decrements listing count or suppresses 6.1.1
certain types of code.
.0ODD Ensures that the current value of the 6.5.2

location counter is odd.

.PAGE

.PSECT

.RAD50

Starts a new listing page.

Declares names for program sections
and establishes their attributes.

Generates data in Radix-50 packed
format.
Changes radices throughout or in

portions of the source program.

.SBTTL

.TITLE

.WORD

Produces a table of contents
immediately preceding the assembly
listing and puts subheadings on each

page in the listing.

Assigns a name to the
and puts headings on
the assembly listing.

object module
each page of

Generates successive words of data in

the object module.

6.3.2

GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES
Listing control directives control the content, format, and pagination
of all line printer (see Figure 6-1) and teleprinter (see Figure 6-2)

assembly listing output. On the first line of each page, MACRO-11
prints the following (from left to right):

1. Title of the object module, as established through the .TITLE
directive (see Section 6.1.2).

2., Assembler version identification.

3. Date.

4. Time of day.

5. Page number.
The second line of each assembly listing page contains the subtitle
text specified in the last-encountered .SBTTL directive (see Section

6.1.3).

In the 1line printer format (Figure 6-1) binary extensions for
statements generating more than one word are listed horizontally.

In the teleprinter format (Figure 6-2) binary extensions for
statements generating more than one word are listed vertically. There
is no explicit truncation of output to 80 characters by the assembler.

GENERAL ASSEMBLER DIRECTIVES

but3isTt1 ATqUassy 123utrid aur7 o ordwexy

31IX34

punoy [OQWRS OU 41 Z 335§
J8}STIEDd Y{JOM BI03SIYS

J8Yd querq uou e 09 Ueos MON4

safr 4T [OQWARS 40O puUa 0} YsSNTJ$

O 41 UIEEE 004

1844Ng TOQWAS JO pua e 4T 3S83Lé

JeYD EUTMOTIO4 32304

1973UTO04 9IUEADE $48YD MO AYY UT PPE 3sn[4

31 3s83 pue deys
J8Yd 1aplo MOT 395 MON4

aaoqe se 3T arpuUeH#
Jeyd dayjoue 1394

48Yyd ysIYy ayy peod
HOpUT PJOM BYERS

0u 4T TXIS

0Savy 03 =Bl

39S Z UYITM Jou 4T FIXIFS

0M¢404UAS
TY4+(dG)

$C
(SM)>Z1911LD
$1
FHI0GRASESTY

+(EM) 0y
$£
0¥4(Sy)C1811D

(TH)$(0Y)Ta105Y
oy
$E

OM¢(SM)ETFLLD

(TY) 4(OM)TALOSY
oy
$£

0Y¥4(Sy)>YZ4LLD
$v

21jeqeydTe 40 JBYD 3SJT4 3S3LE JIVCLO$4(SY)TELLD

31 423TI MON!
Jagsmy [OQUAS 4O PUd 38 FUTOJS
URDSad JO BSED UT JBJUTODL LEDS BALGH
19381584 Y40M dAegs

(1Y)~

(1Y)
TYV+T109WASE
9IGWAS « INJYHI
(d45)-41y

‘padaj(eun SI 1a3}uUT0d UEIS ASeD
ICQUAS OU 4T 385 Z Pue JEe3TD Jagynq [0QERS *TOQWARS JO

WUETQ-UOU 3X8U qe 385 J3JUT04 UEIS UYIIM aaeaT]

*1OQuUARS OGOVM £ J40 wedg

NYNL3Y
AU
hDW 5 14
ANL3S S 3%
1949
J181
3Ng
dHWJ
4HJ139
av
It
gn0u
MH3139
qav
sy
3
00U
YH3L39
AOW
sy
ERE
00U 131
034
gLy
472
4710
NOW
nou
AOKWS PHASL3YD

..
»
3]

i

an 4m am % am Im

STy} U] fuaas
pua 9sed Jeyo

WAS139

-+~

1-9 2i1nb14

9000000

+ 892000

9¢00000

+C92000

o0v0000 ,000000

9¢00000
9000000 900000¢C

£02000
004910
109210

0L£200
594501
LYETO0
£2T0E0

1£0090
TIv£00
0059TT

110990
00£900
TSvE0Q
005911

110910
002200
TEYE0O
005911
FELTO0
LES9ET
I¥0500
Tv0500
104210
L9L9T0
2v1010

092000
¥5C000
£€82000
2¥E000
Y2000
0¥C000
7£2000
cE£e000
?EE000
rZc000
22eoo0o
212000
21e000
202000
¥0c000
202000
FL£1000
241000
291000
¥21000
21000
251000
v51000
¢1000
Y1000
¥ 1000
9£1000
0£71000
221000

L
9L
5L
Ve
£e
cE
18
032

-
(3
8c
g
<
el
<
-
2y

T304

podrd

MITPIONDDC-O A
v et vt v v e O OO

L]

C:

S -
- o

MM TN

GENERAL ASSEMBLER DIRECTIVES

puTlsTT ATqWaSSY I93UTad 2utrT jJo o1duwexd

B40p0qe § L00¢900¢5004¥004£004C004T00400C
ZAXS 00Z400C¢00C¢00C“00Z4CLO“TLE040E0
MNANLSYDd ¢ L20920¢5204¢C0EC0¢CTO¢TCO0C0
ONWINTIHS LTO042T0¢ST0¢VTOLTIOCIOTTIO 0TO
943034V ¢ L00¢900¢500¢¥004£004C00¢T00400C
68¢ 00Z400C400Z400C4002400Z¢LVO“P¥0
LISYETTO! SPOCPYOCVOChOTROCOVO4LEDPED
¢ 0024¥L0¢00Z¢00T4002400T4002400C
00Z¢002400CEL0“00Z400C400C¢000
00Z400Z400Z¢00Z4002400T400C400C
00240024002¢002400Z¢00240024008
00C¢00C400C¢00Z400Z2400T4002¢400C
00T00C400C00C400C400T400C400C
X31

$

4B A e e am e

‘paALBSad S1TQ JaAY0 40CAVY 30U UaYF O L7 4T ¢adeds
antea 0S/IyYY SUIPUOLSaLI0D 385 09 aniea IIJSY 319

3LlAg
KFRR: O
31A9°
aLrge
EFDY:
END: &
3LlA9
JLiae
EFUR:
LA
:IWN:
ENON: o
aLAag:
1SIN®

uayy o
PATTS)
z14110

LXANE: R

b3 41

®apuy

arqel
.*.

an em e e

w00
Zg0
2eo0
210
200
002
ovo
00C
goc
002
00c
Qoc
0oc

(*3uo0d) T1-9 21nbTg

100
120
1¢0
Tt
100
LYO
LE0
00C
00
00c
00¢
00C
0oc

00&
0£0
0Z0
010
002
?v0
?£0
00¢
000
002
002
00
002

ZZro00
CIr000
¢o¥000
L8000
c?2£000
€5E000
chreE000
CE£000
cEL000
CcI£000
€0£000
€LC000
€9c000

L5
PG
S5
ve
£5
ch
15
05
114
8t
A 4
?¢
4 4
144
£t
<y
134
oy

8g

\O

GENERAL ASSEMBLER DIRECTIVES

butys1T ATquWassy 1s3juriadayel Jo osrduwexy g-9 a2iInbrg

(TY) “(0M)CaL05Y
oy
$5

asoqe se 3T BTPUEHS 0N (SM)IZTIILLD
1842 dayjoue 3394

1842 YsIy ay3 peod (1Y) 4 (O0M)>TIL05N
Xaputr pJom ajeys oY

o0 4T NI $£

050Vy 03 HeN¢ oY (54)27aLLD

95 Z YIIM 300 4TINS $v

ATjaqeddTe J0g Jdeyo 3SITy s2li JUVLO#4(SY)TALLD

(T -

11 42313 MONS (TH) -

1244nq TOQWAS JO pua je JuTO4¢ TH4¥+109HASH
u22884 JO BSED UT J3}UIO0d UBDS BAeGH 9IGWAS ¢ ININHD
13351534 jJOM 3Aegs (dS) -4 TN

+*padalIeUn ST 433UT04 LIS ISeD SIYY U] 4uaas
1OQERE OU JT 138 7 PpuUe Je8TD JAJJNQ [OQUWRS *10QHAS SO pud se8d JeYD
WUSTQ-UOU 3XaU (8 (85 JajUTOd UBIS UIIM BAE3T *TOQUAS QCUIYN € J40 weadg

av
a5y
ERE

gA0K
4H3139

HOU
sy
b

JA0N i1
034

g1I4d
470
4712

NOW

AOKW
NOW: tWHASL39

WASL139

4 am em 4 am e

-+

+€09000
110990
00£900
12¢£00
+Z9C000
005911

+E9¢000
110910
00£900
TEVL£00
,E92000
0059171
£V 100
0¥0000
,000000
LEBPET
#0500
T¥0500
9¢00000
104270
9000000
9000000
L9L9T0
2¢¥1010

202000
¥02000
¢0Z000

?L1000
€L1000

991000
¥21000
<€921000

981000
¥51000

¢ 1000
¥v1000
gt1000

?£1000

0£1000
921000

£7
a1
1T

- HMTNDONOC O

GENERAL ASSEMBLER DIRECTIVES

butys1T ATquessy isjutadarael Jo orduexy

*Pand@sal S3TQ JaYIQ £0SUYVY 30U YAy} O 17 4T
an[eA 0GVY SUIPUO4SaIN0D 385 03 aniea IIISY 319

RIS

puUnoy [OQWAS OW 4T 7 385¢
J23STIEOd YdOM D1095aYy4
deYI JUEeTg UOU 2 04 UeIs MONS

S8R 4T [OQWARS JO PUd 0} YShT44
ou 41 utTese 094

1844Nq [OQUSS 4O Pua 38 4T 43Sy
48Yd EUTMOTTO4 3a80¢
181UTO04 a0usARe 4JeYDd MOT ayg Ul ppe snfié

11 3889 pue eyl
JeYD 43P0 MOT 395 MONS

X34

04 “T0dHAS
TY4+(dS)

$C

(54)C79L10
$1

V+I09WASHTY

+(TY) “0N
$£

0¥4(5Y8)E1411D

éaoeds

LSITN®

wayy ¢
LoH3TH
2744110

Nynl13y

AOU
ADW
ANL3S
194

g181
3Ng

4HWJ
YH3139
aav
3N

JNnoN
MHJ139

(*3uod) z-9 @2inbra

b3 41
Hapur
argey

an oem am e an

-+~

£O2000
9000000
004910
1092710

0LEL00
+&92000
S9L501
LYETO0
9v 00000
LETOE0

T£0090
TIvE00
+ 292000
005911

092000

¥52000
C5E2000
2¢2000
¥¥Z000

ov¥Z000
?£2000

<cEC000
?Cc000
¥Zc000
¢Ze000

912000
€12000

14%
£V
v
134
(374
-3
8g
LE
9¢

23
147
£f
<L

e
og

Y4
8¢

o

< W
ot

6-8

GENERAL ASSEMBLER DIRECTIVES

6.1.1 L.LIST and .NLIST Directives 'NLIST
Formats:

.LIST

-LIST arg

.NLIST

.NLIST arg
where: arg represents one or more of the optional symbolic

arguments defined in Table 6-2.

As indicated above, the listing control directives may be used without
arguments, in which case the 1listing directives alter the listing

level count. The listing level count is initialized to zero. At each
occurrence of a .LIST directive, the 1listing level count is
incremented; at each occurrence of an .NLIST directive, the 1listing

level <count 1is decremented. When the level count is negative, the
listing 1is suppressed (unless the line contains an error).
Conversely, when the level count is greater than zero, the listing is

generated regardless of the context of the line. Finally, when the
count is zero, the line is either listed or suppressed, depending on
the listing controls currently in effect for the program. The
following macro definition employs the .LIST and .NLIST directives to

selectively list portions of the macro body when the macro is
expanded:
.MACRO LTEST sLIST TEST
; A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS 0.
.NLIST ; LISTING LEVEL COUNT IS -1l.
;7 B-THIS LINE SHOULD NOT LIST
.NLIST ;LISTING LEVEL COUNT IS =-2.
; C-THIS LINE SHOULD NOT LIST
LLIST ;LISTING LEVEL COUNT IS -1.
;7 D-THIS LINE SHOULD NOT LIST
.LIST ;LISTING LEVEL COUNT IS 0.
; E-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS 0.
; F-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS O.
7 G-THIS LINE SHOULD LIST +LISTING LEVEL COUNT IS 0.
.ENDM
LLIST ME sLIST MACRO EXPANSION.
LTEST ; CALL THE MACRO
;7 A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS O.
; E-THIS LINE SHOULD LIST s LISTING LEVEL COUNT IS O.
; F-THIS LINE SHOULD LIST s LISTING LEVEL COUNT IS 0.
; G-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS O.
Note that the lines following line E will 1ist because the listing
level <count remains G0, If a2 L(LIST directive 1is placed at the

beginning of a program, all macro expansions will be listed

unless a

.NLIST directive is encountered.
An important purpose of the level count is to allow macro expansions

to be listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

6-9

GENERAL ASSEMBLER DIRECTIVES

When used with arguments, the listing directives do not alter the
listing 1level count. However, the .LIST and .NLIST directives can be
used to override current listing control, as shown in the example
below:

.MACRO XX
.LIST ;LIST NEXT LINE.
X=,
.NLIST ;DO NOT LIST REMAINDER OF MACRO
. ; EXPANSION.
.ENDM
NLIST ME ;DO NOT LIST MACRO EXPANSIONS.
XX
X=,

The symbolic arguments allowed for use with the listing directives are
described 1in Table 6-2. These arguments can be used singly or in
combination with each other. If multiple arguments are specified in a
listing directive, each argument must be separated by a comma, tab, or
space. For any argument not specifically included 1in the control
statement, the associated default assumption (List or No list) is
applicable throughout the source program. The default assumptions for
the listing control directives also appear in Table 6-2.

Table 6-2
Symbolic Arguments of Listing Control Directives

Argument Default Function

SEQ* List Controls the listing of the sequential
numbers assigned to the source lines.
If this number field 1is suppressed
through an .NLIST SEQ directive,
MACRO-11 generates a tab, effectively
allocating blank space for the field.
Thus, the positional relationships of
the other fields in the listing remain
undisturbed. During the assembly
process, MACRO-11 examines each source
line for possible error conditions.
For any line in error, the error code
is printed preceding the number field.
MACRO-11 does not assign line numbers
to files that have had such numbers
assigned by other programs (an editor
program, for instance).

(continued on next page)

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at
the same time, that 1is, if all four significant fields in the
listing are to be suppressed, the printing of the resulting blank
line is inhibited.

(=)}
|
[
(o)

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default Function
LOC* List Controls the listing of the current
location counter field. Normally,
this field is not suppressed.

However, if it is suppressed through
the .NLIST LOC directive, MACRO-11
does not generate a tab, nor does it
allocate space for the field, as is
the case with the SEQ field described
above. Thus, the suppression of the

current location ' counter (LOC) field

effectively left-justifies all
subsequent fields (while preserving
positional relationships) to the

position normally occupied by the
counter's field.

BIN* List controls the 1listing of generated
binary code. If this field is
suppressed through an .NLIST BIN
directive, left-justification of the
source code field occurs in the same
manner described above for the LOC
field. '

BEX List Controls the listing of binary
extensions (the locations and binary
contents beyond those that will fit on
the source statement line). This is a
subset of the BIN argument.

SRC* List Controls the listing of source lines.

COM List Controls the 1listing of comments.
This 1is a subset of the SRC argument.
The .NLIST COM directive reduces
listing time and space when comments

are not desired.

MD List Controls the listing of macro
definitions and repeat range
expansions.

MC List Controls the listing of macro calls
and repeat range expansions.

ME No list Controls the listing of macro
expansions. |

(continued on next page)

* TIf the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the
same time, that is, if all four significant fields in the listing are
to be suppressed, the printing of the resulting blank 1line |is
inhibited.

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default Function
MEB No list Controls the listing of macro
expansion binary code. A .LIST MEB

directive 1lists only those macro
expansion statements that generate
binary code. This is a subset of the
ME argument.

CND List Controls the 1listing of unsatisfied
corfditional coding and associated .IF
and .ENDC directives in the source
program. A .NLIST CND directive lists
only satisfied conditional coding.

LD No list Controls the listing of all 1listing
directives having no arguments, in
other words, the directives that alter
the listing level count.

TOC List Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.3 describing the .SBTTL
directive). This argument does not
affect the printing of the full
assembly 1listing during assembly pass
2.

SYM List Controls the 1listing of the symbol
table resulting from the assembly of
the source program.

TTM** List Controls the 1listing output format.
The default can be set by the system
manager. If the system manager does
not set a default, it is set to line
printer format. Figure 6-1
illustrates the 1line printer output
format. Figure 6-2 illustrates the
teleprinter output format.

** The default for RSX-11M and RT-11 programs is no list.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-2 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACRO-11l (see
Section 8.1.3 and/or the appropriate system manual). The use of these
switches overrides all corresponding listing control (.LIST or .NLIST)
directives specified in the source program.

Figure 6-3 shows a 1listing, produced in 1line printer format,
reflecting the use of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly 1listing
output.

(o]
I
s
[y

GENERAL ASSEMBLER DIRECTIVES

SOAT3I091TQ TOI3UOD BUTISTIT YITM padnpoid BUT3ISIT €-9 2I0bTJ

4539 SaUI] 224N0G# 248 JVHLEST

X34 1817

1UaMEO0D 3597 € ST STULS AR RTARY aMom*
X3d L1SITN®

1537 SUOISUIIND RLSUTYS X3d 3JVHLST

NId 18171
uUaWH0D 3839 € ST STYL#

1639 ARJISUTQ Pajelauags NId JYWLST
307 1817

juanyod 3533 2 ST STULS | AR S EALRS ayom*

2071 LISITIN®
4584 J433UNOD UOT3EI07¢ 307 JVHLST
WINT®
ayv 1817
uanwod 3597 € ST STULS vegézet ayonm’
ay¥y ISITN'

¥V JVHLIST OMOUW®

odoem 35983 [OJRMOD EUIRSIT
+

an am am

syOIsSUelIXd oddewm ST au 18I71°

JT4NYX3 TONLINCD ONILSIT 3711t

£00000

£00000

AR EAR
NIdg

200000

200000

ayom:*
1SIN*

£00000

¥00000
100000

100000

200000

?£0000
0£0000

0£0000

020000

020000

010000

010000

¥00000
100000

000000

61
81

L1
?1

M TN
ot

i
i

“NMTHYNOOO
-

T 399d 9SILEICT 64-100-%Z 00°'v0OA OMIVH 3TJdWVX3 T0MINOD INILSIT

6-13

GENERAL ASSEMBLER DIRECTIVES

SOAT3091TQ TOI3u0D HUTISTT YITM pednpoid

queuwWod 353} € ST SIYLS

1889 SUOTSUBIXd RIEUTFS

JuUaHWOd 3587 € ST STYL$
1699 s4aquEnd adUANVAG!

SUT}SI] MOslBU aTgeuls

X341 ¢W0D

PAEsZTAT

X34 W02

1587 AUEUTY PBPUIIXI puUe SIAUTT uU3WMO]¢ £X39 W0
ok

PegeZHT

k)

1599 SAUTT }UaWWO] Wo3

eb-1]

putasti

1sI17°
Id0M°
18ITN®
JUHLST

1817
Jyonm’
1SITNY
IVHLST

15171°

(*3uo0d)

X34
L AS AR
X34q
X34

bas

LA AN
Das
nas

WLl

IN3*
1s17°
ayonm*

1SITIN®
JYRLET

1817’

aMonmn*
1SITN*
VKIS

18171

£00000

£00000

€-9 921InbT4d

200000

200000

100000

100000

¥00000

£00000

200000
100000

100000

¥00000
100000

040000
040000
220000
v20000
£90000
090000

090000

050000
050000
20000
0%¥0000

0v0000

£€
(4

1€
og

68
8¢
La
?c

<T W
o o4

M

XK

GENERAL ASSEMBLER DIRECTIVES

.TITLE

6.1.2 L.TITLE Directive

Format:
.TITLE string

where: string represents an identifier of 1 or more Radix-50
characters. Appendix A.2 contains a table of Radix-50
characters.

The .TITLE directive assigns a name to the object module. The name
assigned is the first six non-blank, Radix-50 characters following the
L.TITLE directive. All spaces and/or tabs up to the first
non-space/non-tab character following the .TITLE directive are ignored
by MACRO-11 when evaluating the text string. Any characters beyond
the first six are checked for ASCII legality, but they are not used as
part of the object module name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. This
6-character name bears no relationship to the filename of the object
module, as specified in the command string to MACRO-11. The name of
an object module (specified in the .TITLE directive) appears in the
load map produced at link time. This is also the module name which
the Librarian will recognize.

If the .TITLE directive is not specified, MACRO-11 assigns the default
name .MAIN. to the object module. 1If more than one .TITLE directive
is specified in the source program, the 1last .TITLE directive
encountered during assembly pass 1 establishes the name for the entire
object module.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non~tab character in the object module name is
not a Radix-50 character, the directive is flagged with an error code
(A) in the assembly listing.

.SBTTL

6.1.3 L.SBTTL Directive

Format:
.SBTTL string
where: string represents an identifier of 1 or more Radix-50

characters. Appendix A.2 contains a table of Radix-50
characters.

GENERAL ASSEMBLER DIRECTIVES

The .SBTTL directive 1is wused to produce a table of contents
immediately preceding the assembly 1listing and to print the text
following the .SBTTL directive on the second line of the header of
each page in the listing. The subheading in the text will be listed
until altered by a subsequent .SBTTL directive in the program. For
example, the directive:

.SBTTL CONDITIONAL ASSEMBLIES
causes the text
CONDITIONAL ASSEMBLIES

to be printed as the second 1line in the header of the assembly
listing.

During assembly pass 1, a table of contents containing the 1line
sequence number, the page number, and the text accompanying each
.SBTTL directive is printed for the assembly listing. The listing of
the table of contents is suppressed whenever an .NLIST TOC directive
is encountered in the source program (see Table 6-2). An example of a
table of contents listing is shown in Figure 6-4.

MTTEMT - RT-11 MULTI-TTY EMT SE MACRO Y04.00 10-0CT-79 15300:26
TABLE OF CONTENTS

S0~ 1 +MTOUT - Sindle character outrut EMT

S1- 1 +MTRCTO - Reset CTRL/0 ENMT

52- 1 +MTATCH - Attach to terminal EMT

S54- 1 »MTDTCH - Detach from a terminal EMT

S5- 1 +MTPRNT - Print messase EMT

56- 1 +MTSTAT - Return multi-terminal sustem status EMT
57~ 1 MTTIN - Sinsgle character inrut

58- 1 MTTGET - Get & character from the ring buffer

59~ 1 TTRSET - Reset terminal status bits

60— 1 MTTPUT - Sindle character outrut

62~ 1 MTRSET - Stor and detach a3ll terminsls attached to = Job
63~ 1 ESCAPE SEQUENCE TEST SUBROUTINE

Figure 6-4 Assembly Listing Table of Contents

NOTE

When using the .SBTTL directive it is
not a good idea to use the switch that
assembles only pass 1. During assembly
pass 1 the pages of the listing are
numbered and a table of contents listed.
After assembly pass 2, if the switch is
used on one or more of the files, the
table of contents will be incorrect
because a complete re-numbering of the
listing is not possible.

GENERAL ASSEMBLER DIRECTIVES

JADENT

6.1.4 .IDENT Directive

Format:
.IDENT /string/

where: string represents six or fewer Radix-50 characters which
establish the program identification or version
number. This number is included in the global symbol
directory of the object module; the £first four
characters are printed in the load map and librarian
listing.

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;), as long as the delimiting character is
not contained within the text string itself (see Note
in Section 6.3.4). If the delimiting characters do
not match, or if an illegal delimiting character |is
used, the .IDENT directive is flagged with an error
code (A) in the assembly listing.

In addition to the name assigned to the object module with the .TITLE
directive (see Section 6.1.3), the .IDENT directive allows the user to
label the object module with the program version number.

An example of the .IDENT directive is shown below:
.IDENT /VO5A/

The character string V05A is converted to Radix-50 representation and
included in the global symbol directory of the object module. This
character string also appears in the load map produced at 1link time
and the Librarian directory listings.

When

m
the last such directive encountered establishes the character string
which forms part of the object module identification.

more than one .IDENT directive is encountered in a given program,

RT-11 allows only one .IDENT string in a program. The linker uses the
first .IDENT directive encountered during the first pass to establish
the character string that will be identified with all of the object
modules.

RSX-11M allows an .IDENT string for each module in the program. The
Task Builder uses the first .IDENT directive in each module to
establish the character string that will be identified with that
module. Like the RT-11 Linker, the RSX-11M Task Builder uses the
.IDENT directives encountered on the first pass.

GENERAL ASSEMBLER DIRECTIVES

.PAGE

6.1.5 .PAGE Directive/Page Ejection

Format:
.PAGE

The .PAGE directive is used within the source program to perform a
page eject at desired points in the listing. This directive takes no
arguments and causes a skip to the top of the next page when
encountered. 1t also causes the page number to be incremented and the
line sequence counter to be cleared. The .PAGE directive does not
appear in the listing.

When used within a macro definition, the .PAGE directive is ignored
during the assembly of the macro definition. Rather, the page eject
operation is performed as the macro itself is expanded. In this case,
the page number is also incremented.

Page ejection is accomplished in three other ways:

1. After reaching a count of 58 lines in the listing, MACRO-11
automatically performs a page eject to skip over page
perforations on 1line printer paper and to formulate
teleprinter output into pages. The page number 1is not
changed.

2. A page eject is performed when a form-feed character is
encountered. If the form-feed character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form-feed character causes the page number to be incremented
and the line sequence counter to be cleared.

3. A page eject is performed when encountering a new source
file. In this case the page number is incremented and the
line seguence count is reset.

.ENABL

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL 'DSABL

Formats:

.ENABL arg
.DSABL arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-3.

These directives are included in a source program to invoke or inhibit
certain MACRO-11 functions and operations incidental to the assembly
process itself. Specifying any argument in an .ENABL/.DSABL directive
other than those 1listed in Table 6-3 causes that directive to be
flagged with an error code (A) in the assembly listing.

6-18

GENERAL ASSEMBLER DIRECTIVES

Table 6-3

Symbolic Arguments of Function Control Directives

Argument

Default

Function

ABS

T
=
ml

CDR

e i
SEENT I

LSB

Disable

Disable

Disable

Disable

Enabling this function produces absolute
binary output in FILES-11 format. To
convert this output to Formatted Binary
format (as required by the Absolute
Loader), use the FLX utility.

Enabling this function causes all relative
addresses (address mode 67) to be assembled
as absolute addresses (address mode 37).
This function is useful during the
debugging phase of program development.

Enabling = this function causes source
columns from 73 to the end of the line, to
be treated as a comment. The most common
use of this feature is to permit sequence
numbers in card columns 73-80.

Enabling this function causes MACRO-11 to
accept lower-case ASCII input instead of
converting it to upper-case. Iif this
function is not enabled, all text is

‘converted to upper-case.

This argument permits the enabling or
disabling of a local symbol block.
Although a local symbol block is normally
established by encountering a new symbolic
label, a .PSECT directive or a &
directive 1in the source program, an .
LSB directive establishes a new local
symbol block which is not terminated until
(1) another .ENABL LSB is encountered, or
(2) another symbolic label, .PSECT
directive or ; IRE. directive is
encountered follow paired .DSABL LSB
directive.

The basic function of this directive with
regard to .PSECTs is limited to those
instances where it is desirable to leave a
program section temporarily to store data,
followed Dby a return t0 the originail
program section. This temporary dismissal
of the current program section may also be
accomplished through the .SAVE and .RESTORE
directives (see Sections 6. and 6.7.4).

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of Function Control Directives

Argument Default Function

LSB (cont.) | Disable Attempts to define 1local symbols in an
alternate program section are flagged with
an error code (P) in the assembly listing.
An example of the .ENABL LSB and .DSABL LSB
directives, as typically used in a source
program, is shown in Figure 6-5.

PNC Enable Disabling this function inhibits binary
output until an L.ENABL PNC statement is
encountered within the same module.

REG Enable When specified, the .DSABL REG directive
inhibits the normal MACRO-11 default
register definitions; if not disabled, the
default definitions listed below remain in
effect.

RO=%0

R1=%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7
The .ENABL REG statement may be used as the
logical complement of the .DSABL REG
directive. The use of these directives,
however, 1is not recommended. For logical
consistency, use the normal default
register definitions listed above.

GBL* Enable When the .ENABL GBL directive is specified,

MACRO-11 treats all symbol references that
are undefined at the end of assembly pass 1
as default global references; when the
.DSABL GBL directive is specified, MACRO-11

treats all such references as undefined
symbols. 1In assembly pass 2, if the .DSABL
GBL function is still in effect, these

undefined symbols are flagged with an error
code (U) in the assembly listing;
otherwise, they continue to be regarded by
MACRO-11 as global references.

*

The default is Disable for RT-11 MACRO programs.

GENERAL ASSEMBLER DIRECTIVES

ENAEL/.DSABL MACRO Y04.,00 24-0CT-79 18126126 PAGE 1

R RN S IR Y S

16 000000
000000 124

20 000033
000033 124

22 000001

Figure

6.3 DATA STORAG

A wide range of
directives, ASC
described in the

.BYTE exp

where: exp,
expl,

expn

The .BYTE direct
data in the obje

Example:
SAM=5

.=410
.BYTE

+TITLE .ENABL/.DSABL
it
3 ILLUSTRATE .ENABL/.DSABL LC
;‘

+ENABL LC $STORE MACRO IN LOWER CASE

+MACRD TEXT $%%
+ASCII /This $%% & lower case strinsg/

+ENDM

LIST ME

+NLIST BEX

TEXT is iInvoke macro in lower case
150 151 WASCII /This is a3 lower case string/

«DSARL LC iNow disable lower case

TEXT WAS $RE-INVOKE MACRO IN UPPER CASE
110 111 JASCIT /THIS WAS A LOWER CASE STRING/

+END

6-5 Example of .ENABL and .DSABL Directives

E DIRECTIVES

data and data types can be generated with the
II conversion characters, and radix-control operators
following sections.

.BYTE

;STORES THE BINARY VALUE OF THE
; EXPRESSION "EXP" IN THE NEXT BYTE.

1,exp2,expn ;STORES THE BINARY VALUES OF THE LIST
;OF EXPRESSIONS IN SUCCESSIVE BYTES.

represent expressions that must be reduced to 8 bits
of data or less. Each expression will be read as a
l6-bit word expression, the high-order byte to be
truncated. The high-order byte must be either all
zZeros or a truncation (T) error results.
Multiple expressions must be separated by commas.

ive is used to generate successive bytes of binary
ct module.

"D48,5AM ; THE VALUE 060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION 410.
; THE VALUE 005 IS STORED IN LOCATION
;411.

6-21

GENERAL ASSEMBLER DIRECTIVES

The construction "D in the first operand of the .BYTE directive above
illustrates the use of a temporary radix-control operator. The
function of such special wunary operators 1is described in Section
6.4.1.2.

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the task builder
or linker issues a truncation (T) error for the object module in

guestion. For example, the following statements create such a
possibility:

.BYTE 23 ;STORES OCTAL 23 IN NEXT BYTE.
A:

.BYTE A ; RELOCATABLE VALUE A WILL PROBABLY

;CAUSE TRUNCATION ERROR.

If an expression following the .BYTE directive is null, it 1is
interpreted as a zero:

.=420
.BYTE ree ; ZEROS ARE STORED IN BYTES 420, 421,
;422, AND 423.

Note that in the above example, four bytes of storage result from the
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(0), are reserved in the object module.

.WORD

6.3.2 .WORD Directive

Formats:

.WORD exp ; STORES THE BINARY EQUIVALENT OF THE
;EXPRESSION EXP IN THE NEXT WORD.

.WORD expl,exp2,expn ;STORES THE BINARY EQUIVALENTS OF THE
;LIST OF EXPRESSIONS IN SUCCESSIVE

: WORDS.
where: exp, represent expressions that must reduce to 16 bits of
expl, data or less. Multiple expressions must be separated
. by commas.
expn

The .WORD directive is used to generate successive words of data in
the object module.

Exampie:

SAL=0
.=500
.WORD 177535,.+4,SAL ;STORES THE VALUES 177535, 506, AND
;0 IN WORDS 500, 502, AND 504,
sRESPECTIVELY.

6-22

GENERAL ASSEMBLER DIRECTIVES

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
.WORD /5, ; STORES THE VALUES 0, 5, AND 0 IN
;LOCATION 500, 502, AND 504,
;RESPECTIVELY.

A statement with a blank operator field (one that contains a symbol
other than a macro <call, an instruction mnemonic, a MACRO-11
directive, or a semicolon) 1is interpreted during assembly as an
implicit .WORD directive, as shown in the example below:

.=440
LABEL: 100,LABEL ; STORES THE VALUE 100 IN LOCATION 440
;AND THE VALUE 440 IN LOCATION 442,

CAUTION

You should not wuse this technique to
generate .WORD directives because it may
not be included in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double guote (") characters are unary
operators that can appear in any MACRO-11 expression, Used in
MACRO-11 expressions, these characters cause a 16-bit expression value
to be generated.

When the single quote is used, MACRO-11 takes the next character in
the expression and converts it from its 7-bit ASCII value to a 1l6-bit
expression value. The high-order byte of the resulting expression
value 1is always =zero (0). The 16-bit value 1is then used as an
absolute term within the expression. For example, the statement: '

MOV #'A,R0

moves the following 16-bit expression value into register O0:

00000000§01000001

LBinary Value of ASCII A

Thus the expression 'A results in a value of 101(8).

The single gquote (') <character must not be followed by a
carriage-return, null, RUBOUT, line-feed, or form-feed character; if
it is, an error code (A) is generated in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

When the double quote is used, MACRO-11l takes the next two characters
in the expression and converts them to a 16-bit binary expression
value from their 7-bit ASCII values. This 16-bit value is then used
as an absolute term within the expression. For example, the
statement:

MOV #"AB,RO

moves the following 16-bit expression value into register 0:

01000010j01000001

LBinary Value of ASCII A

Binary Value of ASCII B

Thus the expression "AB results in a value of 041101(8).

The double guote (") character, like the single quote (') character,
must not be followed by a carriage-return, null, RUBOUT, line-feed, or
form-feed character; if it is, an error code (A) is generated in the
assembly listing.

The ASCII character set is listed in Appendix A.1l.

.ASCII

6.3.4 .ASCII Directive

Format:
.ASCII /string 1/.../string n/

where: string is a string of printable ASCII characters. The
vertical-tab, null, 1line-feed, RUBOUT, and all other
non-printable ASCII characters, except carriage-return
and form-feed, cause an error code (I) if used in an
.ASCII string. The carriage-return and form-feed
characters are flagged with an error code (A) because
these characters end the scan of the line, preventing
MACRO-11 from detecting the matching delimiter at the
end of the character string.

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note at end of section), as long as
the delimiting character is not contained within the
text string itself. If the delimiting characters do
not match, or if an illegal delimiting character is
used, the .ASCII directive is flagged with an error
code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

The .ASCII directive translates character strings into their 7-bit
ASCII equivalents and stores them in the object module. A
non-printing character can be expressed only by enclosing its
eguivalent octal value within angle brackets. Each set of angle
brackets so used represents a single character. For example, in the

following statement:
.ASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Each bracketed expression must reduce to
eight bits of absolute data or less.

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<expression>DEF/

contains a single ASCII character string, and performs no evaluation
of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

.ASCII /HELLO/ ; STORES THE BINARY REPRESENTATION
;OF THE LETTERS HELLO IN FIVE
; CONSECUTIVE BYTES.

.ASCII /ABC/<15><12>/DEF/ ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A,B,C,CARRIAGE
; RETURN,LINE FEED,D,E,F IN EIGHT
; CONSECUTIVE BYTES.

.ASCII /A<15>B/ ; STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, £, 1, 5, >,
;AND B IN SIX CONSECUTIVE BYTES.

NOTE

The semicolon (;) and equal sign {=) can
be wused as delimiting characters in the
string, but care must be exercised in so
doing because of their significance as a
comment indicator and assignment
operator, respectively, as illustrated
in the examples below:

.ASCII ;ABC;/DEF/ ; STORES THE BINARY
; REPRESENTATION OF
;THE CHARACTERS
;A, B, C, D, E, AND
;F IN SIX
; CONSECUTIVE BYTES;
;NOT RECOMMENDED
;PRACTICE.

.ASCII /ABC/;DEF; ; STORES THE BINARY
; REPRESENTATIONS OF
; THE CHARACTERS A,
;B, AND C IN THREE
; CONSECUTIVE BYTES;
;s THE CHARACTERS D,
;E, F, AND ; ARE
; TREATED AS A
;s COMMENT .

6-25

6.3.5

Format:

+ASCIZ

where:

.ASCIZ Directive

string

GENERAL ASSEMBLER DIRECTIVES

.ASCII /ABC/=DEF= ; STORES THE BINARY
; REPRESENTATION OF
;THE CHARACTERS A,
:B, C, D, E, AND
;F IN SIX
; CONSECUTIVE BYTES;
; NOT RECOMMENDED
sPRACTICE.

An equal sign is treated as an assignment operator when
it appears as the first character in the ASCII string,
as illustrated by the following example:

.ASCII =DEF= ; THE DIRECT
; ASSIGNMENT
; OPERATION
; .ASCII=DEF IS
; PERFORMED, AND A
; SYNTAX ERROR (Q)

_ ;IS GENERATED UPON

; ENCOUNTERING THE
: SECOND = SIGN.

.ASCIZ

/string 1/.../string n/

is a string of printable ASCII <characters. The
vertical-tab, null, 1line~feed, RUBOUT, and all other
non-printable ASCII characters, except carriage-return
and form-feed, cause an error code (I) if used in an
.ASCIZ string. The carriage-return and form-feed
characters are flagged with an error code (A) because
they end the scan of the 1line, preventing MACRO-11
from detecting the matching delimiter.

represent delimiting characters. These delimiters may
be any paired printing characters, other than the
egual sign {=), the left angle bracket (<), or the
semicolon (;) (see Note in Section 6.3.4), as long as
the delimiting character is not contained within the
text string itself. If the delimiting characters do
not match or if an illegal delimiting character is
used, the .ASCIZ directive is flagged with an error
code (A) in the assembly listing.

6-26

GENERAL ASSEMBLER DIRECTIVES

The .ASCIZ directive is similar to the L(ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=15
LF=12
HELLO: .ASCIZ <CR><LF>/MACRO-11 V01A/<CR><KLF> ;INTRODUCTORY MESSAGE
.EVEN
MOV #HELLO,R1 ;GET ADDRESS OF MESSAGE.
MOV #LINBUF,R2 ;GET ADDRESS OF OUTPUT BUFFER.
10$: MOVB (R1)+,(R2)+ ;MOVE A BYTE TO OUTPUT BUFFER.
BNE 108 ; IF NOT NULL, MOVE ANOTHER BYTE.

.RADS0

6.3.6 .RADS50 Directive

Format:
.RAD50 /string 1/.../string n/

where: string represents a series of characters to be packed. The
string must consist of the characters A through Z, 0
through 9, dollar sign ($), period (.) and space ().
An illegal printing character causes an error flag (Q)
to be printed in the assembly listing.

If fewer than three characters are to be packed, the
string 1is ©packed left-justified within the word, and
trailing spaces are assumed.

As with the .ASCII directive (described in Section
6.3.4), the vertical-tab, null, line-feed, RUBOUT, and
all other non-printing characters, except
carriage-return and form-feed, cause an error code (I)
if used in a .RAD50 string. The carriage-return and
form-feed characters result in an error code (A)
because these characters end the scan of the line,
preventing MACRO-11 from detecting the matching
delimiter.

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note in Section 6.3.4), provided
that the delimiting character is not contained within
the text string itself. TIf the delimiting characters
do not match or if an illegal delimiting character is
used, the .RAD50 directive is flagged with an error
code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

The .RAD50 directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can

be stored in two consecutive words. Examples of .RAD50 directives are
shown below:

.RAD50 /ABC/ ; PACKS ABC INTO ONE WORD.
.RAD50 /AB/ ;PACKS AB (SPACE) INTO ONE WORD.
.RAD50 /ABCD/ ; PACKS ABC INTO FIRST WORD AND

;D (SPACE) (SPACE) INTO SECOND WORD.
.RAD50 /ABCDEF/ :PACKS ABC INTO FIRST WORD, DEF INTO

; SECOND WORD.

Each character 1is translated into its Radix~50 eguivalent, as
indicated in the following table:

Character Radix-50 Octal Equivalent
(space) 0

A-2 1-32

$ 33

I 34
(undefined) 35

0-9 36-47

The Radix-50 equivalents for characters 1 through 3 (C1,C2,C3) are
combined as follows:

Radix-50 Value = ((C1l*50)+C2)*50+C3
For example:
Radix-50 Value of ABC = ((1*50)+2)*50+3 = 3223(8)
Refer to Appendix A.2 for a table of Radix-50 equivalents. |
Angle brackets (<>) must be used in the .RAD50 directive whenever

special codes are to be inserted in the text string, as shown in the
example below:

.RAD50 /AB/<35> ; STORES 3255 IN ONE WORD.

CHR1=1
CHR2=2
CHR3=3

.RAD50 <CHR1><CHR2><CHR3> ;EQUIVALENT TO .RAD50 /ABC/.

6.3.7 Temporary Radix-50 Control Operator
Format:
"Rccece

where: ccc represents a maximum of three characters to be
converted to a 16-bit Radix-50 value. If more than
three characters are specified, any following the
third character are ignored. If fewer than three are
specified, it is assumed that the trailing characters

are hlanks
Dlanks,

ali<c

6-28

GENERAL ASSEMBLER DIRECTIVES

The "R operator specifies that an argument is to be converted to
Radix-50 format. This allows up to three characters to be stored in
one word. The following example shows how the "R operator might be
used to pack a 3-character file type specifier (MAC) into a single
16-bit word.

MOV 4 "RMAC,FILEXT ;STORE RAD50 MAC AS FILE EXTENSION

The number sign (#) is used to indicate immediate data (data to be
assembled directly into object code). "R specifies that the
characters MAC are to be converted to Radix-50. This value 1is then
stored in location FILEXT.

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

Any numeric or expression value in a MACRO-11 source program 1is read
as an octal value by default. Occasionally, however, an alternate
radix would be useful. By using the MACRO-11 facilities described
below, a programmer may declare a radix to affect a term or an entire
program depending on his needs.

NOTE
When two or more unary operators appear
together, modifying the same term, the
operators are applied to the term from

right to left. ‘

6-29

GENERAL ASSEMBLER DIRECTIVES

.RADIX

6.4.1.1 .RADIX Directive

Format:
.RADIX n

where: n represents one of the three radices: 2, 8 or 10. Any
value other than null or one of the three acceptable
radices will cause an error code (A) in the assembly
listing. If the argument n 1is not specified, the
octal default radix is assumed. The argument (n) is
always read as a decimal value.

Numbers used in a MACRO-1l1 source program are initially considered to
be octal values; however, with the .RADIX directive you can declare
alternate radices applicable throughout the source program or within
specific portions of the program.

Any alternate radix declared in the source program through the .RADIX
directive remains in effect until altered by the occurrence of another
such directive, for example: :

.RADIX 10 ;BEGINS A SECTION OF CODE HAVING A
;DECIMAL RADIX.

.RADIX ;REVERTS TO OCTAL RADIX.

In general, macro definitions should not contain or rely on radix
settings established with. the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a possible radix conflict exists within a macro definition or
source program, it is recommended that the wuser specify numeric or
expression values using the temporary radix control operators
described below.

6.4.1.2 Temporary Radix Control Operators

Formats:
“D"number” ("number" is evaluated as a decimal number)
“0"number" ("number" is evaluated as an octal number)
"B"number™ ("number" is evaluated as a binary number)

These three unary operators allow the user to establish an alternate
radix for a single term. An alternate is useful because after you
have specified a radix for a section of code or have decided to wuse
the default octal radix, you may discover a number of cases where an
alternate radix is more convenient or desirable (particularly within
macro definitions). Creating a mask word (used to check bit status),
for example, might best be accomplished through the use of a binary
radix.

Thus an alternate radix can be declared temporarily to meet a
localized requirement in the source program. The temporary radix
control operator may be used any time regardless of the radix in
effact or other radix declarations within the program. RBecause the

salis Cocialallilila L 9)

6

30

GENERAL ASSEMBLER DIRECTIVES

operator affects only the term immediately following it, it may be
used anywhere a numeric value 1is legal. The term (or expression)
associated with the temporary radix control operator will be evaluated
during assembly as a 16-bit entity.

The expressions below are representative of the methods of specifying
temporary radix control operators:

“Dpl23 N Decimal radix
"0 47 Octal Radix
"B 00001101 Binary Radix
T0<A+13> Octal Radix

The up-arrow and the radix control operator may not be separated, but
the radix control operator and the following term or expression can be
separated by spaces or tabs for legibility or formatting purposes. A
multi-element term or expression that 1is to be interpreted in an
alternate radix should be enclosed within angle brackets, as shown in
the last of the four temporary radix control expressions above.

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix.
When using the temporary radix control operator only numeric values
are affected. Any symbols used with the operator will be evaluated
with respect to the radix in effect at their declaration.

.RADIX 10

A=10
.WORD "0<A+10>*10

When the temporary radix expression in the .WORD directive above is
evaluated, it yields the following equivalent statement:

.WORD 180.

MACRO-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.), as shown below:

100. Eguivalent to 144 (8)
1376. Equivalent to 2540(8)
128. Equivalent to 200 (8)

The above expression forms are equivalent in function to:

“D100
"D1376
"D128

B bAoatlnge oint nnwbe:,
The string (which ca :
optlonal decimal p01nt and may be fo
4dndicator in- the form of tha‘let
‘exponent. The numbe "/7 d
brackets and\ mayﬂn,t be an expr9551on.,. , .
one or mcre errors. (A and/or Q) 1n the assembly l stlng. '

llowed by
ten,E\and a

GENERAL ASSEMBLER DIRECTIVES

Slgh'f,f“,-f(l bltl_

MACRO-11- returns a. value of. the appropriate 31ze and pre01szon via one-
of the floating-point dlrectlves. The 'values returned may be
truncated or rounded (see Section 6.2). - e S

Floating- p01nt numbers are normally rounded. That 'is, when a
floating-point number exceeds the limits of the field in which it is
to be:stored; the high-order bit of the. unretalned word is - added to
the low~order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2~word field, but more than 32 bits
are needed. .to express its exact value, the hlghest bit (32) of the
unretained field is added to ‘the least s1gn1flcant bit . (0) of . the
retained field (see illustration below). The:.ENABL: FPT directive is’
used to enable floating-point = truncation; ,.DSABL FPT is’ used to.
return to floatlng poxnt roundlng (see Table 6= 3) SR TR

Bit Blt Bit ‘* ¢,¥ Bit
A320 e 032 9,,‘«,, !
' T~ . | . "\f«" :

ﬂfRéiaihedw; 31j }tf Unretalned \

GENERAL ASSEMBLER DIRECTIVES

’36'4 2 1 ’Flcatlng—Point3St ag

fEbrmefs{{ef

o omplemented as:
- operator = allows
;gfloatlng p01nt number.ﬂ-

“As with the radix control operators descrlbed above, the ~numeric.
. 'control operator £7C) can: be used anywhere in- the source program that
“an expression value is-legal. Such a ‘construction 'is evaluated by
MACRO-11 as a 16-bit. binary value before belng complemented " For
Mwexample, the fol;owlng*statemen , e s

ﬁfargument
~may- . be:

. CODStIuCthﬂ“

C D25

Hcauses the dec;mal value 25 to be complemented durlng assembly. ++The, .
tesulting binary Value,h when, expressed,m;ne octal form, reduces to
177746(0cta1) R i ”'”‘. SR S B e . :

The term created through the use of the“ temporary numeric - control
operator ..can - be used :alone or-in:combination with other expression
elements. For example, the following construction:

"C2+6

This expression is evaluated during assembly as the 1's complement of
2, plus the absolute value of 6. When these terms-are combined, the
resulting expression wvalue -generates a carry beyond the most
significant bit, leaving 000003(8) as the reduced value,

6-33

GENERAL ASSEMBLER DIRECTIVES

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and in reserving storage space 1in the object program are
described in the following sections.

Several MACRO-11 statements (listed below) may cause an odd number of
bytes to be allocated:

1. .BYTE directive
2. .BLKB directive
3. J.ASCII or .ASCIZ directive

4, .0ODD directive

6. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

GENERAL ASSEMBLER DIRECTIVES

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the location counter to an even
value, but that instruction is flagged with an error code (B) in the
assembly listing.

6.5.1 .EVEN Directive EVEN

.EVEN

The .EVEN directive ensures that the current location counter contains
an even value by adding 1 if the current value is odd. 1If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code (Q) in the
assembly listing.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/

.EVEN ; ENSURES THAT THE NEXT STATEMENT WILL
;BEGIN ON A WORD BOUNDARY.

.WORD XY7Z

6.5.2 .0ODD Directive -()[)[)

Format:

.0DD

(¢l

The .0DD directive ensures that the current location counter contains
an odd value by adding 1 if the current value is even. If the current
location counter is already odd, no action 1is taken. Any operands
following an .0ODD directive are also flagged with an error code (Q) in
the assembly listing.

.BLKB

6.5.3 .BLKB and .BLKW Directives BLKW
Formats:

.BLKB exp

. BLKW exp

GENERAL ASSEMBLER DIRECTIVES

where: exp represents the specified number of bytes or words to
be - reserved in the object program. Any expression
that is defined at assembly time and that reduces to
an absolute value 1is legal. If the expression
specified in either of these directives 1is not an
absolute value, the statement is flagged with an error
code (A) in the assembly listing. These directives
should not be used without arguments. However, if no
argument is present, a default value of 1 is assumed.

The .BLKB directive reserves byte blocks in the object module; the
.BLKW directive reserves word blocks. Figure 6-6 illustrates the use
of the .BLKB and .BLKW directives.

; §+111ustrate use of +BLKEB and .BLKW directives
g 000000 ” +PSECT IMPUREsDyGBL,RW
Z 000000 COUNT?! .BLKW 1 iCharacter counter
; 000002 MESSAG? .BLKB 80, iMessadge text buffer
13 000122 CHRSAV: .BLKB iSaved character
:; 000123 FLAG? +BLKR iFlag bute
-ii 000124 MSGPTR: .BLKW iMessage buffer rointer

Figure 6-6 Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.texpression

which causes the value of the expression to be added to the current
value of the location counter. The .BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore recommended.

6.5.4 LLIMIT Directive LlMIT

Format:
+LIMIT

To know the upper and lower address boundaries of the image 1is often
desirable. When the .(LIMIT directive 1is specified in the source
program, MACRO-11 generates the following instruction:

.BLKW 2

causing two storage words to be reserved in the object module. Later,
at 1link time, the lowest address in the load image (the initial value
of SP) is inserted into the first reserved word, and the address of
the first free word following the image is inserted into the second
reserved word.

buring iinking, the size of the image is rounded upward to the nearest
2-word boundary.

=)}
[

w

[=)}

GENERAL ASSEMBLER DIRECTIVES

6.6 TERMINATING DIRECTIVES

.END

6.6.1 .END Directive

Format:

.END [exp]

where: exp represents an optional expression value which, if
present, indicates the program-entry point, which is
the transfer address where the program begins.

When MACRO-11 encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any text beyond this point in
the current source file, or in additional source files identified in
the command line, will be ignored.

When creating an image consisting of several object modules, only one
object module may be terminated with an .END exp statement (where exp
is the starting address). All other object modules must be terminated
with an .END statement (where .END has no argument); otherwise, an
error message will be issued at link time. If no starting address is
specified in any of the object modules, image execution will begin at
location 1 of the image and immediately fault because of an odd
addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; if it is so used, it is flagged with an
error code (0) in the assembly listing. The .(END statement may be
used, however, in an immediate conditional statement (see Section
6.9.3).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

.EOT

6.6.2 .EOT Directive

Under RSX-11M, RT-11, RSTS and IAS operating systems, the MACRO-11
.EOT (End of Tape) directive 1is ignored and simply treated as a
directive without effect.

6.7 PROGRAM SECTIONING DIRECTIVES

The MACRO-11 program sectioning directives are used to declare names
for program sections (p-sections) and to establish certain program
section attributes essential to linking.

GENERAL ASSEMBLER DIRECTIVES

.PSECT

6.7.1 .PSECT Directive

Format:
.PSECT name,argl,arg2,...argn

where: name represents the symbolic name of the program
section, as described in Table 6-4.

represents any legal separator (comma, tab and/or

space) .
argl, represent one or more of the 1legal symbolic
arg2,... arguments defined for use with the .PSECT
argn directive, as described in Table 6-4. The slash

separating each pair of symbolic arguments listed
in the table indicates that one or the other, but
not both, may be specified. Multiple arguments
must be separated by a legal separating character.
Any symbolic argument specified in the .PSECT
directive other than those 1listed .in Table 6-4
will «cause that statement to be flagged with an
error code (A) in the assembly listing.

Table 6-4
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

NAME Blank Establishes the program section name, which
is specified as one to six Radix-50
characters. If this argument is omitted, a
comma must appear in place of the name
parameter. The Radix-50 character set is
listed in Appendix A.2.

RO/RW RW Defines which type of access 1is permitted
to the program section:

RO=Read-Only Access
RW=Read/Write Access
NOTE

RSX-11M and RT-11 use only
Read/Write access.

(continued on next page)

6-38

GENERAL ASSEMBLER DIRECTIVES

Table 6-4 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument

Default Meaning

1/D

GBL/LCL

I Defines the contents of the program
section:

I=Instructions. If a p-section has the I
attribute and the program is overlaid,
all calls to the p-section are referenced
through a body of overlay code stored in
the root.

If a concatenated p-section has the I
attribute, code 1is concatenated on even
bytes.

D=Data. If a p—-section has the D
attribute, all calls to the p-section are
referenced directly.

If a concatenated p-section has the D
attribute, code 1is concatenated on the
next byte regardless of whether the byte
is odd or even.

LCL | Defines the scope of the program section,
as it will be interpreted at link time:
NOTE

The GBL/LCL arguments apply only in
the case of overlays; in building

single-segment nonoverlaid
programs, the GBL/LCL arguments
have no meaning, because the total

memory allocation for the program
will go into the root segment of
the image.

LCL=Local. If an object module contains a
local program section, then the storage
allocation for that module will remain
in the segment containing the module.
Many modules can contribute (allocate
memory) to this same program section;
the memory allocation for each
contributing module is either
concatenated or overlaid within the
segment, depending on the allocation
argument of the program section (see
CON/OVR below).

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-4 (Cont.)

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

GBL/LCL
(cont.)

ABS/REL

REL

GBL=Global. If a global program section is
used in more than one segment of a
program, all references to the
p—-section are collected across segment
boundaries. The program sections are
then stored in the segment (of those
originally containing the p-sections)
that is nearest the root.

NOTE

RT-11 stores the collected
p-sections in the root.

Defines the relocatability attribute of the
program section:

ABS=Absolute (non-relocatable). The ABS
argument causes the linker or task
builder to treat the p-section as an
absolute module; therefore, no
relocation is required. The program
section is assembled and loaded,
starting at absolute virtual address 0.

The location of data in absolute
program sections must fall within the
virtual memory limits of the segment
containing the program section;
otherwise, an error results at 1link
time. For example, the following code,
although valid during assembly, may
generate an error message (A) 1if
virtual location 100000 is outside the
segment's virtual address space:

.PSECT ALPHA,ABS
.=.+100000
.WORD X

REL=Relocatable, The REL argument causes
the linker or task builder to treat the
p-section as a relocatable module and a
relocation bias is added to all
location references within the program
section making the references absolute.

(continued on next page)

(<)}
i

40

GENERAL ASSEMBLER DIRECTIVES

Table 6-4 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

CON/OVR CON Defines the allocation requirements of the
program section:

CON=Concatenated. All references to one
program section are concatenated to
determine the total memory space needed
for the p-section.

OVR=Overlaid. All references to one
program section are overlaid; the
total memory space needed equaling the
largest, individual p-section.

The only argument in the .PSECT directive that 1is position-dependent
ig NAME. If it is omitted, a comma must be used in its place. For
example, the directive:

.PSECT ,GBL
shows a .PSECT directive with. a blank name argument and the GBL
argument. Default values (see Table 6-4) are assumed for all other
unspecified arguments.

The .PSECT directive may be used without a name or arguments (see
Section 6.7.1.1).

The .PSECT directive allows a user to create program sections (see
Section 6.7.1.1) and to share code and data among the sections he has
created (see Section 6.7.1.2). In declaring the program sections
(also <called p-sections), you may declare the attributes of the
p-sections. This allows you to control memory allocation and at the
same time increases program modularity. (For a discussion of memory
allocation, refer to the applicable system manual - see Section 0.3 in
the Preface.)
MACRO-11 provides for 256(10) program sections, as listed below:

1. One default absolute program section (. ABS.)

2. One default relocatable program section (. BLK.)*

3. Two~hundred-fifty-four named program sections.

For each program section specified or implied, MACRO-11 maintains the
following information:

1. Program section name
2. Contents of the current location counter
3. Maximum location counter value encountered

4. Program section attributes (described in Table 6-4 above).

* In RT-11 this program section is unnamed

6-41

GENERAL ASSEMBLER DIRECTIVES

6.7.1.1 Creating Program Sections - The first statement of a source
program is always an implied .PSECT directive; this causes MACRO-11
to begin assembling source statements at relocatable =zero of the
unnamed program section.

The first occurrence of a .PSECT directive with a given name assumes
that the current 1location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section is specified. Subsequent .PSECT directives
cause assembly to resume where the named section previously ended.
For example: ‘

.PSECT ; DECLARES UNNAMED RELOCATABLE PROGRAM
A: .WORD 0 ;SECTION ASSEMBLED AT RELOCATABLE
B: .WORD 0 ;ADDRESSES 0, 2, AND 4.
C: . WORD 0

.PSECT ALPHA ;DECLARES RELOCATABLE PROGRAM SECTION
X: .WORD 0 ;NAMED ALPHA ASSEMBLED AT RELOCATABLE
Y: .WORD 0 ;ADDRESSES 0 AND 2.

.PSECT ; RETURNS TO UNNAMED RELOCATABLE
D: .WORD ; PROGRAM SECTION AND CONTINUES ASSEM-
;BLY AT RELOCATABLE ADDRESS 6.

o

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR
and later referenced through the egquivalent directive:
.PSECT ALPHA

which requires no arguments. If arguments are specified, they must be
identical to the ones previously declared for the p-section. 1If the
arguments differ, the arguments of the first .PSECT will remain in
effect, and an error code (A) will be generated as a warning.

By maintaining separate location counters for each program section,
MACRO-11 allows you to write statements that are not physically
sequential but that can be loaded sequentially following assembly, as
shown in the following example.

.PSECT SECl,REL,RO ; START A RELOCATABLE PROGRAM SECTION
A: .WORD 0 : NAMED SEC1 ASSEMBLED AT RELOCATABLE
B: .WORD 0 :ADDRESSES 0, 2, AND 4.
C: .WORD 0
ST: CLR A ;ASSEMBLE CODE AT RELOCATABLE

CLR B ; ADDRESSES 6 THROUGH 12.

CLR C

.PSECT SECA,ABS ; START AN ABSOLUTE PROGRAM SECTION

;s NAMED SECA. ASSEMBLE CODE AT

.WORD .+2,A ; ABSOLUTE ADDRESSES 0 AND 2.

.PSECT SEC1l : RESUME RELOCATABLE PROGRAM SECTION

INC A +SECl. ASSEMBLE CODE AT RELOCATABLE

BR ST ;ADDRESSES 14 AND 16.

All labels in an absolute program section are absolute; likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is relocatable or absolute when referenced in a
relocatable or absolute program section, respectively.

GENERAL ASSEMBLER DIRECTIVES

Any labels appearing on a line containing a .PSECT (or .ASECT or
.CSECT) directive are assigned the value of the current location

counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: .PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed
program section.

Since it is not known during assembly where relocatable program
sections will be 1loaded all references to relocatable program
sections are assembled as ences relativ to th base o©f the

referenced section.

afa
erer

[S

reiacive vl

In the following example, references to the symbols X and Y are
translated into references relative to the base of the relocatable
program section named SEN.

.PSECT ENT,ABS

.=.+1000
A: CLR X s+ ASSEMBLED AS CLR BASE OF
s RELOCATABLE SECTION + 10(8).
JMP Y :ASSEMBLED AS JMP BASE OF
; RELOCATABLE SECTION + 6(8).
.PSECT SEN,REL
MOV RO,R1
JMP A ;ASSEMBLED AS JMP 1000.
Y: HALT
X: .WORD 0

NOTE

In the preceding example, using a
constant in conjunction with the current
location counter symbol (.) in the form
.=1000 would result in an error, because
constants are always absolute and are
always associated with the program's

.ASECT (. ABS.). 1If the form .=1000
were used, a program section
incompatibility would be detected. See

Section 3.6 for a discussion of the
current location counter.

Thus, MACRO-11 provides the linker or task builder with the necessary
information to resolve the linkages between various program sections.
Such information 1is not necessary, however, when referencing an
absolute program section, because all instructions in an absolute
program section are associated with an absolute virtual address.

6.7.1.2 Code or Data Sharing - Named relocatable program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN
COMMON, that is, program sections of the same name with the arguments
GBL and OVR from different assemblies are all loaded at the same

location at link time. All other program sections (those with the
argument CON) are concatenated.

6-43

GENERAL ASSEMBLER DIRECTIVES

A single symbol could name both an internal symbol and a program
section. Considering FORTRAN again, using the same symbolic name is
necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.7.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. You can,
therefore, place odd length data at the end of a module. However,
when several modules contain object code contributions to the same
program section having the concatenate attribute (see Table 6-4;
CON/OVR), odd 1length modules (except the last) may cause succeeding
modules to be linked starting at odd 1locations, thereby making the
linked program unexecutable. To avoid this problem, separate code and
data from each other and place them 1in separately named program
sections (see Table 6-4; 1I/D). The linker or task builder can then
begin each program section on an even address. Refer to the
applicable system manual for further information on memory allocation
of tasks (see Section 0.3 in the Preface).

.ASECT
.CSECT

6.7.2 JASECT and .CSECT Directives

Formats:

.ASECT
.CSECT
.CSECT symbol

where: symbol represents one or more of the arguments in Table 6-4.

IAS and RSX-11M assembly-language programs use the .PSECT and .ASECT
directives exclusively, because the .PSECT directive provides all the
capabilities of the .CSECT directive defined for other PDP-11
assemblers. MACRO-11 will accept both .ASECT and .CSECT directives,
but assembles them as though thev were .PSECT directives with the
default attributes listed in Table 6-5. Compatibility exists between
other MACRO-11 programs and the IAS/RSX-11M Task Builders, because the
Task Builders also treat the .ASECT and .CSECT directives like .PSECT
directives with the default values listed in Table 6-5.

6-44

GENERAL ASSEMBLER DIRECTIVES

Table 6-5
Program Section Default Values
Default Value

Attribute

.ASECT .CSECT (named) .CSECT (unnamed)
Name . ABS. name . BLK.*
ACCESS RW RW RW
Type I I I
Scope GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON

Note that the statement:
.CSECT JIM
is identical to the statement:

.PSECT JIM,GBL,OVR

because the .CSECT default values GBL and OVR are assumed for the
named program section.

* In RT-11 this program section has no default name.

6-45

GENERAL ASSEMBLER DIRECTIVES

6-46

GENERAL ASSEMBLER DIRECTIVES

a1qe} 40 pus ag¢

EUT3STI] O} JOTJd 3[Qe3 [OQWAS U0 3405 [[aYS WJ0Jdayg

arqeq J0 sSsaJdppe pua 03 3964
S81RQ 4a1qe} 40 AZIGH

Ueds BUTJINPD JBJUTOL [OQUARS JUBIINTS
atge] [0QWARS JO ssauppe aseyqs

1IXa8 épauieds st arqefs

sSaJppe pua aAegé

arqey ayy jsed MTOJY

ayqe} 03 483uUT02 BITTILTHTULS
arqe} 4o aseq 329

S8TdIuUd

12364 34244Nd 8y} Jajuaays
adeds ay} aprse 134

103Sd 34n4dur ayj3 uT ejep ayl 840lgé
L33Sd 3uaddnd auy asegy

,,uo srduexdg (-9 2Inbrd

ER
¢s¢ BpPOD TEUOTAIPPY ¢

TH440LWAS AOW :1M¥0SS

14088
+
d01RAS sa
ZISHAS Sa
HASMND Sad
SYIHAS SiI
-4
eqep 1e207
+4
NMNL3Y
']
¢+ aUTANOd 4O 3S53Y
']
d0LHAS4TYH NOW
TH4ZISHAS aay
WASHNI4TY AOW
TYéSYAUAS AOW :ASNYIS

pries 4oy arqey ysey ayj uedg
ASNYIS
+

- am em

WAN3*
340183y
3zI1s AxTa $3WYUN
79940 43¥N4NI 13384’
Vs

JAZIS¢AWYN Sad OMNJVUKR®

. .
2B2103S AdNdwl amura auvrgaq ¢
S oz0ey

+¢

apesn 3IYOLSIY*/73Nvs* JO ar=zwex3y 1148*

+200000

900000
+700000
200000
000000

39v8N 3IN0L1S3Y°/73NVS*
T 399d ZVIESIVI 44-1NM-8Y

100000

TOLRTO

202000

91010
104990
£9T010
1047910

00°v0A DYIVH

€E0000

€c0000
€20000
€z0000
20000

020000

¥10000
010000
v00000
000000

:14

k44
214
144
£
44
134
(24

8¢
LE
P
5¢
ve
£
g
1€
og
X4
8¢
LE
?c
QT
ve
£g

e

“NMTeNONOOO
et g e ot e OO

HMNMeNOUNDIOO
L]

40 37dWYX3
*NIVW®

6-47

GENERAL ASSEMBLER DIRECTIVES

.GLOBL

6.8 SYMBOL CONTROL DIRECTIVE

Format:

.GLOBL syml,sym2,...symn

where: syml, represent 1legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a 1label field and/or a comment
field.

The .GLOBL directive is provided to define (and thus provide 1linkage
to) symbols not otherwise defined as global symbols within a module.
In defining global symbols the directive .GLOBL A,B,C is similar to:

A==:expression A==expression A::
==:expression or B==expression or HH
==;expression ==expression C::

Because object modules are linked by global symbols, these symbols are
vital to a program. The following paragraph, describing the
processing of a program from assembly to 1linking, explains the
global's role.

In assembling a source program, MACRO-11 produces a relocatable object
module and a listing file containing the assembly listing and symbol
table. The linker or task builder joins separately assembled object
modules into a single executable image. During 1linking, object
modules are relocated relative to the base of the module and linked by
global symbols. Because these symbols will be referenced by other
program modules, they must be singled out as global symbols in the
defining modules. As shown above, the .GLOBL directive, global
assignment operator, or global label operator will define a symbol as
global.

All internal symbols appearing within a given program must be defined
at the end of assembly pass 1 or they will be assumed to be default
global references. Refer to Section 6.2 for a description of
enabling/disabling of global references.

In the following example, A and B are entry-point symbols. The symbol
A has been explicitly defined as a global symbol by means of the
.GLOBL directive, and the symbol.B has been explicitly defined as a
global label by means of the double colon (::). Since the symbol C is
not defined as a label within the current assembly, it is an external
(global) reference if .ENABL GBL is in effect.

DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
EXTERNAL SUBROUTINE

~e we w0 e

.PSECT ;DECLARE THE UNNAMED PROGRAM SECTION.
.GLOBL A ;DEFINE A AS A GLOBAL SYMBOL.
Az MOV @(RrR5)+,RC ;DEFINE ENTRY FOINT A.
MOV #X,R1
X JSR PC,C ;CALL EXTERNAL SUBROUTINE C.
RTS R5 s EXIT.
B MOV (R5)+,R1 ;DEFINE ENTRY POINT B,
CLR R2
BR X

6-48

GENERAL ASSEMBLER DIRECTIVES

External symbols can appear in the operand field of an instruction or
MACRO-11 directive as a direct reference, as shown in the examples
below:

CLR EXT
.WORD EXT
CLR @EXT

External symbols may also appear as a term within an expression, as
shown below:

CLR EXT+A
.WORD EXT-2
CLR @EXT+A (R1)

An undefined external symbol cannot be used in the evaluation of a
direct assignment statement or as an argument in a conditional
assembly directive (see Sections 3.3, 6.9.1 and 6.9.3).

6.9 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks
of source code during the assembly process, based on the evaluation of
stated condition tests within the body of the program.

AF
.ENDC

6.9.1 Conditional Assembly Block Directives

Format:

.IF cond,argument(s) ;START CONDITIONAL ASSEMBLY BLOCK.

range ;s RANGE OF CONDITIONAL ASSEMBLY BLOCK.

. ENDC ;END OF CONDITIONAL ASSEMBLY BLOCK.
where: cond represents a specified condition that must

be met if the block is to be included in the
assembly. The conditions that may be tested
by the <conditional assembly directives are
defined in Table 6-6.

R represents any legal separator (comma,
space, and/or tab).

argument (s) represent(s) the symbolic argument(s) or
expression(s) of the specified conditional
test. These arguments are thus a function
of the <condition to be tested (see Table
6-6) .

A condition test other than those listed in

GENERAL ASSEMBLER DIRECTIVES

range

.ENDC

represents the body of code that is either
included in the assembly, or excluded,
depending upon whether the condition is met.

terminates the conditional assembly block.
This directive must be present to end the
conditional assembly block.
Table

6-6, an 1illegal

argument, or a null argument specified in an .IF directive causes that

line to be flagged with an error code (A)

in the assembly listing.

Table 6-6
Legal Condition Tests for Conditional Assembly Directives
Conditions
Positive | Complement | Arguments Assemble Block If:
EQ NE Expression Expression is equal to 0
(or not equal to 0).
GT LE Expression Expression is greater
than 0 (or less than or
equal to 0).
LT GE Expression Expression is less than 0
(or greater than or equal
to 0).
DF NDF Symbolic Symbol is defined (or not
argument defined).
B NB Macro-type Argument is blank (or
argument non-blank).
IDN DIF TwOo macro-type Arguments are identical
arguments (or different).
Z NZ Expression Same as EQ/NE.
G L Expression Same as GT/LT.
NOTE

A macro-type argument (which is a
of symbolic
is enclosed

denoted

within
with an

argument) ,
angle
up-arrow construction

form

as shown below,

brackets or

(as described in Section 7.3).

<A,B,C>
"/124/

6-50

GENERAL ASSEMBLER DIRECTIVES

An example of a conditional assembly directive follows:

.IF EQ ALPHA+l ;s ASSEMBLE BLOCK IF ALPHA+1=0.
.ENDC
The two operators & and ! have special meaning within DF and NDF

conditions, in that they are allowed in grouping symbolic arguments.
& Logical AND operator
! Logical inclusive OR operator

For example, the conditional assembly statement:

.IF DF SYMl & SYM2

.ENDC

results in the assembly of the conditional block if the symbols SYM1
and SYM2 are both defined.

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

.ENDC
.ENDC

For example, the following conditional directives:

.IF DF SyMl
.IF DF SYM2

.ENDC
.ENDC

can govern whether assembly is to occur. In the example above, if the
outermost condition is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an .ENDC
directive. An .ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0) in the assembly
listing.

MACRO-11 permits a nesting depth of 16(10) conditional assembly
levels. Any statement that attempts to exceed this nesting level
depth is flagged with an error code (0) in the assembly listing.

6.9.2 Su

Formats:
.IFF
LIFT
.IFT

Subcondit
blocks to

1.

2.

3.

The subco
If a su
block, an

GENERAL ASSEMBLER DIRECTIVES

AFF

AFT
AFTF

bconditional Assembly Block Directives

F

ional directives may be placed within conditional assembly
indicate:

The assembly of an alternate body of code when the condition
of the block tests false.

The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block.

The unconditional assembly of a body of code within a
conditional assembly block.

nditional directives are described in detail in Table 6-7.
bconditional directive appears outside a conditional assembly
error code (0) is generated in the assembly listing.

Table 6-7
Subconditional Assembly Block Directives

Subcond
Direc

itional
tive Function

.IFF

LIFT

.IFTF

If the <condition tested upon entering the
conditional assembly block 1is false, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

If the condition tested upon entering the
conditional assembly block is true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

The code following this directive, and continuing
up to the next occurrence of a subconditional
directive or to the end of the conditional
assembly block, is to be included in the program,
regardless of the result of the condition tested
upon entering the conditional assembly block.

GENERAL ASSEMBLER DIRECTIVES

The implied argument of a subconditional directive 1is the condition
test specified upon entering the conditional assembly block, as
reflected by the initial directive in the conditional coding examples
below. Conditional or subconditional directives in nested conditional
assembly blocks are not evaluated if the previous (or outer) condition
in the block is not satisfied. Examples 3 and 4 below illustrate
nested directives that are not evaluated because of previous
unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined.

.IF DF SYM :+TESTS TRUE, SYM IS DEFINED. ASSEMBLE
. ;s THE FOLLOWING CODE.

.IFF ; TESTS FALSE. SYM IS DEFINED. DO NOT
. ;ASSEMBLE THE FOLLOWING CODE.

.IFT s TESTS TRUE. SYM IS DEFINED. ASSEM-
. :BLE THE FOLLOWING CODE.

IFTF : ASSEMBLE FOLLOWING CODE UNCONDITION-
. sALLY.

L IFT ;TESTS TRUE. SYM IS DEFINED. ASSEM-

. ;BLE REMAINDER OF CONDITIONAL ASSEM-
. ;BLY BLOCK.

.ENDC

EXAMPLE 2: Assume that symbol X is defined and that symbol Y is not

defined.
.IF DF X ; TESTS TRUE, SYMBOL X IS DEFINED.
.IF DF Y ; TESTS FALSE, SYMBOL Y IS NOT DEFINED.
.IFF ; TESTS TRUE, SYMBOL Y IS NOT DEFINED,
. ;ASSEMBLE THE FOLLOWING CODE.
.IFT : TESTS FALSE, SYMBOL Y IS NOT DEFINED.
. :DO NOT ASSEMBLE THE FOLLOWING CODE.
.ENDC
-.ENDC

EXAMPLE

EXAMPLE

GENERAL ASSEMBLER DIRECTIVES

3: Assume that symbol A is defined and that symbol B is not

defined.

.IF DF A ;TESTS TRUE. A IS DEFINED.
;ASSEMBLE THE FOLLOWING CODE.

MOV A,R1

.IFF ;TESTS FALSE. A IS DEFINED. DO NOT
;ASSEMBLE THE FOLLOWING CODE.

MOV R1,RO

.IF NDF B sNESTED CONDITIONAL DIRECTIVE IS NOT

. s EVALUATED.
.ENDC
.ENDC

4: Assume that symbol X is not defined and that symbol Y is
defined.

.IF DF X

.IF DF Y

;TESTS FALSE. SYMBOL X IS NOT DEFINED.
;DO NOT ASSEMBLE THE FOLLOWING CODE.
;NESTED CONDITIONAL DIRECTIVE IS NOT
;s EVALUATED.

;NESTED SUBCONDITIONAL DIRECTIVE IS
sNOT EVALUATED.

sNESTED SUBCONDITIONAL DIRECTIVE IS
;NOT EVALUATED.

6.9.3 Immediate Conditional Assembly Directive .
Format:
LIIF cond,arg,statement
where: cond represents one of the 1legal condition tests
defined for conditional assembly blocks in Table
6-6.
’ represents any legal separator (comma, space,
and/or tab).
arg represents the argument associated with the
immediate conditional directive; an expression,
symbolic argument, or macro-type argument, as

described in Table 6-6.

6-54

GENERAL ASSEMBLER DIRECTIVES

where: , represents the separator between the conditional
argument and the statement field. If the
preceding argument is an expression, then a comma
must be wused; otherwise, a comma, space, and/or

tab may be used.

statement represents the specified statement to be assembled
if the condition is satisfied.

An immediate conditional assembly directive provides a means for
writing a 1l-line conditional assembly block. The use of this
directive requires no terminating .ENDC statement and the condition to

be tested is completely expressed within the line containing the
directive.
For example, the immediate conditional statement:
IIF DF FOO,BEQ ALPHA
generates the code
BEQ ALPHA
if the symbol FOO is defined within the source program.
As with the .IF directive, a condition test other than those listed in

Table 6-6, an 1illegal argument, or a null argument specified in an
.IIF directive results in an error code (A) in the assembly listing.

6.9.4 PAL-11R Conditional Assembly Directives

In order to maintain compatibility with programs developed under
PAL-11R, wusing the following conditionals remains permissible under
MACRO-11. It is advisable, however, to develop future programs using
the format for MACRO-11 conditional assembly directives.

Directive Arguments Assemble Block if
.IFZ or .IFEQ Expression Expression=0
.IFNZ or .IFNE Expression Expression not equal 0
.IFL or .IFLT Expression Expression<0
.IFG or .IFGT Expression Expression>0
.IFLE Expression Expression is < or =0
.IFDF Symbolic argument Symbol is defined
. IFNDF Symbolic argument Symbol is undefined

The rules governing these directives are the same as those for the
MACRO-11 conditional assembly directives previously described.

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

By using macros a programmer can use a single 1line to insert a
sequence of lines into a source program.

A macro definition is headed by a .MACRO directive (see Section 7.1.1)
followed by the source lines. The source lines may optionally contain
dummy arguments. If such arguments are used, each one 1is 1listed in
the .MACRO directive.

A macro call (see Section 7.3) is the statement used by the programmer
to call the macro into the source program. It consists of the macro
name followed by the real arguments needed to replace any dummy
arguments used in the macro.

Macro expansion is the insertion of the macro source 1lines into the
main program. Included 1in this insertion is the replacement of the
dummy arguments by the real arguments.

Macro directives provide the means to manipulate the macro expansions.
Only one directive 1is allowed per source line. Each directive may
have a blank operand field or one or more operands. Legal operands
differ with each directive. The macros and their associated
directives are detailed in this chapter.

.MACRO

7.1.1 _.MACRO Directive

FORMAT:
{label:] .MACRO name, dummy argument list
where: label represents an optional statement label.
name represents the user-assigned symbolic name of the

macro. This name may be any legal symbol and may
be used as a label elsewhere in the program.

any legal separator (comma, space,

represent
2

s
and/or tab)

MACRO DIRECTIVES

where: dummy represents a number of legal symbols (see Section
argument 3.2.2) that may appear anywhere in the body of the

list macro definition, even as a label. These dummy

symbols can be used elsewhere in the program with

no conflict of definition. Multiple dummy

arguments specified in this directive may be
separated by any legal separator. The detection
of a duplicate or an illegal symbol in a dummy
argument list terminates the scan and causes an
error code (A) to be generated.

A comment may follow the dummy argument list in a .MACRO directive, as
shown below:

.MACRO ABS A,B ;:DEFINES MACRO ABS WITH TWO ARGUMENTS.

The first statement of a macro definition must be a .MACRO directive.

NOTE

Although it is 1legal for a label to
appear on a .MACRO directive, this
practice is discouraged, especially in
the case of nested macro definitions,
because invalid labels or labels
constructed with the concatenation
character will cause the macro directive

to be 1ignored. This may result in
improper termination of the macro
definition.

This NOTE also applies to .IRP, .IRPC,
and .REPT.

.ENDM

7.1.2 .ENDM Directive

FORMAT:
.ENDM [name]
where: name represents an optional argument specifying the
name of the macro being terminated by the
directive.
Example:

. ENDM ; TERMINATES THE CURRENT
;MACRO DEFINITION.

.ENDM ABS ; TERMINATES THE CURRENT
;MACRO DEFINITION NAMED ABS.

If specified, the macro name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly 1listing.
In either case, the current macro definition 1is terminated.
Specifying the macro name in the .ENDM statement thus permits MACRO-11
to detect missing .ENDM statements or improperly nested macro
definitions.

MACRO DIRECTIVES

The .ENDM directive must not have a 1label. If a 1legal 1label is
attached, it will be ignored. 1If an illegal label is attached, the
directive will be ignored.

The .ENDM directive may be followed by a comment field, as shown
below:

.MACRO TYPMSG MESSGE ;TYPE A MESSAGE.

JSR R5,TYPMSG
.WORD MESSGE
.ENDM ; END OF TYPMSG MACRO.

The fin statement of every macro definition must be an _ENDM

The al ter y macro definition
directive. The .ENDM directive is also used to terminate indefinite
repeat blocks (see Section 7.6) and may be used to terminate repeat

blocks (see Section 7.7).

.MEXIT

7.1.3 J.MEXIT Directive

FORMAT:
.MEXIT

The .MEXIT directive may be used to terminate a macro expansion before
the end of the macro is encountered. This directive is also legal
within repeat blocks (see Sections 7.6 and 7.7). It is most useful in
nested macros. The .MEXIT directive terminates the current macro as
though an .ENDM directive had been encountered. Using the .MEXIT
directive bypasses the complexities of nested conditional directives
and alternate assembly paths, as shown in the following example:

.MACRO ALTR N,A,B

.IF EQ N ; START CONDITIONAL ASSEMBLY BLOCK.
<MEXIT ; TERMINATE MACRO EXPANSION.

+ENBC : 1 END CONDITIONAL ASSEMBLY BLOCK.
.ENDM ; NORMAL END OF MACRO.

In an assembly where the dummy symbol N is replaced by zero (see Table
6-6), the .MEXIT directive would assemble the conditional block and
terminate the macro expansion. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

A .MEXIT directive encountered outside a macro definition 1is flagged
with an error code (0) in the assembly listing.

MACRO DIRECTIVES

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive is used in a macro definition, it
is 1ignored during the assembly of the macro definition, but a page
eject is performed when that macro is expanded.

7.2 CALLING MACROS
FORMAT:
[label:] name real arguments
where: label represents an optional statement label.

name represents the name of the macro, as specified in
the .MACRO directive (see Section 7.1.1).

real represent symbolic arguments which replace
arguments the dummy arguments listed in the .MACRO
directive. When multiple arguments occur, they
are separated by any legal separator. Arguments
to the macro call are treated as character
strings, their usage is determined by the macro

definition.

A macro definition must be established by means of the .MACRO
directive (see Section 7.1.1) before the macro can be called and
expanded within the source program.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO) ,R1 ;ABS IS DEFINED AS A LABEL.
BR ABS ;ABS IS CONSIDERED TO BE A LABEL.
ABS #4 ,ENT,LAR ;ABS IS A MACRO CALL.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Multiple arguments within a macro definition or macro call must be
separated by one of the 1legal separating characters described in
Section 3.1.1.

Macro definition arguments (dummy) and macro call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.6).

MACRO DIRECTIVES

For example, the following macro definition and its associated macro
call contain multiple arguments:

.MACRO REN A,B,C

REN ALPHA,BETA,<C1,C2>

Arguments which themselves contain separating characters must be
enclosed in paired angle brackets. For example, the macro call:
REN <MOV ,Y> ,#44 ,WEV

causes the entire expression
MOV X,Y

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity during the macro expansion.

The up-arrow (") construction allows angle brackets to be passed as
part of the argument. This construction, for example, could have been

used in the above macro call, as follows:
REN ~/<MOV X,Y>/,#44 ,WEV

causing the entire character string <MOV X,Y> to be passed as an
argument.

Because of the use of the up-arrow (") shown above, care must be taken
when passing an argument beginning with a unary operator ("0, "D, "B,
"R, "F ...). These arguments must be enclosed in angle brackets (as
shown below) or MACRO-11 will read the character following the
up-arrow as a delimiter.

REN <"0 411>,X,Y
The following macro call:
REN $44 ,WEV"/MOV X,Y/
contains only two arguments (#44 and WEV"/MOV X,Y/), because the
up-arrow is a unary operator (see Section 3.1.3) and it is not

preceded by an argument separator.

As shown in the examples above, spaces can be used within bracketed
argument constructions to increase the legibility of such expressions.

7.3.1 Macro Nesting

Macro nesting occurs where the expansion of one macro includes a call
to another. The depth of nesting allowed depends upon the amount of
dynamic memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, enclose the argument in the macro definition within angle
brackets, as shown in the coding sequence below. This extra set of

MACRO DIRECTIVES

angle brackets for each 1level of nesting is required in the macro
definition, not in the macro call.

.MACRO LEVEL1l DUMI1,DUM2
LEVELZ <DUM1>
LEVEL2 <DUM2>

.ENDM

.MACRO LEVEL2 DUM3
DUM3

ADD #10,R0

MOV RO, (R1)+
.ENDM

A call to the LEVEL1l macro, as shown below, for example:
LEVEL1 <MOV X,R0>,<MOV R2,R0>

causes the following macro expansion to occur:

MOV X,R0

ADD #10,RO
MOV RO, (R1)+
MOV R2,R0
ADD #10,RO
MOV RO, (R1)+

When macro definitions are nested, the inner definition cannot be
called until the outer macro has been called and expanded. For
example, in the following coding:

.MACRO LVl A,B

.MACRO LV2 C

.ENDM
.ENDM

the LV2 macro cannot be called and expanded until the LVl macro has
been expanded. Likewise, any macro defined within the LV2 macro
definition cannot be called and expanded until LV2 has also been

expanded.

7.3.2 Special Characters in Macro Arguments

If an argument does not contain spaces, tabs, semicolons, or commas it
may include special characters without enclosing them in a bracketed
construction, For example:

.MACRO PUSH ARG
MOV ARG,- (SP)
.ENDM

PUSH X+3(%2)
causes the following code to be generated:

MOV X+3(%2) ,-(sP)

MACRO DIRECTIVES

7.3.3 Passing Numeric Arguments as Symbols

If the unary operator backslash (\) precedes an argument, the macro
treats that argument as a numeric value in the current program radix.
The ASCII characters representing this value are inserted in the macro
expansion, and their function is defined 1in the context of the
resulting code, as shown in the following example:

.MACRO INC A,B

CON A,\B ;B IS TREATED AS A NUMBER IN CURRENT
B=B+1 ;s PROGRAM RADIX.
.ENDM
.MACRO CON A,B
A'B: .WORD 4 ;A'B IS DESCRIBED IN SECTION 7.3.7.
.ENDM
C=0 INC X,C

The above macro call (INC) would thus expand to:
X0: .WORD 4

In this expanded code, the label X0: results from the concatenation
of two real arguments. The single guote (') character in the label
A'B: concatenates the real arguments X and 0 as they are passed
during the expansion of the macro. This type of argument construction
is described in more detail in Section 7.3.7.

A subsequent call to the same macro would generate the following code:
X1: .WORD 4

and so on, for later calls. The two macro definitions are necessary

because the symbol associated with dummy argument B {(that is, C)

cannot be updated in the CON macro definition, because the character 0

has replaced C in the argument string (INC X, C). In the CON macro

definition, the number passed is treated as a string argument. (Where

the value of the real argument is 0, only a single 0 character is
" I .

nacaad
passed

to the macro expansion.)

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assemblies of a single source program can be identified
through such <coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6.

.MACRC IDT SYM ;ASSUME THAT THE SYMBOL ID TAKES
.IDENT /VO5A'SYM/ ;ON A UNIQUE 2-DIGIT VALUE.
.ENDM ;WHERE VO5A IS THE UPDATE

. ; VERSION OF THE PROGRAM.

IDT \ID
The above macro call would then expand to:
.IDENT /VO05A6/

where 6 is the numeric value of the symbol ID.

MACRO DIRECTIVES

7.3.4 Number of Arguments in Macro Calls

A macro can be defined with or without arguments. If more arguments
appear in the macro call than in the macro definition, an error code
(Q) is generated in the assembly listing. If fewer arguments appear
in the macro call than in the macro definition, missing arguments are
assumed to be null values. The conditional directives .IF B and
.IF NB (see Table 6-6) can be used within the macro to detect missing
arguments. The number of arguments can also be specified using the
.NARG directive (Section 7.4.1).

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In the conventional
macro facilities thus far described, a label must be explicitly
specified as an argument with each macro call. The user must be
careful in issuing subsequent calls to the same macro in order to
avoid duplicating labels. This concern can be eliminated through a
feature of MACRO-11 that creates a unique symbol where a label is
required in an expanded macro.

As noted in Section 3.5, MACRO-11 can automatically create local
symbols of the form n$, where n is a decimal integer within the range
64 through 127, inclusive. Such local symbols are created by MACRO-11
in numerical order, as shown below:

643
65%

1268
1278
This automatic generation is invoked on each call of a macro whose

definition contains a dummy argument preceded by the guestion mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B ; CONTAINS DUMMY ARGUMENT B PRECEDED BY
;QUESTION MARK.
TST A
BEQ B
ADD #5,A
B:
. ENDM

A local symbol is created automatically by MACRO-11 only when a real
argument of the macro call is either null or missing, as shown in
Example 1 below. If the real argument is specified in the macro call,
however, MACRO-11 inhibits the generation of a local symbol and normal
argument replacement occurs, as shown in Example 2 below. (Examples 1
and 2 are both expansions of the Alpha macro defined above.)

MACRO DIRECTIVES

EXAMPLE 1: Create a Local Symbol for the Missing Argument:

ALPHA Rl ; SECOND ARGUMENT IS MISSING.
TST Rl

BEQ 643 ; LOCAL SYMBOL IS CREATED.
ADD #5,R1

64S$:

EXAMPLE 2: Do Not Create a Local Symbol:

ALPHA R2,XYZ ; SECOND ARGUMENT XYZ IS SPECIFIED.
TST R2

BEQ XYZ :NORMAL ARGUMENT REPLACEMENT OCCURS.
ADD #5,R2

XYZ:

Automatically created local symbols are restricted to the first 16(10)
arguments of a macro definition.

Automatically created local symbols resulting from the expansion of a
macro, as described above, do not establish a local symbol block in
their own right.

When a macro has several arguments ecarmarked for automatic local
symbol generation, substituting specific label for one such argument
risks assembly errors because MACRO-11 constructs its argument
substitution 1list at the point of macro invocation. Therefore, the
appearance of a label, the .ENABL LSB directive, or the .PSECT
directive, 1in the macro expansion will create a new local symbol
block. The new local symbol block could leave local symbol references
in the previous block and their symbol definitions in the new one,
causing error codes in the assembly 1listing (see Appendix D).
Furthermore, a later macro expansion that creates local symbols in the
new block may duplicate one of the symbols in gquestion, causing an
additional error code (P) in the assembly listing.

e
a

7.3.6 Keyword Arguments
FORMAT:
name=string
where: name represents the dummy argument,
string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless delimited as described in section 7.3.

Macros may be defined with, and/or called with, keyword arguments.
When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call. When a keyword argument appears in the real argument list
of a macro call, however, the specified string becomes the real
argument for the dummy argument that matches the specified name,
whether or not the dummy argument was defined with a keyword. If a
match fails, the entire argument specification is treated as the next
positional real argument.

MACRO DIRECTIVES

A keyword argument may be specified anywhere in the dummy argument
list of a macro definition and is part of the positional ordering of
argument. A keyword argument may also be specified anywhere in the
real argument list of a macro call but, in this case, does not affect
the positional ordering of the arguments.

1 .LIST ME
2 H
3 ; DEFINE A MACRO HAVING KEYWORDS IN DUMMY ARGUMENT LIST
4 H
5
6 .MACRO TEST CONTRL=1,BLOCK,ADDRES=TEMP
7 .WORD CONTRL
8 .WORD BLOCK
9 .WORD ADDRES
10 .ENDM
11
12
13 :
14 ; NOW INVOKE SEVERAL TIMES
15 :
16
17 000000 TEST A,B,C
000000 000000G .WORD A
000002 000000G .WORD B
000004 000000G .WORD C
18
19 000006 TEST ADDRES=20,BLOCK=30,CONTRL=40
000006 000040 .WORD 40
000010 000030 .WORD 30
000012 000020 .WORD 20
20
21 000014 TEST BLOCK=5
000014 000001 .WORD 1
000016 000005 .WORD 5
000020 000000G .WORD TEMP
22
23 000022 TEST CONTRL=5 ,ADDRES=VARIAB
000022 000005 .WORD 5
000024 000000 .WORD
000026 000000G .WORD VARIAB
24
25 000030 TEST
000030 000001 .WORD 1
000032 00000C .WORD
000034 000000G .WORD TEMP
26
27 000036 TEST ADDRES=JACK!JILL
000036 000001 .WORD 1
000040 000000 .WORD
000042 000000C .WORD JACK!JILL
28
29
30 000001 .END

MACRO DIRECTIVES

7.3.7 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character in macro definitions., A single quote that
precedes and/or follows a dummy argument in a macro definition is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

.MACRO DEF A,B,C

A'B: .ASCIZz /C/
.BYTE ''Aa,''B
.ENDM

when the macro DEF is called through the statement:
DEF X,Y,<MACRO-11>

it is expanded, as follows:

XY: .ASCIZ /MACRO-11/

.BYTE 'X,'Y
In expanding the first 1line, the scan for the first argument
terminates upon finding the first apostrophe ('} character. Since A
is a dummy argument, the apostrophe (') is removed. The scan then

resumes with B; B is also noted as another dummy argument. The two
real arguments X and Y are then concatenated to form the label XY:.
The third dummy argument is noted in the operand field of the .ASCIZ
directive, causing the real argument MACRO-11 to be substituted in
this field.

When evaluating the arguments of the .BYTE directive during expansion
of the second 1line, the scan begins with the first apostrophe (')
character. Since it is neither preceded nor followed by a dummy
argument, this apostrophe remains in the macro expansion. The scan
then encounters the second apostrophe, which is followed by a dummy
argument and 1is therefore discarded. The scan of argument A is
terminated upon encountering the comma (,). The third apostrophe 1is
neither preceded nor followed by a dummy argument and again remains in
the macro expansion. The fourth (and last) apostrophe is followed by

another dummy argument and is likewise discarded. (Four apostrophe
(') characters were necessary in the macro definition to generate two
apostrophe (') characters in the macro expansion.)

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

MACRO-11 has three directives that allow the user to determine certain

attributes of macro arguments: .NARG, .NCHR, and .NTYPE. The use of
these directives permits selective modifications of a macro expansion,
depending on the nature of the arguments being passed. These

directives are described below.

7-11

MACRO DIRECTIVES

.NARG

7.4.1 .NARG Directive

FORMAT:
[label:] .NARG symbol
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the number of arguments in the macro
call currently being expanded. If a symbol is not
specified, the .NARG directive is flagged with an
error code (A) in the assembly listing.

The .NARG directive is used to determine the number of arguments in
the macro call currently being expanded. Hence, the .NARG directive
can appear only within a macro definition; if it appears elsewhere,
an error code (0) is generated in the assembly listing.

An example of the .NARG directive is shown in Figure 7-1.

+TITLE NARG

+ENABL _LC
JLIST ME

+
Examrle of the .NARG directive

- .

VAN UADWEN-

+MACRO NULL NUM
10 +NARG SYH
11 +IF EQ SYM
12 JMEXIT

13 «IFF

14 »REPT NUM
8] NOP

16 +ENDM

1?7 +ENDC

18 +ENDNM

20 000000 NULL
000000 +NARG SYM
+IF EQ SYH
JMEXIT
+IFF
+REFPT
NOF
+ENDHM
+ENDC
21
22 000000 NULL 6
000001 +NARG SYM
+IF EQ SYM
+MEXIT
+IFF
000006 +REFT 4
NOP
+ENDM
000000 000240 NOP
000002 000240 NOP
000004 000240 NOF
000006 000240 NOP
000010 000240 NOP
000012 000240 NOP
+ENDC

-
24 000001 +END

7.4.2 .NCHR Directive

FORMAT:
[label:]
where: label
symbol
’
<string>

MACRO DIRECTIVES

.NCHR

.NCHR symbol ,<string>

represents an optional statement label.

represents any legal symbeol. This symbol is
equated to the number of characters in the

specified character string. If a symbol is not
specified, the .NCHR directive is flagged with an
error code (A) in the assembly listing.

represents any legal separator (comma, space,
and/or tab).

represents a string of printable characters. If
the character string contains a legal separator
{comma, space, and/or tab) the whole string must
be enclosed within angle brackets (<>) or
up-arrows (7). If the delimiting characters do
not match or if the ending delimiter cannot be
detected because of a syntactical error in the
character string (thus prematurely terminating its
evaluation), the .NCHR directive is flagged with
an errcr code (A) in the assembly listing.

The .NCHR directive, which can appear anywhere in a MACRO-11 program,
is used to determine the number of characters in a specified character
string. This directive is useful in calculating the length of macro

arguments.

An example of the .NCHR directive is shown in Figure 7-2.

1 +TITLE NCHR
2
3 +ENABL LC
4 +LIST ME
5 it
-3 i Illustrate the NCHR directive
7 -
8
9 «MACRO STRING MESSAG
10 +NCHR $$$,MESSAG
11 +WORD $3¢
12 +ASCII /MESSAG/
13 +EVEN
14 +ENDM
15
16 000000 MSG1¢ STRING <Hello>
000005 +NCHR $$$,Hello
000000 000005 +WORD $$s
000002 110 +ASCII /Hello/
000003 1435
000004 154
000005 154
000006 157
+EVEN
i7
18 000001 +END

Figure 7-2 Example of .NCHR Directive

MACRO DIRECTIVES

.NTYPE

7.4.3 .NTYPE Directive

FORMAT:
[label:] .NTYPE symbol,aexp
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the 6-bit addressing mode of the
following expression (aexp). If a symbol 1is not
specified, the .NTYPE directive is flagged with an
error code (A) in the assembly listing.

’ represents any legal separator (comma, space,
and/or tab).

aexp represents any legal address expression, as used
with an opcode. 1If no argument is specified, an
error code (A) will appear in the assembly
listing.

The .NTYPE directive is used to determine the addressing mode of a
specified macro argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it is flagged
with an error code (0) in the assembly listing.

An example of the use of an .NTYPE directive in a macro definition is
shown in Figure 7-3.

1 +TITLE NTYPE
2
3 +ENABL LC
4 sLIST ME
5
& it
7 i Illustrate the NTYPE directive
8 -
9
10 +MACRO SAVE ARG
11 +NTYPE $$%%$,ARG
12 +IF EQ $$%$870
13 MOV ARGy - (SP) iSave in redister mode
14 +IFF
135 MOV #ARG» - (SF) iSave in non-redister mode
16 +ENDC
17 +ENDNM
18
19 000000 SAVE R1
000001 +NTYFE $$%,R1
+IF EG $%$%3%70
000000 010146 MoV R1s-(SP) iSave in redister mode
+IFF
MOV $R1,-(SF) iSave in non-redister mode
+ENDC
20
21 000002 SAVE TEMP
000067 +NTYFE $$$2TEMP
+IF EQ $%$%870
MOV TEMFs-(SP) iSave in redister mode
«IFF
000002 0127446 MOV $TEMP,-(SP) iSave in non-redister mode
000006°
+ENDIC

23 000006 000000 TEMF! +WORD 0

29 000001 +END

Figure 7-3 Example of .NTYPE Directive in Macro Definition

7-14

MACRO DIRECTIVES

For additional information concerning addressing modes, refer to
Chapter 5 and Appendix B.2.

.ERROR

7.5 .ERROR AND .PRINT DIRECTIVES

where: label represents an optional statement label.
expr represents an optional expression whose value is
output when the .ERROR directive is encountered
during assembly.
denotes the beginning of the text string.

text represents the message associated with the .ERROR
directive.

The .ERROR directive is used to output messages to the 1listing file
during assembly pass 2. A common use of this directive is to alert
the user to a rejected or erroneous macro call or to the existence of
an 1illegal set of conditions in a conditional assembly. If the
listing file is not specified, the .ERROR messages are output to the
command output device.

Upon encountering an .ERROR directive anywhere in a source program,
MACRO-11 outputs a single line containing:

1. An error code (P)
2. The seguence number of the .ERROR directive statement
3. The value of the current location counter
4. The value of the expression, if one is specified
5. The source line containing the .ERROR directive.
For example, the following directive:
.ERROR A ; INVALID MACRO ARGUMENT

causes a line in the following form to be output to the listing file:

Seg. Loc. Exp.
No. No. Value Text
P 512 005642 000076 .ERROR A ; INVALID MACRO ARGUMENT

PRINT

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the P error code.

7-15

MACRO DIRECTIVES

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is similar to a macro definition with only
one dummy argument. At each expansion of the indefinite repeat range,
this dummy argument is replaced with successive elements of a real
argument list, Since the repeat directive and its associated range
are coded in-line within the source program, this type of macro
definition and expansion does not require calling the macro by name,
as required in the expansion of the conventional macros previously
described in this chapter.

An indefinite repeat block can appear either within or outside another
macro definition, indefinite repeat block, or repeat block. The rules
for specifying indefinite repeat block arguments are the same as for
specifying macro arguments (see Section 7.3).

7.6.1 .IRP Directive IRP

FORMAT:

[label:] .IRP sym,<argument list>
(range of indefinite repeat block)

. ENDM

where: label represents an optional statement label.

NOTE

Although it is legal for a label to appear
on a .MACRO directive, this practice is
discouraged, especially in the case of
nested macro definitions, because invalid
labels or 1labels constructed with the
concatenation character will cause the
macro directive to be ignored. This may
result in improper termination of the
macro definition.

This NOTE also applies to .IRPC and .REPT,.

sym represents a dummy argument that is replaced with
successive real arguments from within the angle
brackets. If no dummy argument is specified, the
.IRP directive 1is flagged with an error code (A)
in the assembly listing.

’ represents any legal separator (comma, space,
and/or tab).

MACRO DIRECTIVES

<argument list> represents a 1list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any 1legal
separator (comma, space, and/or tab). If no real
arguments are specified, no action is taken.

range represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro

definitions, repeat ranges and/or the .MEXIT
AdAirective (see Section 7.1.3)

CaiTOlLLAVE =CC SLeLviVil 7 ex e/ o

.ENDM indicates the end of the indefinite repeat block
range.

The .IRP directive is used to replace a dummy argument with successive
real arguments specified in an argument string. This replacement
process occurs during the expansion of an indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-4.

.IRPC

7.6.2 LJ.IRPC Directive

FORMAT:

[label:] .IRPC sym,<string>

(range of indefinite repeat block)

. ENDM
where: label represents an optional statement label (see Note

in Section 7.6.1).

sym represents a dummy argument that is replaced with
successive real arguments from within the angle
brackets. If no dummy argument is specified, the
.IRPC directive is flagged with an error code (A)
in the assembly listing.

' represents any legal separator (comma, space,

and/or tab).

<string> represents a list of characters, enclosed within
angle brackets, to be used in the expansion of the
indefinite repeat range. Although the angle
brackets are required only when the string
contains separating characters, their use is
recommended for legibility.

MACRO DIRECTIVES

range represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions, repeat
ga;gef and/or the .MEXIT directive (see Section
.1.3).

.ENDM indicates the end of the indefinite repeat block
range.

The .IRPC directive 1is available to permit single character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the dummy argument 1is replaced with
successive characters in the specified string.

An example of the use of the .IRPC directive is shown in Figure 7-4.

1 +TITLE IRPTST
2
3 +LIST ME
4 it
S i Illustrate the .IRP and .IRPC directives
é $ by creating a8 rair of RADSO tables
7 §-
8
9 000000 REGS! +IRP REGs<FC»SPyRSsR4sR3sR2yR1,RO>
10 +RADSO0 /REG/
11 +ENDR
000000 062170 +RADSO /PC/
000002 074500 +RADSO /SP/
000004 072770 +RADS0 /RS/
000006 072720 +RADSO /R4/
000010 072650 +RADS0 /R3I/
000012 072600 +RADSO /R2/
000014 072530 +RAD50 /R1/
0000146 0724460 +RADSO /RO/
12
13 000020 REGS2: .IRPC NUM»<76543210>
14 +RADSO /R‘NUM/
18 +ENDR
000020 073110 +RADSO /R7/
000022 073040 +RADS0 /R&6/
000024 072770 +RADS50 /R3/
000026 072720 +RADSO /R4/
000030 072650 +RADSO /R3/
000032 072600 +RADSO /R2/
000034 072530 +RADSO /R1/
000036 072460 +RADS0 /RO/
14
17 000001 +END

Figure 7-4 Example of .IRP and .IRPC Directives

.REPT

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR . E N DR
FORMAT:
[label:] .REPT exp

{range of repeat block)

.ENDR

MACRO DIRECTIVES

exp represents any legal expression. This value
controls the number of times the block of code is
to be assembled within the program. When the
expression value 1is 1less than or equal to zero
(0), the repeat block is not assembled. If this
expression is not an absolute value, the .REPT
statement is flagged with an error code (A) in the
assembly listing.

range represents the block of code to be repeated. The
repeat block may contain macro definitions,
indefinite repeat blocks, other repeat blocks
and/or the .MEXIT directive (see Section 7.1.3).

.ENDM indicates the end of the repeat block range.
or
.ENDR

The .REPT directive is used to duplicate a block of code, a certain
number of times, in line with other source code.

.MCALL

7.8 MACRO LIBRARY DIRECTIVE: .MCALL

FORMAT:
.MCALL argl,arg2,...argn
where: argl, represent the symbolic names of the macro
arg2,... definitions required in the assembly of the source
argn program. The names must be separated by any legal

separator (comma, space, and/or tab).

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are not defined within the
source program but which are required to assemble the program. The
.MCALL directive must appear before the first occurrence of a call to
any externally defined macro.

The /ML switch (see Section 8.1.3) under RSX-11M and the /LIBRARY
gualifier (see Section 8.2.2) under IAS and RT-11, used with an input
file specification, indicate to MACRO-11 that the file is a macro
library. When a macro call is encountered in the source program,
MACRO-11 first searches the user macro library for the named macro
definitions, and, if necessary, continues the search with the system
macro library.

Any number of such user-supplied macro files may be designated. For
multiple 1library files, the search for the named macros begins with
the last such file specified. The files are searched in reverse order
until the reguired macrc definitions are found, f£finishing, 1if

necessary, with a search of the system macro library.

7-19

MACRC DIRECTIVES

If any named macro is not found upon completion of the search, the
-MCALL statement 1is flagged with an error code (U) in the assembly
listing. Furthermore, a statement elsewhere in the source program
that attempts to expand such an undefined macro is flagged with an
error code (0) in the assembly listing.

The command strings to MACRO-11, through which file specifications are
supplied, are described in detail in the applicable system manual (see
Section 0.3 in the Preface).

MACRO DIRECTIVES

PART IV
OPERATING PROCEDURES

CHAPTER 8

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

8.1 RSX-11M OPERATING PROCEDURES

The following sections describe MACRO-11 operating procedures that
apply only to the RSX-11M system.

8§.1.1 Initiating MACRO-11 Under RSX-11M/RSX-11M-PLUS

Following the entry of CTRL/C (°C) from an operator's console, the
Monitor Console Routine (MCR) 1indicates 1its readiness to accept a
command by prompting with:

MCR>

In response, any one of the five methods described below may be
employed to initiate MACRO-11.

8.1.1.1 Method 1 - Direct MACRO-1l1l Call
FORMAT:

MCR> MAC
MAC>macll-cmd~-string

The monitor console routine (MCR) accepts MAC as input, causing
MACRO-11 to be activated. Since an assembly command string is not
present with the MCR line, MACRO-11 then solicits input with the
prompting sequence MAC> and waits for command string input. The
command string input, macll-cmd-string, is any legal, syntactically
correct MACRO-11 command string of the form described in Section
8.1.2. After the assembly of the indicated files has been completed,
MACRO-11 again solicits command string input with the MAC> prompting
sequence. This process is repeated until a CTRL/Z ("2Z) is entered.

8.1.1.2 Method 2 - Using RUN Facility
FORMAT:

MCR>RUN ...MAC{/UIC=[g,m]]
MAC>macll-cmd-string

IAS/RSX~11M/RSX~-11M-PLUS OPERATING PROCEDURES

Method 2 is identical to method 1 except for the use of the MCR RUN
command which requires the entire task name, including the 3-dot
prefix. When the optional /UIC is used, the default User
Identification Code (UIC) is changed for one execution. As in method
1, MACRO-1l solicits command string input (see Section 8.1.2) after
the assembly of the indicated files is completed.

8.1.1.3 Method 3 - Single Assembly
FORMAT:
MCR>MAC macll-cmd-string
In method 3, because the command string input is included in the MCR

command 1line, no prompting is necessary, and MACRO-11 exits after
assembling the indicated files.

8.1.1.4 Method 4 - Install, Run Immediately, and Remove On Exit
FORMAT:

MCR>RUN $MAC[/UIC=[g,m]]
MAC>macll-cmd-string

Method 4 is used when the MACRO-11 assembler is not permanently
installed in the system. The Monitor Console Routine (MCR) installs
MAC from the system program directory and requests it under the
specified User Identification Code (UIC). As in methods 1 and 2,

MACRO-11 solicits command string input (see Section 8.1.2). After
exiting, MACRO-11 is automatically removed from the system.

NOTE
MACRO-11 can be terminated by entering a

CTRL/Z ("2Z) at any time a request for
command string input is present.

8.1.1.5 Method 5 -~ Using Indirect Filename Facility
FORMATS:

MCR>MAC
MAC>@filespec

or

MCR>RUN ...MAC[/UIC=[g,m]]
MAC>@filespec

or
MCR>MAC @filespec
or

MAC>RUN S$MAC[/UIC=[g,m]]
MAC>@filespec

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

These forms use the indirect file facility of RSX-11M, substitutes
"@filespec" for the "macll-=cmd-string" input used in methods 1 through
4, The file specified as "@filespec" contains MACRO-11l command
strings. After this file is opened, command lines are read from the
file until the end-of-file is detected. Only three nested 1levels of
indirect files are permitted in MACRO-11l.

8.1.2 RSX-11M Command String
FORMAT:
MAC>object,listing=srcl,src2,...,srcn
where: object represents the binary object (output) file.
listing represents the assembly 1listing (output) file
containing the table of contents, the assembly

listing, and the symbol table.

= separates output file specifications from input
file specifications.

srcl, represent the ASCII source (input) files
src2,... containing the MACRO-11 source prodgram oOr the
srcn user-supplied macro library files to be assembled.

Only two output file specifications in the command string. will be
recognized by MACRO-11; any more than two such files will be ignor
No limit is set on the number of source input file A IMmAar s
must ot ’

(An 8K assembler allows 80 characters per line and no

n lines.)

continuat
A null specification in either of the output file specification fields
signifies that the associated output file is not desired. A null
specification in the input file field, however, is an error condition,
resulting in the error message "MAC -- ILLEGAL FILENAME" on the
command output device (see Section 8.6). The absence of both the
device name (dev:) and the name of the file (filename.type) from a
file specification is the equivalent of a null specification.

NOTE

When no listing file is specified, any
errors encountered in the source program
are printed on the terminal from which
MACRO-11 was initiated. When the /NL
switch 1is wused in the 1listing file
specification without an argument, the
errors and symbol table are output to
the specified listing file.

8-3

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Each file specification contains the following information (in
accordance with the standard RSX-11M conventions for file
specifications):

filespec /switch:value ...

where: filespec. is the standard RSX-11M file specification as
described in Section 8.5.

/switch represents an ASCII name identifying a switch'
option. A switch option may be specified in three
forms, as shown below, depending on the function
desired:

/SW Invokes the specified switch action.

/NOSW Negates the specified switch action.

/=SW Also negates the specified switch
action.

:value ...
represents any number of the following values:
ASCII character strings, octal numbers, or decimal
numbers. The default assumption for a numeric
value is octal. Decimal values must be followed
by a decimal point (.).

Any numeric value preceded by a number sign (#) is
regarded as an explicit octal declaration; this
option is provided for documentation purposes and
ready identification of octal values.

Also, any numeric value can be preceded by a plus
sign (+) or a minus (-) sign. The positive
specification is the default assumption. If an
explicit octal declaration is specified (%), the
sign indicator, if included, must precede the
number sign.

Switch values must always be preceded by a colon
(:).
The switch specifications are interpreted in the
context of the program to which they apply. The
MACRO-11 switch options are described in Table
8-2.

A syntactical error detected in the command string causes MACRO-11 to
output the following error message to the command output device (see
Section 8.6):

MAC -- COMMAND SYNTAX ERROR
followed by a copy of the entire command string.

Table 8-1 lists the default values for each file specification,

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-1
File Specification Default Values
Default Value
File Device
Directory Filename | Type
Object System Current None .OBJ
File device.
Listing Device used Directory None .LST
File for object used in
file. object file
Source 1 |[System Current None .MAC
File device.
Source 2 |Device used Directory None .MAC
to for source 1 or used for
Source n llast source file source 1 or
File specified. last source
file speci-
fied.
User System device, Current if None .MLB
Macro if macro file macro file
Library is specified is specified
first; if not, first; if not,
device used directory of
by last source last source
file is used. file is used.
System System [1,11] RSXMAC .SML
Macro device.
Library
Indirect |[System Current None .CMD
Command device.
File

~ -

8.1.3 RSX-11M File Specification Switches

At assembly time, you may want to override certain MACRO-11 directives
appearing in the source program, or you may want to direct how certain
individual files are to be handled during assembly. You can do either
of these by using switch options with each file (see Section 8.1.2).
The available switches for use in MACRO-11 file specifications wunder
RSX~-11M are listed in Table 8-2.

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-2

MACRO-11 File Specification Switches for RSX-11M

Switch

Function

/Ll:arg
/NL:arg

/EN:arg
/DS:arg

/ML (see Note)

Listing control switches; these
options accept ASCII switch values
(arg) that are equivalent in function
and name to the arguments of the .LIST
and .NLIST directives specified in the
source program (see Section 6.1.1).
This switch overrides the arguments of
the directives and remains in effect
for the entire assembly process.

Function control switches; these
options accept ASCII switch values
(arg) that are equivalent in function
and name to the arguments of the
.ENABL and .DSABL directives specified
in the source program (see Section

6.2). This switch overrides the
arguments of the directives and
remains in effect for the entire

assembly process.

The /ML switch, which takes no
accompanying switch values, indicates
to MACRO-11 that an input file is a
macro library file.

Library files hold the definitions of
externally defined macros. As noted
in Section 7.8, an externally defined
macro must be identified in an .MCALL
directive before it can be retrieved
and assembled with the user program.
When MACRO-11 encounters an .MCALL
directive, a search begins for the
definitions of the macros listed.

The search order is important because
a macro might have two different
definitions, in library files LIB1 and
LIB2. If you need the definition, for
example, in LIBl, then you must place
LIB1 after LIB2 in the command line,
because MACRO-11 searches the last
file specified in the command line
first, then moves backwards through
the files given until all have been
searched.

If a macro's definition is not found
in any of the files named by the user,
MACRO-11 automatically searches the
system macro library; if the
definition is still not found an error
code (U) is generated in the assembly
listing.

(continued on next page)

8-6

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-2 (Cont.)
MACRO-11 File Specification Switches for RSX-11M
Switch Function
/PA:1 (see Note) Assemble the associated file during
assembly pass 1 only.
/PA:2 (see Note) Assemble the associated file during
assembly pass 2 only.
/SP (see Note) Spool listing output (default value).
/NOSP Do not spool output.

NOTE

The /ML, /PA and /SP switches do not
interact with or override MACRO-11
directives. Rather, they have meaning
only in the command line itself.

Switches for the object file are 1limited to /EN and /DS; when
specified, they apply throughout the entire command string. Switch
options for the listing file are limited to /LI, /NL, /SP, /CR, and
/NOSP. Switches for input files are limited to /ML, /PA, /EN, and
/DS; the options /ML and /PA apply only to the file immediately
preceding the option, whereas the /EN and /DS options, as noted above,
are applicable to all the files in the command string.

When using switches with a file specification, be careful not to use
the same switch more than once, because the values accompanying the
latest use of the switch will override the wvalues accompanying any
earlier uses of that switch. For example, in the following command
string element:

/LI:SRC/LI:MEB

the switch specification /LI:MEB will override the previous /LI
switch, /LI:SRC. If both switch values are desired, they can be
specified in the form shown below:

/LI:SRC:MEB
Examples:

1. MAC>0OBJFIL,LSTFIL/NL:BEX:COM/LI:ME=SRCFIL

This command string suppresses the 1listing of binary
extensions and the source comments and lists the macro
expansions. Furthermore, it causes all listing directives in

the source program having the arguments BEX, COM, and ME to

be overridden. 1In this example, the object output is sent to
the file named OBJFIL.OBJ, and the listing and symbol table
output is sent to the file named LSTFIL.LST.

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

2. MAC>OBJFIL,LISTM/NL:TOC=SRCFIL

This command string suppresses the assembly 1listing's table
of contents. When the /NL switch is present in the file
specification without an argument (general no-list mode) all
listing output except the symbol table is suppressed.

8.2 OPERATING PROCEDURES APPLICABLE ONLY TO THE RSX-11M-PLUS SYSTEM

8.2.1 1Initiating MACRO-11 Under RSX-11M-PLUS

RSX-11M-PLUS indicates its readiness to accept a command by prompting

with:

DCL>

In response to this prompt the command strings below may be entered.

DCL> MACRO [qualifiers]

FILE? filespec [qualifiers]|[,filespec,filespec...]

or

DCL>MACRO [gqualifiers]

filespec[qualifiers][,filespec,filespec...]

where: qualifiers are commands that affect either the entire
command string (command gqualifiers) or only
the filespec (parameter qualifiers). Command
gualifiers are those that follow the MACRO
command and parameter qualifiers are those
that follow the filespec. For a description
of the command and parameter qualifiers see
Tables 8-3 and 8-4 respectively.

filespec is the standard file specification given in
Section 8.5. (The default file
specifications are given in Table 8-1.)

Table 8-3

Yol

RS8X-11M-PLUS Command Qualifiers

Qualifier

Function

/LIST [:filespec] Produces an assembly listing file
according to filespec (see Section 8.5).
If filespec is not specified, the 1listing
has the file name of the last source file
and the file type .LST. This file is put
in
printed on the line printer. The default
is /NOLIST.

/NOLIST [:filespec] Suppresses an assembly listing of filespec
(see Section 8.5). This is the default
condition.

your User File Directory and also

(continued on next page)

IAS/RSX~-11M/RSX~-11M-PLUS OPERATING PROCEDURES

Table 8-3 (Cont.)

RSX-11M-PLUS Command Qualifiers

Qualifier

Function

/OBJECT [:filespec]

/NOOBJECT

/CROSS_REFERENCE

/NOCROSS_REFERENCE

/SWITCHES: (/swl:arl:ar2
.../swdarn)

Produces an object file according to
filespec (see Section 8.5)., If filespec
is not specified, the object file has the
file name of the last source file and the
file type .0BJ. The default is /OBJECT.

Suppresses the generation of an object
file.

Generates a cross-reference 1listing (see
Section 8.4). When this qualifier is used
/LIST is specified by implication. If you
wish to specify a filespec for the /LIST
qualifier you must append /LIST:filespec.

Suppresses the c¢ross-re

£ nce listing.
This is the default condit

eren
ion.
Overrides the .LIST,.NLIST,ENABL and
.DSABL directives included in the source
program. There are four switches
(swl...swd) that can be used with
i /SWITCHES:

Switch Function
/LI:ar These are the listing control
/NL:ar switches; they accept the

ASCII switch values (ar) which
are equivalent in name and
function to the arguments of
the .LIST and .NLIST directives

22C oCCLI0GD 0. L4)

/EN:ar These are the function control

/DS:ar switches; they accept the
ASCII switch values (ar) which
are equivalent in name and
function to the arguments of
the .ENABL and .DSABL
directives (see Section 6.2).

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-4

RSX-11M~-PLUS Parameter Qualifiers

Qualifier

Function

/PASS:1

/PASS:2

/LIBRARY

Assembles the associated file

assembly pass 1 only.

during

Assembles the associated file

assembly pass 2 only.

during

Specifies that an input file is a macro
library file. Library files hold the
definitions of externally defined macros.
As noted in Section 7.8, an externally
defined macro must be identified in an
+MCALL directive before it can be
retrieved and assembled with the user
program. When MACRO-11 -encounters an
.MCALL directive, a search begins for the
definitions of the macros listed.

The search order is
macro might
definitions, in library files LIB1 and
LIB2. If you need the definition, for
example, in LIBl, then you must place LIBl
after LIB2 in the command line, because
MACRO-11 searches the last file specified
in the command 1line first, then moves
backwards through the files given until
all have been searched.

because a
different

important
have two

If a macro's definition is not found in
any of the files named by the user,
MACRO-11 automatically searches the system
macro library; 1if the definition is stiil
not found, an error code (U) is generated
in the assembly listing.

8.2.2

1. >MACRO
FILE? FILENAM
or

>MACRO FILNAM

Both of these examples assembles the source file

RSX-11M-PLUS Command String Examples

FILENAM.MAC

into a relocatable object module named FILNAM.OBJ.

2. >MACRO/OBJECT:TESTA FILNAM

This example produces an object file with the name TESTA.OBJ.

3. >MACRO FILNAM/LIBRARY,TESTA,SPAN3,SHELL

Assembles a
~

+ho annrca
Tnd SCUurce

SHELL.MAC.

(concatenated) object file named SHELL.OBJ

filac
Iliec

from
SPAN3 _MAC and

B U S\ ¥ B taiiis ja'Po 28 Y NS A

FILNAM,MLR, TESTA.MAC,

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

4. >MACRO/LIST/SWITCHES: (/NL:TTM:COM) FILNAM

This command string produces an object module and an assembly
llstlng Any .LIST TTM or .LIST COM directive in the source
file is ignored. The listing produced by this command has no
comments included and is printed in wide format.

8.3 IAS MACRO-11 OPERATING PROCEDURES

The following sections describe those MACRO-11 operating procedures
that apply exclusively to the IAS system.

8.3.1 Initiating MACRO-11 Under IAS

The MACRO command is used under IAS to begin MACRO-11 assembler
operations. The command causes MACRO-11 to assemble one or more ASCII
source files containing MACRO-11 statements into a relocatable binary
object file. The assembler will also produce an assembly llstlng,
followed bv a svmbol table listing. - c e

A MACRO-11 program can be input either directly from the terminal
(interactive mode) or from a batch file (batch mode). For interactive
mode use the MACRO command which can be issued whenever the IAS
Program Development System (PDS) 1is at command level, a condition
signified by the appearance of the prompt:

PDS>
For batch mode use the $MACRQO command.
When the assembly is completed, MACRO-11 terminates operations and

returns control to PDS. (Refer to the IAS User's Guide for further
information about interactive and batch mode operations.)

8.3.2 1IAS Command String
FORMATS:

Interactive Mode

input
PDS> MACRO qualifiers filespec /LIBRARY +...

or
PDS> MACRO qualifiers

input
FILES? filespec /LIBRARY +...

Batch Mode

input
$MACRO qualifiers filespec /LIBRARY +...

where:

input

filespec

/LIBRARY

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

gualifiers

/OBJECT[:filespec]

/NOOBJECT

output

output

/LIST[:filespec]

/NO

[ugl

[

S

]

is the specification of an input file
(see Section 8.5) that contains MACRO-11
source program code. When the program
consists of multiple files, a plus sign
(+) must be used to separate each file
specification from the next. The "wild
card" form of a file specification is
not allowed.

specifies that an input file is a macro
library file. Library files hold the
definitions of externally defined
macros. As noted 1in Section 7.8, an
externally defined macro must be
identified in an .MCALL directive before
it can be retrieved and assembled with
the user program. When MACRO-11
encounters an .MCALL directive, a search
begins for the definitions of the macros
listed.

The search order is important because a

macro might have two different
definitions in library £files LIB1 and
LIB2. For example, if you need the

definition in LIB1l, then you must place
LIB1 after LIB2 in the command line
because MACRO-11 searches the last file
spacified in the command 1line first,
then moves backwards through the files
given until all have been searched.

If a macro's definition is not found in
any of the files named by the user,
MACRO-11 automatically searches the
system macro library; if the definition
is still not found, an error code (U) is
generated in the assembly listing.

specifies one or more of the following:

produces an object file as specified by
filespec (see Section 8.5). The default
is a file with the same filename as the
last named source file and an .OBJ
extension. /OBJECT is always the
default condition,

Does not produce an object file.

produces an assembly listing file
according to filespec (see Section 8.5).
If filespec is not specified, the
listing is printed on the line printer.
The default in interactive mode is
/NOLIST and in batch mode is /LIST.

Does not produce a 1listing file. The
default in interactive mode is /NOLIST
and in batch mode is /LIST.

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

NOTE

When no listing file is specified, any
errors encountered in the source program
are displayed at the terminal from which
MACRO-11 was initiated.

/CROSSREFERENCE[:argl...arg4d]

produces a cross-reference listing.
Argl through arg4 are as described in

A - s~ e =1 2 O3 o n - | .
Section 8.4. This gualifier may be

abbré&iated to /C.
A MACRO-11 command string can be specified using any one of the three
formats shown above for the interactive and batch modes. in
interactive mode, if the input file specification (filespec) does not
begin on the same line as the MACRO command and its gqualifiers, PDS
prints the following prompting message:

FILES?

then waits for the user to specify the input file(s).

In batch mode, the $MACRO command and its arguments must appear on’ the
same line unless the PDS line continuation symbol (-) is used.

8.3.3 IAS Indirect Command Files

FORMAT:
@filespec
where:
@ ipicifies that the name that follows 1is an indirect
ile.

filespec is the file specification (see Section 8.5) of a file
that contains a command string. The default extension
for the file name is .CMD.

The indirect command file facility of PDS can be wused with MACRO-11
command strings. This is accomplished by creating an ASCII file that
contains the desired command strings (or portions thereof) in the
forms shown in Section 8.3.2. When an indirect command file reference
is used in a MACRO-11 command string, the contents of the specified
file are taken as all or part of the command string.

An indirect command file reference must always be the rightmost entry
in the command (see Section 8.3.4 for examples).

iAS/RSX—llM/RSX—llM-PLUS OPERATING PROCEDURES

8.3.4 1IAS Command String Examples
The following examples show typical PDS MACRO-11 command strings.

1. PDS> MACRO /NOLIST
FILES? A+BOOT.MAC;3

In this example, the source files A.MAC and BOOT.MAC;3 will
be assembled to produce an object file called BOOT.OBJ. No
listing will be produced.

2. Where the indirect command file TEST.CMD contains the command
string:

MACRO/OBJECT:MYFILE A+B
The command:

PDS> @TEST

causes MACRO-11 to assemble the two files A.MAC and B.MAC
into an object file called MYFILE.OBJ.

3. Where the indirect command file 1IND02.CMD contains the
command string segment:

ATEST/LIBRARY+BTEST+SRT1.021
The command:
PDS> MACRO/LIST:DK1 :FOO QINDO2

causes MACRO-11 to assemble the files BTEST.MAC and SRT1.021
using the macro library file ATEST.MAC to produce an object
file named SRT1.0BJ. A listing file named FOO.LST is placed
on disk unit 1.

4, SMACRO/LIST:DKO:MICR/NOQBJECT -
LIB1/LIBRARY+MICR.MAC;002

In this example, the library file is assembled with the file

MICR.MAC;002. The program 1listing file named MICR.LST is
placed on disk unit 0.

'8 4 cnossmzwamcr. PROCESSOR (CREF)

The CREF processor is used to ﬁproduce : “wllstlng that 1nc1udes[
‘cross—references to symbols th ‘appear.: 1n the source program. The

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

produces ‘@ cross—reference llstlng of user- deflned symbols ‘only.- No,;
listing of macro symbols is generated. Thus, to produce all four
types of cross- reference llstlngs, ‘you must specify all four arguments
“fthe. .

“order..in .whi thej are; speclfled is not. sxgnlflcant) .Use. a&;
colon to separate arguments., For example. : , g L

_ /CR:REG:SYM:MAC:PST =

.LMeanlng

. ,,'somewhere in the ‘source program the symbol lisfedaf;sﬁ
"fe;ﬂe&eﬂe@eewwem@beeeewaaeuywmam}eﬁm@emene i i

S

«destructxve reference- at the llne referenced by the i

o . ;,ﬁprocessor the value of the symhol 1s changed (1ts,(
N “prev1ous contents destroyea) e o

at the line referenced by the processor‘ the symbol

“.listed ‘is+defined by a direct assxgnment statement, a.
colon. sign..{:} or a double colon sign (::).

IAS/RSX-11M/RSX-11M~-PLUS OPERATING PROCEDURES

RSOUNP MACRO Y04.00 29-AUG-79 16:06:!39 PAGE S-1
CROSS REFERENCE TARLE (CREF V01-08)

RSOUNP 2-16%
SYMEOL 2-17 2-25

RSOUNF MACRD Y04.,00 29-AUG-79 14:06:39 PAGE R-1%
CROSS REFERENCE TABLE (CREF Vv01-08 »

RO 2-23% 2-32% 2-33% 2-43 2-45 2-48% 2-49%
2-50% 2-51% 2-52

K1 2-18% 2-23

K2 2-52%

K3 2-19% 2-21% 2-33

R4 2-16 2-17% 2-18 2-25 2-27%

SF 2-16% 2-27 .

RSQUNF MACRD Y04.,00 2%9-AUG-79 16:06139 PAGE C-1
CROSS REFERENCE TABLE (CREF V01-08)

Figure 8-1 Sample CREF Listing

8.5 IAS/RSX-11M FILE SPECIFICATION

FORMAT:

where:

dev: is the name of the physical device where the desired
file resides. A device name consists of two characters
followed by a 1- or 2-digit device unit number (octal)

dev:[g,m]lname.ext;ver

and a colon (for example, DPl:, DKO:, DT3:).
default device under RSX-11M and RSX-11M-PLUS

specified in Table 8-~1. The default device under IAS
is established initially by the system manager for each

user and can be changed through the SET command.

[g,m] is the User File Directory (UFD) code. This

consists of a group number (octal), a comma (,),

owner (member) number (octal) all enclosed in brackets

([1Y. An example of a UFD code is: [200,30].

The default UFD is eqguivalent to the
Identification Code (UIC) given at log-in time.

IAS, the UFD can be changed through the SET DEFAULT

command.

name is the filename and consists of one through

alphanumeric characters. There 1is no default for a

filename.

8-16

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

.ext is a 1- to 3-alphanumeric character filename extension
or type that is preceded by a period (.). An extension
is normally used to identify the nature of the file.
Default wvalues depend on the context of the file
specification and are as follows:

.CMD = Indirect command (input) file
.LST = A listing (print format) file
.MAC = MACRO-11 source module (input file)
.OBJ = MACRO-11 object module (output file)
.CRF = Intermediate CREF input file created
by MACRO-11.
;ver is an octal number between 1 and 77777 that is used to

differentiate between versions of the same file. This
number must be prefixed by a semicolon (;). :

For input files, the default value 1is the highest
version number of the file that exists.

For output files, the default value 1is the highest
version number of the file that exists increased by 1.
If no version number exists, the value 1 is used.

This is the general form for a file specification in TIAS/RSX-11M
systems. Detailed information is provided in the applicable system
user's guide or operating procedures manual (see Section 0.3 in the
Preface).

8.6 MACRO-11 ERROR MESSAGES UNDER IAS/RSX-11M

MACRO-11 outputs an error message to the command output device when
one of the error conditions described below is detected. These error
messages reflect operational problems and should not be confused with
the error codes (see Appendix D) produced by MACRO-11 during assembly.

All the error messages listed in Table 8-5, with the exception of the

"MAC -- COMMAND I/O ERROR" message, result in the termination of the
. current assembly; MACRO-11 then attempts to restart by reading
another command line. In the case of a command I1/0 error, however,

MACRO-11 exits, since it is unable to obtain additional command 1line
input.

Table 8-5
Operational Error Messages; IAS/RSX-11M

Error Message Meaning

MAC -- COMMAND FILE OPEN FAILURE Either the file from
which MACRO-11 is reading
a command could not be
opened initially or
between assemblies; or
the indirect command file
specified as "@filename"
in the MACRO-11] command
line could not be opened.
See "OPEN FAILURE ON
INPUT FILE" for meaning.

(continued on next page)

IAS/RSX~11M/RSX-11M~PLUS OPERATING PROCEDURES

Table 8-5 (Cont.)
Operational Error Messages; IAS/RSX-11M

Error Message Meaning

MAC -- COMMAND I/0 ERROR An error was returned by
the file system during
MACRO-11's attempt to
read a command line.
This is an uncondi-
tionally fatal error,
causing MACRO-11 to exit.
No MACRO-11 restart is
attempted when this
message appears.

MAC -- COMMAND SYNTAX ERROR An error was detected 1in
the syntax of the
MACRO-11 command line.

MAC -- ILLEGAL FILENAME Neither the device name
nor the filename was
present in the input file
specification (the input
file specification was
null), or a wild card
convention (asterisk) was
employed in an input or
output file specifica-
tion. Wildcard options
(*) are not permitted in
MACRO-11 file specifica-

tions.

MAC -- ILLEGAL SWITCH An 1illegal switch was
specified for a file, an
illegal value was

specified with a switch,
or an invalid use of a
switch was detected by
MACRO-11.

MAC -~ INDIRECT COMMAND SYNTAX ERROR The name of the 1indirect
command file (@filename)
specified in the MACRO-11
command line is
syntactically incorrect.

MAC -- INDIRECT FILE DEPTH EXCEEDED - An attempt to exceed the
maximum allowable number
of nested indirect
command files has
occurred. (Only three
levels of indirect
command files are

permitted in MACRO-11.)

{(continued on next page)

IAS/RSX~-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8

-5

(Cont.)

Operational Error Messages; IAS/RSX-11M

Error Message

Meaning

MAC -- INSUFFICIENT DYNAMIC MEMORY

MAC ~- INVALID FORMAT IN MACRO LIBRARY

MAC -- I/O ERROR ON INPUT FILE

MAC -- I/O ERROR ON MACRO LIBRARY FILE

MAC -- I/O ERROR ON OUTPUT FILE

MAC -- I/O ERROR ON WORK FILE

There is not enough
physical memory available
for MACRO-11 to page its
symbol table. Reinstall
MACRO-11 in a larger
partition, or see
Appendix F.3.

The library file has been
corrupted, or it was not
produced by the Librarian
Utility Program (LBR).

In reading a record from
a source input file or
macro library file, the
file system detected an
error; for example, a
line containing more than
132(10) characters was
encountered. This mes-
sage may also indicate
that a device problem
exists or that either a
source file or a macro
library file has been
corrupted with incorrect
data.

Same meaning as I/0 ERROR
ON INPUT FILE, except
that the file is a macro
library file and not a

In writing a record to
the object output file or
the listing output file,
an error was detected by
the file system. This
message may also indicate
that a device problem
exists or that the device
is full.

A read or write error
occurred on the work file
used to store the symbol
table. This error is
most likely caused by a
problem on the device or
by attempting to write to
a device that is full.

8-19

(continued on next page)

IAS/RSX~11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-5

(Cont.)

Operational Error Messages; IAS/RSX-11M

Error Message

Meaning

MAC -- OPEN FAILURE ON INPUT FILE
MAC -- OPEN FAILURE ON OUTPUT FILE
MAC -- 64K STORAGE LIMIT EXCEEDED

1. Specified device does
not exist.

2. The volume is not
mounted.

3. A problem exists with
the device.

4, Specified directory
file does not exist.

5. Specified file does
not exist.

6. User does not have
access to the file
directory or to the
file itself.

1. Specified device does
not exist.

2. The volume |is not
mounted.

3. A problem exists with
the device.

4. Specified directory
file does not exist.

5. User does not have
access to the file
directory.

6. The volume is full or
the device 1is write

protected.
7. There is insufficient
space for File

Control Blocks.

64K words of work file
memory are available to
MACRO-11. This message
indicates that the
assembler has generated
so many symbols (about
13,000 to 14,000) that it
has run out of space.
Either the source program
is too large to start
with, or it contains a
condition that 1leads to
excessive size, such as a
macro expansion that
recursively calls itself
without a terminating
condition.

CHAPTER 9

RSTS/RT-11 OPERATING PROCEDURES

9.1 MACRO-11 UNDER RSTS

The only way a MACRO-11 program can run on a RSTS system is through
either the RT-11 or RSX run-time systems.

9.1.1 RT-11] Through RSTS

There are two ways to run a MACRO program under the RT-11 run-time
system:

1. Use the RT-11 Emulator. This is done by typing: g% RT1I.
The terminal will respond with the RT-11 prompt (a dot
printed by the keyboard monitor). You can then use the RT-11
commands (see Section 9.2).

2. Type the command: RUN $MACRO.SAV. The terminal will respond

with an asterisk (*) prompt. You can then enter a command
string of the form:

OBJFIL,LSTFIL=SRC...SRC6

where: OBJFIL 1is an object (output) file with the default
extension .OBJ.

LSTFIL 1is a listing (output) file with the default
extension .LST.

SRC... are source (input) files with the default

SRC6 extension .MAC. Six input files are allowed
in this command.

9.1.2 RSX Through RSTS

To run a MACRO program under the RSX run-time system, type the
command: RUN S$MAC.TSK. The terminal will respond with:

MAC>
In answer you enter a command string of the form:

OBJFIL,LSTFIL=SRC...SRCN

RSTS/RT-11 OPERATING PROCEDURES

where: . OBJFIL is an object (output) file with the default
extension .OBJ.
LSTFIL is a listing (output) file with the default
extension .LST.
SRC... are source (input) files with the default
SRCN extension .MAC.
NOTE

There are other commands that can be
used to call RT-11 and RSX but they are
site dependent and so are not mentioned
here.

9.2 INITIATING MACRO-11 UNDER RT-11

The following sections describe those MACRO-11 operating procedures
that apply only to the RT-11 system.

To call the MACRO-11 assembler from the system device, respond to the
system prompt (a dot printed by the keyboard monitor) by typing:

R MACRO

When the assembler responds with an asterisk (*), it is ready to
accept command string input.

9.3 RT-11 COMMAND STRING
FORMAT:

[dev:obj,dev:1ist,dev:cref/s:argl=dev:srcl,src2,...,dev:srcn/s:arg

where

dev is any legal RT-11 device for output; any
file-structured device for input

obj is the file specification of the binary object file
that the assembly process produces; the device for
this file should not be TT or LP

list is the file specification of the assembly and symbol
listing that the assembly process produces

cref is the file specification of the CREF temporary
cross-reference file that the assembly process
produces. (Omission of dev:cref does not preclude a
cross-reference listing, however.)

/s:arg is a set of file specification options and arguments
(see Section 9.2).

srcl, represent the ASCII source (input) files containing the

src2,... MACRO-11 source program or the user-supplied macro

srcn library files to be assembled. You can specify as many

as six source files,

RSTS/RT-11 OPERATING PROCEDURES

The following command string calls for an assembly that uses one

source file plus the system MACRO library to produce an object file .

BINF.OBJ and a listing. The 1listing goes directly to the 1line
printer.

*DK:BINK.OBJ ,LP:=DK:SRC.MAC

All output file specifications are optional. The system does not
produce an output file unless the command string contains a
specification for that file.

The system determines the file type of an output file specification by

3 - R 3 +=h ommanAd +vines dAorarminad h +h h £
l LS POSlLlon 1n l,_Lle Cunuuauu (S 8 1n\j F aS \.‘e l_cl.llllll “ Uy _.I.le numu r GJ.

commas in the string. For example, to omit the object file, you must
begin the command string with a comma. The following command produces
a listing, including cross-reference tables, but not binary object
files.

* LP:/C=(source file specification)

Notice that you need not include a comma after the final output file
specification in the command string.

Table 9-1 lists the default values for each file specification.

Table 9-1
Default File Specification Values

Default Default Default

File Device File Name File Type
Object DK: Must specify .OBJ
Listing Same as for object Must specify .LST

file

Cref DK: Must specify . TMP
First source DK: Must specify .MAC
Additional source | Same as for preceding Must specify .MAC

source file

System MACRO System device SY: SYSMAC .SML

Library
User MACRO DK: if first file, Must specify .MAC
Library otherwise same as for

preceding source file

RSTS/RT-11 OPERATING PROCEDURES

NOTE

Some assemblies need more symbol table
space than available memory can contain.
When this occurs the system
automatically creates a temporary work
file called WRK.TMP to provide extended
symbol table space.

The default device for WRK.TMP is DK.
To cause the system to assign a
different device, enter the following
command:

.ASSIGN dev: WF

where: dev is the file-structured
device that will hold
WRK.TMP.

9.4 FILE SPECIFICATION OPTIONS

At assembly time you may need to override certain MACRO directives
appearing in the source programs. You may also need to direct
MACRO-11 on the handling of certain files during assembly. You can
satisfy these needs by using the switches described in Table 9-2.

Table 9-2
File Specification Options

Option Usage
/L:arg Listing control switches; these options accept ASCII
/N:arg switch values (arg) which are eguivalent in function

and name to the arguments of the ,LIST and .NLIST
directives specified in the source program (see
Section 6.1.1). This switch overrides the arguments
of the directives and remains 1in effect for the
entire assembly process.

/E:arg Function control switches; these options accept ASCII
/D:arg switch values (arg) which are equivalent in function
and name to the arguments of the .ENABL and .DSABL
directives specified in the source program (see
Section 6.2). This switch overrides the arguments of
the directives and remains in effect for the entire
assembly process.

/M Indicates input file is MACRO library file. When the
assembler encounters an .MCALL directive in the
source code, it searches macro libraries according to
their order of appearance in the command string.
When it locates a macro record whose name matches
that given in the .MCALL, it assembles the macro as
indicated by that definition. Thus, if two or more
macro libraries contain definitions of the same macro
name, the macro library that appears leftmost in the
command string takes precedence.

(continued on next page)

RSTS/RT-11 OPERATING PROCEDURES

Table 9-2 (Cont.)
File Specification Options

Option Usage

/M (cont.) | Consider the following command string:

*(output file specification)=ALIB.MAC/M,

BLIB.MAC/M,XI2
Assume that each of the two macro libraries,; ALIB and
BLIB, contain a macro called .BIG, but with different
definitions. Then, if source file XIZ contains a

macro call .MCALL .BIG, the system includes the
definition of .BIG in the program as it appears in
the macro library ALIB.

If the command string does not include the standard
system macro library SYSMAC.SML, the system
automatically includes it as the last source file in
the command string. Therefore, if macro library ALIB
contains a definition of a macro called .READ, that
definition of .READ overrides the standard .READ
macro definition in SYSMAC.SML.

/C:arg Controls contents of cross-reference listing.
i /P:l { Assembles the associated file during assembly pass 1 |
i 1 Only. 1
. /P:2 Assembles the associated file during assembly pass 2 |
} ' only. !
L

' |
L

The /M and /P switches affect only the source file to which they are
appended. The other options affect the entire command string.

9.5 CROSS-REFERENCE (CREF) TABLE GENERATION OPTION

A cross-reference (CREF) table lists all or a subset of the symbols in
a source program, identifying the statements that define and use
symbols.

9.5.1 Obtaining a Cross-Reference Table

To obtain a CREF table you must include the /C:arg option in the
command string. Usually you include the /C:arg option with the
assembly listing file specification.

If the command string does not include a cref file specification, the
system automatically generates a temporary file on device DK:. If you
need to have a device other than DK: contain the temporary cref file,
you must include the dev:cref field in the command string.

allasS L 28t s T Lo ~<SL 11T ISRV aEE 4

RSTS/RT-11 OPERATING PROCEDURES

A complete CREF listing contains the following six sections:

1. A cross reference of program symbols--labels used in the
program and symbols followed by an operator.

2. A cross reference of register equate symbols--symbols defined
in the program by the construct:

symbol-n
with 0>n>7.

Normally, these symbols include RO, R1l, R2, R3, R4, R5, §SP,
and PC. '

3. A cross reference of MACRO symbols--those symbols defined by
.MACRO and .MCALL directives.

4. A cross reference of permanent symbols--all operation
mnemonics and assembler directives.

5. A cross reference of program sections--the names you specify
as operands of .CSECT or .PSECT directives.

6. A cross reference of errors--the system groups and lists all
flagged errors from the assembly by error type.

You can include any or all of these six sections on the
cross-reference 1listing by specifying the appropriate arguments with
the /C option. . These arguments are listed and described in Table 9-3.

Table 9-3
/C Option Arguments
Argument CREF Section
S User defined symbols
R Register symbols
M MACRO symbolic names
P Permanent symbols including instructions and directives
C Control and program sections
E Error code grouping
NOTE

Specifying /C with no arguments is
equivalent to specifying /C:S:M:E. That

special case excepted, you must
explicitly request each CREF section by
including its arguments, No

cross-reference file occurs 1if the /C
option is not specified, even if the
command string includes a CREF file
specification.

RSTS/RT-11 OPERATING PROCEDURES

9.5.2 Handling Cross-Reference Table Files

When you request a cross-reference listing by means of the /C option,
you cause the system toc generate a temporary file, DK:CREF.TMP.

If device DK: 1is write-locked or if it contains insufficient free
space for the temporary file, you can allocate another device for the
file. To allocate another device, specify a third output file in the
command string; that is, include a dev:cref specification. (You must
still include the /C option to control the form and content of the
listing. The dev:cref specification is ignored if the /C option is
not also present in the command string.)

The system then uses the dev:cref file instead of DK:CREF.TMP and
deletes it automatically after producing the CREF listing.

The following command string causes the system to use RK2:TEMP.TMP as
the temporary CREF file.

* ,LP:,RK2:TEMP.TMP=SOURCE/C

Another way to assign an alternative device for the CREF.TMP file is
to enter the following command prior to entering R MACRO:

.ASSIGN dev:CF

This method is preferred if you intend to do several assemblies, as it
relieves you from having to include the dev:cref specification in each
command string. If you enter the ASSIGN dev: CF command, and later
include a cref specification in a command string, the specification in
the command string prevails for that assembly only.

The system lists requested cross-reference tables following the MACRO
assembly listing. Each table begins on a new page.

The system prints symbols and also symbol values, control sections,
and error codes, 1if applicable, beginning at the left margin of the
page. References to each symbol are listed on the same line,
left-to~right across the page. The system lists references in the
form P-L; where P is the page in which the symbol, control section,

AAAAAAA PR U LY.

or error code appears, and L is the line number on the page.

A number sign (#) next to a reference indicates a symbol definition.
An asterisk (*) next to a reference indicates a

destructive reference--an operation that alters the contents of the
addressed location.

9.5.3 MACRC-11 Error Messages Under RT-11

MACRO-11 outputs an error message to the command output device when
one of the error conditions described below is detected. These error
messages reflect operational problems and should not be confused with
the error codes (see Appendix D) produced by MACRO-11 during assembly.

RSTS/RT-11 OPERATING PROCEDURES

Error Message Meaning

?MACRO-F-Bad option The specified option was not recognized by
the program.

?MACRO-F-Device full The output volume does not have sufficient
room for an output file specified in the
command string.

?MACRO-F-File not found An input file in the command line does not
exist on the specified device.

?MACRO-F-Illegal command The command line contains a syntax error or
specifies more than 6 input files.

?MACRO-F-Illegal device A device specified in the command 1line does
not exist on the system.

?MACRO-F-Insufficient memory
There were too many symbols in the program
being assembled.

?MACRO-W-I/0 error on cref file: cref file aborted
MACRO ran out of device space while writing
the cref file, or a hardware error has
occurred. The cref file 1is aborted but
assembly continues.

?MACRO-F-I/0 error on dev:filenm.ext
A hardware error occurred while attempting to
read from or write to the device on the
specified channel.

?MACRO-F-I1/0 error on work file
MACRO failed to open, read or write to its
work file, WRK.TMP.

?MACRO-F-Invalid macro library
The library file has been corrupted or it was
not produced by the RT-11 librarian, LIBR.

?MACRO-F-Output device full
There was no room to continue writing the
output file.

?MACRO~-F-Read error on MACRO library
MACRO detected a bad record in the MACRO
library. For example, this error occurs when
the library area is bad.

?MACRO-F-Storage limit exceeded (64K)
MACRO's Virtual Symbol Table can store
symbols and macros up to 64K in any
combination. Your program contains more than
64K worth of one or both of these elements.

APPENDIX A

MACRO-11 CHARACTER SETS

ASCII CHARACTER SET

EVEN 7-BIT

PARITY OCTAL

BIT CODE CHARACTER REMARKS

0 000 NUL Null, tape feed, CONTROL/SHIFT/P.

1 001 SOH Start of heading; also SOM, start
of message, CONTROL/A.

1 002 STX Start of text; also EOA, end of
address, CONTROL/B.

0 003 ETX End of text; also EOM, end of
message, CONTROL/C.

1 004 EOT End of transmission (END); shuts
off TWX machines, CONTROL/D.

0 005 ENQ Enquiry (ENQRY) ; also WRU,
CONTROL/E.

0 006 ACK Acknowledge; also RU, CONTROL/F.

1 007 BEL Rings the bell. CONTROL/G.

1 010 BS Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.

0 011 HT Horizontal tab. CONTROL/I.

0 012 LF Line feed or Line space (new line);
advances paper to next line,
duplicated by CONTROL/J.

1 013 VT Vertical tab (VTAB). CONTROL/K.

0 014 FF Form Feed to top of next page
(PAGE). CONTROL/L.

1 015 CR Carriage return to beginning of
line; duplicated by CONTROL/M.

1 016 S0 shift out; changes ribbon color to
red. CONTROL/N.

0 017 SI shift in; changes ribbon color to
black. CONTROL/O.

i 020 DLE Data link escape. CONTROL/P (DCO).

0 021 DC1 Device control 1; turns
transmitter (READER) on, CONTROL/Q
(X ON). 0 022 DC2 Device control
2; turns punch or auxiliary on.
CONTROL/R (TAPE, AUX ON).

1 023 DC3 Device control 3; turns
transmitter (READER) off, CONTROL/S
(X OFF).

0 024 DC4 Device control 4; turns punch or

auxiliary off. CONTROL/T (AUX
OFF) .

MACRO-11 CHARACTER SETS

EVEN
PARITY
BIT

7-BIT
OCTAL
CODE

CHARACTER

REMARKS

1

COCHHOMHOOMHOHMFOHOOMMHOOHOMMHEOHOOFROHMFOORKHFOHOOHHFOOHFOKKMO

025

026

027

030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076

100
101
102
103
104
105
106
107
110
111

NAK

SYN

ETB

CAN
EM
SUB
ESC
FS
GS
RS
us
SP

+ ¥ = N HE

WO~ U WN ON

HIQEWEOOQWP @ WYV I AN o

Negative acknowledge; also ERR,
ERROR. CONTROL/U.

Synchronous file (SYNC) .
CONTROL/V.

End of transmission block; also
LEM, logical end of medium.
CONTROL/W.

Cancel (CANCL). CONTROL/X.

End of medium. CONTROL/Y.
Substitute. CONTROL/Z.

Escape. CONTROL/SHIFT/K.

File separator. CONTROL/SHIFT/L.
Group separator. CONTROL/SHIFT/M.
Record separator. CONTROL/SHIFT/N.
Unit separator. CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

* %k

MACRO-11 CHARACTER SETS

EVEN

PARITY

7-BIT
OCTAL
CODE

CHARACTER

REMARKS

COHHOHOORHOOHOHHOHOOROK

COHOMHHOOHHOKFOOHOHHOHOOHHFOORORH

=

112
113
114
115
116
117
120
121
123
124
125
126
127
130
131
132
133
134
135
136
137
140

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
l64
165
166
l67
170
171
172
173
174
175
176

177

Y= SN X E<OHNWOYWORZRERY

.

SN X ELSSC AN RAQTOI B AL TAQMO QOO

DEL

shift/k.
shift/1.
shift/m.
*

* %
Accent grave.

This code generated by ALTMODE.

This code generated by

{if present).

‘Delete, Rubout.

prefix

key

Appears as # or °

Appears as < on some machines.

on some machines.

A-3

MACRO-11 CHARACTER SETS

A.2 RADIX-50 CHARACTER SET
ASCII
Octal Radix~-50
Character Equivalent Equivalent
Space 40 0
A-7 101-132 1-32
$ 44 33
. 56 34
Unused 35
0-9 60-71 36-47
The maximum Radix-50 value is, thus,
47*50%*2+47*50+47=174777

The following table provides a convenient means of translating
between the ASCII character set and its Radix-50 equivalents.

For example, given the ASCII string X2B, the Radix-50
equivalent is (arithmetic is performed in octal):

X=113000
2=002400
B=000002

X2B=115402
Single Char.

or Second Third

First Char. Character Character
Space 000000 Space 000000 Space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 0 001250 Q 000021
R 070200 R 001320 R 000022
S 073300] 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025

MACRO-11 CHARACTER SETS

Single Char.
or Second Third

First Char. Character Character

\Y 104600 \Y 001560 v 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 b/ 000032
$ 124300 $ 002070 $ 000033
. 127400 . 002140 . 000034
Unused 132500 Unused 002210 Unused 000035
g 135600 0 002260 g 000038
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

APPENDIX B

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.l SPECIAL CHARACTERS

Character Function

Label terminator

Direct assignment operator

Register term indicator

Item terminator or field terminator

Item terminator or field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

(comma) Operand field separator

Comment field indicator

Arithmetic addition operator or auto
increment indicator

Arithmetic subtraction operator or auto
decrement indicator

Arithmetic multiplication operator

Arithmetic division operator

Logical AND operator

Logical OR operator

Double ASCII character indicator

(apostrophe) Single ASCII character indicator or

concatenation indicator

Assembly location counter

Initial argument indicator

Terminal argument indicator

Universal unary operator or argument
indicator

\ Macro call numeric argument indicator

vertical tab Source line terminator

Il e

[+)]
o

o]
Y
Q
(D

+ v o~ DN ot

Ta— 2 N * 1

YV A e

B.2 SUMMARY OF ADDRESS MODE SYNTAX

Symbols used in the table:

n is an integer, 0 to 7, representing a register number
R is a register expression
E is an expression

ER is either a register expression or an expression whose value
is in the range 0 to 7.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Address Address
Mode Mode

Format Name Number Meaning

R Register On Register R contains the
operand.

@R or Register In Register R contains the ad-

(ER) deferred dress of the operand.

(ER) + Autoincrement 2n The contents of the register
specified as (ER) are
incremented after being used
as the address of the operand.

@(ER)+ Autoincrement 3n The register specified as (ER)

Deferred contains the pointer to the
address of the operand; the
register (ER) 1is incremented
after use.

- (ER) Autodecrement 4n The contents of the register
specified as (ER) are
decremented before being used
as the address of the operand.

@- (ER) Autodecrement 5n The contents of the register

Deferred specified as (ER) are
decremented before being used
as the pointer to the address
of the operand.

E (ER) Index 6n The expression E, plus the
contents of the register
specified as (ER), form the
address of the operand.

@E (ER) Index Deferred 7n The expression E, plus the
contents of the register
specified as (ER), yield a
pointer to the address of the
operand.

#E Immediate 27 The expression E is the
operand itself.

@#E Absolute 37 The expression E is the
address of the operand.

E Relative 67 The address of the operand E,
relative to the instruction,
follows the instruction.

@E Relative 77 The address of the operand is

Deferred pointed to by E whose address,

relative to the instruction,
follows the instruction.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.3 ASSEMBLER DIRECTIVES

The MACRO-11 assembler directives are summarized in the following
table. For a detailed description of each directive, the table
contains references to the appropriate sections in the body of the
manual.

Section
Form Reference Operation

Followed by one ASCII character
a single guote {apostrophe)
generates a word which contains the
7-bit ASCII representation of the
character in the low-order byte and
zero in the high-order byte. This
character is also used as a
concatenation indicator in the

expansion of macro arguments.

~] OV
.

w W
.

~] W

" 6.3.3 Followed by two ASCII characters a
double quote generates a word which
contains the 7-bit ASCII
representation of the two
characters. The first character is
stored in the low-order byte; the
second character is stored 1in the
high-order byte.

Bn 6.4.1.2 | A temporary radix control, causes
the value n to be treated as a
binary number.

“Cexpr 6.4.2.2 A temporary numeric control, causes
the expression's value to be ones-
complemented.

Dn 6.4.1.2 A temporary radix control, causes
the value n to be treated as a
decimal number.

“Fn 6.4.2.2 A temporary numeric control, causes
the value n to be treated as a
sixteen-bit floating-point number.

~On 6.4.1.2 A temporary radix control, causes
the value n to be treated as an
octal number.

“Rccc 6.3.7 Converts ccc to Radix-50 form.

.ASCII /string/ 6.3.4 Generates a block of data
containing the ASCII eguivalent of
the character string (enclosed 1in
delimiting characters) , one
character per byte.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

.ASCIZ /string/

.ASECT

.BLKB exp

.BLKW exp

.BYTE expl,exp2,..

.CSECT [name]

.DSABL arg

.ENABL arg

.END [exp]

.ENDC

.ENDM [name]

.ENDR

6.3.5

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte, with a zero
byte terminating the specified
string.

Begins or resumes the absolute
program section.

Reserves a block of storage space
whose length in bytes is determined
by the specified expression.

Reserves a block of storage space
whose length in words is determined
by the specified expression.

Generates successive bytes of data;
each byte contains the value of the
corresponding specified expression.

Begins or resumes named or unnamed
relocatable program section. This
directive is provided for
compatibility with other PDP-11
assemblers.

Disables the function specified by
the argument.

Enables (invokes) the function
specified by the argument.

Indicates the logical end of the
source program. The optional
argument specifies the transfer
address where program execution is
to begin.

Indicates the end of a conditional
assembly block.

Indicates the end of the current
repeat block, indefinite repeat
block, or macro definition. The
optional name, if wused, must be
identical to the name specified in
the macro definition.

Indicates the end of the current
repeat block. This directive is
provided for <compatibility with
other PDP-11 assemblers.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Section
Reference

~aL il

.ERROR exp;text

.EVEN

.FLT2 argl,arg2,...

.FLT4 argl,arg2,...

.GLOBL syml,sym2,...

.IDENT /string/

.IF cond,argl

.IFF

.IFT

.IFTF

6.6.2

6.4.2.1

6.4.2.1

Ignored, indicates end-of-tape
which 1is detected automatically by
the hardware. It is included for
compatibility with earlier
assemblers.

A user-invoked error directive,
causes output to the listing file

...... Aacrd ~

Qr the command output aevice
containing the optional expression
and the statement containing the
directive.

Ensures that the current location
counter contains an even address by
adding 1 if it is odd.

Generates successive 2-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Generates successive 4-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Defines the symbol specified as
global symbol.

Provides a means of 1labeling the
object module with the program
version number. The version number
is the Radix-50 string appearing
between the paired delimiting
characters.

Begins a conditional assembly block
of source code which is included in
the assembly only if the stated
condition 1is met with respect to
the argument(s) specified.

Appears only within a conditional
assembly block, indicating the
beginning of a section of <code to
be assembled if the condition upon
entering the block tests false.

Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests true.

Appears only within a conditional
assembly block, indicating the
beginning of a section of <code to
be assembled unconditionally.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

.IIF cond,arg,
statement

.IRP sym,
<argl,arg2,...>

.IRPC sym,<string>

.LIMIT

.LIST [arg]

.MACRO name,argl,
arg2,...

.MCALL argl,arg2,...

.MEXIT

.NARG symbol

.NCHR symbol ,<string>

6.9.3

7.6.1

7.4.1

Acts as a 1l-line conditional
assembly block where the condition
is tested for the argument
specified. The statement is
assembled only if the condition
tests true.

Indicates the beginning of an
indefinite repeat block in which
the symbol specified 1is replaced
with successive elements of the
real argument list enclosed within
angle brackets.

Indicates the beginning of an
indefinite repeat block in which
the specified symbol takes on the
value of successive characters,
optionally enclosed within angle
brackets.

Reserves two words into which the
Task Builder 1inserts the low and
high addresses of the task image.

Without an argument, the .LIST
directive increments the 1listing
level count by 1. With an
argument, this directive does not
alter the listing level count, but
formats the assembly listing
according to the argument
specified.

Indicates the start of a macro
definition having the specified
name and the following dummy
arguments,

Specifies the symbolic names of the
user or system macro definitions
reguired in the assembly of the
current user program, but which are
not defined within the program.

Causes an exit from the current
macro expansion or indefinite
repeat block.

Appearing only within a macro
definition, equates the specified
symbol to the number of arguments
in the macro call currently being
expanded.

Appearing anywhere in a source
program, equates the symbol
specified to the number of
characters in the specified string.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

| . PAGE

' .PRINT exp;text

' .PSECT name,attl,...
iattn

.RADIX n

.RAD50 /string/

| .REPT exp

6.4.1.1

6.3.6

Section

Form Reference Operation

.NLIST [arg] 6.1.1 Without an argument, decrements the
listing level count by 1. With an
argument, this directive suppresses
that portion of the listing
specified by the argument.

.NTYPE symbol,aexp 7.4.3 Appearing only within a macro
definition, eguates the symbol to
the 6-bit addressing mode of the
specified address expression.

.0DD 6.5.2 Ensures that the current 1location

counter contains an odd address by
adding 1 if it is even.

Causes the assembly listing to skip
to the top of the next page and to
increment the page count.

User-invoked message directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Begins or resumes a named or
unnamed program section having the
specified attributes.

Alters the current program radix to
n, where n is 2, 8, or 10.

Generates a block of data
containing the Radix-50 egquivalent
of the character string enclosed
within delimiting characters.

Begins a repeat block; causes the
section of <code up to the next
.ENDM or .ENDR directive to be
repeated the number of times
specified as exp.

l
s

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Section
Form Reference Operation

.SBTTL string 6.1.4 Causes the specified string to be
printed as part of the assembly
listing page header. The string

component of each .SBTTL directive
is collected 1into a table of
contents at the beginning of the
assembly listing.

.TITLE string 6.1.3 Assigns the first six Radix-50
characters in the string as an
object module name and causes the
string to appear on each page of
the assembly listing.

.WORD expl,exp2,.. 6.3.2 Generates successive words of data;
each word contains the value of the
corresponding specified expression.

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The mnemonics for the PDP-11 operation (op) codes and MACRO-11
assembler directives are stored in the Permanent Symbol Table (PST).
The PST contains the symbols that are automatically recognized by
MACRO-11.

For a detailed description of the op codes, see the PDP-11 Processor
Handbook.

C.1 OP CODES

Instruction Octal

Mnemonic Value Operation

ADC 005500 Add Carry

ADCB 105500 Add Carry (Byte)

ADD 060000 Add Source To Destination
ASH 072000 Shift Arithmetically

ASHC 073000 Arithmetic Shift Combined
ASL 006300 Arithmetic Shift Left

ASLB 106300 Arithmetic Shift Left (Byte)
ASR 006200 Arithmetic Shift Right

ASRB 106200 Arithmetic Shift Right (Byte)
BCC 103000 Branch If Carry Is Clear
BCS 103400 Branch If Carry Is Set

BEQ 001400 Branch If Equal

BGE 002000 Branch If Greater Than Or Equal
BGT 003000 Branch If Greater Than

BHT : 101000 . Branch If Higher

BHIS 103000 Branch If Higher Or Same
BIC 040000 Bit Clear

BICB 140000 Bit Clear (Byte)

BIS 050000 Bit Set

BISB 150000 Bit Set (Byte)

BIT 030000 Bit Test

BITB 130000 Bit Test (Byte)

BLE 003400 Branch If Less Than Or Equal
BLO 103400 Branch If Lower

BLOS 101400 Branch If Lower Or Same

BLT 002400 Branch If Less Than

BMI 100400 Branch If Minus

BNE 001000 Branch If Not Eguail

BPL 100000 Branch If Plus

BPT 000003 Breakpoint Trap

BR 000400 Branch Unconditional

BVC 102000 Branch If Overflow Is Clear
BVS 102400 Branch If Overflow Is Set

PERMANENT SYMBOL TABLE (PST)

Instruction Octal
Mnemonic value Operation
CALL 004700 Jump To Subroutine (JSR PC,XXX)
CCcC 000257 Clear All Condition Codes
CLC 000241 Clear C Condition Code Bit
CLN 000250 Clear N Condition Code Bit
CLR 005000 Clear Destination
CLRB 105000 Clear Destination (Byte)
CLV 000242 Clear V Condition Code Bit
CLZ 000244 Clear Z Condition Code Bit
CMP 020000 Compare Source To
Destination
CMPB 120000 Compare Source To
Destination (Byte)
coM 005100 Complement Destination
COMB 105100 Complement Destination
(Byte)
DEC 005300 Decrement Destination
DECB 105300 Decrement Destination
(Byte)
DIV 071000 Divide
EMT 104000 Emulator Trap
FADD 075000 Floating Add
FDIV 075030 Floating Divide
FMUL 075020 Floating Multiply
FSUB 075010 Floating Subtract
HALT 000000 Halt
INC 005200 Increment Destination
INCB 105200 Increment Destination
(Byte)
I0T 000004 Input/Output Trap
JMP 000100 Jump
JSR 004000 Jump To Subroutine
006400 | Mark
076600 | PD
07660 - BDP=L
006500 Move From Previous
Instruction Space
MFPS 106700 Move from PS
(LSI-11, LSI-11/23, LSI-11/2)
MFPT 000007 Move From Processor Type
MOV 010000 Move Source To Destination
MOVB 110000 Move Source To Destination
(Byte)
MTPI 006600 Move To Previous
Instruction Space
MTPS 106400 Move to PS
(Ls1-11, LSI-11/23, LSI-11/2)
MUL 070000 Multiply
NEG 005400 Negate Destination
NEGB 105400 Negate Destination (Byte)
NOP 000240 No Operation
RESET 000005 Reset External Bus
RETURN 000207 Return From Subroutine (RTS PC)
ROL 006100 Rotate Left
ROLB 106100 Rotate Left (Byte)
ROR 006000 Rotate Right
RORB 106000 Rotate Right (Byte)
RTI 000002 Return From Interrupt

(Permits a trace
trap)

PERMANENT SYMBOL TABLE (PST)

Instruction Octal
Mnemonic Value Operation
RTS 000200 Return From Subroutine
RTT 000006 Return From Interrupt
{inhibits trace trap)
SBC 005600 Subtract Carry
SBCB 105600 Subtract Carry (Byte)
SCC 000277 Set All Condition Code Bits
SEC 000261 Set C Condition Code Bit
SEN 000270 Set N Condition Code Bit
SEV 000262 Set V Condition Code Bit
SEZ 000264 Set 7Z Condition Code Bit
SOB 077000 Subtract One And Branch
SUB 160000 Subtract Source From
Destination
SWAB 000300 Swap Bytes
SXT 006700 Sign Extend
TRAP 104400 Trap
TST 005700 Test Destination
TSTB 105700 Test Destination (Byte)
WAIT 000001 Wait For Interrupt
XFC 076700 Extended Function Code
XOR 074000 Exclusive OR

vert Packed
'Divide Decimal
Divide Decimal
~ Locate Character

_Locate Character

c-3

PERMANENT SYMBOL TABLE (PST)

FLOATING POINT PROCESSOR OP CODES

Instruction Octal

Mnemonic Value Operation

ABSD 170600 Make Absolute Double

ABSF 170600 Make Absolute Floating

ADDD 172000 Add Double

ADDF 172000 Add Floating

CFCC 170000 Copy Floating Condition
Codes

CLRD 170400 Clear Double

CLRF 170400 Clear Floating

CMPD 173400 Compare Double

CMPF 173400 Compare Floating

DIVD 174400 Divide Double

DIVF 174400 Divide Floating

LDCDF 177400 Load And Convert From
Double To Floating

LDCFD 177400 Load And Convert From
Floating To Double

LDCID 177000 Load And Convert Integer To
Double

LDCIF 177000 Load And Convert Integer To
Floating

LDCLD 177000 Load And Convert Long
integer To Double

* where N=0...7

PERMANENT SYMBOL TABLE (PST)

Instruction Octal
Mnemonic Value Operation
LDCLF 177000 Load And Convert Long
Integer To Floating
LDD 172400 Load Double
LDEXP 176400 Load Exponent
LDF 172400 Load Floating
LDFPS 170100 Load FPPs Program Status
MFPD 106500 Move From Previous Data
Space
MODD 171400 Multiply And Integerize
Double
MODF 171400 Multiply And Integerize
Floating
MTPD 106600 Move To Previous Data Space
MULD 171000 Multiply Double
MULF 171000 Multiply Floating
NEGD 170700 Negate Double
NEGF 170700 Negate Floating
SETD 170011 Set Double Mode
SETF 170001 Set Floating Mode
SETI 170002 Set Integer Mode
SETL 170012 Set Long Integer Mode
SPL 000230 Set Priority Level
STAQ 170005 Diagnostic Floating Point
STBO 170006 Diagnostic Floating.Point
STCDF 176000 Store And Convert From
Double To Floating
STCDI 175400 Store And Convert From
Double To Integer
STCDL 175400 Store And Convert From
Double To Long Integer
STCFD 176000 Store And Convert From
Floating To Double
STCFI 175400 Store And Convert From
Floating To Integer
STCFL 175400 Store And Convert From
Floating To Long Integer
ST 17400 Store Double
STEXP 175000 Store Exponent
STF 174000 Store Floating
STFPS 170200 Store FPPs Program Status
STST 170300 Store FPPs Status
SUBD 173000 Subtract Double
SUBF 173000 Subtract Floating
TSTD 170500 Test Double
TSTF 170500 Test Floating

PERMANENT SYMBOL TABLE (PST)

C.2 MACRO-11 DIRECTIVES

The MACRO-11 directives that follow are described in greater detail in

Appendix B.

Directive Function

JASCII Translates character string to ASCII equivalents.

.ASCIZ Translates character string to ASCII equivalents;
inserts zero byte as last character.

.ASECT Begins absolute program section (provided for
compatibility with other PDP-11 assembliers).

.BLKB Reserves byte block in accordance with wvalue of
specified argument.

.BLKW Reserves word block in accordance with value of
specified argument.

.BYTE Generates successive byte data in accordance with
specified arguments.

.CSECT Begins relocatable program section (provided for
compatibility with other PDP-11 assemblers).

.DSABL Disables specified function.

.ENABL Enables specified function.

.END Defines logical end of source program.

.ENDC Defines end of conditional assembly block.

.ENDM Defines end of macro definition, repeat block, or
indefinite repeat block.

.ENDR Defines end of current repeat block (provided for
compatibility with other PDP-11 assemblers).

.EOT Define End of Tape condition (ignored).

.ERROR Outputs diagnostic message to 1listing file or
command output device.

.EVEN word—-aligns the current location counter.

.FLT2 Causes two words of storage to be generated for
each floating-point argument.

.FLT4 Causes four words of storage to be generated for
each floating-point argument.

.GLOBL Declares global attribute for specified symbol(s).

.IDENT Labels object module with specified program
version number.

.IF Begins conditional assembly block.

.IFF Begins subconditional assembly block (if
conditional assembly block test is false).

LIFT Begins subconditional assembly block (if
conditional assembly block test is true).

LIFTF Begins subconditional assembly block (whether
conditional assembly block test is true or false).

LIIF Assembles immediate conditional assembly statement
(if specified condition is satisfied).

.IRP Begins indefinite repeat block; replaces
specified symbol with specified successive real
arguments.

.IRPC Begins indefinite repeat block; replaces
specified symbol with value of successive
characters in specified string.

LLIMIT Reserves two words of storage for high and low
addresses of task image.

.LIST Controls 1listing level count and format of
assembly 1listing. .MACRO Denotes start of macro
definition.

«MCALL Identifies required macro definition(s) for
assembly.

PERMANENT SYMBOL TABLE {PST)

Directive Function

.MEXIT Exit from current macro definition or indefinite
repeat block.

.NARG Eguates specified symbol to the number of
arguments in the macro expansion.

.NCHR Equates specified symbol to the number of
characters in the specified character string.

.NLIST Controls 1listing level count and suppresses
specified portions of the assembly listing.

.NTYPE Equates specified symbols to the addressing mode
of the specified argument.

.ODD nt

.PAGE
.PRINT
.PSECT

.RADIX
.RADS50

.REPT

Byte-aligns the current location c

Advances form to top of next page.
Prints specified message on command output device.
Begins specified program section having specified
attributes.

Changes current program radix to specified radix.
Generates data block having Radix-50 equivalents
of specified character string.

Begins repeat block and replicates it according to

Prints specified subtitle text as the secon ine
of the assembly listing page header.

Prints specified title text as object module name
in the first 1line of the assembly listing page
header.

Generates successive word data in accordance with
specified arguments.

APPENDIX D

ERROR MESSAGES

An error code is printed as the first character in a source line
containing an error. This error code identifies the error condition
detected during the processing of the line. Example:

Q 26 000236 010102 MOV R1,R2,A

The extraneous argument A in the MOV instruction above causes the line
to be flagged with a Q (syntax) error.

Error Code Meaning

A Assembly error. Because many different conditions
produce this error message, the directives which
may yield a general assembly error have been
categorized below to reflect these error
conditions:

CATEGORY 1: ILLEGAL ARGUMENT SPECIFIED.

.RADIX -- A value other than 2, 8, or 10 is
specified as a new radix.

.LIST/.NLIST -- Other than a legally defined
argument (see Table 6-2) is specified with the
directive.

.ENABL/.DSABL -- Other than a 1legally defined
argument (see Table 6-3) is specified with the
directive, or the attribute arguments of a
previously declared program section

.PSECT -- Other than a legally-defined argument
(see Table 6-4) is specified with the
directive, or the attribute arguments of a
previously declared program section change (see
Section 6.7.1.1).

.IF/.IIF -- Other than a legally defined
conditional test (see Table 6-6) or an illegal
argument expression value is specified with the
directive.

.MACRO -- An illegal or duplicate symbol found
in dummy argument list.

ERROR MESSAGES

Error Code

Meaning

A (cont.)

.TITLE -- Program name is not specified in the
directive, or first non-blank character
following the directive 1is a non-Radix-50
character.

.IRP/.IRPC -- No dummy argument is specified in
the directive.

.NARG/ .NCHR/ .NTYPE -~ No symbol 1is specified
in the directive.

.IF/.IIF -- No conditional argument is
specified in the directive.

CATEGORY 3: UNMATCHED DELIMITER/ILLEGAL ARGUMENT
CONSTRUCTION.

.ASCII/.ASCIZ/.RAD50/.IDENT -- Character string
or argument string delimiters do not match, or
an illegal character is used as a delimiter, or
an illegal argument construction is used in the
directive.

.NCHAR -- Character string delimiters do not
match, or an 1illegal character is used as a
delimiter in the directive.

CATEGORY 4: GENERAL ADDRESSING ERRORS.

This type of error results from one of several
possible conditions:

1. Permissible range of a branch instruction
(from -128(10) to +127(10) words) has been
exceeded.

2. A statement makes invalid use of the
current location counter., For example, a
".=expression" statement attempts to force
the current location counter to cross
program section (.PSECT) boundaries.

3. A statement contains an invalid address
expression:

In cases where an absolute address
expression is required, specifying a global
symbol, a relocatable value, or a complex
relocatable value (see Section 3.9) results
in an invalid address expression.

If an undefined symbol is made a default
global reference by the .ENABL GBL
directive (see Section 6.2) during passl,
any attempt to redefine the symbol during
pass 2 will result in an invalid address
expression,

*

ERROR MESSAGES

Meaning

Error Code
A (cont.)
B
D
E
I

In cases where a relocatable address
expression is required, either a
relocatable or absolute value is
permissible, but a global symbol or a
complex relocatable value in the statement
results in an invalid address expression.

For example:

RLKR/

BLKW/.REPT -- Other than an absolute

value or an expression which reduces to an
absolute value has been specified with the
directive.

4. Multiple expressions are not separated by a
comma. This condition causes the next
symbol to be evaluated as part of the
current expression.

CATEGORY 5: ILLEGAL FORWARD REFERENCE.

This type of error results from either of two
possible conditions:

1. A global assignment statement
{symbol==expression or symbol==:expres-
sion*) contains a forward reference to
another symbol.

2. An expression defining the value of the
current location counter contains a forward

rafaranca
LTLTLCIICCT,

Bounding error. Instructions or word data are
being assembled at an odd address. The location
counter is incremented by 1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. When the end-of-file is
reached during source input and the .END directive
has not yet been encountered, MACRO-11 generates
this error code, ends assembly pass 1, and
proceeds with assembly pass 2. Also caused by
assembler-stack overflow. In this case MACRO-11
will place a gquestion mark (?) into the 1line at
the point where the overflow occurred.

Illegal character detected. Illegal <characters
which are also non-printable are replaced by a
guestion mark (?) on the listing. The character
is then ignored.

RT-11 v4.0 only.

ERROR MESSAGES

Error Code

Meaning

Input line is greater than 132(10) characters in
length. Currently, this error condition is caused
only during macro expansion when longer real
arguments, replacing the dummy arguments, cause a
line to exceed 132(10) characters.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a label previously encountered.

A number contains a digit that 1is not in the
current program radix. The number is evaluated as
a decimal value.

Opcode error. Directive out of context.
Permissible nesting 1level depth for conditional
assemblies has been exceeded. Attempt to expand a
macro which was unidentified after .MCALL search.

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. An error code
P also appears if an .ERROR directive is
assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register-type error, An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the use of the
.BYTE directive or trap (EMT or TRAP) instruction.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression or
symbol=:expression) statement which contains a
forward reference to a symbol whose definition
also contains a forward reference; also, a local
symbol may have been referenced that does not
exist in the current local symbol block.

Instruction error. The instruction so flagged is
not compatible among all members of the PDP-11
family. See Section 5.3 for details.

APPENDIX E

SAMPLE CODING STANDARD

Local user requirements must be met in a «coding standard, but
following this model as closely as possible helps you and DIGITAL by
simplifying communication and software maintenance. Remember that
this is a sample and may not entirely apply to your system.

E.1 LINE FORMAT

Source lines are from one to eighty characters in 1length with the
following format:

1. Label Field - if present, begins in column 1
2. Operation field - begins in column 9 (tab stop 1)
3. Operand field - begins in column 17 (tab stop 2)

4, Comment field - begins in column 33 (tab stop 4). If the
operand field extends beyond column 33 (tab stop 4) leave a
space and start the comment.

E.2 COMMENTS

To make the program easier to understand, comments should be used to
explain the 1logic behind the instructions. In general this will
consist of a comment per line of code. However, if a ©particularly
difficult or obscure section of code is used, precede that section
with a longer explanation. '

Comments that are too long for the comment field may be continued on
the following 1line. Begin the new line with a semicolon, space over
to the column the comment began in and continue writing.

If a lengthy text is needed for an explanation, begin the comment with
a line containing only the characters ;+ and end it with a line
containing only the characters ;-. The lines between these delimiters
should each begin with a semicolon and a space. For example:

+

THE INVERT ROUTINE ACCEPTS

A LIST OF RANDOM NUMBERS AND
APPLIES THE KOLMOGOROV ALGORITHM
TO ALPHABETIZE THEM.

~e we Ne w2 we we

SAMPLE CODING STANDARD

E.3 NAMING STANDARDS

E.3.1 Registers

E.3.1.1 General Purpose Registers - Use the default name:

RO=0 ;REG 0

R1=1 ;REG 1

R2=2 ;REG 2

R3=3 ;REG 3

R4=4 ;REG 4

R5=5 sREG 5

SP=6 s STACK POINTER (REG 6)

PC=7 ; PROGRAM COUNTER (REG 7)

NOTE
These register names will be defined
within the assembler; other standard
symbols must be put in a file and linked
with the program.
E.3.1.2 Hardware Registers - Use the hardware definition. For

example, PS (Program Status Register) and SWR (Switch Register).

E.3.1.3 Device Registers - Use the hardware notation. For example,
the control status register for the RK disk is RKCS.

E.3.2 Processor Priority
Testing or altering the processor priority is done using the symbols
PRO, PR1, PR2, PR7

which are equated to their corresponding priority bit pattern.

E.3.3 Symbols¥*

SAMPLE CODING STANDARD

The following chart diagrams the syntax of the 5 major types of symbol
names:
symbol pos-1 pos-2 pos-3 pos-4 | pos-5 pos-6 | length

non-global letter | a-num/|a~-num/ | a-num/ | a~num/ | a-num/ | >=1
symbol null null null null null

global s$/. a=-num |a-num/ | a-num/ ! a-num/ | a-num/ | >=1
symbol *k % null null null null null

global letter | S$/. a-num a-num/ | a-num/ | a-num/ | >=3
offset *kk null null null

global bit letter | a~num |$/. a-num/ | a-num/ | a-num/ | >=4
pattern * %k null null

local number | $ >=2
symbol **

where: a-num is an alphanumeric character.

E.3.3.1 Symbol Examples

Non-Global Symbols

AlB

.VECTR

$SEC

Global Absolute Offset Symbols

ASJIM
ASXT

A .ENT

* Symbols that are
always use the term

** Number is in the

*** The use of § or

software.

branch targets are also called labels, but we will

"symbol".

range 0<number<65535.

for global names is reserved

for

DEC-supplied

SAMPLE CODING STANDARD

Global Bit Pattern Symbols
Al1$20
B3.6
JI.M
Local Symbols
37s
2718
63

E.3.3.2 Local Symbols - Target symbols for branches that exist solely
for positional reference will use local symbols of the form

<num>$:

Local symbols are formatted such that the numbers proceed sequentially
down the page and from page to page.

E.3.3.3 Global Symbols - Use of global symbols is restricted, within
reason, to those cases where reference to the code occurs external to
the code.

A program never contains a .GLOBL statement without showing cause.

E.3.3.4 Macro Names - In a macro name the last two characters (last
character possibly being null) have special significance; the next to
last character is a $, the last character specifies the mode of the
macro.

For example, in the three macro forms in-line, stack, and p-section,
the 1in-line form has no suffix, the stack has an <S> suffix, and the
p-section a <C>. Thus the Queue I/0 macro can be written as any of

QIOS

QIOSS

QIOSC

depending on the form required. These are not reserved letters.

E.3.3.5 General Symbols - Make freguently used bit patterns such as
carriage return (CR) and line feed (LF) conventional symbols as they
are needed.

SAMPLE CODING STANDARD

E.4 PROGRAM MODULES

There are no limits on program size. However, since the virtual
memory capacity of a computer is finite keep programs as compact as
possible by

1. creating them for a single function

2. writing them in accordance with the memory allocation
guidelines in Appendix F.

Code areas are different than data areas. Code is read-only but data
can be read- Qn1v or read-write; read-only data should be segregated

can e reac=writcte Ly Gata SiAlU.G 88 5€9reg

from read-write data. Both areas, code and data, should have
explanatory comments.

E.4.1 The Module Preface

Put each program module in a separate file. For easy reference the
file name should be similar to the name of the module. The file type
is of the form 'NNN' where 'NNN' is the edit or the version number

{see Section E-8). The availability of File Control Services and File
Control Primitives will greatly simplify version number maintenance.

E.4.2 The Module

Below is a list of the information included in each medule, it is
formatted as follows:

1. The first eight items appear on the same page and do not have
explicit headings. Item 3 may be omitted if the blank
p-section is being used.

2. Headings start at the 1left margin*; descriptive text is
indented 1 tab position.

3. Items 7-14 have headings which start at the left margin,
preceded and followed by lines containing only a leading <;>.
Items which do not apply may be omitted.

4. A .TITLE statement that specifies the name of the module. 1If
a module contains more than one routine, subtitles may be
used.

5. An .IDENT statement specifying the version number (see
Section E-8).

6. A .PSECT statement that defines the program section in which
the module resides.

* The left margin consists a semicolon, a space and then the heading,
therefore, the text of the heading begins in column 3.

7.

10.

11.

12.

13.

14.

15.

16.

SAMPLE CODING STANDARD

A copyright statement, and the disclaimer.

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE
USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF
SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES
THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE
AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE
WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A
COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR
RELIABLILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS
NOT SUPPLIED BY DIGITAL.

The version number of the file (see Section E-8).

The name of the principal author and the date on which the
module was first created.

The name of each modifying author and the date of
modification. These names and dates appear one per line and
in chronological order.

A brief statement of the function of the module.

NOTE

Items 3 to 11 should appear on the same
page.

A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

All local macro definitions, preferably in alphabetical order
by name.

All local data. The data should indicate

a. Description of each element (type, size, etc.)
b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

A more detailed definition of the function of the module.
A list of the inputs expected by the module. This includes

the calling sequence if non-standard, condition code
settings, and global data settings.

SAMPLE CODING STANDARD

17. A list of the outputs produced as a result of entering this
module. These include delivered results and condition code
settings but not side effects. These outputs are visible to
the caller.

18. A list of all effects produced as a result of entering this
module. Effects include side effects, alterations in the
state of the system not explicitly expected in the calling
sequence and effects not visible to the caller.

19. The module code.

E.4.3 Module Example
FILE-EXAMPL.SO1
.TITLE EXAMPLE

. IDENT /01/
.PSECT KERNEL

COPYRIGHT (C) 1979 BY

DIGITAL EQUIPMENT COPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NOC TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

VERSION 01
JOE PASCUSNIK 1-JAN-72
MODIFIED BY:
RICHARD DOE 21-JAN-73
SPENCER THOMAS 12-JUN-78
Brief statement of the module's function

EQUATED SYMBOLS

WO ME NE ME NG NE MO N B N NE NG We NI WS WO N NG NP NG NE NE ME N0 N WG W W W N6 we we

List equated symbols

LOCAL MACROS

~e we we

SAMPLE CODING STANDARD

Local Macros

LOCAL DATA

~e we e

Local data

4.
Module function-details

INPUTS:

Description of inputs
OUTPUTS:

Description of outputs
EFFECTS:

Description of effects

e NE NE NA MO N NE Ne Ne Ne we N e W “o

Begin Module Code

E.4.4 Modularity
No other characteristic has more impact on the wultimate engineering

success of a system than does modularity. Adherence to a set of call
and return conventions helps achieve this modularity.

E.4.4.1 Calling Conventions (Inter-Module/Intra-Module)
Transfer of Control
Macros exist for call and return. The actual transfer is via a
JSR PC instruction. For register save routines, a JSR Rn,SAVE is
permitted.
The CALL macro is:
CALL subr-name
The RETURN macro is:
RETURN
Register Conventions
On entry, a subroutine minimally saves all registers it intends
to alter except result registers. On exit it restores these
registers. (The preservation of the register state is assumed
across calls.)
Argument Passing
Any registers may be used, but their use should follow a coherent
pattern. For example, if passing three arguments, use RO, Rl and

R2 rather than RO, R2, R5. Saving and restoring occurs in one
place.

SAMPLE CODING STANDARD

4,2 Exiting - All subroutine exits occur through a single RETURN
Q

E.4.4.3 Success/Failure Indication - The C bit is used to return the
success/failure indicator, where success equals 0, and failure equals
1. The argument registers can be used to return values or additional
success/failure data.

E.4.4.4 Module Checking Routines - Modules ar responsibl for
verifying the validity of arguments passed to them. The design of a

module's calling sequence should aim at minimizing the validity checks
by minimizing invalid combinations. Programmers may add test code to
perform additional checks during checkout. All code should aim at
discovering an error as close (in terms of instruction executions) to
its occurrence as possible.

E.5 CODE FORMAT

E.5.1 Program Flow

Programs are organized on the listing so that they flow down the page,
even at the cost of an extra branch or jump.

For example:

PROCESS

BBB AAA

COMMON

appears on the listing as:

TST

BNE BBB
AAA: e ceee

BR CMN

SAMPLE CODING STANDARD

BBB: ce e cese

CMN: ceee cees

rather than:

TST
BNE BBB
AAA: cees cees

CMN: ceee cese
BBB: e een cene

BR CMN

E.5.2 Common Exits

A common exit appears as the last code sequence on the listing. Thus
the flow chart:

EXIT -

appears on the listing as:

PR1: ceee ceas

EECRE ERCC R

BR EXIT

PR2: ceee s ees

LY ¢« o e

LRI CRCRCERY

BR EXIT

PR3: e

BR

PR4: cen

LY

EXIT:
and not as:

PR1: cee

EXIT: P

PR2: e

PR3: .

PR4: e

E.5.3

n O

4
m

e
1

[}
e

..ERTZ:

BIS
BIT
BEQ
RTT

108 e

SAMPLE CODING STANDARD

EXIT

LRI

EXIT

#PR7,PS
#PR7,+2 (SP)
108

oo 0 0
e s o
R

Code with Interrupts Inhibited

; ENABLE BY RETURNING
;BY SYSTEM SUBROUTINES,

INHIBIT INTERRUPTS
C
0]
M
M
E
N
T
S

e Ne We me me e we “e we
e NE ™e N e e e we we
we we we we

e Ne we we we

SAMPLE CODING STANDARD

E.5.4 Code in System State

RSX-11M Executive subroutines and other privileged code that is
executed in system state is flagged by a two semicolon (;;) comment
delimiter. For example:

SWITCH TO SYSTEM STATE, ...

~e we wo

AND EXIT.

CALL $SWSTK,EXIT INHIBIT CONTEXT SWITCHING

RETURN IN SYSTEM STATE

LY

e wmo wo wo
~o we we

RETURN

H O BACK TO USER STATE (EXIT)
EXIT: e + U

ER STATE CODE

n o

E.6 INSTRUCTION USAGE

E.6.1 Forbidden Instructions

1. The use of instructions or index words as 1literals of the
previous instruction. For example:

MOV @PC,Register
BIC Src,Dst

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
problem, it will not execute properly if I/D space is enabled
on the 11/45. 1In this case @PC is a D bank reference.

2. The use of the MOV instruction instead of a JMP instruction
to transfer program control to another 1location. For
example:

MOV #ALPHA ,PC

transfers control to location ALPHA. Besides taking 1longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control
take place. What if one would like to get a jump trace of
the execution of a program (a move trace is unheard of)? As
a more general issue, other operations such as ADD and SUB
from PC should be discouraged.

3. The seemingly "neat" use of all single word instructions
where one double-word instruction could be used and would
execute faster and would not consume additional memory.
Consider the following instruction sequence:

CMP -(R1), (-R1)

CMP -(R1) ,-(R1)

SAMPLE CODING STANDARD

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set condition codes). This can be
accomplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space.

4, Self-relative address arithmetic (.+n) is absolutely
forbidden in branch instructions; its use in other contexts
must be avoided if at all possible and practical.

T4
E.©

When using the PDP-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED UNSIGNED
BGE BHIS (BCC)
BLT BLO

BGT BHI

BLE BLOS (BCS)

A common pitfall is to use a signed branch (for example, BGT) when
comparing two memory addresses. This works until the two addresses
have opposite signs; that 1is, one of them goes across the 16K
(100000 (8)) bound. This type of coding error usually results from
re-linking the program at different addresses and/or changing the size
of the program.

E.7 PROGRAM SOURCE FILES

Source creation and maintenance is done in base levels. A base level
is the point at which the program source files have been frozen. From
the freeze point to the next base level, corrections are not made
directly to the base 1level itself, rather a file of corrections is
accumulated for each file in the base level. Whenever an updated
source file 1is desired, the correction file is applied to the base
file.

The accumulation of corrections proceeds until a 1logical breaking
point has occurred (a milestone or significant implementation point
has been reached). At this time all accumulated corrections are
applied to the previous base 1level to create a new base level and
correction files are started for the new base level.

E.8 PDP-11 VERSION NUMBER STANDARD

The PDP-11 Version Number Standard applies to all modules, parameter
files, complete programs, and libraries which are written as part of
the PDP-11 Software Development effort. It is used to provide unique
identification of all released, pre-released, and in-house software.

The version number is 1limited in that only six characters of
identification are used. Future implementations of the Macro
Assembler, linker, and librarian should provide for at 1least nine
characters, and possibly twelve. It is expected that this standard
will be improved as the need arises.

SAMPLE CODING STANDARD

Version Identifier Format:
<version> <edit> <patch>

where: <version> consists of two decimal digits which
represent the release number of a program.
The version number starts at 00 and is
incremented to reflect the number of major
changes in the program.

<edit> consists of two decimal digits which
represent the number of alterations made to
the source program. The edit number begins
at 01 (is null if there are no edits) and is
incremented with each alteration.

<patch> is a letter between B and Z which represents
the number of alterations made to the binary
form of the program. The patch number begins
at B (is null if there are no patches) and
changes alphabetically with each patch.

These fields are interrelated. When <version> is changed, then
<patch> and <edit> must be reset to nulls. It is intended that when

<edit> is incremented, then <patch> will be re-set to null, because
the various bugs have been fixed.

E.8.1 Displaying the Version Identifier
The visible output of the version identifier should appear as:

Program
Name <key-letter> <version> - <edit> <patch>,

where the following Key Letters have been identified:

X in-house experimental version
Y field test, pre-release, or in-house release version
Y released or frozen version

'X' corresponds roughly to individual support, 'Y' to group support,
and 'V' to company support.

The dash which separates <version> from <edit> is not used if both
<edit> and <patch> are null. When a version identifier is displayed
as part of program identification, then the format is:

Program
Name <space><key-letter><version> - <edit><patch>

Examples:
PIP X03

LINK VB04-C
MACRO Y05-01

SAMPLE CODING STANDARD

E.8.2 Use of the Version Number in the Program

All sources must contain the version number in an .IDENT directive.
In programs (or libraries) which consist of more than one module, each
module must have a version number. The version number of the program
or 1library is not necessarily related to the version numbers of the
constituent modules; it is perfectly reasonable, for example, that

the first version of a new FORTRAN library, V00, contain an existing
SIN routine, say V05-01.

Parameter files are also required to contain the version number in an
.IDENT directive. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs (for
example, the FORTRAN Library) have an identification module in the
first position. An identification module exists solely to provide
identification. For example:

;OTS IDENTIFICATION
.TITLE FTNLIB
.IDENT /003010/
.END

is an identification module.

APPENDIX F

ALLOCATING VIRTUAL MEMORY

This appendix is intended for the MACRO-11 user who wants to avoid the
problem of thrashing, by optimizing the allocation of virtual memory.
Users of smaller systems, particularly those with the 8K subset
version of MACRO-11, should become thoroughly familiar with the
conventions discussed herein. This appendix discusses the following
topics:

1. General hints and space-saving guidelines

2. Macro definitions and expansions

3. Operational techniques.
The user is assumed to have pursued a policy of modular programming,
as advised in Appendix E. Modular programming results in bodies of
code that are small, distinct and highly functional. Using such code,

which presents many advantages, one can usually avoid the problem of
insufficient dynamic memory during assembly.

F.1 GENERAL HINTS AND SPACE-SAVING GUIDELINES
Work—-file memory is shared by a number of MACRO-1l1's tables, each of
which is allocated space on demand (64K words of dynamically pageable
storage are available to the assembler). The tables and their
corresponding entry sizes are as follows:

1. User-defined symbols - four words.¥*

2, Local symbols - three words.¥

3. Program sections - six words.

4. Macrec names - four words.*

5. Macro text - nine words.

6. Source files - six words.

In addition, several scratch pad tables are used during the assembly
process, as follows:

1. Expression analysis - five words.
2. Object code generation - five words.
3. Macro argument processing - three words.

4. .MCALL argument processing - five words.

* Five words on RSX-11M.
F-1

ALLOCATING VIRTUAL MEMORY

The above information can serve as a guide for estimating dynamic
storage requirements and for determining ways to reduce such
requirements.

For example, the use of local symbols whenever possible is highly
encouraged, since their internal representation requires 25 percent
less dynamic storage than that required for regular user-defined
symbols. The wusage of 1local symbols can often be maximized by
extending the scope of 1local symbol blocks through the .(ENABL
LSB/.DSABL LSB MACRO-11 directives (see Sections 3.5 and 6.2).

Since MACRO-11 does not support a purge function, once a symbol 1is
defined, it permanently occupies its dynamic memory allocation.
Numerous instances occur during conditional assemblies and repeat
loops when a temporarily assigned symbol is used as a count or offset
indicator. 1If possible, the symbols so used should be re-used.

In keeping with the same principle, special treatment should be given
to the definition of commonly used symbols. Instead of simply
appending a prefix file which defines all possibly used symbols for
each assembly, users are encouraged to group symbols into logical
classes. Each class can then become a shortened prefix file or a
macro in a library {(see Section F.2 below). 1In either case, selective
definition of symbolic assignments is achieved, resulting in fewer
defined (but unreferenced) symbols.

An example of this idea is seen 1in the definition of IAS/RSX-11M
standard symbols. The system macro library, for example, supplies
several macros used to define distinct classes of symbols. These
groupings and associated macro names are as follows:

DRERR§$ - Directive return status codes
FILIOS - File-related I1/0 function codes
IOERRS - I/0 return status codes

SPCIOS$ - Special I/0 function codes

F.2 MACRO DEFINITIONS AND EXPANSIONS

Dynamic storage is used most heavily for the storage of macro text.
Upon macro definition or the issuance of an .MCALL directive, the
entire macro body is stored, including all comments appearing in the
macro definition. For this reason, comments should not be included as
part of the macro text. A librarian function switch (/SZ) are
available to compress macro source text by removing all trailing
blanks and tabs, blank lines, and comments. The system macro library
(RSXMAC.SML) has already been compressed. User-supplied macro
libraries (.MLB) and macro definition prefix files should also be
compressed. For additional information regarding these two utility
tasks, consult the applicable RSX-11M or RSX-11M-PLUS Utilities Manual
(see Section 0.3 in the Preface).

It often seems practical to include a file of commonly used macro
definitions in each assembly. This practice, however, may produce the
undesirable allocation of valuable dynamic storage for unnecessary
macros. This waste of memory can be avoided by making the file of
macro definitions a user-supplied macro library file (see Table 8-1).
This means that the names of desired macros must be listed as
arguments in the .MCALL directive (see Section 7.8).

ALLOCATING VIRTUAL MEMORY

Certain types of macros can be redefined to null after they have been
invoked. This practice not only frees storage space, it also
eliminates the overhead and the dynamic memory wasted by calling a
useless macro. The practice of redefining macros to null applies
mainly to those that leave define symbolic assignments, as shown in
the example below. The redefinition process may be accomplished as
follows:

.MACRO DEFIN

SYM1 = VALl ;DEFINE SYMBOLIC ASSIGNMENTS.
SYM2 = VAL2

OFF1 = SYMBOL ;DEFINE SYMBOLIC OFFSETS.
OFF2 = OFFl+s1zl

OFF3 = OFF2+SIZ2

.

OFFN = OFFM+SIZM

.MACRO DEFIN ;MACRO NULL REDEFINITION.
.ENDM

.ENDM DEFIN

Macros exhibiting this redefinition property should be defined (or
read via the .MCALL directive) and invoked before all other macro
definition and/or .MCALL processing, a practice that ensures more
efficient use of dynamic memory.

The following RSX-11M system macros have the automatic null
redefinition property after once being invoked:

BDOFF$S File Control Services (FCS) buffer descriptor offsets

CSIS

Command String Interpreter codes and offsets
DRERRS - Directive return status codes

FCSBTS$ - FCS bit value codes

FDOFFS - FCS file descriptor block offsets

FILIOS - File-related I/0 function codes

FSROF$ - FCS file storage region (FSR) offsets

GCMLD$ - Get Command Line codes and offsets

ICERRS - I/0 return status codes

NBOFF$ - FCS filename block offsets

SPCIO$ - Special I/0 function codes

ALLOCATING VIRTUAL MEMORY

F.3 OPERATIONAL TECHNIQUES

When, despite adhering to the guidelines discussed above, performance
still falls below expectations, several additional measures may be
taken to increase dynamic memory.

The first measure involves shifting the burden of symbol definition
from MACRO-11 to the 1linker or task builder. 1In most cases, the
definition of system I/0 and File Control Services (FCS) symbols (and
user-defined symbols of the same nature) is not necessary during the
assembly process, since such symbols are defaulted to global
references (Appendix D.1l, category 4 of error code A). The linker or
task builder attempts to resolve all global references from
user-specified default 1libraries. and/or the system object library
(SYSLIB). Furthermore, by applying the selective search option for
object modules consisting only of global symbol definitions, the
actual additional burden to the linker is minimal.

The second way is to produce only one output file (either object or
listing), as opposed to two. The additional memory required to
support the second output file are allocated from available dynamic
memory at the start of each assembly.

APPENDIX G

WRITING POSITION INDEPENDENT CODE

G.1 INTRODUCTION TO POSITION INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable object module. The
Task Builder or Linker binds one or more modules together to create an
executable task image. Once created, if the program is to run it must
be loaded at the virtual address specified at link time. This is
because the Task Builder or Linker has to modify some instructions to
reflect the memory locations in which the program is to run. Such a
body of code 1is considered position-dependent (dependent on the
virtual addresses to which it is bound).

All PDP-11 processors offer addressing modes that make it possible to
write code that does not depend on the virtual addresses to which it
is bound. Such code is termed position-independent and to run can be
loaded at any virtual address. Position-independent code can improve
system efficiency, both in use of virtual address space and in
conservation of physical memory.

In multiprogramming systems like IAS, RSX~11M and RSX-~11M-PLUS, it is
important that many tasks be able to share a single physical copy of
common code, for example a library routine. To make the optimum use
of a task's virtual address space, shared code should be
position-independent. Position-dependent code can also be shared, but
it must appear in the same virtual locations in every task using it.
This restricts the placement of such code by the Task Builder or

LSRN RO L) 4

Linker and can result in the loss of virtual addressing space.

The construction of position~independent code is closely linked to the
proper usage of PDP-11 addressing modes. The remainder of this
Appendix assumes you are familiar with the addressing modes described
in Chapter 5.

All addressing modes involving only register references are
position-independent. These modes are as follows:

R register mode
(R) register deferred mode
(R) + autoincrement mode
@(R)+ autoincrement deferred mode
- (R) autodecrement mode
€-(R) autodecrement deferred mode
When using these addressing modes, you are guaranteed

position-independence, provided the contents of the registers have
been supplied such that they are not dependent upon a particular
virtual memory location.

WRITING POSI+vION INDEPENDENT CODE

The relative addressing modes are position-independent when a
relocatable address 1is referenced from a relocatable instruction.
These modes are as follows:

A relative mode
@A relative deferred mode

Relative modes are not position-independent when an absolute address
(that is a non-relocatable address) is referenced from a relocatable
instruction. 1In this case, absolute addressing (@#A) may be wused to
make the reference position-independent.

Index modes can be either position-independent or position-dependent,
according to their use in the program. These modes are as follows:

X (R) index mode
@X (R) index deferred mode

If the base, X, is an absolute value (for example, a control block
offset), the reference is position-independent., For example:

MOV 2(sp) ,RO ; POSITION-INDEPENDENT
N=4
MOV N (SP) ,RO ; POSITION-INDEPENDENT

If, however, X 1is a relocatable address, the reference is
position-dependent. For example:

CLR ADDR(R1) ; POSITION-DEPENDENT

Immediate mode can be either position-independent or not, according to
its usage. Immediate mode references are formatted as follows:

#N immediate mode

When an absolute expression defines the value of N, the code Iis
position-independent. When a relocatable expression defines N, the
code is position-dependent. That is, immediate mode references are
position-independent only when N is an absolute value.

Absolute mode addressing is position-independent only in those cases
where an absolute virtual location is being referenced. Absolute mode
addressing references are formatted as follows:

@#a absolute mode

An example of a position-independent absolute reference is a reference
to the directive status word ($DSW) from a relocatable instruction.
For example:

MOV @#SDSW,RO ; RETRIEVE DIRECTIVE STATUS

G.2 EXAMPLES

The RSX-11M library routine, PWRUP, is a FORTRAN callable subroutine
that establishes or removes a user power failure Asynchronous System
Trap (AST) entry point address. Imbedded within the routine 1is the
AST entry point that saves all registers, effects a call to the
user-specified entry point, restores all registers on return, and
executes an AST exit directive. The following examples are excerpts
from this routine. The first example, Figure G-1 has been modified to
illustrate position-dependent references. The second example, Figure
G~2, is the position-independent version.

G-2

WRITING POSITION INDEPENDENT CODE

+
Position derendent code examrle

- w e

PWRUF::! CLR -{SP) iAssume SUCCESS

.

i Perform further initislization...

MOV $0TSVsR4 iPoint R4 3t obdect time sustem save ares

the sbove reference to $0TSV is rpasition-
i derendent

MOV {SP)+:R2 iRetrieve AST entry roint address
EBNE 10% iBranch if one was srecified
CLR -{&F) $If nones seacify no souwer f2il routine
BR 208 iByrass AST setur
10¢¢ MOV R2sF.PF(R4) iSet the AST entry roint
MOV #BA,-(SP) iPush our AST service address

the above reference to BA is rosition-
derendent

a
y
s
?

i Continue rrocessing...

AST service routine

- es e

RA: MOV ROs-(SP) iPreserve RO

3 Rest of routine follows...

Figure G-1 Example of Position-Dependent Code

+
Fosition inderendent code examrle

- s e

PWRUPI{ CLR -{8F) jAssume success

3 Perform necessary initialization...

Mov @#30TSVsR4 iFoint R4 st obdect time sustem save ares
the above reference to $0TSV is rosition-

H
inderendent

MOV (SP)+sR2 $Retrieve AST entry roint address
ENE ios iBranch if one was srecified
CLR -(SP) 7If nones srecify no rower fail routine
BR 20% sBurass AST setur
104 MOV R2,F.FPF(R4) iSet the AST entruw roint
MoV PCs»-(SP) jFPush our PC to relocste our AST service addr
ADD #BA- .1 (5F) iRelocate aur AST service address naw

the above reference to BA is rosition-

3
inderendenti this costs one word to relocste

208!
Continue rrocessing...

+
AST service routine

- ws

BAS MoV ROs-(SP) iFreserve RO

i Rest of routine follows...

Figure G-2 Example of Position-Independent Code

WRITING POSITION INDEPENDENT CODE

The position-dependent version of the subroutine contains a relative
reference to an absolute symbol ($SOTSV) and a literal reference to a
relocatable symbol (BA). Both references are bound by the Task
Builder to fixed memory locations. Therefore, the routine will not
execute properly as part of a resident 1library if its 1location in
virtual memory is not the same as the location specified at link time.

In the position-independent version, the reference to $OTSV has been
changed to an absolute reference. 1In addition, the necessary code has
been added to compute the virtual location of BA based upon the value
of the program counter. 1In this case, the value is obtained by adding
the value of the program counter to the fixed displacement between the
current location and the specified symbol. Thus, execution of the
modified routine is not affected by its location in the image's
virtual address space.

The MACRO-11 Assembler provides a way of checking whether the code is
position-independent. In an assembly listing, MACRO-11l inserts a '
character following the contents of any word which requires the Task
Builder or Linker to perform a relocation operation and, therefore,
may not be position independent code. The cases which cause an
apostrophe to be inserted in the assembly listing are as follows:

1. Absolute mode references when the reference 1is relocatable.
References are not flagged when they are absolute. For
example:

MOV @#ADDR,R1 ;PIC ONLY IF ADDR IS ABSOLUTE.

2. 1Index and index deferred mode references when the offset is
relocatable. For example:

MOV ADDR(R1) ,R5 ;NON-PIC IF ADDR IS RELOCATABLE.
MOV @ADDR{R1) ,R5 ;NON-PIC IF ADDR IS RELOCATABLE.

3. Relative and relative deferred mode references when the
address specified 1is relocatable with respect to another
program section. For example:

MOV ADDRI1,R1 ; NON-PIC WHEN ADDR1 IS ABSOLUTE
MOV @ ADDR1,R1

4, Immediate mode references to relocatable addresses.
MOV #ADDR,R1 ;s NON-PIC WHEN ADDR IS RELOCATABLE.

In one case, MACRO-11 does not flag a potential position-dependent
reference. This occurs where a relative reference is made to an
absolute virtual location from a relocatable instruction (see the MOV
$OTSV,R4 instruction in Figure G-1).

References requiring more than simple relocation at 1link time are
indicated in the assembly 1listing. Simple global references are
flagged with the letter G. Statements which contain multiple global
references or reguire complex relocation, are flagged with the letter
C (see Section 3.9 and Chapter 4). It 1is difficult to positively
state whether or not a C-flagged statement is position-independent.
However, in general, position dependence can be decided by applying
the guidelines discussed earlier 1in this Appendix to the resulting
address value produced at link time.

APPENDIX H

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

RSOUNF MACRO Y04.,00 29-AUG-79 16106139
TARLE OF CONTENTE

2= 1 RADSO urmeack routine

RIOUNF MACRO Y04.00 29-AUG-79 16106139 PAGE 1

1 +TITLE RSOUNF

2 +IDENT /02/

3

4 [

5 i COPYRIGHT (c) 1979 RY

6 ¥ DIGITAL EQUIFPMENT CORPORATION, MAYNARD, MASS.

7 §

8 i THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY RE USED AND COFIED
9 5 ONLY 1IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
10 5 INCLUSION OF THE ABOVE COFYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
11 i COFIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
12 3 OTHER FERSON. NO TITLE TO AND OWNERSHIF OF THE SOFTWARE IS HEREERY
13 i TRANSFERRELD.

14 H

15 3 THE INFORMATION IN THIS SOFTWARE IS SURJECT TO CHANGE WITHOUT NOTICE
16 # AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIFMENT
17 i CORFORATION,

18 §

19 3 DIGITAL ASSUMES NO RESFONSIRILITY FOR THE USE OR RELIARILITY OF 1ITS
20 i SOFTWARE ON EQUIFMENT WHICH IS NOT SUPPLIED BY DIGITAL.
21 H
2z 5 UFDATE HISTORY!
23 $
24 i ItvN. CUTLER 10-FEB-73
25 i

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

RGOUNF MACRO Y04.00 29-AUG-79 16106139 PAGE 2
RADSO UNFACK ROUTINE

1 +SETTL RADSO unrack routine
fad
3 it
4 i RSOUNFP
S 5 Unsack a & char RADSO sumbol to ASCII
6 H
7 i Enter with R2 -> Outrut ASCII string
8 i SYMBOL, SYMBOL+2 = RADSO sumbol to unrack
? H
10 i Return with R2 -> Past outrut string
11 3 ROr R1, R3 Destroued
12 -
13
14 000000 +FSECT PUREI»1
15
14 000000 0104446 RSOUNF!IMOV R4y-(SP) iSave R4
17 000002 012704 MOV ¥SYMBOL rR4 iPoint at RADS50 sumbol buffer
0000006
18 000006 012401 18 MOV (R4Y+rR1 iGet next RADS0 word
1? 000010 012703 MoV $#50%50rR3 iSet divisor for hidgh character
003100
20 000014 004767 CALL 108 iUnsack and store the character
000030
21 000020 012703 MoV $#50R3 iNow set divisor for middle character
000050
22 000024 004747 CALL 10% $Unrack and store the character
000020
23 000030 010100 MOV R1:RO iCory remaining character
24 000032 0047467 CALL 11% iTranslate and store it
0000146
25 0000346 020427 CMF R4,#SYMROL+4 iTest if 1last word done
0000046
26 000042 001361 ENE 14 iBranch if no
27 000044 012604 Moy (SF)+sR4 iRestore R4
28 000046 000207 RETURN tReturn to caller
29
30 3 Divide RADS0O word and convert char to ASCII
31
32 000050 005000 10%: CLR RO
33 000052 071003 DIV R3sRO
34
35 # Translate RADS0 character code to ASCII
34 i 0 = srace
37 i 1-32 = a-Z
38 i 33 = $
32 i 24 = .
40 i 35 = unused code
41 i 36-47 = 0-9
42
43 000054 005700 11! 8T RO iTest if srace
44 000056 001412 BEQ 23¢ iBranch if so
45 0000460 020027 CHP RO $#33 iTest if middle
000033
46 000064 002405 BLT 228 sBranch if alrhabetic
47 000066 001402 BEQ 213 jEranch if dollar sidn
48 000070 0462700 ADD #22-11+R0O Dot or digits 0-9
000011

HEOUNF MACRD Y04.00 29-AUG-79 161063139 FPAGE 2-1
RADIS0 UNFACK ROUTINE

49 000074 062700 21%3 ADL #11-100+R0O ilollar
177711)
50 000100 0462700 22%: ADD $#100-40yRO iAlphabetic
000040
51 000104 062700 2% ADD $40,R0 iSrace
000040 .
52 000110 110022 MOVE ROy (R2)4 5Store ASCII char in buffer
53 000112 000207 RETURN
G4
55 000001 JEND

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

RSOUNP MACRO Y04,00 29-AUG-79 16:06:39 PAGE 2-2
SYMBOL TABLE

ROOUNP 000000RG 002 SYMBOL= XXXXXXx GX

+ ABS., 000000 000
000000 001
PUREI 000114 002

ERRORS DETECTED:! 0

VIRTUAL MEMORY USED! 7936 WORDS (1 PAGES)
DYNAMIC MEMORY AVAILABLE FOR 72 PAGES
»RSOUNP=RSOUNP/CICISINIEIRIP/EIGBLILC/LITTH

RGOUNP MACRO Y04.00 29-AUG-79 16:06:39 PAGE S-1
CROSS REFERENCE TABLE (CREF v01-08)

RSOUNP 2-16%
SYMROL 2-17 2-25

RSOUNP MACRO Y04.00 29-AUG-79 16:06:3%9 PAGE R-1
CROSS REFERENCE TABLE (CREF V01-08)

RO 2-23% 2-32% 2-33% 2-43 2-45 2-48% 2-49%
2-50% 2-3i% 2-52

R1 2-18% 2-23

R2 2-52%

R3 2-19% 2-21% 2-33

R4 2-16 2-17% 2-18 2-25 2-27%

SF 2-16% 2-27

RSOUNP MACRD Y04.00 29-AUG-79 16:06:39 PAGE C-1
CROSS REFERENCE TABLE (CREF V01-08)

1

SO

, 3=
3) 6
1, 6
5, 6
to 7-14, 7 16,
Absolute address,
Absolute binary ou
Absolute expression, 3-17
Absolute mode, 5-1, 5-6, 5-8,
B-2, G-2, G-4
Absolute module, 6-40
Absolute program section, 6-4C to
6-43, B-4
See also .ASECT directive.
ADD instruction, E-12, G-3, H-2
Addition operator, 3-2, 3-5, B-=1
Address boundaries, 6-36
Addressing modes, 5-1
Apostrophe, G-4
ASC1I
character set, A-1
conversion characters, 6-21 to
6-24
.ASCII directive, 6-1, 6-21, 6-24
to 6-27, 6-34
.ASCIZ directive, 6-1, 6-26,
6-27, 6-34, B-4
.ASECT directive, 3-11, 3-13,
3-14, 6-2, 6-43 to 6-45, B-4
Assembler,
directives
See Permanent symbol table.
version number, 6-4
Assembly,
error, See A error.
listing symbols, 4-1
pass 1, 1-1, 1-2, 6-12, 6-15,
6-16, 6-20, 6-48, 8-7, 8-10,
9‘5: D'3
pass 2, 1-2, 6-12, 6-16, 6-20,
7-15, 8-7, 8-10, 9-5, D=3
Assignment operator,
See Direct assignment operator.
Assignment statement,

ﬂ'U

See Direct assignment statement,

Autodecrement deferred mode, 5-1,
5-4, B-2, G-1

Autodecrement indicator, 3-2

Autodecrement mode, 5-1, 5-4,
B-1, B-2, G-1i

Autoincrement deferred mode, 5-1,
5-4, B-2, G-1

Autoincrement indicator, 3-2

Autoincrement mode, 5-1, 5-3,
B-1, B-2, G-1

INDEX

Base level, E-13
BCC instruction, E-13
BCS instruction, E-13
BEQ instruction, H-2
BGE instruction, E-13
BGT instruction, E-13
BHI instruction, E-13
BHIS instruction, E-1
BIC instruction, E-12
Binary operator, 3-4,
Blenk line, 2-1
BLE instruction, E-
.BLKB directive, 3
to 6-36, B-4,
.BLKW directive, 3
6-36, 6-47, B~
BLO instruction, E
E
E

Ew &sWw

BLOS instruction,
BLT instruction,
BNE instruction,
H-2
BR instruction, E-9, E-10, E-11,
G-3
Branch instruction,
addressing, 5-8, D-2
use of, E-13
.BYTE directive, 6-2, 6-21, 6-22,
6-34, B-4, D-4

C bit, E-9
CALL instruction, H-2
Calling convention, E-§

Character set,
ASCII, A-1 to A-3
legal, 3-1 to 3-3
Radix-50, A-4, A-5
CLR instruction, G-2, G-3, H=2
CMP instruction, E-12, H-2
Coding standard, E-1
Comment, E-1, E-5
delimiter, 3-2, B-1, E-11, E-12
field, 2-1, 2-4, 2-5, E-1 ’
Commercial instruction set, C-3
Common exit, E-10
Complex relocatable expression,
3-18
Complex relocation, 4-1, G-4
Concatenation indicator, 3-3,
B-1, B-3
Conditional assembly, 6-4§ to
6-55, 7-7, 7-15, D-4
immediate, 6-54, 6-55

Index-1

INDEX (Cont.)

Conditional assembly block, 7-3,
B-4, B-5

Conditional assembly directive,
6-49

Copyright statement, E-6

Cross-reference listing, 3
6-19, 8-, 8-9, 8-11,
8-17$ 9"2) 9"3; 9‘5 t

.CSECT directive, 3-11, 3-1
6-2, 6-43 to 6-45, 9-6,

Current location counter, 2
3-2, 3-12 to 3-15, 3-17
6-11, 6-34 to 6-36, 6-4
6-43, B-5, B-7, D-2, D-

D error, 2-3
Data,
sharing, 6-43
storage, 6-2
storage directives, 6-21
Default radix, 3-14
Default register definitions,
3-10, 6-20
Deferred addressing indicator,
3-2, B-1
Delimiting characters, 3-3, 6-17,
6-26, B-3 to B-5, B-T
Device register, E-2
Direct assignment,
operator, 3-1, 3-2, 3-9, B-1
statement, 3-6 to 3-9, 3-13,
6-34
Direct command language, 8-8
Directives,
See Permanent symbol table.
DIV instruction, H-2
Division operator, 3-2, 3-5, B-1
Double ASCII character indicator,
3-2, B-1
.DSABL directive, 6-2, 6-18 to
6-21, 8-6, 8&-9, 9-4 B-U,
D-1, D-4
Dummy argument, 7-2, 7-11, 7-16

E error, 6-37

EMT instruction, 5-9, D-4

.ENABL directive, 6-2, 6-18 to
6-21, 6-6, 8-9, 9-4, B-4,
D-1, D-2, D-4, F-2

.END directive, 6-2, 6-37, B-4,
D-3, H=-2

.ENDC directive, 6-2, 6-12, 6-49
to 6-51, 6-53 to 6-55, 7-3,
B-4

.ENDM directive, 6-13, 6-21, T7-2,
7-3, 7-6 to 7-8, 7-10, 7-11,
7-17 to 7-19, B-4, B-7, F-3

.ENDR directive, 7-18, 7-19, B-4,
B-7

Entry point symbol, 6-48

.EOT directive, 6-2, 6-37, B-5

.ERROR directive, 7-15, B-5, D-4

Error messages, D-1 to D-4

.EVEN directive, 6-2, 6-27, 6-35,
B-5

Expression,

evaluation of, 3-16
Expression indicator,
immediate, 3-2, B-~1

External expression, 3-17

External symbol, 6-49,

See also Global symbol.

Field terminator, 3-2, B-1
FILES-11, 6-19
Floating-point directives, B-5,
See also .FLT2 directive.
Floating-point indicator, B-3
Floating-point processor, 3-14,
6-31, 6-32, C-4
Floating-point rounding, 6-19,
6-32
Floating-point truncation, 6-19,
6-32
.FLT2 directive, 6-2, 6-33, B-5
.FLTY4 directive, 6-2, 6-33, B-5
FLX, 6-19
Forbidden instructions, E-12
Format control, 2-5
Formatted binary, 6-19
FORTRAN, 6-43, 6-44, E-15, G-2
Forward reference, 3-8, 3-9,
3-1G6, 3-13, D-4
illegal, D-3
Function control switches,
See Switches, function control.
Function directive, 6-18

Global expression evaluation,
3-17

Global label, 6-48

Global reference, 6-20, 6-48,
F-4, G-4

Global symbol, 1-2, 3-7, B-5,
p-2, D-3, E-4

Global symbol definition,. 2-2,
3"11 3"21 3"81 6"“81

See also .GLOBL directive.

Global symbol directory, 1-2

.GLOBL directive, 3-7, 6-2, 6-48,
B-5, E-4

Index-2

INDEX (Cont.)

Hardware register, E-2 L error, 2-1

Label,
field, 2-1 to 2-3, E-1
multiple definition, 2-3
terminator, 3-1, B-1

.LIMIT directive, 6-3, 6-36, B-

Line format, E-1

(o)}

1 error, 6-27 Line printer listing format, §-5,
IAS, 6-2, 6-37, 6-44, 7-19, 8-11, 6-6, 6-12,

8-13, 8-14, 8-16 to 8-20, G-1 See also Listing control.
IDENT directive, 6-2, 6-17, B-5, Linker, 1-2, 2-2, 6-17, 6-40,

D-2, E-5, E-7, E-15, H-1 6-43, 6-44, 6-48, F-4, G-1,
.IF directive, 6-2, 6-12, 6-49 to . G-4

7. _ Linking, 4-1, 6-36

6-55, 7~-3, 7-8, B-5, D-1, D-2 ng, ’
.IFF directive, 6-2, 6-52 to .LIST directive, 6-3, 6-9, 6-10,

6-54, B-5 ’ 6-12 to 6-14, 6-21, 8-6, 8-9,
.1FT directive, 6-2, 6-52 to . 8'11' 9-4, B-6, D-1

6-54, B-5 Listing control, 674 to'6—13,
.1FTF directive, 6-2, 6-52, 6-53, See also .LIST directive,

r Tom

B-5
. IIF directive, 6-2, 6-54, 6-55,
B-6, D-1, D-2

lilegal characters, 3-3, D-2, D-3

Illegal forward reference, D-3
lmmediate conditional assembly,

6-54, 6-55
Immediate expression indicator,
3-2, B-1

Immediate mode, 5-1, 5-5, 5-6,
B-2, G-2, G-4
Implicit .WORD directive, 2-1,
2-4, 6-23
Indefinite repeat block,
See Repeat block, indefinite.
Index deferred mode, 5-1, 5-5,
B-2, G-2, G-4
Index mode, 5-1, 5-5, 5-7, B-2,
G-2, G-4
Inital expression indicator, 3-2
Initial argument indicator, 3-2,
B-1
Initial register indicator, 3-2,
B-1
Instruction set,
commercial, C-3
PDP-11, C-1
Interrupts, E-11
.IRP directive, 7-2, 7-16 to
7-18, B-6, D-2
.1IRPC directive, 7-2, 7-16 to
7-18, B-6, D=2
Item terminator, 3-2, B-1

JMP instruction, 5-3
3

1)
JSR instruction, 5-3, E-8

Listing control switches,
See Switches, listing control.
Listing level count, 6-9, 6-10,
6-12, B-6, B-7
Local symbol, 3-11, 3-12, 7-8,
7-9, D-4, E-4, F-=2
Local symbol block, 3-11, 3-12,
6-19, D-4, F-2
Location counter,
See Current location counter.
Location counter control, 6-34,

6-35
Logical AND operator, 3-2, 3-5,
6-51, B-1

Logical inclusive OR operator,
3-2, 3-5, 6-51

Logical OR operator, B-1

Lower-case ASCII, 6-19

M error, 2-3, 3-1, 3-2, 3-8
Macro,
argument, 7-6, 7-13, 7-14, B-3
argument concatenation, 7-11
attribute directive, 7-11
definition, 6-30, 7-1 to 7=-12,
7-14, 7-16, 7-17, 7-19, B-U4,
B-6, B-7, E-6, F-2
directive, 7-1, T7-2, T-4,
See also .MACRO directive.
expansion, 7-1, 7-3, 7-5 to
7‘7; 7'91 7'11y 7-16’ B'67
D-4, F-2
expansion listing, 6-9, 6-12
keyword argument, 7-4, 7-9,
7-10

Index-3

INDEX (Cont.)

Macro, (Cont.)

keyword indicator, 3
name, 7-1, 7-2, 7-4,
nesting, 7-2, T7-3, 7
numeric argument, 7-
redefinition, F-3
symbol, 3-6
Macro call, 7-1, 7-4 to 7-10,
7-12, 7-19, B-1, B-6,
See also .MCALL dir:ctive.
Macro call argument, 7-4
Macro c&ll numeric argument, 3-3
.MACRO directive, 6-13, 6-21, 7-1
to 7-8, 7-10, 7-11, 9-6, B-6,
D-1, F-3
Macro library directive,
See .MCALL directive.
Macro symbol table, 3-6, 3-7
MACRO-11 character set,
See character set, legal.
.MCALL directive, 7-19, 7-20,
8§-6, 8-10, 8-12, 9-4 to 9-6,
B-6, D-4, F-1 to F-3
Memory,
allocation, 6-39, 6-44, F-1,
F-2
conservation, F-1
.MEXIT directive, 7-3, 7-17 to
7-191 B'6
Modularity, 6-41, E-8, F-1
Module checking routine, E~-9
Module preface, E-5
Monitor console routine, 8-1, 8-2
MOV instruction, 3-13, 3-14,
6-34, 6-54, D-1, E-12, G-2 to
G-4, H-2
MOVB instruction, H-2
Multiple definition, See M error.
Multiple expression, 2-4
Multiple label, 2-2
Multiple symbol, 2-4
Multiplication operator, 3-2,
3-5, B-1

-1
D-4, E
-5, 7-1
7

N error, 3-14
Naming standard, E-2
.NARG directive, 7-8, 7-11, T7-12,

B-6, D-2
.NCHR directive, 7-11, 7-13, B-6
D-2

Nested conditional directive,
6-51, 6-54, 7-3

.NL1ST directive, 6-3, 6-9 to
6-14, 6-16, 6-21, 8-6, 8-9,
Q

9-4, B-7, D-1

.NTYPE directive, 7-11, 7-14,
B-7, D-2

Number of arguments,

See .NARG directive.
Numeric argument indicator, B-1
Numeric control,

operator, 6-31

temporary, 6-33, 6-34, B-3
Numeric directive, 6-31

O errorv 6'37, 6-51) 6‘521 7‘31
7-12, 7-14, 7-20

Object module name, 1-2

.0ODD directive, 6-3, 6-34, 6-35,
B-7

Operand field, 2-1, 2-4, E-1

Operand field separator, 3-2, B-1

Operation field, E-1

Operator field, 2-t1, 2-3, 2-4

Overlay, 6-39, 6-41

P error, 6-20, 7-15
.PACKED directive, 6-3, 6-29,
6'3“, C‘?y 8-7
.PAGE directive, 6-3, 6-18, T-4,
B-7
Page,
header, 6-4
number, 6-18
PAL-11R assembler, 6-55
Patch, E-14
Permanent symbol table, C-1 to
c-7, 3-6, 3-7
Position independent code, G-1 to
G-4
.PRINT directive, 7-15, B-7
Processor priority, E-2
Program counter, 5-1, E-2, G-4
Program counter definition, 3-10
Program development system, 8-11,
8-13, 8-14
Program module, E-5
Program section directive,
See .PSECT directive.
Program section name, 6-38
Program section table, 1-1
Program version number,
see Version identifier, program.
Programming standard, E-1
.PSECT directive, 3-11, 3-13,
3-14, 6-2, 6-3, 6-19, 6-38 to
6-45, 7-9, 9-6, B-7, D-1,

n_o ©.cg oo n_n
Usc,y L=0y L=|, l=c

Index-4

Q error, 6-26, 6-27, 6-31, 6-35

R error, 3-10
.RAD50 directive, 6-3, 6-27,
6-28, B-7, H-=2
Radix control, 3-14, 6-29, 6-31,
B-T7
temporary, 6-29, 6-30, B-3
.RADIX directive, 3-14, 6-3,
6-30, 6-31, B-7, D-1
Radix-50, 3-5, 6-28, 6-2G, 6-38,
B-3, B-5, B-8
character set, A-U4
temporary operator, 6-28
Read-only access, 6-38
Read/write access, 6-3§
Register,
conventions, E-8
detinitions, default, 3-10,
6-20
expression, 5-2, B-1
symbol, 3-10, D-4
term indicator, 3-2, B-1
Register deferred mode, 5-1, 5-2,
B-2, G-1
Register mode,; 5-1, 5-2, B-2, G-1
Relative deferred mode, 5-1, 5-8,
B-2, G-2, G-4
Relative mode, 5-1, 5-7, 5-8,
B-2, G-2, G-4
Relocatable expression, 3-17
Relocatable module, 6-40
Relocatable program section, 6-41
to 6-43, B-4
Relocation, U4-1, 6-40
Relocation bias, 2-2, 2-17, 3-18,
4-1, 6-40
Repeat block,
directive, See .REPT directive.
indefinite ,7-3, 7-16 to 7-19,
B-4, B-6
.REPT directive, 7-2, 7-16, 7-18,
7-169, 8“71 D-3
Reserved symbols, 2-3,
.RESTORE directive, 3-
6'3) 6_197 6'46! B
D-3
.RETURN directive, H-2
RSTS, 6-2, 6-37, 9-1 t
kESX run-time system, 9-
RSX-11M, 6-2, 6-12, 6-1
6'381 6')'“": 7—197 8
8§-16 to 8-20, E-12,
RSX-11M-PLUS, 6-2, 8-8 to
8-16, G-1
RT-11, 6-2, 6-12, 6-17, 6-20,
6'37; 6'38y 6')401 6_1"11 6"'457
7-19, 9-2 to §-5
RT-11 run-time system, 9-1

.SAVE directive, 6-3, 6-19, 6-45,
6-47, B-7, B-8, C-7, D-3
.SBTTL directive, 6-3, 6-4, 6-15,

6-16, B-8, H-2
Separating characters, 3-3
Sequence number, 6-19
Single ASCII character indicator,
3“3; B-li 8‘3
Source line format, 2-5
Source line terminator, B-1
Special characters, 3-1 to 3-3,
7-6
Stack pointer, E-2
Stack pointer definition, 3-10
Statement format, 2-1
SUB instruction, E-12
Subconditional assembly, 6-52 to
6-54
Subtraction operator, 3-2, 3-5,
B-1
Success/failure indicator, E-9
Switches,
function control, 8-6, 9-4
listing control, 8-6 to 8-9,
§-12, 9-4
Symbol name syntax, E
Symbol table, 1-1, 1-
Symbolic argument, 6-
SYSLIB, F-4
System macro library, 1-1, 7-19,
8-6, 8-10, 8-12, 9-3, 9-5,
See also .MCALL directive.

3

. F-1
1

2
n

T error, 3-15, 6-22

Table of contents, 6-12, 6-16,
B-8

Task builder, See Linker.

Teleprinter listing format, 6-7,
6-8, 6-12,
See -also listing control.
Temporary numeric control,
See numeric control, temporary.
Temporary radix control,
See radix control, temporary.
Temporary Radix-50 operator, 6-28
Term,
definition of, 3-15, 3-16
Terminal argument indicator, 3-2,
B-1

Terminal expression indicator,
3-2

Terminal register indicator, 3-2,
B-1

Terminating directive,

See .END directive.
Thrashing, F-1

Index-5

INDEX (Cont.)

.TITLE directive, 6-3, 6-4, 6-13, Version identifier,
6-15, 6-21, B-8, D-2, E-5, assembler, 6-4
E-7, E-15, H-1 file, 8-17

TRAP instruction, 5-9, D program, 6-17, B-5

-4
TST instruction, E-9, E-10, H-2 standard, E-13 to E-15
See also .IDENT directive.

U error, 3-8, 3-9, 3-15, 6-20,

7-20, 8-6
Unary operavor, 3-4, 3-16, 7-5,
COI{ICI’(Ol, 6—29, 6-31 -WCRD directive, 3-13, 3‘1}4; 6"37
universal, 3-3, 3-5, B-1 6-22, 6-23, 6-31, 6-33, B-8,
Unconditional assembly, 6-52 See also lmplicit .WORD
Undefined symbol, 3-8, 6-20, D-2, directive.
b-4,

See also U error.
Universal unary operator,
See unary operator, universal.
User-defined symbol, 3-6 to 3-8
User-defined symbol table, 2-2,
3-6 to 3-8, 3-15 Z error, 5-3

Index-6

Please cut along this line.

PDP-11 MACRO-11
Language Reference Manual
AA-5075B-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

oooood

Other (please specify)

Name Date

Organization

Street

City State Zip Code

nY

— -— Do Not Tear- Fold HereandTapg — |

No Postage |

Necessary |
if Mailed in the | |
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45
DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

— — DoNotTear-FoldHere — — — — — — — — — — — — — — - — — — - - _—

digital equipment corporation

Printed in U.S.A.

