
•

•

RSX-11M
Beginner's Guide

Order No. AA-52458-TC

RSX-11M V3.2

li·o order additional copies of this document, contact the Software Distribution
l_:enter, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . maynard, massachusetts

First Printing, June 1977
Revised, June 1979

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright@ 1977, 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
CO MT EX
DDT
DECCOMM
ASSIST-I I
VAX
DECnet
DATATRIEVE

DECsystem-I 0
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

11/79-14

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-I 1
ITPS-10
SBI
PDT

·~
I

CONTENTS

Page

PREFACE . vii

CHAPTER 1

CHAPTER

1.1

1.1.1
1.1.2
1.2
1.2. l
1.2.2
1.3

2
2.1

2.1. l

2.1.2
2.1.3
2.2

2.2.1
2.2.2
2.2.3

2.3
2.3.1
2.3.2

2.3.3

USING THE TERMINAL.............. 1-1
USING THE TERMINAL

KEYBOARD...................... 1-3
Terminal Function Keys l-3
Control Characters 1-3
MCR COMMANDS................... 1-6
The HELP Command 1-8
The HELLO Command 1-9
ERROR MESSAGES 1-12

PROGRAM PREPARATION 2-1
CREATING THE SOURCE

FILE (EDI) . 2-1
Using EDI to Create a Source

File . 2-2
Editing an Existing File 24
Basic EDI Commands 2-9
COMPILING A FORTRAN-IV

SOURCE FILE . 2-11
Creating an Object Module 2-11
Creating a Listing File 2-12
Requesting a Nonresident

FORTRAN-IV Compiler 2-13
BUILDING A TASK IMAGE 2-14
Full Task Build Command Line 2-14
Short Task Build Command

Lines . 2-15
Multiline Task Build Command

Procedures. 2-15
2.3 .4 Listing the Memory Allocation

(MAP) File . 2-16
2.3.5 Task Builder Switches and

• 2.4

CHAPTER 3
3.1
3.2

Options . 2-16
RUNNING A TASK.................. 2-16

THE FILES . 3-1
THE DEVICE NAME 3-1
USER FILE DIRECTORIES 3-4

iii

CHAPTER 4

4.1

4.2

4.2.1

4.2.2

4.2.3

4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.3
4.3.l
4.3.2

APPENDIX A

FIGURE

TABLE

iv

1-1
1-2
1-3
14
1-5
2-1

1-1
1-2
2-1
2-2

CONTENTS (Cont.)

Page

PIP AND THE QUEUE
MANAGER . 4-1

PERIPHERAL INTERCHANGE
PROGRAM . 4-1

PIP COMMAND LINE AND
DEFAULTS . 4-3

Displaying a File on Your
Terminal . 4-3

/LI - Displaying Your User
File Directory . .. 4-4

Display Information on
Specific Files . 4-6

Deleting Files . 4-8
Purging Files. 4-8
Selectively Deleting Files 4-9
Copying Files . 4-10
Renaming Files . 4-10
THE QUEUE MANAGER 4-11
Printing Files . 4-11
Listing Files in the Queue 4-12

SAMPLE FORTRAN PROGRAM A-1

FIGURES

An LA36 Terminal 1-1
A VT52 Terminal . 1-2
AVTIOOTerminal 1-2
LA36/VT52 Terminal Keyboard 1-3
VTl 00 Terminal Keyboard 1-3
Development of a FORTRAN-IV

Task 2-18

TABLES

Special Terminal Keys 1-4
Terminal Control Characters l-5
Basic EDI Commands 2-10
Default FORTRAN-IV Compiler

File Types 2-12

•

TABLE

•

2-3
2-4
3-1
4-1

CONTENTS (Cont.)

Page

TABLES (Cont.)

Default Task Builder File Types 2-14
Task Builder Output Files 2-15
Device Names and Abbreviations 3-3
PIP Switches and Command

Functions . 4-4

v

PREFACE

MANUAL OBJECTIVES
The information in this manual enables the new user of the RSX-11 M
operating system to create a text file, using an editing program, and to
create and run a simple FORTRAN-IV program from that file.

INTENDED AUDIENCE
This manual is for the new RSX-1 lM user. It assumes that you have
some computer experience, but no experience with RSX-11 M.

STRUCTURE OF THIS DOCUMENT
This manual is structured so you can learn RSX-1 lM concepts and termi­
nology as you create and run a FORTRAN-IV program called ADD.FTN.

Chapter 1 explains how to use a terminal on the RSX-1 lM operating
system. Chapter 2 discusses program preparation on RSX-1 lM, including
use of an editing program, a compiler, and the Task Builder. Chapter 3
outlines the RSX-11 M method of handling files and records. Chapter 4
discusses two system programs designed for handling files: PIP and the
Queue Manager. Appendix A outlines the steps involved in the develop­
ment of ADD.FTN, without the extensive explanation provided in earlier
chapters. (For more detailed information on programming under
RSX-1 lM, see the RSX-1 JM/M-PLUS Guide to Program Development.)

ASSOCIATED DOCUMENTS
This manual refers frequently to other RSX-1 lM documents which are
described in the RSX-1 JM Documentation Directory. The directory
defines the intended audience for the manuals in the RSX-11 M set and
provides a synopsis of each manual's contents.

CONVENTIONS USED IN THIS MANUAL
"print"

"type"

Black ink

Red ink

The term "print" indicates what the computer displays
at the user's terminal.

The term "type" indicates what the user types at the
terminal keyboard.

In illustrations of dialogue between the user and the
computer, what the computer prints is shown in black
ink.

In illustrations of dialogue between the user and the
computer, what the user types is shown in red ink.

vii

Preface

[]

[144,34]

RUN

filename

viii

Square brackets enclose the optional parameters to a
command. For example:

>PRINT [/optional switches]

However, the brackets are not part of the command.
That is, if you want to use the optional COPIES
switch with the print command above, you do not
include the brackets in the command line. You simply
type:

>PRINT /COPIES:2 FOO.FUM

A UFD specification in a command line is always en­
closed in brackets when you type it; that is, the brackets
are required for the UFD syntax.

Uppercase characters, in lines illustrating command
formats, indicate material that you must type exactly
as shown.

Lowercase characters, in lines illustrating command for­
mats, indicate variable parameters that you select.

.-...

CHAPTER 1

USING THE TERMINAL

This chapter tells you how to use a terminal to communicate with the
RSX-1 lM operating system. The operating system, in turn, communi­
cates with the computer hardware.

An operating system translates language you can understand into language
the computer can understand. It also translates messages from the com­
puter hardware to you. This two-way (interactive) communication pro­
cess usually takes place through a terminal.

You can use a variety of terminals with RSX-1 lM. These fall into two
general categories: hardcopy terminals that print characters on con­
tinuous forms of paper, and Cathode Ray Tube (CRT) terminals that
display characters on a screen. Most CRT terminals do not provide per­
manent records of the activity on your terminal. Figure 1-1 shows an
LA36 hardcopy terminal. Figures 1-2 and 1-3 show the VT52 and the
VTlOO CRT terminals.

Figure 1-1 An LA36 Terminal

1-1

U·
szng the Ternunaf

:.~n1111111nnn111nnn11nnnrnnnrmmm.mn':

F'
1gure 1-2 A VTs2 T .

ermmaJ

1-2 Figure 1-3
A VT 100 Terminal

l

Using the Terminal

1.1 USING THE TERMINAL KEYBOARD
All terminal keyboards have the same basic layout as a typewriter. In
addition, the keyboard includes special keys that affect various compu.ter
functions. These keys are not in the same position on all terminals; so
check the keyboard layout each time you use a terminal that is new to
you. Figure 1-4 is the keyboard of the LA36 and VT52 terminals. Figure
1-5 illustrates the keyboard of the VT 100 terminal.

~~~~~~~~~~~g~g~§ 
~~~~~~§~[g~~~g ~ii~§ 
§~~~@]~~~~~[g~§~§
§§~~~~~~~[~;m~[~;m;~~;~§§

[; ~
Figure 1-4 LA3 6/VT5 2 Terminal Keyboard

Figure 1-5 VTIOO Terminal Keyboard

1.1. l Terminal Function Keys
Some of the function keys that appear on terminal keyboards are de­
scribed in Table 1-1. Check the documentation for the system program
you are using for specific information on that program's use of terminal
function keys.

1.1.2 Control Characters
You can enter a control character by pressing the appropriate letter while
you hold down the CTRL key. The system responds to some control
characters by displaying the up arrow (") followed by the letter you
typed CU, for example). Some other control characters are not echoed
on your terminal, depending on the function they perform.

The control keys listed below are options selected at system generation.
Therefore, if they do not work for you as described below, check with
your system manager to see if they are part of your system.

1-3

Using the Terminal

Function Key

CR or RETURN

CTRL/n

Table 1-1 Special Terminal Keys

Description

Terminates an input line and advances the
carriage or cursor to the first position on the
next line.

Part of numerous 2-key combinations (CTRL
and a letter key. When you press the CTRL
key, followed by the appropriate letter, the
combinations can perform a variety of func­
tions. Each valid combination is called a
control character, represented in this man­
ual by n, where n is a variable letter (see
Table 1-2).

RUBOUT or DELETE Deletes the last character typed on the cur­
rent line and, if you press the key repeatedly,
deletes contiguous characters to the left.
Most CRT terminals remove each deleted
character from the screen and move the print­
ing position back one space. However, a
hardcopy terminal prints a backslash (\),
then each character as you delete it, then
another backslash (\) before it prints the first
correct character. For example:

TAB

MISTKAE\EAK\AKE

Advances the printing position to the next
tab stop. Tab stops occur after every eighth
character position in the line. In other words,
the first tab stop is character (column) 9.

These control keys will not always work as described here when you use
them with various system programs. For example, some editing programs
do not read CTRL/Z as an exit. Check the documentation for the system
program you are using to determine its use of control keys.

Table 1-2 describes the most commonly used control characters.

1-4

Character

CTRL/C

CTRL/O

Using the Terminal

Table 1-2 Terminal Control Characters

Description

Gains the attention of the Monitor Console
Routine (MCR), which interprets commands
to the operating system. In most cases, the
system responds to CTRL/C by displaying
the explicit MCR prompt:

MCR>

This prompt indicates that the system is ready
to accept input from your terminal.

Alternately suppresses and resumes the dis­
play of output at your terminal.

For example, if you are running a program
that generates unwanted output, type
CTRL/O. The system then temporarily stops
displaying output until you type CTRL/O
again to resume output display. (If you do
not type another CTRL/O, the system will
discard the entire output and then return the
default MCR prompt (>) to let you know
output is finished.

CTRL/S and CTRL/Q CTRL/S stops the display of output at your
terminal until you type CTRL/Q to resume it.
For example, if you are using a CRT terminal
that displays output too quickly for you to
read, type CTRL/S to halt the display. When
you have read what is on the screen, type
CTRL/Q to restart the output display. Repeat
the process until you have read the entire file.

CTRL/R Performs a carriage return and reprints the
current line on your terminal, omitting any
deleted characters, and making the line easier
to read. Before terminating the line with a
carriage return, type CTRL/R to ensure that
you have made the right corrections. For
example:

MISTKAE\EAK\AKE"R
MISTAKE

1-5

Using the Terminal

Table 1-2 (Cont.) Terminal Control Characters

Character Description

CTRL/U Deletes the current line. This allows you to
retype an entire line when individual correc­
tions would be impractical. Remember that
CTRL/U must be typed before the carriage
return in order to delete that line. After the
carriage return is entered, you must use an
editing command from an editor to delete
a line.

CTRL/X Clears your terminal's typeahead buffer and
enables you to type additional characters. The
typeahead buffer is an RSX-11 M feature that
allows your terminal to save up to 36 charac­
ters before it processes their commands. A
"bell character" echoes on your terminal no
matter what character you type when this
buff er is full. CTRL/X clears the buffer and
enables you to resume typing.

CTRL/Z Exits from many RSX-1 lM system (and user)
tasks and returns control of the system to
MCR.

Note the difference between the CTRL/0-CTRL/O pair of commands and
the CTRL/S-CTRL/Q commands:

• When you type CTRL/O after a previous CTRL/O, output dis­
play resumes further down in the file than the point at which
you halted it with the first CTRL/O.

• When you type CTRL/Q after a CTRL/S, output display begins
where it stopped. The total output can still be displayed on
your terminal.

1.2 MCR COMMANDS
The commands that interpret terminal input to control system operations
are called Monitor Console Routine (MCR) commands. You communicate
with MCR by entering a command line in the following form:

commandname parameter(s)/keyword(s) line terminator

commandname

1-6

Consists of three or more letters, terminated by a space, that uniquely
identify an MCR function. MCR only reads the first three letters.
Additional letters merely help you identify the command. (The only
exception to this 3-character rule is the HELP command. You must

Using the Terminal

type this entire command to distinguish it from the MCR HELLO
command.) Some examples of MCR commands are given below:

parameter

Command

ABO[RT]
DMO[UNT]
UFD

Function

Stops a running program
Dismounts a volume
Creates a User File Directory

Specifies the object of the command function, which is usually a task
or device. (A task is the basic executable program on an RSX-1 lM
system.) One or more blank spaces must separate the parameter from
the command name, or one parameter from another. For example,
when you issue the ABORT command, you include the name of
the running task to be aborted. The following command runs the
task ADDTWO at 12:25:00

RUN ADDTWO 12:25:00

The following command aborts the task ADDTWO:

ABOADDTWO

/keyword

Modifies either the actual function of the command or a parameter
of the command. When a keyword modifies a command function,
you must insert a space between the command name and the key­
word. For example:

commandname /keyword [=value]

When a keyword modifies a parameter of a command, the keyword
immediately follows the parameter. In addition, some keywords are
modified by an added numerical argument, shown in the examples as
value. For example:

parameter /keyword [=value]

Spaces are also not required between consecutive keywords:

parameter /keyword/keyword ...
commandname /keyword/keyword ...

For example:

SET /CRT=TI:

1-7

Using the Terminal

This command tells the RSX-l 1 M system that your terminal is a
CRT. TI: is a pseudo device name that stands for the terminal you
are using, that is the terminal from which a command was entered.
In this case, CRT is the keyword that determines the function of
the SET command.

line terminator

Represents either the carriage return <CR> or return key, or the
altmode or escape key (<ESC>). Because <ESC> has a special
meaning under certain circumstances, this manual uses <CR> as a
terminator. Any terminator causes the line to be sent to the com­
puter or to the task waiting for input.

Before typing a command, you must ensure that the terminal is in the
right state to accept commands by:

• Checking that the terminal's power is on
• Checking that the LOCAL/REMOTE switch is set to REMOTE
• Consulting installation instructions for additional required

terminal settings or instructions for using a dial-up line
• Typing CTRL/C to obtain the explicit MCR prompt (MCR>).

Both the explicit MCR prompt and the default prompt (>) indicate that
MCR is ready to accept input from your terminal. If you enter CTRL/C
when you are using a system program other than MCR, you can issue one
MCR command. The system executes that command and returns you to
the task you were in when you entered CTRL/C. Both DIGITAL-supplied
and user-written tasks can request input by displaying a task prompt at
a terminal.

NOTE
If you are working with a system that does not
support multiuser protection, you do not need
to log on and off the terminal. Terminals con­
nected to a nonmultiuser system are available
to f,lnY user. Therefore, you can ignore the
material in the remainder of this chapter.

1.2.1 The HELP Command
HELP is the only command (besides HELLO, the logging-on command)
that you can issue from a terminal before you log on the system. Because
the first three letters of HELP are the same as HELLO,' you must enter the
HELP command in full. When you issue this command, your terminal dis­
plays text (determined by each installation) that tells you how to log on
and how to issue further commands. Even if you do not need help initially,
issue the command at least once so that you know the nature of the infor­
mation available to you from the system.

1-8

•

•

Using the Terminal

1.2.2 The HELLO Command
To begin a session at the terminal, you must issue the MCR HELLO com­
mand to log on.

Logging on the system accomplishes several things:

• It allows the system to make sure that you are an authorized
user and to record information about your use of the system

• It grants you the use of the terminal for access to the system
until you log off

• It establishes initial default values for your terminal activities

The MCR HELLO command prompts for its parameters as follows:

> HEl...1::1...0::t<C!'.~>
ACCOUNT OR NAME:t~~ffi::t<CR>

C> r
1 <~s t··~nafYl(·:·~<Ct=~>

PASSWORD:Password<CR>

[g,m]

Commonly called a UIC and consists of two octal numbers that
identify your account on the system. The first number (g) stands
for your user group; the second number (m) is your member number
within the group. The general UIC format consists of the two num­
bers separated by a comma and enclosed in square brackets [g,m].
When you receive your UIC on a multiuser protection system, a
User File Directory (UFD) with the same number is created for
you.

Although you have access to other UFDs on the system, your UIC
remains the same, no matter which UFD you are working with.

last-name

Your last name, which you can enter instead of a UIC. The system
determines your correct UIC from the name you specify .

password

A 1- to 6-character alphanumeric string. The system maintains
account information, including correct passwords for each UIC and
last name. You cannot gain access to the system unless you type the
password corresponding to the UIC or name you have entered.

The system does not print (echo) on your terminal the characters
you type in response to the PASSWORD prompt. This ensures that
your password remains private and that no one can log on using your
account.

1-9

Using the Terminal

If you do not know your UIC or password, contact the system manager or
whoever controls the use of your system.

An example of the log-on procedure follows:

>HEl ... <Ct:~>
ACCOUNT OR NAME:coNRAD<CR>
PASSWORD: <CR>

RSX·· .. :I. :l.M Bl...26 MUL..TI USEF~ SYSTEM

GOOD AFTEl:~NOON

:l.2 .. w,JAN· .. ·79 :I. :I.: 07 LOGGED DN TEF~MIN1~I... TT:~2 t

:I. () ,JAN· ... '7?

>

SYSTEM WILL.. BE DOWN TODAY FROM 13:00 TO
15:00 FOR CORRECTIVE MAINTENANCE

When the system receives the correct password the terminal displays a
message that includes system identification and the date and time you
logged on the terminal. Notice the password is not echoed in the example
above; this is the way your terminal will look when you enter your
password. The terminal can display additional messages, which usually
supply information that affects general use of the system. The default .
MCR prompt (>) on the line after the messages indicates that the mes­
sages are complete and MCR is ready to accept commands.

If the following message appears when you try to log on, someone else is
using the terminal:

HEI... OTHEF~ usi:::1:~ LOGGED ON

Either try to log on a different terminal or find the person who logged on
before you. Do not use the terminal without the other user's knowledge.

The Quickest Ways to Log On
Most users want to type as little as possible when using a terminal; they
also want the quickest possible response time. This section describes ways
to shorten the log-on procedure.

Suppressing System Messages
The HELLO command allows you to enter a special form of the UIC
parameter to suppress the display of most of the system messages. (The
system message file text can be written so that important messages cannot

1-10

..

Using the Terminal

be suppressed.) The normal format for a UIC is [g,m]. However, if you do
not want to see the system messages, replace the comma with a slash (/)
as :follows:

[g/m]

HELLO allows four UIC formats:

g/m
[g/m]
g,m
[g,m]

Either of the slash formats suppresses all but the most important of the
system messages. When you log on, brackets around the UIC are optional.
However, a UIC must always be specified in the format [g,m] when it is
a parameter of any other command.

Suppressing ACCOUNT OR NAME Prompt
Another way to shorten the time required to log on is to enter the
HELLO command and UIC (or last name) on the same line using a slash
character as a separator:

>HEI... 20 :I. /:3 :I. 2<CF~>
PASSWORD! <CR>

This command format suppresses the prompt for ACCOUNT OR NAME.

Automatic Execution of Log-On Command File
After you log on a terminal, the system automatically assigns the name
SY: to your system disk and then searches your UFD on SY: for the file
LOGIN.CMD. If found, the system sends LOGIN.CMD to the indirect
command processor, which executes all of the commands in LOGIN.CMD.

This feature is useful when there are specific commands you issue each
time you log on the system.

For example, you could use your login command to set your terminal to
be a CRT and to accept lower case letters. You could also include in the
file a command to print a text file containing messages to yourself Gust
as the system prints a text file containing messages to all users when you
log on). When you want to change the messages to yourself, you simply
edit the text file MYLOGIN.TXT below. In this case, the following
message is displayed on your terminal after the system messages:

1-11

Using the Terminal

> @L..DG IN. CMD
>SET /l ... OWEf~::::T I:
>SET /Cl:~T::::T I:
>PIP TI:=MYLOG.TXT
10:00 MEETING WITH MANAGEF~S
:1.1: 00 F~ACC~UETHAl ... I... WI TH ,.JACI\
:t.2: 30 FINANCE COMMITTEE MEETING
>@<EDF>

1.3 ERROR MESSAGES
When MCR receives input that it does not recognize or that it knows to be
incorrect, it displays a message on your terminal. An example is the mes­
sage that appears if you try to log on a terminal already in use. You will
receive a different message from MCR if you enter a UIC (or last name)
or password that the system does not recognize:

> HEL<CF~>
ACCOUNT· OR NAME:CONRAK<CR>
PASSWORD: <CR>
HEL -- INVALID ACCOUNT

>

This attempt to log on was not successful, either because the system did
not recognize the last name (CONRAK), or because you did not enter
the correct password.

The appropriate user response to an error condition depends on the
message displayed. All messages returned by MCR commands are ex­
plained in the RSX-1 JM/M-PLUS MCR Operations Manual. Command
descriptions in that manual include a list of possible messages that the
command can generate. The manual also includes an alphabetical list of
all MCR messages.

Each message a task prints on your terminal begins with the 3-letter name
of the associated command or task sending you the message. When you
encounter an error while running a system task, such as a text editor,
look for an explanation of the message in the documentation for that
task.

1-12

'\

""'

CHAPTER 2

PROGRAM PREPARATION

Four steps are required to prepare a program to run on RSX-1 lM:

1. Create a source file
2. Compile or assemble the source file to produce an object

module
3. Link the object module to create a task image file
4. Run the task (using an MCR RUN command)

Each of the steps involves the manipulation of at least one file, which is
an owner-named and created area on a mass storage volume (usually a
disk or tape),

When you log on a terminal, the system automatically allows you access
to a disk. This disk is your default system disk on which RSX-11 M stores
all your files unless you specify otherwise. (If your system does not have
multiuser protection, you have automatic access to a system disk that is
also accessible to all users.) This chapter assumes you are using your
default system disk.

Note that the RSX-1 lM operating system lets you run programs written
in a number of computer languages. The MACR0-11 assembly language is
always included with RSX-1 lM. Check with your system manager to see
what other languages are available to you.

Each language has its own system program (called an assembler or com­
piler, depending on the language). This system program translates a source
program into an object module and makes sure that the source program
follows the language syn tax rules.

Each language compiler or assembler can only translate source files
written for that language: the FORTRAN-IV program in this book must
be compiled by a FORTRAN-IV compiler (see specific language documen­
tation for more information.)

Although this manual illustrates the creation of a FORTRAN-IV program,
you follow the same steps to create a MACRO program, a COBOL pro­
gram, or a program in any other compiled or assembled language. The
only difference is in the language translator you use.

2.1 CREATING THE SOURCE FILE (EDI)
The RSX-1 lM Line Text Editor (EDI) is a system program you can use to
create a source file. (You can also use EDI to create other types of files,
such as text files and data files.) RSX-1 lM includes two other editing pro­
grams: the DEC Standard Editor (EDT) and the Source Language Input

2-1

Program Preparation

Program (SLP). EDT is especially useful with a CRT terminal because it
lets you edit by character as well as by line. SLP is used primarily to
maintain system programs. (See the RSX-11 Utilities Manual for docu­
mentation of EDT and SLP, as well as additional information about EDI.)

This chapter uses a limited number of EDI commands to show you how to
create and edit the source file for ADD.FTN.

2.1.1 Using EDI to Create a Source File
To invoke EDI, issue a call to the editor in the same way that you issue
an MCR command. (Remember you can always type CTRL/C to get the
explicit monitor prompt and make sure your command is going to MCR.)

> EDI<CR>

EDI displays its task prompt:

EDI>

To create a new file using EDI, specify a file name and a file type in the
following form :

EDI>filename.filet~Pe

filename

A 1- to 9-character alphanumeric string.

file type

A 3-letter abbreviation, preceded by a period (.). The abbreviation is
usually related to the file's contents. The following are standard file
types for programming language source files:

Type Language

.BAS BASIC

.CBL COBOL

.FTN FORTRAN

.F4P FORTRAN-IV-PLUS

.MAC MACRO

The following example, which is used throughout this chapter, illustrates
the creation of a FORTRAN IV source file called ADD.FTN. ADD.FTN
is an interactive program that prompts you to type two numbers at a
terminal. The program then adds the two numbers and prints the result on
your terminal.

2-2

"

Program Preparation

EDI> <CF~>
>EDI ADD+ FTN<CF~>
[CREATING NEW FILEJ
INPUT

When EDI receives the name of a new file, it creates an empty file
with that name and type and displays the two lines shown in the example
above. EDI prints INPUT to let you know it is ready to accept input from
your terminal. Anything you type except for control characters becomes
part of the file called ADD.FTN. You can then type in the source program
for ADD.FTN. When you terminate each line of input with a carriage
return <CR>, EDI stores the line in a buffer. When you end the editing
session, EDI writes the entire buffer to the file ADD.FTN.

You can use the keyboard facilities described in Section 1.1 to correct
any mistakes on the current line before you type <CR>. Once a line has
been terminated and written to the buffer, you must use EDI commands
to make any changes.

You can also enter the new file name and file type on the same line as
the call to EDI. This quicker way to create a file is illustrated below. Note
the use of the DELETE or RUBOUT key, CTRL/R, and CTRL/U in the
example:

>EDI ADD+FTN<CR>
[CREATING NEW FILEJ
INPUT

TYPE l. <Cl=i:>
:L FORMAT (' ENTER TWO NUMBERS - M,N'><CR>

APPE\EPP\CCEPT 2,K,L~R

<CF~>

*EX<CR>
[EXIT:J
:::·

ACCEPT 2,K,L<CR>
FORMAT <222\22\I5><CR>
PF~INT"'U

TYPE :3, K+l ... <Cl=i:>
FORMAT <' THE SUM IS 'vI5><CR>
STOP<Cl=i:>
END<CI:~>

After you terminate the last line of text in the program, type a carriage
return as the first character in the new line. EDI responds by displaying
an asterisk (*) prompt. Until now, EDI was in Input Mode, the mode it
entered to create a new file. Typing a carriage return (<CR>) at the
beginning of a new line switches EDI to Edit Mode. The asterisk is EDI's
prompt for co·mmands.

2-3

Program Preparation

The command EX[IT] instructs EDI to write ADD.FTN to your disk area
and to return control of your terminal to MCR.

The KILL command closes both input and output files and deletes the
output file. It eliminates all traces of the current editing session.

2.1.2 Editing an Existing File
To edit an existing file with EDI, enter the same command you used to
create a new file:

>ED I Ann. FTN<c1:~>

Because a copy of ADD.FTN now exists on disk, EDI responds differ­
ently, as follows:

>EDI ADD+ FTN<CI:~>
[00008 LINES READ INJ
CPAGE :I. ::I

*
EDI creates a copy of ADD.FTN and enters Edit Mode, indicated by the
asterisk (*) prompt. The message [00008 LINES READ IN] tells you the
number of lines EDI has placed in its buffer. The lines in the buffer make
up the text currently available for editing. The buffer may or may not
contain the entire input file, depending on the size of the file and the
buffer. To access text beyond the current buffer, issue a RENEW com­
mand in Edit Mode. Renew writes the current buffer to the output file
and refills the buffer with the next block of text.

An internal line pointer determines the line within the buffer to be edited.
When EDI reads in a buffer, the line pointer points to the line immedi­
ately preceding the first line of text. This allows you to insert one or more
lines at the top. You can subsequently reposition the pointer by searching
for a particular piece of text or by using commands that reposition the
pointer.

Locating and Changing Text
The EDI commands listed below allow you to find and change text in a
file. You can abbreviate most EDI commands to one or two letters. In
the following text, the optional portion of each command is in square
brackets [] .

2-4

Command

L[OCATE]

C[HANGE]

N[EXT]

P[RINT]

T[OP]

BO[TTOM]

<CR>

Program Preparation

Function

Locates a string of text in the current buffer

Replaces one text string with another

Advances the line pointer to the next line (EDI
displays the Edit Mode prompt (*) but does not
display the line)

Displays the current line on your terminal

Positions the line pointer at the top of the current
buffer

Positions the line pointer at the bottom of the
current buffer

Points to and displays on your terminal the next
line in a file

An example of an EDI editing session is shown below with text explaining
what each command does to change or to locate lines in the file and print
them on the terminal.

>EDI ADD~FTN<CR>
C00008 LINES READ INJ
[PAGE :I.]
*LOCATE ENTER<CR>
:L FOF~MAT < ' ENTEi:;: TWO NUMBE!'.~S M v N /)

*
The LOCATE command in the example above points to and prints the
next line in the file (after the current line) containing the word ENTER.)

*CHANGE/ENTER/TYPEl<CR>
1 FORMAT (' TYPE TWO NUMBERS - M~N')

*
The CHANGE command above changes the word ENTER to TYPE. Note
that the slash characters (/) are used to delimit both the old and the new
text strings. Any ASCII characters that are not used in either string can be
used to delimit a string. EDI then prints the corrected line on your
terminal.

* NEXT<CI~~>
*

2-5

Program Preparation

The NEXT command points to the next line in the text, but does not
print it on your terminal.

*PRINT<CR>
ACCEPT ::.~ ,..1\ ,..1..,

*
The PRINT command above displays the current line on your terminal.

*LOCATE SUM<CI=<>
3 FORMAT (' THE SUM IS 'vI5)

*
The LOCATE command points to and prints the next line in the file con­
taining the word SUM.

*CHANGE/SUM/RESULTl<CR>
3 FORMAT(' THE RESULT IS ',,15)

*
The CHANGE command above changes the word SUM to RESULT.

*LOCATE <2I5><CR>
l:*EOB*J

The LOCATE command searches for a line containing (2I5). In this case,
EDI reaches the end of the buffer (EOB) without finding the string (215).
The EDI line pointer only moves forward through the buffer in response
to a LOCATE command. It does not search backward through a file.

* TDP<c1:~>
*

The TOP command moves the line pointer to the top of the buff er (one
line before the first line of text). At that point, Edit Mode displays the
asterisk prompt (*).

*<CR>
TYPE :L

*
When you enter a carriage return in response to the asterisk prompt EDI
prints the next line on your terminal. The carriage return also moves the
EDI line pointer to the next line. Therefore, it performs the same func­
tion as the NEXT and PRINT commands. In this example the pointer
points to the first line in the buffer.

2-6

'--''

I

~

* EX:CT<Cr~>
l:EXIT::I

Program Preparation

The EXIT command writes the current buffer and the remainder of the
input file to the output file, closes both input and output files, and exits
from EDI to MCR.

Inserting and Deleting Text
The EDI commands listed below allow you to insert and delete text in
the file.

Command

l[NSERT]

A[DD]

D[ELETE]

<ESC>

R[ETYPE]

Ll[ST]

TYPEn

Function

Inserts one or more new lines of text in a file.

Adds text to an existing line.

Deletes the current line.

Points to and prints the previous line. Note, how­
ever, that <ESC> does not display the line you
just entered with an Insert command. It moves
the pointer up one line in the text and displays
that line.

Replaces the current line of text with a new line.

Prints on your terminal the lines remaining in the
buffer, from the current line to the end. After the
LIST command executes, the line pointer is reset
to the top of the buffer.

Prints on your terminal the next n lines, but does
not reset the line pointer.

An example of an EDI editing session is shown below with text explaining
what each command does to insert or delete text.

>ED I ADD+ FTN<c1::~>
[00008 LINES READ INJ
I:: P(~1GE :I. ::I

*
EDI retrieves the latest version of ADD.FTN. Note that if you want to
edit an earlier version of ADD .FTN, you can include a version number in
this command.

2-7

Program Preparation

*I NSEF~T <Cl:~>
C THIS PROGRAM ADDS TWO NUMBERS<CR>
<CF~>
*<ESC>
C*BOH*:J
<CF\>
c

*
THIS PROGRAM ADDS TWO NUMBERS

The EDI INSERT command in the text above switches to EDI Input
Mode and inserts text immediately before the first line of text already in
the buffer. The second carriage return takes you back to Edit Mode. The
<ESC> command from Edit Mode causes EDI to display the line before
the current line. In this case, the line before the current line is the begin­
ning of the buffer [*BOB*]. The carriage return moves the pointer to the
line you just inserted, which is now the first line of the text.

*LOCATE NUMBERS<CR>
1 FORMAT (' TYPE TWO NUMBERS - M,,N'>
*ADD ! PROMPT FOF\ INPUT <Cl:~>
*PRINT<CR>
1 FORMAT(' TYPE TWO NUMBERS - M,,N'>!PROMPT FOR INPUT

*
The LOCATE command finds the line on which a string occurs, the ADD
(append) command attaches a comment text to the line, and the PRINT
command displays the revised line.

*LOCATE RESULT<CR>
3 FORMAT C' THE RESULT IS ',,15)
*DELETE <Cf\)

*
The DELETE command deletes the current line and moves the pointer to
the next line.

*<ESC>
TYPE 3,,1\+L

*
The <ESC> command causes EDI to point to and print the previous line
in the buff er on your terminal.

*INSERT <Cl~>
3 F () F~ MAT (, THE s l.J M I ~:> I " I !=.=;) ! D I s p I... ,{:l y 1:~ Es u I... T < c i:~ >
<CR>

*

2-8

""·

Program Preparation

EDI enters insert mode and inserts a new line of text. The second carriage
return causes EDI to reenter Edit Mode at the current line.

* TOP<CI:~>
*·<CR>
C THIS PROGRAM ADDS TWO NUMBERS
*;RETYPE c ADD DISPLAYS THE SUM OF Tl1,ID NUMBEl:;~s<:ci:;~>

*
The TOP command repositions the line pointer to the top of the buffer.
The carriage return points to and prints the next line, which in this case is
the first line in the buffer. The RETYPE command replaces the current
line with the text that follows the command.

* LIST<CR>
C ADD DISPLAYS THE SUM OF TWO NUMBERS

TYPE 1.
1 FORMAT(' TYPE TWO NUMBERS - M,N'>!PROMPT FOR INPUT

ACCEPT 2,K,L
2 FORMAT <2I5>

TYPE ~5, l\+I...
3 FORMAT (' THE SUM IS 'vI5) !DISPLAY RESULT

fHOP
END

*
The LIST command displays the lines from the current line to the end of
the buffer.

* EX<CF~>
l::EXIT:J
>

When you issue the EXIT command, EDI writes the file to your disk area
and returns control to MCR.

2.1.3 Basic EDI Commands
Table 2-1 summarizes the basic set of EDI commands. These commands
provide all the functions you need for simple editing.

2-9

Program Preparation

Table 2-1 Basic EDI Commands

Command Description

A[DD] string Appends string to the current line.

BO[TTOM] Moves the line pointer to the bottom
of the current buffer.

C [HAN GE 1/string1 /string2/ Replaces string 1 with string2 in the
current line.

<CR> When in Input Mode, <CR> returns
you to edit mode.

When in Edit Mode, <CR> prints
the next line on your terminal and
moves the line pointer to that line.

CTRL/Z Closes the input and output files and
terminates the editing session.

D[ELETEl Deletes the current line.

<ESC> Points to and prints the previous line.

EX[IT] Closes the input and output files and
terminates the editing session.

I[NSERT] string Inserts string before the next line or
enters input mode if string is omitted.

KILL Closes both input and output files
and deletes the output file.

L [OCA TE] string Locates the ne~t line containing the
object string. The search stops at the
end of the current buffer.

N[EXT] Advances the line pointer to the next
line.

P[RINT] Prints the current line on your
terminal.

REN[EW] Writes the current buffer to the out-
put file and reads in another buffer
from the input file.

2-10

Program Preparation

Table 2-1 (Cont.) Basic EDI Commands

Command Description

R[ETYPE] string Replaces the current line with the
object string.

T[OP] Moves the line pointer to the top of
the buffer.

TYPE Prints on your terminal the next
n lines but does not reset the line
pointer.

2.2 COMPILING A FORTRAN-IV SOURCE FILE
After you have created a FORTRAN-IV source file, in this case ADD.FTN,
the next step is to compile the program into machine-readable (binary)
form. This c"ompiled program is called an object module.

2.2.1 Creating an Object Module
You begin the compilation process by issuing a call to the FORTRAN-IV
compiler (in the same way you issued a call to the editor, EDI):

>For~ ADD. (JI:f .. J::::Af.II:t. FTN<CF~>

This command line tells the FORTRAN-IV compiler to compile the
source file ADD.FTN to produce an object module called ADD.OBJ. As
the example shows, you specify from left to right the output file (ADD.­
OBJ), an equal sign(=), and the input file (ADD.FTN).

NOTE
RSX-1 lM command line specifications follow
the convention used by many computer lan­
guages: the output of a process appears to the
left of the equal (=) sign and the input to the
process appears to the right. (See Chapter 3 for
more information on file specifications.)

The FORTRAN-IV compiler defaults the object file type to .OBJ and the
source file type to .FTN. This means that if you do not include a file type
with the file name in a command to the compiler, FORTRAN searches for
a file with the name you supply and a file type of .FTN. If it finds one, it
uses that file as input. FORTRAN creates a file with a type of .OBJ as
output if you do not specify an output file type.

2-11

Program Preparation

Most RSX-1 lM system programs and all language processors use defaults
in this way. For this reason, you should use the standard file types when­
ever possible. (Additional standard file types are described in the RSX-
11 M/ M-PL US MCR Operations Manual and are listed in the RSX-llM
Mini Reference.)

The default file types in the FORTRAN-IV command line are shown in
Table 2-2.

Table 2-2 Default FORTRAN-IV Compiler File Types

File

Input Output Default File Type

Source File .FTN
Listing File .LST
Object Module .OBJ

Using the defaults, you can shorten the above command to:

>FOR ADD=ADD<CR>

By appending switches to the input and/or output file specifications, you
can make special compilation requests. (See the IAS/RSX-11 FORTRAN
IV User's Guide for a description of the FORTRAN-IV compiler
switches.) All of the examples in this section assume you are using the
compiler defaults.

2.2.2 Creating a Listing File
In addition to translating a source program to an object module, the
FORTRAN-IV compiler can also supply a listing file and a storage map for
the program. To create a listing file you enter the command:

>FOR ADD,ADD=ADD<CR>

The second ADD on the output side of the command instructs the com­
piler to produce a listing file and storage map (called ADD.LST) for the
source program. The listing file provides information on compiler errors
and the storage map lists the symbolic names used in the program and
flags references to symbols that will have to be resolved by the Task
Builder.

If the system includes the Queue Manager and spooling to a line printer,
the FORTRAN-IV compiler automatically puts ADD.LST in the line
printer queue. You can inhibit this automatic printing with the following
command line:

>FOR ADD~ADD/-SP=ADD<CR>

2-12

Program Preparation

The -SP switch tells the compiler not to spool the listing.

The compiler also stores a copy of ADD.LST on your system disk. (If
your system does not include spooling~ the compiler only stores the file
on disk.)

The FORTRAN compiler can also produce a listing file of your program
without creating an object file. This feature enables you to find errors in
your program using the listing file, without generating multiple versions
of unusable object files. To produce only a listing file, enter a command
in the following form:

>FOR ,..ADD=ADD<CR>

Following this command, ADD.LST is both spooled to the line printer on
systems with spooling and also stored on your disk area.

Note that you must enter a comma before the listing file specification in
the command line; otherwise the compiler interprets ADD as an object
module instead of a listing file.

The following command causes a copy of ADD.LST to be displayed at
your terminal but not printed on the line printer or saved on disk:

>FOR ADD,..TI:=ADD<CR>

2.2.3 Requesting a Nonresident FORTRAN-IV Compiler
In some cases, you may issue the FOR command and receive the message:

MCR -- TASK NOT IN SYSTEM

This means that the FORTRAN compiler is not currently installed on
your system. To install the compiler, issue the MCR command:

This command tells the system to install the FORTRAN compiler in
memory and to activate it at your terminal. The compiler responds with
the prompt:

FOF~>

You then enter the FORTRAN-IV command as illustrated previously:

FDI:~> (.~1DD,.. ADD;:::ADD<CF~>
FOi:~> ,.,z

2-13

Program Preparation

After the compiler executes your commands, it displays the task prompt
(FOR>) once again. At this point, you can compile additional FORTRAN
programs or exit from the compiler. Enter CTRL/Z to terminate the com­
piler and remove it from memory. (See the RSX-1 IM/M-PL US MCR
Operations Manual for details on the RUN command.)

2.3 BUILDING A TASK IMAGE
The RSX-I IM Task Builder converts the object modules created by a
language translator into a single task image file. This task image file
resides on disk until someone issues an MCR command to install and run
it. (You may have used computer systems which referred to some parts of
the Task Building process as linking or loading.)

2.3.1 Full Task Build Command Line
A full Task Builder command line uses three output files and any number
of input files. The output files are:

1. The task image file (filename.TSK) which contains the task
image to be installed and run

2. A memory allocation file (filename.MAP) which contains infor­
mation about the size and location of various parts of the task

3. A symbol definition file (filename.STB) which contains infor­
mation about the task's global symbol definitions (The STB
file is not needed or created in most Task Builder operations.)

The input files include all of the object modules and modules from system
or user libraries required to produce a single task image. The full Task
Builder command line is:

>TKB task image file, map file, symbol definition file=object file(s)

Table 2-3 illustrates the default file types in the Task Builder command
line.

Table 2-3 Default Task Builder File Types

File

Input Output Default File Types

Object File .OBJ
Task Image File .TSK
Task Builder Map .MAP
Symbol Definition .STB

2-14

...

Program Preparation

To Task Build ADD.FTN, issue the following command:

In this command, LB: is a pseudo device name for the device containing
the library, [1,1] is the UFD where the library is stored, and FOROTS
is the FORTRAN Object Time System library. The RSX-llM/M-PLUS
Task Builder Manual describes the use of the LB switch to include OTS
libraries in task image files.

Using Task Builder defaults, the command can be shortened to:

2.3 .2 Short Task Build Command Lines
Like the compiler, the Task Builder allows you to omit any output file
or to direct output files to your terminal or to a line printer. However,
if you omit an output file in the beginning or middle of the output side of
a file specification, you must retain the comma in place of the file name
to specify a null (empty) field. On the input side of the command, use a
comma to separate one input file from another. Table 2-4 illustrates the
creation of Task Builder output files.

Table 2-4 Task Builder Output Files

Command Line Output Files Generated

>1'KB .TSK,.MAP,.STB=.OBJ All three output files

>TKB ,,.STB=.OBJ Symbol definition file only

>TKB ,.MAP,.STB=.OBJ Memory allocation and symbol
definition files

>TKB .TSK,,.STB=.OBJ Task image and symbol defini-
tion file

>TKB .TSK,.MAP=.OBJ Task image and memory alloca-
tion files

>TKB .TSK=.OBJ Task image file only

2.3.3 Multiline Task Build Command Procedures
A long list of input files can cause a Task Builder command line to exceed
the terminal's maximum line length. If this happens, you can invoke the
Task Builder in the following manner:

> Tl\B<CI:~>
Tl\B>

2-15

Program Preparation

After you enter the carriage return, MCR activates the Task Builder,
which then returns the TKB> prompt. The Task Builder displays its
prompt after each line of input until you enter two slash characters (//)
and a carriage return at the beginning of a line. The slash characters ter­
minate operation of the Task Builder and return you to MCR. For
example, the single command line:

>TKB
TKB>filnam.TSK,filnam.MAP,filnam.STB~filnam.OBJ,OBJ~OBJ<CR>

can be entered as:

T KB> f i l n am • T SJ\ ,.. f :i l n am • MAP , f :i 1 n am • ST B :::: f :i 1 n am :I. • Cl BJ< CF\>
TKB>filnam2.0BJ,f:ilnam3.0BJ<CR>
TKB> I !<CR>
>

2.3.4 Listing the Memory Allocation (MAP) File
The memory allocation file (map file) is an ASCII file that contains infor­
mation about the size and location of components within the task. If your
system includes the queue manager and print spooling options, the Task
Builder spools the file to the line printer by default.

Without the spooling option, however, the Task Builder only stores the
file on your system disk.

2.3.S Task Builder Switches and Options
The Task Builder includes a variety of switches and options to control the
creation of a task image on disk. These switches and options are described
in detail in the RSX-1 JM/M-PL US Task Builder Manual.

2.4 RUNNING A TASK
To run the task you created, issue an MCR RUN command as follows:

> 1:~UN ADD <CF~>

The RUN command instructs the system to:

• Locate ADD .TSK on your default system disk
• Load a copy of the task image into memory
• Execute the task

2-16

-=!

Program Preparation

When you use this form of the RUN command, the task image file remains
on disk, ready to be run again, until it is explicitly deleted.

The following sections illustrate three successful executions of the
FORTRAN-IV program ADD.TSK. Remember that ADD is an interactive
program; that is, it prints a message on your terminal and then waits for
you to type in a response before it performs the calculations and prints
the result on your terminal.

>RUN ADD<CF~>
TYPE TWO NUMBERS - MvN
7, 3<CF~>
THE SUM IS :1.0
TT47 STOP
>

>F~UN ADD<CF~>
TYPE TWO NUMBERS - MvN
~.:;22, 1.>2B<Cf~>
THE BUM IS :I. :t.~:jO
TT47 -. STOP
>

>RUN ADD<Ct=~>
TYPE TWO NUMBERS - M,N
<-;, :I. b<CF\>
THE SUM IS 2~.)

TT47 -·HH STOP

Note that when the program completes execution, it displays the line:

r·r4·7 STOP

TT 4 7 is a temporary name assigned to the task when you issue the RUN
command. The version of the RUN command used in this example causes
the system to name the task TTn, where n is the unit number of the ter­
minal running the program.

Figure 2-1 reviews the steps to creating the FORTRAN-IV task ADD,
including the specific files created in each step.

2-17

Program Preparation

>EDI

EDITOR

COMPILER

>TKB

OBJECT
MODULE

TASK
BUILDER --­________

>RUN

EXECUTING
TASK

LISTING

SYSTEM
LIBRARIES

TASK BUILDER
MAP

SYMBOL
DEFINITION

FILE

Figure 2-1 Development of a FORTRAN-IV Task

2-18

CHAPTER 3

THE FILES

The RSX-11 M file specification is used by all RSX-11 M system programs,
including editors, compilers, utilities, and the Task Builder.

The examples in Chapters I and 2 emphasized using defaults in command
line file specifications. Defaults are useful because they allow you to use
the resources of the system without understanding every possible choice
available to you. They also permit you to do less typing. In many situa­
tions, however, you will need a complete file specification, because de­
faults alone will not cause the system to do what you want it to do.

The format of a full file specification is:

dev: [g,m] filename.filetype;fileversion

dev:

[g,m]

filename

file type

fileversion

The name of the device that holds the volume on
which the input file resides (or on which the out­
put file will reside).

A User Identification Code (UIC) identifying the
User File Directory (UFD) that contains (or will
contain) the file.

The 0-9 character name you supply for the file.

The 0-3 character type you supply for the file.

An octal number that distinguishes between dif­
ferent versions of the same file.

Examples of full file specifications are:

MTl: [116,23] CHARLA.F00;32

DMl: [203,204] FOO.FUM;S

DK2: (34,63] WHO.F00;3

Chapter 2 desc1ibes the file name and file type fields of a file specification.
The following sections describe the device name and UFD fields.

3.1 THE DEVICE NAME
The device name specifies the volume on which the file resides. The name
consists of two alphabetic characters and an optional 1- or 2-digit octal
unit number followed by a colon (:). When the name does not include a
unit number, the system tries to use unit number 0.

3-1

The Files

Device names in the above examples and their corresponding abbreviations
are listed below.

Name

DK2:

DMl:

MTI:

Physical Unit

RKOS disk, unit 2

RK06 disk, unit 1

TUI 0, TEI 0, or TS03 magnetic tape, unit 1

The device name can refer to one of two kinds of devices:

• An actual physical device, such as the three listed above

•
or

A pseudo device which can represent a variety of physical units,
depending upon which terminal enters the unit name

For example, the name Tl: is a pseudo device that refers to the terminal
from which input is being entered. When you enter input from terminal
23 on your system, your physical terminal number is TT23: and your
pseudo terminal is TI:. When you enter input from terminal 6, your
physical terminal number is still TT6: but your pseudo terminal remains
TI:.

Therefore, you can either write a program to send output to TT23 :, which
means you will always have to run the program from TT23 :, or you can
write it to send output to Tl:, which means it will always send output to
whatever terminal installs and runs the task.

Another pseudo device name is SY:, which corresponds to your default
system disk. All the files created so far in this manual reside on SY:.

Section 2.3.l describes the pseudo device LB:, the volume that contains
libraries.

Table 3-1 lists commonly used devices. The letter n stands for the unit
number of the device. There are different types of disks and magnetic
tapes, which have correspondingly different device names. Ask some­
one familiar with your system which names you should use. (See the
RSX-1 lM/M-PL US MCR Operations Manual for a complete list of device
names.)

3-2

-8;,

~I

~·

The Files

Table 3-1. Device Names and Abbreviations

Device Abbreviation

DECtape DDN:
DTn:

Disk DBn:
DFn:
DKn:
DLn:
DMn:
DPn:
DRn:
DSn:
DXn:
DYn:

Line Printer LP:

Magnetic Tape MMn:
MSn:
MTn:

Pseudo Terminal TI:

Terminal TTn:

Pseudo System SY:
Device

Because the names SY:, TI:, TT:, and LP: represent input or output
devices rather than storage media, they usually do not appear in a com­
plete command line. When you refer to one of these devices in a command
line, the device name stands alone on one side of the equal sign. For ex­
ample, the following command sends a copy of ADD.FTN from your
system disk to your terminal:

>PIP T :C: ::::1~DD ~ FTN<Cr~>
C ADD DISPL..1~YS THE ~:>UM OF TWO NUMBEF<S

TYPE :I.
1 FOF~MAT ('TYPE TWO NUMHEl:<s M v N') ! INPUT Pl'~OMPT

ACCEPT ::.~YI'\ YI ...
2 FORMAT <2I5>

TYPE ~iv l'\+I ...
~:-s F 0 F~ MAT (' THE BUM I B ' v I ~=.) > ! D I ~:> P 1... A Y i:< ES l.J 1... T

STOP
END

3-3

The Files

3.2 USER FILE DIRECTORIES
When you log on, you either use your login UIC itself or specify it in­
directly by using your last name. This UIC identifies the default User File
Directory (UFD) set up for you on your system disk (SY:) when the sys­
tem manager made you an authorized user. This UFD is itself a file that
lists the names of all files stored in your directory. None of the system
programs can locate a file unless they know the UFD in which the file is
listed.

The terms UIC and UFD are often used interchangeably in RSX-I IM. The
UIC, however, identifies the user and the UFD identifies the directory.

When you need to use files stored in other directories, you can use an
MCR SET command to change your default UFD (SET /UIC=[g,m]) or
you can specify a UFC in the file specification. The MCR SET command
changes the default UFD. However, neither of these actions changes the
UIC under which you logged on.

For example, if you want a copy at your terminal of a file from another
UFD, issue the command:

>PIP TI:=C302v200JCONRAD.MAC<CR>

This command assumes that CONRAD.MAC resides on your default sys­
tem disk, in UFD [302,200].

In a system without multiuser protection, your default UFD corresponds
to the UIC specified in the last SET /UIC command issued from the
terminal you are using.

To display the current default UIC on any system, issue the command:

>SET /U:t:C<CI:~>

When you issue a set command in this form, without specifying what
UIC is to be set, the system responds with:

U I C :::: [~.:.~ v m ::I

3-4

CHAPTER 4

PIP AND THE QUEUE MANAGER

The following sections introduce two utilities, the Peripheral Interchange
Program (PIP) and the Queue Manager, and show you how to use these
utilities to copy files, list the files in a directory, delete, rename, and
purge files, and print files on a line printer or display them on your
terminal.

4.1 PERIPHERAL INTERCHANGE PROGRAM
The Peripheral Interchange Program (PIP) manipulates files on RSX-I IM
by using appropriate switches to perform the operations.

Among other things, PIP allows you to

• Copy files from one UFD or device to another
• Delete files
• Rename files
• List directories of files
• Purge files

Any volume you refer to in a file specification must either be allocated as
public (available to all system users) or be allocated to you (on multiuser
protection systems only) and mounted. If any volume specified or implied
in a PIP command is not mounted or is allocated to another user, PIP
returns the message:

PIP -- DEVICE NOT MOUNTED/ALLOCATED
dd: r.:~.:.~ ll m::t

Device allocation, mounting, and UFD creation are all MCR functions
accomplished by the following MCR commands:

• ALLOCATE
• MOUNT
• UFD

(See the RSX-1 lM/M-PLUS MCR Operations Manual for a description of
these commands.) In the process of creating, editing, compiling and Task
Building ADD.FTN, RSX-1 lM created a number of files on disk:

• The original source file (ADD.FTN;l)
• An edited version of the source file (ADD.FTN ;2)
• An object file containing the compiled program (ADD.OBJ;!)

4-1

PIP and the Queue Manager

• A task image file containing linked object code (ADD.TSK;l)
• A memory allocation file (ADD.MAP; 1)
• A symbol definition file (ADD.STB; 1)
• Additional versions of the above files, if you repeated any of

the program preparation steps

All of these files remain on disk taking up space until you explicitly delete
them. RSX-11 M does not automatically eliminate old versions of files.
(Appendix A includes an example of how consecutive operations can
create multiple copies of files.)

You can invoke PIP from MCR in either of two ways:

1. The single line format, which executes one PIP command and
returns control to MCR:

>PIP /L.I<CF~>

DIRECTORY DBO:E301v314J
:I. 4 FEB ·7 <;' 0 9 : :I. 0

ADD. FTN v :·5
ADD+FTNv2
ADD+ FTN v :I.

or

:I.•
'") , +

:I. +

::.~::.~····FEB···· ·79 :I. 1 : 40
~?.2····FEB···· /<;> :I. 2: 00
:I. 9····FEB···· "/9 :I. :I. : 3:::.~

2. The format that passes control to PIP and allows you to execute
multiple PIP commands:

>PIP<c1:~>
PIP> I I ... I < C 1=~ >

DIRECTORY DBO:C30:1.v314J
:l.4· .. ·FEB····"79

ADD+ FTN? :·~
1~DD. FTN Y ~~~

1~DD. FTN v :I.

09: :I.()

:I. •
'') , +

:I. •

~?2····FEB·····79 :I. :I.: 40
22· .. ·FEB····"l<.» 12:00
:I. 9····FEB .. ··"79 :I. :I.: ::~2

TOTAL. OF 4./:1.:1.. BLOCKS IN 3. FIL.ES

PIP> ADD.FTN /PU<CR>
PIP>'·'Z

This chapter uses the one-line form shown in number I to illustrate PIP
command operations. Any command shown here can also be executed in
the method described in number 2.

4-2

PIP and the Queue Manager

4.2 PIP COMMAND LINE AND DEFAULTS
The format of PIP command lines differs for each function. In general,
however, PIP switches operate on lists of file specifications. PIP uses the
last value it encounters in a command line as the default value for that
command.

You can enter multiple file specifications in a single command line by
separating the individual file specifications with commas. The switch
follows the last file specification.

In the following example, PIP will delete the files named ARRA Y.FTN; 1,
MULT.FTN;l and HEX.FTN;l:

>PIP ARRAY.FTN;1vMULT.FTN;lvHEX.FTN;1 /DE<CR>

The individual file specifications within the list must each meet the
requirements of the PIP switch involved. Therefore, all of the files being
deleted in the example must include version numbers because the PIP
Delete switch requires version numbers.

Table 4-1 summarizes the PIP switches which are described in this chapter.
(See the RSX-11 Utilities Manual for additional information on PIP.)

The following sections describe and illustrate the use of these commands.

4.2.1 Displaying a File on Your Terminal
To display a copy of ADD.FTN on your terminal, enter a PIP command
in the following format:

>PIP TI:=ADD.FTN<CR>

This command produces the following display:

:L

>

TYF'E 1
FORMAT (' TYPE TWO NUMBERS - M,N') !PROMPT FOR INPUT
ACCEPT ~.~ v K v L
FORMAT C :~:c~::;)

TYF'E ~3, l<+L
FfJRMAT (I THE SUM IS I¥ :i:~:;) ! DISPLAY 1:~ESUl...T

STOP
END

4-3

PIP and the Queue Manager

Table 4-1 PIP Switches and Command Functions

Switch Meaning Description

/LI List Prints the names of requested files con-
tained in the specified UFD.

/BR Brief Prints a shortened version of the directory
generated by the list command.

/DE Delete Deletes the files specified.

/PU Purge Purges (deletes all but the highest num-
bered version(s)) of the files specified.

/SP Spool Spools (lists on the line printer) all files
specified. (Note that you can also use the
Print command of the Queue Manager for
this function.)

/RE Rename Renames the input file(s).

/CO Contiguous Copies the file into contiguous blocks on
the output volume.

/TR Truncate Truncates unused blocks at the end of the
file.

/CD Creation Date Copies the file, using the original creation
date, instead of updating it to the current
date.

/SD Selective Deletes the files specified, after asking you
Delete whether you want to delete each particular

file.

4.2.2 /LI - Displaying Your User File Directory
All of the files you create are listed in your UFD. The PIP /LI command
displays the UFD as follows:

4-4

PIP and the Queue Manager

>PIP /l...J:<CI:~> 0
DIRECTORY DBO:C210v76J
:I. O .. · .. FEB· ... '?9 :I. 4: 4B • • ADil+DB.J;2
ADD+ TSI'\; :I.
Af.1I1 +MAP v :I.
ADI:l+STB9:1.
ADD+ FTN v :I.
ADD+ TSI'\; :·~
ADD. DB • .J v :I.
ADD+TSl'\;2

• '')
• ,· .. t

:I. 9 +

4o0o
:3 (o

:1. +

::?,<,;>.
'') +

2<.» +

•
f' ·'
(" .,

(" ·'

(" •'

TOTAi... OF <,»<,;>.I :I. :I. 2. Bl...OCl\S IN B FI 1...ES

• >·

• 2!:.:; ,.JAN···· '7 r; :I. 4: :·3 :I .
20·· .. ,.JAN· ... '?9 :1.4 :32
2!:5 ,.JAN '79 :1.4: 32
:I. ::.~JAN ·79 :1.0: :3/
:l.O·· .. ,.JAN '79 a: :1.6

B ,.J,~N .. ·· /<).> :1.2: 0:1.
~.~9 ni:::c ·7B :1.:·3: 06
29· .. ·DEC ?B :1.3: 04

The PIP /LI version of the command includes the following information,
keyed to the numbers in the directory above:

0 The physical volume on which the files are stored, and the UIC
that owns the directory. The volume named is your default sys­
tem disk (SY:). The UIC is your default UFD.

8 The date and time PIP created the directory listing.

e The name, type, and version number of each file.

8 The number of blocks used by each file. A block is 512 bytes
(256 words) long.

8 A file code which indicates the file is either contiguous (C code),
noncontiguous (no code), or locked (L). Locked files usually
contain corrupted data. You can access them by using the PIP
Unlock switch (PIP filename/UN).

G The date and time ~each file was created.

8 The cumulative size in blocks of all the files listed and the num­
ber of blocks allocated to all the files.

PIP also provides switches to control the amount of detail given in the
directory listings. The BR switch causes PIP to generate a directory in
brief form. For example, the command PIP /BR causes PIP to print a
directory on your terminal in the form:

4-5

PIP and the Queue Manager

1~DD + FTN v :·~
ADD+FTN;2
ADD+ FTN ~:I.

The FU switch causes PIP to print a directory in more detailed (full) form,
as shown in the following example:

P 1 P /FU<CF~>

DIRECTORY DB1:C303,12J
21-FEB .. -'79 14: 49 • ADD. FTN; ~5 ::.~o· .. ·FEB '79 :L4: 2~~

C303,12J CRWED,RWED,RWED,RJ 21-FEB=79 14:07(4+>
ADD+FTN92 (6206,22) 57./57. 20-FEB-'79 13:41

C303,12J [RWED,RWED,RWED,RJ 21-FEB-79 14:22(4.>
ADD+OBJ;l (21142,3) 66./66. 20-FEB-'79 13+19

[303,12J CRWED,RWED,RWED,RJ 2 :I FEe ·79 :I. 4: 22 (4.)

This form provides the following information (in addition to the informa­
tion explained in the preceding example):

O A file identification number consisting of the file number and
the file sequence number. This information is used by the
RSX-11 M file system to keep track of your files.

9 Blocks allocated to each file (in addition to the blocks used).

8 A protection code which tells how your file can be accessed
by other system users.

O The date and time the file was last revised and the number of
revisions.

After displaying the directory in any of these forms, PIP returns control
to MCR.

4.2.3 Display Information on Specific Files
PIP allows you to obtain information about one file or a specific group of
files in a directory. For example, if you want to see how many versions of
ADD. TSK exist in your directory, issue the command:

>r-IP ADD.TS!\~* /l...I<CF~>

4-6

~

PIP and the Queue Manager

As the example illustrates, the file specification always precedes the
switch.

The command requests PIP to display a directory of all versions of the file
called ADD.TSK. The asterisk (*) in the version number field tells PIP to
search for all versions of the file.

The asterisk (*) character in one or more fields of a file specification
stands for all. This is also called a wildcard specification. PIP restricts
the use of wildcards in the cases listed below.

The folJowing restrictions apply to PIP output file specifications:

1 . Copying a single file
2. Listing a directory
3. When you copy several files, the output file specification must

be *. * ;* or default.
4. The output specification, used with the Rename and Enter

switches, can mix wildcards with specified fields. With either
switch, PIP uses the equivalent field of the input field specifica­
tion.

In all cases where PIP permits wildcards in the output file specification,
the wild card UIC fonn [*, *] is used to indicate that the output UIC is
the same as the input UIC.

The following restrictions apply to wildcards on PIP functions with input
files:

1.
2.

3.

4.

5.

6.

7.

8.
9.

10.

*. * ;* means all versions of all files in the current UFD
.DAT; means all versions of all files of file type DAT in the
current UFD
TEST.*;* means all versions and all types of files with the file
name of TEST in the current UFD
*. * means the most recent version of all files in the current
UFD
*.DAT means the most recent version of all files of file type
.DAT in the current UFD
TEST.* means the most recent version of all file types for files
named TEST in the current UFD
TEST.DAT means the most recent version of TEST.DAT in
the current UFD
[*,*] means all UIC group, member combinations from 1 to 377
[nl,*] means all UIC member numbers under group nl
[* ,n2] means all group numbers for member n2

ADD.*;* refers to all versions of all types of the file named ADD in the
current UFD.

4-7

PIP and the Queue Manager

4. 2.4 Deleting Files
Once you know what files are listed in your UFD, you can decide which
files you want to delete. For example, to retain the highest numbered
version of each of the files listed in Section 4.2.2, you would delete the
following files:

ADD.OBJ;!
ADD.TSK;l
ADD.TSK;2

To delete these files with the PIP Delete switch, issue the following com­
mand:

>

Note that the Delete switch requires either an explicit version number or
a wildcard in the version field. However, the use of a wildcard is inappro­
priate when your UFD includes files with the same name but other types
and versions that you do not want to delete. In this instance, you must
specify explicitly each file you want to delete.

4. 2. 5 Purging Files
When you want to eliminate all but the highest version of files, the PIP
Purge switch is often more efficient than the Delete switch. The follow­
ing Purge command has the same effect as the above Delete command:

>PIP ADD.* /PU<CR>
>

Purging does not affect any files in your UFD which only have one ver­
sion. Note that the file specification for the Purge switch does not include
a version field. After you issue the above command, you can issue the
following command to see what files remain in your directory:

>PIP /l...I<CI:~>

DIRECTORY DB0:[301Y314J
:1.4 FEB ·79 O<'f: :1.0

ADD+ OB,.J; 2 '') ,. ~:.~ !:.:; ···· ,JAN ·7 ?
ADD+ MAP; :I. 4. ::.~!::; ,J1~N / <?
ADD.STB; :I. 3+ :?!:.:; JAN /<?
AIID+FTN; :I. :I. + ~:.~oJAN '?9
ADD. TSK; ::~ ::.~9 + r ·' 2!:.) ,.JAN· ... ?S>

T 0 TA I... D F :·5 9 • I 4 9 • BI ... DC 1-:~ S I N !::; F I I... ES
>

4-8

:1.4 : :·3 :1.

:1.4:~·:~2

:I.!:_:;:)6

:1. 2: on
:I. 4 : :~~ :·:~

·\._.,,·

"-I

~

PIP and the Queue Manager

As the listing shows, the UFD now contains only the highest version of
each file.

4.2.6 Selectively Deleting Files
The PIP selective delete command prompts for your response before
deleting a file. The responses allowed (<CR>, "'Z,Y,N,Q, and G) cause the
following action:

Letter Terminator Operation

y <CR> Deletes file and continues

y "Z Deletes file and exits from PIP

N <CR> Saves file and continues

N "'Z Saves file and exits from PIP

NULL <CR>. Saves file and continues
(no response)

NULL "'Z Saves file and exits

Q <CR> Saves file and returns to command
mode.

Q "'Z Saves file and exits from PIP

G <CR> Deletes this and all remaining can-
didates for deletion, lists deleted
files, and returns to PIP command
mode.

G "Z Deletes this and all remaining can-
didates for deletion, lists deleted
files, and returns to MCR.

You can specify the Selective Delete switch (/SD) as follows:

PIP responds:

DELETE FILE DB1:[303Y12JADD+FTN;1 [Y/N/G/QJ1 Y
DELETE FILE DB1:C303Y12JADD.OBJ;1 [Y/N/G/QJ1 N

4-9

PIP and the Queue Manager

In response to your answers, PIP deletes ADD.FTN;l but does not delete
ADD.OBJ;l.

4.2.7 Copying Files
Copying files is PIP's default function; that is, if you enter a legal PIP
command line with no switches, PIP performs a copy operation. For
example, the following command copies the file ADD.MAP from your
UFD on SY: to your UFD on DK:.

>PIP DK:~ADD+MAP<CR>

The command includes the call to PIP, followed by a file specification in
the form:

outfile=infile

in file

The file to be copied

outfile

The new copy of the file

When you omit the UFD, file name, file type, and/or version number in
outfile, PIP defaults the UFD to your default UFD and the name, type,
and version number of the file to the equivalent fields in the input file.

Before you can copy a file to a directory on another volume, the directory
must exist on that volume. In a multiuser protection system, your direc­
tory on SY: is the only UFD automatically created for you; and in a non­
multiuser system, no UFDs are automatically created. If the output
volume specified in the above example does not contain a UFD corre­
sponding to your UIC, PIP returns the message:

PIP -- CANNOT FIND DIRECTORY FILE
~·~~·~n: [~.=.~,.. m ::I

4.2.8 Renaming Files
The PIP Rename (RE) switch allows you to rename existing files. For
example:

>

This command tells PIP to change the names of all types and versions of
the files named ADD to ADDTWO. Note that you must explicitly specify
either a number or a wildcard in both input and output version fields

4-10

PIP and the Queue Manager

when you use the Rename switch. The wildcards in the output file speci­
fication indicate that the type and version of the renamed files remain the
same. The directory now contains the following entries:

DIRECTORY DBO:C301,314J
4·-·AUG 7B :3: 0:3

ADDTWCJ • OB..J v 2
ADDTWD •MAP v :I.
ADDTWD • STB v :1.
ADDTWD • FTN v :I.
ADDTWD • TSK v :·5

4.
:L
:I. •
'')(') ""· ') . (

.,
•'

TOTAL OF 39./49. BLOCKS IN 5 FILES
>

2!=.)·· .. JAN ·79 :I. 4: ::~:I.
2~_:; ,.JAN· ... ·7<J :I. 4: :·52
2 !=.=; ,JAN '7 9 :I. 4 : :?> 4
20· .. ·JAN '79 :I.!:.:;! 26
:I.? ,.JAN '79 o::.~: 4:=.=j

Because the renaming function does not transfer data, you cannot specify
a different device in the output file specification. If you want to rename a
file as you copy it to another volume, enter the new name in the output
specification of the COPY command line. For example:

This command tells PIP to copy all types and versions of the file named
ADD, which are stored in your UFD on SY:, to an equivalent UFD on
the DK: disk, unit 0, where they will be named ADDTWO.

4.3 THE QUEUE MANAGER
System users often need to have copies of their files printed on the line
printer. Consequently, the line printer is in heavy demand. An RSX-1 lM
task called the Queue Manager provides for orderly use of the line printer.
It does this by maintaining a queue of files to be printed according to
their priority, time of request, and other factors, and by displaying infor­
mation to let you know your file's place in the queue.

4.3.1 Printing Files
To send files to the line printer queue, you use the Queue Manager PRINT
command, as follows:

>PRINT ADD.MAP<CR>

Note that you do not need to specify LP: or any other output file. This
command asks the Queue Manager to enter ADD.MAP to the queue of
files waiting to be printed. The system maintains the queue by file name
and file identification number, copying each file or group of files to the
line printer, usually on a first queued, first printed basis. The system also
allows you to specify that files be printed after a certain time or date.
Check the RSX-11 Utilities Manual for more information about the Queue
Manager.

4-11

PIP and the Queue Manager

4.3.2 Listing Files in the Queue
To determine whether a particular file is in the queue, waiting to be
printed, type the following Queue Manager command:

QUE /l ... IST<CI:~>

The names of all the files waiting to be printed will be displayed on your
terminal in response to this command in the following format:

** PRINT QUEUES **
8 Pl:~ I NT ::::> l ... PO:

4-12

C303,30J MPREF (2000,3276) ACT I VE ON l ... PO:

{
DBO:C303,4JMREF+DOC~1

• ~~0!~~02Y~~O~~~D:~T~~1
DK1+L!00,1JAlD3.~fN,~

8 Identifies the file currently being printed, its file identification
number, name, and the printer.

e Names of the files waiting in the queue to be printed. (These are
listed in the order in which they will be printed.)

APPENDIX A

SAMPLE FORTRAN PROGRAM

The following listing shows the development of the FORTRAN-IV pro­
gram, ADD.FTN, and the manipulation of the resulting files. The listing
illustrates how rapidly you can create numerous versions of the same file,
and what to do to eliminate the old versions.

What you type on your terminal is printed in red; what the computer
prints on your terminal is printed.in black.

>HE:I... <Ct=~>
ACCOUNT OR NAME: CONRAD<CR>
PASSWORD: <CR>

RSX-llM Bl...26 MULTI-USER SYSTEM

GOOD MCmNING
12-JAN-79 19:37 LOGGED ON TERMINAi... TT32:

1 ~~" .. ,.JAN 79

f:)YSTEM WI l ... L.. BE DOWN TDD1~ Y Ft=~OM :I. :3: 00· ... :1. ~=5: ()()

>EDI ADD~FTN<CR>
[CREATING NEW FILEJ
INPUT

<c1:~>

*EXIT
t::EXIT::t

TYPE :I. <ct=~>
FORMAT (' ENTER TWO NUMBERS - M,N'><CR>
APPE\EPP\CCEPT 2,K,L..~R<CR>
ACCEPT 2,K,L<CR>
FORMAT <222\22\I5><CR>
Pl~INT '''U
TYPE :·5 51 t\+l...<CI:~>

FORMAT (' THE SUM IS 'YI5><CR>
STDP<Ct=~>
END<CI:~>

A-I

Sample Fortran Program

>PIP TI:=ADD+FTN<CR>

TYPE :I.
:1. Foi:~MAT < ' ENTEi:~ TWO NUMHE1:~s My N')

ACCEPT 2Yl\YI...
2 FORMAT C2I5)

TYPE :·5, l\+L
3 FORMAT (' THE SUM IS 'YI5)

STOP
END

>EDI ADD+FTN<CR>
[00008 1...INES READ INJ
t:PAGE :I. ::I
*LOCATE ENTER<CR>
:1. Fo1:~MAT < ' ENTEH Two NUMBE1:~s My N' >

*CHANGE/ENTER/TYPEJ<CR>
:1. Fo1:~MAT c ' TYPE r~Jo NUMBE1:~s My N' >

*NEXT <Cl:~>
*PF~ :C NT <Cl:~>

ACCEPT 2Yl\?I...
*LOCATE SUM<CI:~>
3 FORMAT (' THE SUM IS 'YI5)
*CHANGE/SUM/RESUl...Tl<CR>
:3 FOl~MAT (I TH.E i:~ESUl ... T IS I !I I~:))

*LOCATE <2I5><CR>
[*E:OB*::I
*TrJF'<CF~>
*<Cti:>

TYPE :I.
*EXIT <Cl:~>
CEXIT::I

A-2

•

>ED I ADD. FTN<CF~>
[00008 LINES READ INJ
I: F'AGE :L ::t
*I NSEt=~T <Cl1:>

Sample Fortran Program

C THIS PROGRAM ADDS TWO NUMBERS<CR>
<CR>
*<ESC>
<*BDB*>
*<CF~>
C THIS PROGRAM ADDS TWO NUMBERS
*L.OC1~TE NUMBEl:~s<c1:~>
1 FORMAT (' TYPE TWO NUMBERS - MYN')
*ADD !PROMPT FOR INPUT<CR>
*PI\ INT< C 1:~ >
l. FOF~MAT <' TYPE T~Jo NUMBEi:~s ···· M" N' > ! Pi:~oMPT For:: INPUT
*LOCATE RESUl...T<CR>
3 FORMAT (' THE RESULT IS 'Yl5)
*DEL..ETE<CI:~>
*<E~:>C>

TYPE ~·5 Y K+L
*I NSE1:::T <CF~>
3 FORMAT(' THE SUM IS ',,I5>!DISPLAY RESULT<CR>
<CF~>
*TOP<CI:~>
*<CR>
C THIS PROGRAM ADDS TWO NUMBERS
*RETYPE C ADD DISPLAYS THE SUM OF TWO NUMBERS<CR>
*I ... I ST <CF~>
C ADD DISPLAYS THE SUM OF TWO NUMBERS

TYPE :I.
1 FORMAT(' TYPE TWO NUMBERS - M,,N')!INPUT PROMPT

ACCEPT 2 "I'\" I...
2 FORMAT <2I5>

TYPE ~5" I'\ +L
3 FORMAT(' THE SUM IS ',,I5)!DISPLAY RESULT

STOP
END

*EX I T<CI:~>
l::EXIT::t

DIRECTORY DB1:[303,,12J
<!,.-MAy 79 ~~O: 09

ADD• FTN; :~
ADD+ FTN; ~~
ADD.FTN;1

:I. •
:I. •
:I. •

06 .. -MAY 79 ::.~o: OB
06 MAY 7<;> 20: 07
06-MAY-79 19:47

'--'1 TOTAi... OF :3 + /9 + BLOCK~:> IN :3. FIL.ES

A-3

Sample Fortran Program

>FO~~ AD[l::::ADD<CI:~>
+MAIN+
>PIP ADD.*9* /LI<CR>

DIRECTORY DB1:t303~12J
6 MAY 7 9 ::.~ () : :I. 0

ADD. FTN P :I.
ADD+FTNP2
ADD.FTN;3
ADD. fJB .. J; :I.

:I. •
:I .•
:I .•

TOTAL OF 5+/20+ BLOCKS IN 4. FILES

>FOR YADD/-SP=ADD<CR>
+MAIN.
>PIP ADD.*9* /LI<CR>

DIRECTORY DB1:C303Y12J
l.> .. "MA Y 79 20: :I. 0

ADD. FTN 9 :I.
ADD.FTNv:~

ADD+FTNP3
ADD+ OB .. J; :I.
ADD.LST;1

:I. •
:I. •
1 •
'')
~: ...

TOTAL OF 7+/25+ BLOCKS IN 5. FILES

~~OR vADD=ADD<CR>
.MAIN.
>PIP ADD.*;* /LI<CR>

DIRECTORY DB1:C303Y12J
6-·MAY·· .. ·79 :w: :1.0

ADD. FTN; :I.
ADD+FTN92
ADD. FTN; :~
ADD+ OB,J; 1
ADD. l ... BT; :I.
ADD+l...BT92

:I. +

:I .•
:I. +
'') ,: .. +
'') ,, ... +

~.~ +

TOTAL OF 9+/30+ BLOCKS IN 6+ FILES

A-4

06-MAY-79 19:47
06-MAY-79 20:07
06 .. ··MAY '7<.» 20: OB
01,, MAy ·79 ::?.o: 09

06-MAY-'79 19:47
01,, M,~y /'9 20: Ol
Oc> MAY· ... ·7<1 20: OB
06 MAY ·79 20: o·:;>
06 MAY 79 20::1.0

06 M,~y ·79
01.> MAY ·79
06 M,~Y '7<.»
06 M,;y '7<.»
06 M,~ Y }<?

06 MAY· ... ·79

19:47
:~:.~o: 01
2o:oa
20: ()"')
::.~0::1.0

20: :1.2

t

\

>FOR ADDvADD/-SP~ADD<CR>
+MAIN+
>PIP ADD+*P* /LI<CR>

DIRECTORY DB1:C303v12J
~~> .. ·MAY· ... ·79 20: :I.~!.

ADD. FTN; :I.
ADD. FTN; ~!.
ADD+ FTN; :·5
ADD+ mu; :I.
ADD+L..ST;1
ADD. LST; ;.~
ADD+ OB . .J; 2
ADD+ LST; :~

:I. •
:I .•
1 +

'') +
'')
..... +
'')
~ .. +
'')

TOTAL OF 13./40+ BLOCKS IN 8+ FILES

+FOR ADDvADD=ADD<CR>
+MAIN+
>PIP ADD+*P* /LI<CR>

DIRECTORY DB1:[303v12]
l.>· MAY· .. ·79 2(): :I.!.=.=;

ADD+FTN? :I.
ADD+ FTN; ~!.
ADD. FTN ~; ~~
ADD. on . .J; :I.
ADD• LBT; :I.
ADD+l...STP2
ADD+ OB • .J; ::!.
ADD+ I... BT;::~
ADD+ DB • .J; :'5
ADD+l...ST;4

:I. •
:I. •
:L +
'')
,.· .. +
'')
'')
'') ,,
r)
..... +
'')
11.' ...

'') +

TOTAi... OF 17+/50+ BLOCKS IN 10+ FIL.ES

Sample Fortran Program

06· .. ·MAY '79
06· .. ·MAy ·79
06 MAY ?<.;>
06 M,~ Y '7?
06 MAY ·79
06 MAY '79
06 MAY· .. ·'79
()6 MAy ·79

o,1,·· .. Mf.:'1Y "/9
06 .. ··Mf.1Y·· .. 'i'9
06· .. ·MAY·· .. '79
(),1> MAY '79
06 M,~Y· .. ·'7<.»
Ob MAY· .. ·/9
06· .. ·M1~ Y '75>
06>· .. ·Mi~ Y '?<.»
0 6 MAY '7 9
Ob·· .. MAY .. ··/9

:t.9:4'?
20: ()'?

20:00
:~~o:o?

:w: 10
20: :1.2
20: :1.2
::.~ 0 : :I. 2

:I. <y: 4?
20:0·7

::?o:o?
~:.~o: :1.0
20: :I. 2
20: :I. 2
20: :1.2
20: :1.~·3
20::1.~·3

A-5

Sample Fortran Program

>TKB ADD=ADD<CR>
TKB -- *DIAG*-13 UNDEFINED SYMBOLS SEGMENT ADD

11:'iDI~>MM
EOL ~I>
I CD~I>
I Fi:~~I>
IFW~>

ISN~~

l...SN~I>
MOI$MM
l~El..~1>

STP$
TVI~I>

$0Tl
$0TSVf.~

>PIP ADD+*;* /LI<CR>

DIRECTORY DB1:C303v12J
6""MAY .. ··79 ~!,(): 16

ADD.FTN; :I.
ADD+FTN;2
ADD+ FTN; ~·5

ADD. OB,H :I.
ADD. L.ST; :I.
ADD+LST;2
ADD+ OB,.J; 2
ADD. UH; ~·3
ADD+OBJ;3
ADD+ ! ... ST; 4
ADD+ TSK; :I.

:l +

:I .•
:l +
'') ,,, ... +
'') .. ~. +
'") ,. ... +

2+
'") +

2.
'") .. ~ ..
4+ (

., ..

TOTAL OF 21+/54+ BLOCKS IN 11+ FILES

A-6

06····MAY .. ··?<"l
Of.> MAY ·79
Of.>····MAY 'J<)>
06 MAY '79
06· .. ·MAY· .. ·'79
06· .. ·M11:'iY ?9
06 .. ··MAY ?<-;
()6····MAY ··" ·79
06·· .. MAY "J<)>
Of.>· .. ·MAY ·79
Of.>·· .. MAY 6 <)>

:l <)>: lf?
20:0"?
;.~ () : () ~3
20:0?
20: :1.0
20:: 2
2(): 2
20: 2
2(): 3
::.rn: 3
:w: 4

> TI'\ B Y ADD I ~;; P ::::ADD Y I... B : [:I. Y :I. ::I FD 1:~ 0 TS I I ... B < C 1:~ >
>PI F' ADD+* ;I* II... I <c1:;~>

DIRECTORY DB1:1::303Y12::1
f.> ... MAY 7 9 2 0 : :I. B

ADD+FTN9 :I.
ADD+ FTN? ::~
ADD+ FTN v :·3
f.1DD + OB,.J ii :I.
ADD+ l...ST ii :I.
ADD. l...ST; ::.~.

ADD+ OB,.J ii 2
ADD+ l ... ST; ~5
A [ID + 0 B ,J ii :3
ADD+l...STil4
ADD+ TSl·O :I.
ADD+ MAP ;I :I.

:I. +

:I. +

:I. •
'')
,,,,· .. t ,.,
,.-... t ,.,
, +
'')
..... +
'')
.. • .. + ,.,
,: .. + ,.,
..... +

4+
:1.4 +

(
.,
•'

TOTAi... OF 35./69+ BLOCKS IN 12+ FILES

>TKB y .~nn, A[ll)::::ADD y l...B i [:I. y l ::IFDRDTB/l...B<CR>
>PIP ADD.*;/* /LI<CR>

DIRECTORY DB1:[3003Y12J
f.> MAY· .. ·79 2(): 20

ADD+FTN;I :t.
f.~DD + FTN; 2
1~DD + FTN; :·5
f.~ DD + 0 F.I ,J ;; :I.
ADD+ l...ST Ii :I.
ADD+ LST Y ::.~
ADD+ OB . .J;; 2
ADD+ l...ST ii :·5
ADD+ DB .. J Y :3
ADD+ LST Ii 4
ADD. TSIO :I.
ADD+MAP1i1
A[ID +MAP v ::.~
ADD+ STIH :I.

:I. +

:I. •
:I. •
'') ,: .. + ,.,
..... + ,.,
I': .. t

,.,
..... +
'') +

4+
:1.4 +

:1.4 +

4+

(
.,
,,

TOTAi... OF 53./89+ BLOCKS IN 14. FIL.ES

Sample Fortran Program

06 M(.~y /9
06· .. ·Mi~Y .. ··'79
06 M,~Y '7<.»
06 Mr.~y /t.'l
Of.> MAY .. ··'79
06 M,~ Y '1<.~
06· .. ·Mi~y /r.;>
oc, M,~y]<_;>
Of.> M,~ Y '79
06 MAY .. ··/9
06 M,~Y 69
06 M,~,y 7<y

06 M1~y /9
06 M,~y ·79
06 MAY '7(.»
06 MAY /<.)>
0 6 MAY '7 9

:1.9:4'7
::.:.~ 0 : () '?
;,:.~o: OB
20:0?
20: :I. 0
;;,~ () : 2
20: ::.~

20: "') ., ...
20: 3
::.~o: "X ,,)

;.w: 4
:w: 4

:l.9t4'7
20:07
20:00
::.~o: O?
20: :I. 0

0 6 M .~ y .. M 7 <;> 2 () : :I. 2
06 MAY 'J<? :20::1.2
06 MAY '79 20: :I. 2
06 MAY '79 20: :I. 3
0 6 MAY '7 <.)> ~,~~ 0 : :I. :·3
Ob MAY ,1,9 20: :1.4
06 MAy 79 ::.~o: :1.4
Of.> MAY ·7<.)> 20: :l.~5
06 M,~y ·7<;> :~~~O: :I.::.~

A-7

Sample Fortran Program

>TKB ADD,ADDvADD=ADDvlBt[1y1JFOROTS/LB<CR>
>PIP ADD.*~* /LI<CR>

DIRECTORY DB1:[303v12J
6·"'MAY .. ··'79 :w: :1.~·5

ADD+FTN;1
ADD+ FTN; :~
ADD. FTN; :3
ADD+ OB.J; :I.
ADD+ l ... ST; :I.
ADD+l...8T!l2
ADD. OB,J !I 2
ADD. UJT; ~5
ADD+ OB,J v ~3
ADD+l ... STv4
ADD. TSK; :I.
ADD+ MAP v :I.
ADD.MAP;2
ADD+ STIH :I.
ADD.TBK!l2
ADD. MAP; 3.
ADD+ STB !I::.~

:I. +

:I. •
:I. •
'') +
'')
1: .. +

2+
'')
, +

'')

"'"· +
2+
'') ,.· .. +

4+
:1.4 +

:L4.

:·5:3 +

14+
4+

{
., ..

(
., ,,

TOTAi... OF :l.04+/:1.42. BLOCKS IN 17+ FILES

>PIP ADD.* /PU<CR>
>PIP ADD+*;* /LI<CR>

DIRECTORY DB:t.:C303Y12J
c> MAY ·7 9 2 0 : l '7

ADD. FTN !I:·~
ADD. OD,.J; :·5
ADD+l...ST!l4
ADD. TSI\; 2
ADD+MAP!l3
ADD.BTBv2

:t. +
'') ,,
~5~~.

:1.4.
4+

(
., ,,

TOTAi... OF 56./68. BLOCKS IN 6+ FILES

A-8

06· .. ·M1!:\Y ·79
06 Mi!:iy "/9
(),1> MAY 'l('l
06 MAY }<"J

06 M,~ Y ·7<1
06 MAY·· .. 7<1
06 MAY 'J<'J
0,1> .. ··M1~ Y '7<'J
06· .. ·MAY }<;'
Oo:~>·· .. MAY ·79
0,1>·· .. MAY <~> 9
06·· .. Mt~ Y ·79
06·· .. MAY· .. -'7<.»
01.>· .. ·MAY "/?
06· .. ·MAy ·79
06· .. ·MAy 79
06 MAY '?9

06 MAY '?S'
06· .. ·M1~ Y /'9
0 I.> MA Y ·7 <_;>

Ot.'> M1!:-i Y }<,;>
06 MAY '79
06 MAY·· .. /9

:1.9 t4/
20:07
:~~O: OB
::.~o: oi:.»
20: :1.0
20: :I. 2
20: :1.2
20: :I. 2
20: :I. J
20: :1.3
20t. :1.4
20: :1.4
20: :1.~=:;
~.~~O: :I. 2
:~.~(): :I.'..=,)
20: :I.~=.:;

20: :I. J

:~~o: oa
20: :1.:.:~
::.~o: :I. 3
::.:.~o: :1. ::.=;

::.:~ () : :I. ~.::;

20: :I.~·~

~

~

"'-"". >PIP ADD+*;* /Tl:~<c1:~>
>PIP ADD+%;* IL. :C <Cl:~>

DIRECTORY DB1:[303Y12J
6 ·"·MAY···· 7 <? 2 0 : 2 :I.

ADD+FTN;3
ADD+ DB,J; :3
ADD+L..ST;4
ADD+TBKi/2
f.~DD. MAP; :·5
ADD+ STB ii~.~

:I. •
'") ,,: ...
'') ,. ... +

:3:3 +

:1.4.
4+

c

........,: T 0 TA I... 0 F ~:.:; 6 + I!=.:;~» + BI ... 0 CI"\ S IN 6 + FI I ... ES

Sample Fortran Program

06· .. ·M1~y ·79 ~20: OB
Of.>····MAY····"J<? 20: :1.:·5
06····MAY····}('Y :::.~o: :1.3
0 ,1> MA Y ·7 9 2 0 : 1 ~:5
06· .. ·MAY·· .. ·7<)> 20: :1.~:5
06 .. "M1!:\Y····"l<r ::.~o: :1.3

Nt>t<·:~ that thf:·~ la~:> t ~:;. t<·:·~» .. ·· r«:~dl..IC(·:~d th<·::1 numb«:·~ r of b 1 ock ·::>
allocated to the 6 files in the director~.

>RUN ADD<CI:~>
TYPE TWO NUMBEl:~s MY N
BY 9'<CI:~>
THE SUM IS 17
TT :3 ::.~ : ···· ST 0 P

>l:~UN ADD<CI:;:>
TYPE TWO NUMBERS - M•N
4:3 y ~:.:;4<c1:~>

THE SUM IS 97
TT32: STOP

'--'. >f<UN Af.tD<CI:~>
TYPE TWO NUMBERS - MYN
<'J9EI II 2<CI:\:>
THE SUM IS :I. 00 :I.
TT:3::.~: ~:>TOP

A-9

~!

.)

INDEX

A EDI commands (Cont.)
~ ADD.FTN, KILL command, 2-4

creation of, 2-2, 2-3 LIST command, 2-7, 2-9
editing of, 2-4, 2-8 LOCATE command, 2-5, 2-6, 2-8

Assembly process, 2-1 NEXT command, 2-5, 2-6
PRINT command, 2-5, 2-6

B RETYPE command, 2-7, 2-9
TOP command, 2-5, 2-6, 2-9

Bell character, 1-6 TYPE command, 2-7
Blocks, EDT, and CRT terminals, 2-2

allocated, 4-5 Error message formats, 1-12
total, 4-5 Escape< ESC >, 1-8
used, 4-5

c File, 2-1

F

Carriage return < CR >, 1-4, 1-8 File specification,

~
Code, compiler input, 2-12

binary, 2-1 compiler output, 2-12
machine readable, 2-11 device, 3-1

Communication, file name, 3-1, 4-11
interactive, 1-1 file type, 3-1
system to hardware, 1-1 file version, 3-1, 4-11
terminal to system, 1-1 RSX-llM, 3-1

Compile, 2-1, 2-11 Task Builder input defaults, 2-1 S
Compiler defaults, UFD, 3-1

file type, 2-11 UIC, 3-1

'-'l object file, 2-11 Task Builder output defaults, 2-15
source file, 2-11 File type,
switches, 2-12 BAS, 2-2

Compiler, FORTRAN-IV, 2~11 CBL, 2-2
listing file, 2-12 F4P, 2-2
omitting output files, 2-13 FTN, 2-2
storage map, 2-12 MAC, 2-2
switches, 2-12 standard, 2-12

Computer Language, 2-1 File,
Computier Languages, 2-1 contiguous, 4-5

~ Assemblers, 2-1 creation of, 4-1
COBOL, 2-1 explicit deletion of, 4-1
Compilers, 2-1 locked, 4-5
FORTRAN-IV, 1-9 noncontiguous, 4-5
Syntax, 2-1 other directories and, 3-4

FORTRAN-IV compiler, 2-11
) E command line specification, 2-11

defaults, 2-11
EDI, 2-1 Object Time System Library, 2-15

\ EDI commands, Function keys, use of, 1-3, 1-4
ADD command, 2-7
BOTTOM command, 2-5 I
CHANGE command, 2-5, 2-6
<CR> command, 2-5, 2-·6 Interactive program, 2-2, 2-17
DELETE command, 2-7, 2-8
< ESC > command, 2-7, 2-8 L EXIT command, 2-4, 2-7, 2-9

'-''
INPUT command, 2-3 Language translator, 2-1
INSERT command, 2-7, 2-8, 2-9 LB:, 2-15

Index-I

INDEX

0 ~ Line P:rin ter,
Object module, 2-1, 2-14 priority, 4-11

timing, 4-11 creation of, 2-11

Line Text Editor (EDI), Operating System,
Creating new file, 2-2 communicating with hardware, 1-1
Edi ting existing file, 2-4 function of, 1-1
Edit Mode, 2-4 MCR and, 1-5
File version numbers, 2-7 p --~

File names, 2-2
File specifier, 2-2 Password, 1-9
File type, 2-2 acquiring, 1-10

,,
Input Mode, 2-3 echo, 1-9
Invoking, 2-2 Physical device, 3-2

Linking, 2-1, 2-14 Peripheral Interchange Program (PIP), 4-1
Listing file, blocks allocated, 4-6

displayed on terminal, 2-13 command line defaults, 4-3
without object file, 2-13 file identification numbers and, 4-6

~ Loading, 2-14 file protection code, 4-6
Logging on system, 1-10 invocation of, 4-2

other user on system, 1-10 multiple line format, 4-2, 4-3
short form, 1-10 revision date, 4-6
suppressing messages, 1-10, 1-11 single line format, 4-2
system messages, 1-10 switches, 4-1

LP:, 3-3 wild card restrictions, 4-7
PIP functions,

M copying files, 4-1, 4-20

Monitor Console Routine (MCR), 1-5, 1-6
deleting files, 4-8 ~ displaying brief UFDs, 4-5

command line, 1-6, 1-7 displaying files, 4-3
default prompt, 1-8, 1-10 displaying full UFDs, 4-6
error messages, 1-12 displaying UFDs, 4-4
explicit prompt, 1-6, 1-8 purging files, 4-8
implicit prompt, 1-5, 1-8 renaming files, 4-10
keyword, 1-7 selectively deleting files, 4-8
parameter, 1-7 Pseudo devices, 2-1 5, 3-2
terminator, 1-7

MCR ABORT command, 1-7 Q ~~~-
MCR ALLOCATE command, 4-1 !

MCR DISMOUNT command, 1-7 Queue Managers, 2-12
MCR HELLO command, 1-7, 1-8, 1-9, 1-10 Queue Manager, 4-1, 4-11, 4-12
MCR HELP command, 1-6, 1-8 listing command, 4-12
MCR MOUNT command, 4-1 Print command, 4-11
MCR RUN command, 2-13, 2-16

executing task, 2-16 R
loading task image, 2-16
locating task, 2-16 Return < RET >, 1-4

MCR SET command, 2-1, 3-4 RSX-11 M Tasks, exit from, 1-6)

MCR UFD command, 1-7, 4-1 RSX-1 IM Utilities, 4-1
Multiuser protection system, 1-8, 3-4 Rubout, 1-4

logging on, 1-8

s
N SLP, 2-1, 2-2

Nonmultiuser protection system, 1-8 Source file, 2-1

All\ Nonresident compiler, Source File, Creating, 2-1
installation of, 2-13 Languages, 2-1
removal of, 2-14 Source Language Input Program, 2-1

Index-2

l

Spooling,
automatic of listing file, 2-12

SY:, 3-2, 3-3
Symbols, resolution of, 2-12
System disk (SY:), 3-4

default, 3-2
files stored on, 2·-13
multiuser protection, 2-13
nonmul.tiuser protection, 2m 13

System message file, 1-10
System message file, required messages, 1-10

T
Tab, 1-4
Task Builder, 2-14

full command format, 2-14
global symbol definitions, 2-14
LB switch, 2-15
MAP file type, 2-· 12, 2-16
multiline command format, 2-15
OBJ file type, 2-14
omitting input files, 2-15
omitting output files, 2-15
output files,

memory allocation file, 2-13
symbol definition file, 2-13
task image file, 2-13

oversize command line, 2-15
resolution of symbols, 2-12
short command format, 2-15
STB file type, 2-12
switches and options, 2-16
TSK file type, 2- l 2
Task image file, 2-1, 2-14

Task prompt,
DIGITAL supplied software, 1-8
user-written software, 1-8

Terminal,
CTRL/O, continues output, 1-5
CTRL/Q, suppresses output, 1-5
CTRL/O, suppresses output, 1-5, 1-6
CTRL/S, continues output, 1-5, 1-6
Cathode Ray Tube (CRT), 1-1
control keys, 1-3

INDEX

Index-3

Terminal (Cont.)
function keys, 1-3
hardcopy, 1-1
initial default values, 1-9
input from, 1-6
keyboard, 1-3
LA36, 1-1
local/remote switch, 1-8
state of, 1-8
suppressing output, 1-5
system access through, 1-9
using the, 1-1
VTlOO, 1-2
VTlOO keyboard, 1-3
VT52, 1-2
VT52 keyboard, 1-3

Text file, 2-1
TI:, 1-8, 3-3
Typeahead buffer, 1-6

u
UFD,

changing, 3-4
default, 3-4, 4-19
nonmultiuser protection, 3-4

UIC, 1-9, 3-4
display of, 3-4
login, 3-4
special log-on formats, 1-10, 1-11

UIC/UFD, difference between, 3-4
User File Directory (UFD), 1-9, 3-4
User Identification Code (UIC), 1-9, 3-4

command formats, 1-11
slash formats, 1-11

User Logon Text File, 1-10

v
Volume, 2-1
Volume unit number, 3-1

w
Wild card, 4-7

'l

J

)

\..

READER'S COMMENTS

RSX-1 lM Beginner's Guide
AA-5245B-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Didi you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

D
D
D
D
D
D Other (please specify)------·---------------------

Narne __ ~------·-----------~- Date-------------------~

Organization_, _____________________________________ _

Street

CitY------------------------ State------ Zip Code--------­
or

Country

- - Do Not Tear - Fold Here and Tape - - - - - - - - - - - -

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

II No Postage
Necessary

if Mailed in the
United States

Q)

I .s
...l

I]
I~ .J

Oil

I .£
<

l:l
u

I

RSX-11M
Mini-Index

Order No. AA-H262A-TC

r-:;:-order additional copies of this document, contact the Software Distribution
L::•ter, D;gital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation ~ maynard, massachusetts

First Printing, May 1979

The information in this document is subject to change without notice and should· not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright @ 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

..

•

INTRODUCTION

This manual is a brief index to the RSX-llM documentation set. It indicates where in the set informa­
tion on a general topic can be found. A more detailed master index is being published as a post-release
document. NeithE~r index, however, is intended to replace the indexes found in the individual RSX-
11 M manuals.

An acronym printed in italic capital letters follows each entry in this index, and represents the name of
the manual in which the information can be found. Chapter and section number references follow the
acronym. Some entries are followed only by the chapter number(s), for example:

PIP (Peripheral Interchange Program), UTL 4

This entry indicates that PIP is discussed throughout chapter 4 of the utilities manual.

Following is a list of the acronyms with the corresponding manual titles. (The RSX-llM/RSX-118
Documentation Directory lists the order numbers for these manuals.)

BEG - RSX-llM Beginner's Guide

CDA - RSX-llM/M-PLUS Crash Dump Analyzer Reference Manual

DBV - RSX-llM/M-PLUS Guide to Program Development

DRV-RSX-llM/M-PLUS 110 Drivers Reference Manual

ERL - RSX-llMIM-PLUS Error Logging Reference Manual

EXE - RSX-llM/M-PLUS Executive Reference Manual

GEN -RSX-llM System Generation and Management Guide

INT- Introduction to RSX-llM

!OP- IASIRSX-11110 Operations Reference Manual

MAC - IAS/RSX-11 MACR0-11 Reference Manual

MCR-RSX-llM/M-PLUS MCR Operations Reference Manual

ODT- IASIRSX-11 ODT Reference Manual

SLR - IAS/RSX-11 System Library Routines Reference Manual

TKB - RSX-llM/M-PLUS Task Builder Manual

UMD - RSX-llM/M-PLUS User Mode Diagnostics Reference Manual

U1'L - RSX-11 Utilities Manual

WRT- RSX-llM Guide to Writing an 110 Driver

Index-1

INDEX

A

Absolute addressing mode, MAC 5.10
Accessing files, IOP 1.1, 2.5
Account file (ACNT) entries,

maintaining, MCR 2.3
Account file maintenance program, see ACNT
ACNT (account file maintenance program),

MCR 2.3
Addressing,

branch instruction,
in MACR0-11, MAC 5.14

in supervisor mode, EXE 3.2
locations in a task image file, UTL 19.3
modes,

MACR0-11, MAC 5
absolute, MAC 5.10
autodecrement, MAC 5.5
autodecrement deferred, MAC 5.6
autoincrement, MAC 5.3
autoincrement deferred, MAC 5.4
immediate, MAC 5.9
index, MAC 5.7
index deferred, MAC 5.8
register, MAC 5 .1
register deferred, MAC 5.2
relative, MAC 5.11
relative deferred, MAC 5.12

Address mapping, EXE 3.1
Address space,

logical, EXE 3.1
extended, INT 3.3

virtual, EXE 3.1
Analog-to-digital converter driver, DRV 14
ANSI magnetic tapes, IOP G
Appending files, UTL 4.2
Assembler, see MACR0-11
Assembly language, see MACR0-11
AST (Asynchronous System Trap), DRV 1.5,

EXE 2.3, INT 3.3
service routine, IOP 2.8

Asterisk,
convention in MCR, see Wildcards
EDT prompt, UTL 2.1

Asynchronous System Trap, see AST
AT. (MCR indirect file processor), INT 4.1,

MCR 5.2, 5.6
Audit trail,

SLP, UTL 17, 17.4
Autodecrement addressing mode, MAC 5.5

Autodecrement deferred addressing mode,
MAC5.6

Autoincrement addressing mode, MAC 5.3
Autoincrement deferred addressing mode,

MAC5.4

B

Back-up and Restore Utility, see BRU
BAD (Bad Block Locator Utility), UTL 9
Bad Block Locator Utility, see BAD
Bad blocks,

information on,
with DSC, UTL 11.5

locating, UTL 9.4
BASIC-11, INT 5.2
BASIC-PLUS-2, INT 5.2
Block 1/0 operations, IOP 1.4
BRU (Back-Up and Restore Utility), UTL 10

using,
for data transfers, UTL 10.4
to initialize disks, UTL 10.4
with BAD, UTL 10.4
with FMT, UTL 10.4

Buffers,
EDT text, UTL 2

BYE command, MCR 2.3, 4.5

c
Card reader driver, DR V 11
Cassette driver, DRV 9
CDA (Crash Dump Analyzer),

analysis with, CDA 3.1, 3.2
obtaining crash dumps with, CDA 1.2
running, CDA 1.3

Checkpointing, INT 3.2
Checksum switch, UTL 17.1, 18.2
CLI (Command Line Interpreter),

command-line processing, IOP 6.2
component of Queue Manager, UTL 7

CMP (File Compare Program), UTL 16
COBOL, INT 5.2
Codes,

directive, DRV B.2
1/0 status, DRV B.l
return, DRV 1.10

Command line,
BAD, UTL 9.1
BRU, UTL 10.3

Index-2

INDEX

Command line (Cont.),

CDA, CDA 1.4
CMP, UTL 16
DMP, UTL 15.2
DSC, UTL 11.4
EDI, UTL 3.1
EDT, UTL 2.1, 2.2
FLX, UTL 5.1
FMT, UTL 8.1
format for utilities, UTL 1.1
LBR, UTL 14.2
MCR,

examples of file name, MGR 3.2
standard format for, MCR 3.2

PAT, UTL 18.l
PIP, UTL 4.1
PRES.RV, UTL 12.1
PRI, UTL 6.1, 6.2
Queue Manager, UTL 6.4, 7.3
SLP, UTL 17.1
TKB, TKB 1.1
VFY, UTL 13.2
ZAP, UTL 19.4

Command Line Interpreter, see CL/
Command-line processing,

CSI-command string interpreter, !OP 6.2
GCML-get command line, !OP 6.1

Commands,
for utHities,

summary of, UTL A
MCR, see MCR commands

Comparing files, UTL 16

Compiler,
FORTHAN IV, BEG 2.2

Console output task, see COT
Copying files, BEG 4.2

DOS-11, UTL 5.2
Files-11, UTL 4.2, 5.2
RT-11, UTL 5.2

CORAL-~36, INT 5.2
COT (Console Output Task)1 GEN C
Crash Dump Analyzer, see CDA

Crash dumps,
analyzing, CDA 3.1, 3.2
obtaining, CDA 1.2

Creating source files, BEG 2.1
editors for, UTL 2, 3, 17.3

Creating UFDs, UTL 4.2
CRF (Cross-Reference Processor), UTL D

D

Data conversion routines, SLR 4, 5
Data formats,

TKB input, TKB A
Data structures,

for 1/0, WRT 2.3, 2. 7
for 1/0 drivers, WRT 4.1
RDB (Region Definition Block), EXE 3.5
TKB, TKB 2.3, 4.3
WDB, (Window Definition Block), EXE 3.5

Data transfers,
with BRU, UTL 10.4
with DSC, UTL 11.8
with FLX, UTL 5
with PIP, UTL 4.2

DCB (Device Control Block), WRT 2.3, 4.1
Debugging,

on-line, ODT 1.2
tasks, INT 5.5
user-written 1/0 drivers, WRT 3.4

DEC Standard Editor, see EDT
DECtape,

driver, DRV 6
powerfail recovery for, DRV 1.11

DECtape II driver, DRV 7
Deleting files, BEG 4.2

on system, UTL 4.2
on volumes, UTL 5.2

Despooling files, UTL 6.1, C
Device (see also Devices),

drive modification, ERL D
error reports, ERL 4.2
independence, INT 6.3
null, MCR 2.2

Device Control Block, see DCB
Device interrupt vector,

for 1/0 drivers, WRT 2.3, 4.1
Devices (see also Device),

file-structured, /OP 1.2
independence of, INT 6.3
logical, MCR 2.2

lndex-3

peripheral, MCR 2.2
physical, names for, DRV 1.7
private, INT 4.3, MCR 2.3
pseudo, MCR 2.2

names for, DRV 1.7
public, INT 4.3, MCR 2.3
RSX-UM, DRV 1.3
unowned, MCR 2.3
verifying, UTL 9.3

INDEX

Diagnostics,
user-mode,

error messages, UMD 2.5
for disk drive compatibility, UMD 13
for line printers, UMD 12
for RFll fixed-head disks, UMD 4
for RK05 cartridge disk and RK05F fixed

disk, UMD 5
for RK06 and RK07 cartridge disk, UMD 6
for RP02, RPR02, RP03, UMD 7
for RP04, RP05, RP06 pack disks, UMD 3
for RS03 or RS04 fixed-head disk, UMD 8
for terminals, UMD 12
for TUlO or TS03 magnetic tape, UMD 11
for TU16 or TU45 magnetic tape, UMD 10
for TU56 DECtape, UMD 9
initiation of, UMD 2.4
multidevice testing, UMD 2.6

Directive Parameter Block, see DPB
Directive codes, DRV B.2
Directives,

event-associated, EXE 6.1
functions of system, INT 3.3
identification codes for, EXEC
informational, EXE 6.1
intertask communications-related, EXE 6.1
1/0-related, EXE 6.1
macro, MAC 7
MACR0-11, MAC 6
MGR AT., MCR 5.2, 5.6
memory management, EXE 3, 6.1
parent/offspring tasking, EXE 6.1
summary of, EXE A
system,

DIR$ macro, EXE 1.4
error returns, EXE 1.3
FORTRAN subroutines, EXE 1.5
macro name conventions for, EXE 1.4
processing of, EXE 1.2
restrictions for nonprivileged tasks,

EXE 1.7
task states, EXE 1.6

task-execution control, EXE 6.1
task status control, EXE 6.1
trap-associated, EXE 6.1

Disks,
backing up, with BRU, UTL 10.4
drivers for, DRV 5
powerfail recovery for, DRV 1.11

Disk Save and Compress Program, see DSC
Disk Volume Formatter, see FMT
Displaying files, BEG 4.2
DMP (File Dump Utility), UTL 15

DPB (Directive Parameter Block), DRV 1.6
and 1/0 drivers, WRT 4.1

Drivers,
analog-to-digital converter, DRV 14
card reader, DRV 11
cassette, DR V 9
DECtape, DRV 6
DECtape II, DRV 7
disk, DRV 5
graphics display, DRV 20
industrial control subsystems, DRV 18
1/0,

executive services available to,
conditional routines, WRT 5.2
service calls, WRT 5.3
system-state register convention,

WRT5.1
function of, WRT 1.2
loadable, WRT 1.1
resident, WRT 1.1
user-written,

debugging, WRT 3.4
inclusion of,

data base and driver source in,
WRT6.2

device description in, WRT 6.1
special user buffers in, WRT 6.3

loadable, WRT 3.3
overview of, WRT 3.1
rebuilding, WRT 3.4
resident, WRT 3.2

writing,
data structures in, WRT 4.1
INTSV$ macro and, WRT 4.2
multicontroller drivers, WRT 4.2

K-series peripheral support routines, DRV 22
laboratory peripheral accelerator, DRV 21
laboratory peripheral systems, DRV 16
line printer, DRV 10
magnetic tape, DR V 8
message-oriented communication, DR V 12
null device, DR V 19
paper tape reader/punch, DR V 1 7

PCLl 1 parallel communications link,
DRV13

terminal,
full-duplex, DR V 2
half-duplex, DR V 3
virtual, DRV 4

unibus switch, DRV 23
universal digital controller, DRV 15

Index-4

INDEX

DSC (Disk Save and Compress Program),
initiating,

on-line, UTL I 1.2
stand-alone, UTL I l.3

operation,
data transfers, UTL Il.8

termin.a ting,
on-line, UTL I 1.2
stand-alone, UTL I I .3

Dumps,
file, with DMP, UTL I5
system crash,

analyzing, with CDA, CDA 3.I, 3.2
obtaining, with CDA, CDA 1.2

task,
post mortem, INT 5.5, TKB 8.I
snapshot, INT 5.5, TKB 8.2

E

EDI (Li:ne Text Editor), BEG 2.I, INT 5.I,
UTL3

Editing files, BEG 2. I
with EDI, UTL 3
with EDT, UTL 2
with SLP, UTL I 7

EDT (DEC Standard Editor), UTL 2
Editors,

batch,
SLP, UTL 17

interactive,
EDI, INT 5.I, UTL 3
EDT, INT 5.1, UTL 2

ERF (error logging shutdown task), ERL 3.4
ERL (error logger task), ERL A.I
Errlog (error logger), ERL 2.2, 3. I
Error codes, executive, EXE B
Error detection,

by ODT, ODT Ii.I, 5.2

Error logging, INT 4.4
ERF (shutdown task), ERL 3.4, 5.4
ERL (error logger task), ERL A.I
Errlog (error lo~~ger),

files, ERL 2.2
formats, ERL B
messages, ERL 5.I
running, ERL 3.I

error log file, ERL I. 2
executive features of, ERL 2. I
functions of, ERL 1.2
information from, ERL 1.2

Error Logging (Cont.),
messages, ERL 5. I
operating procedures, ERL 3
options, ERL I.2
purposes of, ERL 1.2
reports,

device error, ERL 4.2
device interrupt timeout, ERL 4.2
formatting, ERL 1.2
generating, ERL 1.2, 4.I
individual, ERL 4.2
memory parity error, ERL 4.2
summary, ERL 4.4
unexpected trap or interrupts, ERL 4.2

task interaction with, ERL 2.2
Error messages,

BAD, UTL 9.7
BRU processing of, UTL 10.6
CDA, CDA A
CMP, UTL I6.3
DMP, UTL I5.4
DSC, UTL II.9
EDI, UTL 3.6
EDT, UTL 2.6
error logging, ERL 5.I
FLX, UTL 5.6
FMT, UTL 8.5
LBR, UTL I4.9
MCR, BEG 1.3, MCR A
ODT, ODT 5.I, 5.2
PAT, UTL I8.3
PIP, UTL 4.3
PRESRV, UTL I2.5
PRI and QUE, UTL 6.6
Queue Manager, UTL 7.4
SLP, UTL I7.5
TKB, TKB F
TKTN,MCRA
UMD, UMD 2.5
ZAP, UTL I9.7

Error reports, see Error logging, reports
Event flags, EXE 2.2, INT 3.3

in 1/0 operations, !OP 2.8
Events,

significant, DRV I.5, EXE I.2, INT 3.3
Executive,

control, INT 3.2
error codes, EXE B
features for error logging, ERL 2.I
services and 1/0 drivers, WRT 2.4, 6

Executive Debugging Tool, see XDT
Executive directives, see Directives

Index-5

INDEX

F

FCS, INT 6.3, IOP 1
library system generation options, IOP K
resident library,

building 4K, GENG
spooling from user-written tasks with,

UTL 6.5
FDB (File Descriptor Block), IOP 1.9, 2.2, A

offsets, IOP 2.3
File access,

methods of, IOP 1.1
optimizing, IOP 2.5

File control routines,
ASCII-to-binary UIC conversion, IOP 4.6
default directory-string, IOP 4.2
default file-protection word, IOP 4.4
default UIC, IOP 4.3
device control, IOP 4.16
directory entry, IOP 4.8
file deletion, IOP 4.15
file extension, IOP 4.13
filename block, IOP 4.7, 4.9
file owner word, IOP 4.5
file pointer, IOP 4.10
file truncation, IOP 4.14
queue I/O function, IOP 4.11
rename file, IOP 4.12

File Control Services, see FCS
File Descriptor Block, see FDB
File despooling, UTL 6.1, C
File directory, see UFD
File dumping, UTL 15
File Dump Utility, see DMP
File-header block format, IOP F
File labels, DSC, UTL 11.5
File manipulation, INT 6.2
Filename block, IOP B
File ownership, INT 6.2, MCR 3.1
File protection, INT 6.2

access type, MCR 3.1
assigning access rights, MCR 3.1
user groups, MCR 3.1
with PIP, UTL 4.2

Files,
copying, BEG 4.2, UTL 4.2
creating, BEG 2.1

with EDI, UTL 3
with EDT, UTL 2
with SLP, UTL 17

correction,
PAT, UTL 18.2

Files (Cont.),
deleting, BEG 4.2
despooling, UTL 6.1, 6.4, 7,C
device name, BEG 3.1
displaying, BEG 4.2
editing, BEG 2.1

with EDI, UTL 3
with EDT, UTL 2
with SLP, UTL 17

indirect command,
MCR,MCR 5

library, UTL 14.5
listing, in queue, BEG 4.3
manipulating, INT 6.2
merging, UTL 4.2
printing, BEG 4.3, UTL 4.2, 6, 7
purging, BEG 4.2, UTL 4.2
renaming, BEG 4.2, UTL 4.2
spooling, UTL 4.2, 6.1, 6.2, 7,C
task image, structure of, TKB B
UFDs for, BEG 3.2
validating (verifying) contents of,

with PAT, UTL 18.2
with SLP, UTL 17.1, 17.5

Files-11,
copying, files with PIP, UTL 4.2
directories (UFDs) for files, INT 6.2,

MCR 3.1
ownership of files, INT 6.2, MCR 3.1
protection for files, INT 6.2, MCR 3.1,

UTL 4.2
access types, MCR 3.1
assigning access rights, MCR 3.1
user groups, MCR 3.1

File specifications, INT 6.2
creating, within user program, IOP 2.4
dataset descriptor in, IOP 2.4
default filename block in, IOP 2.4
dynamic processing of, IOP 2.4
for utilities,

defaults for, UTL 1.1
format of, UTL 1.1

MCR, MCR 3.2
TKB, TKB 1.7

File specifiers,
MCR, MCR 3.2

File spooling, UTL 6.1, 6.2, 7
File Storage Region, see FSR

Index-6

File-structured devices,
data formats for, IOP 1.2

File structures,
disk and DECtape (Files-11), IOP 5.1

INDEX

File structures (Cont.),
in magnetic tape file processing, /OP 5.2
verllfying, with VFY, UTL 13

File Structure Verification Utility, see VFY
File system,

Files-11, see Files-11
RSX-llM, INT 6.1

File Transfer Program, see FLX
File transfers,

with BRU, UTL 10.4
with DSC, UTL 11.8
with FLX, UTL 5
with PIP, UTL 4.2

File types,
MCR standard, MCR 3.2

FLX 1[File Transfer Program), UTL 5
file transfers,

command line for, UTL 5 .1
volumes,

transferring files between, UTL 5.2

FMT 1(Disk Volume Formatter), UTL 8
Fork list,

and 1/0 drivers, WRT 2.3
Format,

file lheader block, /OP F
index file, /OPE
QIO macro format, DRV 1.5
TKB input data, TKB A

Formats,
CMP output file, UTL 16.2
data,

foir file-structured devices, !OP 1.2
Formatting,

output, routines for, SLR 6
volumes,

with FLX, UTL 5
with FMT, UTL 8

FORTRAN IV, INT 5.2
compiling, source file, BEG 2.2
requesting a nonresident compiler, BEG 2.2
sample program, BEG A

FORTRAN IV~PLUS, INT 5.2
FSR (File Storage Region), !OP 1.1

initializing, !OP 2.6
size of, /OP 2. 7

G

Generating an RSX-llM system, see System
generation

Globall symbols, TKB 2.1, 4.2
Graphics display driver, DRV 20

H

HELLO command, BEG 1.2, MCR 2.3, 4.5
HELP command, BEG 1.2, MCR 4.5

I

Immediate addressing mode, MAC 5.9
Index addressing mode, MAC 5.7
Index deferred addressing mode, MAC 5.8
Index file,

format, /OP E
bit map in, /OP E.3
bootstrap block in, !OP E.1
home block in, /OP E.2
predefined file header blocks in, /OP E.4

Indirect command files,
MCR, INT 4.1, MCR 5.1

AT. (indirect file processor), MCR 5.2
default file type for, MCR 5.1
example of, MCR 5.8
initiating, MCR 5.1
multilevel, MCR 5.5
switches, MCR 5.4
symbols, MCR 5.3

task, MCR 5.1, TKB 1.5
with utilities, UTL 1.4

Industrical control subsystems drivers,
DRV18

Initializing volumes,
with FLX, UTL 5.2

Install-run-remove tasks, MCR 4.2
Interrupts,

report on unexpected, ERL 4.2
Invoking,

RSX-11 utilities, UTL 1.1
1/0,

logical, DRV 1.2
physical, DRV 1.2
RSX-llM, DRV 1.1
virtual, DRV 1.2

1/0 completion, DRV 1.9
1/0 data structures, WRT 2.3

interrelationships, WRT 2. 7
1/0 drivers, see Drivers
1/0 executive services, WRT 2.4
1/0 exerciser, see IOX
1/0 function codes, DRV B.3
1/0 functions,

standard, DR V 1.8
summary of, DR V A

1/0 operations,
block, /OP 1.4

Index-7

INDEX

1/0 operations (Cont.),
coordinating, !OP 2.8

AST service routine, !OP 2.8
event flags, !OP 2.8
1/0 status block, !OP 2.8

physical, INT 6.4
record, !OP 1.5
task, INT 6.3

1/0 packet,
and 1/0 drivers, WRT 2.3, 4.1

1/0 philosophy, WRT 2.1
1/0 programming standards, WRT 2.5
1/0 queue,

and 1/0 drivers, WRT 2.3
1/0 request,

flow of, WRT 2.6
issuing, DR V 1.5

1/0 status codes, DRV B.1
1/0 structure, WRT 2.2
IOX (1/0 exerciser), GENE

K

K-series peripheral support routines drivers,
DRV22

L

Laboratory peripheral accelerator driver,
DR"V 21

Laboratory peripheral systems driver, DRV 16
Languages,

BASIC-11, INT 5.2
BASIC-PLUS-2, INT 5.2
COBOL, INT 5.2
CORAL-66, INT 5.2
FORTRAN IV, INT 5.2
FORTRAN IV-PLUS, INT 5.2
supported, INT 2.2

LBR (Librarian Utility Program), UTL 14
Library,

files,
format of, UTL 14.5

system, routines, see System library rou-
tines

Line printer driver, DRV 10
Line Text Editor, see EDI
Listing files,

creating, BEG 2.2
in queue, BEG 4.3
with FLX, UTL 5.2
with PIP, UTL 4.2

Locations, manipulating,
in a task image file, UTL 19.5, 19.6

Logging off a terminal, MCR 2.3
Logging on a terminal, MCR 2.3
Logical address space, EXE 3.1

extended, INT 3.3
Logical 1/0, DRV 1.2
Logical unit number, see LUN
Logical units, DRV 1.4
LPP (Despool Prototype Task),

as component of Queue Manager, UTL 7
LUN (Logical Unit Number), DRV 1.4, 1.7

M

Macro
QIO, format, DRV 1.5

MACR0-11, INT 5.2
addressing,

Index-8

branch instruction, MAC 5.14
addressing modes,

absolute, MAC 5.10
autodecrement, MAC 5.5
autodecrement deferred, MAC 5.6
autoincrement, MAC 5.3
autoincrement deferred, MAC 5.4
immediate, MAC 5.9
index, MAC 5.7
index deferred, MAC 5.8
register, MAC 5.1
register deferred, MAC 5.2
relative, MAC 5.11
relative deferred, MAC 5.12
summary of, MAC 5.13

assembly and cross-reference listing,
sample of, MAC I

character set, MAC 3.1
coding standard,

sample of, MAC E
command line format, MAC 8.1
direct assignment statements for, MAC 3.3
directives,

conditional assembly, MAC 6.10
data storage, MAC 6.3
function, MAC 6.2
listing control, MAC 6.1
location counter control, MAC 6.5
macro, MAC7
program boundaries, MAC 6.7
program sectioning, MAC 6.8
summary of, MAC B
symbol control, MAC 6.9
terminating, MAC 6.6

•

•

'-"''

INDEX

MACJR0-11 (Cont.),
error messa~~es, MAC 8.4

summary of diagnostic, MAC D
expressions, MAC 3.9
file specification format, MAC 8.3
file specification switches, MAC 8.1
numbers, MAC 3. 7
operating procedures, .MAC 8
overview of, MAC 1.1
Permanent Symbol Table (PST), MAC C
position-independent code,

writing, MAC G
radix and numeric control facilities, MAC 6.4
relocation and linking, MAC 4
source programs, MAC 2.2, 2.3

programming standards and conventions
for, MAC 2.1

symbols, MAC 3.2
local, MAC 3.5
register, MAC 3.4

terms, MAC 3.8
trap instructions, MAC 5.15
virtual memory,

aHocating, MAC F
Macro calls,

file-processing, !OP 3.1-18
Macros,

arguiments for, MAC 7.3
calling, MAC 7.2
defining, MAC 7 .1
1/0-irelated, DRV 1. 7

Magnetic tapes,
ANSI standard, !OP G
driver for, DRV 8

Maintenance,
system, features of, INT 4.4

Mapped systems, INT 3.1
task: relocation on, TKB 2.4
TKB addressing on, TKB 2.2

Mapping,
addresses, EXE 3.1

MCR,
command line, MCR 3.2
commands, BEG 1.2

description of format and syntax, MCR 4.4
format for, MCR 4.1
issuing, MCR 4.1
line terminators for, MCR 4.1
nonprivileged, MCR 4.5
parameters for, MCR 4.1
privileged, MCR 4.6
summary of, MCR 4.3

Index-9

MCR interface, INT 4.1, MCR 4.2
command references to active tasks,

MCR 4.2
comments, MCR 4.2
keywords, MCR 4.2

Memory,
organization of, INT 3.1
parity error reports, ERL 4.2

Memory dumps, TKB 8.1, 8.2
Memory management,

directives, EXE 3, 6.1
dynamic, routines, SLR 7
virtual, routines, SLR 8

Merging files, UTL 4.2
Message-oriented communication driver,

DRV12
Messages, see Error Messages
Mode,

supervisor,
addressing in, EXE 3.2

Modes,
for reading logical records, !OP 3.9, 3.10,

3.11
for writing logical records, !OP 3.12, 3.13,

3.14
MACR0-11 addressing, MAC 5

Monitor Console Routine, see MCR
Multicontroller 1/0 drivers, WRT 4.2
Multiprogramming, MCR 1.3

applications, MCR 3

Networks, INT 2.3
Null device, MCR 2.2

driver, DRV 19

N

0

Object Module Patch Utility, see PAT
Object modules,

creating, BEG 2.2
linking with TKB, TKB 2.1
updating, with PAT, UTL 18.2

ODT (On-Line Debugging Tool),
linking and initiating, ODT 4.3
relationship to ZAP, UTL 19

Offsets,
FDB, !OP 2.3

On-Line Debugging Tool, see ODT
Operating procedures,

error logging, ERL 3

INDEX

Operating procedures (Cont.),
MACR0-11, MAC 8
ODT, ODT4

Operators,
SLP. UTL 17 .3
ZAP arithmetic, UTL 19.4

Output,
formatting routines, SLR 6

Overlay, TKB,
building an, TKB 4. 7
data structures, TKB 4.3
descriptor language, TKB 4.4

summary of, TKB 4.5
error handling, TKB 5.3
loading methods, TKB 5.1, 5.2
programs, TKB 4.6
structures, TKB 4.1
tree, TKB 4.2, 4.5

p

Paper tape reader/punch driver, DRV 17
Parent/offspring tasking, EXE 4.1, 4.2
Parity error reports, ERL 4.2
Parsing a UFD command line,

example of, !OP 7 .6
Partitions, MCR 1.2
PAT (Object Module Patch Utility), UTL 18

Task Builder and,
adding a subroutine to a module with,

UTL 18.2
overlaying lines in module with, UTL 18.2

updating (patching) object modules with,
UTL 18.2

Patching,
object modules (relocatable), with PAT,

UTL 18.2
task image files, with ZAP, UTL 19.5

PCLll parallel communications link driver,
DRV13

Peripheral Interchange Program, see PIP
Permanent Symbol Table, see PST
Physical 1/0, DR V 1.2

operations, INT 6.4
PIP (Peripheral Interchange Program), BEG

4.1, INT 6.2, UTL 4
command functions, UTL 4.2
copying Files-11 files with, UTL 4.2

Position-independent code,
writing, MAC G

Post mortem dumps, INT 5.5, TKB 8.1
Powerfail recovery,

for DECtape and disks, DRV 1.11

Power failure restart, INT 4.4
Preservation Utility, see PRESRV
PRESRV (Preservation Utility), UTL 12

operating procedures, UTL 12.2
PRI and QUE (Print and Queue Manager),

despooling files with, UTL 6.1
Print command, UTL 6.1-3

format, UTL 6.2
Queue Manager,

command format, UTL 6.4
commands,

nonprivileged user, UTL 6.4
privileged user, UTL 7.3

serial despooler with, UTL 6.1
spooling,

files with, UTL 6.1
output from user-written tasks with,

UTL 6.5
PRINT command,

format, UTL 6.2
description of, UTL 6.3
spooling output from user-written tasks

with, UTL 6.5
Printing files, BEG 4.3
Print jobs, UTL 6.1

attributes of, UTL 6.1
identification, UTL 6.4
queued by user tasks, UTL 6.5
queue entries for, UTL 7

Processor Status Word, see PSW
Program development, INT 2.2

cross-reference listing in,
generating, DEV 3.5, 4.3

debugging in, INT 5.5, DEV 5
dumps in, INT 5.5, DEV 5.2, 5.3
editing utilities for, INT 5.1
environment, DEV 1

DIGITAL-supplied system software,
DEV 1.2

hardware, DEV 1.3
software tools, DEV 1.1

errors,
assembly, DEV 3.1
task building, DEV 4.4

Fortran IV, procedures, DEV 7
languages for, INT 5.2

supported, INT 2.2

process, DEV 1.4
program libraries in,

macro source, DEV 6.1
object module, DEV 6.2

program modules in, DEV 3

lndex-10

..

•

INDEX

Program development (Cont.),
source files in,

creating from a skeleton file, DEV 2.2
diagnostics, performing, DEV 3.1
editing, DEV 2.3
MACRO-U, creating, DEV 2

task building in, INT 5.3, DEV 4, TKB 3.1
Programming languages, see Languages
Program sections, TKB 2.1, 4.2

virtual, TKB 3.4
Prompts,

MCR input, MCR 2.1
Protecting files, see File protection
PSE (error logging pre-formatter), ERL

2.2, 3.2
PSW (Processor Status Word), ODT A
Purging files, BEG 4.2, UTL 4.2

Q

QIO macro format, DRV 1.5
Queue Manager, BEG 4.3, INT 6.2

RSX-UM V3.2, UTL 6, 7, GEN D
command format, UTL 6.3, 7.4
commands,

nonprivileged, UTL 6.4
privileged, UTL 7.3

components of, UTL 7
installing, UTL 7 .1
reference example, UTL 7.2

R

RDB (Region Definition Block), EXE 3.5
Record 1/0 operations, !OP 1.5
Record Management Services, see RMS
Region Definition Block, see RDB
Regions, EXE 8.3

dynamic, in TKB, TKB 3.3
shared, in TKB, TKB 3.1
Register addressing mode, MAC 5.1

Registier deferred addressing mode, MAC 5.2
Registier handling routines, SLR 2
Reject transitions,

example of using, !OP 7 .6
Relative addressing mode, MAC 5.U
Relative deferred addressing mode, MAC 5.2
Renaming files, BEG 4.2

with PIP, U1'L 4.2
Reports, error logging, see Error logging,

reports
Restarting system,

after power failure, INT 4.4

Return codes, DR V 1.10
RM Demo, GEN B
RMS (Record Management Services), INT 6.3
Round robin scheduling, INT 3.2
Routines,

file control, see File control routines
system library, see System library routines

RSX-UM,
applications of,

multiprogramming, INT 3
real-time, INT 2.1, 3

devices, DRV 1.3
file system, INT 6.1
introduction to, INT 1.1
system generation, see System generation

RSX-US,
introduction to, INT 1.2

s
SCB (Status Control Block),

and 1/0 drivers, WRT 2.3, 4.1
Serial Despooler Task, UTL 6.1, C
Shared Peripheral Operations On-Line, see

Spool
Shutting down system, MCR 2.4
SHUTUP program, MCR 2.4
Significant events, DRV 1.5, EXE 2.1, INT 3.2
SLP (Source Language Input Program),

UTL 17
editing source files with, UTL 17.3
processing, UTL 17.2

Snapshot dumps, INT 5.5, TKB 8.2
Source files,

creating with SLP, UTL 17.3
updating with SLP, UTL 17 .3

Source Language Input Program, see SLP
Spool (Shared Peripherals Operation On-Line),
UTL 6.1
Spooling,

from user-written tasks, UTL 6.5
with PIP, UTL 4.2
with PRI and QUE, UTL 6.1
with PRINT$ macro call, !OP 7 .6

SST (Synchronous System Trap), DR V 1.5,
EXE 2.3, INT 3.3

Status Control Block, see SCB
Stop-bit synchronization, EXE 2.4
Subexpressions,

example of using, !OP 7 .6
Subpartitions, INT 3.1, MCR 1.2
Supervisor mode,

addressing in, EXE 3.2

Index-U

INDEX

Swapping, INT 3.2
Switches,

BAD, UTL 9.2, 9.5
CDA, CDA 2.1, 2.2
CMP, UTL 16.1
DMP, UTL 15.3
DSC, UTL 11.5, 11.7
FLX, UTL 5.2
FMT, UTL 8.4
for utilities, summary of, UTL A
LBR, UTL 14.4, 14.6
MCR, MCR 5.4
ODT, ODT4.2
PAT, UTL 18.1
PIP, UTL 4.1, 4'.2
PRESRV, UTL 12.3
Print command, UTL 6.3
Queue Manager, UTL 6.3
SLP, UTL 17.4
TKB, TKB 6.1

modifying defaults for, TKB D.2
ZAP, UTL 19.2

SYE (error logging report generator), ERL 3.3
Symbol definition file, TKB 3.1
Symbols,

global, TKB 2.1, 4.2
indirect command file, MCR 5.3
reserved, TKB C
substituting values for, INT 4.1

Synchronous System Trap, see SST
System,

host, for TKB, TKB 7
restarting, after power failure, INT 4.4
shutting down, MCR 2.4
target, for TKB, TKB 7

System conventions, GEN F
System directives, see Directives, system
System generation, RSX-UM V3.2

getting started, GEN 5
installation verification, GEN 10
system conventions, GEN F
VMR, GEN8

System library routines,
arithmetic routines, SLR 3.1, 3.2
dynamic lll:emory management routines,

SLR 7.1-4
input data conversion routines, SLR 4.1-3
output data conversion routines, SLR 5.1-4
output formatting routines, SLR 6.1-3
register handling routines, SLR 2.1-4
virtual memory management routines,

SLR 8.1-5

System maintenance,
features of, INT 4.4

System traps, INT 3.3
asynchronous (ASTs), DR V 1.5, EXE 2.3,

INT 3.3
synchronous (SSTs), DRV 1.5, EXE 2.3,

INT 3.3

T
Table-driven parser, see TPARS
Tape devices,

multivolume operations with BRU,
UTL 10.5

Tapes,
DECtape, see DECtape
magnetic, see Magnetic tapes

Task,
interaction with error logging, ERL 2.2
1/0 operation, INT 6.3

Task Builder, see also TKB
use of, with PAT, UTL 18.2

Task dumps,
post mortem, INT 5.5, TKB 8.1
snapshot, INT 5.5, TKB 8.2

Task image,
building, BEG 2.3
file, structure of, TKB B
memory allocation (map) file, BEG 2.3
options, BEG 2.3
running a, BEG 2.4
switches, BEG 2.3

Task/Image File Patch Program, see ZAP
Task names,

convention for, MCR 4.2
references to in MCR, MCR 5.7

Tasks, MCR 1.1
building, INT 5.3, TKB 3.1
checkpointing, INT 3.2
creating, MCR 1.4
debugging, INT 5.5
executing, INT 5.4, MCR 1.4

external scheduling for, INT 4.1
installing, MCR 1.4
install-run-remove, MCR 4.2
linking, TKB 3.1
MCR command interface and, MCR 4.2
multiuser, TKB 3.2
naming convention for, MCR 4.2
priority of, INT 3.2
privileged, EXE 3.6, TKB 3.5
scheduling,

external, INT 4.1

Index-12

-~---­~

Tasks, scheduling (Cont.),
round robin, INT 3.2
swapping, INT 3.2

state of, INT a.2
user-written, spooling from, UTL 6.5

Terminals,
attached, INT 4.2, MCR 2. I
characteristics of, MCR 2.I
control characters on, BEG I.I, MCR 2.I
drivers for,

full·duplex, DRV 2
half-duplex, DR V 3
virtual, DR V 4

function keys on, BEG I.I
input prompts for, MCR 2.I
keyboard on, BEG I.I
logging off, MCR 2.3
logging on, MCR 2.3
privilege for, MCR 2.I
slave, INT 4.2, MCR 2. I
special character keys on, MCR 2.I
unattached, MCR 2.I

TKB, see also Task Builder,
assigning addresses,

on mapped systems, TKB 2.2
on unmapped systems, TKB 2.2

building and linking with, TKB 3.I
command line, TKB I. I
data structures,

building system, TKB 2.3
overlay, TKB 4.3

fast, TKB E
functions, TK.B 2
global symbols,

resolving, TKB 2.I, 4.2
host system for, TKB 7
improving performance of, TKB D
memory dumps,

post mortem, TKB 8.1
snapshot, TKB 8.2

program sections,
allocation of, TKB 2.I, 4.2
virtual, TKB 3 .4

object modules,
linking, TKB 2.I

overlay,
buillding an, TKB 4.7
data structures, TKB 4.3
descriptor language, TKB 4.4

summary of, TKB 4.8
error handling, TKB 5.3
loading methods, TKB 5.I, 5.2

INDEX

TKB, overlay (Cont.),
programs, TKB 4.6
structures, TKB 4. I
tree, TKB 4.2

multiple-tree structures, TKB 4.5
reserved symbols, TKB C
slow, TKB D.3
symbol definition file, TKB 3.I
target system for, TKB 7
task image file structure, TKB B
task relocation, TKB 2.4
tasks,

multiuser, TKB 3.2
privileged, TKB 3.5

TPARS
parser program using,

how to generate, IOP 7.5
source programs and, IOP 7.I

Transferring files,
with BRU, UTL 10.4
with DSC, UTL I I .8
with FLX, UTL 5
with PIP, UTL 4.2

Traps,
reports on unexpected, ERL 4.2
systems, INT 3.3

asynchronous (ASTs), DR V 1.5, EXE 2.3
synchronous (SSTs), DRV 1.5, EXE 2.3

u

UCB (Unit Control Block),
and 1/0 drivers, WRT 2.3, 4.I

UFD (User File Directory), BEG 3.2
creating, with PIP, UTL 4.2
in Files-11 file system, INT 6.2, MCR 3.I

UIC (User Identification Code), MCR 3.2
UMD (User-Mode Diagnostics), see Diagnos-

tics, user mode
Unibus switch driver, DRV 23
Unit Control Block, see UCB
Universal digital controller driver, DRV I5
Unmapped systems, INT 3. I
User File Directory, see UFD
User Identification Code, see UIC
User-Mode Diagnostics, see Diagnostics,

user-mode
User written drivers, see Drivers, 1/0,

user-written
Utilities,

command line format for, UTL I.I

lndex-I3

INDEX

Utilities (Cont.),
editing,

EDI, UTL 3
EDT, UTL 2

file manipulation,
FLX, UTL 5
PIP, UTL 4

file specification format for, UTL 1.1
file spooling,

PRI and QUE, UTL 6
Queue Manager, UTL 7

indirect command files and, UTL 1.4
invoking, UTL 1.4
list of, UTL 1.1
program maintenance,

CMP, UTL 16
PAT, UTL 18
SLP, UTL 17
ZAP, UTL 19

programming,
DMP, UTL 15
LBR, UTL 14

volume maintenance,
BAD, UTL 9
BRU, UTL 10
DSC, UTL 11
FMT, UTL 8
PRESRV, UTL 12
VFY, UTL 13

v
Verifying,

contents of a task image file with ZAP,
UTL 19.6

file structures with VFY, UTL 13
VFY (File Structure Verification Utility),

UTL 13
Virtual address space, EXE 3.1

Virtual I/O, DR V 1.2
Virtual Monitor Console Routine, see VMR
VMR (Virtual Monitor Console Routine),

GENB
Volumes,

backing up, with BRU, UTL 10.4
deleting files from, with FLX, UTL 5.2
directory listings of, with FLX, UTL 5.2
formatting,

with FLX, UTL 5.2
with FMT, UTL 8.3

initializing, with FLX, UTL 5.2
preserving, with PRESRV, UTL 12
transferring files between, with FLX,

UTL 5.2

w

WDB (Window Definition Block),
data structure, EXE 3.5

Wildcards (asterisk),
convention as file specifier, MCR 3.2
in PIP file specifications, UTL 4.1

Window Definition Block, see WDB

x
XDT (Executive Debugging Tool),

and I/O drivers, WRT 3.4

z
ZAP (Task/Image File Patch Program),

UTL 19
addressing locations in a task image with,

UTL 19.3
changing contents of a location with,

UTL 19.5

Index-14

READER'S COMMENTS

RSX-llM
Mini-Index
AA-H262A-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

D
D
D
D
D
D Other {please specify) __________________________ _

Nan1e ___ . ________________ Date------------------~

Organization_·-------------------------------------

Stre:et---·----·---------------------------------

City ____________________ _
State ------ Zip Code--------­

or
Country

- - Do Not Tear- Fold Here and Tape

Do Not Tear - Fold Here

I II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary

if Mailed in the

United States

-::s u

