RSX-11M
"Executive Reference Manua

dlilgliltiall

First Printing, November 1974
Revised: September 1975
November 1976
December 1977

The information in this document is subject to change without notice G
and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright(:)l974, 1975, 1976, 1977 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this (
document requests the user's critical evaluation to assist us in pre- -
paring future documentation.

The following are trademarks of Digital Egquipment Corporation:

DIGITAL DECsystem-10 MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL 0s/8 ;
DECUS EDUSYSTEM PHA 2
UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8

DDT LAB-8 TYPESET-11

DECCOMM DECSYSTEM-20 TMS~11

ASSIST-11 RTS-8 ITPS-10

12/77-14

RSX-11M
Executive Reference Manual

Order No. AA-2544D-TC

RSX-11M Version 3.1

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, November 1974
Revised: September 1975
November 1976
December 1977

The information in this document is subject to change without notice ‘
and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright(>l974, 1975, 1976, 1977 by Digital Equipment Corporation

The postage—pfepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

-~

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL 0s/8 : !
DECUS EDUSYSTEM PHA 1
UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8

DDT LAB-~-8 TYPESET-11

DECCOMM DECSYSTEM-20 TMS=-11

ASSIST-11 RTS-8 ITPS-10

12/77-14

CONTENTS

Page
PREFACE vii
0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS vii
0.2 STRUCTURE OF THE DOCUMENT vii
0.3 ASSOCIATED DOCUMENTS vii
CHAPTER 1 USING SYSTEM DIRECTIVES 1-1
1.1 INTRODUCTION 1-1
1.2 DIRECTIVE PROCESSING 1-2
1.3 ERROR RETURNS 1-3
1.4 USING THE DIRECTIVE MACROS 1-3
1.4.1 Macro Name Conventions 1-5
1.4.1.1 $ Form 1-6
1.4.1.2 $C Form 1-6
1.4.1.3 $S Form 1-6
1.4.2 The DIRS Macro 1-7
1.4.3 Optional Error Routine Address 1-7
1.4.4 Symbolic Offsets 1-8
1.4.5 Examples of Macro Calls 1-8
1.5 FORTRAN SUBROUTINES 1-9
1.5.1 Subroutine Usage 1-10
1.5.1.1 Optional Arguments 1-10
1.5.1.2 Task Names 1-10
1.5.1.3 Integer Arguments 1-11
1.5.1.4 GETADR Subroutine 1-11
1.5.2 The Subroutine Calls 1-11
1.5.3 Error Conditions 1-14
1.6 TASK STATES 1-15
1.6.1 Task State Transitions 1-15
1.6.2 Removing an Installed Task 1-16
CHAPTER 2 SIGNIFICANT EVENTS AND SYSTEM TRAPS 2-1
2.1 SIGNIFICANT EVENTS 2-1
2.2 EVENT FLAGS 2-1
2.3 SYSTEM TRAPS 2-3
2.3.1 Synchronous System Traps (SSTs) 2-4
2.3.2 SST Service Routines 2-4
2.3.3 Asynchronous System Traps (ASTs) 2-6
2.3.4 AST Service Routines 2-7
CHAPTER 3 MEMORY MANAGEMENT DIRECTIVES 3-1
3.1 ADDRESSING CAPABILITIES OF AN RSX-11M TASK 3-1
3.1.1 Address Mapping 3-1
3.1.2 Virtual and Logical Address Space 3-2
3.2 VIRTUAL ADDRESS WINDOWS 3-2
3.3 REGIONS 3-4
3.3.1 Shared Regions 3-8
3.3.2 Attaching to Regions 3-8
3.3.3 Region Protection 3-8
3.4 DIRECTIVE SUMMARY 3-9
3.4.1 CREATE REGION Directive (CRRGS) 3-9
3.4.2 ATTACH REGION Directive (ATRGS) 3-9
3.4.3 DETACH REGION Directive (DTRGS) 3-9
3.4.4 CREATE ADDRESS WINDOW Directive (CRAWS) 3-9

iii

CONTENTS (Cont.)

Page
3.4.5 ELIMINATE ADDRESS WINDOW Directive (ELAWS) 3-9
3.4.6 MAP ADDRESS WINDOW Directive (MAPS) 3-9
3.4.7 UNMAP ADDRESS WINDOW Directive (UMAPS) 3~10
3.4.8 SEND BY REFERENCE Directive (SREFS) 3-10
3.4.9 RECEIVE BY REFERENCE Directive (RREFS) 3-10
3.4.10 GET MAPPING CONTEXT Directive (GMCXS) 3-10
3.4.11 GET REGION PARAMETERS Directive (GREGS) 3-10
3.5 USER DATA STRUCTURES 3-10
3.5.1 Region Definition Block (RDB) 3-11
3.5.1.1 Using Macros to Generate an RDB 3-12
3.5.1.2 Using FORTRAN to Generate an RDB 3-14
3.5.2 Window Definition Block (WDB) 3-14
3.5.2.1 Using Macros to Generate a WDB 3-16
3.5.2.2 Using FORTRAN to Generate a WDB 3-17
3.5.3 Assign Values or Settings 3-18
3.6 PRIVILEGED TASKS 3-18
CHAPTER 4 DIRECTIVE DESCRIPTIONS 4-1
4.1 DIRECTIVE CATEGORIES 4-1
4.1.1 Task Execution Control Directives 4-1
4.1.2 Task Status Control Directives 4-2
4.1.3 Informational Directives 4-2
4.1.4 Event-Associated Directives 4-2
4.1.5 Trap-Associated Directives 4-3
4.1.6 I/0 and Intertask Communications-Related
Directives 4-3
4.1.7 Memory Management Directives 4-3
4.2 DIRECTIVE CONVENTIONS 4-4
4.3 SYSTEM DIRECTIVE DESCRIPTIONS 4-4
4.3.1 ABORT TASK 4-6
4.3.2 ALTER PRIORITY 4-8
4.3.3 ASSIGN LUN 4-9
4.3.4 AST SERVICE EXIT ($S form recommended) 4-11
4.3.5 ATTACH REGION 4-13
4.3.6 CONNECT TO INTERRUPT VECTOR 4-15
4.3.7 CLEAR EVENT FLAG 4-21
4.3.8 CANCEL MARK TIME REQUESTS ($S form
recommended) 4-22
4.3.9 CREATE ADDRESS WINDOW 4-23
4.3.10 CREATE REGION 4~26
4.3.11 CANCEL TIME BASED INITIATION REQUESTS 4-29
4.3.12 DECLARE SIGNIFICANT EVENT ($S form
recommended) 4-30
4.3.13 DISABLE (or INHIBIT) AST RECOGNITION
($S form recommended) 4-31
4.3.14 DISABLE CHECKPOINTING ($S form recommended) 4-33
4.3.15 DETACH REGION 4-34
4.3.16 ELIMINATE ADDRESS WINDOW 4-36
4.3.17 ENABLE AST RECOGNITION ($S form recommended) 4-~37
4.3.18 ENABLE CHECKPOINTING ($S form recommended) 4-38
4.3.19 EXITIF 4-39
4.3.20 TASK EXIT ($S form recommended) 4-41
4.3.21 EXTEND TASK 4-43
4.3.22 GET LUN INFORMATION 4-45
4.3.23 GET MCR COMMAND LINE 4-47
£.3.24 GET MAPPING CONTEXT 4~49
4.3.25 GET PARTITION PARAMETERS 4-51

iv

4.3.26
4.3.27
4.3.28
4.3.29
4,.3.30
4.3.31
4.3.32
4.3.33
4.3.34
4.3.35
4.3.36
4.3.37
4.3.38
4.3.39
4.3.40
4.3.41
4.3.42
4.3.43
4.3.44
4.3.45
4.3.46
4.3.47
4.3.48
4.3.49
4.3.50
4.3.51
4.3.52
4.3.53
4.3.54
APPENDIX A
APPENDIX B
FIGURE 1-1
1-2
3-1
3-2
3-3
3-4
3-5
TABLE 1-1

CONTENTS (Cont.)

GET REGION PARAMETERS

GET SENSE SWITCHES ($S form recommended)
GET TIME PARAMETERS

GET TASK PARAMETERS

MAP ADDRESS WINDOW

MARK TIME

QUEUE I/0 REQUEST

QUEUE I/O REQUEST AND WAIT

RECEIVE DATA

RECEIVE DATA OR EXIT

READ ALL EVENT FLAGS

REQUEST

RECEIVE BY REFERENCE

RESUME

RUN

SEND DATA

SET EVENT FLAG

SPECIFY FLOATING POINT PROCESSOR EXCEPTION
AST

SUSPEND ($S form recommended)
SPECIFY POWER RECOVERY AST

SPECIFY RECEIVE DATA AST

SEND BY REFERENCE

SPECIFY RECEIVE-BY-REFERENCE AST
SPECIFY SST VECTOR TABLE FOR DEBUGGING AID
SPECIFY SST VECTOR TABLE FOR TASK
UNMAP ADDRESS WINDOW

WAIT FOR SIGNIFICANT EVENT ($S form
recommended)

WAIT FOR LOGICAL "OR" OF EVENT FLAGS
WAIT FOR SINGLE EVENT FLAG

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY
MACRO CALL

STANDARD ERROR CODES

FIGURES

Directive Parameter Block (DPB) Pointer on
the Stack

Directive Parameter Block (DPB) on the Stack
Virtual Address Windows

Region Definition Block

Mapping Windows to Regions

Region Definition Block

Window Definition Block

TABLES

FORTRAN Subroutines and Corresponding Macro
Calis

Page

4-53
4-55
4-56
4-57
4-59
4-62
4-65
4-68
4-69
4-70
4-72
4-73
4-76
4-78
4-79
4-83
4-84

4-85
4-87
4-88
4-90
4-92
4-95
4-97
4-98
4-99

4-100
4-102
4-104

[S20 8]

1-12

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The RSX-11M Executive Reference Manual describes the system directives
that allow experienced MACRO-11 and FORTRAN programmers to use RSX-11M
Executive services to control the execution and interaction of tasks.

0.2 STRUCTURE OF THE DOCUMENT

Chapter 1 defines system directives and describes their wuse 1in both
MACRO-11 and FORTRAN programs.

Chapter 2 defines significant events, event flags, and system traps,
and describes their relationship tc system directives.

Chapter 3 introduces the concept of extended logical address space and
describes the associated memory management directives.

Chapter 4 contains a short summary of all directives, listed according
to category. The summary 1is followed by the detailed directive
specifications. The specifications are arranged alphabetically
according to macro call.

Appendix A contains abbreviated specifications of all the directives
(directive name, FORTRAN call, and macro <call only), arranged
alphabetically according to macro call.

Appendix B lists the standard error codes returned by the RSx-11M
Executive.

0.3 ASSOCIATED DOCUMENTS

The following manuals are prerequisite sources of information for
readers of this manual:

RSX-11M Task Builder Reference Manual

IAS/RSX-11 MACRO-11 Reference Manual

PDP-11 FORTRAN Language Reference Manual

Other documents related to the contents of this manual are described
briefly in the RSX~-11M/RSX-11S Documentation Directory, Order No.
AA-2593D-TC. The directory defines the intended readership of each
manual in the RSX-11M/RSX-11S set and provides a brief synopsis of
each manual's contents.

vii

CHAPTER 1

USING SYSTEM DIRECTIVES

This chapter describes the use of system directives and the ways in
which they are processed. Some of the Executive services described in
this manual are optional RSX-11M features that can be selected during
system generation. The discussion of these features always assumes
that the features have been generated for the system. See the RSX-11M
System Generation Reference Manual for a list of optional features.

1.1 INTRODUCTION

A system directive is a request from a task to the Executive to
perform an indicated operation. The programmer uses the directives to
control the execution and interaction of tasks. The MACRO-11
programmer usually issues directives in the form of macros defined in
the system macro library. The FORTRAN programmer issues system
directives in the form of calls to subroutines contained in the system
object module library.

System directives enable tasks to perform functions such as the
following:

e Obtain task and system information

® Measure time intervals

e Perform I/0 functions

e Communicate with other tasks

e Manipulate a task's logical and virtual address space

e Suspend and resume execution

e Exit
Directives are implemented via the EMT 377 instruction. EMT 0 through
EMT 376 (or 375 for unmapped tasks and mapped privileged tasks) are
considered to be non-RSX EMT synchronous system traps. The Executive
aborts the task unless the task has specified that it wants to receive
control when such traps occur. Note that RSX-11M reserves EMT 370 and
above for possible use as special system traps in the future.
A MACRO-11 programmer should use the system directives supplied in the
system macro library for directive calls, rather than hand-coding

calls to directives. The programmer then needs only to reassemble the
program to incorporate any changes in the directive specifications.

USING SYSTEM DIRECTIVES

Sections 1.2, 1.3, and 1.6 are directed to all users. Section 1.4
specifically describes the use of macros, while Section 1.5 describes
the use of FORTRAN subroutine calls. Programmers using other
supported languages should refer to the appropriate language reference
manual supplied by DIGITAL for that language.

1.2 DIRECTIVE PROCESSING
There are four steps in the processing of a system directive:

1. The user task issues a directive with arguments that are
mainly for the «creation of the Directive Parameter Block
(DPB). The DPB can be either on the user task's stack or in
a user task's data section.

2. The Executive receives an EMT 377 generated from the
directive (or a DIRS$ macro).

3. The Executive processes the directive.

4., The Executive returns directive status information to the
task's Directive Status Word (DSW).

Note that the Executive preserves all task registers when a task
issues a directive.

The user task issues an EMT 377 (generated from the directive)
together with the address of a DPB, or a DPB itself, on the top of the
issuing task's stack. When the stack contains a DPB address, the
Executive removes the address after processing the directive, and the
DPB itself remains unchanged. When the stack contains the actual DPB,
rather than a DPB address, the Executive removes the DPB from the
stack after processing the directive.

The first word of each DPB contains a Directive Identification Code
(DIC) byte, and a DPB size byte. The DIC indicates which directive is
to be performed; the size byte indicates the DPB 1length in words.
The DIC 1is in the low-order byte of the word, and the size is in the
high-order byte.

The DIC is always odd, thus the Executive can determine whether the
word on the top of the stack (before EMT 377 was issued) was the
address of the DPB (even—numbered value) or the first word of the DPB
(odd-numbered value).

The Executive normally returns control to the instruction following
the EMT. Exceptions to this are directives that result in an exit
from the task that issued them. The Executive also clears or sets the
Carry bit in the Processor Status word (PS) to indicate acceptance or
rejection, respectively, of the directive. The Directive Status Word
(DSW), addressed symbolically as $DSW, is set to indicate a more
specific cause for acceptance or rejection of the directive.* The DSW
usually has a value of +1 for acceptance and a range of negative
values for rejection (exceptions are success return codes for the
directives CLEF$, SETF$, and GPRTS, among others). RSX-11M associates
DSW values with symbols, using mnemonics that report either successful

* The Task Builder resolves the address of $DSW. Users addressing
the DSW with a physical address are not guaranteed upward
compatibility with RSX-11D and may experience incompatibilities with
future RSX-11M releases.

USING SYSTEM DIRECTIVES

completion or the cause of an error (see Section 1.3). (The ISA
FORTRAN calls CALL START and CALL WAIT are exceptions; ISA requires
positive numeric error codes. See Sections 4.3.39 and 4.3.30 for
details.) The detailed return values are listed with each directive.

In the case of successful EXIT directives, the Executive does not, of
course, return control to the task. If an EXIT directive fails,
however, control is returned to the task with an error status in the
DSW.

On EXIT, the Executive frees task resources as follows:
1. Detaches all attached devices

2. Flushes the Asynchronous System Trap (AST) queue (ASTs are
described in Chapter 2 of this manual)

3. Flushes the clock queues for outstanding Mark Time requests
for the task (see Section 4.3.30)

4. Flushes the receive-data and receive-by-reference queues

5. Closes all open files (files open for write access are
locked)

6. Cancels all outstanding I/O

7. Detaches all attached regions, except in the case of a fixed
task in a system that supports the memory management
directives, where no detaching takes place (see Section
3.3.2)

8. Frees the task's memory if the task is not fixed

If the Executive rejects a directive, it usually does not clear or set
any specified event flag. Thus, the task may wait indefinitely if it
indiscriminately executes a WAITFOR directive corresponding to a
previously issued MARK TIME directive that the Executive has rejected.
Care should always be taken to -ensure that a directive has been
completed successfully.

1.3 ERROR RETURNS

As stated above, RSX-11M associates the error codes with mnemonics
that report the cause of the error. 1In the text of the manual, the
mnemonics are used exclusively. The macro DRERR$, which is expanded
in Appendix B, provides a correspondence between each mnemonic and its
numeric value.

Appendix B also gives the meaning of each error code. In addition,

each directive description in Chapter 4 contains specific,
directive-related interpretations of the error codes.

1.4 USING THE DIRECTIVE MACROS

To issue a directive, a task supplies the system with a directive code
and parameters (the DPB), and issues an EMT 377 instruction.

1-3

USING SYSTEM DIRECTIVES

The DPB can be created in two ways:
1. To adapt to the requirements of reentrant code --
The reentrant method allows for the creation of the DPB on
the stack at run time (see Section 1.4.1.3, which describes
the $S form of directive).
2. To adapt to code that does not have reentrant requirements --
The non-reentrant method allows for the creation of the DPB
in a data section at assembly time (see Sections 1.4.1.1 and

1.4.1.2 which describe the $ form and $C form respectively).

Figures 1-1 and 1-2 illustrate the alternatives for issuing directives
and also show the relationship between the stack pointer and the DPB.

MOV # ADDR,-(SP) DPB
EMT 377
A
DPB
ITEMS INCREASING
MEMORY
SP ————» | ADDRESSOFDPB | —— SIZE DIC ADDRESSES
STACK
GROWTH

Figure 1-1 Directive Parameter Block (DPB) Pointer on the Stack

USING SYSTEM DIRECTIVES

MoV XX,-(SP}
PUSH REQUIRED
DPB ITEMS ON THE

STACK IN
REVERSE ORDER
MOV (PC)+,-(SP)
.BYTE DIC,SIZE |
EMT 377
DPB
ITEMS
INCREASING
SP —» SIZE DIC MEMORY
ADDRESSES
STACK
GROWTH

Figure 1-2 Directive Parameter Block (DPB) on the Stack

1.4.1 Macro Name Conventions

To use system directives, a MACRO-11 programmer includes directive
macro calls in programs. The macros for the RSX-11M directives are
contained in the System Macro Library (LB:[1l,1]RSXMAC.SML). To make
the macros available to a program, the programmer issues the .MCALL
assembler directive. The .MCALL arguments are the names of all the
macros used in the program. For example:

CALLING DIRECTIVES FROM THE SYSTEM MACRO LIBRARY
AND ISSUING THEM.

~e we we e

.MCALL MRKTS$S,WTSESS

Additional .MCALLs or code

MRKTSS #1,#1,#2,,ERR ;MARK TIME FOR 1 SECOND
WTSESS #1 ;WAIT FOR MARK TIME TO COMPLETE

Macro names consist of up to four letters, followed by a dollar sign
($) and, optionally, a C or an S. The optional letter or its absence

specifies which of three possible macro expansions the programmer
wants to use.

USING SYSTEM DIRECTIVES

1.4.1.1 $ Form - The $ form (omission of the optional 1letter) is
useful for a directive operation that is to be issued several times
from different locations in a non-reentrant program segment. This
form produces only the directive's DPB, and must be issued from a data
section of the program. The code for actually executing a directive
that is in the § form is produced by a special macro, DIR$ (discussed
in Section 1.4.2).

Because execution of the directive is separate from the creation of
the directive's DPB:

1. A § form of a given directive needs to be issued only once
(to produce its DPB).

2. A DIRS macro associated with a given directive can be issued
several times without incurring the cost of generating a DPB
. each time it is issued.

When a program issues the §$ form of macro call, the parameters
required for DPB construction must be valid expressions for MACRO-11
data storage instructions (such as .BYTE, .WORD, and .RAD50). The
programmer can alter individual parameters in the DPB. This might be
done, for example, if the directive is to be used many times with
varying parameters.

1.4.1.2 §$C Form - Programmers should use the $C form when a directive
is to be issued only once, and the program segment does not need to be
reentrant. The $C form eliminates the need to push the DPB (created
at assembly time) onto the stack at run time. Other parts of the
program, however, cannot access the DPB because the DPB address is
unknown. (Note, in the $C form macro expansion of Section 1.4.5, that
the DPB address $$$ is redefined by the new value of the assembler's
location counter each time an additional $C directive is issued.)

The $C form generates a DPB in a separate PSECT called SDPBSS. The
DPB is followed by a return to the user-specified PSECT, an
instruction to push the DPB address onto the stack, and an EMT 377.
To ensure that the program reenters the correct PSECT, the user must
specify the PSECT name in the argument list immediately following the
DPB parameters. If the argument is not specified, the program
reenters the blank (unnamed) PSECT.

This form also accepts an optional final argument that specifies the
address of a routine to be called (by a JSR instruction) if an error
occurs during the execution of the directive (see Section 1.4.2).

When a program issues the $C form of macro call, the parameters
required for DPB construction must be valid expressions to be used in
MACRO-11 data storage instructions (such as .BYTE, .WORD, and .RADS50).
(This 1is not true for the PSECT argument or the error routine
argument, which are not part of the DPB.)

1.4.1.3 §S Form - Program segments that need to be reentrant should
use the $S form. Only the $S form produces the DPB at run time. The
other two forms produce the DPB at assembly time.

In this form, the macro produces both code to push a DPB onto the
stack, and an EMT 377. 1In this case, the parameters must be valid
source operands for MOV-type instructions. For a 2-word Radix-50 name
parameter, the argument must be the address of a 2-word block of

USING SYSTEM DIRECTIVES

memory containing the name. Note that the Stack Pointer should not be
used to address the parameters.* (As above, the error routine argument
is an address for a JSR instruction.)

1.4.2 The DIRS$ Macro

The DIR$ macro allows the programmer to execute a directive with a DPB
predefined by the $ form of a directive macro. This macro pushes the
DPB address onto the stack and issues an EMT 377.

The DIR$ macro generates an RSX~11M Executive trap using a predefined
DPB:

Macro Call: .DIRS adr ,err
adr and err are optional

adr is the address of the DPB. (The address, 1if specified,
must be a valid source address for a MOV instruction.) If
this address is not specified, the DPB or its address
must be on the stack.

err is the address of the error return (see Section 1.4.3).
If this error return is not specified, an error simply
sets the C-bit in the Processor Status word.

NOTE
DIRS is not a "$ form macro", and does
not behave as one. There are no

variations in the spelling of this
macro.

1.4.3 Optional Error Routine Address
The $C and $S forms of macro calls, and the DIR$ macro can accept an
optional final argument. The argument must be a valid assembler
destination operand that specifies the address of a user error
routine. For example, the DIRS macro

DIRS #DPB, ERROR

generates the following code:

MOV #DPB, - (SP)
EMT 377

BCC .+6

JSR PC,ERROR

The $ form of directive macro does not accept an error address
argument.

* Subroutine or macro calls can use the stack for temporary storage,
thereby destroying the positional relationship between SP and the
parameters.

1-7

USING SYSTEM DIRECTIVES

1.4.4 Symbolic Offsets

Most system directive macro calls generate 1local symbolic offsets.
The symbols are unique to each directive and each is assigned an index
value corresponding to the number of bytes into the DPB that a given
DPB element is located.

Because the offsets are defined symbolically, the programmer who must
refer to or modify DPB elements can do so without knowing the offset
values. Symbolic offsets also eliminate the need to rewrite programs
if a future release of RSX-11M changes a DPB specification.

All $ and $C forms of macros that generate DPBs longer than one word
generate local offsets. All informational directives (see Chapter 4,
Table 4-2) including the $S form, generate local symbolic offsets for
the parameter block returned as well.

If the program uses either the $ or $C form and has defined the symbol
$$SGLB (for example SSSGLB=0), the macro generates the symbolic
offsets as global symbols and does not generate the DPB itself. The
purpose of this facility is to enable the use of a DPB defined in a
different module. The symbol $$$GLB has no effect on the expansion of
$S macros.

1.4.5 Examples of Macro Calls

The examples below show the expansions of the different macro call
forms.

1. The $ form generates a DPB only, in the current PSECT.
MRKTS 1,5,2,MTRAP
generates the following code:

.BYTE 23.,5 "MARK-TIME" D1C & DPB SIZE

.WORD 1 EVENT FLAG NUMBER
-WORD 5 TIME INTERVAL MAGNITUDE
«.WORD 2 TIME INTERVAL UNIT (SECONDS)

.WORD MTRAP

~e w8 we we o~

AST ENTRY POINT

2. The $C form generates in PSECT $DPB$$ both a DPB and the code to
issue the directive.

MRKTSC 1,5,2,MTRAP,PROG1,ERR
generates the following code:

.PSECT SDPBSS

$$8=. ; DEFINE TEMPORARY SYMBOL

.BYTE 23.,5 ; "MARK-TIME" DIC & DPB SIZE
.WORD 1 ; EVENT FLAG NUMBER

.WORD 5 ; TIME INTERVAL MAGNITUDE

.WORD 2 ; TIME INTERVAL UNIT (SECONDS)
.WORD MTRAP ; AST ENTRY POINT ADDRESS

.PSECT PROGI ; RETURN TO THE ORIGINAL PSECT
MOV #8,-(SP) ; PUSH DPB ADDRESS ON STACK

EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+6 ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ; ELSE, CALL ERROR SERVICE ROUTINE

1-8

¢«

USING SYSTEM DIRECTIVES

3. The $S form generates code to push the DPB onto the stack and to
issue the directive.
MRKTS$S #1,#5,#2,R2,ERR

generates the following code:

MOV R2,-(SP) ; PUSH AST ENTRY POINT

MOV $2,-(SP) ; TIME INTERVAL UNIT (SECONDS)

MOV #5,-(SP) ; TIME INTERVAL MAGNITUDE

MOV #1,-(SP) ; EVENT FLAG NUMBER

MOV (PC)+,-(SP) ; AND "MARK-TIME" DIC & DPB SIZE
.BYTE 23.,5 ; ON THE STACK

EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+6 ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ; ELSE, CALL ERROR SERVICE ROUTINE

4. The DIRS macro issues a directive that has a predefined DPB.
DIRS R1, (R3) ; DPB ALREADY DEFINED. DPB ADDRESS IN RI.

generates the following code:

MOV R1l,~ (SP) ; PUSH DPB ADDRESS ON STACK

EMT 377 ; TRAP TO THE EXECUTIVE

BCC .t+4 ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC, (R3) ; ELSE, CALL ERROR SERVICE ROUTINE

1.5 FORTRAN SUBROUTINES

RSX-11M provides an extensive set of subroutines for use in FORTRAN
programs, to perform RSX-11M system directive operations.

The directive descriptions 1in Chapter 4 describe the FORTRAN
subroutine calls, as well as the macro calls.

The FORTRAN subroutines fall into three basic groups:

1. Subroutines based on the Instrument Standard of America (ISA)

Standard ISA 62.1 -- These subroutines are included in the
subroutine descriptions associated with the macro calls. See
Chapter 4.

2. Subroutines designed to use and control specific process
control interface devices supplied by DIGITAL and supported
by the RSX-11lM operating system

3. Subroutines for performing RSX-11M system directive
operations -- In general, one subroutine is available for
each directive. (Exceptions are the MARK TIME and RUN
directives. The description of MARK TIME includes both CALL
MARK and CALL WAIT. The description of RUN includes both
CALL RUN and CALL START.)

All of the subroutines described in this manual <can be called by
FORTRAN programs compiled by either the FORTRAN IV or FORTRAN IV-PLUS
compiler.

These subroutines can also be called from programs written in the
MACRO-11 assembly 1language by using PDP-11 FORTRAN calling sequence
conventions. These conventions are described in the IAS/RSX-11
FORTRAN IV User's Guide and in the FORTRAN IV-PLUS User's Guide.

USING SYSTEM DIRECTIVES

1.5.1 Subroutine Usage

All of the subroutines described in this manual are added to the
RSX~11M system object module library when either FORTRAN compiler is
generated for RSX-11M. To use one of these routines, the programmer
includes the appropriate CALL statement in the FORTRAN program. When
the program is linked to form a task, the Task Builder first checks to
see whether each specified routine is user-defined. 1If a routine is
not user-defined, the Task Builder automatically searches for it in
the system object module library. If the routine is found, it is
included in the linked task.

1.5.1.1 Optional Arguments - Many of the subroutines described in
this manual have optional arguments. In the subroutine descriptions
associated with the directives, optional arguments are designated as

such by being enclosed in square brackets ([]). An argument of this
kind can be omitted if ~the comma that immediately follows it is
retained. If the argument (or string of optional arguments) is last,

it can simply be omitted, and no comma need end the argument 1list.
For example, the format of a call to SUB could be the following:

CALL SUB (AaA,[BB],[cC],DD[,[EE][,FF]])

In that event, programmers may omit the arguments BB, CC, EE, and FF
in one of the following ways:

[J CALL SUB (AA"'DDII)
e CALL SUB (AA,,,DD)

In some cases, a subroutine will use a default wvalue for an
unspecified optional argument. Such default values are noted in each
subroutine description in Chapter 4.

1.5.1.2 Task Names - In FORTRAN subroutines, task names may be up to
six characters 1long. Characters permitted in a task name are the
letters A through 2, the numerals 0 through 9 and the special
characters dollar sign ($) and period (.). Task names are stored as
Radix-50 code, which permits up to three characters from the set above
to be encoded in one PDP-11 word. (Radix-50 is described in detail in
the IAS/RSX-11 FORTRAN IV User's Guide and the FORTRAN IV-PLUS User's
Guide.)

FORTRAN subroutine calls reguire that a task name be defined as a
variable of type REAL that represents the task name as Radix-50 code.
This variable may be defined at program compilation time by a DATA
statement, which gives the real variable an initial value (a Radix-50
constant) .

For example, if a task named CCMFl is to be used in a system directive
call, the task name could be defined and used as follows:

DATA CCMF1/5RCCMF1l/

-

CALL REQUES (CCMF1)

Task names may also be defined during execution by wusing the IRAD50
subroutine or the RAD50 function as described in the IAS/RSX-11
FORTRAN IV User's Guide or the FORTRAN IV-PLUS User's Guide.

1-10

USING SYSTEM DIRECTIVES

1.5.1.3 Integer Arguments - All of the subroutines described in this
manual assume that integer arguments are INTEGER*2 type arguments.
Both the FORTRAN IV and FORTRAN IV-PLUS systems normally treat an
integer variable as one PDP-11 storage word, provided that its value
is within the range -32768 to +32767. However, if the programmer
specifies the /I4 option switch when compiling a program, particular
care must be taken to ensure that all integer arguments used in these
subroutines are explicitly specified as type INTEGER¥*2.

1.5.1.4 GETADR Subroutine - Some subroutine calls include an argument
described as an integer array. The integer array contains some values
that are the addresses of other variables or arrays. Since the
FORTRAN language does not provide a means of assigning such an address
as a value, programmers should use the GETADR subroutine described
below.

Calling Sequence:
CALL GETADR({ipm, [argl],[arg2],...[argn])
ipm is an array of dimension n.

argl,...argn are arguments whose addresses are to be inserted
in ipm. Arguments are inserted in the order
specified. If a null argument is specified,
then the corresponding entry in ipm is left
unchanged.

Example:

DIMENSION IBUF(80),I0SB(2),IPARAM(6)

.

CALL GETADR (IPARAM(1),IBUF(1))

TDADAM(2V =00
IPARAMM (2]} =80

CALL OIO (IREAD,LUN,IEFLAG,IOSB,IPARAM,IDSW)

In this example, CALL GETADR enables the programmer to specify a
buffer address in the CALL QIO directive (see Section 4.3.31).

1.5.2 The Subroutine Calls

Table 1-1 is a list of the FORTRAN subroutine calls (and corresponding
macro calls) associated with system directives (see Chapter 4 for
detailed descriptions).

For some directives, notably MARK TIME (CALL MARK), both the standard
FORTRAN-IV subroutine <call and the ISA standard call are provided.
Other directives, however, are not available to FORTRAN tasks (for
example, Specify Floating Point Exception AST [SFPAS] and Specify SST
Vector Table For Task [SVTKS$]).

1-11

USING SYSTEM DIRECTIVES

Table 1-1
FORTRAN Subroutines and Corresponding Macro Calls
Directive Macro Call FORTRAN Subroutine
ABORT TASK ABRTS CALL ABORT
ALTER PRIORITY ALTPS CALL ALTPRI
ASSIGN LUN ALUNS CALL ASNLUN
AST SERVICE EXIT ASTXSS Not available
ATTACH REGION ATRGS CALL ATRG
CONNECT TO INTERRUPT CINTS Not available
VECTOR
CLEAR EVENT FLAG CLEFS CALL CLREF
CANCEL MARK CMKTSS CALL CANMT
TIME REQUESTS
CANCEL TIME BASED CSRQS CALL CANALL
INITIATION REQUESTS
CREATE ADDRESS WINDOW CRAWS CALL CRAW
CREATE REGION CRRGS CALL CRRG
DECLARE SIGNIFICANT DECLSS CALL DECLAR
EVENT
DISABLE AST DSARSS CALL DSASTR
RECOGNITION
DISABLE CHECKPOINTING DSCPS$S CALL DISCKP
DETACH REGION DTRGS CALL DTRG
ELIMINATE ADDRESS ELAWS CALL ELAW
WINDOW
ENABLE AST ENARSS CALL ENASTR
RECOGNITION
ENABLE CHECKPOINTING ENCPSS CALL ENACKP
EXITIF EXIFS$ CALL EXITIF
TASK EXIT EXITSS CALL EXIT
EXTEND TASK EXTKS CALL EXTTSK
GET LUN INFORMATION GLUNS CALL GETLUN
GET MAPPING CONTEXT GMCXS CALL GMCX
GET MCR COMMAND LINE GMCRS CALL GETMCR

(continued on next page)

Table 1-1 (Cont.)

USING SYSTEM DIRECTIVES

FORTRAN Subroutines and Corresponding Macro Calls

Directive Macro Call FORTRAN Subroutine

GET PARTITION GPRTS CALL GETPAR

PARAMETERS

GET REGION PARAMETERS GREGS CALL GETREG

GET SENSE SWITCHES GSSWSS CALL READSW
CALL SSWTCH

GET TIME PARAMETERS GTIMS Several subroutines
available (see the
appropriate FORTRAN
User's Guide)

GET TASK PARAMETERS GTSKS CALL GETTSK

INHIBIT AST RECOGNITION IHARSS CALL INASTR

MAP ADDRESS WINDOW MAPS CALL MAP

MARK TIME MRKTS CALL MARK
CALL WAIT (ISA Standard call)

QUEUE I/0 REQUEST QIS CALL QIO

QUEUE I/0 REQUEST QIOWS CALL WTQIO

AND WAIT

READ ALL EVENT RDAFS Only a single event flag can

FLAGS be read by a FORTRAN task:
CALL READEF

RECEIVE DATA RCVDS CALL RECEIV

RECEIVE DATA RCVXS CALL RECOEX

OR EXIT

RECEIVE BY REFERENCE RREFS CALL RREF

REQUEST RQSTS CALL REQUES

RESUME RSUMS CALL RESUME

RUN RUNS CALL RUN
CALL START (ISA Standard call)

SEND BY REFERENCE SREFS CALL SREF

SEND DATA SDATS CALL SEND

SET EVENT FLAG SETFS CALL SETEF

SPECIFY FLOATING SFPAS Not available

POINT EXCEPTION AST

(continued on next page)

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive Macro Call FORTRAN Subroutine
SPECIFY POWER SPRAS EXTERNAL SUBNAM
RECOVERY AST CALL PWRUP (SUBNAM)

(to establish an AST)

CALL PWRUP

(to remove an AST)
SPECIFY RECEIVE SRDAS Not available
DATA AST
SPECIFY RECEIVE BY SRRAS Not available
REFERENCE AST
SPECIFY SST VECTOR SVDBS$S Not available
TABLE FOR DEBUGGING AID
SUSPEND SPNDSS CALL SUSPND
SPECIFY SST VECTOR SVTKS Not available
TABLE FOR TASK
UNMAP ADDRESS WINDOW UMAPS CALL UNMAP
WAIT FOR LOGICAL WTLOS CALL WFLOR
OR OF EVENT FLAGS
WAIT FOR WSIGSS CALL WFSNE
SIGNIFICANT EVENT
WAIT FOR SINGLE WTSES CALL WAITFR
EVENT FLAG

1.5.3 Error Conditions

Each subroutine call includes an optional argument (ids). When a
programmer specifies this argument, the subroutine returns a value
that indicates whether the directive operation succeeded or failed.
If the directive failed, the value indicates the reason for the
failure. The possible values are the same as those returned to the
Directive Status Word (DSW) in MACRO-11 programs (see Appendix B),
except for the two ISA calls, CALL WAIT and CALL START. The ISA calls
have positive numeric error codes (see Sections 4.3.30 and 4.3.39).

In addition, two types of error are reported by means of the FORTRAN
Object Time System diagnostic messages. Both of these errors result
in the termination of the task. The error conditions are:

1. SYSTEM DIRECTIVE: MISSING ARGUMENT (S)
This message indicates that at least one necessary argument
was missing from a call to a system directive subroutine (OTS
error number 100).

2., SYSTEM DIRECTIVE: INVALID EVENT FLAG NUMBER
This message indicates that an event flag number in a call to
WFLOR (WAIT FOR LOGICAL "OR" OF EVENT FLAGS) was not in the
range 1 to 64 (OTS error number 101).

1-14

USING SYSTEM DIRECTIVES
1.6 TASK STATES

Many system directives cause a task to change from one state to

another. There are two basic task states in RSX-11M -- dormant and
active. The active state has two substates -- ready-to-run and
blocked.

The Executive recognizes the existence of a task only after it has
been successfully installed and has an entry in the System Task
Directory (STD). (Task installation is the process whereby a task is
made known to the system; see the RSX-11M Operator's Procedures
Manual.) Once a task has been installed, it 1is either dormant or
active. These states are defined as follows:

1. Dormant -- Immediately following the Monitor Console
Routine's processing of an INStall command, a task is known
to the system, but is dormant. A dormant task has an entry
in the STD, but no request has been made to activate it (that
is, neither a RQST$ nor RUN$ macro, nor an MCR RUN command,
has been issued for it).

2. Active -- A task is active from the time it 1is requested
until the time it exits. The request is either an issuance
of the RQSTS or RUNS macro, or an MCR RUN command issued by
an operator from a terminal. .An active task is eligible for
scheduling, whereas a dormant task is not.

An active task can be in one of two substates, ready-to-run
or blocked.

a. Ready-to-run -- A ready-to-run task competes with other
tasks for CPU time on the basis of priority. The highest
priority ready-to-run task obtains CPU time and thus
becomes the current task.

b. Blocked -- A blocked task is unable to compete for CPU

time for synchronization reasons or because a needed
resource is not available.

1.6.1 Task State Transitions

Dormant to Active - The following commands or directives cause the
Executive to activate a dormant task:

e A RUNS directive
e A RQSTS directive
e An MCR RUN command

Ready-to-Run to Blocked - The following events cause an active,
ready-to-run task to become blocked:

e A SPND$ directive
® An unsatisfied WAITFOR condition
® The Executive checkpoints a task out of memory

e A checkpointable task issues a terminal input reqguest®

* oOnly in systems that support the <checkpointing of tasks during
terminal input.

1-15

USING SYSTEM DIRECTIVES

Blocked to Ready-to-Run - The following events return a blocked task
to ready-to-run state:

e A RSUMS directive issued by another task

e An MCR RESUME command

e A WAITFOR condition is satisfied

® The Executive reads a checkpointed task into memory
¢ Terminal input for a checkpointable task completes*

Active to Dormant - The following events cause an active task to
become dormant:

® An EXITSS, EXIF$, or RCVXS directive, or a RREF$S directive
that specifies the exit option

® An ABRTS directive
e An MCR ABORT command

® A Synchronous System Trap (SST) for which a task has not {
specified a service routine '

1.6.2 Removing an Installed Task

To remove an installed task from the system, the user issues the MCR
command REMOVE from a privileged terminal. Refer to the RSX~-11M
Operator's Procedures Manual.

€
* Only in systems that support the checkpointing of tasks during i
terminal input.

1-16

CHAPTER 2

SIGNIFICANT EVENTS AND SYSTEM TRAPS

This chapter introduces the concept of significant events and
describes the ways in which a programmer can make use of event flags
and synchronous and asynchronous system traps.

2.1 SIGNIFICANT EVENTS

A significant event is a change in system status that causes the
Executive to reevaluate the eligibility of all active tasks to run. A
significant event is usually caused (either directly or indirectly) by
a system directive 1issued from within a task. Significant events
include the following:

e An I/O completion
e A task exit
® The execution of a SEND DATA directive (see Section 4.3.40)

® The execution of a SEND BY REFERENCE or a RECEIVE BY REFERENCE
directive (see Section 4.3.37)

® The execution of an ALTER PRIORITY directive (see Section
4.3.2)

e The removal of an entry from the clock gqueue (e.g., resulting
from the execution of a MARK TIME directive or the issuance of
a rescheduling request)

® The execution of a DECLARE SIGNIFICANT EVENT directive (see
Section 4.3.11)

® The execution of the round-robin scheduling algorithm at the
end of a round-robin scheduling interval

2.2 EVENT FLAGS

Event flags are a means by which tasks recognize specific events.
(Tasks also use Asynchronous System Traps (ASTs) to recognize specific
events. See Section 2.3.3.) When a task requests a system operation
(such as an I/0 transfer), the task may associate an event flag with
the completion of the operation. When the event occurs, the Executive
sets the specified flag. Section 2.2.1 describes in several examples
how tasks can use event flags to coordinate task execution.

SIGNIFICANT EVENTS AND SYSTEM TRAPS

Sixty-four event flags are available to enable tasks to distinguish
one event from another. Each event flag has a corresponding unigque
Event Flag Number (EFN). The first 32 (1-32) flags are unique to each
task and are set or cleared as a result of that task's operation. The
second 32 flags (33-64) are common to all tasks and are therefore
called common flags. Common flags may be set or cleared as a result
of any task's operation. The last eight flags in each group, 1local
flags (25-32) and common flags (57-64), are reserved for use by the
system.

Tasks can use the common flags for intertask communication or their
own local event flags internally. The setting, clearing, and testing
of local flags can be performed by using SET EVENT FLAG (SETF$), CLEAR
EVENT FLAG (CLEFS$), and READ ALL EVENT FLAGS (RDAFS) directives.

Programmers must take great care when setting or clearing event flags,
especially common flags. Erroneous or multiple setting and clearing
of event flags can result in obscure software faults. A typical
application program can be written without explicitly accessing or
modifying event flags, since many of the directives can implicitly
perform these functions. The Send Data (SDATS), Mark Time (MRKTS),
and the I/O operations directives can all implicitly alter an event
flag. The implicit handling of event flags substantially reduces
errors caused by multiple setting and clearing of event flags.

Examples 1 and 2 below illustrate the use of common event flags
(33-64) to synchronize task execution. Examples 3 and 4 illustrate
the use of local flags (1-32).

Example 1

Task B clears common event flag 35 and then blocks itself by
issuing a WAITFOR directive that specifies common event flag 35.

Subsequently another task, Task A, specifies event flag 35 in a
SET EVENT FLAG directive to inform Task B that it may proceed.
Task A then issues a DECLARE SIGNIFICANT EVENT directive to
ensure that the Executive will schedule Task B.

Example 2

In order to synchronize the transmission of data between Tasks A
and B, Task A specifies Task B and common event flag 42 in a SEND
DATA directive.

Task B has specified flag 42 in a WAITFOR directive. When Task
A's SEND DATA directive has caused the Executive to set flag 42
and to cause a significant event, Task B issues a RECEIVE DATA
directive because its WAITFOR condition has been satisfied.

C

SIGNIFICANT EVENTS AND SYSTEM TRAPS

Example 3

A task contains a QUEUE I/0O REQUEST and an associated WAITFOR
directive, which both specify the same local event flag. When
the task queues its I/0 request, the Executive clears the 1local
flag. If the requested I/0 is incomplete when the task issues a
WAITFOR directive that specifies the same local event flag, the
Executive blocks the task.

When the requested I/0 has been completed, the Executive sets the
local flag and causes a significant event. The task then resumes
its execution at the instruction that follows the WAITFOR
directive. The local event flag used in this manner ensures that
the task does not attempt to manipulate incoming data wuntil the
transfer is complete.

Example 4

A task specifies the same local event flag in a MARK TIME and an
associated WAITFOR directive. When the MARK TIME directive is
issued, the Executive first clears the local flag and
subsequently sets it when the indicated time interval has
elapsed.

If the task issues the WAITFOR directive before the 1local flag
has been set (that is, before the time interval has elapsed) the
Executive blocks the task. The task then resumes when the
Executive sets the flag.

Specifying an event flag does not imply that a WAITFOR directive must

be issued. Event flag testing can be performed at any time. The
purpose of a WAITFOR directive is to stop task execution until an
indicated significant event occurs. Hence, it is not necessary to

issue a WAITFOR directive immediately following a QUEUE I/O REQUEST or
a MARK TIME directive.

If a task issues a WAITFOR directive that specifies an event flag that
is already set, the blocking condition is immediately satisfied and
the Executive immediately returns control to the task.

The simplest way to test a single event flag is to issue the directive
CLEF$ or SETF$. Both these directives can cause the following return
codes:

IS.CLR - Flag was previously clear
IS.SET - Flag was previously set

For example, if a set common event flag indicates the completion of an
operation, a task can issue the CLEF§ directive both to read the event
flag and simultaneously to reset it for the next operation. If the
event flag was previously clear (the current operation was
incomplete), the flag remains clear.

2.3 SYSTEM TRAPS

System traps are transfers of control (also called software
interrupts) that provide tasks with a means of monitoring and reacting
to events. The Executive initiates system traps when certain events
occur. The trap transfers control to the task associated with the
event and gives the task the opportunity to service the event by
entering a user-written routine.

SIGNIFICANT EVENTS AND SYSTEM TRAPS

There are two distinct kinds of system traps:

e Synchronous System Traps (SSTs) -- SSTs detect events directly
associated with the execution of program instructions. They
are synchronous because they always recur at the same point in
the program when previous instructions are repeated. For
example, an illegal instruction causes an SST.

e Asynchronous System Traps (ASTs) ~-- ASTs detect significant
events that occur asynchronously to the task's execution.
That is, the task has no direct control over the precise time
that the event occurs. The completion of an I/O transfer may
cause an AST to occur, for example.

A task that uses the system trap facility issues system directives
that establish entry points for user-written service routines. Entry
points for SSTs are specified in a single table. AST entry points are
set by individual directives for each kind of AST. When a trap
occurs, the task automatically enters the appropriate routine (if 1its
entry point has been specified).

2.3.1 Synchronous System Traps (SSTs)
SSTs can detect the execution of:
1. 1Illegal instructions
2. Instructions with invalid addresses
3. Trap instructions
4. FIS floating-point exceptions (PDP-11/40 only)

The user can set up an SST Vector Table, containing one entry per SST
type. Each entry 1is the address of an SST routine that services a
particular type of SST (a routine that services illegal instructions,
for example). When an SST occurs, the Executive transfers control to
the routine for that type of SST. 1If a corresponding routine is not
specified in the table, the task is aborted. The SST routine enables
the user to process the failure and then return to the interrupted
code. Note that if a debugging aid and the user's task both have an
SST vector enabled for a given condition, only the debugging aid will
receive the SST.

SST routines must always be reentrant because an SST can occur within
the SST routine itself. Although the Executive initiates SSTs, the
execution of the related service routines is indistinguishable from
the task's normal execution. An AST or another SST can therefore
interrupt an SST routine.

2.3.2 SST Service Routines

The Executive initiates SST service routines by pushing the task's
Processor Status (PS) and Program Counter (PC) onto the task's stack.
The SST returns control to the task by issuing an RTI or RTT
instruction. Note that the task's general purpose registers RO-R6 are
not saved. If the SST routine makes use of them, it must save and
restore them itself.

SIGNIFICANT EVENTS AND SYSTEM TRAPS

To the Executive, SST routine execution 1is indistinguishable from
normal task execution. For example, all directive services are
available to an SST routine. An SST routine can remove the
interrupted PS and PC from the stack and transfer control anywhere in
the task; the routine does not have to return control to the point of
interruption. However, programmers should remember that any
operations performed by the routine (such as the modification of the
DSW, or the setting or clearing of event flags) remain in effect when
the routine eventually returns control to the task.

A trap vector table within the task contains all the service routine
entry points. The user specifies the SST vector table by means of the
SPECIFY SST VECTOR TABLE FOR TASK directive or the SPECIFY SST VECTOR
FOR DEBUGGING AID directive. The trap vector table has the following
format:

WD. 00 -- Odd or nonexistent memory address error -- (Also, on
some PDP-1l1 processors (e.g., PDP-11/45), an illegal
instruction traps here rather than through word 04.)

WD. 01 -- Memory protect violation

WD. 02 -- T-bit trap or execution of a BPT instruction
WD. 03 -- Execution of an IOT instruction

WD. 04 -- Execution of a reserved instruction

WD. 05 -- Execution of a non-RSX EMT instruction

WD. 06 -- Execution of a TRAP instruction

WD. 07 -- Synchronous floating point exception

A zero appearing in the table means that no entry point is specified.
An odd address in the table causes an SST to occur when another SST
tries to use that particular address as an entry point. If an SST
occurs and an associated entry point is not specified in the table,
the Executive aborts the task.

Depending on the reason for the SST, the task's stack may also contain
additional information, as follows:

Memory protect violation (complete stack)

SP+10 -- PS

SP+06 -- PC

SP+04 -~ Memory protect status register (SRO)*

SP+02 -- Vvirtual PC of the faulting instruction (SR2)*
SP+00 -- Instruction backup register (SR1)*

TRAP instruction or EMT other than 377 (and 376 in the case of
unmapped tasks and mapped privileged tasks) (complete stack)

SP+04 -- PS

SP+02 ~- PC '

SP+00 -- Instruction operand (low-order byte) multiplied by 2,
non-sign-extended

All items except the PS and PC must be removed from the stack before
the SST service routine exits (usually by means of an RTI or RTT
instruction).

* For details of SR0, SRi, and SR2, see the memory management unit
section of the appropriate PDP-11 Processor Handbook.

SIGNIFICANT EVENTS AND SYSTEM TRAPS

2.3.3 Asynchronous System Traps (ASTs)

The primary purpose of an AST is to inform the task that a certain
event has occurred. For example, a task can associate an AST with the
completion of an I/0 operation. When the AST informs the task that
the event has occurred, the task can service the event and then return
to the interrupted code.

Some directives can specify both an event flag and an AST; with these
directives, ASTs can be used as an alternative to event flags or the
two can be used together. This capability enables the user to specify
the same AST routine for several directives, each with a different
event flag. Thus, when the Executive passes control to the AST
routine, the event flag can determine the action required.

AST service routines must save and restore all registers used. If the
registers are not restored after an AST has occurred, the task's
subsequent execution may be unpredictable.

In contrast to the execution of an SST routine, which is
indistinguishable from task execution, the Executive is aware that a
task is executing an AST routine. An AST routine can be interrupted
by an SST routine, but not by another AST routine.

The following notes describe general characteristics and uses of ASTs:

® If an AST occurs while the related task is executing, the task
is interrupted in order to execute the AST service routine.

e If an AST occurs while another AST 1is being processed, the
Executive queues the latest AST (First-In-First-Out or FIFO)
and then processes the next AST in the queue when the current
AST service 1is complete (unless AST recognition was disabled
by the AST service routine).

e If a task is suspended when an associated AST occurs, the task
remains suspended after the AST routine has been executed,
except that the suspended task can be explicitly resumed
either by the AST service routine itself, or by another task
(the MCR RESUME command, for example).

e If an AST occurs while the related task is waiting for an
event flag setting (a WAITFOR directive), the task continues
to wait after execution of the AST service routine until the
AST service routine itself or another task sets the
appropriate event flag.

- ® If an AST occurs for a checkpointed task, the Executive queues
the AST (FIFO), and then activates it when the task returns to
direct competition for processor resources. Powerfail
recovery ASTs are an exception, however. The Executive does
not activate powerfail recovery ASTs that occurred for a task
while the task was checkpointed.

When a task is checkpointed back into memory, the Executive
issues an AST for the task if its receive queue contains one
or more entries. This practice prevents checkpointed tasks
from losing receive ASTs.

SIGNIFICANT EVENTS AND SYSTEM TRAPS

e An optional RSX-11M feature allows the checkpointing of tasks
during terminal input. When this feature is included, the
Executive stops the execution of a checkpointable task when
the terminal driver receives an input request for the task.
The task resumes execution when the terminal input has
finished. A stopped task can execute an AST service routine
if an AST occure; but the task remains stopped after the
routine finishes unless the terminal input has finished in the
meantime. Note, however, that an AST routine itself can
reactivate the stopped task by issuing an I/O Kill function
for the task's terminal input request.

e The Executive allocates the necessary dynamic memory when an
AST is specified. Thus, no AST condition lacks dynamic memory
for data storage when it actually occurs.

e Two directives, DISABLE AST RECOGNITION and ENABLE AST
RECOGNITION, allow ASTs to be queued for subsequent execution
during critical sections of code. (A critical section might
be one that accesses data bases also accessed by AST service
routines, for example.) If ASTs occur while AST recognition is
disabled, they are gueued (FIFO) and then processed when AST
recognition is enabled.

2.3.4 AST Service Routines

When an AST occurs, the Executive pushes the task's WAITFOR mask word,
the DSW, the PS and the PC onto the task's stack. This information
saves the state of the task so that the AST service routine has access
to all the available Executive services. The preserved WAITFOR mask
word allows the AST routines to establish the conditions necessary to
unblock the waiting task. Depending on the reason for the AST, the
stack may also contain additional parameters. Note that the task's
general purpose registers RO-R6 are not saved. If the routine makes
use of them, it must save and restore them itself.

The WAITFOR mask word comes from the offset H.EFLM in the task's
header. Its value and the event flag range to which it corresponds
depend on the last WAITFOR SINGLE EVENT FLAG or WAITFOR LOGICAL "OR"
OF EVENT FLAGS directive issued by the task. For example, if the last
such directive issued was WAIT FOR SINGLE EVENT FLAG 42, the mask word
has a value of 1000(8) and the event flag range is from 33 to 48. Bit
0 of the mask word represents flag 33, bit 1 represents flag 34, and
SO on.

The WAITFOR mask word is meaningless if the task has not issued either
type of WAITFOR directive.

After processing an AST, the task must remove the trap-dependent
parameters from its stack; that is, everything from the top of the
stack down to, but not including, the task's Directive Status Word.
It must then issue an AST SERVICE EXIT directive with the stack set as
indicated in the description of that directive (see Section 4.2.4).
When the AST service routine exits, it returns control to one of two
places -- another AST or the original task.

SIGNIFICANT EVENTS AND SYSTEM TRAPS

There are five variations on the format of the task's stack, as
follows:

1. If a task needs to be notified when a Floating Point i
Processor exception trap occurs, it issues a SPECIFY FLOATING ‘
POINT PROCESSOR EXCEPTION AST directive. If the task
specifies this directive, an AST will occur when a Floating
Point Processor exception trap occurs. The stack will
contain the following values:

SP+12 -- Event flag mask word

SP+10 -- PS of task prior to AST
SP+06 -- PC of task prior to AST
SP+04 -- Task's Directive Status Word
SP+02 -- Floating exception code
SP+00 -- Floating exception address

2. If the task needs to be notified of power failure recoveries,
it issues a SPECIFY POWER RECOVERY AST directive. An AST
will then occur when the power is restored if the task is not
checkpointed. The stack will contain the following values:

SP+06 -- Event flag mask word

SP+04 -- PS of task prior to AST
SP+02 -- PC of task prior to AST
SP+00 -- Task's Directive Status Word

3. If a task needs to be notified when it receives either a
message or a reference to a common area, it issues either a
SPECIFY RECEIVE DATA AST or a SPECIFY RECEIVE BY REFERENCE
AST directive. If the task specifies one of these
directives, an AST will occur when a message or reference is
sent to the task. An AST also occurs when a task has at
least one item 1in the receive queue when the task is i
checkpointed into or initially loaded into memory. The stack ‘
will contain the following values:

SP+06 -- Event flag mask word

SP+04 -- PS of task prior to AST
SP+02 -~ PC of task prior to AST
SP+00 -- Task's Directive Status Word

4. When a task queues an I/0 request and specifies an
appropriate AST service entry point, an AST will occur upon
completion of the I/0 request. The task's stack will contain
the following values: @

SP+10 -- Event flag mask word

SP+06 —-- PS of task prior to AST

SP+04 -- PC of task prior to AST

SP+02 -- Task's Directive Status Word

SP+00 -- Address of I/0 status block for I/0

request (or zero if none was specified).

5. When a task issues a MARK TIME directive and specifies an
appropriate AST service entry point, an AST will occur when
the indicated time interval has elapsed. The task's stack
will contain the following values:

SP+10 -- Event flag mask word

SP+06 -- PS of task prior to AST

SP+04 -- PC of task prior to AST

SP+02 -- Task's Directive Status Word

SP+00 -- Event flag number (or zero if none was r
specified) g

2-8

CHAPTER 3

MEMORY MANAGEMENT DIRECTIVES

This chapter discusses the concepts of extended logical address space,
regions, and virtual address windows. The chapter also introduces the
related memory management directives.

3.1 ADDRESSING CAPABILITIES OF AN RSX-11M TASK

An RSX-11M task cannot explicitly refer to a location with an address
greater than 177777 (32K words). The 16-bit word size of the PDP-11
imposes this restriction on a task's addressing capability. To avoid
limiting the size of a task to its addressing capability, RSX-11M
allows it to be overlaid. An overlaid task is divided into
segments -- a single root segment, which is always in memory, and any
number of segments, which can be loaded into memory as required.
Unless an RSX-11M task uses the memory management directives described
in this chapter, the combined size of the task segments concurrently
in memory cannot exceed 32K words.

When task segments are not in memory, they reside on disk. When
resident task segments cannot exceed 32K words, a task requiring large
amounts of data must access disk-based data that cannot fit into
memory with what is already there. In addition, transmission of large
amounts of data between tasks is only practical via disk. An overlaid
task, or a task that needs to access or transfer large amounts of data
incurs a considerable amount of transfer activity over and above that
caused by the task's function.

Task execution could obviously be faster if all or a greater portion
of the task were always resident in memory at run time. RSX-11M
includes a group of memory management directives that provide the task
with this capability. The directives overcome the 32K word addressing
restriction by allowing the task to dynamically change the physical
locations that are referred to by a given range of addresses. With
these directives, a task can increase its execution speed by reducing
its disk I/0 requirements, at the expense of increased memory
requirements.

3.1.1 Address Mapping

In a mapped system, the user does not need to know where a task
resides in physical memory. Mapping, the process of associating task
addresses with available physical memory, is transparent to the user,
and is accomplished by the KT1l memory management hardware. (See the
appropriate PDP-11 Processor Handbook for a description of the KTl1l.)
when a task references a location (virtual address), the KT11l
determines the physical address in memory. The memory management
directives use the KT1ll to perform address mapping at a level that is
visible to and controlled by the user.

3-1

MEMORY MANAGEMENT DIRECTIVES

3.1.2 Virtual and Logical Address Space

The two concepts defined below, virtual address space and logical
address space, provide a basis for understanding the functions
performed by the memory management directives:

® Virtual Address Space -- A task's virtual address space
corresponds to the 32K-word address range imposed by the
PDP-11's 16-bit word length. The task can divide its wvirtual
address space into segments called virtual address windows
(see Section 3.2 below).

e Logical Address Space -- A task's logical address space is the
total amount of physical memory to which the task has access
rights. The task can divide its logical address space into
various areas called regions (see Section 3.3 below). Each
region occupies a continuous block of memory.

If the capabilities supplied by the RSX-11M memory management
directives were not available, a task's virtual address space and

logical address space would directly correspond; a single wvirtual
address would always point to the same logical location. Both types
of address space would have a maximum size of 32K. However, the

ability of the memory management directives to assign or map a range
of virtual addresses (a window) to different logical areas (regions)
enables the wuser to extend a task's logical address space beyond 32K
words.

3.2 VIRTUAL ADDRESS WINDOWS

In order to manipulate the mapping of virtual addresses to various
logical areas, the user must first divide a task's 32K of virtual
address space 1into segments. These segments are called virtual
address windows. Each window encompasses a continuous range of
virtual addresses, which must begin on a 4K word boundary (that is,
the first address must be a multiple of 4K). The number of windows
defined by a task can vary from 1 to 7 (as discussed below, window O
is not available to the user). The size of each window can range from
a minimum of 32 words to a maximum of 32K minus 32 words.

A task that includes directives to manipulate address windows
dynamically must have window blocks set up in its task header. The
Executive uses window blocks to identify and describe each currently
existing window. When linking the task, the programmer specifies the
required number of window blocks to be set up by the Task Builder (see
the RSX-~-11M Task Builder Reference Manual). The number of blocks
should equal the maximum number of windows that will exist
concurrently while the task is running.

A window's identification is a number from 0 to 7, which is an index
to the window's corresponding window block. The address window
identified by 0 is the window that always maps the task's header and
root segment. The Task Builder automatically creates window 0, which
is mapped by the Executive and cannot be specified in any directive.

Figure 3-1 shows the virtual address space of a task divided into four

address windows (windows 0, 1, 2, and 3). The shaded areas indicate
portions of the address space that are not included in any window (9K
to 12K and 23K to 24K). Addresses that fall within the ranges

corresponding to the shaded areas cannot be used.

MEMORY MANAGEMENT DIRECTIVES

VIRTUAL
ADDRESS
SPACE
32K
WINDOW 3 3 (8K) —28K
MMIMOEOIIT 244
20K
WINDOW 2 2 (11K)
=16K
WW_QK
M
~ 8K
WINDOW 1 1 (6K)
4K
WINDOW 0 0 (4K)
0K

= virtual address
window

= unused virtual
address space

Figure 3-1 Virtual Address Windows

When a task uses memory management directives, the Executive views the
relationship between the task's virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, the address does not point anywhere.
Similarly, a window can be mapped only to an area that is all or part
of an existing region within the task's logical address space.

Once a task has defined the necessary windows and regions, the task
can issue memory management directives to perform operations such as
the following:

e Map a window to all or part of a region.

e Unmap a window from one region in order to map it to another
region.

e Unmap a window from one part of a region in order to map it to
another part of the same region.

MEMORY MANAGEMENT DIRECTIVES

NOTE

It is currently possible for a task with
outstanding I/0 to unmap from a region
(although it cannot detach from
any -- see Section 3.3.2). Because this
feature may be impossible to support in
future releases of the system, it is

recommended that users consider
carefully before designing an
application that is based on this
capability.

3.3 REGIONS

The current window-to-region mapping context determines the part of a
task's 1logical address space that the task can access at one time. A
task's logical address space can consist of various types of region:

e Task Region -- The task region is a continuous block of memory
in which the task runs.

e Static Common Region -- A static common region 1is an area
defined by an operator at run time or at system generation
time, such as a global common area.

e Dynamic Region -- A dynamic region 1is a region created
dynamically at run time by 1issuing the memory management
directives.

Tasks refer to a region by means of a region ID returned to the task
by the Executive. Region ID 0 always refers to a task's task region.
All other region 1IDs are actually addresses of the attachment
descriptor maintained by the Executive in the system dynamic storage
area.

Figure 3-2 shows a sample collection of regions that could make up a
task's logical address space at some given time. (A task's logical
address space can enlarge or contract dynamically.) The header and
root segment are always part of the task region. Since a region
occupies a continuous area of memory, each region is shown as a
separate block.

Figure 3-3 illustrates a possible mapping relationship between the
windows and regions shown in the first two figures.

MEMORY MANAGEMENT DIRECTIVES

LOGICAL
ADDRESS
SPACE

L
STATIC COMMON
REGION

.

.

Figure 3-2 Region Definition Block

MEMORY MANAGEMENT DIRECTIVES

LOGICAL
ADDRESS
SPACE

0007

DYNAMIC REGION

e
=

e 5K

—PN—» 8K

VIRTUAL
ADDRESS - STATIC COMMON
SPACE
32K (
WINDOW 3 3 (8K) 28K

[oomoooo>«

- 20K : REGION i
WINDOW 2 2 (1K) " (
wmmm-ux /

-8K
WINDOW1 1(5K)
I I 7 » S :
WINDOW G | 4 (4K) - 4K { A?}/}?/}/ ‘ é
Legend:
I DD o sacns e

unmapped portions of
logical address space

[]]I[]]]]] unused virtual
address space

pointer to area

mapped by a window

Figure 3-3 Mapping Windows to Regions

MEMORY MANAGEMENT DIRECTIVES

3.3.1 Shared Regions

Address mapping not only extends a task's logical address space beyond
32K words, it also allows the space to extend to regions that have not
been linked to the task at task-build time. One result 1is an
increased potential for task interaction by means of shared regions.
For example, a task can create a dynamic region to accommodate 1large

amounts of data. Any number of tasks can then access that data by
mapping to the region. Another result is the ability of tasks to use
a greater number of common routines. Tasks can map to required

routines at run time, rather than link to them at task-build time.

3.3.2 Attaching to Regions

Attaching is the means by which a region becomes part of a task's
logical address space. A task can map only to a region that is part
of the task's logical address space. There are three ways to attach a
task to a region:

1. All regions that are linked to a task at task-build time are
automatically attached.

2. A task can issue a directive to attach itself to a named
static common region or a named dynamic region.

3. A task can request the Executive to attach any region within
its own logical address space (other than its task region) to
another specified task.

Attaching identifies a task as a user of a region, and prevents the
system from deleting a region until all user tasks have been detached
from it. (It should be noted that fixed tasks do not automatically
become detached from regions upon exiting.)

3.3.3 Region Protection

A task cannnot indiscriminately attach to any region. The following
criteria determine how tasks can attach to regions outside their
logical address space:

® Each region has a protection mask to prevent unauthorized
access. The mask indicates the types of access (read, write,
extend, delete) allowed for each category of user (system,
owner, group, world) . The Executive checks that the
requesting task's User Identification Code (UIC) allows it to
make the attempted access. The attempt fails if the
protection mask denies that task the access it wants.

® When a task creates a dynamic region, it may or may not give
that region a name. If the dynamic region is named, any task
can map to it as long as it knows the name and there is no
protection violation. If a dynamic region is unnamed, a task
can map to the region only if the task that created the
dynamic region issues a SEND BY REFERENCE directive addressed
to the requesting task.

® Any task can issue a SEND BY REFERENCE directive to attach any
region (except the task region) to another specific task. The
reference sent includes the access rights with which the
receiving task attaches to the region. The sending task can
only grant access rights that it has itself.

3-7

MEMORY MANAGEMENT DIRECTIVES

® Any task can map to a named static common region as long as
there is no protection violation.

3.4 DIRECTIVE SUMMARY

This section briefly describes the function of each memory management
directive.

3.4.1 CREATE REGION Directive (CRRGS$)

The CREATE REGION directive «creates a dynamic region in a
system—-controlled partition and optionally attaches the issuing task
to it. (See Section 4.3.10.)

3.4.2 ATTACH REGION Directive (ATRGS)

The ATTACH REGION directive attaches the 1issuing task to a static
common region or to a named dynamic region. (See Section 4.3.5.)

3.4.3 DETACH REGION Directive (DTRGS)

The DETACH REGION directive detaches the issuing task from a specified
region. Any of the task's address windows that are mapped to the
region are automatically unmapped. (See Section 4.3.15.)

3.4.4 CREATE ADDRESS WINDOW Directive (CRAWS)

The CREATE ADDRESS WINDOW directive creates an address window,
establishes its virtual address base and size, and optionally maps the
window. Any other windows that overlap with the range of addresses of
the new window are first unmapped, if necessary, and then eliminated.
(See Section 4.3.8.)

3.4.5 ELIMINATE ADDRESS WINDOW Directive (ELAWS)

The ELIMINATE ADDRESS WINDOW directive eliminates an existing address
window, unmapping it first if necessary. (See Section 4.3.16.)

3.4.6 MAP ADDRESS WINDOW Directive (MAPS$)

The MAP ADDRESS WINDOW directive maps an existing window to an
attached region beginning at a specified offset from the start of the
region, and going to a specified length. If the window is already
mapped elsewhere, the Executive unmaps it before carrying out the map
assignment described in the directive. (See Section 4.3.30.)

MEMORY MANAGEMENT DIRECTIVES

3.4.7 UNMAP ADDRESS WINDOW Directive (UMAPS)

The UNMAP ADDRESS WINDOW directive unmaps a specified window. After
the window has been unmapped, its virtual address range cannot be
referenced until the task 1issues another mapping directive. (See
Section 4.3.51.)

3.4.8 SEND BY REFERENCE Directive (SREFS)

The SEND BY REFERENCE directive inserts a packet containing a
reference to a region into the receive gueue of a specified task. The
receiver task is automatically attached to the region referred to.
(See Section 4.3.47.)

3.4.9 RECEIVE BY REFERENCE Directive (RREFS$)

The RECEIVE BY REFERENCE directive requests the Executive to select
the next packet from the receive~by-reference queue of the issuing
task, and make the information in the packet available to the task.
Optionally the directive can map a window to the referenced region, or
cause the task to exit 1if the queue does not contain a
receive-by-reference packet. (See Section 4.3.38.)

3.4.10 GET MAPPING CONTEXT Directive (GMCXS$)

The GET MAPPING CONTEXT directive causes the Executive to return to
the issuing task a description of the current window-to-region mapping
assignments. The description is in a form that enables the user to
restore the mapping context by a series of CREATE ADDRESS WINDOW
directives. (See Section 4.3.24.)

3.4.11 GET REGION PARAMETERS Directive (GREGS)

The GET REGION PARAMETERS directive causes the Executive to supply the
issuing task with information about either its task region (if no
region ID is given) or an explicitly specified region. (See Section
4.3.26.)

3.5 USER DATA STRUCTURES

Most memory management directives are individually capable of
performing a number of separate actions. For example, a single CREATE
ADDRESS WINDOW directive can unmap and eliminate up to seven
conflicting address windows, create a new window, and map the new
window to a specified region. The complexity of the directives
requires a special means of communication between the user task and
the Executive. The communication is achieved through data structures
that:

e allow the task to specify which directive options it wants the
Executive to perform, and

e permit the Executive to provide the task with details about
the outcome of the requested actions.

MEMORY MANAGEMENT DIRECTIVES

There are two types of user data structures that correspond to the two
key elements (regions and address windows) manipulated by the
directives. The structures are called:

e the Region Definition Block (RDB), and
e the Window Definition Block (WDB).

Every memory management directive except GET REGION PARAMETERS uses
one of these structures as its communications area between the task
and the Executive. Each directive issued includes in the Directive
Parameter Block (DPB) a pointer to the appropriate definition block.
Values assigned by the task to offsets within an RDB or a WDB define
or modify the directive operation. After the Executive has carried
out the specified operation, it assigns values to various locations
within the block to describe the actions taken and to provide the task
with information useful for subsequent operations.

3.5.1 Region Definition Block (RDB)

Figure 3-4 illustrates the format of an RDB. In addition to the
symbolic offsets defined in the diagram, the region status word,
R.GSTS, contains defined bits that may be set or cleared by the
Executive or the task. (RSX-11M reserves undefined bits for future
expansion.) The defined. bits are:

Bit Definition

RS.CRR=100000 Region was successfully created.

RS.UNM=40000 At least one window was unmapped on a detach.

RS.MDL=200 Mark region for deletion on last detach.

RS.NDL=100 Created region 1is not to be marked for
deletion on last detach.

RS.ATT=40 Attach to created region.

RS.NEX=20 Created region is not extendible.

RS.DEL=10 Delete access desired on attach.

RS.EXT=4 Extend access desired on attach.

RS.WRT=2 Write access desired on attach.

RS.RED=1 Read access desired on attach.

The three memory management directives that require a pointer to an
KDB are:

CREATE REGION (CRRGS)
ATTACH REGION (ATRGS)
DETACH REGION (DTRGS)

When a task issues one of these directives, the Executive clears the
four high-order bits in the region status word of the appropriate RDB.
After completing the directive operation, the Executive sets the
RS.CRR or RS.UNM bit to indicate to the task what actions were taken.
The other bits are never modified by the Executive.

3-10

MEMORY MANAGEMENT DIRECTIVES

Array Symbolic Byte
Element Offset Block Format Offset
0
irdb (1) R.GID REGION D
2
irdb (2) R.GSI1Z SIZE OF REGION (32W BLOCKS)
4
irdb (3)
R.GNAM NAME OF REGION (RADS50) —
irdb (4)
10
irdb (5)
R.GPAR REGION'S MAIN PARTITION NAME (RADS0) — 12
irdb (6)
14
irdb (7) R.GSTS REGION STATUS WORD
16
irdb (8) R.GPRO REGION PROTECTION WORD

Figure 3-4 Region Definition Block

3.5.1.1 Using Macros to Generate an RDB - RSX-11M provides two
macros, RDBDF$S and RDBBKS, to generate and define an RDB. RDBDFS$
defines the offsets and status word bits for a region definition
block; RDBBKS then creates the actual region definition block. The
format of RDBDFS$ is:

RDBDF$

Since RDBBKS automatically invokes RDBDF$, the programmer need only
specify RDBBK$S in a module that creates an RDB. The format of the

call to RDBBKS is:

RDBBKS siz,nam,par,sts,pro

where
siz = the region size in 32-word blocks
nam = the region name (RAD50)
par = the name of the partition in which to create the region
(RAD50)
sts = the region status word bit definitions
pro = the region's default protection word

MEMORY MANAGEMENT DIRECTIVES
The sts argument sets specified bits in the status word R.GSTS. The
argument normally has the following format:
<bitl[!...!bitn]>
where bit is a defined bit to be set.

'The argument pro is an octal number. The 16-bit binary eguivalent
specifies the region's default protection as follows:

Bits 15 12 11 8 7 4 3 0

WORLD GROUP OWNER SYSTEM

Each of the four categories above has four bits, with each bit
representing a type of access:

Bit 3 2 1 0

DELETE | EXTEND | WRITE | READ

A bit value of zero (0) indicates that the specified type of access is
to be allowed; a bit value of one (1) indicates that the specified
type of access is to be denied.

The macro call:
RDBBKS 102. ,ALPHA,GEN,<RS.NDL!RS.ATT!RS.WRT!RS.RED>,167000
expands to:

.WORD 0

.WORD 102.

.RAD50 /ALPHA/

.RAD50 /GEN/

.WORD 0

.WORD RS.NDL!RS.ATT!RS.WRT!RS.RED
.WORD 167000

If a CREATE REGION directive pointed to the RDB defined by the macro
call expanded above, the Executive would create a region 102 (decimal)
32-word blocks in length, named ALPHA, in a partition named GEN. The
defined bits specified in the sts argument tell the Executive:

e Not to mark the region for deletion on the last detach

e To attach region ALPHA to the task issuing the directive macro
call

® To grant read and write access to the attached task

The protection word specified as 167000 (octal) assigns a default
protection mask to the region. The octal number, which has a binary
equivalent of 1110111000000000, grants all types of access to system
and owner tasks (0000), and read access only, to group and world tasks
(1110).

If the CREATE REGION directive 1is successful, the Executive will
return to the 1issuing task a region ID value in the symbolic offset
R.GID, and will set the defined bit RS.CRR in the status word R.GSTS.

MEMORY MANAGEMENT DIRECTIVES

3.5.1.2 Using FORTRAN to Generate an RDB - FORTRAN programmers must
create an 8-word, single-precision integer array as the RDB to be
supplied in the subroutine calls:

CALL ATRG (ATTACH REGION directive)
CALL CRRG (CREATE REGION directive)
CALL DTRG (DETACH REGION directive)

(See the PDP-11 FORTRAN Language Reference Manual for information on

the creation of arrays.) An RDB array has the following format:
Word Contents
irdb (1) Region ID
irdb(2) Size of the region in 32-word blocks
irdb (3) Region name (2 words in Radix-50
irdb (4) format)
irdb (5) Name of the partition that contains the region
irdb (6) (2 words in Radix-50 format)
irdb (7) Region status word (see paragraph immediately
below)
irdb (8) Region protection code

The FORTRAN programmer modifies the region status word, irdb(7), by
setting or clearing the appropriate bits. See the list above in
Section 3.5.1 that describes the defined bits. The bit wvalues are
listed alongside the symbolic offsets.

Note that Hollerith text strings can be converted to Radix-50 values
by calls to IRAD50 (see the appropriate FORTRAN User's Guide).

3.5.2 Window Definition Block (WDB)

Figure 3-5 illustrates the format of a WDB. The block consists of a
number of symbolic offsets. One of the offsets is the window status
word, W.NSTS, which contains defined bits that can be set or cleared
by the Executive or the task. (RSX~11M reserves all undefined bits
for future expansion.) The defined bits are:

Bit Definition
WS.CRW=100000 Address window was successfully created.
WS.UNM=40000 At least one window was unmapped by a CREATE

ADDRESS WINDOW, MAP ADDRESS WINDOW, or UNMAP
ADDRESS WINDOW directive.

WS.ELW=20000 At least one window was eliminated in a
CREATE ADDRESS WINDOW or ELIMINATE ADDRESS
WINDOW directive.

WS.RRF=10000 Reference was successfully received.
WS.64B=400 Defines the task's permitted alignment
boundaries -~ 0 for 256-word (512-byte)

alignment, 1 for 32-word (64-byte) alignment.

Bit
WS .MAP=200
WS.RCX=100
WS.DEL=10
WS.EXT=4
WS.WRT=2
WS.RED=1
Array Symbolic
Element Offset
] W.NID
iwdb (” W.NAPR
iwdb (2) W.NBAS
iwdb (3) W.NSIZ
iwdb (4) W.NRID
iwdb (5) W.NOFF
iwdb (6) W.NLEN
iwdb (7) W.NSTS
iwdb (8) W.NSRB

MEMORY MANAGEMENT DIRECTIVES

Definition (Cont.)

Window is to be mapped in a CREATE ADDRESS
WINDOW or RECEIVE BY REFERENCE directive.

Exit if no references to receive.
Send with delete access.
Send with extend access.

Send with write access or map with write
access.

Send with read access.

Byte
Block Format Offset
0
BASE APR WINDOW ID
2
VIRTUAL BASE ADDRESS (BYTES)
4
WINDOW SIZE (32W BLOCKS)
6
REGION ID
10
OFFSET IN REGION (32W BLOCKS)
12
LENGTH TO MAP (32W BLOCKS)
14
WINDOW STATUS WORD
16
SEND/RECEIVE BUFFER ADDRESS (BYTES)

Figure 3-5 Window Definition Block

The following directives require a pointer to a WDB:

CREATE ADDRESS WINDOW (CRAWS)
ELIMINATE ADDRESS WINDOW (ELAWS)
MAP ADDRESS WINDOW (MAPS)

UNMAP ADDRESS WINDOW (UMAPS)
SEND BY REFERENCE (SREFS)
RECEIVE BY REFERENCE (RREFS$)

o

MEMORY MANAGEMENT DIRECTIVES

When a task issues one of these directives, the Executive clears the
four high-order bits in the window status word of the appropriate WDB.
The Executive can then set any of these bits after completing the
directive operation, to tell the task what actions were taken. The
other bits are never modified by the Executive.

3.5.2.1 Using Macros to Generate a WDB - RSX-11M provides two macros,
WDBDF$S and WDBBKS, to generate and define a WDB. WDBDF$ defines the
offsets and status word bits for a window definition block; WDBBKS
then creates the actual window definition block. The format of WDBDFS$
is:
WDBDFS

Since WDBBKS automatically invokes WDBDFS$, the programmer need only
specify WDBBKS in a module that generates a WDB. The format of the
call to WDBBKS is:

WDBBKS apr,siz,rid,off,len,sts,srb

where
apr = a number from 0 to 7 that specifies the window's base
Active Page Register (APR). The APR determines the 4K
boundary on which the window 1is to begin, APR 0
corresponds to virtual address 0, APR 1 to 4K, APR 2 to 8K,
and so on.
siz = the size of the window in 32-word blocks.
rid = a region ID
off = the offset within the region to be mapped in 32-word blocks
len = the length within region to be mapped, in 32-word blocks.
sts = the window status word bit definitions
srb = a send/receive buffer virtual address
The argument sts sets specified bits in the status word W.NSTS. The
argument normally has the following format:

<bitl[!...!bitn]>
where bit is a defined bit to be set.
The macro call:
WDBBKS 5,76.,0,50., ,<WS.MAP!WS.WRT>

expands to:

.BYTE 0,5 (Window ID returned in low-order byte)
.WORD 0 (Base virtual address returned here)
.WORD 76.

.WORD 0

.WORD 50.

.WORD 0

.WORD WS.MAP!WS.WRT

.WORD 0

MEMORY MANAGEMENT DIRECTIVES

If a CREATE ADDRESS WINDOW directive pointed to the WDB defined by the
macro call expanded above, the Executive would:

e Create a window 76 (decimal) blocks long beginning at APR 5
(virtual address 20K or 120000 octal).

e Map the window with write access (<KWS.MAP!WS.WRT>) to the
issuing task's task region (because the macro call specified 0
for the region ID).

e Start the map 50 (decimal) blocks from the base of the region
and map an area either equal to the length of the window (76
[decimal] blocks) or the 1length remaining in the region,
whichever is smaller (because the macro call defaulted the len
argument) .

® Return values to the symbolic offsets W.NID (the window's ID)
and W.NBAS (the window's virtual base address).

3.5.2.2 Using FORTRAN to Generate a WDB - FORTRAN programmers must
create an 8-word, single-precision integer array as the WDB to be
supplied in the subroutine calls:

CALL CRAW (CREATE ADDRESS WINDOW directive)

CALL ELAW (ELIMINATE ADDRESS WINDOW directive)

CALL MAP (MAP ADDRESS WINDOW directive)

CALL UNMAP (UNMAP ADDRESS WINDOW directive)

CALL SREF (SEND BY REFERENCE directive)

CALL RREF (RECEIVE BY REFERENCE directive)

(See the PDP-11 FORTRAN Language Reference Manual for information on
the creation of arrays.) A WDB array has the following format:

Word Contents

iwdb (1) Bits 0 to 7 contain the window ID; bits 8 to 15
contain the window's base APR

iwdb (2) Base virtual address of the window

iwdb (3) Size of the window in 32-word blocks

iwdb (4) Region ID

iwdb (5) Offset length within the region at which map
begins, in 32-word blocks.

iwdb (6) Length mapped within the region in 32-word blocks.

iwdb (7) Window status word (see paragraph immediately
below)

iwdb (8) Address of send/receive buffer

The FORTRAN programmer modifies the window status word, iwdb(7), by
setting or clearing the appropriate bits. See the list above in
Section 3.5.2 that describes the defined bits. The bit values are
listed alongside the symbolic offsets.

MEMORY MANAGEMENT DIRECTIVES

Notes:

® The contents of bits 8 to 15 of 1iwdb(l) must normally be set
without destroying the value in bits 0 to 7 for any directive
other than CREATE ADDRESS WINDOW.

+ Fod
w -}

[®

® A ca
r

add

ADR (see Section 1.5.1.4) can b
r a

the send/receive buffer. Fo

e (D

11 ~
Ll v
ess of

CALL GETADR(IWDB,,ssrss,IRCVB)

This call places the address of buffer IRCVB in array element 8.
The remaining elements are unchanged. The subroutines SREF and
RREF also set up this value.

3.5.3 Assigned Values or Settings

The exact values or settings assigned to individual fields within the
RDB or the WDB vary according to each directive. Fields that are not
required as input can have any value when the directive is issued.
Chapter 4 describes which offsets and settings are relevant for each
memory management directive. The values assigned by the task are
called input parameters; those assigned by the Executive are called
output parameters.

3.6 PRIVILEGED TASKS

When a privileged task maps to the Executive and the 1I/0 page, the
system normally dedicates 5 or 6 APRs to this mapping. A privileged
task can issue memory management directives to remap any number of
these APRs to regions. Programmers should take great care when using
the directives in this way. Such remapping can cause obscure bugs to
occur When a directive unmaps a window that formerly mapped the

.
Executive or the I/0 page, the Executive restores the former mapping.

C

CHAPTER 4

DIRECTIVE DESCRIPTIONS

Each directive description consists of an explanation of the
directive's function and use, the names of the corresponding macro and
FORTRAN calls, the associated parameters, and possible return values
of the Directive Status Word (DSW). The descriptions generally show
the $ form of the macro call (e.g., QIO$), although the $C and S$S
forms are also available. Where the $S form of a macro reguires less
space and performs as fast as a DIR$ (because of a small DPB), it is
recommended. For these macros, the expansion for the $S form is
shown, rather than that for the $ form.

In addition to the directive macros themselves, the DIRS macro can be

used by the programmer to execute a directive if the directive has a
predefined DPB. See Sections 1.4.1.1 and 1.4.2 for further details.

4.1 DIRECTIVE CATEGORIES
For ease of reference, the directive descriptions are presented
alphabetically in Section 4.3 according to the directive macro calls.

This section, however, groups the directives by function and gives the
number of the section that describes each directive in ‘detail. The

directives are grouped into the following seven categories:
1. Task Execution Control Directives
2. Task Status Control Directives
3. Informational Directives
4, Event-associated Directives
5. Trap-associated Directives

6. I/0 and Intertask Communications Related Directives

7. Memory Management Directives

4.1.1 Task Execution Control Directives

The task execution control directives deal principally with starting
and stopping tasks. Each of these requests (except EXTEND TASK)
results in a change of the task's state (unless the task is already in
the state being requested). The requests are:

DIRECTIVE DESCRIPTIONS

Macro Section Directive Name

ABRTS 4.3.1 ABORT TASK

CSRQS 4.3.11 CANCEL TIME BASED INITIATION REQUESTS f
EXITSS 4.3.20 TASK EXIT ($S form recommended)

EXTKS 4.3.21 EXTEND TASK

RQSTS 4.3.37 REQUEST TASK

RSUMS 4.3.39 RESUME TASK

RUNS 4.3.40 RUN TASK

SPNDS$S 4.3.44 SUSPEND ($S form recommended)

4.1.2 Task Status Control Directives

Two task status control directives alter the checkpointable attribute
of a task. A third directive changes the running priority of an
active task. These directives are:

Macro Section Directive Name

ALTPS 4.3.2 ALTER PRIORITY ‘
DSCPSS 4.3.14 DISABLE CHECKPOINTING ($S form recommended) Y 4
ENCPSS 4.3.18 ENABLE CHECKPOINTING ($S form recommended)

4.1.3 Informational Directives

Several informational directives provide the issuing task with data
retained by the system. These directives provide the time of day, the
task parameters, the console switch settings, and partition or region
parameters. The directives are:

Macro Section Directive Name ‘
GPRTS 4.3.25 GET PARTITION PARAMETERS

GREGS 4.3.26 GET REGION PARAMETERS

GSSWSS 4.3.27 GET SENSE SWITCHES ($S form recommended)

GTIMS 4.3.28 GET TIME PARAMETERS

GTSKS 4.3.29 GET TASK PARAMETERS

4.1.4 Event-Associated Directives t

The event and event flag directives are the means provided in the
system for inter- and intra-task synchronization and signalling.
These directives must be wused carefully since software faults
resulting from erroneous signalling and synchronization are often
obscure and difficult to isolate. These directives are:

Macro Section Directive Name

CLEFS$ 4.3.7 CLEAR EVENT FLAG

CMKTSS 4.3.8 CANCEL MARK-TIME REQUESTS (S$S form recommended)

DECLSS 4.3.12 DECLARE SIGNIFICANT EVENT (S$S form recommended)

EXIFS 4.3.19 EXITIF

MRKTS 4.3.31 MARK TIME

RDAFS 4.3.36 READ ALL EVENT FLAGS

SETFS 4.3.42 SET EVENT FLAG

WSIGSS 4.3.52 WAIT FOR SIGNIFICANT EVENT ($S form recommended)

WTLOS 4.3.53 WAIT FOR LOGICAL "OR" OF EVENT FLAGS)

WTSES 4.3.54 WAIT FOR SINGLE EVENT FLAG {
4-2

4

DIRECTIVE DESCRIPTIONS

4.1.5 Trap-Associated Directives

The trap-associated directives provide the user with the same
facilities inherent in the PDP-11 hardware trap system. They allow
transfers of control (software interrupts}) to the executing tasks.
These directives are:

Macro Section Directive Name

ASTXSS 4.3.4 AST SERVICE EXIT ($S form recommended)

DSARSS 4.3.13 DISABLE AST RECOGNITION ($S form recommended)

ENARSS 4.3.17 ENABLE AST RECOGNITION ($S form recommended)

IHARSS 4.3.13 INHIBIT AST RECOGNITION ($S form recommended)

SFPAS 4.3.43 SPECIFY FLOATING POINT PROCESSOR EXCEPTION
AST

SPRAS 4.3.45 SPECIFY POWER RECOVERY AST

SRDAS 4.3.46 SPECIFY RECEIVE DATA AST

SRRAS 4.3.48 SPECIFY RECEIVE BY REFERENCE AST

SVDBS$ 4.3.49 SPECIFY SST VECTOR TABLE FOR DEBUGGING AID
SVTKS$ 4.3.50 SPECIFY SST VECTOR TABLE FOR TASK

4.1.6 I/0 and Intertask Communications-Related Directives

The I/0 and communications-related directives allow tasks to access
I/0 devices at the driver interface 1level or interrupt level, to
communicate with other tasks in the system, and to retrieve the MCR
command line used to start the task. These directives are:

Macro Section Directive Name

ALUNS 4.3.3 ASSIGN LUN

CINTS 4.3.6 CONNECT TO INTERRUPT VECTOR
GLUNS 4.3.22 GET LUN INFORMATION

GMCRS 4.3.23 GET MCR COMMAND LINE

QIOS 4.3.32 QUEUE I/0 REQUEST

OIOWS 4.3.33 QUEUE I/0O REQUEST AND WAIT
RCVDS 4.3.34 RECEIVE DATA

RCVX$ 4.3.35 RECEIVE DATA OR EXIT

SDATS 4.3.41 SEND DATA

4.1.7 Memory Management Directives

The memory management directives allow a task to manipulate its
virtual and logical address space, and to set up and control
dynamically the window-to-region mapping assignments. The directives
also provide the means by which tasks can share and pass references to
data and routines. These directives are:

Macro Section Directive Name

ATRGS 4.3.5 ATTACH REGION

CRAWS 4.3.9 CREATE ADDRESS WINDOW
CRRGS 4.3.10 CREATE REGION

DTRGS 4.3.15 DETACH REGION

ELAWS 4.3.16 ELIMINATE ADDRESS WINDOW
GMCXS 4.3.24 GET MAPPING CONTEXT
MAPS 4.3.30 MAP ADDRESS WINDOW
RREFS 4.3.38 RECEIVE BY REFERENCE
SREFS 4.3.47 SEND BY REFERENCE
UMAPS 4.3.51 UNMAP ADDRESS WINDOW

DIRECTIVE DESCRIPTIONS

4.2 DIRECTIVE CONVENTIONS

Programmers using system directives should adhere to the following
conventions:

1. In MACRO-11l programs, unless a number is followed by a
decimal point (.), the system assumes the number to be octal.

In FORTRAN programs, use integer*2 type unless the directive
description states otherwise.

2. In MACRO-11 programs, task and partition names can be from 1
to 6 <characters long and should be represented as two words
in Radix-50 form.

In FORTRAN programs, specify task and partition names by a
variable of type REAL (single precision) that contains the
task or partition name in Radix-50 form. To establish
Radix-50 representation, either use the DATA statement at
compile time, or use the IRAD50 subprogram or RAD50 function
at run time.

3. Device names are 2 characters long and are represented by one
word in ASCII code.

4. Some directive descriptions state that a certain parameter
must be provided even though the system ignores it. Such
parameters are included to maintain RSX-11M compatibility
with RSX-11D.

5. 1In the directive descriptions, square brackets ([1) enclose
optional parameters or arguments. To omit optional items,
either use an empty (null) field in the parameter 1list, or
omit a trailing optional parameter.

6. Logical Unit Numbers (LUNs) can range from 1 to 255(10).

7. Event flag numbers range from 1 to 64(10). Numbers from 1 to
32(10) denote 1local flags. Numbers from 33 to 64 denote
common flags.

Note that the Executive preserves all task registers when a task
issues a directive.

4.3 SYSTEM DIRECTIVE DESCRIPTIONS

Each directive description includes most or all of the following
elements:

Name :
The function of the directive is described.
FORTRAN Call:

The FORTRAN subroutine call is shown, and each parameter is
defined.

DIRECTIVE DESCRIPTIONS

Macro Call:

The macro call is shown, each parameter is defined, and the
defaults for optional parameters are given in parentheses
following the definition of the parameter. Since zero is
supplied for most defaulted parameters, only nonzero default
values are shown. Parameters ignored by RSX-11M are required for
compatibility with RSX-11D.

Macro Expansion:

The $ form of the macro is expanded in most of the directive
descriptions. Where the $S form is recommended for a directive,
the expansion for that form is shown instead. Expansions for all
three forms and for the DIRS$ macro are illustrated in Section
1.4.5.

Definition Block Parameters:

These parameters are given only in the memory management
directive descriptions. This section describes all the relevant
input and output parameters in the region or window definition
block. {(See Section 3.5.)

Local Symbol Definitions:
Macro expansions usually generate local symbol definitions with
an assigned value equal to the byte offset from the start of the
DPB to the corresponding DPB element. These symbols are 1listed.
The 1length in bytes of the element pointed to by the symbol
appears in parentheses following the symbol's description. Thus:
A.BTTN - Task name (4)

defines A.BTTN as pointing to a task name in the Abort Task DPB;
the task name has a length of 4 bytes.

DSW Return Code:
All valid return codes are listed.

Notes:
The notes presented with some directive descriptions expand on
the function, use, and/or consequences of using the directives.

Users should always read the notes carefully to ensure proper use
of these directives.

DIRECTIVE DESCRIPTIONS

ABRTS$

4.3.1 ABORT TASK

The ABORT TASK directive instructs the system to terminate the
execution of the indicated task. ABRTS is intended for use as an
emergency or fault exit. A termination notification 1is displayed,
based on the described condition, at one of the following terminals:

1. The terminal from which the aborted task was requested

2. The originating terminal of the task that requested the
aborted task

3. The operator's console (CO:) if the task was started
internally from another task via a RUNS$ directive or via an
MCR RUN command that specifies one or more time parameters

A task may abort any task, including itself. When a task is aborted,
its state changes from active to dormant. Therefore, to reactivate an
aborted task, a task or an operator must request it.
In systems that support multiuser protection, a task must be
privileged to issue the ABORT TASK directive (unless it is aborting
itself).
FORTRAN Call:

CALL ABORT (tsk[,ids])

Task name
Directive status

tsk
ids

Macro Call:
ABRTS tsk
tsk = Task name
Macro Expansion:
ABRTS ALPHA
.BYTE 83.,3 ;ABRTS MACRO DIC, DPB SIZE=3 WORDS
.RAD50 /ALPHA/ ; TASK "ALPHA"
Local Symbol Definitions:

A.BTTN =-- Task name (4)

DSW Return Codes:

IS.SUC -- Successful completion

IE.INS =-- Task is not installed

IE.ACT -- Task is not active

IE.PRI -- 1Issuing task is not privileged (multiuser
protection systems only)

IE.ADP ~-- Part of the DPB is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

Note:

DIRECTIVE DESCRIPTIONS

When a task is aborted, the Executive frees all the task's
resources. In particular, the Executive:

Detaches all attached devices
Flushes the AST queue
Flushes the receive and receive-by-reference queue

Flushes the clock queue for outstanding Mark Time
requests for the task

Closes all open files (files open for write access are
locked)

Detaches all attached regions except in the case of a
fixed task, where no detaching occurs

Runs down the task's I/0

Frees the task's memory if the aborted task was not
fixed

DIRECTIVE DESCRIPTIONS

ALTPS

4.3.2 ALTER PRIORITY

The ALTER PRIORITY directive instructs the system to change the
running priority of a specified active task to either:

® a new priority indicated in the directive call, or

e the task's default (installed) priority if the call does not
specify a new priority. :

The specified task must be installed and active. The Executive resets
the task's priority to its installed priority when the task exits.

If the directive call omits a task name, the Executive defaults to the
issuing task.

The Executive reorders any outstanding I/O reguests for the task in
the I/0 queue, and reallocates the task's partition. The partition
reallocation may cause the task to be checkpointed.

In systems that support multiuser protection, a task must be
privileged to issue the ALTER PRIORITY directive.

FORTRAN Call:

CALL ALTPRI ([tsk],[ipri][,ids])

tsk = Active task name

ipri = l-word integer value equal to the new priority, a number
from 1 to 250 (decimal).

ids = Directive Status

Macro Call:
ALTPS [tsk][,pri]

tsk
pri

Active task name
New priority, a number from 1 to 250 (decimal).

Macro Expansion:

ALTPS ALPHA, 75.

.BYTE 9..,4 ;ALTPS MACRO DIC, DPB SIZE=4 WORDS
.RAD50 /ALPHA/ ; TASK ALPHA
.WORD 75. ;NEW PRIORITY

Local Symbol Definitions:

A.LTTN -- Task name (4)
A.LTPR -- Priority (2)

DSW Return Codes:

IS.SUC =-- Successful completion

IE.INS -- Task not installed

IE.ACT -~ Task not active

IE.PRI -- 1Issuing task is not privileged (multiuser protection
systems only)

IE.IPR -- 1Invalid priority

IE.ADP ~-- Part of DPB out of the issuing task's address space

IE.SDP -- DIC or DPB size is invalid

4-8

DIRECTIVE DESCRIPTIONS

ALUNS

4.3.3 ASSIGN LUN

The ASSIGN LUN directive instructs the system to assign a physical
device unit to a logical unit number (LUN). It does not indicate that
the task has attached itself to the device.

The actual physical device assigned to the logical unit is dependent
on the 1logical assignment table (see the MCR ASN command in the
RSX-11M Operator's Procedures Manual). The Executive first searches
the logical assignment table for a device name match. If a match is
found in the logical assignment table, the physical device unit
associated with the matching entry is assigned to the logical unit.
Otherwise, the Executive then searches the physical device tables and
assigns the actual physical device unit named, to the logical unit.
In systems that support multiuser protection, the Executive does not
search the logical assignment table if the task has been installed
with the slave option (/SLV=YES). '

When a task reassigns a LUN from one device to another, the Executive
cancels all I/0 requests for the issuing task in the previous device
queue.

FORTRAN Call:

CALL ASNLUN (lun,dev,unt],ids])

lun = Logical unit number

dev = Device name (format: 1A2)
unt = Device unit number

ids = Directive status

Macro Call:

ALUNS lun,dev,unt

lun = Logical unit number
dev = Device name (two characters)
unt = Device unit number

Macro Expansion:

ALUNS 7,TT,0 ;ASSIGN LOGICAL UNIT NUMBER

.BYTE 7,4 ;sALUNS MACRO DIC, DPB SIZE=4 WORDS
.WORD 7 ; LOGICAL UNIT NUMBER 7

.ASCII /TT/ ;DEVICE NAME IS TT (TERMINAL)
.WORD 0 ;DEVICE UNIT NUMBER=0

Local Symbol Definitions:

A.LULU -- Logical unit number (2)
A.LUNA -- Physical device name (2)
A.LUNU -- Physical device unit number (2)

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

Note:

IS.80C -- Successful completion
IE.LNL -- LUN usage is interlocked (see Note below)
IE.IDU ~-- 1Invalid device and/or unit
IE.ILU -- 1Invalid logical unit number
IE.ADP -- Part of the DPB is out of the issuing task's
address space
JE.SDP -- DIC or DPB size is invalid
® A return code of IE.LNL indicates that the specified LUN

cannot be assigned as directed. Either the LUN is already
assigned to a device with a file open for that LUN, or the LUN
is currently assigned to a device attached to the task, and
the directive attempted to change the LUN assignment.

DIRECTIVE DESCRIPTIONS

ASTX$S

4.3.4 AST SERVICE EXIT ($S form recommended)

The AST SERVICE EXIT directive instructs the system to terminate
execution of an AST service routine.

If another AST is gqueued and ASTs are not disabled, then the Executive
immediately effects the next AST. Otherwise, the Executive restores
the task's pre-AST state.
See Notes below.
FORTRAN Call:
Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.
Macro Call:
ASTXSS [err]
err = Error routine address

Macro Expansion:

ASTX$S ERR

MOV {PC)+,-(SP) ;PUSH DPB ONTO THE STACK
.BYTE 115.,1 ;ASTXS$SS MACRO DIC, DPB SIZE=1 WORD
EMT 3717 ; TRAP TO THE EXECUTIVE
JSR PC,ERR :CALL ROUTINE "ERR" IF DIRECTIVE
; UNSUCCESSFUL

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC =-- Successful completion
IE.AST -- Directive not issued from an AST service
routine
IE.ADP -~-- Part of the DPB or stack is out of the issuing
task's address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e A return to the AST service routine occurs if, and only if,

the directive 1is rejected. Therefore, no Branch on Carry
Clear instruction is generated if an error routine address is
given. (The return occurs only when the Carry bit is set.)

® When an AST occurs, the Executive pushes, at minimum, the
following information onto the task's stack:

SP+06 -- Event flag mask word

SP+04 -- PS of task prior to AST
SP+02 =-- PC of task prior to AST
SP+00 -~ DSW of task prior to AST

Example:

LOCAL

~e N8 we Ne “e

I0SB:
BUFFER:

START

~e we o we

START:

-~ we we

ASTSER:

DIRECTIVE DESCRIPTIONS

The task stack must be in this state when the AST SERVICE EXIT
directive is executed.

In addition to the data parameters, the Executive pushes
supplemental information onto the task stack for certain ASTs.
For I/O completion, the stack contains the address of the 1I/0
status block; for MARK TIME, the stack contains the Event
Flag Number; for a floating point processor exception, the
stack contains the exception code and address.

These AST parameters must be removed from the task's stack
prior to issuing an AST exit directive. The following example
shows how to remove AST parameters when a task uses an AST
routine on I/O completion:

EXAMPLE PROGRAM

DATA

.BLKW 2 :1/0 STATUS DOUBLEWORD
.BLKW 30. ;I/0 BUFFER

OF MAIN PROGRAM

. ; PROCESS DATA

QIOSC I0.wvB,2,,,I0SB,ASTSER,<BUFFER,60.,40>

. ; PROCESS & WAIT

EXITSS ;EXIT TO EXECUTIVE

AST SERVICE ROUTINE

; PROCESS AST
TST (SP) + ; REMOVE ADDRESS OF I/0 STATUS BLOCK
ASTXSS ;AST EXIT
The task can alter its return state by manipulating the

information on its stack prior to executing an AST exit
directive. For example, to return to task state at an address
other than the pre-AST address indicated on the stack, the
task can simply replace the PC word on the stack. This
procedure may be wuseful 1in those cases in which error
conditions are discovered in the AST routine; but this
alteration should be exercised with extreme caution since AST
service routine bugs are difficult to isolate.

Because this directive requires only a l-word DPB, the $S form
of the macro 1is recommended. It requires less space and
executes with the same speed as the DIRS macro.

DIRECTIVE DESCRIPTIONS

ATRGS

4.3.5 ATTACH REGION

The ATTACH REGION directive attaches the 1issuing task to a static
common region or to a named dynamic region. (No other type of region
can be attached to the task by means of this directive.) The Executive
checks the desired access specified in the region status word against
the owner UIC and the protection word of the region. If there 1is no
protection violation, the desired access is granted. If the region is
successfully attached to the task, the Executive returns a 16-bit
region ID (in R.GID), which the task uses in subsegquent mapping
directives.

The directive can also be used to determine the ID of a region already
attached to the task. In this case, the task specifies the name of
the attached region in R.GNAM and clears all four bits described below
in the region status word R.GSTS. When the Executive processes the
directive, it checks that the named region is attached. 1If the region
is attached to the issuing task, the Executive returns the region ID,
as well as the region size, for the task's first attachment to the
region. A programmer may want to use the ATTACH REGION directive in
this way to determine the region ID of a common block attached to the
task at task-build time.

FORTRAN Call:

CALL ATRG (irdbf,ids])

irdb = An 8-word integer array containing a region definition
block (see Section 3.5.1.2) ’
ids = Directive status

Macro Call:
AMDOS rdh
ATRGS rdb

rdb = Region definition block address

Macro Expansion:
ATRGS RDBADR
.BYTE 57.,2 ;ATRGS MACRO DIC, DPB SIZE=2 WORDS
.WORD RDBADR :RDB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array Offset

Element

irdb(3) (4) R.GNAM -- ©Name of the region to be attached

irdb(7) R.GSTS -- Bit settings* in the region status word

(specifying desired access to the region):

* FORTRAN programmers should refer to Section 3.5.1 to determine the
bit values represented by the symbolic names described.

DIRECTIVE DESCRIPTIONS

RS.RED -- 1 if read access is desired

RS.WRT -- 1 if write access is desired
RS.EXT -- 1 if extend access is desired
RS.DEL -- 1 if delete access is desired

Clear all four bits to request the region
ID of the named region if it is already
attached to the issuing task.

Output parameters:

Array Offset

Element

irdb (1) R.GID -~ ID assigned to the region

irdb (2) R.GSIZ ~- Size in 32-word blocks of the attached

region
Local Symbol Definition:
A.TRBA -- Region definition block address (2)

DSW Return Codes:

I5.8UC -- Successful completion

IE.UPN -- An attachment descriptor cannot be allocated

IE.PRI -~ Privilege violation

IE.NVR -~ Invalid region ID

IE.PNS -~ The specified region name does not exist

IE.ADP —-- Part of the DPB or RDB is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

CINTS

4.3.6 CONNECT TO INTERRUPT VECTOR

The CONNECT TO INTERRUPT VECTOR directive provides for a task the
capability of processing hardware interrupts through a specified
vector. The Interrupt Service Routine (ISR) is included in the task's
own space. In a mapped system, the issuing task must be privileged.

The overhead is the execution of about 10 instructions before entry
into the ISR, and 10 instructions after exit from the ISR. A
mechanism is provided for transfer of control from the ISR to
task-level code either via an asynchronous system trap (AST) or a
local event flag.

After a task has connected to an interrupt vector, it has the
capability of processing interrupts on three different levels:

e interrupt level
o fork level
e task level
The task level may be subdivided into:
e AST level
e non-AST level
1. Interrupt Level

When an interrupt occurs, control is transferred, via the
Interrupt Transfer Block (ITB) that has been allocated by the
CINTS directive, to the Executive subroutine $SINTSC. From
there control goes to the Interrupt Service Routine (ISR)
specified in the directive.

The ISR processes the interrupt and either dismisses the
interrupt directly or enters fork level via a call to the
Executive routine S$FORK2.

2. Fork Level

The fork level routine executes at priority 0 and therefore
has more time to do further processing. If required, the
fork routine sets a local event flag for the task and/or
queues an AST to an AST routine specified in the directive.

3. Task Level

At task level, entered as the result of a local event flag or
an AST, the task does final interrupt processing, and has
access to Executive directives.

Typically, the ISR does the minimal processing reguired for
an interrupt and stores information for the fork routine or
task level routine in a ring buffer. The fork routine is
entered after a number of interrupts have occurred as deemed
necessary by the ISR, and condenses the information further.
Finally, the fork routine wakes up the task level code for
ultimate processing that requires access to Executive

DIRECTIVE DESCRIPTIONS

directives. The fork level may, however, be a transient
stage from ISR to task level code without doing any
processing.

In a mapped system, to be able to use the CINT$ directive, a task must
be built privileged. However, it is legal to use the /PR:0 switch to
the Task Builder to have "unprivileged mapping,” i.e., up to 32K words
of wvirtual address space available. This precludes use of the
Executive subroutines from task-level code; however, the ISR and
fork-level routines are always mapped to the Executive when they are
executed. In any case, the Executive symbol table file (RSX11M.STB)
should be included as input to the Task Builder.

As will be described later, in a mapped system, special considerations
apply to the mapping of the ISR, fork routine, and enable/disable
routine as well as all task data buffers accessed by these routines.
FORTRAN Call:

Not supported
Macro Call:

CINTS vec,base,isr,edir,pri,ast
Argument descriptions:

vec = interrupt vector address -- Must be in the range 60(8) to

highest vector specified during SYSGEN, inclusive, and
must be a multiple of 4.

base = virtual base address for Kkernel APR 5 mapping of the ISR,
and enable/disable interrupt routines -- This address is
automatically truncated to a 32(10)-word boundary. The
"base" argument is ignored in an unmapped system.

isr = virtual address of the ISR, or 0 to disconnect from the
interrupt vector

edir = virtual address of the enable/disable interrupt routine

pri = initial priority at which .the ISR is to execute -- This is
normally equal to the hard-wired interrupt priority, and
is expressed in the form n*40, where n is a number in the
range 0-7. This form puts the value in bits 5-7 of pri.
It is recommended that the programmer make use of the
symbols PR4, PR5, PR6, and PR7 for this purpose. These
are 1implemented via the macro HWDDF$ found in
[1,1]EXEMC.MLB.

ast = virtual address of an AST routine to be entered after the

fork level routine gueues an AST

To disconnect from interrupts on a vector, the argument isr is set to
0 and the arguments base, edir, psw, and ast are ignored.

Macro Expansion:

CINTS 420 ,BADR, IADR,EDADR,PR5,ASTADR
.BYTE 129.,7.

.WORD 420

.WORD BADR

.WORD IADR

.WORD EDADR

.BYTE PR5,0

.WORD ASTADR

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

C.INVE -- vector address (2)

C.INBA -- base address (2)

C.INIS -- ISR address (2)

C.INDI -- enable/disable interrupt routine address (2)

C.INPS -- priority (1)
C.INAS —-- AST address (2)

DSW Return Codes:

IE.UPN -- An ITB could not be allocated (no pool space).

IE.ITS -- The function requested is "disconnect" and the task is
not the owner of the vector.

IE.PRI -- Issuing task is not privileged. (not applicable in
unmapped system).

IE.RSU -- The specified vector is already in use.

IE.ILV -- The specified vector is illegal (lower than 60 or
higher than highest vector specified during SYSGEN, or
not a multiple of 4).

IE.MAP -- ISR or enable/disable interrupt routine is not within
4K words from the value (base address & 177700).

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

Notes:
e Checkpointable tasks
The following points should be noted for checkpointable tasks

only:

When a task connects to an interrupt vector, checkpointing of the

task is automatically disabled.

When a task disconnects from a vector and is not connected to any
other vector, checkpointing of the task is automatically enabled,
regardless of its state before the first connect, or any change

in state while the task was connected.

e Mapping Considerations

In an unmapped system, the argument "base" is ignored, and the
arguments "isr," "edir," and "ast" require no further
explanation.

In a mapped system, however, it must be understood how the

Executive maps the ISR and enable/disable interrupt routine when
they are called. The argument "base," after being truncated to a
32(10)~-word boundary, is the start of a 4K-word area mapped in
kernel APR 5. All code and data in the task that is used by the
routines must fall within that area, or a fatal error will occur,

probably resulting in a system crash.

4-17

DIRECTIVE DESCRIPTIONS

Furthermore, the code and data must be either
position-independent or coded in such a way that the code can
execute in APR 5 mapping. When the routines execute, the

processor is in kernel mode, and the virtual address space
includes all of the Executive, the pool, and the I/0 page.

References within the task image must be PC-relative or use a
special offset defined below. References outside the task image
must be absolute.

The following solutions are possible:

1. Write the ISR, enable/disable interrupt routines, and
data in position-independent code.

2. Include the code and data in a common partition,
task-build it with absolute addresses in
APR 5 (PAR=ISR:120000:20000) and link the task to the
common partition.

3. Build the task privileged with APR 5 mapping and use the
constant 120000 as argument "base" in the CINTS
directive.

4, Use an offset of
<120000-<base & 177700>>

when accessing locations within the task 1image in
immediate or absolute addressing mode.

e ISR

When the ISR is entered, R5 points to the fork block in the
Interrupt Transfer Block (ITB), and R4 is saved and free to be
used. Registers RO through R3 must be saved and restored if
used. If one ISR services multiple vectors, the interrupting
vector can be identified by the vector address, which is stored
at offset X.VEC in the ITB. The following example loads the
vector address into R4:

MOV X.VEC-X.FORK(R5) ,R4

The ISR either dismisses the interrupt directly wvia an RTS PC
instruction, or <calls S$FORK2 if the fork routine is to be
entered. When calling $FORK2, R5 must point to the fork block in
the 1ITB, and the stack must be in the same state as it was upon
entry to the ISR. Note that the call must use absolute
addressing: CALL @#SFORK2.

e Fork Level Routine

The fork level routine starts immediately after the call to
SFORK2. On entry, R4 and R5 are the same as when $SFORK2 was
called. All registers are free to be used. The first
instruction of the fork routine must be CLR @R3, which declares
the fork block free.

The fork-level routine should be entered if servicing the
interrupt takes more than 500 microseconds. It must be entered
if an AST is to be queued or an event flag is to be set. (Fork
level 1is discussed 1in greater detail in the RSX-11M Guide to
Writing an I/0 Driver.)

4-18

DIRECTIVE DESCRIPTIONS

An AST is queued by calling the subroutine $QASTC.
Input: R5 -- pointer to fork block in the ITB
OQutput: 1if AST successfully queued --
Carry bit = 0
if AST was not specified by CINTS --
Carry bit =1

Registers altered: RO, R1, R2, and R3

An event flag is set by calling the subroutine $SETF.

Input: RO -- event flag number
R5 —-- Task Control Block (TCB) address of task for
which flag is to be set -- This is usually,
but not necessarily, the task that has
connected to the vector. This task's TCB

address is found at offset X.TCB in the ITB.
Output: specified event flag set
Registers altered: R1 and R2

Note that absolute addressing must be used when calling these
routines (and any other Executive subroutines) from fork level:

CALL @#SQASTC
CALL @#S$SETF

e Enable/Disable Interrupt Routine

The purpcse of the enable/disable interrupt routine, whose
address is included in the directive call, is to allow the user
to have a routine automatically called in the following three

cases:

1. When the directive is successfully executed to connect to
an interrupt vector (argument isr nonzero) -- The routine
is called immediately before return to the task.

2. When the directive is successfully executed to disconnect
from an interrupt vector (argument isr=0)

3. When the task is aborted or exits with interrupt vectors
still connected

In case #1, the routine is called with the Carry bit cleared; in
cases #2 and #3, with the Carry bit set. In all three cases, Rl is a
pointer to the Interrupt Transfer Block (ITB). Registers RO, R2, and
R3 are free to be used; other registers must be returned unmodified.
Return is accomplished by means of an RTS PC instruction.

Typically, the routine dispatches to one of two routines, depending on
whether the Carry bit is cleared or set. One routine sets interrupt
enable and performs any other necessary initialization, the other
clears interrupt enable and cleans up.

DIRECTIVE DESCRIPTIONS
Note that the ITB contains the vector address, in case common code is
used for multiple vectors.
e AST Routine ‘1
The fork routine may queue an AST for the task via a call to the
Executive routine $QASTC as described above. When the AST
routine is entered (at task level), the top word of the stack
contains the vector address, and must be popped off the stack
before AST exit (ASTXS$S).
e ITB Structure

The following offsets are defined relative to the start of the

ITB:

X.LNK =-- link word

X.JSR =-- subroutine call to S$INTSC

X.PSW -- PSW for ISR (low-order byte)

X.ISR ~-- ISR address (relocated) :
X.FORK -~ start of fork block G
X.REL =-- APR 5 relocation (only in mapped systems)

X.DSI ~- address of enable/disable interrupt routine (relocated)

X.TCB -~ TCB address of owning task

X.AST -- start of AST block

X.VEC =-- vector address (
X.VPC -- saved PC from vector)
X.LEN ~- length in bytes of ITB

The symbols X.LNK through X.TCB are defined 1locally by the macro
ITBDF$ which 1is included in [1,1]EXEMC.MLB. All symbols are defined
globally by [1,1]EXELIB.OLB.

DIRECTIVE DESCRIPTIONS

CLEFS$

4.3.7 CLEAR EVENT FLAG

The CLEAR EVENT FLAG directive instructs the system to <clear an

i
indicated event flag and report the flag's polarity before clearing.
FORTRAN Call:
CALL CLREF (efn[,idsl])

Event flag number
Directive status

efn
ids

Macro Call:
CLEFS$ efn
efn = Event flag number

Macro Expansion:

CLEFS$ 52.
.BYTE 31.,2 :CLEF$S MACRO DIC, DPB SIZE=2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52.

Local Symbol Definitions:
C.LEEF -- Event flag number (2)

DSW Return Codes:

IS.CLR =-- Successful completion; flag was already clear

IS.SET =~- Successful completion; flag was set

IE.IEF -- Invalid event flag number (EFN>64 or EFN<1)

IE.ADP -- Part of the DPR is ont of the issuing task's
address space

IE.SDP =-- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

CMKTS$S

4.3.8 CANCEL MARK TIME REQUESTS ($S form recommended)

The CANCEL MARK TIME REQUESTS directive instructs the system to cancel
all MARK TIME requests that have been made by the issuing task.

FORTRAN Call:
CALL CANMT ([,ids]))
ids = Directive status
Macro Call:
CMKTSS [,,err]
err = Error routine address

Macro Expansion:

CMKTS$S ,,ERR ;NOTE: THERE ARE TWO IGNORED ARGUMENTS
MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 27.,1 ;CMKT$S MACRO DIC, DPB SIZE=1 WORD

EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC —-- Successful completion

IE.ADP -- Part of the DPB is out of the issuing task's
address space

IE.SDP =-- DIC or DPB size is invalid

Note:

® Because this directive requires only a l-word DPB, the $S form
of the macro is recommended. It requires less space and
executes with the same speed as the DIRS macro.

DIRECTIVE DESCRIPTIONS

CRAWS

4.3.9 CREATE ADDRESS WINDOW

The CREATE ADDRESS WINDOW directive <creates a new virtual address
window by allocating a window block from the header of the issuing
task and establishing its virtual address base and size. (Space for
the window block has to be reserved at task-build time by means of the
WNDWS keyword. See the RSX-11M Task Builder Reference Manual.) Any
existing windows that overlap the specified range of virtual addresses
are unmapped, if necessary, and then eliminated. If the window is
successfully created, the Executive returns an 8-bit window ID to the
task.

The 8-bit window ID returned to the task is a number from 1 to 7,
which is an index to the window block in the task's header. The
window block describes the created address window.

If WS.MAP in the window status word is set, the Executive proceeds to
map the window according to the window definition block input
parameters.

A task can specify any length for the mapping assignment that is less
than or equal to both:

e the window size specified when the window was created, and

e the length remaining between the specified offset within the
region and the end of the region.

If W.NLEN is set to 0, the length defaults to either the window size
or the length remaining in the region, whichever is smaller. (Because
the Executive returns the actual length mapped as an output parameter,
the task must clear that offset before issuing the directive each time
it wants to default the length of the map.)

The values that can be assigned to W.NOFF depend on the setting of bit
WS.64B in the window status word (W.NSTS):

° If WS.64B = 0, the offset specified in W.NOFF must represent
a multiple of 256 words (512 bytes). Because the value of
W.NOFF is expressed in units of 32-word blocks, the value
must be a multiple of 8.

° If WS.64B = 1, the task can align on 32-word boundaries; the
programmer can therefore specify any offset within the
region.

NOTE

Applications dependent on 32-word or
64-byte alignment (WS.64B = 1) may not
be compatible with future software
products. To avoid future
incompatibility, programmers should
write applications adaptable to either
alignment requirement. The bit setting
of WS.64B could be a parameter chosen at
assembly time (by means of a prefix
file), at task-build time (as input to
the GBLDEF option), or at run time (by
means of command input).

4-23

DIRECTIVE DESCRIPTIONS

FORTRAN Call:

CALL CRAW (iwdb/[,ids])

iwdb = An 8-word integer array containing a window definition
block (see Section 3.5.2.2)
ids = Directive status

Macro Call:
CRAWS wdb
wdb = Window definition block address
Macro Expansion:
CRAWS WDBADR

.BYTE 117.,2 ;CRAWS MACRO DIC, DPB SIZE=2 WORDS
.WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array Offset
Element
iwdb (1), W.NAPR -- Base APR of the address window to be
bits 8-15 created
iwdb (3) W.NSIZ -- Desired size, in 32-word blocks, of the
address window
iwdb (4) W.NRID =-- ID of the region to which the new window

is to be mapped, or 0 for task region
(to be specified only if WS.MAP=1)

iwdb (5) W.NOFF -- Offset in 32-word blocks from the start of
the region at which the window is to start
mapping (to be specified only if
WS.MAP=1). Note that if WS.64B in the
window status word equals 0, the value
specified must be a multiple of 8.

iwdb (6) W.NLEN -- Length in 32-word blocks to be mapped, or
0 if the 1length is to default to either
the size of the window or the space
remaining in the region, whichever is
smaller (to be specified only if WS.MAP=1)

iwdb (7) W.NSTS -- Bit settings* in the window status word:
WS.MAP -- 1 if the new window is to be
mapped
WS.WRT -~ 1 if the mapping assignment is

to occur with write access

WS.64B -- 0 for 256-word (512-byte)
alignment, or 1 for 32-word
(64-byte) alignment

* FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

4-24

DIRECTIVE DESCRIPTIONS

Qutput parameters:

Array

Element

iwdb (1)

14

bits 0-7

iwdb (2)
iwdb (6)

iwdb (7)

Offset

W.NID -~ ID assigned to the window

W.NBAS -- Virtual address base of the new window

W.NLEN -- Length, in 32-word blocks, actually mapped
by the window

W.NSTS -- Bit settings* in the window status word:

WS.CRW -- 1 if the address window was
successfully created

WS.ELW —- 1 if any address windows were
eliminated

WS.UNM -- 1 if any address windows were
unmapped

Local Symbol Definitions:

C.RABA -- Window definition block address (2)

DSW Return Codes:

Is.SuC
IE.PRI
IE.NVR
IE.ALG

IE.WOV
IE.ADP

IE.SDP

Successful completion

Requested access denied at mapping stage

Invalid region ID

Task specified either an invalid base APR and window
size combination, or an invalid region offset and
length combination in the mapping assignment; or
WS.64B = 0 and the value of W.NOFF is not a multiple of
8.

No window blocks available in task's header

Part of the DPB or WDB is out of the issuing task's
address space

DIC or DPB size is invalid

*

FORTRAN programmers should refer to Section 3.5.2 to determine the

bit values represented by the symbolic names described.

DIRECTIVE DESCRIPTIONS

CRRGS$

4.3.10 CREATE REGION

The CREATE REGION directive creates a dynamic region in a
system-controlled partition and optionally attaches it to the issuing
task.

If RS.ATT is set in the region status word, the Executive attempts to
attach the task to the newly created region. If no region name has
been specified, the user must set RS.ATT. (See the description of the
ATTACH REGION directive.)

By default, the Executive automatically marks a dynamically created
region for deletion when the last task detaches from it. To override
this default condition, the user can set RS.NDL in the region status
word as an input parameter. Note that programmers should be careful
in considering overriding the delete-on-last~detach option. An error
within a program can cause the system to lock by leaving no free space
in a system-controlled partition.

If the region is not given a name, the Executive ignores the state of
RS.NDL. All unnamed regions are deleted when the last task detaches
from them.

The Executive returns an error if there is not enough space to
accommodate the region in the specified partition.

See Notes below.
FORTRAN Call:

CALL CRRG (irdb[,ids])

irdb = An 8-word integer array containing a region definition
block (see Section 3.5.1.2)
ids = Directive status

Macro Call:
CRRGS rdb
rdb = Region definition block address
Macro Expansion:
CRRGS$ RDBADR
.BYTE 55.,2 ;CRRGS MACRO DIC, DPB SIZE = 2 WORDS
.WORD RDBADR ; RDB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array Offset

Element

irdb (2) R.GSIZ -- Size, in 32-word blocks, of the region to
be created

irdb(3) (4) R.GNAM -- Name of the region to be created, or 0 for
no name

irdb (5) (6)

DIRECTIVE DESCRIPTIONS

R.GPAR ~-- Name of the system-controlled partition in
which the region is to be allocated, or
0 for the partition in which the task 1is

running
irdb (7) R.GSTS ~-- Bit settings* in the region status word:
(ﬂu RS.NDL -- 1 if the region should not be
. deleted on last detach
RS.ATT -- 1 if created region should be
attached
RS.RED -~ 1 if read access is desired on
attach
RS.WRT -- 1 if write access is desired on
attach
RS.EXT -- 1 if extend access is desired on
attach
RS.DEL -- 1 if delete access is desired on
attach
irdb (8) R.GPRO -- Protection word for the region
(DEWR,DEWR,DEWR,DEWR)
Output parameters:
Array Offset
(j' Element
M' irdb (1) R.GID -- ID assigned to the «created region
(returned if RS.ATT=1)
irdb (2) R.GSIZ -- Size in 32-word blocks of the attached
region (returned if RS.ATT=1)
irdb(7) R.GSTS -- Bit settings* in region status word:
RS.CRR -- 1 if region was successfully
created
(i' Local Symbol Definitions:

C.RRBA -- Region definition block address (2)

DSW Return Codes:

IS.SU0C
IE.UPN

(_ IE.PRI

IE.PNS

IE.ADP
IE.SDP

Notes:

Successful completion

A Partition Control Block (PCB) or an attachment
descriptor could not be allocated, or the partition was
not large enough to accommodate the region, or there is
currently not enough continuous space in the partition
to accommodate the region.

Attach failed because desired access was not allowed.
Specified partition in which the region was to be
allocated does not exist; or no region name was
specified and RS.ATT = 0.

Part of the DPB or RDB is out of issuing task's address
space

DIC or RDB size is invalid

e The Executive does not return an error if the named region has
already been created. 1In this case, the Executive clears the
RS.CRR bit in the status word R.GSTS. If RS.ATT has been set,

Executive attempts to attach the already existing named

region to the issuing task.

the

(L * FORTRAN programmers should refer to Section 3.5.1 to determine the
bit values represented by the symbolic names described.

4-27

DIRECTIVE DESCRIPTIONS

The protection word (see R.GPRO above) has the same format as
that of the file system protection word. There are four
categories, and the access for each category is coded into
four bits. From low order to high order, the categories

follow this order: system, owner, group, world. The access
code bits within each category are arranged (from low order to
high order) as follows: read, write, extend, delete. A Dbit

that is set indicates that the corresponding access is denied.
The issuing task's UIC is the created region's owner UIC.

In order to prevent the creation of common blocks that are not
easily deleted, the system and owner categories are always
forced to have delete access, regardless of the value actually
specified in the protection word.

DIRECTIVE DESCRIPTIONS

CSRQ$

4.3.11 CANCEL TIME BASED INITIATION REQUESTS

The CANCEL TIME B ITIATION REQUESTS directive instructs the
system to cancel all time-synchronized initiation requests for a
specified task, regardless of the source of each request. These
reguests result from a RUN directive, or from any of the
time-synchronized variations of the MCR RUN command.

b=

e
i

In a multiuser protection system, a task must be privileged to cancel
time-based initiation requests for a task other than itself.

FORTRAN Call:

CALL CANALL (tsk[,ids])

tsk = Task name
ids = Directive status
Macro Call:
CSRQS tsk
tsk = Scheduled (target) task name

Macro Expansion:
CSRQS ALPHA
.BYTE 25.,3 ;CSRQS MACRO DIC, DPB SIZE=3 WORDS
.RAD50 /ALPHA/ ; TASK "ALPHA"

Local Symbol Definitions:

C.SRTN -- Target task name (4)

DSW Return Codes:

IS.SUC -- Successful completion

IE.INS -- Task is not installed

IE.PRI -- The issuing task is not privileged and 1is attempting
to cancel requests made by another task.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid

Note:

e If the programmer specifies an error routine address when
using the $C or $S macro form, then a null argument must be
included for RSX-11D compatibility. For example:

CSRQSS TNAME, ,ERR ;CANCEL REQUESTS FOR "ALPHA"

TNAME: .RAD50 /ALPHA/

DIRECTIVE DESCRIPTIONS

DECLS$S

4.3.12 DECLARE SIGNIFICANT EVENT ($S form recommended)

The DECLARE SIGNIFICANT EVENT directive instructs the system to
declare a significant event.

Declaration of a significant event causes the Executive to scan the
System Task Directory from the beginning, searching for the highest
priority task that is ready to run. This directive should be used
with discretion to avoid excessive scanning overhead.
FORTRAN Call:

CALL DECLAR ([,ids])

ids = Directive status

Macro Call:

DECLSS [,err]

err = Error routine address

Macro Expansion:

DECL$S ,ERR ;NOTE: THERE IS ONE IGNORED ARGUMENT
MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 35.,1 ;DECL$SS MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC -- Successful completion

IE.ADP -~ Part of the DPB is out of the issuing task's
address space

IE.SDP =-- DIC or DPB size is invalid

Note:

e Because this directive requires only a l-word DPB, the $S form
of the macro is recommended. It requires less space and
executes with the same speed as the DIRS$ macro.

DIRECTIVE DESCRIPTIONS

DSARS$S or IHARSS

4.3.13 DISABLE (or INHIBIT) AST RECOGNITION ($S form recommended)

The DISABLE (or INHIBIT) AST RECOGNITION directive instructs the
system to disable recognition of ASTs for the issuing task. The ASTs
are queued as they occur and will be effected when the task enables
AST recognition. There 1is an implied AST disable recognition
directive whenever an AST service routine is executing. When a task's
execution is started, AST recognition is not disabled.
See Notes below.
FORTRAN Call:
CALL DSASTR [(ids)]
or
CALL INASTR [(ids)]
ids = Directive status
Macro Call:

DSARSS [err]
or
IHARSS [err]
err = Error routine address

Macro Expansion:

DSARSS ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.RYTE 99.1 :DSARSS MACRO DIC, DPR SIZE=1 WORD
EMT 377 ; TRAP TO THE EXECUTIVE

BCC .46 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC -- Successful completion
IE.ITS -~ AST recognition is already disabled
IE.ADP -- Part of the DPB is out of the issuing task's
address space
IE.SDP -- DIC or DPB size is invalid
Notes:

® Only the recognition of ASTs is disabled; the Executive still
queues the ASTs. They are queued FIFO and will occur in that
order when the task reenables AST recognition.

® Because this directive requires only a l-word DPB, the $S form
of the macro is recommended. It requires less space and
executes with the same speed as the DIRS macro.

DIRECTIVE DESCRIPTIONS

The FORTRAN calls, DSASTR (or INASTR) and ENASTR (see Section
4.3.17) exist solely to control the possible jump to the PWRUP
routine (power-up). FORTRAN is not designed to 1link to a
system's trapping mechanism. The PWRUP routine is strictly
controlled by the system. It is the system that both accepts
the trap and subsequently dismisses it. The FORTRAN program
is notified by a jump to PWRUP but must use DSASTR (or INASTR)
and ENASTR to ensure the integrity of FORTRAN data structures,
most importantly the stack, during power-up processing.

-

DIRECTIVE DESCRIPTIONS

DSCP$S

4.3.14 DISABLE CHECKPOINTING ($S form recommended)
The DISABLE CHECKPOINTING directive instructs the system to disable
the checkpointability of a task that has been installed as a
checkpointable task. This directive can be issued only by the task
that is to be affected. A task cannot disable the ability of another
task to be checkpointed.
FORTRAN Call:
CALL DISCKP [(ids)]
ids = Directive status
Macro Call:
DSCPSS [err]
err = Error routine address

Macro Expansion:

DSCP$S ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 95.,1 ;DSCPSS MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;sBRANCH IF DIRECTIVE SUCCESSFUL
JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC -- Successful completion
IE.ITS -- Task checkpointing is already disabled
IE.CKP -- Issuing task is not checkpointable
IE.ADP -- Part of the DPB is out of the issuing task's
address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e When a checkpointable task's execution is started,
checkpointing is not disabled (i.e., the task <can be
checkpointed).

® Because this directive requires only a l-word DPB, the $S form
of the macro 1is recommended. It requires less space and
executes with the same speed as the DIRS macro.

DIRECTIVE DESCRIPTIONS

DTRGS

4.3.15 DETACH REGION

The DETACH REGION directive detaches the issuing task from a
specified, previously attached region. Any of the task's windows that
are currently mapped to the region are automatically unmapped.

If RS.MDL is set in the region status word when the directive is
issued, the task marks the region for deletion on the last detach. A
task must be attached with delete access to mark a region for
deletion.

FORTRAN Call:
CALL DTRG (irdb|[,ids])
irdb = An 8-word integer array containing a region definition

block (see Section 3.5.1.2)
Directive status

ids
Macro Call:
DTRGS rdb
rdb = Region definition block address
Macro Expansion:
DTRGS RDBADR
.BYTE 59.,2 ;DTRGS MACRO DIC, DPB SIZE=2 WORDS
.WORD RDBADR ;RDB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array Offset

Element

irdb (1) R.GID -—- ID of the region to be detached

irdb (7) R.GSTS -- Bit settings* in the region status word:
RS.MDL -- 1 if the region should be marked
for deletion when the last task detaches
from it

Output parameters:

Array Offset

Element

irdb(7) R.GSTS -- Bit settings* in the region status word:
RS.UNM -- 1 if any windows were unmapped

* FORTRAN programmers should refer to Section 3.5.1 to determine the
bit values represented by the symbolic names described.

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

D.TRBA -- Region definition block address (2)

DSW Return Codes:

oT

1S.SUC
IE.PRI

IE.NVR

IE.ADP

IE.SDP

Successful completion

The task, which is not attached with delete access, has
attempted to mark the region for deletion on the last
detach.

The task specified an invalid region ID or attempted to
detach region 0 (its own task region)

Part of the DPD or RDB is out of the issuing task's
address space

DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

ELAWS

4.3.16 ELIMINATE ADDRESS WINDOW
The ELIMINATE ADDRESS WINDOW directive deletes an existing address
window, unmapping it first if necessary. Subsequent use of the
eliminated window's ID is invalid.
FORTRAN Call:
CALL ELAW (iwdbl[,ids])
iwdb = A window definition block composed of an 8-word integer

array (see Section 3.5.2.2)
Directive status

ids
Macro Call:
ELAWS wdb
wdb = Window definition block address
Macro Expansion:
ELAWS WDBADR
.BYTE 119.,2 s ELAWS MACRO DIC, DPB SIZE=2 WORDS
.WORD WDBADR sWDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array Offset

Element

iwdb (1) W.NID -~ ID of the address window to be eliminated
bits 0-7

Output parameters:
iwdb (7) W.NSTS =-- Bit settings* in the window status word:

WS.ELW -- 1 if the address window was
successfully eliminated

WS.UNM -- 1 if the address window was
unmapped

Local Symbol Definitions:
E.LABA -- Window definition block address (2)
DSW Return Codes:
IS.SUC -- Successful completion
IE.NVW -~ Invalid address window ID
IE.ADP -- Part of the DPB or WDB is out of the issuing task's

address space.
IE.SDP ~-- DIC or DPB size is invalid

* FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

4-36

(

DIRECTIVE DESCRIPTIONS

ENARS$S

4.3.17 ENABLE AST RECOGNITION ($S form recommended)
The ENABLE AST RECOGNITION directive instructs the system to recognize
ASTs for the issuing task; that is, the directive nullifies a DISABLE
AST RECOGNITION directive. ASTs that have been queued while
recognition was disabled are effected at issuance. When a task's
execution is started, AST recognition is enabled,
FORTRAN Call:
CALL ENASTR [(ids)]
ids = Directive status
Macro Call:
ENARSS [err]
err = Error routine address

Macro Expansion:

ENARSS ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 101.,1 ;ENARSS MACRO DIC, DPB SIZE=1 WORD
EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:

None
DSW Return Ccdes:
IS.8UC -~ Successful completion
IE.ITS -- AST recognition is not disabled
IE.ADP -- Part of the DPB is out of the issuing task's
address space
IE.SDP -- DIC or DPB size is invalid
Notes:

® Because this directive requires only a l-word DPB, the $S form
of the macro 1is recommended. It requires less space and
executes with the same speed as the DIRS macro.

e The FORTRAN calls DSASTR (or INASTR) (see Section 4.3.13) and
ENASTR exist solely to control the jump to the PWRUP routine
(power-up) . FORTRAN is not designed to 1link to a system's
trapping mechanism. The PWRUP routine is strictly controlled
by the system. It is the system which both accepts the trap
and subsequently dismisses it. The FORTRAN program is
notified by a jump to PWRUP but must use DSASTR (or INASTR)
and ENASTR to ensure the integrity of FORTRAN data structures,
most importantly the stack, during power-up processing.

DIRECTIVE DESCRIPTIONS

ENCPS$S

4.3.18 ENABLE CHECKPOINTING ($S form recommended)
The ENABLE CHECKPOINTING directive instructs the system to make the
issuing task checkpointable after its checkpointability has been
disabled; that is, the directive nullifies a DSCP$S directive.
FORTRAN Call:
CALL ENACKP [(ids)]
ids = Directive status
Macro Call:
ENCPS$SS [err]
err = Error routine address

Macro Expansion:

ENCP§$S ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 97.,1 ;ENCP$S MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;s TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC -- Successful completion

IE.ITS =-- Checkpointing is not disabled

IE.ADP -- Part of the DPB is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

Note:

® Because this directive requires only a l-word DPB, the $S form
of the macro is recommended. It requires less space and
executes with the same speed as the DIR$ macro.

DIRECTIVE DESCRIPTIONS

EXIF$

4.3.19 EXITIF

The EXITIF directive instructs the system to terminate the execution
of the issuing task if, and only if, an indicated event flag is NOT
set. The Executive returns control to the issuing task if the

specified event flag is set.
See Notes below.
FORTRAN Call:

CALL EXITIF (efn[,ids])

efn
ids

Event flag number
Directive status

Macro Call:
EXIF$ efn
efn = Event flag number
Macro Expansion:
EXIF$ 52.
.BYTE 53.,2 ;EXIF$S MACRO DIC, DPB SIZE=2 WORDS
.WORD 52. ; EVENT FLAG NUMBER 52.
Local Symbol Definitions:

E.XFEF ~- Event flag number (2)

DSW Return Codes:

IS.SET ~-- 1Indicated EFN set, task did not exit
IE.IEF -- 1Invalid event flag number (EFN>64 or EFN<1)
IE.ADP -- Part of the DPB is out of the issuing task's
address space
IE.SDP -~ DIC or DPB size is invalid
Notes:

® The EXITIF directive is useful in avoiding a possible race
condition that can occur between two tasks communicating via
the SEND and RECEIVE directives. The race condition occurs
when one task executes a RECEIVE directive and finds its
receive queue empty; but before the task can exit, the other
task sends it a message. The message is lost because the
Executive flushed the receiver task's receive queue when it
decided to exit. This condition can be avoided if the sending
task specifies a common event flag in the SEND directive and
the receiving task executes an EXITIF specifying the same
common event flag. If the event flag is set, the EXITIF
directive will return control to the issuing task, signalling
that something has been sent.

e A FORTRAN program that issues the EXITIF call must first close
all files by issuing CLOSE calls. See the IAS/RSX-11 FORTRAN
IV or FORTRAN IV-PLUS User's Guide for instructions on how to
ensure that such files are closed properly if the task exits.

DIRECTIVE DESCRIPTIONS

To avoid the time overhead involved in the closing and
reopening of files, the task should first 1issue the
appropriate test or clear event flag directive. If the
directive status word indicates that the flag was not set,
then the task can close all files and issue the call to
EXITIF.

On EXIT, the Executive frees task resources. In particular,
the Executive:

1. Detaches all attached devices
2. Flushes the AST queue
3. Flushes the receive and receive-by-reference queues

4. Flushes the clock queue for any outstanding Mark Time
requests for the task

5. Closes all open files (files open for write access are
locked)

6. Detaches all attached tasks, except in the case of a fixed
task in a system that supports the memory management
directives

7. Runs down the task's I/O

8. Frees the task's memory if the exiting task was not fixed

If the task exits, the Executive declares a significant event.

4-40

DIRECTIVE DESCRIPTIONS

EXIT$S

4.3.20 TASK EXIT ($S form recommended)

The TASK EXIT directive instructs the system to terminate
execution of the issuing task.
FORTRAN Call:
STOP
or
CALL EXIT
Macro Call:
EXIT$S [err]
err = Error routine address
Macro Expansion:
EXITSS ERR
MOV (PC)+,-(SP) ;s PUSH DPB ONTO THE STACK
.BYTE 51.,1 sEXITSS MACRO DIC, DPB SIZE=1 WORD
EMT 377 ; TRAP TO THE EXECUTIVE
JSR PC,ERR ;CALL ROUTINE "ERR"
Local Symbol Definitions:
None
DSW Return Codes:
IE.ADP -- Part of the DPB is out of the issuing task's
address space
IE.SDP —- DIC or DPR gize ig inwvalid

® A return to the task occurs if, and only if, the directive

is

rejected. Therefore, no Branch on Carry Clear instruction is

generated if an error routine address 1is given, since

return will only occur with carry set.

® EXIT causes a significant event.

the

e On EXIT, the Executive frees task resources. In particular,

the Executive:
1. Detaches all attached devices
2. Flushes the AST queue

3. Flushes the receive and receive-by-reference queues

4. Flushes the clock queue for any outstanding Mark

requests for the task

5. Closes all open files (files open for write access

locked)

6. Detaches all attached regions, except in the case
fixed task, where no detaching occurs

4-41

Time

are

a

DIRECTIVE DESCRIPTIONS

7. Runs down the task's I/0
8. Frees the task's memory if the exiting task was not fixed
Because this directive requires only a l-word DPB, the $S form

of the macro 1is recommended. It requires less space and
executes with the same speed as the DIR$ macro.

DIRECTIVE DESCRIPTIONS

EXTKS$

4.3.21 EXTEND TASK

The EXTEND TASK directive instructs the system to modify the size of
the issuing task by a positive or negative increment of 32-word
blocks. If the directive does not specify an increment value, the
Executive makes the issuing task's size equal to its installed size.
The issuing task must be running in a system-controlled partition and
it cannot have any outstanding I/O when it issues the directive. The
task must also be checkpointable to increase its size; if necessary,
the Executive checkpoints the task, then returns the task to memory
with its size modified as directed.

t
S

In a system that supports the memory management directives, the
Executive does not change any current mapping assignments if the task
has memory-resident overlays. However, if the task does not have
memory-resident overlays, the Executive attempts to modify by the
specified number of 32-word blocks, the mapping of the task to its
task region.

If the 1issuing task 1is checkpointable, but has no preallocated
checkpoint space available, a positive increment may require dynamic
memory and ‘extra space in a checkpoint file sufficient to contain the
task.

There are several constraints on the size to which a task can extend
itself using the EXTEND TASK directive:

® No task can extend itself beyond the maximum size set by the
MCR command SET /MAXEXT or the size of the partition in which

it is running. (See the RSX-11lM Operator's Procedures
Manual.)

e A task that does not have memory-resident overlays cannot
extend itself bheyond 22K minns 22 words.

e A task that has preallocated checkpoint space in its task
image file cannot extend itself beyond its installed size.

e A task that has memory-resident overlays cannot reduce its
size.

FORTRAN Call:

CALL EXTTSK (linc][,ids])

inc = A positive or negative number equal to the number of
32-word blocks by which the task size is to be extended
or reduced.

ids = Directive status

Macro Call:
EXTKS$ [inc]
inc = A positive or negative number equal to the number of

32-word blocks by which the task size is to be extended
or reduced.

DIRECTIVE DESCRIPTIONS

Macro Expansion:

EXTKS 40
.BYTE 89.,3 ;EXTKS$ MACRO DIC, DPB SIZE=3 WORDS
.WORD 40 ;EXTEND INCREMENT, 40(8) BLOCKS (1K]
;s WORDS)
.WORD 0 ;s RESERVED WORD
Local Symbol Definitions:
E.XTIN -- Extend increment (2)
DSW Return Codes:
IS.SUC ~- Successful completion.
IE.UPN -~ Insufficient dynamic memory, or insufficient space in
a checkpoint file.
IE.ITS =-- The issuing task is not running in a

system-controlled partition; or
the issuing task is not checkpointable and specified
a positive increment; or
the issuing task has preallocated checkpoint space in
its task image and has attempted to extend its size &
beyond its installed size; or f
the issuing task had outstanding I/O when it issued
the directive; or
task has memory-resident overlays and is attempting
to reduce its size.
IE.ALG -- The issuing task attempted to reduce its size to less
than the size of its task header; or
the task tried to increase its size beyond 32K words
or beyond the maximum set by the MCR SET /MAXEXT
command; oOr

the task tried to increase its size to the extent
that one virtual address window would overlap (
another.
IE.ADP ~-- Part of the DPB is out of the issuing task's address
space.
IE.SDP ~-- DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS

GLUNS

4.3.22 GET LUN INFORMATION

(m‘ The GET LUN INFORMATION directive instructs the system to fill a
6-word buffer with information about a physical device unit to which a
LUN is assigned. If requests to the physical device unit have been
redirected to another unit, the information returned will describe the
effective assignment.

FORTRAN Call:

CALL GETLUN (lun,dat][,ids])

lun = Logical unit number
dat = 6-word integer array to receive LUN information
ids = Directive status

Macro Call:

GLUNS lun,buf

. lun Logical unit number
w buf Address of 6-word buffer that will receive the LUN
information

[}

Buffer Format:
WD. 00 -- Name of assigned device
WD. 01 -- Unit number of assigned device and flags byte.

(Flags byte equals 200 if the device driver is
resident or 0 if the driver is not loaded.)

(:“ WD. 02 -- First device characteristics word:
Bit 0 -- Record-oriented device (l=yes) [FD.REC]*
Bit 1 -- Carriage-control device (1=yes) [FD.CCL]
Bit 2 -- Terminal device (1-Yesg) [FD.TTV]
Bit 3 =~- Directory (file-structured) device (1=yes) [FD.DIR]
Bit 4 -- Single directory device (l=yes) [FD.SDI]
Bit 5 =-- Sequential device (l=yes) [FD.SQD]
Bit 6 -- Mass-bus device (l=yes)
Bit 7 =-- User-mode diagnostics supported
Bit 8 —-- Reserved
i Bit 9 -- Unit software write locked (l=yes)
, Bits 10~11 Reserved
v Bit 12 -- Pseudo device (l=yes)
Bit 13 -- Device mountable as a communications channel
(1=yes)

Bit 14 -- Device mountable as a Files-11 device (l=Yes)
Bit 15 -- Device mountable (l=yes)

WD. 03 -— Second device characteristics word

WD. 04 -- Third device characteristics word (Words 3 and 4 are

device driver specific)
WD. 05 -- Standard device buffer size

. * Bits with associated symbols have the symbols shown 1in square
‘L brackets. These symbols can be defined for use by a task via the
| FCSBTS$ macro. See the IAS/RSX-11 I/O Operations Reference Manual.

4-45

DIRECTIVE DESCRIPTIONS

Macro Expansion:

GLUNS 7, LUNBUF

.BYTE 5,3 ;GLUNS MACRO DIC, DPB SIZE=3 WORDS
.WORD 7 ;LOGICAL UNIT NUMBER 7
.WORD LUNBUF ;ADDRESS OF 6-WORD BUFFER

Local Symbol Definitions:

G.LULU =-- Logical unit number (2)
G.LUBA -~ Buffer address (2)

The following offsets are assigned relative to the start of the
information buffer:

G.LUNA -- Device name (2)

G.LUNU -~ Device unit number (1)

G.LUFB -- Flags byte (1)

G.LUCW -- Four device characteristics words (8)

DSW Return Codes:

IS.8UC -- Successful completion

IE.ULN -- Unassigned LUN

IE.ILU -- 1Invalid logical unit number

IE.ADP =-- Part of the DPB or buffer is out of the issuing
task's address space

IE.SDP -~ DIC or DPB size is invalid

LUN

DIRECTIVE DESCRIPTIONS

GMCRS$

4.3.23 GET MCR COMMAND LINE

The GET MCR COMMAND LINE directive instructs the system to transfer an
80-byte command line to the issuing task.

When a task is installed with a task name of "...tsk" or "tskTn",
where "tsk® consists of three alphanumeric characters and n is an
octal terminal number, the MCR dispatcher requests the task's
execution when a user issues the command:

>tsk command-line

from terminal number n. A task invoked in this manner must execute a
call to GET MCR COMMAND LINE, which results in the "command line"
being placed into an 80-byte command line buffer. (The MCR dispatcher
is described in the RSX-11M Operator's Procedures Manual.)

FORTRAN Call:
CALL GETMCR (buf[,ids])

buf
ids

80-byte array to receive command line
Directive status

Macro Call:
GMCRS

Macro Expansion:

GMCRS
.BYTE 127.,41. ;GMCRS MACRO DIC, DPB SIZE=41. WORDS
.BLKW 40. ;80. CHARACTER MCR COMMAND LINE BUFFER

Local Symbol Definitions:
G.MCRB ~-- MCR line buffer (80)
DSW Return Codes:

+n ~—- Successful completion; n is the number of data bytes
transferred (excluding the termination character).
The termination character is, however, in the buffer.
IE.AST -- No MCR command line exists for the issuing task;
that is, the task was not requested by a command line

as follows:

>tsk command-string

or the task has already issued the GET MCR COMMAND
LINE directive.

IE.ADP -~ Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.
Notes:

e The GMCR$S form of the macro is not supplied, since the DPB
receives the actual command line.

DIRECTIVE DESCRIPTIONS

The system processes all lines to:

1. Convert tabs to a single space

2. Convert multiple spaces to a single space
3. Convert lower case to upper case

4. Remove all trailing blanks

The terminator (<KCR> or <ESC>) is the last character in
line.

the

DIRECTIVE DESCRIPTIONS

GMCX$

4.3.24 GET MAPPING CONTEXT

The GET MAPPING CONTEXT directive causes the Executive to return a
description of the current window-to-region mapping assignments. The
returned description is in a form that enables the user to restore the
mapping context described by a series of CREATE ADDRESS WINDOW
directives (see Section 4.3.9). The macro argument specifies the
address of a vector that contains one window definition block (WDB)
for each window block allocated in the task's header, plus a
terminator word.

For each window block in the task's header, the Executive sets up a
WDB in the vector as follows:

1. If the window block is wunused (that 1is, if it does not
correspond to an existing address window), the Executive does
not record any information about that block in a WDB.
Instead, the Executive uses the WDB to record information
about the first block encountered that corresponds to an
existing window. In this way, unused window blocks are
ignored in the mapping context description returned by the
Executive.

2. If a window block describes an existing unmapped address
window, the Executive fills in the offsets W.NID, W.NAPR,
W.NBAS, and W.NSIZ with information sufficient to recreate
the window. The window status word W.NSTS is cleared.

3. If a window block describes an existing mapped window, the
Executive fills in the offsets W.NAPR, W.NBAS, W.NSIZ,
W.NRID, W.NOFF, W.NLEN, and W.NSTS with information
sufficient to create and map the address window. WS.MAP is
set in the status word (W.NSTS), and if the window is mapped

cet Ll e La e~ Llan Lai TIC TIM
WLLLl WL LLT AaLLTOoO, LIIT LU YWoeVNNL

~ P |

is set as well.
Note that, in no case, does the Executive modify W.NSRB.

The terminator word, which follows the last WDB filled in, is a word
equal to the negative of the total number of window blocks in the
task's header. It 1is thereby possible to issue a TST or TSTB
instruction to detect the 1last WDB used 1in the vector. The
terminating word can also be used to determine the number of window
blocks built into the task's header.

When CREATE ADDRESS WINDOW directives are used to restore the mapping
context, there 1is no guarantee that the same address window IDs will
be used. The user must therefore be careful to use the latest window
IDs returned from the CREATE ADDRESS WINDOW directives.

FORTRAN Call:

CALL GCMX (imcx[,ids])

imcx = An integer array to receive the mapping context. The
size of the array 1is 8*n+l where n is the number of
window blocks in the task's header. The maximum size is
8*8+1=65 words.

ids = Directive status

Macro Call:

GMCXS wvec
wvec = The address of a vector of n window definition blocks,
followed by a terminator word; n 1is the number of
window blocks in the task's header. @
i
Macro Expansion:
GMCXS VECADR
.BYTE 113.,2 :GMCX$ MACRO DIC, DPB SIZE=2 WORDS
.WORD VECADR ;WDB VECTOR ADDRESS
Window Definition Block Parameters:
Input parameters:

None

Output parameters in each window definition block:

Array Offset
Element
iwdb (1) W.NID -— ID of address window ‘
bits 0-7 '
iwdb (1) W.NAPR -- Base APR of the window
bits 8-15
iwdb (2) W.NBAS -- Base virtual address of the window
iwdb (3) W.NSIZ -- Size, in 32-word blocks, of the window
iwdb (4) W.NRID -~ ID of the mapped region, or no change 1if
the window is unmapped
iwdb (5) W.NOFF -- Offset, in 32-word blocks, from the start

of the region at which mapping begins, or
no change if the window is unmapped]
iwdb (6) W.NLEN -- Length, in 32-word blocks, of the area
currently mapped within the region, or no ,
change if the window is unmapped
iwdb (7) W.NSTS =-- Bit settings* in the window status word
(all 0 if the window is not mapped):

WS.MAP ~- 1 if the window is mapped
WS.WRT -- 1 if the window is mapped with
write access

Note that the length mapped (W.NLEN) can be less than the size of
the window (W.NSIZ) if the area from W.NOFF to the end of the F
partition is smaller than the window size. ;

Local Symbol Definitions:

G.MCVA -- Address of the vector (wvec) containing the window
definition blocks and terminator word (2)

DSW Return Codes:

IS.SUC -- Successful completion

IE.ADP -- Address check of the DPB or the vector (wvec) failed

IE.SDP -- DIC or DPB size is invalid
* FORTRAN programmers should refer to Section 3.5.2 to determine the (
bit values represented by the symbolic names described. i

4-50

DIRECTIVE DESCRIPTIONS

4.3.25 GET PARTITION PARAMETERS

The GET PARTITION PARAMETERS directive instructs the system to fill an
indicated 3-word buffer with partition parameters. If a partition is
not specified, the partition of the issuing task is assumed.
FORTRAN Call:
CALL GETPAR ([prt],buf[,ids])
prt = Partition name
buf = 3-word integer array to receive partition parameters
ids = Directive status
Macro Call:
GPRTS [prt] ,buf
prt = Partition name
buf = Address of a 3-word buffer
The buffer has the following format:
WD. 0 -- Partition physical base address expressed as a

multiple of 32 words (partitions are always aligned on

32-word boundaries). Therefore, a partition starting

at 40000(8) will have 400(8) returned in this word.
WD. 1 -- Partition size expressed as a multiple of 32 words.
WD. 2 —- Partition flags word. This word is returned equal to

zero to indicate a system-controlled partition or

equal to 1 to indicate a user-controlled partition.

Macro Expansion:

GPRTS ALPHA ,DATBUF

.BYTE 65.,4 ;GPRT$ DIC, DPB SIZE=4 WORDS
.RAD50 /ALPHA/ ;PARTITION "ALPHA"
.WORD DATBUF ;ADDRESS OF 3-WORD BUFFER

Local Symbol Definitions:

G.PRPN =~- Partition name (4)
G.PRBA ~- Buffer address (2)

The following offsets are assigned relative to the start of the
partition parameters buffer:

G.PRPB -- Partition physical base address expressed as an
absolute 32-word block number (2)

G.PRPS -~ Partition size expressed as a multiple of 32-word
blocks (2)

G.PRFW -- Partition flags word (2)

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

Successful completion is indicated by a cleared Carry bit, and the
starting address of the partition is returned in the DSW. In unmapped
systems, the returned address is physical. In mapped systems the
returned address is virtual and always 0. Unsuccessful completion is
indicated by a set Carry bit and one of the following codes in the
DSW:

IE.INS -- Specified partition not in system.

IE.ADP -~ Part of the DPB or buffer is out of the issuing
task's address space.

IE.SDP -- DIC or DPB size is invalid.

Notes:

e A variation of this directive exists for Executives that
support the memory management directives. The variation is
GET REGION PARAMETERS (see Section 4.3.26). When the first
word of the 2-word partition name 1is 0, the Executive
interprets the second word of the partition name as a region
ID. If the 2-word name is 0,0, it refers to the task region
of the issuing task.

® Omission of the partition-~name argument returns parameters for
the issuing task's unnamed subpartition, not for the
system-controlled partition.

4-52

DIRECTIVE DESCRIPTIONS

GREG$

4.3.26 GET REGION PARAMETERS

The GET REGION PARAMETERS directive instructs the Executive to fill an
indicated 3-word buffer with region parameters. If a region is not
specified, the task region of the issuing task is assumed.

This directive 1is a variation of +the GET PARTITION PARAMETERS
directive (see Section 4.3.25) for Executives that support the memory
management directives.

FORTRAN Call:

CALL GETREG ([rid],buf[,ids])

rid = Region id
buf = 3-word integer array to receive region parameters
ids = Directive status

Macro Call:
GREGS [rid] ,buf

rid
buf

Region ID
Address of a 3-word buffer

Buffer Format:

WD.0 -~ Region base address expressed as a multiple of 32 words
(regions are always aligned on 32-word boundaries).
Thus, a region starting at 1000(8) will have 10(8)
returned in this word.

WD.1l -- Region size expressed as a multiple of 32-words.
WD.2 -- Region flags word. This word is returned equal to zero
if the region resides in a system-controlled partition,
or equal to 1 if the region resides in a
user-controlled partition.
Macro Expansion:

GREGS RID,DATBUF

.BYTE 65.,4 ;GREGS MACRO DIC,DPB SIZE=4 WORDS

-.WORD 0 ;WORD THAT DISTINGUISHES GREGS
;FROM GPRTS$

.WORD RID ;REGION ID

.WORD DATBUF ;ADDRESS OF 3-WORD BUFFER

Local Symbol Definitions:

G.RGID -- Region ID (2)
G.RGBA -- Buffer address

The following offsets are assigned relative to the start of the
region parameters buffer:

G.RGRB -- Region base address expressed as an absolute 32-word
block number (2)

G.RGRS -- Region size expressed as a multiple of 32-word blocks (2)

G.RGFW -- Region flags word (2)

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

Successful completion is indicated by carry clear, and the starting
address of the region is returned in the DSW. In unmapped systems,
the returned address is physical. In mapped systems, the returned
address is virtual and always 0. Unsuccessful completion is indicated
by carry set and one of the following codes in the DSW:

IE.NVR -~ Invalid region ID

IE.ADP —~- Part of the DPB or buffer is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

GSSWS$S

4.3.27 GET SENSE SWITCHES ($S form recommended)

instructs the system to obtain the

The GET SENSE SWITCHES directive
on itch register and store it in the issuing

contents of the ¢
task's Directive Status Word.
FORTRAN Call:

CALL READSW (isw)

isw = Integer to receive the console switch settings

The following FORTRAN call allows a program to read the state of a
single switch:

CALL SSWTCH (ibt,ist)

ibt
ist

The switch to be tested (0 to 15)
Test results where

1 switch on

2 switch off

Macro Call:
GSSWSS [err]
err = Error routine address
Macro Expansion:

GSSWS$S ERR

MOV (PC) +,~(SP) ;PUSH DPB ONTO THE STACK

.BYTE 125.,1 ;GSSW$S MACRO DIC, DPB SIZE=1 WORD
EMT 377 :TRAP TO THE EXECUTTVE

BCC .46 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None
DSW Return Codes:
Successful completion is indicated by carry clear, and the contents of
the console switch register are returned in the DSW. Unsuccessful

completion is indicated by carry set and one of the following codes in
the DSW: ‘ ‘

IE.ADP -~ Part of the DPB is out of the issuing task's
address space
IE.SDP -- DIC or DPB size is invalid

Note:

e Because this directive requires only a l-word DPB, the $S form
of the macro is recommended. It requires less space and
executes with the same speed as the DIR$ macro.

DIRECTIVE DESCRIPTIONS

GTIMS

4.3.28 GET TIME PARAMETERS

The GET TIME PARAMETERS directive instructs the system to fill an
indicated 8-word buffer with the current time parameters. All time
parameters are delivered as binary numbers. The value ranges (in
decimal) are shown in the table below.

FORTRAN Call:
FORTRAN provides several subroutines for obtaining the time in a

number of formats. See the IAS/RSX-11M FORTRAN IV or the FORTRAN
IV-PLUS User's Guide.

Macro Call:
GTIMS buf
buf = Address of 8-word buffer

The buffer has the following format:

WD. 0 -~ Year (since 1900)

WD. 1 ~- Month (1-12)

WD. 2 =-- Day (1-31)

WD. 3 == Hour (0-23)

WD. 4 =-- Minute (0-59)

Wb. 5 =-- Second (0-59)

WD. 6 -- Tick of second (depends on the frequency of the
clock)

WD. 7 =-- Ticks per second (depends on the frequency of the
clock)

Macro Expansion:

GTIMS DATBUF
.BYTE 6l.,2 ;GTIMS DIC, DPB SIZE=2 WORDS
.WORD DATBUF ;ADDRESS OF 8.-WORD BUFFER

Local Symbol Definitions:
G.TIBA -- Buffer address (2)

The following offsets are assigned relative to the start of the time
parameters buffer:

G.TIYR -- Year (2)
G.TIMO =-- Month (2)
G.TIDA -- Day (2)

G.TIHR -- Hour (2)

G.TIMI -- Minute (2)

G.TISC -- Second (2)

G.TICT -~ Clock Tick of Second (2)
G.TICP -~- Clock Ticks per Second (2)

DSW Return Codes:

IS.SUC -- Successful completion

IE.ADP =-- Part of the DPB or buffer is out of the issuing
task's address space

IE.SDP =-- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

GTSKS$

4.3.29 GET TASK PARAMETERS

The GET TASK PARAMETERS directive instructs the system to f£ill an
indicated 16-word buffer with parameters relating to the issuing task.

FORTRAN Call:
CALL GETTSK (buf{,ids})

buf
ids

l6-word integer array to receive the task parameters
Directive status

Macro Call:
GTSK$ buf
buf = Address of a 1l6-word buffer

The buffer has the following format:

WD. 00 ~-- Issuing task's name in Radix-50 (first half)

WD. 01 -~ 1Issuing task's name in Radix-50 (second half)

WD. 02 =-- Partition name in Radix-50 (first half)

WD. 03 -~ Partition name in Radix-50 (second half)

WD. 04 -- Undefined in RSX-11M -- This word exists
for RSX-11D compatibility.

WD. 05 -~ Undefined in RSX-11lM -- This word exists
for RSX~11D compatibility.

WD. 06 == Run priority

WD. 07 -- ©User identification code (UIC) of issuing task
(in a multiuser protection system, the task's default
UIC) **

WD. 10 -- Number of logical I/O units (LUNs)

WD. 11 =-- Undefined in RSX-11lM -- This word exists for
RSX-11D compatibility.

WD. 12 -- Undefined in RSX-11lM -- This word exists for
RSX~11D compatibility.

WD. 13 ~-- (Address of task SST vector tables)*

WD. 14 -- (Size of task SST vector table in words)¥*

WD. 15 -- Size (in bytes) either of task's address window

0 in mapped systems, or of task's partition in
unmapped systems (equivalent to partition size)
WD. 16 -- System on which task is running:
0 for RSX-11D
1 for RSX-11M
2 for RSX-118
3 for IAS
WD. 17 -- Protection UIC (in a multiuser system, the log-in
UIC)**

* Words 13 and 14 will contain valid data if word 14 is not zero. 1If
word 14 is zero, the contents of word 13 are meaningless.

** See note in RQSTS$ description (Section 4.3.37) on contents of
words 07 and 17.

4-57

DIRECTIVE DESCRIPTIONS

Macro Expansion:
GTSKS$ DATBUF
.BYTE 63.,2 ;GTSK$ DIC, DPB=2-WORDS
.WORD DATBUF ;ADDRESS OF 16-WORD BUFFER
Local Symbol Definitions:
G.TSBA -- Buffer address (2)

The following offsets are assigned relative to the task parameter
buffer:

G.TSTN -- Task name (4)

G.TSPN -~ Partition name (4)

G.TSPR -- Priority (2)

G.TSGC -- UIC group code (1)

G.TSPC -- UIC member code (1)

G.TSNL =-- Number of logical units (2)

G.TSVA ~-- Task's SST vector address (2)
G.TSVL -- Task's SST vector length in words (2)
G.TSTS =-- Task size (2)

G.TSSY -- System on which task is running (2)
G.TSDU -- Protection UIC (2)

DSW Return Codes:

IS.80C -- Successful completion

IE.ADP -- Part of the DPB or buffer is out of the issuing
task's address space

IE.SDP ~-- DIC or DPB is invalid

DIRECTIVE DESCRIPTIONS

MAP$

4.3.30 MAP ADDRESS WINDOW

The MAP ADDRESS WINDOW directive maps an existing window to an
attached region. The mapping begins at a specified offset from the
start of the region. If the window is already mapped elsewhere, the
Executive unmaps it before carrying out the mapping assignment
described in the directive.

For the mapping assignment, a task can specify any length that is less
than or equal to both:

e the window size specified when the window was created, and

e the length remaining between the specified offset within the
region and the end of the region.

A task must be attached with write access to a region in order to map
to it with write access. To map to a region with read-only access,
the task must be attached with either read or write access.

If W.NLEN is set to 0, the length defaults to either the window size
or the 1length remaining in the region, whichever is smaller. (Since
the Executive returns the actual length mapped as an output parameter,
the task must clear that parameter in the WDB before issuing the
directive each time it wants to default the length of the map.)

The values that can be assigned to W.NOFF depend on the setting of bit
WS.64B in the window status word (W.NSTS):

° If WS.64B = 0, the offset specified in W.NOFF must represent
a multiple of 256 words (512 bytes). Because the value of
W.NOFF is expressed in units of 32-word blocks, the value
must be a multiple of 8.

° If WS.64B = 1, the task can align on 32-word boundaries; the
programmer can therefore specify any offset within the
region.

NOTE

Applications dependent on 32-word or
64-byte alignment (WS.64B = 1) may not
be compatible with future software
products. To avoid future
incompatibility, programmers should
write applications adaptable to either
alignment requirement. The bit setting
of WS.64B could be a parameter chosen at
assembly time (by means of a prefix
file), at task-build time (as input to
the GBLDEF option), or at run time (by
means of command input).

FORTRAN Call:
CALL MAP (iwdb[,ids])
iwdb = An 8-word integer array containing a window definition

block (see Section 3.5.2.2)
Directive status

ids

4-59

DIRECTIVE DESCRIPTIONS

Macro Call:
MAPS wdb
wdb = Window definition block address t

Macro Expansion:

MAPS WDBADR
.BYTE 121.,2 ;MAPS MACRO DIC, DPB SIZE=2 WORDS
.WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array Offset

Element

iwdb (1) W.NID -—- ID of the window to be mapped

bits 0-7

iwdb (4) W.NRID -- ID of the region to which the window is to
be mapped, or ,
0 if the task region is to be mapped (

iwdb (5) W.NOFF -- Offset, in 32-word blocks, within the

region at which mapping is to begin. Note

that if WS.64B in the window status word

equals 0, the value specified must be a

multiple of 8.
iwdb (6) W.NLEN ~- Length, in 32-word blocks, within the

region to be mapped, or 0 if the length is

to default to either the size of the

window or the space remaining in the

region from the specified offset, '

whichever is smaller ‘&
iwdb (7) W.NSTS -- Bit settings* in the window status word:

WS.WRT -~ 1 if write access is desired

WS.64B -- 0 for 256-word (512-byte)
alignment, or 1 for 32-word (64-
byte) alignment.

Output parameters:

Array Offset 3
Element (
iwdb (6) W.NLEN -- Length of the area within the region
actually mapped by the window
iwdb (7) W.NSTS -~ Bit settings* in the window status word:
WS.UNM -- 1 if the window was unmapped
first

Local Symbol Definitions:

M.APBA -- Window definition block address (2)

* FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

C

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.suC
IE.PRI
IE.NVR

IE.NVW -

TR AT O
L Lae 21T

IE.ADP

IE.SDP

Successful completion

Privilege violation

Invalid region ID

Invalid address window ID

Task specified an invalid region offset and length
combination in the window definition block parameters
or

WS.64B = 0 and the value of W.NOFF is not a multiple of
8.

Part of the DPB or WDB is out of the 1issuing task's
address space.

DIC or DPB size is invalid

-
r

4-61

DIRECTIVE DESCRIPTIONS

MRKT$

4.3.31 MARK TIME

The MARK TIME directive instructs the system to declare a significant
event after an indicated time interval. The interval begins when the
task issues the directive; however, task execution continues during
the interval. If an event flag is specified, the flag is cleared when
the directive is issued, and set when the significant event occurs.
If an AST entry point address is specified, an AST (see Section 2.3.3)
occurs at the time of the significant event. When the AST occurs, the
task's PS, PC, directive status, WAITFOR mask words, and the event
flag number specified in the directive are pushed onto the issuing
task's stack. If neither an event flag number nor an AST service
entry point is specified, the significant event still occurs after the
indicated time interval.

See Notes below.
FORTRAN Calls:

CALL MARK (efn,tmg,tnt[,ids])

efn = Event flag number

tmg = Time interval magnitude (see last Note below)
tnt = Time interval unit (see last Note below)

ids = Directive status

The ISA standard call for delaying a task for a specified time
interval is also provided:

CALL WAIT (tmg,tnt[,ids])

tmg = Time interval magnitude (see last Note below)
tnt = Time interval unit (see last Note below)
ids = Directive status

Macro Call:
MRKTS [efn] ,tmg,tnt[,ast]

efn Event flag number

tmg = Time interval magnitude (see last Note below)
tnt = Time interval unit (see last Note below)
ast = AST entry point address

Macro Expansion:

MRKTS$ 52.,30.,2,MRKAST

.BYTE 23.,5 ;MRKTS$ MACRO DIC, DPB SIZE=5 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52.

.WORD 30. ; TIME MAGNITUDE=30.

.WORD 2 ;TIME UNIT=SECONDS

.WORD MRKAST ;ADDRESS OF MARK TIME AST ROUTINE

Local Symbol Definitions:

M.KTEF -- Event flag (2)

M.KTMG ~-- Time magnitude (2)

M.KTUN -- Time unit (2)

M.KTAE -- AST entry point address (2)

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

For CALL MARK and MRKTS:

IS.SUC =-- Successful completion

IE.UPN -- Insufficient dynamic memory

IE.ITI == Invalid time parameter

IE.IEF ~-- 1Invalid event flag number (>64 or <0)

IE.ADP -- Part of the DPB is out of the issuing task's
address space

IE.SDP =-- DIC or DPB size is invalid

For CALL WAIT:

RSX-11M provides the following positive error codes to be
returned for ISA calls:

2 -- Insufficient dynamic storage

3 ~- Specified task not installed

94 -- Invalid time parameters

58 ~- Invalid event flag number

99 -- Part of DPB out of task's range
100 —— DIC or DPB size invalid

Notes:
e MARK TIME requires dynamic memory for the clock queue entry.

e If an AST entry point address is specified, the AST service
routine 1is entered with the task's stack in the following

state:
SP+10 - Event flag mask word*
SP+06 - PS of task prior to AST
SP+04 - PC of task prior to AST
SP+02 - DSW of task prior to AST
SP+00 -

anAaniFiAad in Fha MADY MTMD A3 »a
GLJ\-\-.I..L‘\-U L2 i LAL AN LR e L

Event flag number or zero (if none was
=3 A
- J

The event flag number must be removed from the task's stack
before an AST SERVICE EXIT directive (see Section 4.3.4) is
executed.

e If the directive is rejected, the specified event flag is not
guaranteed to be cleared or set. Consequently, if the task
indiscriminately executes a WAITFOR directive and the MARK
TIME directive 1is rejected, the task may wait indefinitely.
Care should always be taken to ensure that the directive was
successfully completed.

e If a task issues a MARK TIME directive that specifies a common
event flag and then exits before the indicated time has
elapsed, the event flag is not set.

* The event flag mask word preserves the WAITFOR conditions of a task
prior to AST entry. A task can, after an AST, return to a WAITFOR
state. Because these flags and the other stack data are in the user
task, they can be modified. Such modification 1is strongly
discouraged, since, if done inappropriately, the task may fault on
obscure conditions.

DIRECTIVE DESCRIPTIONS

The Executive returns the code IE.ITI (or 94) in the Directive
Status Word if the directive specifies an invalid time
parameter. The time parameter consists of two
components: the time interval magnitude and the time interval
unit, represented by the arguments tmg and tnt respectively.

A legal magnitude value (tmg) is related to the value assigned
to the time interval unit (tnt). The unit values are encoded
as follows:

For an ISA FORTRAN call (CALL WAIT):

0 = Ticks. A tick occurs for each clock interrupt and is
dependent on the type of clock installed in the system.

For a line frequency clock, the tick rate is either 50
or 60 per second, corresponding to the power-line
frequency.

For a programmable clock, a maximum of 1000 ticks per
second 1is available (the exact rate is determined at
system generation time).

1 = Milliseconds. The subroutine converts the specified
magnitude to the equivalent number of system clock
ticks.

For all other FORTRAN and macro calls:

1l = Ticks. See definition of ticks above.

For both types of FORTRAN calls and all macro calls:

2 = Seconds
3 = Minutes
4 = Hours

The magnitude (tmg) is the number of units to be clocked. The
following 1list describes the magnitude values that are valid
for each type of unit. 1In no case can the value of tmg exceed
24 hours. The list applies to both FORTRAN and macro calls.

If tnt = 0, 1, or 2, tmg can be any positive value with a
maximum of 15 bits.

If tnt = 3, tmg can have a maximum value of 1440(10).

If tnt = 4, tmg can have a maximum value of 24(10).

DIRECTIVE DESCRIPTIONS

QlOo$

4.3.32 QUEUE I/0 REQUEST

The QUEUE I/0 REQUEST directive instructs the system to place an I/Q
request for an indicated physical device wunit into a queue of
priority-ordered requests for that device unit. The physical device

unit is specified as a logical unit number (LUN).

The device drivers declare a significant event when the 1I/0 transfer
completes. If the directive call specifies an event flag, the
Executive clears the flag when the request is queued, and sets the
flag when the significant event occurs.

The I/0 status block is also cleared when the request is queued, and
set to the final I/O status when the I/O request is complete. If an
AST service routine entry point address is specified, the AST occurs
upon I/O completion, and the task's WAITFOR mask word, PS, PC, DSW
(directive status), and the address of the I/O status block are pushed
onto the task's stack.

The description below deals solely with the Executive directive: the
device-dependent information can be found in the RSX-11M I/O Drivers
Reference Manual.

See Notes below.
FORTRAN Call:

CALL QIO (fnc,lun,[efn],[pri],[isb]l,[prl]{,idsl])

fnc = 1I/0 function code

lun = Logical unit number

efn = Event flag number

pri = Priority; ignored, but must be present

isb = 2-word integer array to receive f£inal I/0 status

prl = 6-word integer array containing device-dependent
parameters to be placed in parameter words 1 through 6
of the DPB.

ids = Directive status

Macro Call:

QIOS fnc,lun, [(efn],[{prij,{isb},[ast]{,prl]

fnc = 1I/0 function code*

lun = Logical unit number

efn = Event flag number

pri = Priority; ignored, but must be present

isb = Address of I/0 status block

ast = Address of AST service routine entry point
prl = Parameter list of the form <Pl,...P6>

* I/0 function code definitions are included in the RSX-11M I/0
Drivers Reference Manual.

DIRECTIVE DESCRIPTIONS

Macro Expansion:

QIOS IO.RVB,7,52.,,I0STAT,IOAST,<IOBUFR,512.>
.BYTE 1,12. ;QIOS MACRO DIC, DPB SIZE=12.
.WORD IO.RVB ; FUNCTION=READ VIRTUAL BLOCK
.WORD 7 ; LOGICAL UNIT NUMBER 7

.BYTE 52.,0 ;EFN 52., PRIORITY IGNORED
.WORD IOSTAT ;ADDRESS OF 2-WORD I/O STATUS BLOCK
.WORD IOAST ;ADDRESS OF I/O AST ROUTINE
.WORD IOBUFR ;ADDRESS OF DATA BUFFER

.WORD 512. ;BYTE COUNT=512.

.WORD 0 ;ADDITIONAL PARAMETERS...
.WORD 0 ;...NOT USED IN...

.WORD 0 ;...THIS PARTICULAR...

.WORD 0 ;...INVOCATION OF QUEUE I/0

Local Symbol Definitions:

Q.IOFN =-- 1I/0 function code (2)

Q.IOLU =-- Logical unit number (2)

Q.IOEF -- Event flag number (1)

Q.IOPR -- Priority (1)

Q.IOSB ~- Address of I/0 status block (2)

Q.IOAE -- Address of I/0 done AST entry point (2)
Q.IOPL -- Parameter list (6 words) (12)

DSW Return Codes:

IS.SUC -- Successful completion

IE.UPN ~-- Insufficient dynamic memory

IE.ULN -- Unassigned LUN

IE.HWR -- Device driver not loaded

IE.ILU -- 1Invalid LUN

IE.IEF -- 1Invalid event flag number (>64 or <0)

IE.ADP -- Part of the DPB or I/0 status block is out of the
issuing task's address space

IE.SDP -- DIC or DPB size is invalid

Notes:
e If the directive call specifies an AST entry point address,

the task enters the AST service routine with its stack in
following state:

SP+10 - Event flag mask word

SP+06 - PS of task prior to AST

SP+04 - PC of task prior to AST

SP+02 - DSW of task prior to AST

SP+00 - Address of I/0 status block, or zero, if no

was specified in the QIO directive.

the

ne

The address of the I/O status block, which is a trap-dependent
parameter, must be removed from the task's stack before an AST

SERVICE EXIT directive (see Section 4.3.4) is executed.

If the directive is rejected, the specified event flag is
guaranteed to be cleared or set. Consequently, if the
indiscriminately executes a WAITFOR directive and the
directive 1is rejected, the task may wait indefinitely.
should always be taken to ensure that the directive
successfully completed.

not
task
QIO
Care
was

DIRECTIVE DESCRIPTIONS

e Tasks cannot be checkpointed with QIO outstanding for two
reasons:

1. If the QIO directive results in a data transfer,
the data transfers directly to or from the
user-specified buffer.

2. If an I/O status block address 1is specified, the
directive status is returned directly to the I/O
status block.

The Executive waits until a task has no outstanding I/0 before
initiating checkpointing in all cases except the one described
below.

In systems that support the checkpointing of tasks during
terminal input, the terminal driver checks for the following
conditions when the driver dequeues an input request for a
task:

® That the task is checkpointable

e That checkpointing is enabled

e That the task is not executing an AST routine
e That ASTs are enabled

If the four conditions exist, the Executive immediately stops
the task's execution. Any competing task waiting to be loaded
into the partition can checkpoint the stopped task, regardless
of priority. If the stopped task 1is checkpointed, the
Executive does not bring it back into memory until its
terminal input has completed. While the task is stopped, the
terminal driver buffers the task's terminal input.

DIRECTIVE DESCRIPTIONS

QIOwWS$

4.3.33 QUEUE I/O REQUEST AND WAIT

The QUEUE I/O REQUEST AND WAIT directive is identical to QUEUE 1I/0
REQUEST in all but one aspect. If the WAIT variation of the directive
specifies an event flag, the Executive automatically effects a WAIT
FOR SINGLE EVENT FLAG directive. If an event flag is not specified,
however, the Executive treats the directive as if it were a simple
QUEUE I/0 REQUEST.

The following description lists the FORTRAN and macro calls with the
associated parameters, as well as the macro expansion. Consult the
description of QUEUE I/O REQUEST for a definition of the parameters,
the local symbol definitions, the DSW return codes, and explanatory
notes.

FORTRAN Call:

CALL WTQIO (fnc,lun, [efn],[pril,[isb],[prl][,ids])

fnc = I1/0 function code*

lun = Logical unit number

efn = Event flag number

pri = Priority; ignored, but must be present

isb = 2~-word integer array to receive final I/O status

prl = 6-word integer array containing device-dependent

parameters to be placed in parameter words 1 through 6 of
the directive parameter block (DPB)
ids = Directive status
Macro Call:

QIOWS fnc,lun,efn, [pri],[isb],[ast] [,prl]

fnc = I/0 function code*

lun = Logical unit number

efn = Event flag number

pri = Priority; ignored, but must be present
isb = Address of I/0 status block

ast = Address of AST service routine entry point
prl = Parameter list of the form <Pl,...P6>

Macro Expansion:

QIOWS I0.RVB,7,52.,,I0STAT,IOAST,<IOBUFR,512.>

.BYTE 3,12. ;QI0O$ MACRO DIC, DPB SIZE=12.
.WORD IO0.RVB ;s FUNCTION=READ VIRTUAL BLOCK
-WORD 7 ; LOGICAL UNIT NUMBER 7

.BYTE 52.,0 ;EFN 52., PRIORITY IGNORED
-WORD IOSTAT ;ADDRESS OF 2-WORD I/O STATUS BLOCK
.WORD IOAST ;ADDRESS OF I/O AST ROUTINE
.WORD IOBUFR ;ADDRESS OF DATA BUFFER
.WORD 512. ;BYTE COUNT=512.

.WORD 0 ;ADDITIONAL PARAMETERS...
.WORD 0 ;...NOT USED IN...

.WORD 0 7++..THIS PARTICULAR...

.WORD 0 7 ... INVOCATION OF QUEUE I/0

* I/0 function codes are defined in the RSX-11M I/0O Drivers Reference
Manual.

4-68

DIRECTIVE DESCRIPTIONS

RCVD$

4,3.34 RECEIVE DATA

The RECEIVE DATA directive instructs the system to dequeue a 13-word
data block for the issuing task; the data block has been queued
(FIFO) for the task via a SEND DATA Directive.

A 2-word sender task name (in Radix-50 form) and the 13-word data
block are returned in an indicated 15-word buffer, with the task name
in the first two words.

In a system that supports multiuser protection, a task can be
installed as a slave by the keyword /SLV=YES. (See the RSX-11M
Operator's Procedures Manual.) When a slave task issues the RECEIVE
DATA directive, it assumes the UIC and TI terminal of the task that
sent the data.

FORTRAN Call:

CALL RECEIV (tsk,bufl[,,ids])

tsk = Sender task name
buf = 15-word integer array for received data
ids = Directive status

Macro Call:
RCVDS tsk,buf

tsk
buf

Sender task name
Address of 15-word buffer

won

Macro Expansion:

RCVDS ALPHA,DATBUF ;TASK NAME AND BUFFER ADDRESS
.BYTE 75.,4 ;RCVD$ MACRO DIC, DPB SIZE=4 WORDS
.RAD50 /ALPHA/ ; SENDER TASK NAME

.WORD DATBUF ;ADDRESS OF 15.-WORD BUFFER

Local Symbol Definitions:

R.VDTN -- Sender task name (4)
R.VDBA -- Buffer address (2)

DSW Return Codes:

IS.SUC -- Successful completion

IE.ITS -- ©No data currently queued

IE.ADP -- Part of the DPB or buffer is out of the issuing
task's address space

IE.SDP =-- DIC or DPB size is invalid

4-69

DIRECTIVE DESCRIPTIONS

RCVX$

4.3.35 RECEIVE DATA OR EXIT

The RECEIVE DATA OR EXIT directive instructs the system to dequeue a
13-word data block for the issuing task; the data block has been
queued (FIFO) for the task via a SEND DATA Directive.

A 2-word sender task name (in Radix-50 form) and the 13-word data
block are returned in an indicated 15-word buffer, with the task name
in the first two words.

If no data has been sent, a task exit occurs. To prevent the possible
loss of Send packets, the user should not rely on I/0 rundown to take
care of any outstanding I/0 or open files; the task should assume
this responsibility.

In a system that supports multiuser protection, a task can be
installed as a slave by the keyword /SLV=YES. (See the RSX-11M
Operator's Procedures Manual.) When a slave task issues the RECEIVE
DATA OR EXIT directive, it assumes the UIC and TI terminal of the task
that sent the data.

See Notes below.
Fortran Call:

CALL RECOEX (tsk,buf[,,ids])

tsk = Sender task name
buf = 15-word integer array for received data
ids = Directive status

Macro Call:
RCVXS tsk,buf

tsk
buf

Sender task name
Address of 15-word buffer

Macro Expansion:

RCVX$ ALPHA,DATBUF ;TASK NAME AND BUFFER ADDRESS

.BYTE 77.,4 ;RCVX$S MACRO DIC, DPB SIZE=4 WORDS
.RAD50 /ALPHA/ ; SENDER TASK NAME
.WORD DATBUF ;ADDRESS OF 15.-WORD BUFFER

Local Symbol Definitions:

R.VXTN -- Sender task name (4)
R.VXBA ~- Buffer address (2)

DSW Return Codes:

IS.SUC -~ Successful completion

IE.ADP -- Part of the DPB or buffer is out of the issuing
task's address space

IE.SDP -- DIC or DPB size is invalid

(:r
o
1

Notes:

DIRECTIVE DESCRIPTIONS

A FORTRAN program that issues the RECOEX call must first close
all files by issuing CLOSE calls. See the IAS/RSX-11 FORTRAN
IV or the FORTRAN IV-PLUS User's Guide for instructions
concerning how to ensure that such files are closed properly
if the task exits.

To avoid the time overhead involved in the closing and
reopening of files, the task should first issue the RECEIV
call. If the directive status indicates that no data was
received, then the task can close all files and issue the call

"to RECOEX.

If no data has been sent, that is, if no SEND DATA directive
has been issued, the task exits. Send packets may be lost if
a task exits with outstanding I/O or open files (see third
paragraph of this directive description).

The RECEIVE DATA OR EXIT directive is wuseful in avoiding a
possible race condition that can occur between two tasks
communicating via the SEND and RECEIVE directives. The race
condition occurs when one task executes a RECEIVE directive
and finds its receive queue empty; but before the task can
exit, the other task sends it a message. The message is lost
because the Executive flushed the receiver task's receive
queue when it decided to exit. This condition can be avoided
by the receiving task's executing a RECEIVE DATA OR EXIT
directive. If the receive queue is found to be empty, a task
exit occurs before the other task can send any data; thus, no
loss of data can occur.

On EXIT, the Executive frees task resources. In particular,
the Executive:

1. Detaches all attached devices
Z. Flushes the AST Jueue
3. Flushes the receive and receive-by-reference queues

4. Flushes the clock queue for outstanding Mark Time requests
for the task

5. Closes all open files (files open for write access are
locked)

6. Detaches all attached regions except in the case of a
fixed task, where no detaching occurs

7. Runs down the task's I/O
8. Frees the task's memory if the exiting task was not fixed

If the task exits, the Executive declares a significant event.

DIRECTIVE DESCRIPTIONS

RDAF$

4.3.36 READ ALL EVENT FLAGS
The READ ALL EVENT FLAGS directive instructs the system to read all 64
event flags for the issuing task and record their polarity in a 64-bit
(4-word) buffer.
FORTRAN Call:
Only one event flag can be read by a FORTRAN task. The call is:
CALL READEF (efn,ids)

efn
ids

Event flag number
Directive status

The Executive returns the status codes IS.SET (+02) and IS.CLR
(00) for FORTRAN calls to report event flag polarity.

Macro Call:
RDAFS buf

The buffer has the following format:

WD. 00 =-- Task Local Flags 1-16

WD. 01 ~-- Task Local Flags 17-32
WD. 02 -- Task Common Flags 33-48
WD. 03 =-- Task Common Flags 49-64

Macro Expansion:

RDAF$ FLGBUF
.BYTE 39.,2 ;RDAFS MACRO DIC, DPB SIZE=2 WORDS
.WORD FLGBUF ;ADDRESS OF 4-WORD BUFFER

Local Symbol Definitions:
R.DABA -- Buffer address (2)

DSW Return Codes:

IS.SUC -- Successful completion

IE.ADP -~ Part of the DPB or buffer is out of the issuing
task's address space

IE.SDP -- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

RQST$

4.3.37 REQUEST

The REQUEST directive instructs the system to activate a task. The
task is activated and subsequently runs contingent upon priority and
memory availability. REQUEST is the basic mechanism used by running
tasks for initiating other installed (dormant) tasks. REQUEST is a
frequently used subset of the RUN directive.

See Notes below.

FORTRAN Call:

CALL REQUES (tsk,[opt][,ids])

tsk = Task name
opt = 4-word integer array
opt(l) = partition name first half; ignored, but
must be present
opt(2) = partition name second half; ignored,
but must be present
opt(3) = priority; ignored, but must be present
opt(4) = User Identification Code
ids = Directive status

Macro Call:

RQSTS tsk,[prt],[prill,ugc,umc]

tsk = Task name

prt = Partition name; ignored, but must be present
pri = Priority; ignored, but must be present

ugc = UIC group code

umc = UIC member code

Macro Expansion:

RQSTS ALPHA,,,20,10

.BYTE 11.,7 ;sRQST$ MACRO DIC, DPB SIZE=7 WORDS
.RAD50 /ALPHA/ ; TASK "ALPHA"

.WORD 0,0 ;PARTITION IGNORED

.WORD 0 ; PRIORITY IGNORED

.BYTE 10,20 ;UIC UNDER WHICH TO RUN TASK

Local Symbol Definitions:

R.OSTN -- Task name (4)
R.QSPN -- Partition name (4)
R.OSPR =-- Priority (2)
R.0SGC -- UIC group (1)
R.QSPC -~ UIC member (1)

DSW Return Codes:

IS.SUC =-- Successful completion

IE.UPN -- Insufficient dynamic memory

IE.INS -- Task is not installed

IE.ACT -~ Task is already active

IE.ADP -- Part of the DPB is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

Notes:

DIRECTIVE DESCRIPTIONS

The requested task must be installed in the system.

If the partition in which a requested task is to run is
already occupied, the Executive places the task in a queue of
tasks waiting for that partition. The requested task then
runs, depending on priority, and resource availability, when
the partition is free. Another possibility is that
checkpointing may occur. If the current occupant(s) of the
partition is checkpointable, has checkpointing enabled, and is
of lower priority than the requested task, it is written to
disk when its current outstanding 1I/0 completes; the
requested task is then read into the partition.

Successful completion means that the task has been declared
active, not that the task is actually running.

The requested task acquires the same TI terminal assignment as
that of the requesting task.

The requested task always runs at the priority specified in
its task header.

A task that executes in a system-controlled partition requires
dynamic memory for the partition control block used to
describe its memory requirements.

In a system that does not support multiuser protection, a task
can be requested under any UIC regardless of the UIC of the
requesting task. If no UIC is specified in the request, the
system uses the UIC from the task's header, which was
specified at task-build time.

In a system that supports multiuser protection, each active
task has two UICs -- a protection UIC and a default UIC.
These are both returned when a task issues a GET TASK
PARAMETERS directive (GTSKS).

1. The protection UIC determines the task's access rights for
opening files and attaching to regions. When a task
attempts to open a file, the system compares the task's
protection UIC against the protection mask of the
specified UFD; the comparison determines whether the task
is to be considered for system, owner, group, or world
access.

2. The default UIC is used by the File Control Subroutines
(FCS) to determine the default UFD when a file-open
operation does not specify a UIC. (The default UIC has no
significance when a task attaches to a region.)

In a multiuser protection system, each terminal also has a
protection UIC and a default UIC. If a terminal is
nonprivileged, the protection UIC is the log-on UIC, and the
default UIC is the UIC specified in the last SET /UIC command
to be issued. If no SET /UIC command has been issued, the
default UIC is equal to the log-on UIC. If the terminal is
privileged, both the protection and the default UICs are equal
either to the UIC specified in the last SET /UIC command or to
the log-on UIC if a SET /UIC command has not been issued.

DIRECTIVE DESCRIPTIONS

The system establishes a task's UICs when the task is
activated. 1In general, when the MCR Dispatcher or the MCR RUN
command activates a task, the task assumes the protection and
default UICs of the issuing terminal. However, if the user
specifies the /UIC keyword to the MCR INSTALL or RUN command,
the specified UIC becomes the default UIC for the activated
task; and if the issuin terminal is ©privileged, the
specified UIC becomes the activated task's protection UIC as
well.

The system establishes UICs in the same manner when one task
issues a REQUEST directive to activate another task. The
protection and default UICs of the issuing task generally
become the corresponding UICs of the requested task. However,
if 'a nonprivileged task specifies a UIC in a REQUEST
directive, the specified UIC becomes only the default UIC for
the requested task. If a privileged task specifies a UIC in a
REQUEST directive, the specified UIC becomes both the
protection and default UIC for the requested task.

DIRECTIVE DESCRIPTIONS

RREF$

4.3.38 RECEIVE BY REFERENCE

The RECEIVE BY REFERENCE directive causes the Executive to dequeue the
next packet in the receive-by-reference queue of the issuing
(receiver) task. Optionally, the task will exit if there are no
packets in the queue. The directive may also specify that the
Executive proceed to map the region referred to.

If successful, the directive causes a significant event.

Each reference in the task's receive-by-reference queue represents a
separate attachment to a region. If a task has multiple references to
a given region, it is attached to that region the corresponding number
of times. Because region attachment requires system dynamic memory,
the receiver task should detach from any region that it was already
attached to, 1in order to prevent depletion of the memory pool. That
is, the task needs to be attached to a given region only once.

If the Executive does not find a packet in the queue, and the task has
set WS.RCX 1in the window status word (W.NSTS), the task exits. If
WS.RCX is not set, the Executive returns the DSW code IE.ITS.

If the Executive finds a packet, it writes the information provided
(see Section 4.3.47), to the corresponding words in the window
definition block. This information provides sufficient information to
map the reference, according to the sender task's specifications, with
a previously created address window.

If the address of a 10-word receive buffer has been specified (W.NSRB
in the window definition block), then the sender task name and the
eight additional words passed by the sender task (if any) are placed
in the specified buffer. If the sender task did not pass on any
additional information, the Executive writes in the sender task name
and eight words of zero.

If the WS.MAP bit in the window status word has been set to 1, the
Executive transfers control to the MAP ADDRESS WINDOW directive (see
Section 4.3.30) to attempt to map the reference.

When a task that has unreceived packets in its receive-by-reference
gueue exits or is removed, the Executive removes the packets from the
queue and deallocates them. Any related flags are not set.

FORTRAN Call:

CALL RREF (iwdb,[isrb][,ids])

iwdb = An 8-word integer array containing a window definition
block (see Section 3.5.2.2)

isrb = A 10-word integer array to be used as the receive
buffer. If the call omits this parameter, the contents
of iwdb(8) are unchanged.

ids = Directive status

Macro Call:
RREFS$ wdb

wdb = Window definition block address

4~76

Macro Expansion:

RREFS$ WDBADR
.BYTE 8l.,2
.WORD WDBADR

DIRECTIVE DESCRIPTIONS

;RREF$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Window Definition Block Parameters:

Input Parameters:

Array Offset
Element

iwdb (1)

bits 0-7 W.NID
iwdb (7) W.NSTS
iwdb (8) W.NSRB

Output parameters:

Array Offset
Element

iwdb (4) W.NRID
iwdb (5) W.NOFF
iwdb (6) W.NLEN
iwdb (7) W.NSTS

Local Symbol Definitions:

ID of an existing window if region 1is to
be mapped
Bit settings* in the window status word:

WS.MAP -— 1 if received reference is to be
mapped
WS.RCX -- 1 if task exit desired when no

packet is found in the queue

Optional address of a 10-word buffer, to
contain the sender task name and
additional information

Region iD (pointer to attachment
description)

Offset word specified by sender task
Length word specified by sender task

Bit settings* in the window status word:

WS.RED -- 1 if attached with read access
WS.WRT -~ 1 if attached with write access
WS.EXT -- 1 if attached with extend access
WS.DEL =-- 1 if attached with delete access
WS.RRF -- 1 if receive was successful

The Executive clears the remaining bits.

R.REBA -- Window definition block address (2)

DSW Return Codes:

1S.SUC -- Successful completion

IE.ITS -- No packet found in the receive-by-reference queue

IE.ADP -- Address check of the DPB, WDB, or the receive buffer
(W.NSRB) failed.

IE.SDP -- DIC or DPB size is invalid

* FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

DIRECTIVE DESCRIPTIONS

RSUMS$

4.3.39 RESUME | €

The RESUME directive instructs the system to resume the execution of a
task that has issued a SUSPEND directive.

FORTRAN Call:
CALL RESUME (tsk[,ids])

tsk
ids

Task name
Directive status

Macro Call:

RSUMS tsk
tsk = Task name
Macro Expansion:
RSUMS ALPHA t
.BYTE 47.,3 7;RSUMS$ MACRO DIC, DPB SIZE=3 WORDS
.RAD50 /ALPHA/ ;TASK "ALPHA"

Local Symbol Definitions:
R.SUTN -- Task name (4)

DSW Return Codes:

IS.SUC -- Successful completion ‘
IE.INS -- Task is not installed ‘
IE.ACT -- Task is not active
IE.PRI -~ Task not privileged (multiuser protection
systems only)
IE.ITS -- Task is not suspended
IE.ADP -- Part of the DPB is out of the issuing task's
address space
IE.SDP -- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

RUN$

4.3.40 RUN

The RUN directive causes a task to be reguested at a specified future
time, and optionally to be requested periodically. The schedule time
is specified in terms of delta time from issuance. If the smg, rmg,
and rnt parameters are omitted, RUN is the same as REQUEST except
that:

1. RUN causes the task to become active one clock tick after the
directive is issued, and

2. the system always sets the TI: (Terminal Input) device for
the requested task, to CO:.

See Notes below.
FORTRAN Call:

CALL RUN (tsk,[opt],[smg],snt,[rmg]l,[rnt][,ids])

tsk = Task name
opt = 4-word integer array
opt(l) = Partition name first half; ignored, but
must be present
opt(2) = Partition name second half; ignored,
but must be present
opt(3) = Priority; ignored, but must be present
opt(4) = User Identification Code
smg = Schedule delta magnitude
snt = Schedule delta unit (either 1, 2, 3, or 4)
rmg = Reschedule interval magnitude
rnt = Reschedule interval unit
ids = Directive status

The ISA standard call for initiating a task is also provided:

CALL START(tsk,smg,snt[,ids])

tsk = Task name

smg = Schedule delta magnitude

snt = Schedule delta unit (either 0, 1, 2, 3, or 4)
ids = Directive status

Macro Call:

RUNS tsk, [prt], [pri], [ugc], [umc], [smg],snt[,rmg,rnt]

tsk = Task name

prt = Partition name; ignored, but must be present
pri = Priority; ignored, but must be present

ugc = UIC group code

umc = UIC member code

smg = Schedule delta magnitude

snt = Schedule delta unit (either 1, 2, 3, or 4)
rmg = Reschedule interval magnitude

rnt = Reschedule interval unit

DIRECTIVE DESCRIPTIONS

Macro Expansion:

RUNS ALPHA,,,20,10,20.,3,10.,3

.BYTE 17.,11. ;RUNS MACRO DIC, DPB SIZE=11l. WORDS
.RAD50 /ALPHA/ ; TASK "ALPHA"

.WORD 0,0 ;PARTITION IGNORED

.WORD 0 ; PRIORITY IGNORED

.BYTE 10,20 ;UIC TO RUN TASK UNDER

.WORD 20. ; SCHEDULE MAGNITUDE=20.

.WORD 3 ;SCH. DELTA TIME UNIT=MINUTE (=3)
.WORD 10. ;RESCH. INTERVAL MAGNITUDE=10.
.WORD 3 ;RESCH. INTERVAL UNIT=MINUTE (=3)

Local Symbol Definitions:

R.UNTN -- Task name (4)

R.UNPN ~- Partition name (4)
R.UNPR =-- Priority (2)

R.UNGC =-- UIC group code (1)
R.UNPC -~ UIC member code (1)
R.UNSM -~ Schedule magnitude (2)
R.UNSU =-- Schedule unit (2)

R.UNRM -~ Reschedule magnitude (2)
R.UNRU =-- Reschedule unit (2)

DSW Return Codes:

For

IS.
IE.
IE.
IE.
IE.

IE.

For

RSX
ret

CALL RUN and RUNS:
SUC =-- Successful completion
UPN -~ Insufficient dynamic memory
INS -- Task is not installed
ITI -- Invalid time parameter
ADP ~-- Part of the DPB is out of the issuing task's
address space
SDP -~ DIC or DPB size is invalid
CALL START:
~-11M provides the following positive error codes to be
urned for ISA calls:

-- Insufficient dynamic storage

-- Specified task not installed

-- Invalid time parameter

-~ Invalid event flag number

~-- Part of DPB out of task's address space
-- DIC or DPB size invalid

In a multiuser protection system, a nonprivileged task cannot
specify a UIC that is not equal to its own protection UIC.
(See the last note in the description of the REQUEST directive
for a definition of the protection UIC.) A privileged task can
specify any UIC.

In a system that does not support multiuser protection, a task
may be run under any UIC, regardless of the UIC of the
requesting task. If no UIC is specified in the request, the
Executive wuses the default UIC from the requested task's
header. The priority is always that specified in the
requested task's Task Control Block.

DIRECTIVE DESCRIPTIONS

The target task must be installed in the system.

If there is not enough room in the partition in which a
requested task 1is to run, the Executive places the task in a
queue of tasks waiting for that partition. The requested task
will then run, depending on priority and resource
availability, when the partition is free. Another possibility
is that checkpointing will occur. If the current occupant(s)
of the partition is checkpointable, has checkpointing enabled,
is of 1lower priority than the requested task, or is stopped
for terminal input, it will be written to disk when its
current outstanding I/0 completes. The requested task will
then be read into the partition.

Successful completion means the task has been made active; it
does not mean that the task is actually running.

Time Intervals

The Executive returns the code IE.ITI in the DSW if the
directive specifies an invalid time parameter. A time
parameter consists of two components: the time interval
magnitude and the time interval unit.

A legal magnitude value (smg or rmg) is related to the value
assigned to the time interval wunit snt or rnt. The unit
values are encoded as follows:

For an ISA FORTRAN call (CALL START):

0 = Ticks -~ A tick occurs for each clock interrupt and is
dependent on the type of clock installed in the system.

For a line frequency clock, the tick rate is either 50
or 60 per second, corresponding to the power-line

frequency.
For a programmaioie ClOCK, a maximum Of 1000 LicKs per
second is available (the exact rate 1is determined
during system generation).

1l = Milliseconds -~ The subroutine converts the specified
magnitude to the equivalent number of system clock

ticks.
For all other FORTRAN and macro calls:
1 = Ticks -- See definition of ticks above.

For both types of FORTRAN calls and all macro calls:

2 = Seconds
3 = Minutes
4 = Hours

The magnitude is the number of units to be clocked. The
following 1list describes the magnitude values that are valid
for each type of unit. In no case can the magnitude exceed 24
hours. The list applies to both FORTRAN and macro calls.

If unit = 0, 1, or 2, the magnitude can be any positive
value with a maximum of 15 bits.

DIRECTIVE DESCRIPTIONS

If unit = 3, the magnitude can have a maximum value of
1440(10).

If unit = 4, the magnitude can have a maximum value of
24 (10).

The schedule delta time is the difference in time from the
issuance of the RUNS$ directive to the time the task is to be
run. This time may be specified in the range from one clock
tick to 24 hours.

The reschedule interval is the difference in time from task
initiation to the time the task is to be reinitiated. If this
time interval elapses and the task is still active, no
reinitiation request will be issued. However, a new
reschedule interval will be started. The Executive will
continually try to start a task, wait for the specified time
interval, and then restart the task. This process continues
until a CSRQS (Cancel Time Based Initiation Requests)
directive or an MCR Cancel command is issued.

RUN requires dynamic memory for the clock queue entry used to
start the task after the specified delta time. If the task is
to run in a system-controlled partition, further dynamic
memory 1is required for the task's dynamically allocated
partition control block (PCB).

If optional rescheduling is not desired, then the macro call
should omit the arguments rmg and rnt.

4-82

DIRECTIVE DESCRIPTIONS

4.3.41 SEND DATA

The SEND DATA directive instructs the system to
event and to queue (FIFO) a

receive. When a local event flag is specified,
flag is set for the sending task;
declared.

FORTRAN Call:

CALL SEND (tsk,buf,[efn][,ids])

SDATS

declare a significant

13-word block of data for a task to

the indicated event

a significant event is always

be sent

tsk = Task name
buf = 13-word integer array of data to
efn = Event flag number
ids = Directive status
Macro Call:
SDATS tsk,buf],efn]
tsk = Task name
buf = Address of 13-word data buffer
efn = Event flag number
Macro Expansion:
SDATS ALPHA,DATBUF,52.
.BYTE 71.,5 ; SDATS MACRO DIC, DPB SIZE=5 WORDS
.RAD50 /ALPHA/ sRECEIVER TASK NAME
.WORD DATBUF ;ADDRESS OF 13.-WORD BUFFER
.WORD 52. s EVENT FLAG NUMBER 52.

Local Symbol

Definitions:

S.DATN -~ Task name (4)
S.DABA -- Buffer address (2)
S.DAEF -- Event flag number (2)
DSW Return Codes:
IS.SUC =-- Successful completion
IE.INS -- Receiver task is not installed
IE.UPN -- Insufficient dynamic memory
IE.IEF ~-- Invalid event flag number (EFN.
IE.ADP -- Part of the DPB or data block i
task's address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e SEND DATA requires dynamic memory.

e If the directive specifies a local event
local to the sender (issuing) task.
one task to set or clear a flag that is

GT.64 or EFN.LT.O0)
s out of the issuing

flag, the flag is
RSX-11M does not allow
local to another task.

DIRECTIVE DESCRIPTIONS

SETF$

4.3.42 SET EVENT FLAG

The SET EVENT FLAG directive instructs the system to set an indicated
event flag and report the flag's polarity before setting.

FORTRAN Call:

CALL SETEF (efn[,ids])

efn = Event flag number
ids = Directive status
Macro Call:

SETFS efn
efn = Event flag number

Macro Expansion:

SETFS 52.
.BYTE 33.,2 ;SETF$ MACRO DIC, DPB SIZE=2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52.

Local Symbol Definitions:
S.ETEF =-- Event flag number (2)

DSW Return Codes:

IS.CLR -- Flag was clear

IS.SET =-- Flag was already set

IE.IEF -- 1Invalid event flag number (EFN.GT.64 or EFN.LT.1)

IE.ADP -- Part of the DPB is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

Note:

e SET EVENT FLAG does not declare a significant event; it
merely sets the specified flag.

DIRECTIVE DESCRIPTIONS

SFPAS

4.3.43 SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST

T T

The SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST directive instructs
the system to record either:

e that floating point processor exception ASTs for the issuing
task are desired;, and that the Executive 1is to transfer
control to a specified address when such an AST occurs for the
task, or

e that floating point processor exception ASTs for the issuing
task are no longer desired.

When an AST service routine entry point address is specified, future
floating point processor exception ASTs will occur for the issuing
task, and control will be transferred to the indicated location at the
time of the AST's occurrence. When an AST service entry point address
is not specified, future floating point processor exception ASTs will
not occur until the task 1issues a directive that specifies an AST
entry point.

See Notes below.
FORTRAN Call:
Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.
Macro Call:
SFPAS [ast]
ast = AST service routi
Macro Expansion:
SFPAS FLTAST
.BYTE 111.,2 ; SFPAS MACRO DIC, DPB SIZE=2 WORDS
.WORD FLTAST ;ADDRESS OF FLOATING POINT AST
Local Symbol Definitions:
S.FPAE -- AST entry address (2)

DSW Return Codes:

IS.SUC -- Successful completion

IE.UPN -- Insufficient dynamic memory

IE.ITS -- AST entry point address is already unspecified

IE.AST -~ Directive was issued from an AST service routine
or ASTs are disabled

IE.ADP -- Part of the DPB is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

Notes:

e SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST requires
dynamic memory.

DIRECTIVE DESCRIPTIONS

The Executive queues floating point processor exception ASTs
when a floating point processor exception trap occurs for the
task. No future floating point processor exception ASTs will
be queued for the task until the first one queued has actually
been effected.

The floating point processor exception AST service routine is
entered with the task stack in the following state:

SP+12 - Event flag mask word

SP+10 - PS of task prior to AST
SP+06 - PC of task prior to AST
SP+04 - DSW of task prior to AST
SP+02 -~ Floating exception code
SP+00 - Floating exception address

The task must remove the floating exception code and address
from the task's stack before an AST SERVICE EXIT (see Section
4.3.4) directive is executed.

This directive cannot be issued from an AST service routine or
when ASTs are disabled.

This directive applies only to the Floating Point Processor.

DIRECTIVE DESCRIPTIONS

SPND$S

4.3.44 SUSPEND ($S form recommended)
The SUSPEND directive instructs the system to suspend the execution of
the issuing task. A task can suspend only itself, not another task.
The task can be restarted either by a RESUME directive, or by an MCR
RESume command.
FORTRAN Call:
CALL SUSPND [(ids)]
ids = Directive status
Macro Call:
SPNDS$SS [err]
err = Error routine address

Macro Expansion:

SPNDSS ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 45.,1 ;SPND$S MACRO DIC, DPB SIZE=1 WORD
EMT 3717 ; TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None
DSW Return Codes:

IS.SPD —- Successful completion (task was suspended)

IE.ADP -~ Part of the DPB is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

Notes:

e A suspended task retains control of the system resources
allocated to it. The Executive makes no attempt to free these
resources. When a task exits, the Executive frees the task's
resources.

e A suspended task is eligible for checkpointing unless it is
fixed or declared to be non-checkpointable.

® Because this directive requires only a l-word DPB, the $S form

of the macro is recommended. It requires less space and
executes with the same speed as the DIRS macro.

4-87

DIRECTIVE DESCRIPTIONS

SPRAS$

4.3.45 SPECIFY POWER RECOVERY AST

The SPECIFY POWER RECOVERY AST directive instructs the system to
record either:

1. that power recovery ASTs for the issuing task are desired,
and that control is to be transferred when a powerfail
recovery AST occurs, or

2. that power recovery ASTs for the issuing task are no longer
desired.

When an AST service routine entry point address is specified, future
power recovery ASTs will occur for the issuing task, and control will
be transferred to the indicated location at the time of the AST's
occurrence. When an AST service entry point address is not specified,
future power recovery ASTs will not occur until an AST entry point is
again specified.

See Notes below.

FORTRAN Call:

To establish an AST:

EXTERNAL sub
CALL PWRUP (sub)

sub = Name of a subroutine to be executed upon power
recovery. The PWRUP subroutine will effect a

CALL sub (no arguments).
The subroutine is called as a result of a power
recovery AST and therefore may be controlled at
critical points by using DSASTR and ENASTR subroutine
calls.
To remove an AST:
CALL PWRUP
Macro Call:
SPRAS [ast]
ast = AST service routine entry point address
Macro Expansion:
SPRAS PWRAST
.BYTE 109.,2 ; SPRAS MACRO DIC, DPB SIZE=2 WORDS
.WORD PWRAST ;ADDRESS OF POWER RECOVERY AST

Local Symbol Definitions:

S.PRAE -~ AST entry address (2)

C

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC =-- Successful completion

IE.UPN ~- 1Insufficient dynamic memory

IE.ITS -~ AST entry point address is already unspecified

IE.AST -- Directive was issued from an AST service routine

or ASTs are disabled.

IE.ADP -- Part of the DPB is out of the issuing task's

address space

IE.SDP -- DIC or DPB size is invalid

Notes:

® SPECIFY POWER RECOVERY AST requires dynamic memory.

e The Executive queues power recovery ASTs when the power-up
interrupt occurs following a power failure. No future
powerfail ASTs will be queued for the task until the first one
queued has actually been effected.

® The task enters the powerfail AST service routine with the
task stack in the following state:

SP+06 - Event flag mask word

SP+04 - PS of task prior to AST

SP+02 - PC of task prior to AST

SP+00 - DSW of task prior to AST
No trap-dependent parameters accompany a power recovery AST;
therefore, the AST SERVICE EXIT directive (see Section 4.3.4)
can be executed with the stack in the same state as when the
AST was entered.

e If a power recovery AST entry point is specified by a
checkpointable task and the power fails while the task is
checkpointed, the Executive does not effect or queue the AST.
Therefore, when it is essential that a task be notified of a
nower failure, the task should disable checkpointing.

e This directive cannot be issued from an AST service routine or

when ASTs are disabled.

DIRECTIVE DESCRIPTIONS

SRDAS

4.3.46 SPECIFY RECEIVE DATA AST

The SPECIFY RECEIVE DATA AST directive instructs the system to record
either:

e that receive data ASTs for the issuing task are desired, and
that the Executive transfers control to a specified address
when data has been placed in the task's receive queue, or

e that receive data ASTs for the issuing task are no 1longer
desired.

When the directive specifies an AST service routine entry point,
receive data ASTs for the task will subsequently occur whenever data
has been placed in the task's receive queue; the Executive will
transfer control to the specified address.
When the directive omits an entry point address, the Executive
disables receive data ASTs for the issuing task. Receive data ASTs
will not occur until the task issues another SPECIFY RECEIVE DATA AST
directive that specifies an entry point address.
See Notes below.
FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct

linking to system trapping mechanisms; therefore, this directive

is not available to FORTRAN tasks.
Macro Call:

SRDAS [ast]

ast = AST service routine entry point address

Macro Expansion:

SRDAS$ RECAST

.BYTE 107.,2 ;SRDAS MACRO DIC, DPB SIZE=2 WORDS

.WORD RECAST sADDRESS OF RECEIVE AST
Local Symbol Definitions:

S.RDAE -- AST entry address (2)

DSW Return Codes:

IS.SUC -- Successful completion

IE.UPN -- Insufficient dynamic memory

IE.ITS =-- AST entry point address is already unspecified

IE.AST -~ Directive was issued from an AST service routine
or ASTs are disabled

IE.ADP ~-- Part of the DPB is out of the issuing task's
address space

IE.SDP ~-- DIC or DPB size is invalid

Notes:

DIRECTIVE DESCRIPTIONS

SPECIFY RECEIVE DATA AST requires dynamic memory.

The Executive queues receive data ASTs when a message is sent
to the task. No future receive data ASTs will be queued for
the task until the first one gqueued has actually been
effected.

The task enters the receive data AST service routine with the
task stack in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+00 - DSW of task prior to AST

No trap-dependent parameters accompany a receive data AST;
therefore, the AST SERVICE EXIT directive (see Section 4.3.4)
must be executed with the stack in the same state as when the
AST was effected.

This directive cannot be issued from an AST service routine or
when ASTs are disabled.

When a task is checkpointed back into memory, the Executive
issues an AST for the task if its receive queue contains an
entry. This practice prevents checkpointed tasks from 1losing
receive ASTs.

DIRECTIVE DESCRIPTIONS

SREF$

4.3.47 SEND BY REFERENCE

The SEND BY REFERENCE directive inserts a packet containing a
reference to a region into the receive-by-reference queue of a
specified (receiver) task. The receiver task is automatically
attached by the Executive, to the region referred to (the region
identified in W.NRID of the window definition block). The attachment
occurs even 1f the receiver task is already attached to the region.
Because region attachment requires system dynamic memory, the receiver
task should detach from any region that it was already attached to, in
order to prevent depletion of the memory pool. That 1is, the task
needs to be attached to a given region only once. The successful
execution of this directive causes a significant event to occur.

The send packet contains:

® A pointer to the created attachment descriptor, which becomes
the region ID to be used by the receiver task

® The offset and length words specified in W.NOFF and W.NLEN of
the window definition block (which the Executive passes
without checking)

e The receiver task's permitted access to the region, contained
in the window status word W.NSTS

e The sender task name

e Optionally, the address of an 8-word buffer that contains
additional information -- If the packet does not include a
buffer address, the Executive sends 8 words of 0.

The receiver task automatically has access to the entire region as
specified in W.NSTS. The sender task must be attached to the region
with at least the same types of access. By setting all the bits in
W.NSTS to 0, the permitted access can be defaulted to that of the
sender task.

If the directive specifies an event flag, the Executive sets the flag
in the sender task when the receiver task acknowledges the reference
by issuing the RECEIVE BY REFERENCE directive (see Section 4.3.38).
When the sender task exits, the system searches for any unreceived
references that specify event flags, and prevents any invalid attempts
to set the flags. The references themselves remain in the receiver
task's receive-by-reference queues.

FORTRAN Call:

CALL SREF (tsk,[efn],iwdb,[isrb][,ids])

tsk = A single precision, floating point variable containing
the name of the receiving task in Radix-50 format

efn = Event flag number

iwdb = An 8-word integer array containing a window definition
block (see Section 3.5.2.2)

isrb = An 8-word integer array containing additional
information. If specified, the address of isrb is
placed in iwdb(8). 1If isrb is omitted, the contents of
iwdb (8) remain unchanged.

ids = Directive status

DIRECTIVE DESCRIPTIONS

Macro Call:
SREFS task,wdb[,efn]

The name of the receiver task
Window definition block address
Event flag number

- task
(’ wdb
N efn

Macro Expansion:

SREFS ALPHA ,WDBADR, 48.

-BYTE 69..,5 :SREF$ MACRO DIC, DPB SIZE=5 WORDS
.RAD50 /ALPHA/ ; RECEIVER TASK NAME

.WORD 48. ;EVENT FLAG NUMBER

.WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array Offset
Element
. , iwdb (4) W.NRID -- ID of the region to be sent by reference
iwdb (5) W.NOFF -- Offset word passed without checking
iwdb (6) W.NLEN -- Length word passed without checking
iwdb (7) W.NSTS -- Bit settings* in window status word (the
receiver task's permitted access):
WS.RED -- 1 if read access is permitted
WS.WRT -- 1 if write access is permitted
WS.EXT -~ 1 if extend access is permitted
WS.DEL -- 1 if delete access is permitted
. iwdb (8) W.NSRB -- Optional address of an 8-word buffer
(: containing additional information

Output parameters:
None

Local Symbol Definitions:

S.RETN -- Receiver task name (4)
S.REBA -- Window definition block base address (2)
. S.REEF -- Event flag number (2)
(L' DSW Return Codes:

IS.SUC =-- Successful completion

IE.UPN -- A send packet or an attachment descriptor could not be
allocated

IE.INS -- The sender task attempted to send a reference t¢ an ACP
(Ancillary Control Processor) task, or task not
installed

IE.PRI -- Specified access not allowed to sender task itself

IE.NVR -- Invalid region ID

IE.IEF -- Invalid event flag number

IE.ADP ~- The address check of the DPB, the WDB, or the send
buffer failed
IE.SDP -- DIC or DPB size is invalid

<m * FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

4-93

Note:

DIRECTIVE DESCRIPTIONS

For the user's convenience, the ordering of the SREF$ macro
arguments does not directly correspond to the format of the
DPB. The arguments have been arranged so that the optional
argument (efn) 1is at the end of the macro call. This
arrangement is also compatible with the SDATS$ macro.

4

94

DIRECTIVE DESCRIPTIONS

SRRAS

4.3.48 SPECIFY RECEIVE-BY-REFERENCE AST

The SPECIFY RECEIVE-BY-REFERENCE AST directive instructs the system to
record either:

e that receive-by-reference ASTs for the issuing task are
desired, and that the Executive transfers control to a
specified address when such an AST occurs, or

e that receive-by-reference ASTs for the issuing task are no
longer desired.

When the directive specifies an AST service routine entry point,
receive-by-reference ASTs for the task will occur; the Executive will
transfer control to the specified address.
When the directive omits an entry point address, the Executive stops
the occurrence of receive-by-reference ASTs for the issuing task.
Receive-by-reference ASTs will not occur until the task issues another
SPECIFY RECEIVE-BY-REFERENCE AST directive that specifies an entry
point address.
See Notes below.
FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct

linking to system trapping mechanisms; therefore, this directive

is not available to FORTRAN tasks.
Macro Call:

SRRAS [ast]

ast = AST service routine entry point address (0)

Macro Expansion:

SRRAS RECAST

.BYTE 21.,2 : SRRAS MACRO DIC, DPB SIZE=2 WORDS

.WORD RECAST ;ADDRESS OF RECEIVE AST
Local Symbol Definitions:

S.RRAE —-- AST entry address (2)

DSW Return Codes:

IS.SUC -- Successful completion

IE.UPN -~ Insufficient dynamic memory

IE.ITS -- AST entry point address is already unspecified

IE.AST -~ Directive was issued from an AST service routine or
ASTs are disabled

IE.ADP -- Part of the DPB is out of the issuing task's address
space

IE.SDP -- DIC or DPB size is invalid

Notes:

DIRECTIVE DESCRIPTIONS

SPECIFY RECEIVE-BY-REFERENCE AST requires dynamic memory.

The Executive queues receive-by-reference ASTs when a message
is sent to the task. Future receive-by-reference ASTs will
not be queued for the task until the first one queued has
actually been effected.

The task enters the receive-by-reference AST service routine
with the task stack in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST

SP+00 - DSW of task prior to AST

No trap-dependent parameters accompany a receive-by-reference
AST; therefore, the AST SERVICE EXIT directive (see Section
4.3.4) must be executed with the stack in the same state as
when the AST was effected.

This directive cannot be issued from an AST service routine or
when ASTs are disabled.

When a task is checkpointed back into memory, the Executive
issues an AST for the task if its receive-by-reference queue
contains one or more entries. This practice prevents
checkpointed tasks from losing receive-by-reference ASTs.

4-96

DIRECTIVE DESCRIPTIONS

SVDB$

4.3.49 SPECIFY SST VECTOR TABLE FOR DEBUGGING AID

The SPECIFY SST VECTOR TABLE FOR DERUGGING AID directive instructs the
er e

ri
system to record the address of a table of SST service routine entry
points for use by an intra-task debugging aid (ODT, for example).

To deassign the vector table, omit the parameters adr and len from the
macro call.

Whenever an SST service routine entry is specified in both the table
used by the task and the table used by a debugging aid, the trap
occurs for the debugging aid, not for the task.

FORTRAN Call:
Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:
SVDBS$ [adr] [,1len]

Address of SST vector table

Length of (that is, number of entries in) the table in
words

adr
len

The vector table has the following format:

WD. 00 =-- 0dd address or nonexistent memory error

WbD. 01 -- Memory protect violation

WD. 02 =-- T-bit trap or execution of a BPT instruction
WD. 03 -- Execution of an IOT instructicn

WD. 04 -- Execution of a reserved instruction

WD. 05 -- Execution of a non-RSX EMT instruction

WD. 06 =-- Execution of a TRAP instruction

WD. 07 =-- PDP-11/40 floating point exception

A 0 entry in the table indicates that the task does not want to
process the corresponding SST.

Macro Expansion:

SVDBS SSTTBL, 4

.BYTE 103.,3 ;SVDBS MACRO DIC, DPB SIZE=3 WORDS
.WORD SSTTBL ;ADDRESS OF SST TABLE
.WORD 4 ;SST TABLE LENGTH=4 WORDS

Local Symbol Definitions:

S.VDTA ~- Table address (2)
S.VDTL ~-- Table length (2)

DSW Return Codes:

IS.8UC -- Successful completion

IE.ADP -- Part of the DPB or table is out of the issuing
task's address space

IE.SDP -- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

SVTKS$

4.3.50 SPECIFY SST VECTOR TABLE FOR TASK

The SPECIFY SST VECTOR TABLE FOR TASK directive instructs the system
to record the address of a table of SST service routine entry points
for use by the issuing task.

To deassign the vector table, omit the parameters adr and len from the
macro call.

Whenever an SST service routine entry is specified in both the table
used by the task and the table used by a debugging aid, the trap
occurs for the debugging aid, not for the task.
FORTRAN Call:
Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.
Macro Call:
SVTKS [adr] [,1len]
Address of SST vector table

Length of (that is, number of entries in) the table in
words

adr
len

The vector table has the following format:

WD.00 ~-- 0dd address or nonexistent memory error
WD.0l -- Memory protect violation

WD.02 -- T-bit trap or execution of a BPT instruction
WD.03 -- Execution of an IOT instruction

WD.04 -~ Execution of a reserved instruction

WD.05 -- Execution of a non-RSX EMT instruction

WD.06 =-- Execution of a TRAP instruction

WD.07 -- PDP-11/40 floating point exception

A 0 entry in the table indicates that the task does not want to
process the corresponding SST.

Macro Expansion:

SVTKS$ SSTTBL, 4

.BYTE 105.,3 ;SVTKS MACRO DIC, DPB SIZE=3 WORDS
.WORD SSTTBL ;ADDRESS OF SST TABLE
.WORD 4 ;SET TABLE LENGTH=4 WORDS

Local Symbol Definitions:

S.VITA -~ Table address (2)
S.VITL -~ Table length (2)

DSW Return Codes:

IS.SUC =~- Successful completion

IE.ADP ~- Part of the DPB or table is out of the issuing
task's address space

IE.SDP -- DIC or DPB size is invalid

DIRBLLLIVE VUEODUKIFPLIUND

UMAPS

4.3.51 UNMAP ADDRESS WINDOW
The UNMAP ADDRESS WINDOW directive unmaps a specified window. After
the window has been unmapped, references to the corresponding virtual
addresses are invalid and cause a processor trap to occur.
FORTRAN Call:
CALL UNMAP (iwdb],ids])
iwdb = An 8-word integer array containing a window definition

block (see section 3.5.2.2)
Directive status

ids
Macro Call:
UMAPS wdb
wdb = Window definition block address
Macro Expansion:
UMAPS WDBADR
.BYTE 123.,2 ;s UMAPS MACRO DIC, DPB SIZE=2 WORDS
.WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array Offset

Element

iwdb (1) W.NID -- ID of the window to be unmapped
bits 0-7

Output parameters:

Array Offset

Element

iwdb (7) W.NSTS —- Bit settings* in the window status word:
WS.UNM -- 1 if the window was successfully
unmapped

Local Symbol Definitions:
U.MABA -- Window definition block address (2)

DSW Return Codes:

IS.SUC -- Successful completion
IE.ITS -- The specified address window is not mapped
IE.NVW -- Invalid address window ID

IE.ADP -- DPB or WDB out of range
IE.SDP ~- DIC or DPB size is invalid

* FORTRAN programmers should refer to Section 3.5.2 to determine the
bit values represented by the symbolic names described.

4-99

DIRECTIVE DESCRIPTIONS

WSIGS$S

4.3.52 WAIT FOR SIGNIFICANT EVENT ($S form recommended)
The WAIT FOR SIGNIFICANT EVENT directive is wused to suspend the
execution of the issuing task until the next significant event occurs.
It is an especially effective way to block a task that cannot continue
because of a 1lack of dynamic memory, since significant events
occurring throughout the system often result in the release of dynamic
memory. The execution of a WAIT FOR SIGNIFICANT EVENT directive does
not itself constitute a significant event.
FORTRAN Call:

CALL WFSNE
Macro Call:

WSIGSS [err]

err = Error routine address

Macro Expansion:

WSIGSS ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 49.,1 ;WSIGSS MACRO DIC, DPB SIZE=1 WORD
EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC,ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC -- Successful completion
IE.ADP -- Part of the DPB is out of the issuing task's
address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e If a directive is rejected for lack of dynamic memory, this
directive 1is the only technique available for blocking task
execution until dynamic memory may again be available.

® The wait state induced by this directive is satisfied by the
first significant event to occur after the directive has been
issued. The significant event that occurs may or may not be
related to the issuing task.

® Because this directive requires only a l-word DPB, the $S form

of the macro is recommended. It requires less space and
executes with the same speed as the DIRS macro.

4-100

DIRECTIVE DESCRIPTIONS

Significant events include the following:

1.

2.

I/0 completion
Task exit
The execution of a SEND DATA directive

The execution of a SEND BY REFERENCE or a RECEIVE BY
REFERENCE directive

The execution of an ALTER PRIORITY directive

The removal of an entry from the clock queue (e.g.,
resulting from the execution of a MARK TIME directive
or the issuance of a rescheduling request)

The execution of a DECLARE SIGNIFICANT EVENT directive

The execution of the round-robin scheduling algorithm
at the end of a round-robin scheduling interval

4-101

DIRECTIVE DESCRIPTIONS

WTLO$

4.3.53 WAIT FOR LOGICAL "OR" OF EVENT FLAGS

The WAIT FOR LOGICAL "OR" OF EVENT FLAGS directive instructs the
system to block the execution of the issuing task until the Executive
sets the indicated event flags from one of the following groups:

GR 0 -- Flags 1-16
GR 1l -- Flags 17-32
GR 2 -- Flags 33-48
GR 3 -- Flags 49-64

The task does not block itself if any of the indicated flags are
already set when the task issues the directive.

See Notes below.
FORTRAN Call:
CALL WFLOR (efnl,efn2,...efnn)

efn = List of event flag numbers taken as the set of flags to
be specified in the directive.

Macro Call:
WTLOS grp,msk

Desired group of event flags
A l6-bit flag mask word

~grp
msk

Macro Expansion:

WTLOS 2,160003

.BYTE 43.,3 ;WTLOS MACRO DIC, DPB SIZE=3 WORDS
.WORD 2 ; FLAGS SET NUMBER 2 (FLAGS 33:48.)
.WORD 160003 ;EVENT FLAGS 33,34,46,47 AND 48.

Local Symbol Definitions:
None

DSW Return Codes:

IS.80C =- Successful completion
IE.IEF -- No event flag specified in the mask word or flag
set indicator other than 0, 1, 2, or 3
IE.ADP -~ Part of the DPB is out of the issuing task's
address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e There is a one-to-one correspondence between bits in the mask
word and the event flags in the specified group. That is, if
group 1 were specified, then bit 0 in the mask word would
correspond to event flag 17, bit 1 to event flag 18, and so
forth.

4-102

‘“
i

DIRECTIVE DESCRIPTIONS

The Executive does not arbitrarily clear event flags when
WAITFOR conditions are met. Some directives (QUEUE 1/0
REQUEST, for example) implicitly clear a flag; otherwise,
they must be explicitly cleared by a CLEAR EVENT FLAG
directive.

The grp operand must always be of the form n regardless of the
macro form used. 1In all other macro calls, numeric or address
values for $S form macros have the form:

#n
For WTLOSS this form of the grp argument would be:
n

The argument list specified in the FORTRAN call must contain
only event flag numbers that lie within one event flag group.
If event flag numbers are specified that lie in more than one
group, or if an invalid event flag number is specified, a
fatal FORTRAN error is generated.

4-103

DIRECTIVE DESCRIPTIONS

WTSES$

4.3.54 WAIT FOR SINGLE EVENT FLAG
The WAIT FOR SINGLE EVENT FLAG directive instructs the system to block
the execution of the issuing task until the indicated event flag is
set. If the flag is set at issuance, task execution is not blocked.
FORTRAN Call:

CALL WAITFR (efn[,ids])

Event flag number
Directive status

efn
ids

o

Macro Call:
WTSES$ efn
efn = Event flag number

Macro Expansion:

WTSES 52.
.BYTE 41.,2 ;WTSE$S MACRO DIC, DPB SIZE=2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52.

Local Symbol Definitions:
W.TSEF -- Event flag number (2)

DSW Return Codes:

IS.SUC =-- Successful completion

IE.IEF -- 1Invalid event flag number (EFN>64 or EFN<])

IE.ADP -- Part of the DPB is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

4-104

APPENDIX A

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

ABORT TASK ABRTS
FORTRAN Call:
CALL ABORT (tsk[,ids])

tsk
ids

Task name
Directive status

[/

Macro Call:
ABRTS tsk

tsk = Task name

ALTER PRIORITY ALTPS$
FORTRAN Call:

CALL ALTPRI ([tsk],[iprill,ids])

tsk = Active task name

ipri = 1-word integer value equal to the new priority, from 1
to 250 (decimal)

ids = Directive status

Macro Call:

ALTPS [tsk] [,pri]

tsk = Active task name
pri = ©New priority, from 1 to 250 (decimal)
ASSIGN LUN ALUNS

FORTRAN Call:

CALL ASNLUN (lun,dev,unt[,ids])

lun = Logical unit number

dev = Device name (format 1A2)
unt = Device unit number

ids = Directive status

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

ALUNS lun,dev,unt

lun = Logical unit number G
dev = Device name (two characters)
unt = Device unit number

AST SERVICE EXIT ($S form recommended) ASTXS$S

FORTRAN Call:
Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.

Macro Call:

ASTXS$S [err]

err = Error routine address {’

ATTACH REGION ATRGS
FORTRAN Call:

CALL ATRG (irdb][,ids])

irdb = An 8-word integer array containing a region definition
block (see Section 3.5.1.2)
ids = Directive status
Macro Call:
ATRGS rdb
rdb = Region definition block address
CONNECT TO INTERRUPT VECTOR CINTS (

FORTRAN Call:
Not supported
Macro Call:
CINTS vec,base,isr,edir,rsw,ast
vec = interrupt vector address--Must be in the range 60(8) to

highest vector specified during SYSGEN, inclusive, and
must be a multiple of 4

base = wvirtual base address for kernel APR 5 mapping of the
ISR, and enable/disable interrupt routines
isr = wvirtual address of the ISR, or 0 to disconnect from the

interrupt vector

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

word to Dbe

edir = virtual address of the enable/disable interrupt routine
psw = low-order byte of the Processor

loaded before entering the ISR
ast = virtual address of an AST routine to be

the fork level routine gueues an AST

CLEAR EVENT FLAG
FORTRAN Call:
CALL CLREF (efn/[,ids])

efn = Event flag number
ids = Directive status

Macro Call:
CLEF$ efn
efn = Event flag number
CANCEL MARK TIME REQUESTS ($S form recommended)
FORTRAN Call:
CALL CANMT ([,ids])
ids = Directive status
Macro Call:
CMKTSS [,,err]

err = Error routine address

CREATE ADDRESS WINDOW

FORTRAN Call:

CALL CRAW (iwdb][,ids])

iwdb = An 8-word integer array containing a window
block (see Section 3.5.2.2)
ids = Directive status

Macro Call:
CRAWS wdb

wdb = Window definition block address

entered after

CLEFS$

CMKT$S

CRAWS

definition

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

CREATE REGION CRRGS
FORTRAN Call:

CALL CRRG (irdb[,ids])

irdb = An 8-word integer array containing a region definition
block (see Section 3.5.1.2)
ids = Directive status

Macro Call:

CRRGS rdb
rdb = Region definition block address
CANCEL TIME BASED INITIATION REQUESTS CSRQS

FORTRAN Call:

CALL CANALL (tsk][,ids])

tsk = Task name
ids = Directive status
Macro Call:
CSRQS tsk
tsk = Task name
DECLARE SIGNIFICANT EVENT ($S form recommended) DECLSS

FORTRAN Call:
CALL DECLAR ([,ids])
ids = Directive status
Macro Call:
DECLSS [,err]

err = Error routine address

DISABLE AST RECOGNITION ($S form recommended) DSARSS
FORTRAN Call:
CALL DSASTR [(ids)]
ids = Directive status
Macro Call:
DSARSS [err]

err = Error routine address

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

DISABLE CHECKPOINTING ($S form recommended)
FORTRAN Call:

CALL DISCKP
Macro Call:

DSCPSS [err]

err = Error routine address

DETACH REGION
FORTRAN Call:

CALL DTRG (irdb[,ids])

irdb = An 8-word integer array containing a region
block (see Section 3.5.1.2)
ids = Directive status

Macro Call:
DTRGS rdb

rdb = Region definition block address

ELIMINATE ADDRESS WINDOW
FORTRAN Call:

CALL ELAW (iwdb[,ids])

iwdb = An 8-word integer array containing a window
block (see Section 3.5.2.2)
ids = Directive status

Macro Call:
ELAWS wdb

wdb = Window definition block address

ENABLE AST RECOGNITION ($S form recommended)
FORTRAN Call:

CALL ENASTR
Macro Call:

ENARSS [err]

err = Error routine address

DSCPS$S

DTRGS

definition

ELAWS

detinition

ENARSS

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

ENABLE CHECKPOINTING ($S form recommended) ENCPSS
FORTRAN Call:

CALL ENACKP ‘
Macro Call:

ENCPSS [err]

err = Error routine address

EXITIF ' EXIFS
FORTRAN Call:

CALL EXITIF (efn][,ids])

efn = Event flag number
ids = Directive status
Macro Call: ‘
EXIF$S efn
efn = Event flag number
TASK EXIT ($S form recommended) EXITSS

FORTRAN Call:

STOP . ‘

or
CALL EXIT

Macro Call:
EXITSS [err]

err = Error routine address

EXTEND TASK EXTKS e
FORTRAN Call:

CALL EXTTSK ([inc]([,ids])

inc = A positive or negative number equal to the number of
32-word blocks by which the task size is to be extended
or reduced. If omitted, task size defaults to
installed task size.

ids = Directive status

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:

EXTKS$ [inc]
inc = A positive or negative number equal to the number of
32-word blocks by which the task is to be extended or
reduced. If omitted, task size defaults to installed
task size.
GET LUN INFORMATION GLUNS

FORTRAN Call:

CALL GETLUN (lun,dat!,ids])

lun
dat
ids

Macro Call:

Logical unit number
6~word integer array to receive LUN information
Directive status

GLUNS 1lun,buf
lun = Logical unit number
buf = Address of 6-word buffer that will receive the LUN
information
GET MCR COMMAND LINE GMCRS

FORTRAN Call:

CALL GETMCR (buf[,ids])

buf
ids

Macro Call:

GMCRS

80-byte array to receive command line
Directive status

GET MAPPING CONTEXT GMCXS$

FORTRAN Call:

CALL GMCX (imcx[,ids])

imex

ids
Macro Call:
GMCXS

wvec

An integer array to receive the mapping context. The
size of the array is 8*n+l, where n is the number of
window blocks in the task's header. The maximum size
is 8*8+1=65.

Directive status

wvec

The address of a vector of n window definition blocks;
n is the number of window blocks in the task's header.

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

GET PARTITION PARAMETERS GPRTS
FORTRAN Call:

CALL GETPAR ([prt],buf[,ids])

prt = Partition name
buf = A 3-word integer array to receive partition parameters
ids = Directive status

Macro Call:

GPRTS [prt],buf

prt = Partition name
buf = Address of a 3-word buffer

GET REGION PARAMETERS GREGS
FORTRAN Call:

CALL GETREG ([rid],buf[,ids])

rid = Region id
buf = 3-word integer array to receive region parameters
ids = Directive status

Macro Call:
GREGS [rid] [,buf]

rid = Region id
buf = Address of a 3-word buffer

GET SENSE SWITCHES ($5 form recommended) GSSWsS
FORTRAN Call:
CALL READSW (isw)
isw = 1Integer to receive the console switch settings
Macro Call:
GSSWS$S [err]

err = Error routine address

GET TIME PARAMETERS GTIMS
FORTRAN Call:
FORTRAN provides several subroutines for obtaining the time in a

number of formats. See the IAS/RSX-11 FORTRAN-IV User's Guide or
the FORTRAN IV-PLUS User's Guide.

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

Macro Call:
GTIMS buf

buf = Address of 8-word buffer

GET TASK PARAMETERS GTSK$
FORTRAN Call:
CALL GETTSK (buf[,ids])

buf
ids

16-word integer array to receive the task parameters
Directive status

nohn

Macro Call:

GTSKS buf
buf = Address of a l6-word buffer
INHIBIT AST RECOGNITION ($S form recommended) IHARSS

FORTRAN Call:
CALL INASTR [(ids)]
ids = Directive status
Macro Call:
IHARSS [err]

err = Error routine address

MAP ADDRESS WINDOW MAPS$
FORTRAN Call:
CALL MAP (iwdb[,ids])

iwdb = An 8-word integer array containing a window definition
block (see Section 3.5.2.2)

ids = Directive status
Macro Call:
MAPS wdb
wdb = Window definition block address

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

MARK TIME MRKTS$
FORTRAN Call:
CALL MARK (efn,tmg,tnt[,ids]) t
efn = Event flag number
tmg = Time interval magnitude
tnt = Time interval unit
ids = Directive status

The ISA standard call for delaying a task for a specified time
interval is also included:

CALL WAIT (tmg,tnt,ids)

tmg = Time interval magnitude
tnt = Time interval unit
ids = Directive status

Macro Call:

MRKTS [efn] ,tmg,tnt[,ast]
efn = Event flag number (
tmg = Time interval magnitude
tnt = Time interval unit
ast = AST entry point address
QUEUE I/O REQUEST QIO0S
FORTRAN Call: ‘
CALL QIO (fnc,lun,[efn],[pri],[isb],[prl][,ids]) (
fun = 1I/0 function code
lun = Logical unit number
efn = Flag number
pri = Priority; ignored, but must be present
isb = 2-word integer array to receive final I/O status
prl = #6-word integer array containing device-dependent
parameters to be placed in parameter words 1 through 6
of the directive parameter block (DPB).
ids =

Directive status (
Macro Call:

QIO0S fnc,1lun, [efn], [pri], [isb],[ast] [,prl]

fnc = 1I/0 function code

lun = Logical unit number

efn = Event flag number

pri = Priority; ignored, but must be present

isb = Address of I/0 status block

ast = Address of AST service routine entry point
prl = Parameter list of the form <Pl,...P6>

d

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

QUEUE I/O REQUEST AND WAIT QIOWS
FORTRAN Call:

CALL WTQIO (fnc,lun,efn,[pri],[isb]l,([prl][,ids])

fnc = 1I/0 function code

lun = Logical unit number

efn = Event flag number

pri = Priority; ignored, but must be present

isb = 2-word integer array to receive final I/0O status

prl = 6-word integer array containing device dependent
parameters to be placed in parameter words 1 through 6
of the DPB

ids = Directive status

Macro Call:

QIOWS fnc,lun,efn, [pri}, [isb], [ast] [,prl]

fnc = 1I/0 function code
lun = Logical unit number
efn = Event flag number
pri = Priority; ignored, but must be present
isb = Address of I/0O status block
ast = Address of AST service routine entry point
prl = Parameter list of the form <Pl,...P6>
RECEIVE DATA RCVDS

FORTRAN Call:

CALL RECEIV (tsk,buf[,ids])

tsk = Sender task name
buf = 1i5-word integer array for received data
ids = Directive status

Macro Call:

RCVD$ tsk,buf

tsk = Sender task name
buf = Address of 15-word buffer
RECEIVE DATA OR EXIT RCVXS

FORTRAN Call:

CALL RECOEX (tsk,buf[,ids])

tsk = Sender task name
buf = 15-word integer array for received data
ids = Directive status

Macro Call:
RCVXS$ tsk,buf

tsk
buf

Sender task name
Address of 15-word buffer

A-11

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

READ ALL EVENT FLAGS RDAF$
FORTRAN Call:

Only a single event flag can be read by a FORTRAN task. The ‘
call is:

CALL READEF (efn[,ids])

efn
ids

Event flag number
Directive status

won

Macro Call:

RDAFS Dbuf
buf = Address of 4-word buffer
REQUEST RQSTS
FORTRAN Call: (

CALL REQUES (tsk,[opt][,ids])

tsk = Task name
opt = 4-word integer array
opt(l) = Partition name first half; ignored, but
must be present
opt(2) = Partition name second half; ignored, but
must be present
opt(3) = Priority; ignored, but must be present
opt(4) = User identification code G
ids = Directive status 1

Macro Call:

RQSTS$ tsk,[prt],[pri}[,ugc,umc]

tsk = Task name

prt = Partition name; ignored, but must be present

pri = Priority; ignored, but must be present

ugc = UIC group code

umc = UIC member code (
RECEIVE BY REFERENCE RREF$

FORTRAN Call:

CALL RREF (iwdb,[isrb][,ids])

iwdb = An 8-word integer array containing a window definition
block (see Section 3.5.2.2)
isrb = A 10-word integer array to be used as the receive
buffer
ids = Directive status
Macro Call:

RREFS wdb

wdb = Window definition block €

A-12

DIRECTIVE SUMMARY -~ ALPHABETICAL ORDER BY MACRO CALL

RESUME
FORTRAN Call:
CALL RESUME (tsk[,ids])
tsk = Task name
ids = Directive status
Macro Call:
RSUMS tsk
tsk = Task name
RUN
FORTRAN Call:
CALL RUN (tsk,{opt],[smg]l,snt,[{rmg]l,[rnt][,ids])
tsk = Task name
opt = 4-word integer array
opt(l) = Partition name first half; ignored,
must be present
opt(2) = Partition name second half; ignored,
must be present
opt(3) = Priority; ignored, but must be present
opt(4) = User identification code
smg = Schedule delta magnitude
snt = Schedule delta unit
rmg = Reschedule interval magnitude
rnt = Reschedule interval unit
ids = Directive status

RSUMS

RUNS

but

but

The ISA standard call for initiating a task is also included:

CALL START (tsk,smg,snt,id

s)

tsk = Task name

smg = Schedule delta magnitude
snt = Schedule delta unit

ids = Directive status

Macro Call:

RUNS tsk, [prt],[pri],[ugc], [umc], [smg],snt],rmg,rnt]
tsk = Task name
prt = Partition name; ignored, but must be present
pri = Priority; ignored, but must be present
ugc = UIC group code
umc = UIC member code
smg = Schedule delta magnitude
snt = Schedule delta unit
rmg = Reschedule interval magnitude
rnt = Reschedule interval unit

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

SEND DATA SDATS
FORTRAN Call: .
CALL SEND (tsk,buf,[efn][,ids]) t
tsk = Task name
buf = 13-word integer array of data to be sent
efn = Event flag number
ids = Directive status

Macro Call:

SDATS tsk,buf[,efn]

tsk = Task name
buf = Address of 13-word data buffer
efn = Event flag number
SET EVENT FLAG SETFS$
FORTRAN Call: ‘

CALL SETEF (efn],ids])

efn
ids

Event flag number
Directive status

Macro Call:

SETFS$S efn
efn = Event flag number (
SPECIFY FLOATING POINT EXCEPTION AST SFPAS

FORTRAN Call:
Not supported.

Macro Call:

SFPAS [ast] (
ast = AST service routine entry point address
SUSPEND ($S form recommended) SPNDSS

FORTRAN Call:

CALL SUSPND
Macro Call:

SPNDS$SS [err]

err = Error routine address

A-14

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

SPECIFY POWER RECOVERY AST
FORTRAN Call:
CALL PWRUP (sub)
sub = Name of a subroutine +to be executed
recovery. The PWRUP subroutine will
following:
CALL sub (no arguments).
The subroutine is called as a result
recovery AST, and therefore the subrou
controlled at critical points by using the
INASTR) and ENASTR subroutine calls.
Macro Call:
SPRAS [ast]

ast = AST service routine entry point address

SPECIFY RECEIVE DATA AST
FORTRAN Call:

Not supported.
Macro Call:

SRDAS [ést]

ast = AST service routine entry point address

SEND BY REFERENCE
FORTRAN Call:

CALL SREF (tsk,[efn],iwdb,[isrb][,ids])

tsk = Receiver task name

efn = Event flag number

iwdb = An 8-word integer array containing a window
block (see Section 3.5.2.2)

isrb = An 8-word integer array containing
information

ids = Directive status

Macro Call:

SREFS task,wdb[,efn]

task = Receiver task name
wdb = Window definition block
efn = Event flag number

SPRAS

upon power

effect the

of a power

tine «can be
DSASTR (or

SRDAS

SREFS$

definition

additional

DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL

SPECIFY RECEIVE-BY~REFERENCE AST SRRAS
FORTRAN Call:

Not supported.
Macro Call:

SRRAS [ast]

ast = AST service routine entry point address

SPECIFY SST VECTOR TABLE FOR DEBUGGING AID SVDB$
FORTRAN Call:

Not supported.
Macro Call:

SVDBS [adr][,len]

adr = Address of SST vector table
len = Length of (that is, number of entries in) table in
words
SPECIFY SST VECTOR TABLE FOR TASK SVTKS$

FORTRAN Call:
Not supported.
Macro Call:

SVTKS [adr][,len]

adr = Address of SST vector table
len = Length of (that is, number of entries in) table in
words
UNMAP ADDRESS WINDOW UMAPS

FORTRAN Call:

CALL UNMAP (iwdb[,ids])

iwdb = An 8-word integer array containing a window definition
block (see Section 3.5.2.2)
ids = Directive status
Macro Call:

UMAPS wdb

wdb = Window definition block address

DIRECTIVE SUMMARY -~ ALPHABETICAL ORDER BY MACRO CALL

WAIT FOR SIGNIFICANT EVENT ($S form recommended)
FORTRAN Call:

CALL WFSNE

WSIGSS [err]

err = Error routine address

WAIT FOR LOGICAL 'OR' OF EVENT FLAGS
FORTRAN Call:

CALL WFLOR (efnl,efn2,...efnn)

WSIGSS

WTLO$

efn = List of event flag numbers is taken as the set of flags

to be specified in the directive.
Macro Call:
WTLOS grp,msk

Desired group of event flags
A 1l6-bit octal mask word

grp
msk

WAIT FOR SINGLE EVENT FLAG
FORTRAN Call:

CALL WAITFR (efn[,ids])

efn = Event flag number
ids = Directive status
Macro Call:
WTSES efn
efn = Event flag number

WTSES

APPENDIX B

STANDARD ERROR CODES

The symbols listed below are associated with the directive status
codes returned by the RSX-1IM Executive. To include these in a
MACRO-11 program, the programmer uses the following two lines of code:

.MCALL DRERRS$
DRERRS

STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS
WORD

~e wo wo we

IS.CLR +00 EVENT FLAG WAS CLEAR
Is.suC +01 OPERATION COMPLETE, SUCCESS
IS.SET +02 EVENT FLAG WAS SET
I’
i
IE.UPN -01. INSUFFICIENT DYNAMIC STORAGE
IE.INS -02. SPECIFIED TASK NOT INSTALLED
IE.ULN -05. UNASSIGNED LUN
IE.HWR -06. DEVICE DRIVER NOT RESIDENT
IE.ACT -07. TASK NOT ACTIVE
IE.ITS -08. DIRECTIVE INCONSISTENT WITH TASK STATE
IE.CKP -10. ISSUING TASK NOT CHECKPOINTABLE
IE.PRI -16. PRIVILEGE VIOLATION
IE.RSU -17. SPECIFIED VECTOR ALREADY IN USE
IE.ILV -109. SPECIFIED VECTOR ILLEGAL
’
H
IE.AST -80. DIRECTIVE ISSUED/NOT ISSUED FROM AST
IE.MAP -8l1. ISR OR ENABLE/DISABLE INTERRUPT ROUTINE

NOT WITHIN 4K WORDS FROM VALUE OF
BASE ADDRESS & 177700

IE.ALG -84. ALIGNMENT ERROR

IE.WOV -85. ADDRESS WINDOW ALLOCATION OVERFLOW

IE.NVR -86. INVALID REGION ID

IE.NVW -87. INVALID ADDRESS WINDOW ID
IE.LNL -90. LUN LOCKED IN USE

IE.IDU -92. INVALID DEVICE OR UNIT

IE.ITI -93. INVALID TIME PARAMETERS

IE.PNS -94. PARTITION/REGION NOT IN SYSTEM
IE.IPR =-95. INVALID PRIORITY (>250.)
IE.ILU -96. INVALID LUN

IE.IEF -97. INVALID EVENT FLAG NUMBER
IE.ADP -98. PART OF DPB OUT OF USER'S SPACE
IE.SDP -99. DIC OR DPB SIZE INVALID

$$SGLB, 1-8

ABORT,
CALL, 4-6
Aborting a task, 4-6
ABRTS, 4-6
Activating a task, 4-73, 4-79
Active task, 1-15
Address,
DPB, 1-2
error routine, 1-7
Address mapping, 3-1, 3-5, 3-6
Address space,
logical, 3-2, 3-4
virtual, 3-2
Address window,
creating, 4-23
eliminating, 4-36
mapping, 4-59
unmapping, 4-99
virtual, 3-2, 3-3, 4-23
Alignment boundaries,
offset, 4-23, 4-59
ALTER PRIORITY, 4-8
Altering task priority, 4-8
ALTPS, 4-8
ALTPRI,
CAT.T.. 4-8
ALUNS, 4-9
Arguments,
integer, 1-11
INTEGER*2, 1-11
optional, 4-4
optional subroutine, 1-10
Array,
integer, 1-11
RDB integer, 3-13
WDB integer, 3-16
ASNLUN,
CALL, 4-9
ASSIGN LUN, 4-9
Assigning LUNs, 4-9
AST, 2-1, 2-4, 2-6
floating-point processor,
4-85
power recovery, 4-88
receive data, 4-90
receive-by-reference,
4-95
AST recognition,
disabling, 4-31
enabling, 4-37
AST SERVICE EXIT, 4-11

INDEX

AST service routine, 2-7,
4-11, 4-20, 4-85, 4-88,
4-90, 4-95

ASTXS$S, 4-11

Asynchronous System Trap
(asT), 2-1, 2-4, 2-6

ATRG,

CALL, 4-13

ATRGS, 4-13

ATTACH REGION, 4-13

Attaching to region, 3-7,
4-13, 4-26

Bit definitions, 3-10, 3-13
Block,
Directive Parameter (DPB),
1-2, 1-4, 1-6
Region Definition (RDB),
3-10
Window Definition (WDB),
3-10, 3-13, 3-14
Blocked task, 1-15
Blocking a task, 4-102, 4-104
Blocks,
window, 3-2
Boundaries,
offset alignment, 4-23,
4-59
Byte,
DPB size, 1-2

$C form, 1-6
CALL ABORT, 4-6
CALL ALTPRI, 4-8
CALL ASNLUN, 4-9
CALL ATRG, 4-13
CALL CANALL, 4-29
CALL CANMT, 4-22
CALL CLREF, 4-21
CALL CRAW, 4-24
CALL CRRG, 4-26
CALL DECLAR, 4-30
CALL DISCKP, 4-33
CALL DSASTR, 4-31
CALL DTRG, 4-34
CALL ELAW, 4-36
CALL ENACKP, 4-38
Call examples,
macro, 1-8
CALL EXIT, 4-41
CALL EXITIF, 4-39

Index-1

CALL EXTTSK, 4-43
CALL GETMCR, 4-47
CALL GETPAR, 4-51
CALL GETREG, 4-53
CALL GMCX, 4-49
CALL INASTR, 4-31
CALL MARK, 4-62
CALL PWRUP, 4-88
CALL QIO, 4-65
CALL READEF, 4-72
CALL READSW, 4-55
CALL RECEIV, 4-69
CALL RECOEX, 4-70
CALL REQUES, 4-73
CALL RESUME, 4-78
CALL RREF, 4-76
CALL RUN, 4-79
CALL SEND, 4-83
CALL SETEF, 4-84
CALL SREF, 4-92
CALL SSWITCH, 4-55
CALL START, 4-79
CALL SUSPND, 4-87
CALL UNMAP, 4-99
CALL WAIT, 4-62
CALL WAITFOR, 4-104
CALL WFLOR, 4-102
CALL WFSNE, 4-100
CALL WTQIO, 4-68
Calls,
macro, 1-5
subroutine, 1-11
CANALL,
CALL, 4-29
CANCEL MARK TIME REQUESTS,
4-22
CANCEL TIME BASED INITIATION
REQUESTS, 4-29
Cancelling MARK TIME
requests, 4-22
Cancelling time-based
requests, 4-29
Checkpointing, 4-17
disabling, 4-33
enabling, 4-38
CINTS, 4-15
CLEAR EVENT FLAG, 4-21
Clearing event flag, 4-21
CLEFS$, 4-21
CLREF,
CALL, 4-21
CMKTS$S, 4-22
Code,
Directive Identification
(pIC), 1-2
User Identification (UIC),
4-57, 4-74
Codes,
error, 1-3
standard error, B-1

INDEX (Cont.)

Common event flags, 2-2

Common regions,
static, 3-4
Conditional task
termination, 4-39
Conditions,
FORTRAN error, 1-14
CONNECT TO INTERRUPT
VECTOR, 4-15

Console switch registers,

4-55
Conventions,
directive, 4-4
macro name, 1l-5
CRAW,
CALL, 4-24
CRAWS, 4-23
CREATE ADDRESS WINDOW,
CREATE REGION, 4-26
CRRG,
CALL, 4-26
CRRGS, 4-26
CSRQS, 4-29

Data,

receiving, 4-69, 4-70

sending, 4-83
Data AST,

receive, 4-90
Data structures,

user, 3-9

4-23

Debugging aid SSTs, 4-97

DECLS$S, 4-30
DECLAR,
CALL, 4-30

DECLARE SIGNIFICANT EVENT,

4-30

Declaring significant event,

4-30, 4-62, 4-83
Default UIC, 4-74
Definition Block,

Region (RDB), 3-10
Window (WDB), 3-10,
3-14
Definitions,
bit, 3-10, 3-13
Delta time,
schedule, 4-82
DETACH REGION, 4-34

Detaching from region, 4-34

DIC, 1-2

DIRS macro, l1l-6, 1-7

Directive categories,

Directive conventions,

Directive definition,
system, 1-1

Directive functions,
system, 1l-1

Index-2

3-13,

4-

1
4-4

INDEX (Cont.)

Directive Identification
Code (DIC), 1-2
Directive macros,
using, 1-3, 1-4
Directive Parameter Block
(DPB), 1-2, 1-4, 1-6
Directive processing,
system, 1-2
Directive Status Word (DSW),
1-2
Directive summary,
system, 4-2, 4-3, 4-4, A-1
Directives,
implementing system, 1-1
memory management, 3-1

DISABLE AST RECOGNITION, 4-31

DISABLE CHECKPOINTING, 4-33
Disabling AST recognition,
4-31

Disabling checkpointing, 4-33

DISCKP,
CALL, 4-33
Dormant task, 1-15
DPB, 1-2, 1-4, 1-6
DPB,
creating a, 1-4
predefined, 1-7
DPB address, 1-2, 1-4
DPB pointer, 1-2, 1-4
DPB size byte, 1-2
(DPB) ,
Directive Parameter Block,
1-2, 1-4, 1-a
DRERRS$ macro, 1-3
DSARSS, 4-31
DSASTR,
CALL, 4-31
DSCP$S, 4-33
DSwW, 1-2
DSW values, 1-3
DTRG,
CALL, 4-34
DTRGS, 4-34
Dynamic regions, 3-4

EFN, 2-2
ELAW,
CALL, 4-36

ELAWS, 4-36

ELIMINATE ADDRESS WINDOW,
4-36

EMT 377, 1-1, 1-2, 1-4

Emulator trap (EMT), 1-1

ENABLE AST RECOGNITION,
4-37

ENABLE CHECKPOINTING, 4-38

Enabling AST recognition,
4-37

Enabling checkpointing,
4-38
ENACKP,
CALL, 4-38
ENARSS, 4-37
ENCPSS, 4-38
Entry points,
routine, 2-4
Error codes, 1-3
standard, B-1
Error conditions,
FORTRAN, 1-14
Error routine address, 1-7
Error status, 1-3
Event,
declaring significant,
4-30, 4-62, 4-83
significant, 2-1, 4-101
waiting for, 4-100
Event flag,
clearing, 4-21
setting, 4-84
waiting for, 4-102, 4-104
Event flag numbers (EFNs),
2-2, 4-4
Event flags, 2-1
common, 2-2
local, 2-2
logical OR of, 4-102
reading, 4-72
testing, 2-3
using, 2-2
Examples,
macro call, 1-8
EXIFS, 4-39
EXIT,
CALL, 4-41
EXITSS, 4-41
EXITIF,
CALL, 4-39
Exits,
task, 1-3
Expansions,
macro, 1-8
EXTEND TASK, 4-43
Extending task size, 4-43
EXTERNAL, 4-88
EXTKS, 4-43
EXTTSK,
CALL, 4-43

Flag,
clearing event, 4-21
setting event, 4-84
waiting for event, 4-102,
4-104
Flag numbers (EFNs),
event, 2-2, 4-4

Index-3

Flag polarity,
reporting, 4-21, 4-84
Flags,
common event, 2-2
event, 2-1
local event, 2-2
logical OR of event, 4-102
reading event, 4-72
testing event, 2-3
using event, 2-2
Floating-point processor
AST, 4-85
Fork level, 4-15, 4-18
Form,
$, 1-6
$Cc, 1l-6
$S, 1-6
Format,
stack, 2-5, 2-7, 2-8
FORTRAN error conditions,
1-14
FORTRAN subroutines, 1-9 to
1-14
summary, 1-12
using, 1-10
Functions,
system directive, 1-1

GET GETTSK, 4-57
GET LUN INFORMATION, 4-45
GET MAPPING CONTEXT, 4-49
GET MCR COMMAND LINE, 4-47
GET PARTITION PARAMETERS,
4-51
GET REGION PARAMETERS, 4-53
GET SENSE SWITCHES, 4-55
GET TASK PARAMETERS, 4-57
GET TIME PARAMETERS, 4-56
GETADR subroutines, 1-11
GETMCR,
CALL, 4-47
GETPAR,
CALL, 4-51
GETREG,
CALL, 4-53
Getting current time, 4-56
Getting issuing task
parameters, 4-57
Getting LUN information,
4-45
Getting mapping context,
4-49
Getting MCR command, 4-47
Getting partition
parameters, 4-51
Getting region parameters,
4-53

INDEX (Cont.)

Getting switch register
contents, 4-55

GETTSK,

GET, 4-57
GLUNS, 4-45
GMCRS, 4-47
GMCX,

CALL, 4-49
GMCX$, 4-49
GPRTS$, 4-51
GREGS, 4-53
GSSWSS, 4-55
GTIMS, 4-56
GTSKS$, 4-57

I/0 request,
queuing, 4-65, 4-68
Identification,
region, 3-4
User Code (UIC), 4-74
window, 3-2
Identification Code,
Directive (DIC), 1-2
User (UIC), 4-74
IHARSS, 4-31
INASTR,
CALL, 4-31
Installed task,
removing, 1-16
Integer arguments, 1-11
Integer array, 1-11
RDB, 3-13
WDB, 3-16
INTEGER*2 arguments, 1-11
Interrupt Service Routine,
4-15, 4-18
Interrupt Transfer Block,
4-15, 4-18, 4-20
Interrupts,
software, 2-3
Interval,
reschedule, 4-82
time, 4-64
Intervals,
time, 4-81
ISA standard call, 4-62,
4-79
ISA subroutines, 1-9
ISR, 4-15, 4-18
ITB, 4-15, 4-18, 4-20

KT1ll memory management
unit, 3-1

Index-4

Library,
cbject module, 1-10
system macro, 1-5
Local event flags, 2-2
Logical address space, 3-2,

3-4

Logical OR of event flags,
4-102

Logical Unit Numbers (LUNs),
4-4, 4-9

LUN information,
getting, 4-45

LUNs, 4-4
assigning, 4-9

Macro call examples, 1-8
Macro calls, 1-5
Macro expansions, 1-8
Macro library,
system, 1-5
Macro name conventions, 1-5
Macros,
using directive, 1-4, 1-5
Magnitude values, 4-64, 4-81
Management directives,
memory, 3-1
MAP ADDRESS WINDOW, 4-59
MAPS, 4-59
Mapping,
address, 3-1, 3-5, 3-6
Mapping address window, 4-59
Mapping context,
getting, 4-49
MARK,
CALL, 4-62
MARK TIME, 4-62
MARK TIME requests,
cancelling, 4-22
Mask word,
WAITFOR, 2-7
.MCALL directive, 1-5
MCR command,
getting, 4-47
Memory management
directives, 3-1
Memory-management unit,
KT1ll, 3-1
Module library,
object, 1-10
MRKTS, 4-62

Name conventions,
macro, 1l-5
Names,
task, 1-10

INDEX (Cont.)

Numbers,
Event Flag (EFNs), 2-2,
4-4
Logical Unit (LUNs), 4-4,
4-9

Object module library, 1-10
Offset alignment boundaries,
4-23, 4-59
Offsets,
symbolic, 1-8
Optional arguments, 4-4
Optional subroutine
arguments, 1-10

Packet,
send-by-reference, 4-92
Parameter Block,
Directive (DPB), 1-2, 1-4,
1-6
Parameters,
getting issuing task, 4-57
getting partition, 4-51
getting region, 4-53
RDB, 3-17
time, 4-64, 4-81
WDB, 3-17
Partition parameters,
getting. 4-51
Pointer,
DPB, 1-2, 1-4
Power recovery AST, 4-88
Power recovery subroutine,
4-88
Predefined DPB, 1-7
Priority,
altering task, 4-8
Privileged task mapping,
3-17
Processing,
system directive, 1-2
Processor AST,
floating-point, 4-85
Program Status word (PS), 1-2
Protection,
region, 3-7
Protection UIC, 4-74
PS, 1-2
PWRUP,
CALL, 4-88

QIo,
CALL, 4-65
QI0$, 4-65

Index-5

QIOWS, 4-68
Queue,
receive, 4-83
receive-by-reference,
4-76
QUEUE I/0 REQUEST, 4-65
QUEUE I/0 REQUEST AND WAIT,
4-68
Queuing I/0 request, 4-65,
4-68

R.GID, 3-11
R.GNAM, 3-11
R.GPAR, 3-11
R.GPRO, 3-11
R.GSIz, 3-11
R.GSTS, 3-11
RCVDS$, 4-69
RCVXS$, 4-70
RDAFS, 4-72
RDB, 3-10

generating an, 3-11, 3-13
RDB integer array, 3-13
RDB parameters, 3-17
RDBBKS$ macro, 3-11
RDBDF$ macro, 3-11
READ ALL EVENT FLAGS, 4-72
READEF,

CALL, 4-72
Reading event flags, 4-72
READSW,

CALL, 4-55
Ready-to-run task, 1-15
RECEIV,

CALL, 4-69
RECEIVE BY REFERENCE, 4-76
RECEIVE DATA, 4-69
Receive data AST, 4-90
RECEIVE DATA OR EXIT, 4-70
Receive queue, 4-83
Receive-by-reference AST,

4-95
Receive-by-reference queue,
4-76
Receiving data, 4-69, 4-70
RECOEX,
CALL, 4-70
Recovery AST,
power, 4-88

Recovery subroutine,
power, 4-88
Reference,
region, 4-76
Reference to region,
sending, 4-92
REGION,
ATTACH, 4-13

INDEX (Cont.)

Region,
attaching to, 3-7, 4-13,
4-26
creating, 4-26
detaching from, 4-34
sending reference to, 4-92
Region Definition Block (RDB),
3-10
Region identification, 3-4
Region parameters,
getting, 4-53
Region protection, 3-7
Region reference, 4-76
Region status word (R.GSTS),
3-10
Regions, 3-2, 3-4
dynamic, 3-4
shared, 3-7
static common, 3-4
task, 3-4
Registers,
console switch, 4-55
task, 1-2, 2-6
Removing installed task, 1-16

REQUES,

CALL, 4-73
REQUEST, 4-73
Request,

queuing I/0, 4-65, 4-68
Requesting a task, 4-73, 4-79
Requests,

cancelling MARK TIME, 4-22

cancelling time-based,

4-29
Reschedule interval, 4-82
RESUME,
CALL, 4-78
Resuming suspended task,
4-78
Routine,
AST service, 2-7, 4-11,
4-85, 4-88, 4-90, 4-95
SST service, 2-4, 4-96
terminating AST service,
4-11
Routine address,

error, 1-7
Routine entry points, 2-4
RQSTS, 4-73
RREF,

CALL, 4-76
RREFS$, 4-76
RS.ATT, 3-10
RS.CRR, 3-10
RS.DEL, 3-10
RS.EXT, 3-10
RS.MDL, 3-10
RS.NDL, 3-10
RS.NEX, 3-10

Index-6

=2

INDEX (Cont.)

RS.RED, 3-10
RS.UNM, 3-10
RS.WRT, 3-10
RSUMS, 4-78
RUN,
CALL, 4-79
RUNS, 4-79
Running a task, 4-79

$s form, 1-6
Schedule delta time, 4-82
Scheduling a task, 4-79
SDATS, 4-83
SEND,
CALL, 4-83
SEND BY REFERENCE, 4-92
SEND DATA, 4-83
Send-by-reference packet,
4-92
Sending data, 4-83
Sending reference to region,
4-92
Service routine,
AST, 2-7, 4-11, 4-85,
4-88, 4-90, 4-95
ssT, 2-4, 4-97, 4-98
terminating AST, 4-11
SET EVENT FLAG, 4-84
SETEF,
CALL, 4-84
SETFS, 4-84
Setting event flag, 4-84
SFPAS, 4-85
Shared regions, 3-7
Significant event, 2-1, 4-101
declaring, 4-30, 4-62, 4-83
Size,
extending task, 4-43
Size byte,
DPB, 1l-2
Software interrupts, 2-3
SPECIFY FLOATING POINT
PROCESSOR, 4-85
SPECIFY POWER RECOVERY AST,

4-88

SPECIFY RECEIVE DATA AST,
4-90

SPECIFY
RECEIVE-BY-REFERENCE
AST, 4-95

SPECIFY SST VECTOR TABLE
FOR DEBUGGING AID, 4-97
SPECIFY SST VECTOR TABLE FOR
TASK, 4-98
SPNDS$S, 4-87
SPRAS, 4-88
SRDAS, 4-90

SREF,
CALL, 4-92
SREFS$, 4-92
SRRAS, 4-95
SST, 2-4
SST service routines, 2-4,
4-97, 4-98
SST vector table, 4-97,
4-98
SSTs, 2-4
debugging aid, 4-97
task, 4-98
SSWITCH,
CALL, 4-55
Stack format, 2-5, 2-8
Standard error codes, B-1
START,
CALL, 4-79
State,
task, 1-15
Static common regions, 3-4
Status,
error, 1-3
Status Word,
Directive (DSW), 1-2
Status word,
Program (PS), 1-2
region (R.GSTS), 3-10
window (W.NSTS), 3-13
STOP, 4-41
Structures,
user data, 3-9
Subroutine arguments,
optional, 1-10
Subroutine calls, 1-11
Subroutines,
FORTRAN, 1-9 to 1-14
Isa, 1-9
summary FORTRAN, 1-12
using FORTRAN, 1-10
Summary,
system directive, 4-2,
4-3, 4-4, A-1
Summary FORTRAN subroutines,
1-12
SUSPEND, 4-87
Suspended task,
resuming, 4-78
Suspending a task, 4-87,
4-100
SUSPND,
CALL, 4-87
SVDBS, 4-97
SVTKS$, 4-98
Switch registers,
console, 4-55
Switch register contents,
getting, 4-55
Symbolic offsets, 1-8

Index-7

Synchronous System Trap
(ssT), 2-4
System directive definition,
1-1
System directive functions,
1-1
System directive processing,
1-2
System directive summary,
4-2, 4-3, 4-4, A-1
System directives,
implementing, 1l-1
System macro library, 1-5
System Trap, 2-3
Asynchronous (AST), 2-1,
2-4, 2-6
Synchronous (SST), 2-4

Table,
SST vector, 4-97, 4-98
trap vector, 2-4

Task,
aborting a, 4-6
activating a, 4-73, 4-79
active, 1-15
blocked, 1-15
blocking a, 4-102, 4-104
dormant, 1-15
ready-to-run, 1-15
removing installed, 1-16
requesting a, 4-73, 4-79
resuming suspended, 4-78
running a, 4-79
scheduling a, 4-79
suspending a, 4-87, 4-100

Task execution,
terminating, 4-41

TASK EXIT, 4-41

Task exits, 1-3

Task mapping,
privileged, 3-17

Task names, 1-10

Task parameters,
getting issuing, 4-57

Task priority,
altering, 4-8

Task regions, 3-4

Task registers, 1-2, 2-6

Task size,
extending, 4-43

Task SSTs, 4-98

Task state, 1-15

Task termination,
conditional, 4-39

Terminal UIC, 4-74

Terminating task execution,

4-41

INDEX (Cont.)

Termination,
conditional task, 4-39
Terminator word, 4-49
Testing event flags, 2-3
Time,
getting current, 4-56
schedule delta, 4-82
Time interval, 4-64
Time intervals, 4-81
Time parameters, 4-64, 4-81
Time~-based requests,
cancelling, 4-29
Trap,
Asynchronous System (AST),
2-1, 2-4, 2-6
Emulator (EMT), 1-1
Synchronous (SST), 2-4
system, 2-3
Trap vector table, 2-5

UIC,
default, 4-57, 4-74
protection, 4-57, 4-74
terminal, 4-57, 4-74
UMAPS, 4-99
UNMAP,
CALL, 4-99
UNMAP ADDRESS WINDOW, 4-99
Unmapping address window,
4-99
User data structures, 3-9
User Identification Code
(UIC), 4-51, 4-74

Values,
DSwW, 1-3
magnitude, 4-81
Vector table,
S8T, 4-97, 4-98
trap, 2-4
Virtual address space, 3-2
Virtual address window, 3-2,
3-3, 4-23

W.NAPR, 3-14

W.NBAS, 3-14

W.NID, 3-14

W.NLEN, 3-14

W.NOFF, 3-14

W.NRID, 3-14

W.NSIZ, 3-14

W.NSRB, 3-14, 4-76, 4-93
W.NSTS, 3-13, 3-14

Index-8

_~

INDEX (Cont.)

WAIT, Window blocks, 3-2
CALL, 4-62 Window Definition Block
WAIT FOR LOGICAL "OR" OF (wDB), 3-10, 3-13, 3-14
EVENT FLAGS, 4-102 Window identification, 3-2
WAIT FOR SIGNIFICANT EVENT, Window status word (W.NSTS),
4-100 3-13, 4-70
WAIT FOR SINGLE EVENT, 4-104 Word,
WAITFOR, Directive Status (DSW), 1-2
CALL, 4-104 Program Status (PS), 1-2
WAITFOR mask word, 2-7 region status (R.GSTS), 3-10
Waiting for event, 4-100 WAITFOR mask, 2-7
Waiting for event flag, window status (W.NSTS), 3-13,
4-102, 4-104 4-76
WDB, 3-8, 3-14 WS.64B, 3-13, 4-23, 4-59
generating a, 3-15, 3-16 WS.CRW, 3-13
WDB integer array, 3-16 WS.DEL, 3-14
WDB parameters, 3-17 WS.ELW, 3-13
WDBBKS$ macro, 3-15 WS.EXT, 3-14
WDBDF$ macro, 3-15 WS.MAP, 3-14, 4-76
WFLOR, WS.RCX, 3-14, 4-76
CALL, 4-102 WS.RED, 3-14
WFSNE, WS.RRF, 3-13
CALL, 4-100 WS.UNM, 3-13
Window, WS.WRT, 3-14
creating address, 4-23 WSIGSS, 4-100
eliminating address, 4-36 WTLOS, 4-102
mapping address, 4-59 WTQIO,
unmapping address, 4-99 CALL, 4-68

virtual address, 3-2, 3-3, 4-23 WTSES, 4-104

Index-9

Please cut a

RSX-11M
Executive Reference Manual
Order No. AA-2544D-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. DProblems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

P |

Is there sufficient Jdocumenialion on associated system prograims
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

digital equipment corporation (

