p e R B EEREEREERBREEREREREREERRRERRERRERERERENREEREERREREREREERRERERBEIRERI]

.

EY-0060E-SG-0201

Programming
RSX-11M in MACRO

A Self-Paced Course

Volume |l

EY-0060E-SG-0201

Programming
RSX-11M in MACRO

A Self-Paced Course

Student Workbook
Volumell

Prepared by Educational Services
of
Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporatioh,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

9/82/14

VOLUME

SG STUDENT GUIDE

1

2

INTRODUCTION . . . « « «
PREREQUISITES.
COURSE GOALS AND NONGOALS.
COURSE ORGANIZATION. . . .
COURSE MAP DESCRIPTION . .
COURSE MAP . . ¢ « &« « « &
COURSE RESOURCES

Required References. .

Optional References. .
HOW TO TAKE THE COURSE . .
PERSONAL PROGRESS PLOTTER.

USING SYSTEM SERVICES

INTRODUCTION
OBJECTIVES « ¢« ¢ ¢ « « « &
RESOURCES. . . .

WHAT IS A SYSTEM SERVICE°

WHY SHOULD YOU USE SYSTEM SERVICES'>

CONTENTS

.
.
.
.
.
.
WO NN UTU bW

e o o e e o17
B
S
« e o o . 219

To Extend the Features of Your Programmlng

Language . . + + «

To Ease Programming and Maintenance.

To Increase Performance

WHAT SERVICES ARE PROVIDED?.
System and Task Information.

Task Control
Task Communication and
I/0 Peripheral Devices
File and Record Access
File and Record Access
Memory Use
OTHER SERVICES AVAILABLE .
HOW SERVICES ARE PROVIDED.
Executive Directives .

Code Inserted into Your Task

SYSTEM LIBRARIES

DIRECTIVES

INTRODUCTION * L] . L] . . .
OBJECTIVES . ¢« ¢ « « o &
RESOURCES. . . .

INVOKING EXECUTIVE DIRECTIVES FROM

Directive Processing .

iii

Coordination

°

Systems

3

.

. <19
B
e 20
. 20

. §
. 21
. .21
. o21
. 22
. .22
e o o o o 23
e o o o o 25
e o o & o 25
« o« o o o 428
e o o o o 30

. 035
. . . 3 . 035
. . 3 . .35

USER TASK37

.

. . L] 3 . .37

3

Functions Available Through Executive
Directives e = o o
The Directive Parameter Block (DPB) e o
The Directive Status Word (DSW).
Sample Program . « o« « o o o o o o o o o
DIFFERENT FORMS OF THE DIRECTIVE CALLS
The S FOIM o ¢« o ¢ o o o o o o o o o o o o
The SC FOIM: & v ¢ & o« o o o o o o o o o o
The $S FOIM. ¢« o ¢ o o o o o o o o o o o o
Repeated Use of a Directive with Different
ArgumentsS. o ¢ o ¢ o o o o o o o o o o o o
ADDITIONAL DIRECTIVE CONSIDERATIONS.
An Alternative Method for Error Checklng .
Run Time Conversion Routines
Notifying a Task When an Event Occurs. . .
Event Flags. .« « ¢ ¢ ¢ o o o o o o o &
Using Event Flags for Synchronization.
Asynchronous System Traps (ASTs) . . .
Synchronous System Traps (SSTS). « « o« o &

USING THE QIO DIRECTIVE

INTRODUCTION . & v & o o o o o s s o s o s o
OBJECTIVES « ¢« ¢ o o o o o &
RESOURCES., « ¢ « o o « & .
OVERVIEW OF QIO DIRECTIVES .
PERFORMING I/O0 . + ¢« o « « =
I/O FUNCTIONS. ©¢ ¢ ¢ o o o o« o o =
Logical Unit Numbers (LUN) o « o o o o o« &
Synchronous and Asynchronous I/0
MAKING THE I/0 REQUEST . ¢ ¢« o« ¢ « o &« .«
Error Checking and the I/0 Status Block. .
THE QIO DIRECTIVES . +¢ . ¢ ¢ o o o o o o o o o
Synchronous I/0. ¢« o « o o o o o o o o o =
Asynchronous I/0 . . . ¢ « « o . e o e
Synchronization With Asynchronous I/O. o« .
TERMINAL I/0 2 ¢ ¢ « o o o o o s o o o o o o &
Device Specific Functions. . . « « « « «
I/0 Status Block and Terminating Characters
Read After Prompt. . . o ¢ ¢ o o o o o o o«
Read No Echo ¢ ¢ ¢ ¢ ¢ ¢ o o o o« o«
Read with Timeout. . . . ¢ ¢ ¢ ¢« ¢ ¢ o« o« &
Terminal-Independent Cursor Control. . . .
Formatting Output Data . . « ¢ « ¢« o o « &
Formatting ASCII Data@. « « o o o o o o o @

. . L]
.
3
¢ o o o
.
L]
.
L]
.

iv

e o o o .

[] . [] L] [

L] . . L] L]

.39
.41
.42
.43
.46
.46
.49
.51

.58
.62
.62
.68
.69
.69
.70
.75
.82

.91
.91
.91
.93
.93
.94
.95
.95
191
193
125
105
111
112
120
129
129
123
126
128
131
135
145

4

5

USING DIRECTIVES FOR INTERTASK COMMUNICATION

INTRODUCTION . & & & o o o o o o o o o o o o =
OBJECTIVES &« ¢ ¢ ¢ o o o o o o o o o s o o o o«
RESOURCE . . & & ¢ o o o &
USING TASK CONTROL DIRECTIVES AND EVENT FLAGS.
Directives . . ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢« o o o o
SEND/RECEIVE DIRECTIVES.: ¢ 4 ¢ o o s o o ‘o o @
General ConceptsS ¢ o o o o o o o o o o o
Directives . o ¢ o o o o o o o o o o o o &
Synchronizing Send Requests With
Receive Requests « v ¢ ¢ ¢ ¢ o o o o o o &
Using Send/Receive Directives
for Synchronization. « « + + « o« .
Slaving the Receiving Task
PARENT/OFFSPRING TASKING . ¢« ¢« ¢ « ¢ o o o o &
Directives Issued by a Parent Task . o e
Directives Issued by an Offspring Task
Chaining of Parent/Offspring Relatlonshlps
Other Parent/Offspring Considerations. . .
Task Abort Status. « o o o o
Summary of Various Methods of Data Transfer
Between TasksS., ¢« ¢ &« & &« o o o o o o o o« @

Other Methods of Transferring or Sharing Data

Between TaSkSo L] L] L] . - . L] L3 L] L4 . . L3 .

MEMORY MANAGEMENT CONCEPTS

INTRODUCTION . . & & o o o o o o o o o o o o &
OBJECTIVES ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o«
RESOURCES. « &« ©¢ « o o o s o o o a o o o o o
GOALS OF MEMORY MANAGEMENT . . . & ¢ ¢ o o « o
HARDWARE CONCEPTS. « ¢« o o 2 o o o o o o o o @

Mapped Versus Unmapped Systems

Virtual and Physical Addresses N
The KT-11] Memory Management Unlt e e o e
Mode Bits., « + s e e e o
Active Page Reglsters (APRs) . .

Converting Virtual Addresses to Phy51cal
AdAresSsSeS. « o o« o «o o o o o o o s s o o
SOFTWARE CONCEPTS. &+ « ¢ o o o o o o o o o o &
Virtual Address WindowS. « « « o ¢ « o o &
Regions. ¢ v v 4 ¢ v ¢ ¢ ¢ o o o o o o o

151
151
151
153
154
163

163
163

164

181

181
182
184
194
195
201
206

208
209

213
213
213
215
215
215
220
223
223
223

226

228
228

229

6

7

OVERLAYS

INTRODUCTION . .
OBJECTIVES . . .
RESOURCE ., . . .
CONCEPTS
OVERLAY STRUCTURE. e e o o & o o s
STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS., . . .
THE OVERLAY DESCRIPTOR LANGUAGE (ODL)e ¢ o ¢ o «
ODL Command Line Format. . « .« . .
TYPES OF OVERLAYS. .
Disk-Resident. .
Memory-Resident.
LOADING METHODS. . .
Autoload
Manual Load. o o s
Comparison of a Task Wlth No Overlays,
to One With Disk-Resident Overlays, and
One With Memory-Resident OverlayS. « « « o« « &
Overlaying TechniqueS. . « o« ¢ o ¢ o o o o o o
LIBRARIES. e o s o o s e e e
GLOBAL SYMBOLS IN OVERLAID TASKS e o s o o o o o
Resolution of Global Symbols « . . .
Subroutine Calls . « &« ¢ o o o o o o o o o &

o o o @
e« o o o

o o o o
e o o o
L] * . L]
e« o o o
e o o »
e o o o
L] L] L] L]
e o o o
. L] L] L]
. e o o o
. o o o o
. e o o o
) o o o o
L] L] L] L] L] L]
. * o o 3 o

* . L] L] L)
L] L] L] * .
. L] L] . L]

.
.
]
L]
.

L] L[] L] ° L] L]
L] . ° L] L]
* . L] L L)
L] . . L] LJ
. . L] * .
L] L[] . L[] . L]
L] L] . L[] L] L]
L] . L] L] * L]
L] L] L] L] . L]
L] L] L] L . L

Data References. o e o o o o .
Placing Data in the Root and Referencing It
CO TREES L] * . L] L3 L] L] L] L] L] L] L] . . L3 L] - L] L] L] L]

VOLUME II

STATIC REGIONS

INTRODUCTION . & & o o o @
OBJECTIVES . ¢ o o ¢ o o o &
RESOURCE
TYPES OF STATIC REGIONS. .
MEMORY ALLOCATION. . . «. « « .
MAPPING. . ¢ ¢ o « o o o & . .
REFERENCES TO A SHARED REGION .
Techniques of Referencing. . . .
Using Overlaid Psects (Data Only). . .
Using Global Symbols (Data or Subroutines
Using Virtual Addresses (Data Only). . .
PROCEDURE FOR CREATING SHARED REGIONS
AND REFERENCING TASKS. &« ¢ « o o o o o » o o o o »
Creating a Resident Common or Resident Library
Creating a Referencing Task. . « « ¢ ¢« ¢ & + &
DEVICE COMMONS . . . ©o 2 o« « o o s o o s o o o o =

* o e o
.
. L]] L]
L] .
L] L]
* L]
L] .
. L]
L L]
. L d * .
L] * L] °

e o & o
¢ o ¢ o

L] L] . L] L] L] L]
L] L] [] [[] L]

)

vi

L] L] * L] L L] .

L] . . *

. . L[] L] [. L)

235

~235

235
237
238
241
241
241
245
245
247
251
251
253

253
254
262
268
268
271
271
272
282

289 -

289
289
291
293
293
299
301
301
302
303

307
307
315
326

8

9

DYNAMIC REGIONS

INTRODUCTION . ¢ v ¢ o o o o o o o o o @
OBJECTIVES o &« « o o o o o o o o o o o o
RESOURCE . ¢ & ¢ ¢ ¢ o o o o o o o o o &
SYSTEM FACILITIES. . e o o s o o o
REQUIRED DATA STRUCTURES . s o o o
Region Definition Block (RDB) « o o
Creating an RDB in MACRO-11. .
Window Definition Block (WDB).
Creating a WDB in MACRO-11 . .
CREATING AND ACCESSING A REGION. .
Creating a Region. « « « « . .
Attaching to a Region.
Creating a Virtual Address Window.
Mapping to a Region. « . « « « . .
SEND- AND RECEIVE-BY-REFERENCE
The Mapped Array Are€a. . « « « « &

* e o e
e o e ®
L] * * * L] L]

FILE1/O

INTRODUCTION . & 4 © o o o o o o o o o o
OBJECTIVES &+ &« ¢ o o o o o o o o o o o o
RESOURCES.: & ©¢ ¢ ¢ ¢ o o o s o o o o o
OVERVIEW . . . e o o o o s o s o o o e
TYPES OF DEVICES . e« o o o o o o
Record- Orlented Dev1ces. e o o o o
File-Structured Devices. . e o o o
Types of File- Structured Devices
COMMON CONCEPTS OF FILE I/0. . . . o e
Common Operations. . « .« . .
Steps of File I/0.
FILES-11 . . o o o
FILES-11 Structure
Directories. . . « . .
Five Basic System Files. .
Functions of the ACP . . .
OVERVIEW AND COMPARISON OF FCS
Common Functions
FCS FEATURES .« ¢« & ¢ ¢ o o o &
File Organizations . .
Supported Record Types
Record Access Modes. .
File Sharing
RMS FEATURES . . « ¢ « « &
File Organizations . .
Record Formats
Record Access Modes. .
File Sharing Features.
SUMMALY. « o o o o o o o o o o o o«

* o o
e o o
*® o 8
e o o
e e 8 @
e o o s 0
L] * o
o []
e o o s o o

e e
zZ
o o s e o
.« oW
2
. N e

L]
e o o o o o
L]
L]
.
L

»
.
3
L]
1]
*
*

vii

e e o o o o * o e o .

® o o & o o

3

L[] L] . L]

* L]

e o e o o o

e o o o o o * o o o e o * o o o .

L] L] . L] L]

. L] . L]

¢« o s o * ° e o o o o o * o e o L]

L] L] L[] L]]

. L] L] L]

. s e s e o e o o o * ® « o o o LI)

337
337
337
339
341
341
345
347
349
351
352
355
356
356
365
373

383
383
383
385
385
385
385
386
388
388
388
389
389
394
397
398
491
401
403
403
403
497
499
410
410
412
412
414
415

10 FILE CONTROL SERVICES

INTR
OBJE
RESO
REVI
INTR

ODUCTION
CTIVES « « + « .
URCE
EW OF FILE I/O .
ODUCTORY EXAMPLE

L] L[] . L[]
e o o o
e o o o
e o o o

]

L]

.

US ING FCS . o L] L]

Preparing to Open a F11e . .
Initialization of the FSR .

The File Descriptor Block (FDB)

ERRO
PERF

PERF

ADDI

AP APPENDI

APPENDIX

APPENDIX
APPENDIX
APPENDIX
APPENDIX

Functions of the FDB . . .
Allocating Space for FDBs.
Initializing an FDB. . . .

Specifying New File Characteristics.

Selecting Data Access Methods.
Specifying Data Access Methods

Additional Initialization of the

for Record I/O0 . ¢« ¢ o « = .

FDB

.

Additional Initialization for Block I/O. .
Initializing the File-Open Section of FDB.

Setting Up a File Specification in

Setting Up the Dataset Descriptor.

Setting Up the Default Filename Block.

Initializing the File-Open Section

Prior to Opening the File. . .
Opening a File . . . « . « + &
R CHECKING . ¢ ¢ ¢ ¢ o o o o &
ORMING RECORD I/0.

Different Forms of PUTS and GET$

Sequential AccesS. « « ¢ o o+ o
Random ACCESS.e « o o o o o s o
Closing the File
ORMING BLOCK I/0 . ¢ o « o « &
READS and WRITES Calls . . .

.

Synchronization and Error Checklng

TIONAL TOPICS. & ¢ o o o o o
Deleting a File. « ¢« « « « . .
File Control Routines.
Command Line Processing. . . .

e o o o

the

CES

A SUPPLIED MACROS. . ¢ ¢ o o o =« & o .
B CONVERSION TABLES. . « « &« « « & o .
C FORTRAN/MACRO-11 INTERFACE«
D PRIVILEGED TASKS
E TASK BUILDER USE OF PSECT ATTRIBUTES .

viii

L]
*

e o o o .

*

419
419
419
421
422
427
427
429
431
431
432
432
433
435
437

438
439
449
449
441
442

443
450
453
456
456
457
459
460
477
477
478
487
487
487
488

491
513
515
517
519

APPENDIX F ADDITIONAL SHARED REGION TOPICS. . . «. « « . . 523
APPENDIX G ADDITIONAL EXAMPLES. ¢ ¢ « « « & « o « o o o« o« 537
APPENDIX H LEARNING ACTIVITY ANSWER SHEET 541

GL GLOSSARY

FIGURES

Using Executive Directives to Service a Task.26

1-1
1-2 Using Executive Directives to Receive Services

from Other TaskS. o« « ¢ o o o o o o o o o o o o o o o 27
1-3 Code Inserted into Your Task Image. « « o o o o o o « 29

Directive Implementation. . . ¢« ¢« & ¢ ¢ ¢ ¢« & « o « « .39
The Directive Parameter BloCK . ¢« « ¢ ¢ o ¢ « o « o« o .41
The $ FOIM. « « « o o o o « o o o o o o o o« o o o o o 47
The SC FOIM . & & 4 o o o o o o o o o o o o o o o o« o« 50
The $S FOIM « « o o « o o o o o o o o o o o o o o o« o «52
AST Mechanics . v v «¢ ¢ ¢ o o o o o o o o o o o« o o » o176
Stack as Set Up by the Executive for ASTs78
- SST Sequence. . . « e o o e o o o s o o 84
Execution of a Synchronous I/O Request. e o o o o o o 297
Events in Synchronous I/0 . « ¢ o o ¢ o o o o o o o« « 97
Execution of an Asynchronous I/0 Request. 100
Events in Asynchronous I/0. . ¢ ¢ o« o o« « o « « o « - 100

WWWWHNNDNDNDNNDNDN
|
BWNDHEOJIJAUT S WN -

4-1 Parent/Offspring Communication Facilities 183
4-2 Spawning Versus Chaining (Request and Pass '

Offspring Information). . « « ¢« &« o o o o o« « o o « o 195
5-1 Physical Address Space in an Unmapped System. . . 217
5-2 Physical Address Space in an 18-Bit Mapped System . o 218
5-3 Physical Address Space in a 22-Bit Mapped System. . . 219
5-4 Virtual Addresses Versus Physical Addresses '

on an Unmapped System . . e o o o o 221
5-5 Virtual Addresses Versus Phy51cal Addresses

on a Mapped System. o e o o o 222
5-6 Page Address Registers Used 1n Mapplng a Task « o o o 225
5-7 A Task with Three Windows to Three Regions. 231
5-8 Task in Figure 5-7 After Attaching to and Mapping

to a Fourth Region. « o « ¢ ¢ ¢ ¢ ¢ o o o o o o o « o 232

6-1 A Memory Allocation Diagram . . ¢« « o o o o o o o o« o 240
6-2 An Overlay Tree . ¢ o o o o o o o o o o o o o o o o« o 240
6-3 An Example of Disk-Resident OverlayS. « « « « « o « « 246
6—-4 An Example of Memory-Resident Overlays. . . « « « « o 249
6-5 Task With Two Overlay SegmentS. . « « « ¢« o o o« « « o 263
6-6 Resolution of Global Symbols. . « & v ¢« ¢« ¢« o o« o o« o 270

ix

1
W HWN -~ 0 3

0 WO III N O
1

i
=

USe Of CO"’TreeS . . o
TaSk With Co_TreeS. . 3 . o

Tasks Using a Position Independent Shared

Tasks Using an Absolute Shared Region .
Program Development for Shared Regions.

The Region Definition Block
The Window Definition Block
The Mapped Array Area . . « o« o« o o o

Example of Virtual Block to Logical Block,

to Physical Location Mapping.

How the Operating System Converts Between

Virtual, Logical, and Physical Blocks

L] L]

L]

283
284

295
297

300
342

348
375

391

392

. - 3

FILES-11 Structures Used to Support Virtual-to-Logical

Block Mapping « « ¢« ¢ o« o o o o « o @

. L)

Directory and File Organization on a Volume

Locating a File on a FILES-11 Volume.
Flow of Control During the Processing
of an I/0O Request « + « « o o o o« o &
Move Mode and Locate Mode
Sequential FileS. ¢« « & ¢ o o o o o &
RMS File Organizations.

The File Storage Region
Move Mode Versus Locate
Block I/0 Operations. . « « « o« « o &«
The File Descriptor Block

Mode for Record

1/0

A Shared Region With Memory-Resident Overlays

Referencing Two Resident Libraries. .
Referencing Combined Libraries. . . .
Building One Library, Then Building

a Referencing Library . « « « ¢« « +
Revectoring « ¢ ¢ ¢ ¢ ¢ . .
Using Revectoring When Referencin
Has OverlayS. « o« o o o o o o o o o
Cluster Libraries . . « +« ¢« « ¢« « « &

Typical Course Schedules.

Examples of Use of Other Services . .
Standard Libraries. . . « « . « . .« .
Resident Libraries. . ¢« ¢« ¢« « o« « « &

Types of Directives . . « « ¢ « « .« .
Summary of Directive Forms.

.

.

* .

Librar

.

.

*

393

395
396

. . L}

400
402
403

411

426

428
429
431

524
526
528

530
531

533
535

TABLES

012

.24
.30
.32

.40
.61

I R I | [|
& W N+ wWwN =

1

O O O O WO WY o 0

S

Common (Standard) I/O Function CodeS. . « « « « + &
I/0 Parameter List for Standard I/0O Functions . . .
Some Special Terminal Function Codes. . . . « « . .
Sample Editing Directives for $SEDMSG. . « « o o« o« o«

Task Control Directives and Their Use

for Synchronizing Tasks « o e o e o o
Stopping Compared to Suspending or Waltlng. e s e .
Event Flag Directives and Their Use

for Synchronizing Tasks « o« o ¢ ¢ ¢ o o o o o o o o«
The Send/Receive Data Directive . « ¢« ¢« ¢ ¢ « o « &
Methods of Synchronizing a Receiving Task (RECEIV)

with a Sending Task (SEND). 4+ ¢ o o o o o o o o o o«
Standard Exit Status CodeS. . . o « ¢ o o o o o o »
Comparison of Parent Directives . . . e o o e o @
Directives Used by a Task to Establlsh

a Parent/Offspring Relationship e o e o
Directives Which Return Status to a Parent Task . .
Directives Which Pass Parent/Offspring Connections

to Other TaskS. o ¢« ¢ o o o o o o o o s o o o o o »
Task Abort Status Codes . « + ¢ o o o o o o o o o =
Comparison of Methods of Data Transfer

Between TasksS . o o o o o o o o o o o o o o o o o »

Mapped Versus Unmapped SystemS. « « « ¢ o ¢ o o » =
APR and Virtual Address Correspondence. . . « . .« .

Comparison of Overlaying Methods. . . ¢« ¢ ¢« « « «
How Global Symbols Are Resolved . . . +« & o o « o o

Types of Static Regions Available on RSX-11M. . . .

Techniques of Referencing a Shared Region .,
Effect of /CODE:PIC, /SHAREABLE:COMMON, and
/SHAREABLE:LIBRARY on a Shared Region's STB
Required Switches and Options for Building

a Shared Region « « o o ¢ 2 o o o o o 2 s o o o s

Memory Management Directives. . . . ¢« « ¢ & ¢ « « &

Reg ion Status word. L] L] L] . L] . L] . L] . L] L] L] [] L]]
Window Status Word. « « « o 2 o o o o o o o o o o »

Comparison of Physical, Logical and Virtual Blocks.
Examples of Use of F11ACP Functions
Comparison of FCS Record TYPES. o« s o o o o o o o o
Comparison of Sequential Access I/0 and

Random AccesSs I/0 ¢ « o o o o &
File Organization, Record Formats, and Access Modes
Comparison of FCS and RMS . . & ¢ o o o o o o o o &

xi

.94

192
122
137

155
156

156
164

165
184
185

186
194

196
207

208

216
224

260

269

292
305

306

309

340

344
349

390
399
406

408
413

415

|
HYooJoOUTA WNDH

(S

NNDNDNDNDNDDNDDNDDNDND

w W
[L | [
SOOI W N =

[
S wWN -

B S D WWwWwwwwww

[eoJEN o) I§) |

DD DD

-

X

[e) o) o)}
WK =

When the User Record Buffer
Types of Access . . « « . .

Is Needed « « .« « « &

Decimal/Octal, Word/Byte/Block Conversions. . . .

APR/Virtual Addresses/Words

Requesting a Task

Conversions« =«

. L . :

Using thec § Form of the Directives
Using the $C Form of the Directives
Using the $S Form of the Directives

Using Several Directives. .
Waiting for an Event Flag .

‘Using a Requested Exit AST.

Setting an Event Flag in a Task

Using an AST in the Mark Time Directive

Using SSTS. o & & o o o o &

Synchronous I/0 . . « « . .

. . 3

3 3

L] L[] L] L]

. °

3 3 . L]

Asynchronous I/0 Using Event Flags

for Synchronization

3

Asynchronous I/0 Using an AST for Synchronization

Prompting for Input
Read No Echo. « . .
Read With Timeout
Terminal Independent Cursor
Formatting Numeric Data . .

.
. . . L3
. e . . 3 . .

Control . . « ¢ &« o &

. . . . - . . . o L] .

Formatting Directive and I/0O Error Messages . . .

Formatting ASCII Data . . .

. L3

Synchronizing Tasks Using Suspend and Resume. . .
- 8ynchronizing Tasks Using Event Flags
Synchronizing a Receiving Task Using Event Flags.
A Receiving Task Which Can be Run Before or After

.the Sender. « « ¢« o« « + o &

. . 3 .

Synchronizing a Receiving Task U31ng RCDS$ o o .

A Task Which Spawns PIP . .
A Generalized Spawning Task

An Offspring Task Which Chains its Parent/Offsprlng

Connection to PIP

. 3

. - . .

A Spawned Task Which Retrieves a Command Line . .

Description of An Overlaid Task . . « ¢« « « « « .

Map File of Example 6-1 Without Overlays.
Map File of Example 6-1 With Disk-Resident

OverlayS. « o« o o« o o o o &

xii

436
445

513
513

.45
.54
.56
.57
.66
.72
.74
.79
.81
.86

199

114
118
124
127
129
133
149
143
146

158
161
168

173
178

188
191

198
203

239
255

257

19-3

19-4
19-5
19-6
19-7

G-1
G-2

Map File of Example 6-1 With Memory-Resident
OVerlaySe o o o o o o o o o o o o o o o o o @
A Task With Two Overlay Segments.
Complex Example Using OverlayS. « « « « o « &

Resident Common Referenced With Overlaid Psects . . .
Resident Common Referenced With Global Symbols. . . .

Shared Library. « « o« ¢ o « o o o o o o o o o
Creating and Using a Device Common.

Creating a Named Region . « ¢« & ¢ ¢« ¢ o« o « &
Creating a Region and Placing Data in It. . .

. . . .

Attaching to an Existing Region and Reading Data

From It . . . ¢ ¢ ¢ ¢« ¢ o o« &
Send-by-Reference
Receive-by-Reference. . . .
Use of the Mapped Array Area.

.

e e o o

3
.
.
. . . - . .

Creating a File in MACRO-11l . +« « ¢ « ¢ o o+ &

. . . .

Creating a File of Fixed Length Records, Initializing

FDB at Assembly Time. . . . e e s e s e

Creating a File of Fixed Length Records, Initializing

FDB at Run Time . +« ¢ & ¢ o o o o o s o o @
Accessing a File in Locate Mode
Accessing a File in Random Mode
Creating a File With Block I/0. . . . « . &
Reading a File With Block I/0 « ¢« ¢ « « o + &

L] . . .

Reading the Event Flags (for Exercise 1-1). .
Using the Routines GCML and CSI (for Exercise

xiii

259
266
276

313
320
324
331

354
359

363
368

2371

378
424
463

467
470
474
480

484

537
538

STATIC REGIONS

STATIC REGIONS

INTRODUCTION

Logical address space in a task 1is composed of regions.
There are three basic types of regions, task regions, static
regions, and dynamic regions. Task regions, into which tasks are
loaded, are created using information set up by the Task Builder.
Static and dynamic regions are generally used to share code or
data among several tasks. Static regions are created using the
Task Builder; dynamic regions are created during task execution,
using executive directives.

This module discusses static regions. You can use these
static regions to:

® Create memory areas containing code which is shared among
tasks

e Create memory-resident data areas which can be wused for
communication between tasks or successive invocations of
the same task

e Communicate directly with a peripheral device through the
1/0 page.

OBJECTIVES

1. To create and use a resident common region
2. To create and use a resident library

3. To determine whether a position independent or an absolute
shared region should be used in a given situation

4, To create and use a device common.

RESOURCE

® RSX-11M/M-PLUS Task Builder Manual, Chapter 5

289

STATIC REGIONS

TYPES OF STATIC REGIONS

Static regions, also called shared regions, are areas of
memory which are shared among tasks. They allow tasks to share
data or code with very little overhead. Unlike send and receive
directives, no executive directives are needed, and the area's
size is limited only by wvirtual address and possibly physical
memory limitations. The virtual addressing limit must be met for
both the region itself and any tasks which use the region. For a
task which uses the region, the total applies to all regions used
plus the task's code.

Static regions offer very quick access, since the area is
loaded before the tasks which use it are run. Once loaded, it is
available directly in memory. Therefore, it offers much faster
access than disk-resident data.

Table 7-1 summarizes the types of shared regions available on
an RSX-11M system. A resident common contains data. The data can
be accessed by several different tasks, each with read only access
or with read/write access.

A resident library contains reentrant subroutines, which can
be called by several different tasks. A single copy of each
subroutine can be shared, thus reducing the total memory
requirements of the tasks. The term resident is used because the
shared region is task-built, installed, and 1loaded into memory
separately from the tasks which access it.

A third type of shared region is a device common, a special
type of resident common. It occupies physical addresses on the
" I/0 page, which correspond to I/0 device registers instead of
physical memory. Therefore, this kind of common allows a task to
reference an I/0 device directly. Unlike other resident commons,
a device common has no true contents because it has no physical
memory associated with it.

291

STATIC REGIONS

Types of Static Regions Available on RSX-11M

Table 7-1

L

.
.
.

v
i

.
=

-
o

v

i

W

o
S

-

- -
o

292

STATIC REGIONS

MEMORY ALLOCATION

Memory is allocated independently to the shared region and to
the individual tasks which use it. We will call the tasks which
use the region referencing tasks. On an RSX-11M system, the
shared region must reside in a dedicated common type partition.
The name of the partition must be the same as the name of the
region. The partition can be created at SYSGEN time or later by
the system manager or a privileged user. Once the region |1is
installed and loaded into the partition, it cannot be
checkpointed.

MAPPING

Shared regions can be written and task-built as either
position independent regions or as absolute regions. On a mapped
system, position independent regions can be placed anywhere in a
referencing task's wvirtual address space. This means that the
virtual addresses used to map to the region can correspond to any
available APR.

Figure 7-1 shows a position independent region, POSIND, and
three referencing tasks. °~ The region is loaded into memory into
the partition POSIND; the partition name must be the same as the
name of the region. Recall that a virtual address window for
mapping must begin with a base address for an APR on a 4K word
boundary. Because the region is 5K words in length and each APR
can only map at most 4K words, two APRs are needed to map the
region.

Task A maps the shared region using APRs 6 and 7, starting at
virtual address 140000(8). It could in fact use APRs 5 and 6,
beginning at virtual address 1200@¢0(8) or APRs 4 and 5, beginning
at virtual address 100000(8).

Task B maps the shared region at the first available APR
above the task «code, wusing APRs 2 and 3, beginning at virtual
address 49900(8). It could use APRs 3 and 4, 4 and 5, 5 and 6, or
6 and 7 as well,

293

STATIC REGIONS

Task C maps the shared region using APRs 6 and 7, starting
with wvirtual address 140000 (8). There is no other possible way

for Task C to map the shared region because APR 6 1is the first
available APR.

When you task-build a referencing task, you can specify which
APR to use in mapping the region. 1If you do not specify an APR,
the Task Builder selects the highest set of available APRs. When
task A and task C were built, the user either did not specify an

APR, or specified APR 6. When task B was built, the user
specified APR 2.

294

160000
140000
120000
100000
60000
40000
20000
0

160000
140000
120000
100000
60000
40000
20000
0

160000
140000
120000
100000
60000
40000
20000
0

Figure

APR7
APRG
APR5
APR4
APR3
APR2
APR1
APRO

APR7
APRG
APR5
APR4
APR3
APR2
APR1
APRO

APR7
APR6
APR5
APR4
APR3
APR2
APR1
APRO

7-1

STATIC REGIONS

VIRTUAL
MEMORY PHYSICAL
TASK A MEMORY
UNUSED
= POSIND ~—_
(5K WORDS) ~—r
/ \\ \\
~~. ~
UNUSED T~ POSIND (POSITION
~//| INDEPENDENT REGION)
N /!
TASK S~/ /A
- WINDOW ~ //
(16K WORDS) ;%7¢
Y
- / // / TASK
~// / REGION
S /‘7kl& (TASK A)
7 74/
UNUSED / // ///
// / // /
= POSIND /) / —_ TASK
(5K WORDS) g REGION
TASK / (TASK B)
L WINDOW / ——
(8K WORDS) —_
/ ~
TASK C /// -~
/ e
UNUSED / i TASK
= POSIND ~ REGION
(5K WORDS) -~ (TASK C)
| TASK
B WINDOW e
(24K WORDS) rd
[~ ~
-

Tasks Using

a Position Independent Shared Region

295

TK-7774

STATIC REGIONS

An absolute shared region has its wvirtual addresses fixed
when it 1is task-built. All tasks which reference it must use
those virtual addresses, and the corresponding APRs, to map to the
region. Figure 7-2 shows another region ABSOLU and three
referencing tasks, A, B and C. The shared region ABSOLU was built
to use virtual addresses 120000(8)-147777(8) (6K words) with APRs
5 and 6. All referencing tasks must map to the region using these
APRs, Therefore, task A and task B can both map to the region,
since APRs 5 and 6 are available. Task C, on the other hand,
cannot reference ABSOLU, since APR 5 is already used by its task
code.

You may think that there is no reason to ever limit yourself
by making a region absolute. However, there are code restrictions
for position independent regions due to the fact that a shared
region is task-built separately from any of its referencing tasks.

When the region is task-built, all code within it 1is set.
The code has to be written using special position independent
coding techniques to allow it to be placed at possibly different
virtual addresses in the various referencing tasks. This is only
a problem for data if the data is not position independent; for
example, a jump table.

The starting virtual address of each routine, defined by its
label, 1is assigned when the referencing task is task-built. This
address may vary depending on which base APR is used to map the
region. The address of a given routine may wvary from one
referencing task to another. But the address placed in the table
itself was already fixed when the region was task-built, and does
not change for each referencing task. Further, that address may
not match any of the addresses assigned in referencing tasks. For
example, consider the following jump table and routines W, X, and
Y:

JMPTAB: .WORD W

+WORD X
.WORD Y
W: .
X .
Y: .

296

STATIC REGIONS

VIRTUAL ~ PHYSICAL
MEMORY MEMORY
TASK A
160000 APR7 UNUSES T
140000 APR6 [ABSOLU ——
120000 APRS5 (6K WORDS) T
~—
UNUSED —~— ABSOLU
100000 APR4 - T~—_/| (ABSOLUTE REGION)
60000 APR3 | ~< S
TASK ~ /
40000 APR2 | WINDOW \%/ J
20000 APR1 | (16K WORDS) /N
0 APRO // //
~< s TASK
TASK B // /7\\ REGION
T, ~
160000 APR7 ///UNUSED/ /) ~ (TASK A)
140000 APR6 | ABSOLU //
120000 APR5 (6K WORDS) ,
100000 APR4 /
60000 APR3 i o TASK
40000 APR2 —_— REGION
TASK (TASK B)
20000 APR1 WINDOW _—
TASK C
160000 APR7 |-
140000 APR6
120000 APR5 |
100000 APR4 | TASK
60000 APR3 |_ 21‘1"2"\'/"1301:\’0 CAN'T
ao000 APR2 | ORDS) REFERENCE
ABSOLU
20000 APR1 |
0 APRO

TK-7769

Figure 7-2 Tasks Using an Absolute Shared Region

297

STATIC REGIONS

The addresses resulting from the .WORD directives are fixed
when the region is task-built; e.g., at W = 1500(8), X = 1540 (B),
and Y = 1626(8). If the referencing task places the actual
addresses W, X and Y at those virtual addresses, everything will
work fine, But if it starts mapping at APR 4 (virtual address
120000) , the labels themselves will be assigned addresses
120000 (8) + 1500(8) = 121500(8), 120000(8) + 1540(8) = 121540(8),
and 120000(8) + 1626(8) = 121626(8).

However, the values in the table are already set at 1500(8),
1549 (8), and 1626(8), and they no 1longer address the correct
locations. A jump or call by way of the table to routine W will
result in a transfer to location 15¢@¢(8) in the referencing task,
and definitely not to routine W. To avoid this problem, Jump
tables should be included in the referencing task code instead of
in the shared region.

Instructions in shared regions are even trickier to program.
All references which are relative to the current PC, for example,
eight bytes from here, work fine. But a reference to an actual
virtual address, for example, virtual address 4260 (8) or @#A, only
works if 4260 (8) or A remains set at that virtual address. For a
discussion of position independent code and how to write it, see
Appendix H of the IAS/RSX-11 MACRO-11 Reference Manual.

All of this means that in general, the decision about whether
to <create a position independent or an absolute shared region is
based on the code restrictions, rather than the flexibility. In
general, resident commons, containing data, are created position
independent; and resident libraries, containing code, are created
absolute.

Figure 7-3 shows the program development process for creating
a shared region and a referencing task. Specific steps for each
process are discussed 1later in this module. Assemble and
task-build the shared region separate from the referencing task,
and before task-building the referencing task.

Since it is not an executable task, certain task-build
switches are wused to <create a task image with no header and no
stack. An additional file, called a symbol definition file, Iis
also created at task-build time. This file contains information
about the symbols defined in the region, which the Task Builder
will use when it builds the referencing task to set up linkage to
the region.

298

STATIC REGIONS

After task-building the shared region, task-build the
referencing task. It can be written and assembled earlier, if
desired. The name of the region is specified to the Task Builder
so that it can access the symbol definition file and set up the
linkage to the shared region. The shared region must be installed
(causing it to be loaded into memory as well) before any
referencing task is run.

REFERENCES TO A SHARED REGION

The following kinds of references are made to a shared region
by a referencing task:

e The task retrieves data from, or stores data 1in, a
resident common,

e The task calls or Jjumps to a routine in a resident
library.

299

300

STATIC REGIONS
SHARED TASK REFERENCING
REGION SHARED REGION
CREATE CREATE
SOURCE CODE SOURCE CODE
3
SHARED
REGION TASK
SOURCE SOURCE
FILE FILE
ASSEMBLE ASSEMBLE
OR COMPILE OR COMPILE
SHARED TASK
REGION OBJECT
OBJECT FILE
FILE
ik Sen i
ILD
FILE(S) FILE
SHARED
REGION
‘TASK IMAGE’
FILE
INSTALL RUN
SHARED ———— TASK
REGION
TK-7770
Figure 7-3 Program Development for Shared Regions

STATIC REGIONS

Techniques of Referencing

When you write the code for the shared region and the
referencing task, vyou must pick a technique to resolve the
references to the shared region. Some of the techniques are the
same as the ones we used in Chapter 6 for referencing data in the
" root from an overlay segment.

Using Overlaid Psects (Data Only)

This technique is similar to the one for overlays. An
example appears below. This time the Overlaid (OVR) Psect is
defined in the shared region, then the same Psect is specified in
the referencing tasks. The Task Builder, as usual, combines the
different occurrences of each Psect. Because the shared region is
built first, the Psect MYDATA is placed there. Later, when the
referencing task is built, the new occurrence of MYDATA 1is
combined with the one 1in the shared region. The OVR attribute
tells the Task Builder to start the allocation at the same
location as the allocation already there, causing the addresses to
be overlaid. This, in effect, just sets up the addressing so that
M references the first word of the region, the 3.

Shared region:
. PSECT MYDATA D,GBL,OVR ; Defaults: REL,RW
.WORD 3.,4.,5.
.END

Referencing task:

PSECT in shared
region

. PSECT MYDATA D,GBL, OVR

~e wo

M=, : ; Addr of start of region
. PSECT ; Back to blank Psect
START: CMP M,#5 ; Check value
BGT FIFTY ; Branch if greater

301

STATIC REGIONS

Using Global Symbols (Data or Subroutines)

This technique is also the same as the one used in overlays.
An example for data and for a subroutine appear below. In both
cases, the label or labels are defined as global symbols. The
referencing task uses the same global symbols to access the data
or to call the subroutine. The possibly needed Psect name will be
discussed later in the module.

For Data
Shared region:

Possibly needed Psect name
.PSECT 2772

~e o

M:: .WORD 3.,4. ; Define data and symbols
N:: .WORD 5.
. END

Referencing task:

CMP M, #5
BGT FIFTY

; Check value
; Branch if greater

For Subroutine Names
Shared region:
; Subroutine

AADD: : .

RETURN ; Return

Referencing task:

; Set up arguments

CALL AADD ; Call subroutine

382

STATIC REGIONS

Using Virtual Addresses (Data Only)

This technique is not available with overlays. If the shared
region 1is built absolute, the starting virtual address of the
region is fixed when the region is task-built. In the example
below, it 1is assumed that the region is task-built absolute to
begin at virtual address 16Q0000(8). The referencing task can
access the data by using the actual virtual address where the data
is mapped.

If the region is built position independent, it can be mapped
at a specific base virtual address (or base APR) by specifying a
base APR in the task-build command for the referencing task. In
this example, specifying APR 7 would set the base virtual address
for the region at 160000(8).

Shared region:

; Possibly needed Psect name
.PSECT ZZ2

.WORD 3.,4.,5.
.END

~e

Referencing task:
Shared region must be task-built either:
absolute starting at V.A. 160000
position independent and referencing task is

task-built to force region to start at
V.A. 160000

NS Ne Ne WNe N W we

M= 160000 ; Addr of start of region
CMP M, #5 ; Check value
BGT FIFTY ; Branch if greater

3083

STATIC REGIONS

Table 7-2 summarizes the techniques for referencing a shared
region. When you task-build the shared region, you can specify
whether or not you want the Psect names placed 1in the symbol
definition file (.STB file). They must be there if you use the
technique of overlaid Psects to reference the region. Use the
/SHAREABLE:COMMON qualifier (/CO in MCR) to include the. Psect
names. ’

If global symbols or virtual addresses are used, it 1is Dbest
to exclude the Psect names in the .STB file. Use the
/SHAREABLE:LIBRARY qualifier (/LI in MCR) to exclude Psect names.
This avoids possible task-build errors due to Psect conflicts.

If Psect names are kept in the .STB file, each Psect defined
in the region, 1including the default blank (. BLK.) Psect is
there. The Task Builder tries to collect allocations together if
a matching Psect name appears in the referencing task. However,
it can't add to the allocation in the region, since the region |is
already built. Therefore, if the Psect results in additional
allocation to the Psect (always true 1if the Psect has the
concatenate (CON) attribute), then a task-build error "LOAD
ADDRESS OUT OF BOUNDS" results, This is because the new
allocation can't be added to the already built shared region.

Therefore, if Psect names are placed in the .STB file, the
Psect names in the referencing task must not match any in the
shared region, including the default blank Psect. Avoiding this
is especially difficult if the shared region is a system resident
library like FCSRES or FORRES, which was written by DIGITAL. In
this case, you may not know what Psect names were used in the
original source code.

As a general rule, place Psect names in the .STB file only if
you use overlaid Psects to reference the region. Table 7-3 shows
the interaction of three task-builder switches or qualifiers.
They are: /CODE:PIC, for position independent or not;
/SHAREABLE:COMMON, for placing Psect names in the .STB file; and
/SHAREABLE:LIBRARY, for not placing Psect names in the .STB file.

The name COMMON is used for keeping Psect names because
overlaid Psects can only be used for data references, therefore
they are generally used in resident commons. The name LIBRARY is
used for not Kkeeping Psect names because global symbols are
generally used to reference subroutines in a resident library. 1In
fact, 1if a resident common is referenced using global symbols or
virtual addresses, it is also built /SHAREABLE:LIBRARY to avoid
Psect conflicts.

304

STATIC REGIONS

Techniques of Referencing a Shared Region

Table 7-2

385

STATIC REGIONS

Effect of /CODE:PIC, /SHAREABLE:COMMON,

/SHAREABLE: LIBRARY on a Shared Region's STB

and

Table 7-3

. @
wmﬂ%mwnwmﬁmmm . mmmme@mmwmﬁ@m.@mm@%%@m% ,
e ,
-

- :
ERa e

.

, ;
i i e i i 4 3 b e
e - L
,@Wmm@« . :, .
e S Seo ot seane
. ‘ .

.

.

. B
: seppiin i L
e ; -

. s ; o

.. @wnmmm%w@im@m =
e e
SaENaEE L e s EEuEEN TSR Ea e e
- s
o e ! i it
, -
ok ciaaaaaiin
. e
mx(ms,,mam,m@m«msgm@

K mmmmwmwwm@mwmmmm@m@

£ 0 e s
. ‘Vmw%mwmm@mmmmwm@mﬁ@m@%@%@@ -

e RiEea g

=0 o .

mwmwwm@m@ LR smxm@s@m;@m@@MM%@MM@@%W%@E@%@%@ o

i R e i Sl R i e 4 R i

. @

- __ _ _ @ .

0
‘ ia%%@

o d
. .
L

... .
mm%%mw%wwm%mm@gmwug@m& 3 ﬂmmmmm%mm_m@w%mmﬁ%mmm@mmw%mm% -
e e = e -
Ern - ; oo .
- - , -
. a9 .
-

e

mmmmmmﬁ, ;

,@a@ m,@@m e e e
@m%m b B o
SRS
L

s

- .
EEisrEgEt ety e @m@w@@a@@m@@%%@%@m%mmmm
i i | fas sy

ssang e S

e

eaaees e

s

. . . ummm

& =
e e
e
o e e gt
. @@m@@m%@&%@%m@m@@@mmgmﬁ . ,Ms,sm@
. o
. . .
GaEReEES L e
TEESRE B S -
SestauEaLaE R Eee m@@m
. adaa e
- .

BEEEEROSER BRE snheein e

$EP o o

-
sl
. e
e
ElnEnE dagh s
o

FE -

: e e

G g
el

.
.

-

s
.
i

306

STATIC REGIONS

PROCEDURE FOR CREATING SHARED REGIONS AND REFERENCING TASKS

Creating a Resident Common or Resident Library

1. Code your shared region.
@ Set up for an appropriate referencing technique.

- Choose either overlaid Psects, global symbols, or
virtual addresses for a resident common.

- Use global symbols for a resident library.

® Choose position independent or absolute.

- The decision 1is based mainly on the coding
techniques used.

- If the code 1is position independent, build
position independent (typical for resident
common) .

- If the code is not ©position independent, build
absolute (typical for resident library).

® Resident common -~ reserve space, plus you may
initialize locations.

® Resident library - code must be reentrant. See the
section on Reentrancy in Chapter 5 of the PDP-11
Processor Handbook for more information about

reentrant code.
2. Assemble the shared region.
3. If not already done, create the common type partition.
® Name must be the same as the name of the region.
® Best done when the system is SYSGENed.

® Use the SET PARTITION (SET/MAIN in MCR) command to
Ccreate a partition.

® Use the SET NOPARTITION (SET/NOMAIN in MCR) command to
eliminate a partition.

387

STATIC REGIONS

e Examples:

>SET PARTITION:MYCOM/BASE:7114/SIZE:200-
~>/COMMON

Creates the common type partition MYCOM with base
physical address 711400(8) and size 20000(8) bytes.
No other partition may use this space at the same
time.

>SET NOPARTITION:MYCOM

Eliminates the partition MYCOM.
NOTE
Before you create or eliminate any
partitions on your system, check with
your system manager to find out what
area of memory you may use.
4, Task-build the shared region.
e Symbol definition file (.STB) required.

e Build position independent or absolute (see Table
7-3).

® Keep or do not keep Psect names (see Table 7-3).
® Use required switches and options (see Table 7-4).

5. Install the shared region in the common type ©partition
before running any referencing task. :

® Not required before task-building the referencing
tasks.

® Use the INSTALL (INS in MCR) command to install the
region. .

- This command also loads the region into memory.
This is unlike an executable task, which |is
usually loaded into memory only when it is
activated.

308

STATIC REGIONS

e There is no command to remove a region. It is removed
by either installing another region or eliminating the
partition. ‘

The required switches and options in Table 7-4 are needed for
different reasons. No header or stack is needed because this is
not an executable task. The referencing tasks each have their own
header and stack. The symbol table definition file is needed to
allow the Task Builder to link referencing tasks to the region.
The partition name specifies the partition into which the region
will be loaded.

For an absolute region you must specify a base address. If
you specify a nonzero 1length, the specified value is used as a
maximum length. A task-builder error results if the length of the
region 1is 1longer than the 1length specified. 1If you specify a
length of zero, the region is set up with the size needed for the
code, as long as it doesn't exceed the 32K word virtual addressing
limit.

Table 7-4 Required Switches and Options for Building
a Shared Region

309

STATIC REGIONS

Example 7-1 has the source code for a resident common COMWP

and a

referencing task COMGP. Overlaid Psects are used for

referencing the region. The following procedure is used to create
the resident common.

l'

Code the shared region.

See COMWP.MAC in Example 7-1. The following notes are
keyed to the example.

@ The code is placed in an OVR Psect named MYDATA. This
same Psect is used in the referencing task.

@ This series of assembler directives is equivalent to
128(19) .WORD 3 assembler directives. It initializes
the first 128 (19) words in the region to 3.

© This series of assembler directives initializes the
next 128 (19) words in the region to 6.

Assemble the shared region.
>MACRO/LIST COMWP
If necessary, create the common type partition.

We will make a partition COMWP, eight blocks = 1006(8)
bytes 1long. If the partition TSTPAR already exists on
your system, you may be able to eliminate it and then set
up your partition. Be sure to check with your system
manager before doing this and also be sure to put TSTPAR
back when you are finished.

! Check current partitions on the system

>SHOW PARTITIONS

!Record base address and length of TSTPAR and the type
!tof partition. Convert the values to blocks by
!dropping the last two zeroes. (For example,
!base address 123400(8) = 1234 blocks,

!length = 20000 (8) bytes = 200 (8) blocks)

! Eliminate the partition TSTPAR

>SET NOPARTITION:TSTPAR

! Create the partition COMWP

>SET PARTITION:COMWP/BASE:1234/SIZE:10/COMMON

! Check to see if this worked correctly

>SHOW PARTITIONS

310

STATIC REGIONS

Later, to eliminate the partition and to replace TSTPAR,
use the commands:

>SET NOPARTITION:COMWP
>SET PARTITION:TSTPAR/BASE:1234/SIZE:200/TASK

Task-build the shared region.
To build position independent:

>LINK/OPTIONS/MAP/SHAREABLE : COMMON/NOHEADER -
—>/SYMBOL_TABLE/CODE:PIC COMWP

Option? STACK=@

Option? PAR=COMWP

Option? <RET>

The /OPTIONS switch allows you to enter options. /MAP
indicates that you want a map file. /SHAREABLE:COMMON
indicates that Psect names are to be placed in the .STB
file (required to reference the shared region wusing
overlaid Psects). /NOHEADER means do not include a task
header in the task image because this is not an executable
task. /SYMBOL TABLE means make a .STB file (COMWP.STB).
/CODE:PIC means position independent code for a position
independent region. STACK = ¢ means no stack space is
needed because this 1is not an executable task. PAR =
COMWP means the partition is COMWP. The Task Builder gets
the length (for a maximum check) from the partition on the
system.

To build absolute:

>LINK/OPTIONS/MAP/SHAREABLE: COMMON/NOHEADER -
->/SYMBOL_TABLE COMWP

Option? STACK=0

Option? PAR=COMWP:160000:20000

Option? <RET>

Only changes:
1. Omit /CODE:PIC.

2. Specify a base virtual address and a maximum
length. The base virtual address must correspond
to a base virtual address for an APR (e.g., 2,
20000 (8), 40000 (8), 60000(8), 100000 (8),
120000(8), 140000(8), or 1600008(8)). The APRs
used must be available in all referencing tasks.

311

STATIC REGIONS

5. Install the region.
>INSTALL COMWP
Installs the region and also loads it into memory.

Note that this is different from an executable task,
which usually isn't loaded until it is requested.

312

STATIC REGIONS

1 +TITLE COMWF

2 IDENT /01/

3 +ENARL LC i Emnable lower case

4 5+

5 3 File COMWF.MAC

6]

7 3 Frodgram which creates and initializes & common redion
g ¥ which will bhe referenced using overlaid Fsects.,

Q@ H

10 3 Task~btwild instructions?! Must inmclude /SHAREARLE :COMMON
11 3 and /NOHEAIER switchesd STACK=0 and PAR=COMUWF ortions.
12 i Must create .STR file. Maw be /CODEIFIC or absolute

13 ¥ (default).
14 H

13 s The code is rlaced inm a8 Fsect rnamed MYDATA

16 §-

17 JFSECT MYDATA NyGRL»OVR ¢ Defaults REL«RW

18 +REFT 128, Rereat court

| aea— |
e
g

¥
. +WORD 3. i Word value of 3.
20 +ENIIR i End rereat ranse
21 +REFT 128, i Rereat count
[22 : +WORD b i Word value of 6.
23 +ENDR 3 End rereat rande
24 +END
1 +TITLE COMGF
2 +IDENT 701/
3 +ENARBL L.C y Emaeble lower case
4 i+
3 i FILE COMGF.MAC
é H i
7 # This task dets the values from the static common
g $ region COMWF. It uses the bLechrniacue of overlaid Fsects
? y to reference the redion.
10 H
11 i Task-build instructions?
12 H
13 H LINK/MAFRZ0FTION COMGF
14 H Ortion? RESCOM=COMWF/RD
15 H Oetion? <RET>
16 § -
17 +MCALL QRIOWSSsEXITS$ES ¢ Sustem macros
"[18 FSECT MYDATA DeGRLOVR 3 Fsect used in COMWF
12 M=, i locel sumbol for start
20 i of redgion
e’ 21 +FSECT 3 Back to blank Fsect
22 T0SE: + BLKW 2 § I/0 status block
23 ARG + BLKW 1 i Ardgument block for
24 ¥ error code
23 BUFF$ +BLLKE 100. # Dutrut buffer
e’[Qé FMT? ABCIZ /48N y Format string for
27 i outrut of datas
. 28 FERR1¢ LASCIZ /DIR ERROR ON QID. DSW = ZD/ § Directive
29 ¥ooerror messade
30 FERR2: +ASCIZ 1170 ERROR ON QIO. CODE = ZD! % I/0 error
31 H messade

Example 7-1 Resident Common Referenced With Overlaid Psects
(Sheet 1 of 3)

313

STATIC REGIONS

32

33 N=32, $ L.oor count - 32, liness
34 i 8 ¥s rer line

35 +EVEN

36 H

G’ 37 STARTS MOV My R2 ¢y Starting addr of data

38 $ in the redion
39 MOV #Ny RS $ Loor count

40 LOOF: MOV #BUFF s RO ¥ Outerut buffer

41 MOV #FMTyR1 i Format string

42 CALL SEDIMSG y Edit message

<’ 43 QIOWHS FI0WVRsyHGv 1y v HFI0SKRy v “HBUFF s R1 v $40

44 RCS ERROR ¢ Check fTor dir error
45 TSTR I08R 3 Check for I/0 error
46 ELT ERROR1 3 Bramch on 1/0 error
47 i Stew here for dood writlte

48 S0R RGy LOOF i Decrement countery loor
49 $ back if not wet done
50 EXIT$S 7 Exit

51 i Error code

52 ERROR: MOV $NSWs ARG i Move DSW to arg block
53 MOV #FERR1RI1 i Addr of format string
54 RR SETUF $ Branch to $EDMSG code
) ERROR1 ¢ MOVR I0SRYRO § Extend sign on 1/0

56 MoV RG» ARG i status and slace in
357 i arg blochk

58 MOy #FERR2+R1 i Addr of format string
59 SETUF: MQV #RUFF yRO i Addr of outrut buffer
60 MOV ¥ARGYR2 3 Addr of argument block
61 CALL SENIME6 $ Edit messadge

62 ' QAIOWSS HI0WVURsES s Lly vy y TEBUFFyR1 %40 5 Write
63 § messade

&4 EXIT$S i Exit

65 +END START

Example 7-1 Resident Common Referenced With Overlaid Psects
(Sheet 2 of 3)

314

STATIC REGIONS

Rurn Session

*INS COMWF
*RUN COMGF
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
b é] b é é 6 é&
é b é 6 6 -] 6 é
*

) é é é) é &)

Example 7-1 Resident Common Referenced With Overlaid Psects
(Sheet 3 of 3)

Creating a Referencing Task

1. Code the task, using the corresponding referencing
technique.

e If Psect names are kept in the .STB file of the
referencing task, avoid Psect conflicts.

2. Assemble the task.
3. Task-build the task.

e GSpecify shared regions wusing one of the following
options:

COMMON=common name for a system resident common
(.STB and .TSK files must be in LB:[1,1]).

LIBR=common name for a system resident library
(.STB and .TSK files must be in IB:[1,1]).

315

STATIC REGIONS

RESCOM=common name for a wuser resident common
(.STB and .TSK files in any device and any UFD
using normal defaults).

RESLIB=common name for a wuser resident 1library
(any device and any UFD using normal defaults).

e Append :RO if read-only access is desired.
tRW if read-write access is desired.
Use "/" instead of ":" for RESCOM and RESLIB.

e Only if the shared region is position independent, can
you specify the base APR to be used to map the region.
If not specified, the highest available APR or set of
APRs is used, as needed.

4, After installing the shared region, install and/or run the
task.

If the shared region is to be a system shared region, the
.STB file and the .TsKk file should be placed in LB:{1,1].
Otherwise, they can reside on any device under any UFD, as long as
both files are in the same UFD on the same device.

Read-only or read/write access affects the way the access
bits in the page descriptor registers (PDRs) in the APRs are set

up. A memory protect violation occurs if a task attempts to write
to a region when it has read-only access.

316

STATIC REGIONS

COMGP.MAC in Example 7-1 contains the source code for a task
to reference the shared region COMWP. Use the following procedure
to create the task. ‘

1.

Code the task.

See COMGP.MAC in Example 7-1. The following notes are
keyed to the example.

The same Psect, MYDATA, is used here as in COMWP.MAC
to set up referencing. M marks the beginning of the
region. No initialization of the Psect can be
performed in the referencing task.

The main code is in the blank (. BLK.) Psect.
Move the starting address of the region to R2.
We use SEDMSG to set up each line of the display. We
loop through once for each 1line, editing and

displaying the values,

The format string for $EDMSG. $8D means convert eight
words to signed decimal, with a tab between values.

Assemble the task.

Task-build the task.

>LINK/OPTION/MAP COMGP
Option? RESCOM = COMWP/RO
Option? <RET>

Link task to resident common COMWP, COMWP.TSK and
CONWP.STB are 1in the current UFD on SY:. Set up
read-only access. Use the highest available APR, APR
7, if the region was built position independent.

After installing the shared region, install and/or run the
task.

To do a temporary install, run, remove:

>RUN COMGP

To install and then run:

>INSTALL COMGP
>RUN COMGP

317

STATIC REGIONS

Deciding whether read-only or read/write access to a region
is required is usually straightforward. 1If a task moves data into
the region or changes a value in the region, read-write access is
required. If a task moves data out of the region or just reads
values in the region, just read-only access is required,

However, when QIOs are issued and the buffer is in the shared
region, things get a 1little tricky. Obviously, to do a read
(e.g., from a terminal) into a buffer in the shared region
requires write access. A write (e.g., to a terminal) from a
buffer in the region should only require read access. However,
because the Executive 1is designed for very fast, real-time
applications, it does not check the function code for a QIO
directive to see whether it 1is a read or a write. 1Instead it
assumes the worst case - that all QIOs involving a buffer in a
shared region are reads (from a peripheral device) into a buffer
in the region, and that therefore, all QIOs require read/write
access. This condition causes an I/0 error (IE.SPR) for illegal
user buffer. This condition does not affect Example 7-1 because
SEDMSG creates the output string 1in a buffer within the
referencing task area, and the QIOs do the writes from the
referencing task area.

In an example in a later module, you will see this problem
come up. One solution is to get read/write access to the shared
region. Another solution is to move the data from the shared
region to a buffer in the referencing task area, and then use that
buffer for the QIOs. A third solution is to build the task as a
privileged task.

Privileged tasks, similar to privileged terminals, are
granted «certain extra access to the system which nonprivileged
tasks don't have. ©Some privileged tasks just galin these extra
access rights, others map to the Executive as well. Normally, the
Task Builder builds a task as a nonprivileged task. For a
discussion of privileged tasks and how to task-build them, see
Appendix D.

318

STATIC REGIONS

Example 7-2 shows a shared region (COMNP.MAC) and a
referencing task (COMGGS.MAC) using global symbols to reference
the shared region. Other than the difference 1in referencing
technique, Example 7-2 is the same as Example 7-1. The following
notes are keyed to the example.

€@ Because the region is built with the /SHAREABLE:LIBRARY
switch, any Psect names used in the file are not placed in
the .STB file. Therefore, the code for the referencing
task can be placed in the default blank (. BLK.) Psect or
any other Psect. If the 1library were instead built
/SHAREABLE:COMMON, the Psect names used in the shared
region would all be placed in the .STB file. In that
case, using any Psect in the referencing task which is
also used 1in the shared region would cause a Psect
conflict, causing a LOAD ADDRESS OuT OF BOUNDS
task-builder error. '

G’ The global symbol K marks the beginning of the shared
region.

The rest of the code is the same as COMWP.MAC in Example
7-1 .

@ Just use the global symbol K to reference the start of the
shared region. The Task Builder sets up the linkage to K,
as it is defined in the shared region COMNP. The rest of
the code is the same as that in COMGP.MAC in Example 7-1.

The tape supplied with this course also contains an example
using virtual addresses as a referencing technique. The shared
region is still COMNP, the same one as in Example 7-2. The
referencing task code is in the file COMGVA.MAC. It should be in
UFD [202,3] on your system. Check with your course administrator
if you need help locating this example.

319

STATIC REGIONS

1 +TITLE COMNF
2 +IDENT /017 .
3 +ENAERL LC i Ensble lower case
4 it .
] 3 File COMNF.MAC
é H
7 3 Frogram which oreates and initializes a common region
8 3 which will be referenced using g#lobal sumbols or
9 ¥ actual virtuasl addresses.
10 H
11 $ Task-build imstuctions! Must include /SHAREARLEILIBRARY
12 i and /NOHEADER switchessy STACK=0 and FAR=COMNF ortions.
13 5 Must create @ +STR file. Maw be /CODEIFIC or absolute
14 3 (the default).
15 H
16 $ This srodgram rlaces the code in the default blank
‘. 17 53 (s BLK.) Fsects It could he in anw Fsect. Psect
18 3 conflicts are avoided bhw using the /SHAREARLEILIBRARY
L 19 # switch on the task builder,
20 5
21 ¥ Iefine Ky a8 dglobal sumbol
Oz ki JREPT 128, Rereat count

¥
23 +WORD 3. 3 Word value of 3.
24 +ENDR # End rereat rande
©| JREFT 128, $ Rereat count
26 +WORD b i Word value of 6.
27 +ENDR # End rereat randge
28 +END

+TITLE COMGGS

2 +IDENT 701/

3 +ENAERL LC i Enable lower case
4 s+

5 # FILE COMGGS.MAC

é]

7 # This tashk gets the values from the static common
2] ¥ redgion COMNF. It uses a dglobal sumbol to reference
9 7 the redion.

10 H ,

11 i Task—-build notes?

12 H

13] LINK/MAF/0FTION COMGGS

14 H Ortion? RESCOM=COMNF/RO

15 3 Ortion? <RET:

16 §-

17 WJMCALL QIOWSSEXITHS $ External swustem macros

Example 7-2 Resident Common Referenced With Global Symbols
(Sheet 1 of 3)

320

STATIC REGIONS

18 H

19 ~ I0SkR? +BLEW 2 3 170 status Dhlock
20 ARG «BLRW 1 i Argument block for
21 i error code

22 RUFF: + BLKE 100, 3 Outeut buffer

23 FMT?: +ABCIZ /%Z8L/ 5 Format string for
24 3 outrut of data

25 FERR1: JASCIZ /DIR ERROR ON QIO. DSW = %I/ § Directive
24 i error messade
27 FERR2: L+ASCIZ 'I/0 ERROR ON QIO. CODE = X%D! § 1/0

28 Fooerror messade

29 N=32, 3 Loor count - 32, liness
30 $ 8 #s rer line

31 +EVEN :

" 32 START: MOV ERR2 $ Starting addrress of
33 3 datas in the redion
34 MOV #NsRS ¢ Loor count
35 L.OOF 3 MOV #RBUFFyRO 3 Outreut buffer
36 MOV #FMTyR1 # Format string
37 calL SENMSG i Edit messade
38 AIOWSS #I0.WVRy #5541y vy #I0SBy » “ERUFF s R1 » %405
39 RCS ERROR # Check for dir error
40 TSTR 108k § Check for I1I/0 error
41 BLT ERROR1 y Branch on I/0 error
42 3 Stew here for dgood write
43 SOR RSy LOOF 3 Decrement countery loor
44 i 5 back if rnot wel done
45 EXIT%S 3 Exit
44 3y Error code
47 ERROR? MOV $NSWy ARG 5 Move DSW to arsg block
48 MOV #¥FERR1sR1 ¢y Addr of format strins
49 ER SETUF 3 Branch to $EDMSG code
50 ERRORL? MOVE I0SRyRO 3 Extend sign on 1/0
a1 Moy ROy ARG i status and rlace in
S92 y ard block
53 MOV #FERR2sR1 i Addr of format string
54 SETUF? MOV #¥RUFF »RO 3 Addr of outeut buffer
59 MOV $#ARGYR2 3 Addr of argument block
356 caLL SEDIMSG $ Edit messade
57 QIOWSS #FI0.WUBRyESyElyy sy RBUFFyR1,%#40> ¢ Write
58 § error messade
59 EXIT$S § Exit
&0 +END START

Example 7-2 Resident Common Referenced With Global Symbols
(Sheet 2 of 3)

321

STATIC REGIONS

Rur Session

=INS COMNF
*RUN COMGGS
3 3 3 3 3
3 3 X 3 3
+*
L4
3 3 3 3 3
& b & é 6
& b b 6 6
+

é 6 b 6 6

3

[+ s N 4

3 3
3 3
3 3
6 é
é é
-] b

Example 7-2 Resident Common Referenced With Global Symbols

(Sheet 3 of 3)

Example 7-3 contains a shared

library, LIB.MAC, and a

referencing task, USELIB.MAC. The shared library contains four
simple arithmetic routines to add, subtract, multiply, and divide
two numbers. They are all written to be reentrant, plus they can

be called from a FORTRAN program with
subroutine call. Basically, this means
arguments are assumed to be set up as follows:

R5 =3 , count=3

address of 0Pl

address of 0OP2

address of answer

322

a standard FORTRAN
that on entry the

STATIC REGIONS

For additional information on the FORTRAN/MACRO-~11 interface,
see Appendix C. Each subroutine saves and restores all of the
registers, wusing the system library routine SSAVAL. The
referencing task, USELIB, calls each of the subroutines once,
using the operands 8 (18) and 2(1¢), and displays just the answers
for the four operations. The following notes are keyed to Example
7-3.

" Each subroutine entry point is defined with a global
symbol.

© Each subroutine is in a Psect of the same name as the
subroutine, In fact, the Psects are optional since the
library is built /SHAREABLE:LIBRARY. The specified Psect
names are not placed in the .STB file.

G’ For AADD and SUBB, move the first operand to R@, perform
the operation in R@, then move the answer to the third
operand for return to the caller.

@ For MULL, use Rl instead of Rg, so that the product is
limited to just Rl (16 bits). 1If R@ were used instead, a
32-bit product is returned (low-order 16 bits in RI1,
high-order 16 bits in R#g).

@ ror DIvV, a 32-bit dividend is assumed in Rn and Rn+l, so
here it is R2 and R3 (low-order 16 bits in R3, high-order
16 bits in R2). Therefore, the 16-bit operand 1is placed
in R3 and the high-order word is cleared. The 16-bit
quotient, returned in R2, is then moved into the third
operand for return to the caller.

The two operands.
Space allocated for return of the result.
FORTRAN type argument block is built on the stack, in

reverse order, so that SP points to the start of the
block.

© The address in SP is moved to RS, so R5 points to the
start of the argument block.

‘D Call each of the routines. Since R5 and the stack are not
disturbed between calls, the same argument block can be
used for all four calls.

ﬂ) - Call the subroutine PRINT to edit the output message and
display it for all operations.

323

OO NOU D OIS -
-+

fuy
<

> W WF Wr W WP GF TS WE > WP ER er G ‘3P

H

AADD:! CALL $8AVAL

MULL:! CaALL $5AVAL

nIvvi: caLl $8AVAL

STATIC REGIONS

LTITLE LIR
+IDENT /01/
+ENARL LT # Enable lower case

File LIE.MAC

This file contains the FORTRAN callable subroutines
AADDy SUBRRs MULLy and DIVVey which rerform the
arrrorriagte inteder oreration.

Calling convention! CaALL sub (orlror2rans)

Task-tbuild instructions! Must include /SHAREARLEILIBRARY
armgd /NOHEADER switchess STACK=0 and FAR=LIR ortions.
Must create STE file. Maw be /CONEIPIC or sbsolute
(default). Using /SHAREARLE!LIRRARY avoids Fsect
conflicts.

+FSECT AADDyRO»IyGRLyREL » CON
y Save all redgisters

¥
MOV R2C(RS)sRO i Move lst orerand
Al R4(RS) »RO i Add 2nd orerand
MOV RO»@6(RE) i Store result
RETURN v Restore reds and return

+FSECT SURRyROsI»GELyREL yCON

SURR!:T CaALL $SAVAL i Save all redgisters
MOV @2(RS) sRO i Move lst orerand
SUER R4(RS) RO i Subtract 2nd orerand
MOV ROs@&6(RS) i Store result
i Restore reds and return

RETURN

+FSECT MULL ROy IyGRL yREL » CON

i Save all redgisters
MOV B2(R%)yR1 ¢ Move 1st orerand
MUL. R4(RS)yR1 i Multirly (answer in
y o dust R1D
MOV R1y@&6(RS) i Store result
RETURN i Restore reds and return

+FSECT DIVVUsRO»IsGELyREL »CON

i Save all redgisters
MOV @2(R%)sR3 i Move lst orerand
CLR R2 §# Clear high order 16 bits
nIv B4(RS)yR2 $ Divide
MOV - R2+@&6(RS) ¢ Store result
RETURN ¢ Restore reds and return
+END

Example 7-3 < Shared Library (Sheet 1 of 2)

324

1 +TITLE USELIR

2 +IDENT /0Ll/

3 +ENARL LC

4 it

S ¥ File USELIE.MAC

6 i

7 # MACRO~11 task

8]

9 # Task-buwild instructions?
10 H
11 H LINK/MAF/0FTION USELTIR
12 H Ortion? RESLIR=LIR/RO
13 H Ortion? <RETX»
14 i
15 MCALL QIOWSSyEXITSS
16
17 OF13 +WORD 8.
18 OF2: +WORD 2

ANG S «BLKW 1
20
21 ouT: « BLKUW 100.
22 FORMAT?! ASCIZ /THE ANSWER =
23 +EVEN
24 i Build ardument block for
29 START: MOV FANS y ~ (GF)
26 MOV FOFPZy—~(GF)
27 MOV #0F1y—-(SF)
28 MOV 3y~ (SF)
29 MOV SFyRS
30 CAL.L AADID
31 CaALL FRINT
32 caLL SURE
CaLL FRINT

34 CALL MUL.L

5 CALL FRINT
36 CcaALL nIvy
37 calLl. FRINT
38 EXIT$S
39
40 %% PRINT — Prints the results o
41 FRINT? MOV #OUT RO .
42 MOy #FORMAT s R1
43 MOV FANS R2
44 CALL SEIIMSG
45 QIOWSS FI0.WUBs#Ssk1lvyvy
464
47 RETURN
48 +END START
Run Session
*ING LIR
*RUN USELIR
THE ANSWER I8 10.
THE ANSWER I8 6.
THE ANSWER IS 16.
THE ANSWER IS 4.

Example 7-3

STATIC REGIONS

a

y

Enable lower case

to use the resident librarwy LIR

325

-

oy Wy e

&

¥

subroutine on

Er MEF NE> WP PSP P 'S \EE MDD € W 6 6>

‘|> ar € wr 6 W wr =i

Sustem macros

Orerand 1
Orerand 2
Resultl

Outeut buffer

e/ 3 Format string

the stack
For result
Orerand 2

Orerand 1

Number of arduments
RO=> ardg blochk
Add orerands
Frimt results
Subtract orerands
Frint results
Multisly orerands
Frint results
Nivide orerands
Frint results
Exit

the bperation
Set us for $EDIMSG

Edit messade
SHEOUTsR1y $402 §

messasge
Return

Write

Shared Library (Sheet 2 of 2)

STATIC REGIONS

DEVICE COMMONS

A device common is a special type of common that occupies
physical addresses on the I/0 page. Instead of physical memory,
the I/0 page contains peripheral device registers. Therefore, a
device common does not contain data the way a regular resident
common does.

A device common is really just a way of setting up addressing
to allow a task to manipulate the device registers directly. This
might be useful in checking out the proper commands needed to
control a device or to check what control status registers (CSRs)
are in use on your system (Example 7-4). Obviously, extreme care
must be wused if you manipulate a device which is also referenced
by any system routines (e.g., a system device driver).

Privileged tasks which map to the Executive can also
automatically map the I/0 page. However, privileged tasks must be
written very carefully to avoid causing additional problems for
the running system. Device commons allow nonprivileged tasks to
manipulate device registers.

Use the procedure outlined below to create a device common
and a referencing task. The outline includes the specific steps
for Example 7-4. It has a device common, DEVICE.MAC, which covers
the entire 1I/0 page. The referencing task, CSR.MAC, checks each
address on the I/0 page to find out which CSRs are in use. If a
nonexistent CSR 1is found, a nonexistent memory error synchronous
system trap (SST) results. Use the following steps to create the
device common.

1. Create a device common partition which includes the
desired device register addresses.

e TIdentify the addresses of the needed device registers,
using the PDP-11 Peripherals Handbook or information
available from your hardware installation.

e Determine the base address of the partition at a
198(8) boundary below the first identified address.

- Mapping always begins at a 32-word block boundary.

Example 7-4 covers all of the I/0 page. On a PDP-11/780 or
other PDP-11 with 22-bit addressing, it starts at physical
address 17760000(8). On a system with 18-bit addressing,
it starts at 7600008(8). On a system with 16-bit
addressing, it starts at 160000(8).

326

STATIC REGIONS

For a 22-bit system the command is:

SET PARTITION:DEVICE/BASE:177600/SIZE:200/DEVICE

For a 16-bit or 18-bit system, use the appropriate base
address in 32-word blocks.

Note that you don't need to eliminate an existing
partition the way you did for resident commons and
resident libraries. This is because there isn't any real
partition already on the system, because the I/0 page does
not correspond to physical memory.

You also don't need to create the partition until after
you create the shared region. However, you do have to
know its base address before you write the code for the
device common, so that you can set up the offsets to the
locations you plan to reference.

Code the shared region.

e Do not initialize any locations, since there 1is no
physical memory.

e Set up for an appropriate referencing technique to
address the desired registers.

- Use .=.+n or .BLKB. n to get to the first address.

- Use .BLKB or .BLKW statements to reserve the
needed space (or addresses).

The following note is keyed to DEVICE.MAC in Example 7-4.

@ Because you access the entire I/0 page, mark the start
of the region with the global symbol FCSR. The .BLKW
4096. directive reserves a full 4K words of addresses
for the entire I/0 page.

Assemble the device common.

>MACRO/LIST DEVICE

327

STATIC REGIONS

Task-build the device common.

>LINK/OPTION/MAP/NOHEADER/SHAREABLE: LIBRARY-
->SYMBOL_TABLE DEVICE

Option? STACK=0 ’

Option? PAR=DEVICE:160000:20000

Option? <RET>

This command task-builds the region absolute. You can
also task-build it position independent.

Install the device common before you run the referencing

task. Unlike a resident common, a device common is not

loaded into memory because it has no real contents.

328

STATIC REGIONS

Use the following steps to create the referencing task.

l.

4.

Code the referencing task using the corresponding
referencing technique. See the notes which are keyed to
the example below.
Assemble the task.

>MACRO/LIST CSR

Task-build the task to reference the device common.

>LINK/MAP/OPTION CSR
>Option? RESCOM=CSR/RO
>Option? <RET>

After installing the device common, install and/or run the
referencing task.

The following\notes are keyed to CSR.MAC in Example 7-4.

Use the global symbol FCSR to reference the start of the
device common.

SST vector table with one entry for nonexistent memory.
NONE 1is the address of the SST routine. (See Example 2
for an SST example.)

Two words for a range of good CSR addresses. The
addresses are offsets into the I/0 page (@(8) to
17777(8)). FIRST 1is set 1initially with @; LAST is

updated on each read of a CSR. 1If you ever trap due to
nonexistent memory, print the range of addresses, set
FIRST for the first address 1in the next range, and
continue.

Set up for SS8T, using just one table entry.
Count of good addresses in a range. This is used to avoid

printing a message if a number of consecutive addresses
are not in use.

329

© 06 00

o

STATIC REGIONS

Set first range to start with offset @ into I/0 page.

Test (or read) the word and increment R4. Control passes
to the next instruction if the CSR is in use; an SST
results if it is not in use.

Increment count of good addresses.

Check to see if you are at the end of the I/0 page.
Branch back if not.

When at the end of the I1/0 page, display the 1last range
and exit.

SST routine, entered for’nonexistent memory trap on the
TST(R4)+ instruction. Check for some good addresses in
this range. 1If none, do not print a message.

Calculate offset to the 1last good CSR. The last onhe
tested was bad, plus autoincrement incremented R4 by two.
Therefore, the current contents of R4 are four bytes
higher than the last good CSR. Also, convert the virtual
address to an offset from the beginning of the 1I/0 page.
Move the last good CSR address to LAST.

Edit the range message, and convert the first good and

last good addresses to unsigned octal. Then display the
message.

Set up for the next range and return from the trap. The
return picks wup at 1line 49 (INC R5). We want R5 to be
zero after it is incremented, so place a -1 in R5. Set up
the first good CSR address in FIRST as the offset into the
I/0 page corresponding to the current address in R4. R4
has already been incremented past the CSR which is not in
use. Return from trap at line 49, and continue check of
CSRs, unless vyou have already reached the end of the I/O
page.

On the Run Session - This command has probably been issued
already to create the device partition. It is included
here for documentation purposes, and in case it has not
been issued previously.

330

W NS LI

20
PO

OO N LD B e

Example

STATIC REGIONS

TP W > '@> “Cr > > ‘e ME WP W O Wr Wr G G CF @S

NP WP WP B > R R M G MR WX N> e W R

7-4

LTETLE DEVICE

SIDENT /017

+ENARL O LE # Enable lower case
File DEVICE.MAC
This rrodgram sets ur a device commorn FTor the 1/0 rade

Must include /SHAREABLEILIBRARY
STACK=0y FAR=DNEVICE oetions.
Maw he JCODEIFPIC or sbsolute

Task-build instructions?
angd /NOHEADER switchaess
Must create .5TB fTile.
(the default).

arnd run dinstructions? DEVICE must be installed
running any referencing ltask.

Install
before

the default blank Psect. FPsect
by uwsing the /7SHAREARLEILIBRARY

The code is rlaced in
conflicts are avoided
task-builder switch.

CERe + BLKW 4096, i Selt ur area 4K words londg
+ENIN
+TITLE CSR
SIDENT 701/
+
File CSR.MAC
This task disrlaus the CSR addresses that are in use
on wour sustem. The addresses are listed as offsets
into the 1/0 radge

Task-bhuild imnstructions?

LINK/MAF/70FTION CSR
Ortion? RESCOM=DEVICE/RO

Ortion? <RETH
Install and rum instructions? The device commorn DEVICE
must be installed before rurning CSKR.
+MCALL QIOWSSYEXITHS+SVTKSC i Sustem macros
+NLIST BEX i Do not list binary
5 extensions
i 88T vector table
VEC? +WORD NONE i Nomexistent memorwy
Creating and Using a Device Common (Sheet 1 of

331

3)

STATIC REGIONS

24
0[25 FIRST! JERLKW 1 § First dood CSR address
26 LAST? +BLEKW 1 ¥ L.ast CSR address
27 [hefore trarring
28 HIR? +ASCII / XXCSR’S IN USE ON SYSTEMIXX/15>
29 +ASCIT <12x7 (ADDRS ARE QFFSETS INTO I1/0 FAGE)
30 +ASCTIT w1G5e012H0120 ¥ Header text
31 LHDR = =~HIR # Length of header text
32 MES? +ASCIZ /CSR‘S ZP THROUGH %F ARE IN USE/ 5 Text
33 3 for each good CSR ransge
34 BUFF? +BLKE 100. ¥ Dutrut messadge buffer
35 +EVEN
36 +ENAERL. LSE
37
" 38 START! SVUTK$C VECs1 # Set ur 88T vector to
39 ¢ handle trar
40 QIOWSS #I0.WURByHFSvlry vy #HIRyFLHIOR #4032
41 3 Disrlay header text
QO MOV $FCSR R4 5 Set base address in
43 i 1/0 rade
Q_ 4+ CLR RS 5 Count of addrs found
45 CLR FIRST 3 Offset to first CSR
464 $ addr in use
47 ¥ Test addressy causing trar if not in use
" 48 143 T6T (R4>+ y Is this a dgood addr?
¢?49 INC RS) ¥ Yesy increment count
" 50 CMF #FCOR+17776>vR4 5 At end of I/0 radge?
| 91 EBHIS 1% # Branch back if not wet
92 ¥ DNisrlay last good rande and exit
53 MOV #177769LAST 3 Pyt last CSR in LAST
G54 MOV #BUFF s RO i Set ur for $EDIMSEG
@ 55 MOV *MESyR1 H
56 MOV #FIRSTyR2 H
57 cALL SEDMSG # Edit randge messade
58 QIOWSS #FT0.WUReHSvElyy vy HRUFFsR1y %40
59 ¥ Disrlay randge messade
60 EXIT$S
&l
62 $# 88T routine for non-existent memorw (or CSR nmot in use)
63
64 NONE: TST RS ¥ Anw dood addresses in
o 65 5 this range?
[-1) EEQ ouT 5 Nomesy mothing to srint
&7 MOV R4sR3 # Calculate offset to
@ 68 ¥ last dgood CSR
69 SUR ¥ FCSR+4>yR3 H
70 MOV R3+L.AST # Fut last CSR in LAST
da 71 MOV #BUFF s RO $ Set ur for $SEIMSG

Example 7-4 Creating and Using a Device Common (Sheet 2 of

332

3)

STATIC REGIONS

r 72 MOV #MESyR1 H
73 MOV #FIRSTsR2 H .
da 74 CAL.L SENMSG y Edit randge messade
L?S QIOWSS FI0.WVEBs#Ss%Llyyy s “ERUFFyR1 %40
76 §F Disrlaw randge messadge
77 ¢ Set addresses and counters for continued search
78 ouT?! MOV ¥-1sRS # Imitislize count to -1
79 ¥ since RTT returms to
80 $§ INC RS instruction
0 g1 MoV R4+R3 ¥y Set ur first dood CSR
82 SUE #FCSRyR3] in FIRST
83 MOV R3yFIRST H
| 84 RTT $ Return from tras
8% +END START

@ =SET FARTITIONIDEVICE/BRASE!L?74600/81IZEI200/DEVICE
*INS DEVICE
*RUN CS8R
¥¥CER’8 IN USE ON SYSTEM! XX
(ADDIRS ARE OFFSETS INTO I/0 FAGE)

CSR’S 000020 THROUGH 0001046 ARE IN USE
CSR’S 004200 THROUGH 004234 ARE IN USE
CSR’8 005000 THROUGH 005776 ARE IN USE
CSR’S 010200 THROUGH 010376 ARE IN USE
CSR’'S 010500 THROUGH 010526 ARE IN USE
CSR’S 012200 THROUGH 012376 ARE IN USE
CS8R’E 012440 THROUGH 012476 ARE IM USE
CSR’S 012516 THROUGH 012316 ARE IN USE
CSR’S 013000 THROUGH 013776 ARE IMN USE
C8R’S 016300 THROUGH 016332 ARE IM USE
CSR’S 0146400 THROUGH 0146452 ARE IN USE
CSR’S 016500 THROUGH 014506 ARE IN USE
CSR’S 0146700 THROUGH (16752 ARE IN USE
CSR’S 017170 THROUGH ¢17176 ARE IN USE
CSR’S 017340 THROUGH 0173536 ARE IN USE
CSR’S 017400 THROUGH 017414 ARE IN USE
C8R’S 017440 THROUGH 017476 ARE IN USE
CSKR’S 017514 THROUGH 017524 ARE IN USE
CE8R’8 017546 THROUGH 017346 ARE IN USE
CSR’8 0175460 THROUGH 0174746 ARE IN USE
CSR’8 017740 THROUGH 017752 ARE IM USE
C8R’S 017760 THROUGH 017776 ARE IN USE

Example 7-4 Creating and Using a Device Common (Sheet 3 of 3)

333

STATIC REGIONS

Appendix F contains information about several more advanced
shared region topics. It includes a discussion of:

@ Overlaid shared regions

o Referencing several shared regions from one referencing
task

e Handling interlibrary calls
e Cluster libraries

Most of the techniques discussed are more appropriate for the
advanced MACRO-11 programmer who is running into virtual address
limitation problems. Cluster libraries are designed to save
virtual address space in tasks which use DIGITAL layered products,
such as FORTRAN, Forms Management Services (FMS), and File Control
Services (FCS). If you write FORTRAN programs which use these
products, you may find it useful to read just the last few pages.
These cover the procedure for task-building a task which
references two or more DIGITAL supplied resident 1libraries as a
set of cluster libraries.

Now do the tests/exercises for this module in the
Tests/Exercises book. They are all 1lab problems. Check your
answers against the solutions provided, either the on-line files
(should be under UFD [202,2]) or the printed copies in the
Tests/Exercises book.

If you think that you have mastered the material, ask your
course administrator to record your progress on your Personal
Progress Plotter. You will then be ready to begin a new module.

, If you think that you have not yet mastered the material,
return to this module for further study.

334

DYNAMIC REGIONS

DYNAMIC REGIONS

INTRODUCTION

The last module discussed how to use the Task Builder to
create and access static regions. It is also possible to create
and access regions while a task is executing. Such regions are
called dynamic regions. The memory management directives allow a
task to create and access dynamic regions and to access existing
static or dynamic regions. 1In addition, they offer a facility for
creating private regions and for allowing other tasks to access
these regions. :

OBJECTIVES

l. To write tasks which create a dynamic region and access
dynamic and/or static regions

2. To write tasks which dynamically control their mapping

3. To write tasks which create a private dynamic region and
allow one or more other tasks to access the region.

RESOURCE

e RSX-11M/M-PLUS Executive Reference Manual, Chapter 3 plus
specific directives in Chapter 5

337

SYSTEM

Som
aren't
Examples

1.

2'

Spe
availabl
followin

°

°

The
Therefor

included
manager

DYNAMIC REGIONS

FACILITIES

etimes a task's needs for memory and for shared regions
known until run time, or the needs may change at run time.
are: ‘

A task (e.g., an editor) needs a temporary work buffer for
only part of the time the task is active.

A task needs a shared region or work buffer, but its size
depends on the needs of the user running the task (e.g.,
the size of an input file).

A task creates a shared region and wants to control access
to it by other tasks.

A task wants to create a shared region in a system
controlled partition (e.g., GEN) instead of in a dedicated
common type partition. Then when the shared region isn't
needed, the space 1is automatically available for other
system needs (tasks, etc.).

A task needs to map to two different shared regions at
different times, but has only one 4K word virtual address
window available, .

cial directives, called memory management directives, are

e on mapped systems to allow tasks to perform the

g functions.

Create regions in system controlled partitions

Attach/detach from a region

Create/eliminate virtual address windows

Map/unmap a virtual address window to an attached region

Obtain information about its mapping from the system.
memory management directives are a SYSGEN option.

e, 1f wusers on a system plan to use them, they must be

in the Executive at SYSGEN time. Check with your system
to find out if they have been included on your system.

339

DYNAMIC REGIONS

are

gement directives which

the memory mana

-11M system.

Table 8-1 lists

available on an RSX

Memory Management Directives

Table 8-1

%ﬁ%%&mww@mm%%ﬁ%m@mﬁwg
; S

-

-
gmm_@wg

=
Gacid
.

o

. - .

- ..

. .
A e

B

-
. e
ok e sx@_,«@m@@@m
B Gsieale
: G S R
o T

i i

e
...
aaa
Seecan e e
%%ﬁ‘ﬁm

¢
-

1

..

e Gaa o
. s

@%mmm@@mmm@mwwmm%m”a .
.

.
L
.
.
L

s m@m@mw@
a0
e SR S
=

. i
Ao

m&@%;&%@m

aaaaaaa - -

i

. mmswmmmm@mw

o s asiey

L .

m@mm%g -
o e

AEbhedne Ginitina s

edeiannie o

349

DYNAMIC REGIONS

REQUIRED DATA STRUCTURES

Each memory management directive requires that you set up one
of two data structures within your task - a region definition
block (RDB) or a window definition block (WDB). The RDB and the
WDB are the interface between the user task and the Executive.
Their contents change dynamically as regions are created and
accessed. 1In general, once the WDB and/or the RDB are set up, the
actual memory management directive macro <calls are completely
straightforward. Their format is either:

XXXx$x wdb
or

XXxx$x rdb
where

wdb - the label or address of the WDB
rdb - the label or address of the RDB
Examples:

CRAWSC WDB

CRRGS$S #RDB1

As with other executive directives, the §, $C, or $s form of each
directive may be used.

Region Definition Block (RDB)

An RDB contains information needed to create a region and/or
to attach to a region in a system controlled partition. The RDB
is used by the following directives.

1. Attach Region (ATRGS)
2. Create Region (CRRGS)

3. Detach Region (DTRGS)

341

DYNAMIC REGIONS

ARRAY RDBBK$ SYMBOLIC BYTE
ELEMENT ARGUMENT OFFSET BLOCK FORMAT OFFSET
’ 0
irdb (1) R.GID REGION ID
2
irdb (2) siz R.GSIZ SIZE OF REGION (32w BLOCKS)
4
irdb (3)
nam R.GNAM NAME OF REGION (RAD50) —~ 6
irdb (4)
10
irdb (5)
par R.GPAR REGION’S MAIN PARTITION NAME (RAD50)— 12
irdb (6)
14
irdb (7) sts R.GSTS REGION STATUS WORD
16
irdb (8) pro R.GPRO REGION PROTECTION WORD

TK-7733

Figure 8-1 The Region Definition Block

342

DYNAMIC REGIONS

Figure 8-1 shows the layout of the RDB along with the

symbolic
an RDB.

offsets. Use the RDBBKS$ macro to create and initialize
Figure 8-1 also shows the RDBBK$ arguments for the

various RDB elements. The meaning of the elements is as follows.

Region ID - a unique number assigned to a region when your
task attaches to a region. The number associates the task
with the region and is returned by the Executive after
your task attaches to a region.

Size of Region - the size of a region to be created, 1in
32-word blocks. It is also returned by the Executive when
attaching to an existing region.

Name of Region - up to six characters. It is assigned
when a region 1is created and used when attaching to a
region.

Region's Main Partition Name - the name of the system
controlled partition.

Region Status Word - wused by the user task to send
information to the Executive when creating or attaching to
a region. Also used by the Executive to return status to
the task after a memory management directive is executed.
See Table 8-2 for a list of the wvarious bits and their
meanings.

Region Protection Word - analogous to the file protection
word, controlling access to regions. As shown below, it
is set up with the same format (RWED for read, write,
extend, delete) within each category; or: system, owner,
group, and world.

World Group Owner System

DEWR DEWR DEWR DEWR

1110 11190 0o00 ooa0 = 167000 (8)

A '1l' means access 1is denied, a '#' means access is

permitted. So the example means that world and group have
just read access, and owner and system have all accesses.

343

DYNAMIC REGIONS

Region Status Word

Table 8-2

:,;%, g
... - o
. ﬂmmsmm@mmmmwmﬁ .

. . - =

i S
il

-

-
. g
Soiiaigennan =
- .
mé@m@mmmmssggm@m g,s;mc m

... - - ...
nﬁme - M%m .

= . manaan Sl

.
.- .

... -

m@mu sﬂaﬁﬂmMmm 8! ﬁ@s@@%)@@@gm@@ﬂmﬁm

; Dasiie s
s

. - = =
. - .
= .
. e
.. gs@mmmmgmﬁmmmmmwmmm
WMM & ﬁwmmwamiﬁi

.

“si B e
... -
e e s e s e
. -
e
~ i i
e s
ggmmﬁm@mﬁ@m@@mﬁmm%m@quMMWmM@@m@%@m@@mﬁ@@mmw@@mm
mmm - ...
o %mmm@ ...
. cmﬁmﬁm% -]
GEmimnaaees R
s 5
.

Ll 0 m@@@mn s s

344

DYNAMIC REGIONS

Creating an RDB in MACRO-11
The format for the RDBBKS macro call is:

RDBBKS$ siz,nam,par,sts,pro

No argument is provided for the region ID because it is
always returned by the Executive and is never specified by the
user., See Table 8-2 for a list of the region status word bits,
including their symbols and meanings. We will discuss these
further when we discuss the individual directives. Any
information not filled in at assembly time using the RDBBKS$ macro
can be filled in using direct MOVs at run time.

Examples:

To create an RDB for use in creating a region with:

Size in 32(19) word blocks = 2

Region name = MYREG

Partition name = GEN

Region to be attached on create

Region to be marked for delete on last detach

Write access desired on attach

Owner to have all privileges and group to have read
privileges.

RDBBKS 2 ,MYREG,GEN ,<RS.ATT! RS.MDL!RS.WRT>,177017

Expansion:
.WORD g Region ID
.WORD 2 Region size

.RAD50@ /MYREG/
.RAD5@ /GEN /

Region name
Partition name

Ne we we wo

«WORD <RS.ATT!RS.MDL!RS.WRT> ; 000242 (8) Region status
; word
«WORD 177017 ; Region protection word

345

DYNAMIC REGIONS

The example below shows the use of a MOV instruction to set
the region size at run time.

To create an RDB for use in creating a region with:

Size in 32(1@9) word blocks = 1000(8)

Region name = XXXX

Partition name = same as task is installed in

Region status = do not delete, desired access to be filled in
before attaching ‘

World to have no privileges, all others to have all privileges

RDBBKS @, XXXX, ,RS.NDL, 170000

Expansion:

.WORD @ ; Region ID
.WORD @ Region size

.RAD50 /XXXX / Region name
.WORD 9,0 Partition name
.WORD RS.NDL 199 (8), Region status word

LR THEE TR TR P

-WORD 170000

Region protection word

MOV #1000 ,RDB+R.GSIZ ; Set region size at run time

346

DYNAMIC REGIONS

Window Definition Block (WDB)

A WDB contains information needed to create a virtual address

region
The WDB

and to map a virtual address window to an attached region.
is required for the following directives.

Create Address Window (CRAWS)
Eliminate Address Window (ELAWS)
Map Address Window (MAPS)

Unmap Address Window (UMAPS)
Send by Reference (SREFS$)

Receive by Reference (RREFS).

Figure 8-2 shows the layout of the WDB along with the
symbolic offsets. Use the WDBBKS macro to create and initialize a
WDB. Figure 8-2 also shows the WDBBKS$ arguments. The meaning of
the elements is as follows.

Window ID - A number which identifies the window block in
the task header which describes the window. Window @ is

used for the task window. Windows 1-7 are used for

additional windows set wup by the Task Builder, for
overlays and static regions, and for windows created
dynamically. The window ID is returned by the Executive
after a Create Address Window directive.

Base APR - The base APR to be used in mapping the window,
which sets the base virtual address.

Base Virtual Address - The base virtual address in octal;
returned by the Executive after a Create Address Window
directive.

Region ID - The region ID, used to 1identify the region
when mapping a virtual address window to a region. It is
returned by the Executive in the RDB after an Attach
Region directive. You must move the value returned from
the RDB to the WDB before mapping to the region.

NOTE

The Task Builder option WNDWS=n must be wused
to specify the additional number of window
blocks needed for dynamic windows.

347

DYNAMIC REGIONS

ARRAY WDBBK$ SYMBOLIC , BYTE
ELEMENT ARGUMENT OFFSET BLOCK FORMAT OFFSET
W.NID 0
iwdb (1) BASE APR WINDOW 1D
apr W.NAPR)
iwdb (2) W.NBAS VIRTUAL BASE ADDRESS (BYTES)
4
iwdb (3) siz W.NSIZ WINDOW SIZE (32W BLOCKS)
‘ 6
iwdb (4) rid W.NRID REGION ID
10
iwdb (5) off W.NOFF OFFSET IN REGION (32W BLOCKS)
12
iwdb (6) fen W.NLEN LENGTH TO MAP (32W BLOCKS)
14
iwdb (7) sts W.NSTS WINDOW STATUS WORD
16
iwdb (8) stb W.NSRB SEND/RECEIVE BUFFER ADDRESS

TK-7736

Figure 8-2 The Window Definition Block

Offset in Region (32-word blocks) - The offset within the
region at which mapping is to begin. It allows a task to
map to different portions of a region.

Length to Map (32-word block) - The 1length within the
region to be mapped. It defaults to the shorter of the
space remaining in the region and the size of the window.

Window Status Word - Used by the wuser task to send
information to the Executive when creating and mapping
windows. It is also wused by the Executive to return
status to the wuser task after a directive is executed.
Table 8-3 lists the various bits and their meanings.

Send/Receive Buffer Address - The address of an 8-word
buffer for sending or receiving data as part of the Send
by Reference and Receive by Reference directives.

348

DYNAMIC REGIONS

Creating a WDB in MACRO-11

The format of the WDBBKS macro is:

WDBBKS apr,siz,rid,off,len,sts,srb

Note that no argument is provided for either the window ID or
the base wvirtual address, because these elements are always
returned by the Executive. Table 8-3 shows a list of the window
status word bits, including their symbols and meanings. We will
discuss these further when we discuss the individual directives.

i
v

Ceaneg ﬁigﬁm@’gg;?‘ﬁgﬁ o
.

§§ﬂ

i .
%%%w

i

DYNAMIC REGIONS

Examples:

To create a WDB to describe a window with the following:
APR = 7

Size in 32(19) word blocks = 100 (10)

Region is to be mapped in a CRAWS or RREFS$ directive
Map with read access.

WDBBKS 7,100.,0,6,100.,<WS.MAP!WS.RED>

Expansion:

.BYTE @,7 ; Window ID, APR

.WORD @ ; Base virtual address

.WORD 100. ; Length

.WORD) ; Region ID

.WORD @ ; Offset in region

.WORD 100. ; Length in region

.WORD WS.MAP!WS.RED ; 0080281(8), window status word
.WORD) ; Send/Receive buffer address

To create a WDB to describe a window with the following
characteristics:

APR = 5
Size in 32(18) word blocks = 200@(8)

Map starting at offset of 5 blocks in region and map
18 (19) blocks

Send with delete and write access.

WDBBKS 5,200,0,5,190. ,{WS.64B!WS.WRT!WS.DEL>

Expansion:

.BYTE #,5 ; Window ID, APR

.WORD @ ; Base virtual address

.WORD 200 ; Window length

.WORD 0 ; Region ID

.WORD 5 ; Offset in region

.WORD 10. ; Length in region

-WORD WS.64B!WS.WRT!WS.DEL ; @0@412(8), Window status
; word

.WORD 7] ; Send/Receive buffer address

350

DYNAMIC REGIONS

CREATING AND ACCESSING A REGION

Use the following procedure to create and access a region.
1. Create the region (Create Region directive).

2. Attach to the region (Attach Regibn directive).

3. Move the region ID from the RDB to the WDB.

4, Create a virtual address window (Create Address Window
directive).

5. Map the virtual address window to the region (Map Address
Window directive) .

6. Use the region.

7. Detach from the region (Detach Region directive or task
exit) .

Steps 1 and 2, and also steps 4 and 5 can each be combined in
a single directive «call. Step 4 can be performed earlier, if
desired. To access an existing region, begin with step 2.

If you don't remember what windows and regions are, or what
attaching and mapping mean, look over the sections on Windows and

Regions in the last few pages of Module 5 on Memory Management.

The use of each directive in the procedure above is detailed
on the following pages. The discussion includes the purpose of
the directive, important input and output parameters, and notes
about its wuse. For a complete discussion of each directive, see
Chapter 5 of the RSX-11M/M-PLUS Executive Reference Manual. For
additional information on the memory management directives, see
Chapter 3 of the same manual.

351

DYNAMIC REGIONS

Creating a Region

When you create a region, the Executive allocates space for
it in a system controlled partition. Use the Create Region
directive (CRRGS) with the following RDB input parameters.

@ Size of region (in 32(1@) word blocks)
e Name of region (becomes a private region if no name)
o Name of partition (defaults to partition of task)

® Region status word - mark for delete or do not delete
(default is mark for delete)

® Region protection word - determines permissible access to
region.

The only RDB output parameter is the RS.CRR bit in the region
status word. It is set if the region is successfully created, and
cleared if not. Normal Executive directive status is returned as
well (carry set for error, clear for success; DSW contains
directive status word). If the region already exists, success
status is returned. Therefore, RS.CRR can be used to tell whether
the region was in fact created, or whether it already existed.

Any task which passes the protection test can attach to a
named region. For unnamed (private) regions, only tasks which are
specifically attached by the creator of the region may attach to
it. Therefore, for a private region, the creator completely
controls which tasks attach to it and their access rights as well.

By default, or if RS.MDL is set in the region status word,
the region is deleted when the last attached task detaches from
the region. Named regions are left in existence after the last
detach if RS.NDL is set in the region status word when the region
is created. Unnamed (private) regions are always marked for

delete (deleted on last detach). There is no explicit Delete
Region directive.

If the RS.ATT bit is set 1in the region status word, the
Executive also attempts to attach the task to the region. 1In this
case, additional RDB input parameters are required, and additional
output parameters are returned. Attaching to a region is
discussed after Example 8-1. :

352

DYNAMIC REGIONS

Example 8-1 shows how to create a named region which is 1left

in existence on last detach. The following notes are keyed to the
example.

‘. Set up the RDB. RS.NDL set specifies that the region is
to be left in existence.

World Group Owner System
DEWR DEWR DEWR DEWR

Region protection word = 1111 o000 000 peBa (2)

17] @ 2 g (8)

- Bit set means access is to be denied.

@’ Issue the directive to create the region, specifying -the
RDB address as the only argument. Here we use the $C form
of the directive. Any form is allowed.

© cCheck for a directive error.

" Display message and exit.

353

DYNAMIC REGIONS
1 +TITLE CRERG
2 JIDENT /7017
3 +ENARL LC i Enable lower case
4 it
5 # File CRERG.MAC
é H
7 ¥ CRERG creates a8 named rediony and exitsy
8 i leaving the redgion in existence.
9 §
10 +MCALL EXITSSsROBEBKS « CRRG$C # Sustem macros
11 JMCALL QIOWSC,QIOWES
(12 RIOE: RIOBEKS 100yMYREGsGENyRE.NDL» 170000
13 H Nefine region with?
14 ¥ Size = 100 (32. word bhlocks)
° 15 H Name = MYREG
16 3 Fartition = GEN
17 ¥ Frotection = WOINoneysSYIRWED
18 $ OQWIRWED s GRIRWED
L19 § Lo not mark for delete on last detach
20 SMES LASCIT /CRERG SUCCESSFULLY CREATED MYREG/
21 L.SMES mm oy~ GMES
22 BUFF? +BLKE 80. 3 SEDMSE buffer
23 EFMT?$ SASCIZ ZERROR IN CREATING REGION. NSW = XD./
24 +EVEN
25 H
¢’ 26 START?: CRRG$C RIOE 3 Ureate region
‘,27 RCS ERR § Branch on dir error
28 QIOWSC ITO0WVBsSslyye s SMESyLSMES»40> § Write
°|:29 FoSLCCesSsS messade
30 EXIT$S ¥ OEMit
31 ¥y Error code
32 ERR? MOV FEFMTsR1 i Set ur for S$EIMSG
33 MOV FENSWy R H
34 MOV #BUFF RO b
35 CALL SELMSE i Edit error messade
36 AI0W$S HI0.WUR»ESsfLy e v vy #BUFFyR1v#40> § UWrite
37 ¥ messade
38 EXIT$S § Exit
39 LEND START
Rurm Session

*RUN CRERG

CRERG SUCCESHSFULLY ©

Example 8-1

REATED MYREG

Creating a Named Region

354

DYNAMIC REGIONS

Attaching to a Region

When you attach your task to a region, the Executive creates
a logical connection between the two. The region can be either a
dynamic region or a static region. Use the Attach Region
directive (ATRGS) with the following RDB input parameters:

® Region name ,
® Region status word (indicating R,W,E,D access)

The following RDB output parameters are returned:

® Region ID
® Region size

The region ID is needed later in order to map a virtual
address window to the region. The region size is of interest when
attaching to an already existing region whose size may not be
known.

Attaching can also be done as part of the Create Region
directive (CRRGS), if the RS.ATT bit in the region status word is
set when the Create Region directive is issued. 1In fact, for an
unnamed region, attaching must be done as part of the Create
Region directive, since there is no region name to be wused in a
separate Attach Region directive.

A task can detach from a region by using an explicit Detach
Region directive (DTRGS) or by exiting (the Executive detaches the
task) . If a task is changing a region from do not delete to mark
for delete, an explicit detach is required with RS.MDL set in the
region status word. If the task exits without issuing an explicit
detach, the ©Executive detaches the task but does not mark the
region for delete. Once a region is marked for delete, it |is
deleted when the last attached task detaches from it. Once it is
marked for delete, it cannot be changed to "do not delete." If a
fixed task exits without issuing an explicit detach, no detach is
performed by the Executive.

355

DYNAMIC REGIONS

Creating a Virtual Address Window

When you create a virtual address window for a task, the
Executive 1initializes a window block in the task header. It also
checks to ensure that this is the only window that wuses the
specified range of wvirtual addresses, unmapping and eliminating
any window that overlaps that range. Use the Create Address
Window directive (CRAWS) with the following WDB input parameters.

® Base APR number
e Window size (in 32(1@) word blocks)

The following WDB output parameters are returned:

e Window ID assigned by the system (1-7)
® Base virtual address

The space for the additional window blocks in the task header
must be reserved at task-build time using the WNDWS=n option. N
is the number of additional windows needed for windows created at
run time. If extra space 1is not allocated, an address window

allocation overflow error (IE.WOV = -85.) results.

The window is also mapped to a region if bit WS.MAP is set in
the window status word when the Create Address Window directive is
issued. 1In that case, addition input parameters are needed. See
Mapping to a Region in the following section.

The Eliminate Address Window (ELAWS) directive can be used to
explicitly eliminate a virtual address window. 1In general, it is
not used, because creating a new window automatically eliminates
any overlapping window.

Mapping to a Region

When you map a virtual address window to a region, the
Executive creates a logical connection between the virtual address
window and the region. Any attached region can be mapped. 1In the
process, the memory management registers are 1loaded so that
references to virtual addresses in the window access the region.
This 1is assuming, of course, that the task keeps control of the
CPU. The APRs are reloaded every time a new task takes control of
the CPU.

356

DYNAMIC REGIONS

Use the Map Address Window directive (MAPS) to map a window
to a region, with the following WDB input parameters.

e Region ID - Returned to RDB by Attach (move from RDB to
WDB) .

e Offset into Region - in 32-word blocks, wused to start
mapping at an offset from the start of the region. This
must be a multiple of 8(18), unless WS.64B is set in the
window status word. If WS.64B is set, any whole number
may be specified.

e Length to Map - If specified, must be less than, or equal
to, either the 1length of the window or the length
remaining in the region, whichever is shorter. If
defaulted, it is set to the shorter of the two.

e Window status word - actual access desired (read-only, or
read/write). Read-only is always requested by default.

The only WDB output parameter generally used is the 1length
actually mapped. If the window is already mapped, it is first
unmapped by the Executive. You can also use the Unmap Address
Window directive to explicitly unmap a window. Mapping can also
be done as part of the Create Address Window directive (CRAWS).

The type of access desired is used here in addition to when
you attach to the region, because several different windows in the
task may map the same region. Some of the windows may need
read-only access, others may need read/write access. 1In that
case, you must attach with read/write access, and then you may map
each window with either read-only or read/write access.

357

DYNAMIC REGIONS

Example 8-2 shows how to create a region and place data into
it, 1leaving it in existence upon exit. Example 8-3 shows how to
attach to that region, read and display the data, and then detach
and mark it for delete. One run session covers both examples.
The following notes are keyed to Example 8-2.

@ Task-build with the WNDWS=1 option, allocates space in the
task header for one additional window block.

We use the $ form of the memory management directives.

RDB for region. RS.ATT set means Create Region directive
will both create the region and attach to it.

WDB for virtual address window. The third argument is for
the region ID, which will be filled in at run time, after
the task attaches to the region. In the window status
word, WS.MAP means that the Create Address Window

directive will both create the window and map it to the
region. WS.RED is automatic, even though not specified.

Create region and attach. Use DIRS$ since you are using
the $ form of the directive.

Move region ID, returned in RDB after attach, into WDB for
mapping.

Create a virtual address window and map it to the region.

The virtual address window begins with APR 7; therefore,

the base address in the window is 160000(8), corresponding
to the base address in the region.

Place a byte count, 400 (19), in the first word in the
region. This is just one way to communicate this
information to other tasks which access the region. The
length of the region is returned when a task attaches to
the region. You could use this as an alternate way to
pass information about the amount of data.

ﬂ) Move 100 (10) words of ASCII "AB" and 10@0(1@) words of
ASCII "12" into the region. This gives you 200 (10) words
or 490 (1@) bytes of data.

Q® nDpisplay a successful creation and 1initialization message
at the terminal.

® Detach from the region and then exit, leaving the region
in existence.

358

DYNAMIC REGIONS

1 +TITLE CREURG
2 +IDENT /017
3 +ENAERL LC $ Enable lower case
4]
5 ¢ File CREURG.MAC
& i
7 i Frodgram to create a named redgion (attached on creation)y
8 7 create a3 virtual asddress window (masrred on crestion)y
Q@ § rlace ASCII dats in to the redions detsch from the
10 ¥ oredgion and exity leaving the redgiom in existence.
11 $
12 ¥ Tesk-build instructions?
13 H
14 H *LINKZOFTION/MAF CREURG
15 H Ortion? WNOWS=1
14 ¥ OFTION? <RET>
17 H .
i8 +MOALL EXIT$SyROBERK$ s WHRBEKSy CRRGS y CRAWS
19 MOALL DTRGSsDIRS»QAIOWSS»QIOWST
20
21 REG? CRRGS ROE FIFPE for create redion
22 H Nefine redgion with?
23 § Size = 100 (32, word blochks)
24 ¥ Name = MYREG
325 ; Fartition = (GEN
26] Frotection = WOINonesSYIRWEDy
27 ; OWIRWED » GRIRWED
28 H o ot mark for delete on last detach
29 H Attach with ready write and delete access
30 WsW = RGN IRSIELIRSREDIRS WRTIRS.ATT >
L 31 RDES ROEEKS 100yMYREGyGENsWSWy 170000
32 H
33 WIN? CRAWS WIE # PR for create address window
[~ 34 § Nefine window with?
35 H HFR = 7
34 H Size = 100 (32, word hlocks)
37 § Offset in redion = O (32, word blocks)
38] Length in redion = 100 (32. word blocks)
39 § Mar on create with read/write access
L 40 WItE $ WHEBERKS 75100200+ 1007 WS MAF WS WRT >
41 H
42 DETS OTRGS ROE 3 DFE for detaching
43 i from region
y

44 I06e: +BLKW 2 I/0 status block
45 ONMEST JASCII /CREURG HAS CREATED AND INITIALIZED THE/

46 +ASCIT / REGION/

47 LIONMES =, -DINMES

48 i Ervror format strindgs

49 FCRRER? ASCIZ /ERROR CREATING REGION. DSW = ZDi./

50 FCRWER? +ASCIZ /ERROR CREATING WINDOW. DSW = ZI,/

51 FRIODE! +ASCIZ /DIRECTIVE ERROR ON QIOQ. DSW = ZD./

52 FQIOIE! JASCIZ 1170 ERROR ON QIO., CODE = XZD,!

G533 FRETER? +ASCIZ /ERROR DETACHING FROM REGION. NSW = Zh./
54

353 RUFF? +BLKE 80. ¥ Outrut buffer

Example 8-2 Creating a Region and Placing
Data in It (Sheet 1 of 2)

359

DYNAMIC REGIONS

56 +EVEN
" 57 START? DIR$ ¥REG 3 Create redion and attach
58 RCS ERR1 $ Check for error
t’ 59 MOV ROBHR GIDy WOR+W.NRID 5 Move redion ID
60 ¥ into WDE
" 61 DIRS FWIN 3 Create window and mar
62 BCS ERR2 # Check for error
‘, 63 MoV #160000sRS i Set base addr in redion
‘,64 MOV #400.y (RS + § Move bute count to 1st
&5 . i word in redion
b6 MOV #100.,sRO i # of words of ‘AR’ dats
&7 L.OOF: MOV **ARy (RS + i Move chars to redgion
48 SOR ROy L.LOOF # Decrement counter and
@ 69 # loor until done
70 MOV #100., RO 3 * of words of 7127 datsa
71 LOOFE: MOV #*12, (RSO 4+ 5 Move chars to redion
72 S0k RO LOOFR i Loor until done
0 73 QIOWSC IT0.WVBsSelyy IOSRy y TIINMESLIINMES» 403
74 BCS ERR3I ¥ Branch on dir error
7% TSTR I0SE # Checlk for I/0 error
76 BLT ERR3I # Branch on I/0 error
db 77 DIRS *DET ¢ Detach from redgion
78 BCS ERR4 # Check for error
79 EXIT$S
80 i Error code
81 ERRL: MOV #FCRRERsR1 # Create redgion error
82 § messade
83 ER SHOERR # Branch to common code
84 ERR2: MoV #FCRWERYR1 ¥ Create window messade
85 ER SHOERR # Branch to common code
86 ERR3N: MOV ¥FFQIODEYRL $ QI0 directive messade
87 BR SHOERR # Branch to common code
88 ERR3It MOV I0SEYRO ¢ Extend sign on status
89 MOV ROy $ISW # and move to ard block
20 MOV ~ #FQRIOIEsR1 $# QIO I/0 error
?1 BR SHOERR # Branch to common code
@2 ERR4 ¢ MOy #FFDETERYR1 i DNletach redion messade
03 SHOERR! MOV #¥EBUFF s RO s Set ur for $EDMSG
94 MOV FENSWR2 ¥
@3 CALL SEDMSE i Edit messade
96 AIOWSS HI0.WVUByHSvH&lyry s “HBUFFsR1 %40
97 i Disrlay messade
o8 EXIT$S 3 Exit
99 +END START

Rurn Session

*RUN CREURG

CREURG HAS CREATED AND INITIALIZED THE REGION
*RUN ATTURG)
ABARARARABRARARBABARARARARARARARARARARARARARARARABARARARARARARARAR
ABABARARARARARARARABARARARARARARARARBARARARARARABARARARARARARARAR
ABABARABARARABRABRABARAR
ABABABARI2I212
12102121212121212121212
1212121212121 21212121212121212121 212121 2121231212121 2121212121212
1212121212121212

Example 8-2 Creating a Region and Placing
Data in It (Sheet 2 of 2)

360

DYNAMIC REGIONS

Example 8-3 attaches to the region created by Example 8-2,
reads and displays the data, and then detaches from the region and
marks it for delete. The following notes are keyed to Example

8—30

Again, task-build with the WNDWS=1 option so that the Task
Builder allocates space for the window block in the task
header.

This example uses all three forms of the directives, for
illustration purposes.

The RDB for attaching to the region. In fact, the only
required information 1is the region name and the region
status word. The partition name and size, although
included here, are not needed. RS.MDL set marks the
region for delete when we do an explicit detach. You need
delete access to mark the region for delete (RS.DEL).
Also, attach with read (RS.RED) and write (RS.WRT) access
so that you can map with read/write access.

The WDB for the virtual address window. We map the entire
region (length = 160 (8) 32-word blocks), starting from the
beginning (offset = @g). WS.MAP means create the address

"window and map. Map with read (WS.RED) and write (WS.WRT)

access.

Attach to the region.

Move the region ID to the WDB; create the virtual address
window and map it to the region.

Set base address in region - again 160000 (8), because the
base APR is APR 7.

The first word in the region contains a character or byte
count,

Number of characters to print on each 1line, except the
last line (if it has less than 64 (1¢) characters).

361

DYNAMIC REGIONS

Loop through region, printing 64(10) characters per line.
This technique 1is used to demonstrate how to control the
width of the output and make the run session fit on an
8-1/2" by 11" page with margins. If the full terminal
buffer width (typically 80 (19) or 132(19)) is acceptable,

one Q10 directive, with the total character count
specified for number of characters, would be enough to
write the entire region. In that case, the terminal

driver will automatically wrap to the next 1line after a
full line is displayed.

Detach from the region. An explicit detach is required to
mark the region for delete.

NOTE

In Chapter 7, we discussed the fact that a
task needs read/write access to a region to
issue QIOs to write directly from a region.
This also applies to dynamic regions. ATTURG
issues QIOs directly from MYREG. Therefore,
although it appears that ATTURG only needs
read access, it actually needs read/write
access., See the discussion following Example
7-1 in Chapter 7 for additonal information.

362

ey
* SPENU DR

s gt
.

s
3

[ar—
ENEA]

e R b
NWN WU

]
<

21
5oy
Lo Ko

23
24

25

G2 e WE MR GF EX ‘B> B> W > WGP T3 CH EF @F W E3

i

s wr a3 ws er wr T OFC % wr W er s er e LTI

->

[]

DYNAMIC REGIONS

+TITLE ATTURG
+IDENT 701/
+ENARL LT i Emable lower case

File ATTURG.MAC

Frogram to attach to an existing rediony create a
virtuazl address window (marred on creation)y read
ASCII dats from the redgiony detach from the region
and exit. The redion will bhe deleted on last deltach.
The first word in the redgion comtains a count of how
many bwtes of data are in the redion

Assemble amd task-build instructionst

MACROZLIST LEILLy LIPROGMACS/LIBRARY sdeviLufdlATTURG
FLINK/ZMAF/0FTION ATTURGLEILL s 1IPROGSURS /L IEBRARY
0rtion? WNIWS=]

#Oetion? <RET:>

SMCALL EXIT$SyRUBBR$» WHBEK$ s ATRGSD 5 Sustem
+MCALL CRAWSSDTRGSSyDIRGyQIDWES Fomacros
+MCALL DIRERRs IOERR 3 Susrlied macros

nE: RIOBEKS 100syMYREGyGENy “RS MU RS DEL RS REDIRSWRT
Nefine redion with?
Size = 100 (32: word blocks)
Name = MYREG
Fartition = GEN

Mark for delete on last detach
Attach with ready write and delete access

Ni CRAWS WIR sIOFE for create address window
B WOREBKS 7210050021005 <WS MAFITWS.REDITWS WRT
Lefine window with?
AFR = 7
Size = 100 (32. word blocks)

Offset in redion 0 (32, word blocks)
Length in redgdion = 100 (32. word blocks)
Mar on create with read and write access

I08R: +RBLKW 2 # 170 status block
START: ATRGHC RDR 3 Attech to redion
BRCS ERR1 # Check for error
MOV RIB+R.GID WDER+W . NRID 5 Move redgion ID
into WDER
IR FWIN i Create window

Example 8-3 Attaching to an Existing Region

and Reading Data From It (Sheet 1 of 2)

363

DYNAMIC REGIONS

ECS ERRZ

MOV #1600009RS

MOV (R3)+rR4

MOV #6449y R3
L.OOF ¢ QRIDWES

RCS ERR3D

TSTR I0SE

RLT ERR31I

SUR R3sR4

RL.E DNONE

ALD R3 R3S

CMF R3 s R4

BLE L.OOF

MOV R4sR3

ER L.OOF
LONE? DTRG$S #RDE

BCS ERR4

EXIT4$S

&

$ Error handling code

“er wr “G> @

qr Cr @ s E> Gr EF €3 3 G EF €S C> @ e

Check for error

Set base addr in region
Get character count
Chars rer line

H#I0.WVB»#Gs#1 » s #TOGE» »y “RSyR3» 402

Write data

Check for dir error

Checlk for 1/0 error

Eranch on error

Comreuyte chars left

EBranch if done

Foint to next char

Check for < 64. chars
left to srint

> oor =y print next line

<y rrint only that mang
chars

Frimt the line

Letach from redgion

Checlk. for error

ERRL S DIRERR <ERROR ATTACHING TO REGION:

ERR2? DIRERR <ERROR CREATING WINDOW ANII MAFFING>
ERR3D?! DIRERR <ERROR WRITING DATAX

#I08By “ERROR WRITING DATAX

ERR4: DIRERR <ERROR DETACHING FROM REGION:

ERR3I? TOERR

+END

Example 8-3

START

Attaching to an Existing Region
and Reading Data From It (Sheet 2 of 2)

364

DYNAMIC REGIONS

SEND- AND RECEIVE-BY-REFERENCE

If you create a private (unnamed) region, you have complete
control over whether other tasks can have access to it. You
specifically attach other tasks to the region by sending a packet
containing a reference to the region. When you do that, you can
also specify what access they have to the region. At the time,
you must be attached with at least that much access yourself.
Named regions, on the other hand, can be attached by any task that
knows the name and has the access privileges needed to pass the
protection check. '

Use the Send—by—Referencé directive (SREFS$) to send a region
by reference, with the following input parameters.

Receiver task name
WDB - Region ID
offset into region - sent unchecked to receiver
length to map - sent unchecked to receiver
window status word - determines how receiving task is
attached :
address of buffer - 8(19) word buffer which is sent to
the receiver
Event flag - if specified, set when the reference Iis
received, not when it is queued up (in the receive-
by-reference queue). :

The receiver task 1is attached to the region when the
reference 1is queued up. This avoids the problem of the region -
being deleted if the sender exits before the receiver receives the
region. Remember that private regions are always marked for
delete on last detach.

If you are using the event flag for synchronization, note
that the flag should be used to notify the sender as to when the
receiver receives the region by reference. It is not the same as
Send and Receive Data directives, where the flag is set when the
reference is queued. That flag should be wused to notify the
receiver. -

365

DYNAMIC REGIONS

The receiver follows a somewhat modified procedure to access
the region, as follows.

1. Create window.

2. After reference is queued, receive by reference (fills in
region ID in WDB) .

3. Map to region.
4., Use region.
5. Detach from region.

Use the Receive-by-Reference directive (RREFS$S) to receive a
reference to a region, with the following WDB input parameters.

Window Status Word - WS.MAP for receive and map; WS.RCX for
receive data or exit.

Buffer Address - 10(10) word buffer for sender task name (in
Radix-5¢ format) and data.

The following WDB output parameters are returned, all as set
by the sender:

Region 1ID

Offset into region

Length to map

Window status word - describes how attached

If the WS.MAP bit is set, the Executive maps the window to
the region, wusing the offset, 1length, and window status word
access as sent., If a separate Map directive is used, the receiver
can first check and/or modify those parameters before mapping to
the region. WS.RCX set tells the Executive to exit the task if
there are no packets in the receive-by-reference queue.

Although there are ‘'some similarities, Send Data and Receive
Data are completely ' independent from Send-by-Reference and
Receive-by-Reference. The receive (data) queue is separate from
the receive-by-reference queue.

_If you want to use;ASTs for synchronization, use the Specify
Receive-by-Reference AST directive (SRRAS). This causes the
Executive to transfer control to the specified AST routine when a

packet is placed 1in the receive-by-reference queue. Generally,
issue this directive when the task starts up.

366

DYNAMIC REGIONS

Examples 8-4 and 8-5 show how to create a pair of tasks, a
sender task and a receiver task. The sender, Example 8-4, creates
a private region, initializes it, and sends a reference to it to

the receiver. The receiver, Example 8-5, in turn receives the
reference, displays the data, and then exits. One run session is
included for both examples. The following notes are keyed to

Example 8-4.

" This program uses the supplied macro DIRERR to generate
directive error messages. Therefore, PROGMACS.MLB must be
specified when assembling, and PROGSUBS. OLB when
task-building.

e' The RDB for the region. The name is defaulted to create a
private region. ’

© rTthe WpB for the virtual address window. The length
actually mapped will be returned after mapping. Read
access is automatic for map, so WS.WRT gets read/write
access. '

" Create and attach to region, create virtual address window
and map it to the region.

© Use the base virtual address in the window (returned in
the WDB) to set the base address of the region. Since APR
7 is the base APR, this address is 160000 (8).

Fill the region with ASCII Ms.

Send-by-reference to RCVREF (Example 8-4). Event flag 1
will be set when RCVREF actually does a
receive-by-reference.

C' Display message that a region was created and sent. Then
wait for event flag 1 to be set.

Display message saying RCVREF received region, and then
exit.

@® Exit. The Executive will detach you from the region.
Note that even if SNDREF exits before REVREF receives the
region by reference, the region will not be deleted
because RCVREF 1is attached when the reference is queued.
The region is deleted only after both SNDREF and RCVREF
detach.

367

WNOUD R~

-
= OO

12

13

14

15

16

17
0[18
19
20
21
23
24
25
26
27
28
29

91

| 53

R DI T N T L

+

Rum

W> > er CF WP S A3 S MEr €3 WS e Cr R W G E TP > W

RFRO
RETAT

RIOE

Wr Ner Wr SEr W eh er W

WSTAT
WhER

DYNAMIC REGIONS

+TITLE SNDREF
+IDENT 701/
+ENARL LG 3 Enable lower case

File SNDREF .MAC

SNOREF creates a é64-word (2 hlock) unnamed redgion and
fills it with ASCII characters. It them sends the
redgion to RCVREFy and then waits for RCVREF to receive
the redgiom. (This is signalled bwy event flag #1.) It
then
unmamedy it is automatically deleted when the last
‘attached task exits.

rrints 8 messadge and exits. 8Since the ares is

Assemble and task-build instructions?

*MACRO/ZLIST LEICL»1IFROGMACS/LIBRARY rdeviLufdISNIREF
FLINK/MAF/0FTION SNDOREFLEILL, LIPROGSURS/LIBRARY
Ortion? WNIWS=I]

Install and run instructions: RCVREF must be inmstalled.
SNIOREF firsty thenrn run RCVREF.

+MCALL QIOW$CYyQIOWSSyRASTHC 7 Sustem macros
+MCALL WTSESCyEXITHS RIBEKS y WIIREKS

+MCALL CRRGHSy CRAWSS y SREF$C

+MCALL DIRERR # Surrlied macro
+NLIST REX ¥ SUFFRESS DATA

Nefine redion with?

Size = 2 I2-WORD BLOCKS
Name = POne
Fartition GEN

i

WOirnone» GRIRWED
OWIRWED»SY Inone

Frotection

Attach on create

Read and write asccess desired on attach
= 170017

= REJATTIRSREDIRS WRT

RORBKS 2y yGENsRSTATyRFRO

Iefine window with?

AFR

Size

Offset in region
Length to mar

I2-word bhlocks

¢ 32-word hlocks

0 32-word blocks (defaulis
to smaller of redgion
size and window lensth)

Mar on create with read and write access

= WS MAF WS WRT .

B OH OB

WORERS 79250005 yWSTAT

Example 8-4 Send-by-Reference (Sheet 1 of 2)

368

94 §
55 MES1 2
56

97 L.MES 1
58 MES23

60 LMES2 =

65 START?

‘, 74
75 20% 3

@2 # Error
93 14¢
o4 241
0% 341
96 441
97 543
?8 &%

Run Session

»INS RCVREF

77 i Send the resiion to RCVREF. EF
¥ RCVREF recieves it

DYNAMIC REGIONS

+ASCII 7/ SNDREF HAS CREATED THE REGION AND HAS/
JASCIT /7 SENT IT TO RCVREF./

=,-MESI

+ASCITI / RCVREF HAS RECEIVED IT. SNDREF I8 NOW/
+ASCIT / EXITING./

. — MES2
LIST REX i Show bhirary extensions
+EVEN
+ENARL. LSE i Enable local sumbol
i blocks
CRRG$S #RIR $ Create and attach to
i redion
BCS 14 ¢t Branch on dir error
MOV ROEB+R . GIDy WHE+W . NRID 5 Cory redgion ID

§ into WIDR
Create and mar window
EBranch on dir error
hase V.A, of redgion

CRAWSS #WDER
RCS 2%
MOV WDE+W . NRAS s RO

@y car a»

73 3 Fill rediomn with 23ll M’s

MOV ¥64.9R3 i count of words to move
MOV F MMy (RO 4+ $ Move in ar ASCII M
SOR R3:20% i Loor through redion

1

will be set when

Send by reference to
RCVREF
BCS 3% EBranch on dir @rror
QIOWSC I0.WVUBsSsy2ey vy MESL,LMESL1y40> ¢ Disrlay
i ¥ messade
Branch on dir error
i Wait for RCVREF to ¢et
i the redgion
RCS 5% # Branch on dir error
QAIOWSC TOWVURsS»y2yryy MES2yLMES2s40> § Disrlaw
i F messadge

SREF$C RCVREFsWIEs1

©> wr @r

BCS 4%
WTSES$C 1

RCS &% i Branch on dir error
EXIT$S i Exit ’
code

DIRERR <ERROR ON CREATE OR ATTACH REGION:
DIRERR < ERROR ON CREATE OR MAF WINDOW-
DIRERR <ERROR ON SEND BY REFERENCE:
DIRERR <ERROR ON 18T WRITE:

DIRERR <ERROR ON WAIT FORX

DIRERR <ERROR ON 2NI' WRITE:X

+END START

*SET TERMINAL/WIDTH!64.

=RUN SNDREF

SNDOREF HAS CREATED THE REGION AND HAS SENT IT TO RCVREF.

RUN RCVREF

RCVREF HAS RECEIVED IT. SNIDREF IS NOW EXITING.
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMSMMMMMMMMMMEMMMMEMEMMMMMEMM MMM MMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMEMMMMEMMMMMMMMMMMMMMMMEMMMEMMMM
»SET TERMINAL/WIDTH!8O0.

Example 8-4 Send-by-Reference (Sheet 2 of 2)

369

DYNAMIC REGIONS

The receiver, Example 8-5, receives a reference, displays the
data, then exits. The following notes are keyed to the example.

" This program uses the supplied macros DIRERR and IOERR to
display directive and I/O error messages.

© WwDB for virtual address window. The size 1is 200(8)
32-word blocks, a full 4K words. The offset into the
region, the length to map, and the access will be filled
in on receive. Since the length to map sent by SNDREF is
two blocks, '2' will be used in mapping. Note that the
window can be more than two blocks long. WS.MAP must be
left clear until after the window is created. Otherwise,
the Executive will try to map the window to the region,
causing an error. See the discussion which follows.

Create the virtual address window.

Set WS.MAP so that the task will map as part of the
receive-by-reference,.

Receive-by-reference and map.

Set base address in region, using base virtual address for
APR 7 (160000(8)) .

Get length actually mapped (two blocks, the same as length
of region) and convert from blocks to bytes. Just display
that many characters,

Display all characters with one QIO directive. Note on
the run session that we set the terminal buffer to 64(10)

to allow for margins on an 8-1/2" by 11" page.

© cExit. The Executive will detach the task from the region.
When both tasks have detached, the region will be deleted.

The receiver may map after the receive-by-reference or as
part of the receive-by-reference. 1If the receive-by-reference and
the map are combined in one directive, issue the
Receive-by-Reference directive with the WS.MAP bit set. 1In that
case, the WS.MAP bit must be clear when the window 1is created,
since vyou can't map until you receive. This is necessary because
even though the receiver 1is attached to the region when the
reference 1is «queued up, the region ID isn't filled in the WDB
until the receiver executes the Receive-by-Reference directive,
Therefore, 1if vyou receive and map in one call, issue the Create
Address Window directive with the WS.MAP bit clear; then set it
before issuing the Receive-by-Reference directive. If you use a
separate Map directive, the WS.MAP bit can be left clear.

378

DYNAMIC REGIONS

1 LTITLE RCVREF
2 JIDENT 701/
X ENARL LC ¥ Enable lower case
4 it
o] $ File RCVREF.MAC
& ¥
7 ¢ Frogram to receive-bu~reference a redion from SNOREFy
8 i omar to the redgions read ASCIY data from the redgion
Q y detach from the redion and exit. The region will be
10 i deleted on last detach.
i1 ¥
12 ¥ Assemble and task-build instructions?
13 §
14 § MACRO/ZLIST LEILL s LIFROGMACS/LIBRARY sdeviLufdlRCVREF
" 15] LINK/MAF/0FTIONS RCVREFLEBICL» LIFPROGSUBS/LIBRARY
16 § OrtionT WNDWS=1
17 H Oetion? <RET>
18 #
1% § Imstall and rurn instructions! RCVREF must be instal led
20 i Run SNIREF first and thern run RCVREF
21 § -
22 MOCALL EXITH$SWHRBRK$yRREF$ ¢ External sustem
23 SMOALL QIOWS$SyCRAWS yDIRS §oomacros
24 MOALL DIRERRy IOERR ¥ External suerlied
25 i omacros
264 ¢y Defime window withi
27 $ Y = 7
28] Give = 200 (32, word bhlocks)
29 H Allow for full AFR
30 ¥ These are Tilled in on receiver 3s set by sender?
‘, 31 # Offset in redion = 0 (32, word blocks)
32 § Length in region = 0 (32. word bhlocks)
33 H reset when marred
34 # Access = Q)
25 i Noted: Must mar after receiving (or as rart of receive)
L 36 WoEs WOBRKS 79200
37 H
g RECS RREF4$ WhE i Set ur IFER for RREF$
39 WINZ CRAWS WHE i. Bet ur DFRE for CRAWS
i 170 status block

40 I08R: + BLKW 2

41

t’ 42 START: DIRS$ #FWIN ¥ Create virtual address
43 i window
44 RCH ERRL i Branch on error

¢’ 45 RIS FUS MAF Y WIB+W . NETS § Set WDEB to mar on
44 i receive

Example 8-5 Receive-by-Reference (Sheet 1 of 2)

371

Q 4+ . DIR$

48
49 ECS
Q o MOY
51
0[52 MOV
53 MUL
O 34 QIDWES
56 RCS
57
58 TSTR
56 BLT
O EXIT$S
&1 y Error code

&2 ERR13 DIRERR
63 ERR23 DIRERR
64 ERR32 DIRERR
63 ERR43 TOERR
66 +END

DYNAMIC REGIONS

#REC

ERR2
$160000sRS

WOE+W . NLENy R3
#64.5R3
#I0. WURs Gy F1

ERR3

INSk
ERR4

“ERROR CREATI
<ERROR ON REC
<ERROR ON WRI
#1088y “ERROR
START

Receive by reference
and mas

Branch on error

Set base address in
resgion

Size of redgion to R3

Convert blocks to butes

vy EIOSRy v RIS sR3Iv k40> 5 Write

¥ data

EBranch on directive
error

Check for 1/0 error

Branch on error

W W e @r NEr e G

| M s ey

NG VIRTUAL ADDRESS WINDOW:
EIVE AND MAF>

TE Q10>

ON WRITE QIO:

Example 8-5 Receive-by-Reference (Sheet 2 of 2)

372

DYNAMIC REGIONS

The Mapped Array Area

If you want to automatically set up a. large core resident
data area, without wusing a create region directive, you may use
special techniques to set up an area called a mapped array area.
Figure 8-3 shows a task wusing a mapped array area. The Task
Builder sets things . up so that when the task is initially loaded,
the task region is larger than normal, with the mapped array area
set aside in memory immediately below the task header.

The task is automatically attached to the region, since it is
part of the task region. Therefore, all you have to do is to
create a virtual address window and map it to the region. The
area may be any size, as long as the task image and the mapped
array area fit into the partition. This means that it may be
larger than 32K words.

Typically, the virtual address window maps only a portion of
the region at a time., 1In Figure 8-3, the virtual address window
maps 4K words at a time.

This technique is wused to implement virtual arrays in
FORTRAN. Since the area isn't set aside until the task is loaded
into memory, any initialization of the area must be performed at
run time.

Use the following procedure to create a task which wuses the
mapped array area.

1. Set up a separate Psect in the source code and reserve
space for the virtual address window (using .BLKB or .BLKW
statements). Also set wup symbols for reference, if
desired. Do not initialize any locations.

2. In the code, create a virtual address window.

3. Map the window to a portion of the region.

4., Later, map to other portions of the region by modifying

the offset within the region and reissuing the map
directive.

373

5.

DYNAMIC REGIONS

Task-build with the WNDWS and the VSECT options.

WNDWS=n allocates space in the task header for the
extra window block

VSECT=psect-name:base:window-length:physical- length
where

psect-name = the name of the psect to be used for
the virtual address window

base = the base virtual address for the window
window-length = the length of the window in bytes

physical-length = the length of the mapped array
area in 32-word blocks.

This option sets up virtual addressing for the region

and specifies the amount of space to be set aside for
the mapped array area.

374

160000 APR 7

APR 6

APR 5

APR 4

APR 3

APR 2

APR 1

APR O

DYNAMIC REGIONS

VIRTUAL
MEMORY

WINDOW
(4K WORDS)

TASK
IMAGE

(28K WORDS)

HEADER & STACK

@ INITIAL LOAD AND MAP

(2) TOTAL SPACE INITIALLY
ALLOCATED.

4K WORD

AREAS MAPPED AS

NEEDED.

Figure 8-3

PHYSICAL
MEMORY

TASK
IMAGE

HEADER & STACK

MAPPED
ARRAY
AREA

(32K WORDS)

375

TK-7739

The Mapped Array Area

DYNAMIC REGIONS

Example 8-6 shows how to create and use a mapped array area.
The following notes are keyed to the example.

000 0 00

This program uses the supplied macro DIRERR.

WNDWS = 1 is needed to reserve space for the extra window
block. The VSECT option sets up addressing for Psect VvV,
beginning at virtual address 160000(8), for a 1length of
20000 (8) bytes or 4K words. The last argument sets up a

mapped array area 200¢ 32-word blocks = 200000(8) bytes
long = 32K words.

Set up Psect Vv, which is used for mapping the mapped
array area. Symbol A marks the beginning of the window at
virtual address 160000(8). The number of bytes reserved
must be at least as long as the window size (4K words).

Data to be placed in the mapped array area.

WDB for the window. The region ID is left '@' because the
region is the task region, which always has region ID 4.

Create the virtual address window and map starting at
offset @, to the first 4K word area.

Move "A1lG7" into the first two words of the area.

Modify the offset in the region in the WDB (at offset
W.NOFF) to 200(8) blocks, so that mapping will begin at
that offset within the region.

Map to the second 4K word area.

Move "B2G7" into the first two words of the second 4K word
area.

Similarly, map and move "C3G7" to the third 4K word area,
and "D4G7" to the fourth 4K word area.

Map back to the first 4K word area.
Display the first four bytes.

Map to the second 4K word area and display the first four
bytes.

376

DYNAMIC REGIONS

ﬂb Map to the fourth 4K word area and display the first four
bytes.

@® Map to the third 4K word area and display the first four
bytes. -

The mapping order for displaying the data is different Jjust
to show that the order need not match the original order for
placing the data into the region.

Now do the Tests/Exercises for this module in the
Tests/Exercises book. They are all 1lab problems. Check your
answers against the solutions provided, either the on-line files
(which should be under UFD [202,2]) or the printed copies in the
Tests/Exercises book.

If you think that you have mastered the material, ask your
course administrator to record your progress on your Personal
Progress Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

377

/o

b g
= O ONO LD LI

ey
.

-
B Ol

15

Bt e s
Reliss N

2
21
D
A
23
L 24

23

[26
27

28

33
34
35

36

38

| 39

40

| 41
42
43

44
45

| 46

s

3
i

TP EL MEE VER Er G WY €3 G W BP9 Wy

TATA?
NATHE?
NnaTe:
DATDRS
NHATG:
WOERS
START!

All

A4

Example 8-6

This
cdata im the first 2 words of esch of the first four
4K word hlocks. It then retrieves the data and srints
it at the terminal.

Assernble and task-build instructions?

DYNAMIC REGIONS

cTITLE V83
SIDENT 201/
SJENARL LG i Enahle lower case

srogram uses the marrad 8718y 8rea. It rlaces

+

MACROZLLIST LEICLy LIPROGMACS /L IBRARY sddeviLufdIVs3
LINK/ZMAF/ZQFTIONS VEZ«FROGSURS/LIBRARY

Ortion? WNIWS=1

OetionT VSECT=UVIL1460000:20000:12000

Ostion? “RET:

HMCALL QIOWSS e EXITSS s WIREBKS » CRANSGS e MAFSS
i Bustem macros

SMCALL DIRERR Surrlied macro
JFHBECT VU CONCGEL Fasect Tor marred srray
area

+BLKER 20000 Used to reference the
virtual area

Back to blanmk Psect

ey es ER CEr R G

+FSECT

SASCIT /ALY
JASCIT /R2/
+ASCIT /C3/
LABCIT /D4s/
SAGCIT /G7/

¢ Dlefine window definition hlock

WHORERE 7920050502200 WS MAF T WS WRT >0

CRAWSES Wk i Create window and maw
i to lat 4KW block

BCC Al i Branch on dir ok

DIRERR <ERROR CREATING WINDOW OR ON FIRST MAP:

MOV NATAs A v Move data Lo lst word

MOV 2y RS

MOV IATGyACRE)

MOV FWHE RO

MOV F200: WL, NOFF(ROY § Set ur next 4KW block

MAF$S FWIR i Mar 2nd 4KW block

BCC A4 3 RBranch on dir ol

NIRERR <ERROR ON 18T MAF TO 2NI 4KW RLOCK:

MOV NATEA

MOV BATG s A(RE)

Move data to 2nd wordg

<

Use of the Mapped Array Area (Sheet 1 of 2)

378

r
o o U
il <o

b6
67
48
- 69
70
Q|
72
73
- 74
75
76
77
|78
79
80

Fun

*RUN
AlG7
R2G7
naG7z
C3G7

Example 8-6

A7 3

AB:

AD2

ALO2

Allz

Session

Vg3

MOV
MAF$S
BCC
DNIRERR
MOV
MOV
MoV
MAF4$S
RCC
DIRERR
MOV
MOV
MOV
MAF4$S
RCC
DIRERR
QAIOUSS
MOV
MAFSS
RCC

- BIRERR

QATOWES
MOV
MAF$S
RCC
DIRERR
QIDUWHS
MOV
MAFS$S
RCC
DIRERR
RIOWHS
EXIT$S
+ENI

Use of the Mapped Array Area

DYNAMIC REGIONS

£400 W, NOFF (RO) $
FWIE

A7

“ERROR ON 18T MaP
DATC A

DATGy ARED

FEOO0 s W NOFF (ROY ¢
FWOR

A8

“ERROR ON 18T MAF
DATIA

DATGyA(RE)

FOry W NOFF (RO §
FWIR

AY §
“ERROR ON 2ND MAF
FIO WURy#SvElyvoy
F200 s W NOFF(ROY 3§
fFWHER

ALO ¥
“ERROR ON 2NIN MAP

FI0WVRsHS vl y vy v

FLHOOy W NOFF (ROGY §
FWIE
All $
SERROR ON 2NDIt MAF
FIQOWUR vy #S okl sy v v
#4000 W NOFF(RO)Y ¢
FWHER
AL H
SERROR ON 2NI MAF
FI0WUBsES v Fly vy o
¥

START

379

Set ur 3rd 4K block

TO 3RO AKW BLOCK>

+ 4th 4K blochk
TO 4TH 4KW BLOCK:>
o back to

cdir ak
BLOCK:

Branch on
TO 18T 4KW

Ay #4 0 B A0

Go to 2rnd 4K bhlook

Branch on dir ok
TO 2NN 4KW BLOCK:-
Ay F4 e 40
Go to 4th 4K bloock
Branch on odir ok
TO A4TH ARKW RBLOCK>
#Av 4 40

Go to 3rdd 4K block

Eranch on dir ok
TO 3RN 4AKW BLOCK:
Ay E4y F40

Eseit

st 4K bhlock

(Sheet 2 of 2)

"FILEI1/O

FILE I/0

'INTRODUCTION

The RSX-11M file system is composed of three parts.

e File structures - the organization and data structures
maintained on the mass storage volumes themselves

@ Ancillary Control Processors (ACPs) - tasks which maintain
the file structures and provide access to them

e File access routines - provide user-written tasks with an
interface to ACPs, which provide and maintain organization

within files.

This module reviews some basic information about file
storage, and provides general information about the RSX-11M
primary file structure called FILES-11, and its ACP. This module
also presents an overview and comparison of the two supplied file
access subsystems, File Control gervices (FCS) and Record
Management . Services (RMS). The following module provides details
on programming using FCS, which is the more widely used subsystem.

OBJECTIVES

1. To describe the steps involved in file I/0

2. To describe the FILES-11 structure and how the F1l1ACP
maintains that structure during file I/0

3. To identify the advantages of using either FCS or RMS for
file access. v

RESOURCES

1. IAS/RSX-11 I/0 Operations Reference Manual, Chapters 1 and
5

2. RMS-11 User's Guide

383

FILE I/0

OVERVIEW

Quite often in an application you need to store data on a
peripheral device (disk, magtape, etc.) for later retrieval. To
write such an application, you must know something about the
different devices which are on your system. 1In addition, you must
understand the file structure and its support systems. Once you
know that, you can learn the procedure for actually performing I/O
operations. '

TYPES OF DEVICES
Record-Oriented Devices
Record-oriented devices have the following characteristics.

@ Data is handled a record at a time.
® There is no file structure.

Terminals, 1line ©printers, and card readers are all

record-oriented devices. They are not designed for storage and
fast retrieval of data, but are designed instead to support

interactive sessions or provide hard copies of reports and other
data.

File-Structured Devices

File-structured devices have the following general
characteristics. The data they contain:

@ Can be handled in files
e Can be stored and retrieved quickly

e Is typically stored on a storage medium which can be moved
from one device to another.

] Hard disks, floppy disks, and magtape are examples of
file-structured devices. The following definitions should prove
helpful in our discussion.

a file - a collection of related data; therefore, a
logical unit of mass storage. '

385

Types

"FILE 1I/0

volume - a physical unit of mass storage consisting of a
recording medium and its packaging. Examples are a disk
pack, a reel of tape, a diskette, and a DECtape 1II

cartridge.

of File-Structured Devices - There are two types of

file-structures devices, sequential and random-access. The type
is determined by the kind of access to data on it.

Sequential devices have the following characteristics.

Data 1s retrieved in the same order as written

New data is always appended at the 1logical end of the
tape, after the last data written '

data cannot be written in the middle of the volume without
losing the data past that point.

Magtape and cassettes are examples of sequential devices. 1In

essence,

data is stored in order as written. To access any data,

all data before it on the tape must be read first.

Under RSX-11M, the magtape ancillary control processor
(MTAACP) supports the ANSI file structure.

The MTAACP supports the following file setups:

A single file on a single volume
A single file on multiple volumes
Multiple files on a single volume
Multiple files on multiple volumes

Random-access devices, also called block-structured devices
or block-replaceable devices, have the following characteristics.

They can:
® Store and retrieve data in units called blocks
@ Write or read blocks in any order
® Rewrite blocks without interfering with other blocks.

Hard disks (RLgl1/02, RPP6, RMP2/@3), diskettes (RX11l, RX211)
and DECtape II are examples of random-access devices.

386

FILE I/0

The FILES-11 file structure, the standard RSX file structure,
is supported by the FILES-11 ancillary control processor (F11ACP).
F11ACP supports multiple files on a volume, but a file may not
extend across volumes. The COPY command (PIP in MCR) maintains
the FILES-11 structure during transfers of files within a given
‘device and between FILES-11 devices on a system.

The ANSI file structure is useful ' for transfers of files
between different (possibly non-DIGITAL) systems. FILES-11 is
useful between DIGITAL systems under RSX-11M, RSX-11M-PLUS, IAS
and VMS if the two systems have a device in common (e.g., both
systems have RL@2s). The FLX utility is provided to facilitate
transfers between RSX and other DIGITAL systems which don't
support FILES-11, or between systems which support FILES-11 (even
between two RSX-11M systems) which do not have a common FILES-11
device. In that case, the FLX transfer 1is typically made on
magtape, using DOS or RT-11 format.

387

FILE 1/0

COMMON CONCEPTS OF FILE1/0

Common Operations
File I/O is often used to perform the following operations.
e Creating a file
e Deleting a file
e Modifying existing data withih a file

e Appending new data to a file (or extending the file).

Steps of File1/0
Use the following three basic steps to do file I/O.
1. Open the file.
Specify a LUN and the file. The ACP connects a task

LUN to the file. Specify the access rights desired.
The ACP checks against the file protection code. If

you are creating a new file, specify the file
characteristics (e.g., format and initial length).

2, Perform the I/O operations.

Use macros to invoke subroutines to store data in the
file and/or retrieve data from the file.

3. Close the file.

Notify the system that the file operations are
completed, so that appropriate cleanup work can be

performed.

388

FILE I/0

FILES-11

In order to use FILES-11, you need to understand its
structure and how to interact with it.

FILES-11 Structure

A block is the smallest unit of storage which is read from,
or written to, a FILES-11 device. Typically, the blocks are
256 (19) words or 512(10) bytes 1long. Some devices divide or
format their volumes into pieces which are 256(19) words long, and
others do not. Therefore, the FILES-11 structure does some
converting or mapping so that you work with logical blocks which
are all standard size. When the volume 1is formatted, 1logical
block numbers are assigned to each 256 (1¢) word area on the disk,
starting with logical block #. Generally, the position of data on
a FILES-11 volume can be described in three alternate ways, by:

e Physical location
e Logical block number
e Vvirtual block number

Table 9-1 compares the three ways. Figure 9-1 shows an
example of the mapping among the different methods. Typically,
you will reference data only within files. The files are
referenced by virtual block numbers within the file, starting with
1. Logical block numbers are assigned to the entire disk,
starting from #@. '

The system converts virtual block number references to
logical block number references. For example, if you request a
read of virtual block 5, the system looks at the mapping and finds
that this corresponds to 1logical block 1622(8). This logical
block, in turn, is mapped to one or more specific sectors on the
disk, which are read from the disk.

389

FILE I/0

Logical and Vvirtual Blocks

Comparison of physical,

Table 9-1

o

e
i

5 %@j@@@i
0 A R 0

o
i

@@&m ,m@m@m

e

i @@mﬂ%&mﬁ
A
s L

c)xHx té;W@@m, o
£

wmmmmwammmemmmWﬁw mm

s

e @@m@mmx
@@ mqmmmﬁgﬁsm o et

Sew

L -

0
.

e A ﬁm& ,@N«E@\W\m %
o @m@%@@m
e

i
i

@ﬁﬂﬁ@m@i

R B B R

-

i

e B
SRS

e
SUSRR a

i

S

:

e R s

=
-]

P X
[o 3N el =
o (]
P .Q
o
QU C
w30
© —
(VIR e)]
[+
L 0l
v u
o
ST
=\
[e2Ne]
nod
ES RN
ot S 0™
[)
3~
Q,
~ =
0N «©
T O
wao
o O
Ve M
(] (o]
W
[}
nP o~
T >N
Qa
© o
o ~T
ns= g
ne—o0
O~ Q,
oANWn
O~ O
[((Te R
“
0w wao
«~ O 0D
a -
PN
@« O N
T O
—~ 0
~Q
> T
—]
— Q-
T oW
0 O
o 0
Q, (0]
>y Qu
B0
+
[O 2R]
T
% 0
o3

account or a single line of text at a terminal.

request

a

Figure 9-2 shows how the operating system handles

a

to

compiler
to read that record.

the

(FCS)

The first row shows a FORTRAN READ.
ted by

1s conver

ion

tructi

ins

a record using FCS.
call to the File Control Services

In MACRO, you will issue the GETS$ call yourself.

find
and
vir

read
The FORTRAN READ

to
GETS

checks to
that record

FCS

the file contains

out which virtual block within

the

1l block number and

for you. The Executive converts
then

ive

the QIO direct
tual block number to its corresponding log

lssues

1Ca

converts the

driver
to the appropriate physical locations, and

The

1 block QIO.

ica
number

d log

block

issues a rea
logical

to memory.

itself will then be

The record

in

reads a block of data

thin

i

located w

the block of data.

Record

he

t
2 compiler converts the

PLUS-2 READ under

The BASIC-PLUS

‘a BASIC

The second row shows

(RMS) .

1ces

Management Serv

the

to a QI0, to read
the steps are

From that poin

the FORTRAN example.

1S

RMS converts th

block

3

READ to a RMS SGET call

t on,

tual

vir
in

ing
ke those

correspond
t 11

jus

3990

FILE I/0

FILE SAMPLE.TXT;1

VIRTUAL
BLOCK #'S
(IN THE ! 2 S R 6 7] 10
FILE) < N X —
\ A S
N\ N P
X NN
N7 NN R >
~ N\ .~ ~ N
N\ N NN AN
-~ AN
~ ~ NN AN
e)< \ N NN\ N
LOGICAL

BLOCK o 00 102
#S (ON

103 | 104 | o] 457 | 460 | <] 1104 oo | 16211622

THE VOLUME) \

PHYSICAL
LOCATIONS
(ON THE
VOLUME)

Figure 9-1

NOTE: BLOCK NUMBERS ARE IN OCTAL

TK-7738

Example of Virtual Block to Logical Block,
to Physical Location Mapping

391

FILE I/0

MACRO-11
FORTRAN ENTERS HERE
. . : EXEC :
READ (5,10) | COMPILER cers LSS aio 10.rve EACP L 010 10 rLE |RRIVER
1DATA i o e
. TRANSFER
FORTRAN RECORD FCS RECORD VIRTUAL LOGICAL FROM PHYSICAL
BLOCK # BLOCK # LOCATIONS ON
DISK
BASIC—PLUS-2 RMS
READ DATA [COMPILER | gqpt
BASIC—PLUS—2 RMS RECORD
RECORD

TK-7743

Figure 9-2 How the Operating System Converts Between
Virtual, Logical, and Physical Blocks

Figure 9-3 shows the FILES-11 structures which are wused to
support virtual-to-logical block mapping. Every FILES-11 volume
has a number of system files on it, one of which is the Index File
(INDEXF.SYS). The 1Index File contains certain blocks which are

for system use, plus a file header block for each file on the
volume.

Each file header block contains file retrieval pointers which
are used 1in mapping virtual blocks to logical blocks. Each file
retrieval pointer locates a range of contiguous logical blocks.
The first byte tells how many contiguous blocks are in the group,
and the next three bytes specify the logical block number of the
first block in the group. Therefore, in the figure, there are
five contiguous blocks, starting with logical block 336851(19).
virtual block 1 = logical block 336851(19), vb 2 = 1lb 336852(189),
vb 3 = 1lb 336853(1¢), vb4d = 1lb 336854(19), and vb 5 = 1b
336855(1@). The next group of blocks, starting with virtual block
6 has 51(10) blocks and begins at 1logical block 336900(19) up
through logical block 33695¢(1¢). The last 17(1¢) virtual blocks
(virtual blocks 57(1@) to 73(1¢)) begin at logical block
337806 (1@) up through logical block 337022(19). These file
retrieval pointers are updated each time a change in block
allocation occurs as a result of a file I/O operation.

392

FILE I/0

VOLUME
INDEX FILE
d ~
//// \\\
e \\\\
e ~
e ~
_ ~
FILE | FILe | FILE [FILE], . | FILE
HDR | HDR | HDR | HDR HDR
VBN 1 2 3 4 5 6/ 7 \10 N
/ \
/ \
/ \
/ \
FILE HEADER
FILE 3
O+ RETRIEVAL POINTERS
/N
/ \
SIZE |
1ST LBN
N
SIZE 1ST LBN
5. H:005 L:021723 = 336851.
51, H:005 L:022004 = 336900.
17. H:005 L:022156 = 337006.

TK-7741

Figure 9-3 FILES-11 Structures Used to Support
Virtual-to-Logical Block Mapping

393

FILE I/0

Directories

The operating system identifies files by file IDs, which are
used to calculate the location of the file header within the index
file. When you need to locate a file, it is difficult to remember
where it is on the disk, or even what its file ID is. 1Instead,
you use a file specification; a more English-like way of
identifying a file. An example of a file specification is:
DR1:[5,6]SAMPLE.TXT;l. Tasks you write also usually identify
files with a file specification. Directories are structures set
up on a FILES-11 volume that are used to group files together, and
to convert file specifications to file IDs,

A directory is a list of files belonging to a single user, or
grouped together for other organizational purposes. An example of
files grouped together for organization is the libraries in User
File Directory (UFD) [1,1] on the system device. On a FILES-11
volume, a directory is a special file containing a 1list of the
files belonging to that user or group. For each file, the list
has:

e The file specification: name, type, and version number
e The file ID

The file ID consists of a file number and a sequence number.
The file number identifies the offset within the index file to the
virtual block containing the file's file header. The sequence
number is wused to distinguish this file from previously deleted
files which used the same file header. There are two levels of
directories on a volume, as follows.

® One Master File Directory (MFD) which is directory [0,0]
® One or more User File Directories (UFDs)

Figure 9-4 shows the relationship between the two levels and
the files. The MFD contains a list of the system file, plus one
entry for each UFD on the volume. Each UFD file has a name of the
form gggmmm.DIR, where [ggg,mmm] is the user identification code
(UIC) of the owner. Each UFD contains a list of the files in that
directory. ”

394

FILE I/0

MFD
{0,0]

UFD UFD
[200,1] (303,5]
HIYAMAC;1 FLY.TXT;1 1ZZY.TXT;1 0ZY.TXT;1 LOGIN.CMD;1
TK-3965
Figure 9-4 Directory and File Organization on a Volume

Figure 9-5 shows the steps used in locating and accessing the
blocks of the file DR2:[5,6]SAMPLE.TXT;1. The device name, DR1:
tells which device or volume to look on. The operating system
reads the MFD file header to find the retrieval pointers for the
MFD file itself. It converts the virtual blocks to logical blocks
and reads the blocks of the MFD file. It searches through the
directory list for the UFD [5,6], namely the file 0@5006.DIR.

When it finds that name in the list, it uses the file 1ID to
locate the UFD file header. It reads the retrieval pointers
there, converts the virtual blocks to logical blocks, and reads
the blocks of directory [5,61. It 1looks for an entry
SAMPLE.TXT;1. When it finds that entry, it uses the file 1ID to
locate the SAMPLE.TXTs file header. It then reads the retrieval
pointers in the file header, converts- - the wvirtual blocks to
logical blocks, and reads the blocks of the file itself.

If this sounds like a lot of work, it is. Later, you will

learn about a way to go directly to the file header using the file
ID if it is opened a second time during a task's execution.

395

FILE I/0

DR1:[5,6]SAMPLE.TXT;1

MFD
HEADER :
RETRIEVAL .
POINTERS -] 005005.DIR FILE ID | wep
005006.DIR FILE ID
UFD
HEADER | .
RETRIEVAL :
POINTERS SAMPLE.TXT;1 FILE ID | UFD [56]
THIS IS A SAMPLE FILE
FILE
HEADER .
RETRIEVAL :
POINTERS FILE
SAMPLE.TXT;1

TK-7735

Figure 9-5 Locating a File on a FILES-11 Volume

396

FILE I/0

Five Basic System Files

There are five basic system files found on all FILES-11
volumes. They are all created when the volume is initialized and
are all entered in the MFD. Two of these, the Index File and the
Master File Directory, have been mentioned previously. The five
files and their purposes are as follows.

e The Index File: INDEXF.SYS.

- Boot block - used when a system volume is bootstrapped

— Home block - contains volume identification and other
information

- Index file bitmap - a record of which header Dblocks
are in use; used by F11ACP when allocating header
blocks to files

-~ File header blocks for all files on the volume

e The Storage Map: BITMAP.SYS.

- A record of which blocks on the volume are in use
- Used by F11ACP when allocating blocks to files

e The Bad Block File: BADBLK.SYS.
- A list of blocks on the volume known to be bad

e The Master File Directory: 000000.DIR.

- Entries for the five system files

- An entry for each UFD file
® The System Checkpoint File: CORIMG.SYS.

- Space used for checkpointing if the system manager
allocates space in it,

397

FILE I/0

Functions of the ACP

The F11ACP maintains the FILES-11 structure on a volume
during its use.

The most elementary functions performed by the ACP are as

follows.

e Maintaining the File Header Blocks. This includes:

Allocating and initializing a file header when a file
is created

Recovering a file header for reuse when a file Iis
deleted

Maintaining file attributes such as protection code,
length, etc.

Maintaining the file retrieval pointers

e Maintaining directories. This includes:

Creating directory entries when a file or UFD is
created, or when a file synonym is created (e.g., by
the PIP /EN switch)

Removing entries from directories when a file |is
deleted or a file synonym is removed (e.g., by the PIP
/RM switch)

e Maintaining block allocation. This includes:

Allocating blocks to files when a file is created or
extended

Recovering blocks for reuse when a file is deleted or
truncated

e Controlling and facilitating task access to files. This
includes:

Checking protection codes to determine access rights

Connecting a task's LUN to a file to allow virtual
block 1/0

Controlling shared access to files.

398

when YOU

FILE I/0

Figure 9-6 shows the flow of control during the processing of
an I1/0 request. This figure parallels Figure 9-2, which shows how
the operating system converts virtual blocks to logical blocks to
physical locations.

The user task issues a read record request which is converted
by an FCS routine in the user task to a QIO, to read a virtual
block. The Executive converts the virtual block number to a
logical block number, wusing file retrieval pointers in pool.
These retrieval pointers are built by F11ACP from the retrieval
pointers in the file header. The Executive issues a read logical
block request to the driver. The driver converts the logical
block number to the actual physical locations and copies the block
into the user buffer. ‘

For additional information on the FILES-11 structure, see
Chapter 5 of the IAS/RSX-11 I/0 Operations Reference Manual.

USER TASK POOL

READ RECORD RETRIEVAL POINTERSf*— ——— — —— — ——— — -
: FILE HEADER

FCS OR RMS

QIO 10.RVB m‘

DRIVER

FILE BODY

F11ACP

TK-7737

Figure 9-6 Flow of Control During the Processing of an
I/0 Request

400

FILE I/0

OVERVIEW AND COMPARISON OF FCS AND RMS

Common Functions

The File Control Services (FCS) and the Record Management
Services (RMS) both offer easy methods for performing file I/O.
The operator or programmer need not be concerned with all the
nitty-gritty details, but can instead let FCS or RMS take care of

them. Both perform the following functions:

®@ Serve as an interface to the ACPs

e Allow I/O to the wvirtual blocks of a file on a
block-by-block basis (Block I/0)

e Divide files into 1logical records and allow 1I/0 to
individual records within a file (Record I/O)

e Allow the programmer to process records using one of the
following buffers (Figure 9-7) o

- A buffer reserved by the programmer with another
buffer transparently used by FCS or RMS (move mode)

- Direcfly in the buffer used by FCS or RMS (locate
mode)

e Allow device independent I/O - the routines are written to
work correctly with terminals, disks, etc.

e Provide mechanisms for controlling shared access to files.

Beyond that, FCS and RMS each offer a variety of file
organizations, record types, and access modes. These are
described in the following sections.

4¢1

DISK

FILE I/0

>
@ 2

DISK

MOVE BLOCK
TO INTERNAL
BUFFER

(IF NECESSARY)

%7

Figure 9-7

2

MOVE BLOCK
TO INTERNAL
BUFFER

(IF NECESSARY)

402

MOVE MODE
TASK
(IN MEMORY)
| USER RECORD
[ABC..-. | BUFFER
MOVE RECORD
TO USER
RECORD BUFFER
| 1 l INTERNAL
| [aBC l | BUFFER
LOCATE MODE
TASK
(IN MEMORY)
POINTER
/ POINT
/. POINTER
/ TO RECORD
/
/
’I
[~ Ly INTERNAL
[aBC. .- | BUFFER

TK-7742

Move Mode and Locate Mode

FILE I/0

FCS FEATURES

File Organizations

Essentially, all FCS supported files are sequential, meaning
that new records are added at the end of the file, and records are
stored in the order they are written. Figure 9-8 shows a file
with sequential organization.

END OF FILE

A 4

RECORD | RECORD |RECORD RECORD
1 2 3 n

SEQUENTIAL FILE ORGANIZATION

Figure 9-8 Sequential Files

Supported Record Types

FCS supports two record types, fixed-length records and
variable-length records. Variable-length records may be sequenced
or nonsequenced. An example of each type of file is shown below
with the following three records:

12345
123 1234
AAAA BBBB CC D

The examples are in DMP format; the six-digit number on the
left is the byte <count in octal of the first byte in that row.
Then 16(10) = 20(8) bytes follow in order in octal. Below each
byte in octal 1is its equivalent 1in ASCII. An underscore ()

stands for an ASCII blank. Consult the examples as you read the
description of each record type which follows.

403

FILE I/0

Examples:

Fixed-Length Records (record length

P00000 061 @62 P63 P64 P65 P40 @40
1 2 3 4 5 _ _

P02020 040 XXX P61 P62 063 P40 @61
_ pad 1 2 3 _ 1

PP0040 P40 040 P40 xxXx 1901 101 191
__ _ pad A A A

P00060 040 104 P40 040 P40 XXX XXX

D pad

Variable-Length Records

000000 @05 009 061 062 P63 P64 @65
1 2 3 4 5

000020 963 064 P16 @00 101 101 101

3 4 A A A
PO00040 Q40 104 XXX XXX XXX XXX XXX
D

Sequenced Variable-Length Records

pooooe 007 000 001 000 P61 062 P63
1 2 3
P00020 P63 P40 P61 062 063 064 020
3 1 2 3 4

000040 102 102 102 940 103 103 040
B B B _ C C

404

= 17(18))

240

P62
2
101
A
XXX

XXX
pad
181

XXX

g64
oo

104
D

g4

963
3

g40

XXX

210

249

XXX

265
903

XXX

P40
264
4
102

B
XXX

200
192

XXX

XXX
pad
000

XXX

g4p
gdp
132

XXX

261
192

XXX

212
191
A

XXX

@40
940
192

XXX

262

192

XXX

o008
191

XXX

040
940
192

XXX

P63
192

XXX

202
191
A

XXX

g40
940
)

XXX

13}
191

XXX

240
Y
193

XXX

g61
103

XXX

P61
o640

XXX

p4p
940
173

XXX

7262
123

XXX

062
192

XXX

FILE I/0

Fixed-length records all contain the same number of bytes.
Therefore, the location of the beginning of any record within the
file can be computed from its record number. With all record
types, each record begins on an even word boundary. This means
that in files with fixed-length records, if each record contains
an even number of bytes, the next record begins immediately after

it. 1If, on the other hand, each record contains an odd number of

bytes, one byte is unused after each record, and the next record
begins at the next word boundary. This unused byte 1is called a
pad byte.

Variable-length records may each have different lengths. For
all files with wvariable-length records, the first word of each
record contains a byte count, telling how many bytes are in that
record. For variable-length nonsequenced records, this count word
is followed by the data itself.

Following this, at the next word boundary, is the byte count
for the next record and then its data. To locate a given record
within the file, you must first read the byte count for the first
record in the file. You can then use the byte count to locate the
second record. You then continue reading byte counts and locating
successive records until you reach the desired record.

variable-length sequenced records contain a "byte count, a
user specified sequence word, and then the data itself. The
sequence word can contain the record number or any other user
specified wvalue. variable-length sequenced records are not used
much under FCS. They are supported to allow compatibility with
RMS variable-with-fixed-control records.

495

FILE I/0

Table 9-3 compares the different FCS record types.

406

FILE 1I/0

Record Access Modes

FCS offers two record access modes, sequential access and
random access. Table 9-4 compares the two access modes. The
major difference is that with random access, the user can process
records in any order (e.g., record 12, then record 4, then record
29). This is possible with fixed length records only, because FCS
can calculate the position of each record within the file from the
record number and the record size.

With variable-length records, on the other hand, FCS can't
locate record 12 unless it reads records 1 through 11 first, using
the record length in the first word of each record to calculate
the starting position of the next record. Therefore, you must use
sequential access with variable length records. You may choose
either of the two access modes for fixed length records, depending
on how your application processes the records.

497

FILE I/0

Comparison of Sequential Access I/O and
Random Access I/0

Table 9-4

o
e
= s

Esiﬁ.mmm,

Ghne
o

: =
. , ; 0
- o - . . w@mwmﬁmﬁ
. - m@,w_!mmw
i

-
L

408

FILE I/0

File Sharing

A task which opens a file may choose one of the following
options:

e That no other accessor change any data in the file while
it has access ("shared" read, "exclusive" write).

- 1If this task desires read access, other accessors may
have simultaneous read access, but no other accessor
may have simultaneous write access.

- If this task desires write access, no other accessor
may have simultaneous read or write access.

- Any access request causing a conflict is rejected.

e That other accessors may change the data while it has
access ("shared" read/write access).

- If this task requests read or write access, other
accessors may have simultaneous read or write access.

- Use extreme care - Any precautions against corrupted
data are the responsibility of the accessors.

e That no other accessor changes any block within the file
which has already been accessed (block locking). Shared
access to the file is allowed, but:

- Each block which is written to is locked for exclusive
write access.

- Fach block which is read is 1locked for shared read
access.

- It is not recommended if accessing a large numbers of
blocks, because each block 1lock uses four words of
pool.

- Any attempt to access a block which causes a conflict,
returns an error,.

499

FILE I/0

RMS FEATURES

File Organizations

RMS supports three file organizations, sequential, relative
and indexed. See Figure 9-9. Sequential files under RMS are the
same as sequential files under FCS. A relative file 1is composed
of a series of cells of uniform size. The cell size is greater
than or equal to the largest record to be placed in the file. A
single record may be written to a cell, or the cell can be empty.
The cells may contain wvariable-length records. Variable-length
records within relative files can be accessed randomly because
each record is contained within a fixed-length cell. Also, when
you read successive records in a relative file, empty records are
automatically skipped.

An indexed file is composed of records, plus one or more
indexes which are wused to access those records. Each index is

used to retrieve records according to the contents of a particular
field, or key, within the record. The data records themselves are

ordered according to a primary key which you declare when you
create the file.

Figure 9-9 shows an indexed file with a single key, namely
last name. In the example, the data records are in the bottom
row, ordered alphabetically by last name. The index for this file

contains two other levels, level 1 and level 2 (the root level).

A search for a record begins at the root level., For example,
to find the record with key value FRANCIS, search through the root
level, checking for the first value which is greater than or equal
to FRANCIS. The first such value is SMITH. Go to the next level
and again search for the first value greater than or equal to
FRANCIS; it is GROSS, the first value. Now go to the next level
and search again; this time the value FRANCIS 1is found. Since
this is level ¢, we have found the record. '

As new records are added to the file, they are inserted in
order at 1level @ of the primary index. The primary index
structure is adjusted for the new entry at the same time. In
addition, any alternate index structures for other keys are

adjusted as well. There is always one primary key, and there may
be as many as 254 (19) alternate keys.

410

FILE I/0

END OF FILE

RECORD | RECORD |RECORD] ... | RECORD
1 2 3 n

SEQUENTIAL FILE ORGANIZATION

CELL NO. 1 2 3 4 5 n

% Z

RECORD | RECORD RECORD ... IrecorD
1 2 n

N A

RELATIVE FILE ORGANIZATION

LEVEL 2 DAVIS | SMITH | highkey
{ROOT)
LEVEL 1 ANDREWS | DAVIS GROSS | MORRIS | SMITH THOMAS | high key
3 ¥
LeveLo | ADAMS | JANDREWS | BAKER |, DAVIS | EDSON) _ JFRANCIS | | GROSS | HARRIS |, | WELLS
10246 50406 11022 02139 | 01142 46423 54966 | 11462 43168

INDEXED FILE ORGANIZATION

TK-7748

Figure 9-9 RMS File Organizations

Level ¢ of the alternate keys contains pointers to the
original 1location of the data record itself. 1If a data record is
ever moved in order to maintain the index structure, a pointer is
created and maintained 1in the records original location, which
points the data record's new location.

One specific advantage of an indexed file over a relative
file 1is that an indexed file allows you to search for records
using several different key fields, while only the cell number can
be used with relative files. Even with a single key, indexed
files offer keys consisting of any ASCII characters, in contrast

to just a cell number for relative files.

There is, of course, more space overhead required in the file
for the index structures. In addition, more execution time is
required to insert new records, because the index structures must
be updated as well. We are keeping things rather simple in the
discussion here. For additional information, see the
RMS-11 User's Guide. '

411

FILE I/0

Record Formats

RMS supports three record formats; fixed-length records,
variable-length records, and variable-length records with fixed
control., Fixed-length records and variable-length records are the
same as fixed-length records and nonsequenced variable-length
records respectively, under FCS. They are both supported under
all three file organizations. .

Variable-length records with fixed-control (VFC) contain a
fixed-length portion, for control, followed by a variable-length
portion. The fixed control portion may be up to 255(1@) bytes
long. A sequenced variable-length record under FCS is the same as
a VFC record with a 2-byte (one word) fixed control portion.

An example of the use of VFC records is a bank account file,
where some accounts have both savings and checking, and others
have just one or the other. The fixed control portion could
contain the account number plus an indication of the kinds of
accounts contained in it,. The wvariable portion contains the
account information for those accounts. The 1length of this
portion varies, depending on how many accounts the person has.

VFC records are supported under sequential and relative file
organizations only.

Record Access Modes

RMS supports three record access modes: sequential access,
random access, and access by Record File Address (RFA) .
Sequential access and random access are similar to the FCS access
modes, except that they are applied differently for indexed files.

For sequential access on an indexed file, the "next" record
is the record with the next highest key value using the specified
key, not the next record added to the file. For random access, a
key wvalue for a certain key 1is specified, and that record is
located and accessed. To access a record-by-record file address,
save pointers to the record (called its record file address or

RFA) from one access, then use the pointers to subsequently access
the record again.

Table 9-5 describes the various access modes supported for
each file organization and how they work. For additional
information, see the RMS-11 User's Guide.

412

FILE I/0

des
nd Access Mo

ile Organization, Record Formats, a

- File

Table 9-5

' —
g s
o -
@gﬁ@%%% e

o
- %gggég%

ﬁ%@é%%% Sl R
e : : o it
%ﬁj . iwen Sro

s |
ey
ﬁggmgﬂg

- o

.
es e

o o - = 1
b o D e . - P L iran “MEV ane e e
B Soiea 4 e - e m;bL‘ S = S
e o o Bt i S e ne
T . iy . - o 0
s ; - - L L W GElenl Erena
' ; MR R R

- : L i

B b SR

413

FILE 1/0

File Sharing Features

RMS offers more sophisticated file-sharing options than FCS.
Sequential files can be shared for read access only. Relative and
indexed files can be shared for read and write access. When
opening a relative or indexed file, a task indicates one of the
following options.

e No other accessor can change data in the file while it has
- access ("shared" read, exclusive "write").

e Other accessors can change data, but subsets of the file
are protected at a time, while in use.

Relative and indexed files are divided into units called
buckets (of user specified size, each 1 to 32(18) blocks long).
In fact, all actual I/0 tranfers are performed on £full buckets
only. In implementing protection of subsets of the file at a
time, protection is on a bucket-by-bucket basis (bucket-locking).

A bucket is locked from the time any task with write access
accesses a record in a bucket, until that task begins operations
on another bucket, or closes the file. This means that records
within a given bucket <can't be accessed by other tasks while
another task with write access is using the bucket. But other
tasks may access other buckets in the file during that time.

414

FILE 1/0

Son of FCS ang RMS

oo
;%@ L

S
s

WERE 8
R

——

e .

Hbisah e Ui

. ﬁ?%ﬁﬁfs@iﬁ%@;ﬁ
1 s

i
@ﬁ

.
-

-
i
8

.

e @it
e
e @ﬁgwﬁﬁw

G
S e
e
o

.

.

‘gg%% .

@

415

FILE I/0
Comparison of FCS and RMS (Cont)

Table 9-6

s . 5 ; susis s
e e
e L e

.
o s
-

e
.

s

e

’

the
1

Check your

lses

in
k your
progress on your Personal
dule.
ia

[
mater

a

r

Tests/ExXerc
ial
the

module

is
the
mater
in a new mo

th
They are all written problems.
in

mastered

ises for
solutions
your
yet
416

.

ided
record
11 then be ready to beg

provi

tests/exerc
book.
t the
to
i

You w
dule for further study.

k that you have mastered the

k that you have not

e
trator

th
ises

in

in
is mo

is

in

adm

Progress Plotter,
If you th

Now do
If you th

answers agains

book
return to th

Tests/Exerc

cour se

FILE CONTROL SERVICES

FILE CONTROL SERVICES

INTRODUCTION

The File Control Services (FCS) subsystem provides the means
through which most tasks perform file 1I/0. You make calls
directly to the FCS routines.

This module introduces you to the structure of FCS, the

services it offers, and the ways in which you can use those
services.

OBJECTIVES

1. To choose file characteristics for a specific application,
then create a file with those characteristics

2. To write tasks which read or write data using record 1I/0
or block I/0 (MACRO only)

3. To identify and implement methods of optimizing file I/0.

RESOURCE

e IAS/RSX-11 I/0 OPERATIONS MANUAL, Chapters 1, 2, and 3
(Additional reading - Chapters 4 and 6)

419

FILE CONTROL SERVICES

REVIEW OF FILE 1/0

Use the following basic steps to perform file I/0.
1. Open the file.
e Ask ACP to connect LUN to file.
e Specify access rights desired (RWED).
® Specify type of access.
- Block I/0 or record I/O
- For record I/0 only

Random or sequential access
Move or locate mode

e If new file, specify file characteristics.

- Record type

- Record attributes
- File initial size and extend size

2. Perform the actual I/0 operations.

3. Close the file,

e Perform any needed clean-up work.,

421

FILE CONTROL SERVICES

INTRODUCTORY EXAMPLE

We begin our discussion of FCS with an example. The purpose
is to give you a feeling for how to perform the basic steps of
file 1/0. After that, we will examine the data structures
involved, and the specific steps for setting them up and using
them to perform file I/0.

Example 10-1 creates a file with wvariable-length records
using sequential access. The records are input from TI: and then
placed in the file. The following notes are keyed to the example.

" The interface with FCS is through system macros.

@' FCSERR is an error message macro supplied with this
course, Its source and documentation concerning its use
are in Appendix A. It is used here to avoid having to
worry about the details of the code.

G’ The FSRSZ$ macro reserves space in the user task for a
general FCS data area which is called the file storage

region (FSR). This macro must be issued in every program
that uses FCS.

® 2 file descriptor block (FDB) contains data structures for
a file opened by FCS. A separate FDB is required for each
file which is open at the same time. The FDB and 1its
related data structures can be filled in at assembly time

or at run time. 1In this example, they are set wup mostly
at assembly time, which is more run time efficient.

@ oOpen the new file VARI.ASC. Notice that the run-time
macro references the label of the FDB. This is necessary

in the case of multiple FDBs, for multiple files opened by
a single program.

Get input record from TI:.

Write (PUTS) the record to the file. For wvariable-length
records, specify the record length in bytes.

© Branch on any FCS error.

422

'FILE CONTROL SERVICES

Get next record. On a "Z, close the file and exit.

On the Dump - A file dump is included for each example in
this module which <creates a new file. The dumps were
created using the DMP utility, and are in octal byte
format. Because this file has variable-length records,
the first word in each record is a byte count for the
record. See the section on FCS File Organizations in the
File I/0 module for additional information on the dump.

-

423

BN UD GRS =

P Reb et
D LIS S

15
14
17
18

‘.[19
et
0

he]

O =
24
25
26
27
28
‘, 29
30
31
32
33
34
| 35
36
37
38
39
40
41
G’ 42
T 43
44
45
t’ 46

47
L 48

FILE CONTROL SERVICES

LTITLE CRESEQ
+INENT /017
+ENARL LE i Enable lower case

-+

File CRESEQ.MAC

CRESEQ creates & Tile VARIL.ASC of variasble~lensth
records using secuential sccess. It reads records from
TIt» and rlaces them in the file. A 7Z terminates
inerut and closes the file.

Assemble and task-build instructions?
MACRO/LIST LEIL1»1IFROGMACS/LLIBRARY vdevilufdl-

-*CRESEQ
LINK/MAF CRESEQsLEIIL1s 1IFROGSUBRS/LIRRARY

P S ws S3 N Nes Cr \EF NP W P CF W 0

+MCALL EXST$CsQIOWSC»QIOWssI1TRE 7 Sustem macros
+MCALL FSREZ$sFOROF$S»yFDATSAFIRCSAFLOOFSA 3 Sustem
+MCALL NMBLK$»OFENS$WFUT$,CLOSES 5 FUS macros
+MCALLL DIRERRs IOERRYyFUSERR 3 Sueprlied macros

<

FSRSZ$ 1 # 1 Tile for record [/0
¥ Define file descrirtor block for VARILASC
FOE?: FORDF$ Allocate the FIR
FDATS$A R.VARYFI.CR Variable length recordss
Listing - implied
SOR> e L
Secuential access and
record 1/0 bw
defaulty BUFF is
user record buffer
Use LUN 1y Ffile srec
at FNAME
"VARI .ASC®
User Record Buffer
170 status block

FORC$A »RUFF

FOOF$A 1y sFNAME

FNAME: NMELK$ VARI»ASC
BUFF? + BLKER 80.
IasT: + BLKW 2

+EVEN

+ENAERL L8R

e 'eF G B ‘e P P NCE GF WP Cr NS> W

Enable local sumbol
; tlock
3 Orern file for writer call ERR1 if oren fails
START: OFEN$W $#FOBsyrsyyyERRL
Get record from terminals rut to file.
10%¢ QIOWSC TO.RVBeySy1esI0STy »<RUFF 80,
RCS ERR2D Branch on directive
error
Check for I/0 error
Branch on I/0 error

s e

TSTR 08T
BLT ERR2T

«r w ‘@r €>

Example 10-1 Creating a File in MACRO-11 (Sheet 1 of 2)

424

Example 10-1

FILE CONTROL SERVICES

Creating a File in MACRO-11

425

Number of butes inFut

disrlay error

close

file

Nisslaw error

hutes

062
132
000
040
000
000

062
040
033
163
066
000

49 MOV I08T+2-R1 H
[50 FUTS FFOBs v R1 ¥ Fut record to file
51 RCS ERR3 ¥ Rranch on FCS error
G2 ERR 10% ¥ Get mnext record
53
54 EXIT? CLOSES #FDRyERR4 # Close file
55 EXS8T$C EX$SUC §F Exdit with success
56 i status
57 i Error code ~ Close file if necessardy
58 i messadge and exit
59 ERR1: FCSERR #FDIER, <ERROR OFENING FILE:
&0 ERR2D¢ DIRERR <DIRECTIVE ERROR ON REAI-
61 ERR2I! CMFR #IEEQF» 108T # Is it 2%
62 BEQ EXIT ¥y If equals
63 ¥ and exit
64 I0ERR #1057+ ERROR ON READ:
65 i messade and exit
bé ERR3: CLOSE$ #FLOEsERR4 ¥y Close file
&7 FCSERR #FDRy<ERROR WRITING RECORID
468 ERR4: FCSERR #FDORy<ERROR CLOSING FILE>
&9 LEND START
Run Session?
*RUN CRESEQ
1111
22222 22
333
JAZT Jaxs JAZT Jawx
Have wou ever seen the sun®
&b &b b6 &6
4
T Dume of DB1IC30S:30LIVARIASCIR27 ~ File II 34772+6+90
Virtual block 0000001 ~ Size 3512,
Q00000 004 000 0861 061 061 061 010 000 062 062 062
Q00020 003 000 063 063 063 000 023 000 112 101 132
Q00040 172 040 112 101 132 132 040 112 141 172 172
Q00060 166 145 040 171 157 1635 040 145 166 145 162
Q00100 D40 164 150 145 040 163 165 156 077 000 013
L Q00120 066 040 046 086 040 066 0466 000 000 000 000

040
112
000
145
066
000

(Sheet 2 of

062
141
110
145
040
000

2)

062
172
141
156
066
000

FILE CONTROL SERVICES

BLOCK BUFFER

BLOCK BUFFER
$$FSR1
(BLOCK%
BUFFER b — — — — — — —

BLOCK BUFFER

$$FSR2 IMPURE DATA

TK-7734

Figure 1¢-1 The File Storage Region

426

FILE CONTROL SERVICES

USING FCS
In this course, we cover many of the options sUpported by
FCS. However, we cannot cover all of the options in detail.

Therefore, it is wvery important that you read the reading
references mentioned in the IAS/RSX-11 I/0 Operations Reference
Manual for further information. This is especially important 1if
you are going to use an option which is not discussed in detail in
this course. For a general discussion of FCS and its wuse, read
Chapter 1 of that manual.

Preparing to Open a File

The File Storage Region (FSR) —-- The FSR is an area allocated
in your task as working storage for FCS operations. The FSR
consists of two program sections which are always contiguous to
each other. Figure 1¢-1 shows the layout of the FSR. The program

sections and their purposes are as follows.

S$SFSR1 -- contains space for block buffers and the block
buffer headers for record I/0 operations. You determine the
size of this area at assembly time with the FSRSZ$ macro.
Block buffers and headers are allocated from this area when a
file is opened for record I/O operations. Enough space must
be allocated for the greatest need of your task at any one
time.

$SFSR2 -- contains impure data which is used and maintained by
FCS when performing both record I/0 and block I/0O operations.
The area is set aside at assembly time. Portions of it are
initialized at task-build time; other portions are maintained
by FCS at run time.

The data flow during record I/O operations for 1locate mode
and move mode is shown in Figure 1¢-2. Note that blocks of data
are transferred directly between the device and the FSR block
buffer. In locate mode, you usually access the data directly in
the FSR block buffer. 1In move mode, an additional transfer Iis
made of the specified record between the FSR block buffer and a
user specified buffer.

The data flow during block I/0 operations 1is different, as
show in Figure 1¢-3. Blocks of data are transferred directly
between the device and a user specified buffer. No FSR block

buffer is needed.

427

FILE CONTROL SERVICES

MOVE
BLOCK
(IF NECESSARY)

MOVE
BLOCK
(IF NECESSARY)

Figure 1¢-2

MOVE MODE
TASK
(IN MEMORY)
| USER RECORD
[aBC. .- T surrer
MOVE
RECORD
| | |
FSR BLOCK
[|aBC: -+ « BUFFER
| |
|

/—_\/

LOCATE MODE

TASK
(IN MEMORY)
———————— 1 USER RECORD
E,’ ________ 4 [~ BUFFER
l F RGO J——f—Fo8
//
/
|
[, |
FSR BLOCK
[~ | A8 l [BUFFER
[

428

TK-7729

Move Mode Versus locate Mode for Record I/O

FILE CONTROL SERVICES

TASK
(IN MEMORY)
DISK
MOVE
i BLOCK
%27, % ABC...

[—

TK-8636

Figure 1¢-3 Block I/O Operations

Initialization of the FSR

Use the FSRSZ$ macro to establish the size of the FSR at
assembly time. This macro must be used in any program using FCS,

whether for block I/0 or record I/0. The format of the FSRSZS$
macro is as follows. ‘

FSRSZ$ fbufs,bufsize,psect
fbufs - for block I/0 only, speéify]

- for record I/0 or record and block I/0, maximum
number of buffers needed for record I/0

bufsize - total space needed for block buffers (in bytes).
Defaults to fbuf*512(109)
psect - return Psect if other than default.

429

FILE CONTROL SERVICES

Examples:

FSRSZS$S 0

Using FCS for block I/0 only. Allocate FSR space for impure
data only ($$FSR2).

FRSRSZS 2

Using FCS, allocate FSR space for impure data ($$FSR2), and
for record I/0 block buffers ($SFSR1). Total allocation for
block buffers in $$FSR1 1is two headers plus 2*512(19) =
1024 (19) bytes.

FSRSZS 3,2048

Using FCS, allocate FSR space for impure data ($$FSR2), and
for record I/0 block buffers ($$FSR1). Total allocation for
block buffers is three headers plus 2@48(10) bytes. For

example, two are 512(19) bytes long and the third is 1924(19)
bytes long.

The buffer size usually corresponds to a disk block (512(19))
for disks, or the buffer width for terminals. 1If all record I/O
operations use single buffering with the default buffer size of 1
disk Dblock (512(1@)), then fbufs should be the maximum number of
files open at the same time for record 1I/0. Bufsize can be

defaulted to that number, times 512(19).

If double buffering is used for some record I/0 operations,
or larger block buffers are desired (to reduce the number of I/O
transfers), specify values for fbufs and/or bufsize. This allows
for your maximum need for files open at the same time for record

1/0.

See section 2.6.1 on FSRSZ$S in the IAS/RSX-11 Operations
Reference Manual for a discussion on how to calculate bufsize.

430

 FILE CONTROL SERVICES

The File Descriptor Block (FDB)

Functions of the FDB - The FDB contains information used by FCS in
processing a file. One FDB is required for each file

opening and
that is open
reused once
used by:

at the same time by your program.

An FDB may be

the file associated with it is closed. The FDB is

e The task, to pass information to FCS

) FCS,

e FCS,

You must allocate space for each FDB

to return information to the task

for internal bookkeeping for the file.

and initialize specific

portions, before opening a file. You may use either assembly-time

or run-time macro calls. Figure 1¢-4 shows

different parts.

FILE DESCRIPTOR BLOCK

FILE ATTRIBUTE RECORD TYPE AND SIZE
SECTION FILE TYPE AND SIZE
RECORD OR BLOCK BUFFER DESCRIPTORS AND
ACCESS SECTION POINTERS — ACCESS MODE
FILE OPEN SECTION ASSOCIATED LUN

BLOCK BUFFER MULTI-BUFFERING DESCRIPTOR
SECTION BUFFER SIZE

FILE NAME FILE SPECIFICATION
BLOCK SECTION FILE ID

an FDB and its

FDATS$A

FDRC$A AND
FOR BLOCK FDBKS$A

'"FDOPS$A

FDBF$A

POINTERS IN FDOPS$A

(BUILT AT OPEN FROM
DSPT OR NAME BLOCK
PLUS INFO. FROM FILE)

TK-7740

Figure 1¢-4 The File Descriptor Block

431

FILE CONTROL SERVICES

Allocating Space for FDBs - Use the FDBDF$ macro to allocate space
for one FDB. The format of the call is:

label: FDBDFS

FDBIN: FDBDFS$

The label is used later to refer to a specific FDB.

Initializing an FDB - You can initialize an FDB either at assembly
time or at run time., Whenever possible, use the assembly-time
macros because they do not need to be executed at run-time.
Therefore, vyour task will be more run-time efficient. With the
assembly-time macros, use parameters which are valid source
arguments for .WORD or .BYTE assembler directives. Many values
have symbolic equivalents which can be used instead of the actual
numeric values.

With the run-time macros, use parameters which are wvalid
source arguments for MOV or MOVB instructions. This is similar to
the convention for the $ form versus the $S form of the executive
directives. At assembly time, use FCS macros which end with $A;
at run time, use FCS macros which end with $R. The assembly-time
macros must immediately follow the FDBDF$ macro which reserves
space for the FDB. The run-time macros have an additional initial
argument to specify which FDB they refer to.

Run-time initialization macros override any previous FDB
settings. In addition, you can also override the settings in the
file open operation or in an I/0 operation.

As an aid in referencing a given FDB at run time, all FCS
run-time initialization and file-processing macros return the FDB
address in R@. If no FDB pointer is specified in subsequent FCS
macro calls, it defaults to R@. The other registers are saved and
restored by all FCS run-time macros.

For additional information on the use of parameters in the
different forms of the FCS macro calls, see section 2.2.1 on
Assembly-Time FDB Initialization Macros, and section 2.2.2.1 on
Run-Time FDB Macro-Call Exceptions in the 1IAS/RSX-11 1/0
Operations Reference Manual. »

The following sections describe how to use the different FCS
FDB initialization macros to initialize an FDB.

432

FILE CONTROL SERVICES

Specifying Néw File Characteristics

Use either the FDATSA macro, at assembly time, or the FDATSR
macro, at run time, to specify new file characteristics. These
macros are only required where you create a new file. FCS uses
the established characteristics for existing files. The format of

the FDATSA macro is:
FDATSA rtyp,ratt,rsiz,cntg,aloc

rtyp - record type
R.FIX = fixed length

R.VAR = variable length
R.SEQ = sequenced
ratt - record attributes

carriage control
FD.FTN = FORTRAN type

FD.CR = list type
default = no implied carriage control

spanning of blocks
FD.BLK = spanning blocks not allowed
default = spanning blocks is allowed

rsiz - record size

cntg - initial number of blocks for file
aloc - extend size for file.

Examples:
1. FDATSA R.VAR

File will have variable-length records. Defaults: no
implied <carriage «control, may span block boundaries,
initial size of zero blocks, default extend size, on

disk, generally five blocks.
2. FDATSA R.FIX,FD.CR,64.

File will have fixed-length records, list carriage
control, and 64(10¢) byte records. Defaults: records may
span block boundaries, initial size of zero blocks
default extend size.

433

FILE CONTROL SERVICES

3. FDATsA R.FIX'RD‘FTN! FD.BLK,J.@@. ,-150

File to have fixed-length records, FORTRAN type carriage
control; records may not span block boundaries; 100 (10)
byte records, initial file size of 15(19¢) blocks, not
necessarily contiguous. Default: default extend size.

4. FDATSR #FBD1,#R.FIX, #FD.FTN! FD.BLK, #100.,#15.

The same as the previous example, but using the run-time
form.

Note the difference in the format of the parameters in the S$A
(for assembly-time) and the SR (for run-time) forms. For the $SA
form, the parameters are symbolic or numeric values, all wvalid
source arguments for .WORD or .BYTE assembler directives. For the
SR form, on the other hand, the parameters are all valid source
arguments for MOV or MOVB instructions.

If records are allowed to span block boundaries, then a
record at the end of a block, which doesn't fit completely within
the block, is continued in the next block. If records are not
allowed to span block boundaries, a record which doesn't fit
completely is started at the beginning of the next block. The
space remaining in the current block is unused. This technique
uses more file space, but permits quicker I/O operations in locate
mode.

Specify one of three possible types of carriage control in
the ratt parameter. FD.FTN indicates that the first data byte of
each record contains a FORTRAN carriage-control character (e.g.,
space for single space, @ for double space). FD.CR indicates that
when the record is written to a line printer or a terminal, each
record 1is to be preceded by an <LF> character and followed by a
<CR> character. This causes single spacing between records in the
printout. If you specify neither FD.FTN nor FD.CR, no carriage
control is implied. Any <carriage control characters must be
imbedded in the data. List (.LST) files are set up with no
implied carriage control.

See section 2.2.1.2 on FDATSA in the IAS/RSX-11 I/0
Operations Reference Manual for additional information on the
FDATSA parameters.

434

FILE CONTROL SERVICES

Selecting Data Access Methods

First decide whether to use block 1I/0 or record 1I/0.
Normally wuse block I/0 for files with no record structure, and
record I/0 for record structured files. However, block I/0 1is
faster than record 1I/0, because no blocking or deblocking of
records is required, and transfers are made directly between the
device and the user buffer. Therefore, if your operation does not
require accessing individual records within the file, e.g., a file
copy operation, use block I/0 because it is more efficient.

After you select block I/0 or record 1I/0, there are some
other <considerations. For block I/0, no FSR block buffer is
needed. 1Instead, you must specify a user buffer. Block 1I/0 is
asynchronous; set up an event flag or an AST for synchronization.
Also, you must use the additional FDBKSA or FDBKSR macro to
specify the user buffer and the synchronization techniques.

For record I/0O, choose either sequential access or random
access mode. Sequential access can be performed on files with
either variable-length records or fixed-length records.
Successive PUTS or GETS operations 1in sequential access mode
access successive records in the file. This is useful if you need
to process all records in the file in order. It is required if
the file has variable-length records.

Random access can be performed only in files with
fixed-length records. With random access, your program can access
records randomly by specifying a record number in each PUT$ or
GETS$S «call. Random access 1is desirable 1if you want to access
records in an order which is different from their order in the
file.

With sequential access, you can use FCS routine to save
pointers to an accessed record, and later return to that record.
This offers you a limited ability to access records 1in a random
order, or at least an ability to back up to a certain point in the
file and continue from there. The actual subroutines are
discussed later in this module under Performing I/0.

For record 1/0, an FSR block buffer is used for the actual
I/0 transfers,. Blocking and deblocking of records 1is done
transparently for you by FCS. When FCS blocks a record on output,
it places it into one or more virtual blocks as needed. When FCS
deblocks a record on input, it takes one or more virtual blocks
and constructs a logical record. Because GETS$/PUTS$ operations,
used for record 1I/0, process records which are contained in
virtual blocks, not all 1I/0 operations cause an actual I/0
transfer. Generally, an I/0 transfer is needed only when the end
of a block is reached.

435

FILE CONTROL SERVICES

19-2

Figure

In move mode, you always access records
a

"You may choose either move mode or locate mode.
user specified buffer, somet

in a
called user record buffer.,

ilmes

two.

the

compares

ion

record

user

le to program, but every PUT$ or GETS operat

tra transfer of the record between the

Q,
=
o
(0]
n %
.le
[=
0 ©
o
ow
1=}
-
o
03
> O
Qo
= .

1ls

record Dbuffer i

user

A

FSR block buffer.

the

and
d‘

buffer

require

are located

records

complete

as

long

as

In locate mode,

>N T
-~ 30
£ 03
Qo
[N
S~
M ®
T A
koo
ol “
(VRO
[o i
o+ w0
o T
(YN <R W
-lo
Q [8)
Qo
R
o=
0 P
0w ©H
(O =
O N
OO
© X g
[olR W]
3« O
[o] O
>N o
[«J ¥
~
[S=)
o P C
W o
N
J W
Q0o
@)
N oo
&) N
[o] o
~ 0
0O s
(0]
s S o]
NP
=3
Q7
[[
T X
8]
o
o~ —
£ Q0
+ sed
—
2N
=0
> 0
—~ Q-
~ O
©
+ [0}]
[J ol =]
FERYINE]

block does span

in a

d the last record
then the full record cannot be accessed until

to span block boundaries an

block boundary,

the next v

operation),
the case of a

the case of a GETS

in

a (
tual block

1S rea

tual block

1r

the

in

1s

d

is accesse
user record buffer

itten (in
the record i

18 wr
a

1l case,
Therefore,

1a

current vir
. In that spec
ied Dbuffer.

)
£
locate mode only

e
d
block boundar

th
ion
speci

1

unt
PUTS$ operat

a

i
user

or

span
hen a

the situations w

summaril zes

f one or more records actually
1

i
19-

Table
is needed.

les.

in

require

user record buffer

synchronization
turned to your program

All

Record I/0 operations are synchronous.

1s re

Control

you by FCS.
only after the requested PUTS or GETS operation

handled for

1s

leted.

is comp

.

When the User Record Buffer Is Needed

Table 10-1

Mwm@r a
o
.
i
-

-
-

.
i
. -

e

i
e
-

o
-

oy
G .
o &ﬂmm,m%

-

s

delE s e
e
o

436

FILE CONTROL SERVICES

Specifying Data Access Methods

Use the FDRCSA or the FDRCSR macro to specify data access
methods.

FDRCSA racc,urba,urbs

racc - type of access
methods
FD.RWM = block mode
FD.RAN = record mode, random I/O

default = record mode, sequential I/O

file truncation
FD.INS = PUTS$ in middle of file does not truncate
file
default = does truncate file

move or locate
FD.PLC = locate mode
default = move mode
urba - user record buffer address (Table 1g-1)
urbs - user record buffer size (in bytes).
Examples:

1. FDRCSA ,BUFF,840.

Defaults to record I/0, sequential access in move mode.
User record buffer at BUFF, 8@. bytes long.

2. FDRCSA FD.RWM

Block I/0. buffer is specified in FDBKSA macro or 1in
open, READS, or WRITES macros.

3. FDRCSR #FDB4,#FD.RAN!FD.PLC,#BUFF,#100.
Record I/0, random access in locate mode. User record

buffer at BUFF, 100. bytes long. This is a run-time
macro which initializes the FDB at FDB4. '

437

FILE CONTROL SERVICES

If FD.INS is not specified, a PUTS in the middle of the file
places the 1logical end-of-file right after that record, which
truncates the file. If FD.INS is specified, a PUT$ in the middle
of the file does not change the logical end-of-file. See section
2.2.1.3 on FDRCSA 1in the IAS/RSX-11 I/O Operations Manual for
additional information.

Additional Initialization of the FDB for Record 1/0

Normally, no further initialization is needed for record I/O.
However, 1if you wish to override one or more of the defaults, use

the FDBF$A or the FDBFS$R macro. The defaults are included in the
list of parameters below. The format of the FDBFS$A call is:

FDBF$SA efn,ovbs,mbct,mbfg

efn - event flag used internally for synchronization
(default is 32(1@))

ovbs

override FSR block buffer size (in bytes) (default
is standard block size for device)

mbct

multiple buffer count (default generally 1, or
single buffering)

mbfg - multiple buffering type (only for multiple buffering)

FD.RAH read ahead operations

FD.WRB write behind operations

(default - FD.RAH if file opened for read only,
FD.WRB if file opened for a write operation)

Examples:
1. FDBFsA ,,2

Use double buffering. Defaults: event flag 32(19), FSR
block buffer size standard for device (e.g., 512(10)
bytes for disk). Multiple buffering type - read ahead if
file 1is opened for read only, write behind if it is
opened for a write operation.

2. FDBFS$SA 12.,2048.
Use event flag 12(1@) and an FSR block buffer size of
2048 (19) bytes. This is the standard size for ANSI

magtape. It can also be used for disks to cut down on
the number of I/0 transfers. Default: single buffering.

438

FILE CONTROL SERVICES

In the second example, you must reserve enough space 1in the
FSR using the FSRZ$ macro. See section 2.2.1.6 on FDBFSA in the
IAS/RSX-11 I/O Operations Reference Manual for further informa-
tion.

Additional Initialization for Block |/0

For block 1I/0, you only specify the access method 1in the

FDRCSA or FDRCSR macro. You must use the FDBKSA or FDBKSR macro
to set up the user buffer and your synchronization methods. The
format of the FDBKSA macro is as follows.

FDBKS$A bkda,bkds,bkvb,bkef,bkst,bkdn

bkda - user buffer address

bkds - user buffer size (in bytes)

bkvb - address of two-word virtual block number

bkef - event flag for synchronization (default =
32(19))

bkst - I/0 status block address (must be specified
for FCS to return I/0 status)

bkdn - AST service routine address

NOTE

Bkvb must be specified after the file is
opened wusing the SR form, or in a READS or
WRITES call.

Example:

FDBKSA MYBUF,1¢24.,,20.,I0ST

User buffer at MYBUF,Fsize is 1@024(19) bytes. Use event flag
20 (19), the I/O status block is at IOST. No AST routine.

Bkvb is the address of a two-word data block containing the
first wvirtual block number for a block I/O operation. This data

block is copied into the FDB and then used to 1ocate the starting
block for the I/0 operation.

439

FILE CONTROL SERVICES

However, the virtual block number in the FDB 1is always
initialized to '1' when a file 1is opened. Therefore, this
parameter must be specified after the file is opened if you wish
to start 1I/0 operations with a block other than virtual block 1.
Do this using either a FDBKSR, a READS, or a WRITES call.

The parameter should be left null if you use the $A form. It
is present in the $A form only for compatibility with the $R form.

Bkst is the address of an I/0O status block. Unlike record
I/0, where FCS sets up its own internal I/0O status block, block
I1/0 requires that you specify an IOSB in order to get I/0 status
reports. FCS 1issues QIOs for you. With record I1I/0, FCS reports
both directive errors and I/0 errors automatically. With block
I1/0, 1I/0 errors are reported only if you specify an IOSB address
in a FDRKSA or FDBKSR call.

Initializing the File-Open Section of the FDB

You must also initialize the file-open section of the FDB
before opening a file. It contains information about the file to
be opened. You must set up data structures so that FCS can build
a file specification for the file. 1In addition, you must specify
the LUN to be assigned to the file and the kind of access rights
you need (read, write, extend or delete). You can do all of this
with an assembly or run-time macro, or in the actual open macro
call.

Setting Up the File Specification in the FDB -- At run time, FCS
constructs a standard file specification in the filename block in
the FDB using the following, in order:

1. The dataset descriptor
2. The default filename block
3. Other defaults of the task or system

FCS first uses any information which is set up in the dataset
descriptor. Any non-null data 1is translated from ASCII to
Radix-5¢ format, and stored in the appropriate offsets in the
filename block. If any pieces of the file specification are not
specified in the dataset descriptor, FCS next checks the default
filename block for any of the missing pieces. Any missing pieces
which are found there are filled in next.

449

FILE CONTROL SERVICES

If the device or the UFD 1is still not filled 1in, normal
system defaults are used. The device defaults to the current LUN
assignment of the LUN to be used to access the file. The UFD
defaults to the default UIC of the task, which is typically the
default UIC of the user who runs the task. If the file name or
the file type are still not filled in, a file open failure occurs.

If only a dataset descriptor or a default filename 'block is
specified, and not both, the missing structure 1is skipped.
Typically, the dataset descriptor is used for building file
specifications at run time. Several routines (get command line
(GCML) , command string interpreter (CSI), etc.) are available for
prompting for input, getting a command line, and then filling in a
dataset descriptor. Typically, the default filename block is used
to default any fields not specified in the dataset descriptor, or
to completely set up a file specification at assembly time.
gowever, one or both structures may be set up at assembly time, if

esired.

If you want to have FCS perform I/O to a terminal, Jjust build
a file spec with the device TTnn: or TI:. If the specified
device is a terminal, FCS just issues QIOs to the terminal. The
advantage of this technique over issuing QIOs yourself is that the
same I/0 routines work correctly with file-oriented devices and
terminals. You do not have to rewrite the I/0 code to change
between device types. The system utility PIP uses FCS calls for
all of its I/0 operations.

Setting Up the Dataset Descriptor

The dataset descriptor is a six-word data area in vyour
program containing the sizes and the addresses of the ASCII data
strings that together make up a file specification. The format of
the data area and the ASCII strings is:

label: .WORD ldev,adrdev
.WORD lufd,adrufd
.WORD lnam,adrnam

adrdev: LASCII /dev/

ldev =.—-adrdev

adrufd: +ASCIT /ufd/

lufd =,-adrufd

adrnam .ASCII /full name/
lnam =.,—-adrnam

441

FILE CONTROL SERVICES

Example for file DB1:[202,1]}SAMPLE.MAC:

DSPT: .WORD LDEV, DEV
.WORD LUFD, UFD
.WORD LNAM, NAM

DEV: .ASCII /DBl:/

LDEV =,-DEV

UFD .ASCII /[202,1]1/
LUFD =.,-UFD

NAM: .ASCII/SAMPLE.MAC/
LNAM =.-LNAM

This example sets up the dataset descriptor and all of its
file specification pieces at assembly time. This can also be done
at run time, As shown above, FCS builds the file spec
DB1:([202,1]1SAMPLE.MAC. If no default filename block is specified,
the version number takes the normal system default, the 1latest
version for an existing file, and the latest version, plus one,
for a new file. See section 2.4.1 on the Dataset Descriptor of
the IAS/RSX-11 I/0 Operations Reference Manual for additional

information.

Setting Up the Default Filename Block

The default filename block' is an area within vyour program
containing the various elements of a file specification. Use the

NMBLKS macro call to both reserve space for this area, and to
initialize it at assembly time. The format of the NMBLKS call is:

label: NMBLK$ fnam,ftyp,fver,dvnm,unit
Example for file DB1:SAMPLE.MAC:

NMBLKS$ SAMPLE,MAC,DB,1

Notice that you divide the file specification into pieces in
the macro «call. Also.note that you cannot specify a UFD in the
default filename block. ' It can be specified using a dataset
descriptor. Otherwise, it is usually taken from the default UIC
of the task.

See section 2.4.2 (on Default Filename Block - NMBLKS Macro
Call) for additional information on the default filename block.
It also explains how to manually define or override data 1in the
default filename block,.

442

FILE CONTROL SERVICES

Initializing the File-Open Section Prior to Opening the File

Use the FDOPSA or the FDOPSR macro call. The format of the
FDOPSA call is as follows.

FDOPSA lun,dspt,dfnb,facc,actl

lun - LUN for I/0 requests

dspt pointer to dataset descriptor

dfnb

pointer to default name block
facc - type of file access (Table 10-2)
actl - access control

The type of file access indicates the kind of activity that
you will perform on the file. Table 1#-2 lists these types. Note
that you do not specify read, write, extend, or delete; but
instead write, read, append, modify, or update. Each implies a
request for a particular set of access rights. The meanings of
the types are:

write - Write (create) a new file.

read - Read an existing file.

append - Append (add) data to the end of an existing file.
modify - Modify an existing file without changing its length.
update - Update an existing file, extending its length if

necessary.

In all cases, the file can also be read.

443

FILE CONTROL SERVICES

The actl parameter is used to override the defaults for
certain FDB control information, namely:

e Initial magnetic tape position - default depends on file
operation.

e ILocking of a disk file opened for write 1if it is not
properly closed, e.g., if the task is aborted. Default is
that the file is locked.

e The number of retrieval pointers in pool for a disk file
window. Default is volume default.

e Enable or disable block locking. Default is disable block
locking.

See section 2.2.1.5 on FDOPSA in the IAS/RSX-11 I/0
Operation Reference Manual for an explanation of the defaults, and
the arguments to override them. This section also covers
additional information on the FDOP$SA and the FDOPSR macros.

If desired, you can specify all of the FDOPSA or FDOPSR
parameters, except actl, in the open macro call instead. The
following examples show the wuse of the FDOP$A call, dataset

descriptors, and default filename blocks.

444

FILE CONTROL SERVICES

s
.

%ﬁ o
o e
ﬁﬁi ﬁ%‘?y’x;?ﬁw

445

FILE CONTROL SERVICES

Examples:

1.
FDOPSA 1, ,DFNB

DFNB: NMBLKS MYFILE,DAT,,DB,0#

Use LUN 1, build the file spec in the FDB with the default
filename block (since there is no dataset descriptor). The
file spec will be DB@:MYFILE.DAT. The UFD will be taken from
the default UIC of the task; the version number takes the
normal default.

2.
FDOPSA 2,DSPT

DSPT: .WORD 0,0
.WORD LUFD,ADRUFD
.WORD LNAM,ADRNAM
ADRUFD: .ASCII /[15,121/

LUFD =.,-ADRUFD
ADRNAM: .ASCII /MYFILE.FFF;3/
LNAM =,-ADRNAM

Use LUN 2, build the file spec first with the dataset
descriptor, then go to task and system defaults (since there
is no default filename block). The File spec will be
[15,12]MYFILE.FFF;3. The device will be defaulted to the
current LUN assignment and to SY: if not currently assigned.

3.
FDOPSA 1,DSPT1,DFNB1,FO.WRT

DFNB1: NMBLKS ANY,FIL

DSPT1: .WORD LDEV,DEV
.WORD 0,0
«WORD LNAM, NAM

DEV: .ASCII /DK2:/
LDEV =.-DEV
DNAM: .ASCII /MINE/
LNAM =.-NAM

446

FILE CONTROL SERVICES

Use LUN 1; open the file for write (create a new file).
Build the file spec first from the dataset descriptor, then
fill in any missing information £from the default filename
block. The resulting file spec will be DK2:MINE.FIL. The
UFD and version number take normal system defaults. The
filename is MINE because the dataset descriptor is used
first. ©Since the name 1is then filled 1in, the default
filename block is not checked for a name,

Examples of Setting up an FDB

The following examples show the complete process of setting
up and initializing FDBs at assembly time before opening a file.
Two examples are included for creating a new file, plus two for
accessing an existing file. The 1line comments offer an
explanation of the examples. ,

Creating a New File: -

1.
FSRSZ$ 1 ; 1 file will be open for
. ; record I1/0
FDB1: FDBDF$S
FDATSA R.VAR,RD.CR ; Variable length records,
; "list" carriage control
FDRC$A ,BUFF,80. ; URB at BUFF, length 8¢.
; bytes. Defaults: sequential
; access, move mode
FDOPSA 2, ,DFNB ; Use LUN 2, file spec from
: ; Default Name Block
DFNB : NMBLKS$ VARIABLE,ASC ; File Spec VARIABLE.ASC

447

2.
FSRSZS$
FDB1: FDBDF$
FDATSA
FDRCSA
- FDOPSA
DSPT: .WORD
.WORD
.WORD
NAM: .ASCII
LNAM =,-NAM

FILE CONTROL SERVICES

R.FIX,FD.FTN, 84,

RD.RAN,BUFF,80.

1,DSPT, ,FO.WRT

2,9
2,0
LNAM, NAM

./MINE.FIL;2/

Accessing an Existing File:

1.
FSRSZ$
FDB1: FDBDF$
FDRCSA
FDOPSA

»URB, 25.

3, ,DFNB

448

WO Ne Ne Ne We W We Ne Ne We we wo wo

we W“e we wme W

Fixed length records,
FORTRAN carriage control,
80. byte records

Random access, URB at BUFF,
length is 8@. bytes

Use LUN 1, build file spec
from dataset descriptor,
open a new file for write
Use default device

Use default UFD

Pointer to file spec

File name

Length of file name

URB at URB, length =
bytes. Defaults:
access, move mode
Use LUN 3, build file spec
from Default Name Block

25.
sequential

FILE CONTROL SERVICES

2‘
FSRSZ$) ; Only block I/O
FDB1l: FDBDFS
FDRCSA FD.RWM ; Block I/0, no URB needed
FDBKSA BUFF,512. ; For block I/0O - sets up
; buffer at BUFF, length =
; 512. bytes
FDOPSA 2, ,DFNB ; Use LUN 2, build file spec
; from Default Name Block
LEARNING ACTIVITY 10-1
The example below shows two FDBs. The second
FDB is filled 1in to display a file at a
terminal. Fill in the first FDB for a file
YOURS.MAC, with variable length records which
will be read and displayed. Use sequential
access in locate mode.
FSRSZ$ 2 ; 2 "Files" open for record 1I/0
FDBI: ; To be filled in by the student
FDBO: FDBDFS
FDATSA R.VAR,RD.CR ; Variable length records,
; implied carriage return,
; line feed
FDRCSA BUFF, 80. ; Sequential I/0, move mode,
; URB at BUFF, length = 840.
; bytes
FDOPSA 2,DSPTO ; Use LUN 2, override LUN
; assignment. Build file spec
; using dataset descriptor
DSPTO: «WORD LDEV,DEV ; pointers to ASCII data
«WORD 3,0
+WORD 2,0
DEV: +ASCII /TI:/ ; Device is TI:
LDEV =,=-DEV

449

FILE CONTROL SERVICES

Opening a File

Whether or not you set the file access parameter with an
FDOPSA or FDOPSR macro call, you can use the general OPENS$ macro
call to open the file. 1If the access parameter is not already
specified, specify it in the OPEN$ call. You can also use a
number of other open macro calls, which have a single letter
suffix to specify the file access. See Table 10-2 for the
suffixes and their meanings. with file open macros, you can
choose:

e Whether shared access is allowed

e Whether a file is permanent or temporary (deleted when
closed)

e Which FCS object modules are used to open the file.
The following list shows all of the possible open macros.
OPENS$ fdb,facc,lun,dspt,dfnb,racc,urba,urbs,err

- General form

- File access specified in facc or previously using
FDOPSA or FDOPSR

OPENS$x* fdb,lun,dspt,racc,urba,urbs,err

- Used for most applications
- Requests exclusive write access, shared read access

OPNSS$x fdb,lun ,dspt,racc,urba,urbs,err
- Allows shared access
OPNTSD = fdb,lun,dspt,racc,urba,urbs,err
- Opens temporary file, deletes when closed
OFIDSx fdb,lun ,dspt,racc,urba,urbs,err
- Opens file by file ID
OFNBS$x fdb,lun ,dspt,racc,urba,urbs,err

- Specifies file by file name block.

* The "x" in the macro name represents one of the suffixes 1listed
in Table 19-2.

459

FILE CONTROL SERVICES

Examples:

OPENS $FDB1,#FO.WRT,,,,,,,ERR1

Open the file using the FDB at FDB1l for write access (create
a new file). Call ERRl on an error. All other information
is already in the FDB.

OPENSW #FDB1l,,,,,,ERR1

The same as the last example, only using the other form of
the call.

OPNTSD #FDB3,,,,,rERR2

Open a new file as a temporary file using the FDB at FDB3.
Call ERR2 on an error.

OPNSSU RO,#3,,,,+,ERR5

Open the file for update using the FDB whose address 1is in
Rg. Allow shared access. Use LUN 3. Call ERR3 on an error.

OPENS R@,#FO.UPD!FA.SHR,#3,,,,,,ERR5

The same as the last example, using the OPEN$ form of the
call.

OPENS

Open the file wusing the FDB pointed to by Rg. All

information is already in the FDB. The user should check the
carry flag for an error. ’

There is no difference in functionality between the OPENS
macro with the facc argument filled in, and the OPENSx, OPNS$x, or
OPNTS$D forms. Use the form which is most convenient.

OFNBS$x uses information already in the filename block of the
FDB to open the file. When this occurs, FCS does not build a file
spec prior to the open call. This 1s more efficient 1if the
filename block 1is still intact, or has been restored after a
previous open and close of the file. However, the OFNB$X call
causes the Task Builder to include different object modules in
your task, thus increasing your task's size. These will be
additional modules unless OFNBS$x is already used in your program.
The same run-time savings can be achieved if you first fill in the
filename block and then use an OPENS$, OPENSx, or OPNSS$x call, with
no additional object modules added.

451

FILE CONTROL SERVICES

OPFNB$x is useful only in overlay situations, or when OFNBS$X
is already included. Note that the Get Command Line routine
(GCML) uses OFNBSX.

As shown in the 1last module, accessing a file-by-file
specification involves a 'minimum of six disk reads (see Figure
9-5). If you know the file ID of a file, opening the file-by-file
ID reduces the number of file accesses to two. This is possible
if you reopen a file for a second time or use other FCS routines
to obtain the file ID. This is because the file ID allows direct
access to the file header of the file.

Any time the file ID field in the FDB is filled in, any open
macro call automatically opens the file-by-file ID. The OFIDSx
call performs the same function, but 1like the OFNBS$x call, it
causes the Task Builder to include different object modules in
your task, thus increasing its size. Therefore, £ill in the file
ID and use the regular open macros to open a file-by-file ID.
Only use the OFIDS$x call in an overlay situation, or if OFID$X has
already been included in your task.

452

FILE CONTROL SERVICES

ERROR CHECKING

If an error condition is detected during any of the file
processing operations, the FCS routines set the carry bit in the
processor status word (PSW), and return the error code and the
type of error to FDB offset locations F.ERR and F.ERR+l.

The run-time FDB initialization macros are an exception to
this convention. They do not return any error indications because

they 1involve only mov es into FDB locations. The FCS
file-processing routines issue appropriate QIOs for you.

As with regular QIOs you issue yourself, directive errors or
I/0 errors can occur. For record I/0, FCS returns the error codes
to the offset F.ERR of the FDB for you so that you don't have to
check the 1I/0 status block and the directive status word (DSW)
directly yourself. The error codes are always returned as byte
values. Since some of the error code values for directive and I/0
errors overlap, another byte, offset location F.ERR+l1 in the FDB,
contains an indicator, whether the error was a directive or an I/0
error, A value of '¢' in F.ERR+1 indicates an I/O error, a
negative value indicates a directive error.

Therefore, to check for errors, check the carry bit on return
from each file-processing FCS macro call. If there is an error,
use a TSTB to check offset location F.ERR+1 to distinguish whether
it 1is an I/0 error or a directive error. Then, check and display
the error code value. The following section of code shows a
technique for doing this.,.

453

FILE CONTROL SERVICES

Example of Error Checking and Processing

BUFF: .BLKB 80 ; Output buffer
ARG: .BLKW 1 ; Argument block for $EDMSG
EDIR: .ASCIZ /FCS DIRECTIVE ERROR. ERROR CODE = %D./
EIO: .ASCIZ ?FCC I/0 ERROR. ERROR CODE = %D.?

.EVEN

OPENSW #FDB
BCS ERR1

Open file
; Branch on FCS error

-

;Error Processing

ERR1: TSTB F.ERR+1 (R@) ; Directive error or I/O
; error?
BEQ I0 ; Branch on I/0 error
MOV #EDIR,R1 ; Addr of directive error text
; string for S$SEDMSG
BR FINSET ; Branch to common code
I10: MOV #EIO,R1 ; Addr of I/O error text string
; for $EDMSG signs
FNSET: MOVB F.ERR(R@) ,R0 ; Sign extend FCS error
MOV R@,ARG ; code and place
MOV #ARG,R2 ; 1in arg block
MOV #BUFF, RO ; Output buffer
CALL SEDMSG ; Edit error message
QIOWSS #I0.WVB,#5,#%#1,,,,<#BUFF,R1,#40> ; Display message
BCS ERRQIO ; Branch on directive error
EXITSS ; Exit

ERRQIO: .

L]

Directive error code

-

Using the READS and WRITES macros, directive errors are
returned normally by FCS. Unlike record 1/0, with block I/0 FCS
does not set up an internal I0SB for you. Therefore, you will not
get I/0 success or failure indications if you do not set up and
specify an IOSB.

454

FILE CONTROL SERVICES

The error code is sign extended because $EDMSG works only on

word values, not on byte values. The error codes and their
meanings are listed 1in Appendix I of the IAS/RSX-11 1/0
Operations Reference Manual. They are also in the RSX-11M Mini

Reference. Just the directive error codes are in Appendix B of
the Executive Reference Manual, and just the I/0 error codes are
in Appendix B of the RSX-11M/M-PLUS I/O Driver's Reference Manual.

You can also specify the address of your own error-handling
routine, and specify it as the last macro call parameter. A JSR
PC instruction to the specified user routine is generated. This
takes the place of the BCS, and causes a <call to the
error-handling subroutine in the case of an FCS error. Note that
it 1is a JSR PC which places the return address on the stack. You
must clear off the stack for a nonfatal error if you do not use a
return at the end of the error routine.

455

FILE CONTROL SERVICES

PERFORMING RECORD I/0
Different Forms of PUT$ and GET$
The three different forms of the PUTS and GETS macros are:
e GETS and PUTS
- Used for sequential access
- Can also be used for random access if either:
Records are actually accessed in sequence

Program manually changes record number field
the FDB

e GETS$S and PUTSS

- Used for sequential access only

- Takes less space than GETS$ and PUTS

- Used only to optimize space in an overlaid task
e GETSR and PUTSR

- Used for random access only.

The formats of the macro calls are:

GETS fdb,urba,urbs,err
GETSS fdb,urba,urbs,err
GETSR fdb,urba,urbs,lrcnm,hrcnm,err

urba and urbs override any previous URB setups

lrcnm and hrcnm - the low word and high word of
the record number (random I/0O only)

PUTS fdb,nrba,nrbs,err
PUTSS fdb,nrba,nrbs,err
PUTSR fdb,nrba,nrbs,lrcnm,hrcnm,érr

nrba and nrbs override the previous settings
for the next record buffer (NRB)

456

FILE CONTROL SERVICES

Examples:
PUTS #FDB1,,,ERR

Write the record pointed to by the next record buffer pointer
into the file at the current location. Use the FDB at FDBl.

GETSR ,#MYBUF, #64.,#93.

Read record 93(1@) into the buffer MYBUF. The buffer 1length
is 64(19). RO contains the FDB address.

Sequential Access

For sequential access, use PUT$S and GETS$, or PUT$S and GETSS.
FCS wuses internal pointers to identify the record to be operated
on next. The initial pointer location is at the beginning of the
file wunless the file 1is opened for Append. In that case, the
original pointer location is at the end of the file. Each PUTS$ or
GETS operation sets the pointers to the record after the record
just accessed. This means that a series of PUTSs or a series of
GETSs work on successive records.

To update a record in place, you cannot wuse a GET$, then
update the record, and then use a PUTS. With that segeunce, the
GETS updates the record after the one you read. Instead, use two
special file control routines, .MARK and .POINT, which allow you
to save and reset the internal pointers. Use a .MARK before you
do the GETS$, and save the returned pointers to the record. Then
do a GETS$ and update the record. Use a .POINT to reset the
internal pointers. Finally, 1issue a PUT$ to update the record.
See sections 4.1¢.1 on .POINT, and 4.10.3 on .MARK, 1in the
IAS/RSX-11 I/O Operations Reference Manual for details on how to
use these routines.

After all GETS operations, the next record buffer (NRB)
descriptors identify the address and length of the record just
read. The address is located at offset F.NRBD+2 in the FDB, and
the length is at offset F.NRBD. ‘

For all PUTS$ operations, the NRB descriptors 1identify the
"record to be written. Depending on whether you use move or locate
mode, as described in the following paragraphs, you may or may not
need to use the NRB descriptors.

457

FILE CONTROL SERVICES

In move mode (Figure 1¢-2), GETS$ operations always move the
record read to the user specified record buffer. Therefore, in
general, specify the URB address and size once (in a FDRCSA,
FDRCSR, or a file open call). Once these are set up, do not
specify them again unless you want to use a different buffer.
After each GETS$, access the record directly in the URB, which has
a known address. If you specify a different URB in a GETS$ call,
that becomes the URB for later GETS$ calls, unless another URB is
specified.

PUTS operations in move mode (Figure 10¢-2) assume that the
record has been built at the 1location set up in the NRB
descriptor. This defaults to the URB. Therefore, the easiest
method 1is to specify the URB once, and then build all records in
the URB. Then issue PUTS$s without specifying an NRB.

If you want to build your records in a different buffer, you
must specify an NRB in the first PUT$ call. After that, for
successive PUTSs, build all records in the NRB so that you won't
have to respecify an NRB. If however, you mix GETS$s and PUTSs,
you must specify your NRB in each PUT$ call, because each GETS
call updates the NRB descriptors to point to the record just read
(specifically the NRB pointer points to the URB).

In locate mode (Figure 1¢-2), you generally access records
directly in the FSR block buffer. The only time a user record is
needed is if a record spans block boundaries. Set up a URB only
if this is a possibility.

For GETS operations, the NRB descriptors identify the record
just read. Access the record at the NRB address (offset
F.NRBD+2). This pointer points directly into the FSR block buffer
if the record does not span block buffer boundaries.

For records which span block buffer boundaries, FCS moves the
record to the URB and the NRB pointer points to the URB instead of
a location within the FSR block buffer. Do not specify a new URB
unless you want to use a different URB for records that span block
boundaries.

For PUTS$ operations in locate mode (Figure 1#-2), build the
record at the NRB address. This assumes that the NRB descriptors
have already been updated to point to the record to be built,
either by the file open macro, or the previous PUT$ or GETS$. Once
the record is built, use a PUTS$ to allow FCS to do some internal
bookkeeping and update 1its 1internal pointers for the next
operation.

458

FILE CONTROL SERVICES

In locate mode, be very careful when you write to a file,
because you are working directly in the FSR block buffer. If you
build a record in the wrong location by mistake, you cannot easily
recover any record which gets overwritten. 1In move mode, on the
other hand, since you work in a separate URB buffer, a mistake
discovered before 1issuing a PUTS$ does not update the FSR block
buffer.

For both move and locate modes, you can also use the .POINT
routine to return to the beginning of a file, or the .MARK and
.POINT routines to save and later return to a record previously
accessed. This allows a very limited form of random access.

Random Access

For random access, use PUTS and GETS or PUTSR and GETSR.
PUTSR and GETSR are easier to use because you can specify the
record number in the macro call. For random operations, on each
PUTS or GETS <call, the record number field in the FDB (offsets
F.RCNM, high-order word, and F.RCNM+2, low-order word) is used to
calculate the position of the record to be operated on.

When the file 1is opened, the record number 1is always
initialized to '1l', even if the file is opened for Append. After
each PUTS or GETS$ operation, the record number is set to one more
than the last record accessed. You can override this default by
specifying a record number in a PUTSR or GETSR call, or by
manually placing the record number directly into the FDB before a
PUTS or GETS call.

For move mode, the URB and NRB mechanics are exactly the same
as for sequential access. For locate mode, GETS operations are

the same as for sequential access.

PUTS operations are very similar. For PUTS operations in
locate mode, build the record directly at the NRB address. After
each PUTS operation, the NRB pointer is updated to point to the
record after the record written. Therefore, if you are updating a
record other than the next record, use either a dummy GETS$R call
or the (POSRC routine to set the NRB pointer to the record to be
built. See section 4.1¢.2 on . POSRC in the IAS/RSX-11

I/0 Operation Reference Manual for details on how to use that
routine.

459

FILE CONTROL SERVICES

For all types of access, as you do PUTSs to a file, FCS
transparently extends the file as necessary.

NOTE

FCS updates the logical end-of-file
information in the FDB, but not in the file
header. Close the file wusing the CLOSES$
macro to write the end-of-file information
out to the file header. See the next
section, on closing the file, for additional
information.

See sections 3.9 (on GET$) through 3.14 (on PUT$) in the
IAS/RSx-11 I/0 Operation Reference Manual for additional infor-
mation on performing record I/O.

Closing the File

Use the CLOSES macro to explicitly close a file, specifying
the address of the FDB. CLOSES$ performs appropriate cleanup work
which involves I/0 transfers to the file,.

e Waiting for I/0 in progress to complete (multiple buffered
record I/O only)

e Performing any needed write of 'the FSR block buffer
(record I/0 only)

e Updating the file header (high block, end of file block,
first free byte).

Since CLOSES performs I/0O transfers to the file, always check
for errors on return to ensure that the transfers were
successfully performed. If a CLOSES is not issued before a task
exits, the Executive closes the file. If the file was opened with
write access (write, modify, append, or update), the Executive
locks the file unless you specify "no lock of files" in the FDOPSA
or FDOPSR call.

460

FILE CONTROL SERVICES

Examples of Record I/0

This section contains several examples which show how to wuse
the wvarious FCS services discussed previously for record I/0.
Also, look back at Example 1¢-1, our introductory example. It
shows how to create a file with variable-length records using
sequential I/0. Examples 1¢-2 and 1¢-3 show how to create a file
with fixed-length records using sequential I/0. Example 1¢-2 uses
the assembly-time FDB initialization macros, and Example 10-3 uses
the run-time FDB initialization macros. Examples 1¢-1 to 10¢-3 all
use move mode. Example 1¢-4 shows how to read records from an
existing file wusing locate mode. Example 1¢-5 shows how to read

records from an existing file using random access in move mode.

Example 1@-2 creates the file FIXED.ASC. It takes records
input at TI: and places them in the file, terminating input and
closing the file when a "Z is typed. The following notes are
keyed to Example 1g-2.

@ ©symbol for record size. Allows easy modification of the
record size.

(’ The user record buffer (URB). Input from TI: is read
into this buffer and then written to the file using PUTSs.

G’ Output buffer, argument block, and format strings for
generating error messages using $EDMSG. This is for both

QIO errors and FCS errors,

Allocate FSR space; one FSR block buffer for record 1I/0.
The default size is 512(19) bytes.

Assembly-time initialization of FDB.
Open file for write. All FDB parameters are already set.

The extra ERR1 argument causes a call to the subroutine
ERR1 in the case of an open error.

Fill the URB with blanks before each read to avoid garbage
from a previous read, because you will be reusing the

buffer.

c' Issue read. Check for directive and I/0 errors. Display
an error message and exit on either type of error using
common code at SHOERR, except for a "Z. In that case,
branch to a common exit routine which closes the file and
exits. -

461

FILE CONTROL SERVICES

Use PUTS to write the record to the file, FCS takes the
record at NRB (in this case the same as URB by default),
writes it to the file and updates 1its internal pointers
for the next PUTS. Call the subroutine ERR2 in the case
of an error.

Branch back, clear the URB and read the next input.

After a "Z, close the file, check for errors and exit.
Use BCS here instead of an additional CLOSE$ argument, to
show that this technique is also possible. The two forms
are similar. The only difference is that BCS does not

affect the stack, while the additional argument form uses
a JSR PC, which pushes the return address onto the stack.

Error processing, as discussed in the section on Error
Checking. This code always issues an explicit CLOSE so
that the file is unlocked. No error occurs if a file
which 1is not vyet opened, is closed. This code does not
distinguish whether the error was caused by the OPENSR, a
PUTS, or the CLOSES call. Additional code can be added to

tell which call caused the error.

462

FILE CONTROL SERVICES

1 +TITLE CREFXA
2 IDENT /017
3 +ENARL LEC $ Enasble lower case
4 it
5 3 File CREFXA.MAC
& H :
7 3 CREFXA orens FIXED.ASC for writey inruts records
8 3 from TI! and ruts them seauentialls to the Tile.
Q? $ A Tz terminates inerut and closes the Tile.
10 ¥
11 LMCALL EXSTSCyQIOWSC QI0WEDNIRS 5 Sustem macros
12 +MCALL FSRSZ$»FORDF$ s NMBLKS 3 Sustem FCH
13 MCALL FIDRCHASFIATSAFLOF$A § omacros
14 +MCALL OPENSWsGET$sFUTS»CLOSES §
15 +NLIST BEX # Burerress ASCIIT
Q@ 4 rsiz = 30, $ Record size (butes)
¥

17 1087 + BLKW 2 QIO status block

i8 FRINT! QIOW$ TOWVE»Ssly sy s ORUFF 0940
© 15 EBUFF: LBLKE RSIZ User record buffer
™20 ORUFF? +BLKR 80. Outreut buffer for

error messages

Argument block for
e 23 , SENIMSG

24 EF0QI0: ASCIZ /NIRECTIVE ERROR ON QIO. ERROR CODE = ZD./
25 EFIQI0: ASCIZ 7?I/0 ERROR ON QI0O. ERROR CODRE = Z%D.7
26 EFCOIR: +ASCIZ /FCS DIRECTIVE ERROR. ERROR CODE = ZD./
| 27 EFCSI0: .ASCIZ 7FCS I/0 ERROR. ERROR CODE = ZD.7

22 ARG? + BLKW 1

h3
ot
. %Sr W N er

28 +EVEN
29 LHLIST RBEX ¥ Show offsets
30
"_31 F8RE8Z$ 1 $ 1 file for record 1/0
32 FogRs FOROF$ i File descrirtor blochk
33 FORC$A RUFFyRSIZ ¥ User buffer and sizey
34 # default is record I/0
e’ 35 i with secuential access
36 FOATS$A R.FIXsFD.CRyREIZ 5 Firxed lensith recordss
37 ¢ imelied <CR><LF>
38 FLOF$A 1yyFILE § ouse LUN 1
| 39 FILE: NMBLKS FIXEDyASC # FIXED.ASC
40
c, 41 START: OFEN$W #FDRsryesrERRL 3 OFEN$ if oren failss
42 ¢ CALL ERR1
43 CLRRUF: MOV #RSIZyR1 ¢ Size of URR
" 44 MOV FRUFF s R2 ¢ Addr of URRE
45 LOOF? MOVE * s (R23+ ¢ Rlamk Till record
44 SOR Rilsloom ¥ os0 no darhedge fill

Example 10-2 Creating a File of Fixed Length Records,
Initializing FDB at Assembly Time (Sheet 1 of 3)

463

47

78
79
80
81
82
(12 J K

84
85
86
87
88
89
90
91
92
| 93
94

DIROKS

OKIOZ

EXIT?

&

Error
ERR1:
ERR2:
ERR3:

103

FINSET?

SHOERR?

Example 10-2

FILE CONTROL SERVICES

QIOWSC

RCC
MOV
MOV
BR

TSTR
BGT
CMPE
REQ
MOVE

MOV
MOV
MOV
ER

FUT$
ER

| CLOSE®

RCS
EXS8T4$C

IOWRVEBsS 21y » I0STs » “RUFF s REIZ: 5

DIROK
$EFDRTOSR1
#$NSWyR2
SHOERR

108T
OKIO

F#FIELEQF » TOST

EXIT
I0STsRO

RO » ARG
$#ARGyR2
$EFIQIOYR]
SHOERR

#FQBy v yERRZ
CLRRUF

#FIR
ERR3
EX$SUC

Frocessing

TSTR

REQ
MOV

BR
MOV

MOVE
MOV
MOV

MOV
cALL
MOV
DIRS
CLOSES
EXST4C
+END

F+ERR+YL(RO)

I0
FEFCRIRYR]

FINSET
#EFCSI0sR1

F.ERR(RO) s RO

RO» ARG
#ARGYR2

#ORUFFyRO
SEIMSG

R1sFRINTHQ. JOPL+

EFFRINT
*#FIE
EX$SERR
START

“r

‘€ ‘@> ‘as

s car €> J Gr W er €> Wr wr CF €> G> 8> E3 Q> €F E>

T > WF e3> e E WE CF EF WGP ‘G 6> NS> G MR ‘G CE EF B>

Read a
lirne from TI?

Branch on Directive ok

Set ur for $EDIMSG

Bramch to show error
and exit

Check for I/0 error

EBranch if 1/0 ok

Check for EOF

It EQy close and exit
I/70 status is sidgn
extended amnd rlaced
in argument block
for $EIMSG call

Set ur for SEIMSG call

Branch to show error

and exit
Write next record
Get mext record

Cloge file
Eranch om FCS error
Exit with status of 1

Nirective error or 1/0
arror
Branch on I/0 error
Set ur for $SEDIMSGy
directive error
Bramch to finish setur
Set ur for $EDIMSGe 1I/0
error
FCS error code
is sign extended and
rlaced in ardg block
$ENMSG ardgument block
Outeut buffer
Format error messade
i Size of messade
Frint error messade
Close file
Exit with status of 2

1 Creating a File of Fixed Length Records,
Initializing FDB at Assembly Time (Sheet 2 of 3)

464

FILE CONTROL SERVICES

Rum Session?

FRUN CREFXA

11111

2222

33Z333

44 .
Where did wou #o?
H6466 b6

~Z

Nume of DRLICI0S,30LIFIXED.ASCs4 ~ File
Virtuasl block 05000001

000000 061 061 061 061 061 040 040
000020 040 040 040 040 040 040 040
000040 062 062 040 040 040 040 040

000060 040 040 040 040 040 040 040

000100 0863 063 040 040 040 040 040
000120 040 040 040 040 040 040 040
000140 040 040 040 040 040 040 040
0001460 040 040 040 040 040 040 040
Q00200 144 040 171 157 163 040 147
000220 040 040 040 040 040 040 064
000240 040 040 040 040 040 040 040
000260 040 040 040 040 000 000 000
000300 000 000 000 000 000 000 000

040
040
040
040
040
040
040
040
157
Q66
040
000
000

In

-~ Sizre 512.

040
040
040
040
040
040
040
127
077
066
040
000
000

040
040
040
040
040
040
040
150
040
066
040
000
000

040
040
040
040
040
064
040
145
040
040
040
000
000

2374691350

hutes

040
040
040
040
040
064
040
162
040
066
040
000
000

040
040
040
063
040
040
040
145
040
066
040
000
Q00

040
040
040
063
040
040
040
040
040
040
040
000
000

040
062
040
063
040
040
040
144
040
040
040
000
000

Example 10-2 Creating a File of Fixed Length Records,
Initializing FDB at Assembly Time (Sheet 3 of 3)

465

040
062
040
063
040
040
040
151
040
040
040
000
Q00

FILE CONTROL SERVICES

Example 10-3 performs the same function as Example 1¢-2, but
it uses the run-time FDB initialization macros. The following
notes are keyed to Example 1¢-3.

" Include the run-time ($R) macros.

@' At assembly time, simply allocate space for the FDB and
initialize the default filename block.

G’ Issue the run-time FDB initialization macros, specifying
the FDB address in the first call. The first call returns
the FDB address in R@. The subsequent calls default the

FDB address to R4g.

466

t
SOWNAD LI

-
[

13

14

15

Q i
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
> Y
| 36

37
38
39
40
41
42
(5 JRE
44

45
46
47

+

from

H

Wr WE e EE G WGP E> W W e

REIZ

1087
FRINTS
RBUFF
ORUFF ¢

ARG
EFIQIOS
EFIQIO:

EFCDIR?
EFCSIO:

FOE:
DFILE?

START?

Example 1¢-3

TI
A "Z terminates ineutl

FILE CONTROL SERVICES

+TITLE
« TOENT
+ENARL

+MCALL
+MCALL

+MCALL-

+MCALL
«NLIST
= 30,
+BLKW
QIOWS
+BLKE
+ BLKE

+ BLKW

+ASCIZ
+ASCIZ
+ASCIZ
+ASCIZ
+EVEN
JLIST

FBREZ%$
FORDF 4
NMELK$

FOAT$R

FORC$R

FROF$R

CREFXR
701/
.G

File CREFXR.MAC

A
?

Enahle lowe

EXSTSCyQIOWSCyQIOWS yDIRE 5 Suw

r case

CREFXR orens FIXEDN.ASC for writes inruls records
and sults them seauentially to the file.
and closes the file.

This srodgram uses the $R macros at run time to
initialize the FIR

shem macros

FORSZS y FIRDF %y NMBLKS 3 Sustem FCS
FUORCHSR» FOATSR FOOF$R i macros
OFENSWyGET$yFUTSCLOSES +
REX i Sureress ASCIT
i Record size (butes)
2 i QIO status block
TOWVB»Sylysyy TORUFF» 0240
RSIZ $ User Record Buffer
80. i Duteut buffer for
ioerror messadges
1 F Argument block Tor
4

/OIRECTIVE ERROR

SEIMGEG
ON QIO. ERRO

?PI/0 ERROR ON QIO. ERROR CODE
/FCS DIRECTIVE ERROR. ERROR C

TFES 170 ERROR.
BEX
1

FIXELyASC
FFOR #RFIX s #F L,

»y #RUFF » #RETZ

y#1y v #OFILE

£

.
¥y

»
?
»
y
a
¥y
&
¥y

RROR CODE =
Show offset

1 file for

R CORE = ZD./
= A7

OnE = Zh./

r4 (s

&

record 170

Allocate srace for FIOE
lefault Name Blochks

for ‘FIXED

CR#RSIZ 3 Fi

er Wr NE> G NS> Gy Gr e

recordsy 4
LF
User buffer
sizer move
seauential
default
Use LUN 1y
Name Rlock

+AGCY

wed lensth
melied <CR>

addr and
mode and

access by

lhefault

Creating a File of Fixed Length Records,
Initializing FDB at Run Time (Sheet 1 of 3)

467

FILE CONTROL SERVICES

48 OFEN$W syyrysERRL # OFEN — if aren fTailsy
49 3 CALL ERR1

50 CLRRUF MOV #RSIZ+R1 $ Size of URRB

51 MOV FBUFFsR2 i Addr of URR

52 LOOF? MOVE £ s(R2)+ ¢ Blamk fill record

53 SOR R1LOOF ¥ 80 no darbadge fill
54 i QIOWSC I0RVEBsSvleyyI08Tyy<BUFFy30.> $ Read a
35 $# line from TI?

56 rCe DIROK ¥ Branch on Directive ok
57 MOV #EFDQIOR1 ¥y Set ur for $EDMSG

58 MOV #$NGSWyR2

59 BR SHOERR # Branch to show error
60 i and exit

&1 DIROK: TSTE 108T $ Check for 170 error
&2 BRGT OKIQ $ Branch if 1/0 ok

b3 CMFR FIE.EQF s T0OST 3 Check for EOF

64 BEQ EXIT 5 If EQr close and exit
6S MOVR I08TsRO i I/0 status is sign

bé iy extended and rlaced
&7 $ im ardgument bhlock

&8 MOV ROy ARG 3 for $EDMSG call

69 MOV FARGYR2 i Set ur for SELDMSG casll
70 MOV $EFIQIO»R1L H

71 ER SHOERR 3 Branch to show error
72 i and exit

73

74 OKIO: FUT$ #FDORy » y ERR2 3 Write mext record

75 BR CLRRBUF ¢ Get next record

76

77 EXIT? CLOSES #FIDR $ Close file

78 RCS ERR3 $ Branch on FCS error
79 EXST$C EX$5UC i Exit with status of 1
80

81 # Error PFrocessing

82 ERRI ¢

83 ERR2?

84 ERR3: TETHR F+ERR+1(RO) Directive error or I/0

¥y
85 i error
86 REQ 10 $ Branch on 1/0 error
g7 MoV FEFCDIRYRL i Set ur Tor SEDNMSGy
88 i directive error
89 ER FINSET # Branch to finish setus
0 10: MOV $EFCSI0OsR1 $ Set ur for $EIMSGy I/0
21 i error
92 FINSET! MOVR F+ERR(RO) yRO 3 FCS error code
93 MOV ROy ARG i is sign extended and
94 MOV *#ARGsR2 ¢ rlaced in ardg block
8 i for $EDIMSG

Example 10-3 Creating a File of Fixed Length Records,
Initializing FDB at Run Time (Sheet 2 of 3)

468

FILE CONTROL SERVICES

Q6 SHOERRS MOV #ORUFF » RO $
@7 CALL SEIMSE H
98 MOy R1sFRINT+Q.IOFL+2
Q9 NIRYS FPRINT §
100 CLOSEY$ #FIE $
101 EXST$0C EX$SERR H
102 +END START
Run Session
»RUN CREFXR
11111
2222
333333
44
Where did wou go?
Hhbdk &6
e
Dume= of DBR1IC30Sy301IFIXEN.ASCHS ~ File
Virtual block 0000001
000000 061 061 061 061 061 040 040 040
Q00020 040 040 040 040 040 040 040 040
Q00040 062 062 040 040 040 040 040 040
Q00060 040 040 040 040 040 040 040 040
Q00100 063 063 040 040 040 040 040 040
Q00120 040 040 040 040 040 040 040 040
000140 040 040 040 040 040 040 040 040
Q00160 040 040 040 040 040 040 040 040
Q00200 144 040 171 157 165 040 147 157
Q00220 040 040 040 040 040 040 066 066
Q00240 040 040 040 040 040 040 040 040
Q00260 040 040 040 040 000 000 000 000
000300 000 000 000 0G0 0G0 000 000 000

Example 10-3

OQutrut buffer

Format error messade
i Size of messade
Frint error message
Close fTile

Exit with status of 2

I 24564+650
- Sire 312, butes
040
040
040
040
040
040
040
127
077
066
040
000
000

040
040
040
040
040
040
040
150
040
066
040
000
000

040
040
040
040
040
064
040
145
040
040
040
000
000

040
040
040
040
040
064
040
162
040
064
040
000
000

040
040
040
063
040
040
040
145
040
066
040
000
000

040
040
040
063
040
040
040
040
040
040
040
000
000

Initializing FDB at Run Time (Sheet 3 of 2)

469

040
062
040
063
040
040
040
144
040
040
040
000
000

Creating a File of Fixed Length Records,

040
062
040
063
040
040
040
151
040
040
040
000
000

FILE CONTROL SERVICES

Example 10-4 reads the first five records of the file
VAR1.ASC (which 1is created using Example 1¢-1) and displays them
at TI:. It uses sequential I/0 in locate mode. The following
notes are keyed to Example 10-4.

@ FDB allocation and initialization. Specify locate mode;
default 1is sequential access. No FDATSA or FDATSR macro
is needed because the file already exists. No user record
buffer 1is needed because none of the first five records
spans block boundaries. None span block boundaries
because the maximum input record for Example 18-1 is
80 (19) bytes. Specify a URB if records can span block
boundaries.

Set up loop counter to read five records.

GETS a record. The FDB pointer is returned in R@ after
‘the OPENSR call.

@ Wwrite the record at TI:. The pointer to the record is at
offset F.NRBD+2 in FDB; size is at offset F.NRBD in FDB.
No '#' is used because we want to use the contents of
those locations as arguments. '

G’ Decrement the counter and 1loop back until done. When
done, close the file and exit.

JTITLE READLC
JIDENT /017

“J

3 JENARL LG i Enable lower case
4 it
5 i File READLC.MAC
4 H
7 $ This task reads the first 9 records from the file
8 i VARI.ASC and disrlaws them at the terminal. It uses
£4 i locate mode.
10 i
11 SMCALL OFENSRyGETSHyQIOWES s NMBLKS » FIIOF $A
12 MCALL CLOSESyEXITSSeFORDF G FIIRCSAsFERSZS
13
14 FORE&Z$ 1 i 1 FE8R block buffer
15 FORS FOROF$
14 FIORC$A Fh.PLC i Locate mode
" 17 FROOP$aA 1ssDFNR # LUN 1y defaull file
18 ; y name block
19 DFNE? NMRL.K$ VARIyASC i File FIXEDR.ASC
20 :

Example 10-4 Accessing a File in Locate Mode (Sheet 1 of 2)

470

FILE CONTROL

21 OBUFF: +BLKW 80.
22 ARG + RLKW 1

23 EFCOIR? +ASCIZ

24 EFCSI0! +ASCIZ

25 +EVEN

26 START? OFEN$R #FDR

ERRO

#59R2

27
28

29

BCS
MOV
GET$
BCS
QAIOWES
508
CLOSES
RBCY

.00 ¢
ERRR
31
32
33
ERRC

35 EXIT4S
3é # Error code
37 ERRC?S

38
39
40
41
42
43

ERRRE
ERROS TSTR
BEQ TOERR
MOV

ER

MOV
MOVER
MOV
MOV
MOV
CALL
QIOWSS

FINSET
IOERRS
45 FINSET?
46
47

RO ARG

49 SENMSE

50

91
92 CLOSES #FDR
53 EXIT$S

54 +END START

Run Session

FRUN READLC

1111

22222 22

333

JAZZ Jaszz JAZI Jaz:x

Have wou ever seen the sun?

Example 10-4

FLE I/70 ERROR.

FI0. WURy #5
R2sLOOF

F+ERR+1I(RO)

FEFCOIRy R

FEFCSIOsRY
FeERR(RO) RO

#AORGy R2
#OBUFF vy RO

FI0 WURyHGedklyyy

471

shlyvsy

SERVICES

s
y
*

¥y

/FCS DIRECTIVE ERROR.
ERROR CODE =

| s M e W R er ar er CEn

s N> Gy ® > M NP NGRS e S> e e b

Accessing a File in Locate Mode

Error messadge buffer
SEOMESG ardument bhlock
ERROR CORE = XD./
At !

reasd
@rror

Oren Tile for
Branch on FC&
L.aor counter
Get record

Rranch on error

SFORHF NREOH2 9 FURHF « NRRBI s #4005

Iecrement loor counter
Close file
EBranch on
it

error

Nirective error or 1/0
erraor?

Eranch on 1/0 error
Set ur for $EOMSE
Branch to disrlaw code
Set ur for $EIMSG

Sign extend FCE error
code and mlace in
argument bhlock

Outreut tuffer

Format error messade

SHORUFFyR1Ly#40> 5 Write
messasde

Close Tile

Emit

(Sheet 2 of 2)

FILE CONTROL SERVICES

Example 1¢-5 uses random access to read records from the file
FIXED.ASC, which 1is created using either Example 1¢-2 or Example

lg—3 Y
record

It prompts at TI: for a record number and displays that

at TI:. The following notes are keyed to Example 10-5.

FCSMCS$ is a macro containing .MCALLs for most of the FCS
macros. Using it can avoid having to specify all of the
FCS macros in .MCALL statements. Note that GETSR 1is not
included in FCSMC$, so it is specified separately.

Using the $ form of all QIOs. With the exception of the
QIO at PRINT, all parameters are set at assembly time.
Therefore, any of the three forms ($, $C, or $S) <can be
used for the QIOs at ECHO, PROMPT, and WARN. Either the $
or the $S can be used for the QIO setup at PRINT.

The record number is input in ASCII (up to two digits).

FDB for file. Use random access I/0.

Open file for read. Prompt for and read record number.

On a directive error, use the supplied macro DIRERR to
display an error message and the DSW, and then exit.

Check for I/0O error. 1If the error was a ~Z, branch to
EXIT to <close the file and exit. If any other error
occurred, use the supplied macro IOERR to display an error
message and the IOSB, and then exit.

Set up and call .DD2CT to convert the record number from
ASCII to double-precision binary. During setup, make sure
that at least one digit was input. If none were input,
prompt again. Double precision is used only to show how
to take advantage of the full range of record numbers (up
to 31 bits in two words).

Move the low-order 16 bits of the record number to R2, and
use GETSR to read the record. Call the subroutine ERR2 on

any FCS error. Only the low-order 16 bits are needed,
because we know the record number is less than or equal to
99 (149) . :

Display the record and prompt for the next record number.

Always display 30(10) characters, because the file has
fixed-length records.

472

FILE CONTROL SERVICES.

® on FCs errors, first check for end-of-file. If it is not,
branch to common FCS error code at ERR3. If the error is
read past end-of-file, display a warning message and
prompt for the next input. Because this routine is
entered with a JSR PC instruction, you must clear the
“return address off the stack before using a BR
instruction.

Notice that the supplied macros DIRERR and IOERR are used for
QIO errors, but not for FCS errors. This is because FCS returns
error status to the FDB. 1In fact, DIRERR would work correctly
because the DSW 1is returned by the Executive, and FCS moves the
DSW value into the FDB. IOERR however, does not work correctly
because FCS sets wup its own internal I/O status block, and its
address 1is not available to the user task. The supplied macro

FCSERR is set up to handle both types of FCS errors.

473

GO NG D LIRS

-+

TI®

ey
o~
Lo

WP WS N> W GRS SR W > R G W e e

H

24 i L.OCAL

26 ECHD?
27 FRMFPT S
28 WARN?S
29 FRINT?

31 RBUFF 3
32 10sTs
33 AREC
34 REC?
335 ouT:

37 MESIL:

39 MES2:
40 MES3:

42 EFCUOIR:
43 EFCSI0R

FILE CONTROL SERVICES

+TITLE RANIIOM

LIDENT /017

+ENARL LC y Enable lower case

File RANDOM.MAC

RANIOM uses direct sccess to a filey FIXED.ASCy which
contains fixed length records. This task sromets at
for 2 record numbery and diserlaws it st TIS

It exits whenrn & control Z is ineutl

Assemble and task-bhuild instructions?

SMACRO/ZLIST LEICL LIPROGMACS/LIBRARY v dev? Dufol-
~=RANDOM
SLINKZMAF RANDOMsLEBILL» LIPROGSURS/LIBRRARY

+MCALL QIOWS»DIRSyEXITHS»GETSR § Sustem macros

+MCALL FCSMC# i Macro to get most

¥ sustem FCS macros
+MCALL DIRERR» IOERR § Surelied macros
FCSMCY ¥ Get most FCS macros
+NLIST BEX ¥ Surress ASCIT
IATA
RSIZ =30, i Record size

QIOWS IO WURBySslsyr y “RUFF 30,240

QAI0WS TORPReS v Ly s JOST o v ARECy 29 s MESL o 8IZL 9 ‘62
QI0Ws JOWVBsSGely vy y “MES32 8123540

RIOWS IO WVURyS sy e o QUT v 040

+ BLKE R&IZ # User record buffer

+BLKW 2 i I/70 status blochk

+ BLKW 1 ¥ Record number in ASCIT

+« BLKW 2 # Record rumber in binary
¥

+ BLKR 100. $EMMSE outeut bhuffer
JASCILT /RECORD NUMRER?/

8I1Z1 = L,-MESL

+ASCIZ /FCS ERROR, ERROR COLNE = XD,/

LASCIT /ZXXKXFAST END QF FILEXXX/

SIZ3 = ,,-MES3

+ASCIZ /FCS DIRECTIVE ERROR. CODE = ZD./
LASCIZ YFCS LI/70 ERROR. CODE = XD, -’

+EVEN

Example 1#-5 Accessing a File in Random Mode

(Sheet 1 of 3)

474

44
47
48
49

50
0 :

2
53
a4
55
6
a7z

‘, 58
59
60

61
62

5

64

5

-
o

67

FILE CONTROL SERVICES

FEREZS

FOg: FRORDF$
FIRCEHA

FOOF$A
FILES NMEBLK$
+ ENARL

STARTS OFEN$SR

10%2 LIRS

RCC

DIRERR
DIROK: THTE

BT

1 file orened for
record 1/0

File descristor block

FO.RANsRUFFyRBIZ % Random sccessy URR

TR TR DY

§ addr and size
Ly s FILE $ Use LUN 1y default
$ name bhlock at FILE
FIXEDyABT 3 Default name -~
i FIXED.ASC
LSE
#FUBry vy s FERRL 3 Oren Tile for resd
3 CAlL ERR1 on oren
i error
FFRMFT 3 Fromet for record
§ nrumber
DIROK # Branch on dir ok
SERROR ON QIQx
1087 3 Checlk for 170 error
ERRLI § Branch on error

3 Convert ASCII record number to double-worded decimal

MOV
REQ
MOV
MOV
CALL
MOV
GET$R

DIRS
ER

I0ST+2 R4 y # of characters to

§ convert
10¢% 3 If mo charactersy

i rromet asain
#AREC s RS F Address of ASCII

i characters
#RECR3 3 Buffer to store

3 converted rumber
LON20T 3 Convert ASCII to

¥ decimal
REC+2yR2 3 Move low order 16 bits
FFORs s s R2y s ERR2 3 Get srecified record
#ECHO # Primt it on TIG
104 $ Fromet for next insut

5 ERROR ROUTINES

ERRLII: OMFR
RBEQ
TOERK

FIEEQOF» 10ST § "2
EXIT 3 If wesy branch to EXIT
#I08Ts < ERROR ON QIO

Here Tor errors on GETS

§

ERR2¢ CHFR
BNE

i oJust disrlew
DIRS
T8T

BR

Example 1¢-5

FIELEQF o FoERR(RQ)Y 3 Was the error an EOF?
ERR1 $ Noy it is another

3y error. hranch to ERRL
a3 warning for end of file

FWARN § DNisrlaw EOF messade

(S5P 4+ $ Clean off return addr
5 Trom stack

10% $ Fromet Tor next ineut

Accessing a File in Random Mode
(Sheet 2 of 3)

475

95
?6
®7
98
A
100
101
102
103
104
103G
108
107
108
109
11¢

111
(7 JRREE
113

FILE CONTROL SERVICES

ERR3?

ERRI S MOVR
MOV
MOV
TSTHR
BEQ
MOV
BR

TOERR: MOV

DSFERR: MOV
Cal.l
MOV

OIRS
CLOSES
EXIT$S

EXTTS CLOSES
EXIT4S
« END

Rurn Sessiond

FRUN RANDOM

1

RECORD NUMBERTL

11

RECORD NUMBERT3

JORDD NUMBER?®

F+ERR(RO) RS
R3G108T
#IT0STyR2
FeERR+L(ROD
TOERR
FEFCOIRsRL
nSFERR
FEFCSI0 R1
FOUT RO
SEIMSE

R1yFRINTHQ.TOFL42

FFRINT
HF D

F#FORYERR3

START

FHEFAST END OF FILEXKX
RECORD NUMBERTS
Where oicd wou go?

Example 10-5

PG> 'SE W G e Q> Ex >

TR A T T

Extend sign on error
code and move into
argument bhlock

I70 or directive error?

Branch on I/70 error

Directive error messase

Branmch to disrlaw code

I/0 error messasde

Outrut buffer

Edit ourut messadge
i Length of error

¥ messadgde

Frinmt error messase

Close file

EXIT

Close file

Esit

Accessing a File in Random Mode

(Sheet 3 of 3)

476

FILE CONTROL SERVICES

PERFORMING BLOCK I/0

READS$ and WRITES Calls
The formats of the READS and WRITES calls are:

READS fdb,bkda,bkds,bkvb,bkef ,bkst ,bkdn,err
WRITES fdb,bkda,bkds,bkvb,bkef , ,bkst ,bkdn,err

All parameters except fdb and err override any previous FDB
settings. Always use a user specified buffer, which can be
specified in a FDBKSA, or FDBKSR call, an open call, or in a READS
or WRITES call.

The 1length of the transfer 1is controlled by the bkds
parameter., The starting wvirtual block number in the FDB is
initially set to 1, unless the file is opened for Append. FCS
updates the block number after each operation to point to the
block after the last one accessed. To override the default block
number, set up a two-word data block for the virtual block number
and specify the address of the block in a FDBKSR macro call (after
the file is opened), or in a READS or WRITES macro call.

The following piece of skeletal code shows how to wuse block
5, then block 12(19), and finally block 13(189).

BLCKNM: .WORD 2,5 ; Starting block number
OPENSR #FDB ; Open file
BCS ERR1

READS $#FDB,, ,#BLCKNM,, ,ERR2 ; Read block 5

MOV #12., BLCKNM+2 ; Update block #
READS #FDB,, ,#BLCKNM,, ,ERR3 ; Read virtual
; block 12(19)

READS #FDB,,,,,,ERR4 ; Read next virtual block

477

FILE CONTROL SERVICES

Unlike record 1/0, for block I/0O each READ$S or WRITES causes
an I/O0 transfer between the user buffer and the file. ’

Synchronization and Error Checkihg

For block I/0, FCS issues asynchronous QIO directives. You
must provide synchronization and check for both directive and I/0
errors. Use an event flag or an AST routine for synchronization.
Check for errors on return from the READS or WRITES$ call (after
the QIO directive is issued).

Also check for I/0 errors after the I/O operation completes.
To get 1I/0 error indications, you must set up and specify an I/0
status block. Otherwise, no I/O status conditions are returned,
and success must be assumed.

If you use an AST routine for synchronization, check the IOSB

directly for I/0 errors. If you use an event flag for
synchronization, use a WAITS call to wait for the flag to be set,
rather than a Wait for Single Event Flag (WTSES) directive. With
WAITS, FCS returns its standard error indications. This means the
carry bit 1is <clear for success and set for an I/0 error. In
addition, for errors, the I/0 error code is returned at offset

F.ERR in the FDB. If you wuse the Wait for Single Event Flag
directive (WTSES$) instead, standard FCS error codes are not
returned. In that case, you must check the TIOSB directly

yourself.

See sections 3.15 (on READS), 3.16 (on WRITES), and 3.17 (on
WAITS) for additional information about block 1I/0 calls,
synchronization, and error checking.

Examples 1¢-6 and 18-7 show how to use block TI/0. Example
19-6 creates a file BLOCK.ASC using block I/0O. Example 10-7 reads
a virtual block from the file BLOCK.ASC and displays it at TI:.

The following notes are keyed to Example 19-6.

@ You still need an FSRSZ$ statement to set up an FCS, but
no FSR block buffers are needed.

© DB setup. FDATSA and FDOP$A are the same as for record
I/0. The only difference here 1is that a dataset
descriptor is used instead of a default filename block.
This is done just to show the use of a dataset descriptor.
FDRCSA specifies read/write mode (block 1I/0). FDBKSA
specifies the address and size of the user buffer, the
event flag for synchronization, and the IOSB address.
Don't specify the address of the block number until after
opening the file.

478

0 0 © 0000 O

© O

FILE CONTROL SERVICES

Other data structures: A two-word block for the wvirtual
block number, initially set to virtual block 1; the user
buffer, and the I/0 status block.

Prompt for and read virtual block number. "Low only"
means only a one-word virtual block number, rather than a

two-word value.

Place a terminating null character at the end of the ASCII
virtual block number to set up for a call to $CDTB. Use
$CDTB to convert ASCII decimal to binary. There is no
error check included, but it can be added.

Move the converted virtual block number to the wvirtual
block number block.

prompt for and get a character to place in the block.

Fill the user buffer with the character.
Open (create) the file.

start the 1I/0 transfer. Specify the address of the
virtual block now, since the "open" call initializes the

block number to 1.

Display the message and wait for the I/0 transfer to
complete. Using WAITS$, FCS returns its standard error
indications. Call subroutine ERR3 in the <case of an
error. ‘

Close the file.

Set up to display the number of characters transferred,
branch to common code to edit and display the message, and
then exit. The code is common to the error message code.

Common error code. Set up for an I/0 or directive error
message. Set up to exit with error status.

Common code for displaying a message, closing the file,
and exiting. In the case of a successful write, you end
up calling CLOSES twice. There is no error for closing
the file after it is already closed. Use of the common
code saves space in the task.

479

FILE CONTROL SERVICES

1 +TITLE BLOCKIL

2 +IDENT /017

3 +ENARL LC i Enable lower case

4 3+

] # File BLOCKI1.MAC

& H

7 ¥ RBLLOCK1 crestes a file BLOCK.ASC and fills the srecified
8 $ virtuzsl block of the file with the srecified character.
9 i It uses block 1/0.

10 i—

11 +MCALL QIOWS DIR$»QIOWESSEXSTHS 5 Sustem macros
12 MCALL FIRROF$sFORCSASFOBKSA» FOF$Ay NMELKS

13 +MCALL FDAT$AYFORSZ$yOFENSWyWRITES$ »WAITS» CLOSES
14

15 +NLIST BREX

16 MESLS LJASCIT /VIRTUAL BLOCK NUMEBER (LOW ONLY)! /

17 LENL = , - MES]

18 MES2: +ASCII /CHARACTERY /

19 LENZ2:= + ~ MES2
20 MES3? +ASCIT /1 ELOCK REING WRITTEN TO FILE/

21 LEN3 =, -~ MES3

22 MES4 ¢ +ASCIT ZWRITE COMPLETEDy %D BYTES WRITTEN TO /
23 +ASCIZ /FILE/

24 MESD?S +ABCIZ /FCS DIRECTIVE ERRORs CODE = XD./
25 MEST +ASCIZ ‘FCS I/0 ERRORs CODE = XD’

26

27 CHARS + BLKR 1

28 RUFF ¢ -+ BLKR 100,

Character to write
Buffer for $EDIMSG

<r e»

29 +1L.18T BEX
30 +EVEN
" 31 FSRSZs O i No FSR bhlock buffers
32 i needed for block 1/0
r33 FOR?: FORIOF % i Reserve FOR srace
34 FUAT$A R.VARsFD.FTN 3 File characteristics
35 FORC$A Fli.RWUM i Read/write mode
36 FORK$A BLOCKsS12.51:1088 ¢ Adry size of buffers
37 i ef 1y I0SR addr
‘, 38 FOOrsa . 1.08PT § LUN 1y DSFT
39 DNSFT: +WORD 0+0 i Length and addr of device
40 +WORD 020 i Length and addr of UIC
41 +WORD L.NAM » NAM i Lendgth and addr of name
42 NAaM: +ASCIT /BLOCK.ASC/ i File mame and tyre
| 43 LNAM =4~ NAM
44 +EVEN
45 VEN? +WORD Ol i Default VEN
o 46 EBLOCK: +BLKW 256, i User buffer
L 47 1088k +BLKW 2 i 1/0 status tblock

48

49 TYFELS QIOWS IORFRes Syl s JOSRy s “BUFF v 67 s MESL s LENLy " %>
50 TYPE2: QIOWS IDRFReSslssy s CHAR» 1y yMES2yLEN2y %>

S51 TYFEZ! QIOWS TOWVRBsSe 2y sy vy IMES3yLEN3y 40

Example 1#-6 Creating a File With Block I/O (Sheet 1 of 3)

480

[60 ¥ Fill

&3 10%2

&5 ¥ Oren

77 ERR1:
78 ERR2:
79 ERR3:
80 ERR4 S

84 TOERR?
859 FCSSET

89 § Frin
20 FORMAT

| 98

Example 10-6

FILE CONTROL SERVICES

‘#’C")‘)’Ch"")")""{b‘)m 'T> M e Wy W @y W Cr G G G B

@ WH GF W G BB GRS e

W W> W W W W W

NIRS ¥TYFEL
MOV I05R+2RO
CLRE BUFF (RO)
MOV #¥BUFF s RO
CaLL $COTR
MOV R1sVEN+2
NIRS F#TYPERZ
user buffer with characte
MOV #BLOCKRO
MOV #5512+ ¢R1
MOVR CHARy» (RO +
S0OER R1s10%
file to receive character
OFENS$W #FDBysyy vy vy ERRL
WRITES svsB#VEBNys s yERR2
DIRS #TYFE3
WAlTS v y ERR3
CLOBE$ ERR4
MOy FMES4yR1
MOV FEXSSUCRS
ER FORMAT
TESTR F+ERR+1(RO)
BEQ I0ERR
MOV #MESDHyR1
BR FCSSET
MoV #MESTyR1
! MOVER F+ERR(RO) yR4
MOV R4, I0SE+2
MOV #EXSERR YRS
t messadger exit with status
<
+
MOy #I0SB+2yR2
MOV #RUFF » RO
CALL. SELMSG
QIOWSS FI0WURs#5s#25 9y
CLOSES #FDR
EXS5T$S RS
+END START

Fromet and dget VEN
lLLength in RO

Fut rnull bute at end
RO =» ASCII didgits
Convert to binaryg
Store as low VEN
Inrut character

Get address
and size of user buffer
Move character
l.oos back until done
v write virtual block
Oreny ERR1 if no dood
Start tranmsfer
Saw transfer started
Wait wuntil it’s done
Close file
Adr of comeletion
messadge
Exit status
Eranch to common code
for messade disrlaw
and exit

lirective or 1/0 error?
Branmch on 1I/0 error

=x I/0 error messade
Branch to common code
= [lir error messade
Sign extend error code
Use 1I/0 status block
for arg block

Exit status to RS

in RS

R2 =» 1/0 status
RO =» $EDIMSG buffer
Faormat the text

“¥BUFFsR1» %4035 And

write it out to TI?
Close file and
Exit with status

Creating a File With Block I/O (Sheet 2 of 3)

481

FILE CONTROL SERVICES

Rur Session

=RUN BLOCKT

VIRTUAL BLOCK NUMBER L.OW ONLYYY 2
CHARACTERY o

LOBLOCK BEING WRITTEN TO FILE

WRITE COMPLETED S512 BYTES WRITTEN TO FILE

Dume of DR2IC30Gy301IRLOCK.ASCH10 ~ File I0 37355240
Virtual block 04000001 -~ 8Size 512, butes

Contains whatever was sreviowsly in thalt block on the oisk

Dums of DR2ICI0GJOLIBLOCKASCHLO ~ File ID 372355:,240

Virtual block 0000002 ~ Size 513. hultes
000000 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145
000020 145 145 145 145 145 140 143 145 145 1435 145 145 1430 145 145 145

Q00040 1485 1435 145 1405 1435 145 145 145 145 1405 145 145 145 148 145 145

Q00740 145 1435 1435 145 145 140 1435 145 145 1435 1430 145 1435 145 1435 1495

Q00760 145 143 145 145 145 145 145 145 149 145 145 1435 145 145 140 145
X%k EOF XXX

Example 19-6 Creating a File With Block I/O (Sheet 3 of 3)

482

FILE CONTROL SERVICES

Example 1¢-7 prompts at TI: for a virtual block number, and

then

reads and displays that block of BLOCK.ASC. The following

notes are keyed to the example.

©0 0

This example displays, in addition to the error codes,
text error messages which tell the user which FCS call
caused the error.

No FSR block buffers are needed for block I/O.

This is the FDB setup. Use read/write mode. Use FDBKSA
to specify the user buffer address and size, the event
flag, and the IOSB address.

Oopen the file for read and prompt for the wvirtual block
number.

Place a null byte at the end of block number for a call to
SCDTB. Use SCDTB to convert the block number from ASCII
decimal to binary.

Store the result, returned in R1 by $CDTB, in the low byte
of the virtual block number block.

Issue a READS to read the specified block, and wuse WAITS
to wait for the 1I/0 operation to complete. READS$ and
WAITS return standard FCS status and error returns,

Display a heading and the wvirtual block.
Close the file and exit.

Error code to display the text message, including the
error code for each type of error.

483

L WND DGR

10

1
Ol L
144

FILE

JTITLE
+ IDENT
VENABL
+

. W g s E» er

BLOCKZ sromets a2t TI:

CONTROL SERVICES

RLOCK2
/017
LC y Enable lower case

File EBLOCK2.MAC

for 3 virtual block number

and bthen reads and disrlags that block of "RBLOCK.ASCH
MCALL QIOWSyDIRGyQIOWSESsEXSTHSyEXITHS
TMCALL FIROF$s FORCSAy FIOBKS$A s FLOP$Ay NMBLKS
SMEALL FSREZ$yOFENSRyREANS yWALTS s CLOSES
SNLIST REX
CR = 15
L.F =]2
MESL: LABCII /VIRTUAL BLOCK NUMRER: /
LENL = , - MES1
MES2: JASBCTT CCR>CLF>/HERE IS THE BLOCK ¢ /<CR=<LF=
LEN2 = , - MES2
MES3I: JASCIZ “1I/0 ERROR ON OFENSRy CODE = ZD.°
MES3N: .ASCIZ /DIRECTIVE ERROR ON OFENS$Ry COLE = ZD./
MES4I: «ASCIZ I/0 ERROR ON READS$s CODE = XZD.’
MES4D: .ASCIZ /DIRECTIVE ERROR ON REALS$y CODE -~ XZD./
MESSI: LASCIZ 1/0 ERROR AFTER WAIT$y CODE = XD.7
MESSD: LASCIZ /DIRECTIVE ERROR AFTER WAITS» CODRE = ZD./
MES&LS +ASCIZ “I/0 ERROR ON CLOSE$s CODRE = %D, '
MESGINS +ASCTIZ /DIRECTIVE ERROR ON CLOSE$s CODE = XZD./
BUFF ¢ +BLKE 80, ¥ SEDMSE outrut buffer
IS8T BEX
+EVEN
FGREZ% O § No FS8R hlock buffer
¥ needed for block 1/0
FOE: FORDF$ # FIOR for ineut file
FORC$A FO.RWM i Read/write mode
FORK$A BLOCK»S512.991»I088 5 Ruffer adrr sizer
iy ef 1y dosbh adr
FOOF$A 1ssFILE i LUN 1y DFNR
FILE?: NMBLKS% RLOCKyASC # Name is BLOCK.ASC
VENS +WORD 091 ¢ Default VEN
RLOCK: +RLKW 256, i User buffer
I0SES JRLKW 2 i I0SE
FPROMFTS: QIOWS I0RFRySs 1y sy IOSBy vy “BUFF v b6y o MES1 s LENLy "%
Fromet and det VB
[ONE ! QIOWS IO0.WVRySslyr vy MESZ2yLEN2y40> % lOne
F messade
TIUMF QI0WS I0WVB»Sslyryry<0sb64.v40x § Disrlay of VR

1¢-7 Reading

a File With Block I/O (Sheet 1 of 3)

484

H51

[52
53
L 34
r 53
56
57
- 58
59
40
6l
- 62
63
&4
65
&b
&7
48
69
" 70
71

72
73
74
75
74
77
78
79
80
81
22
83
84
85

86

88
89
90
91

23
94
95
?6
97
98
?9

100

87

92

i Code
START?:

&

i Now d

143

Error
ERRIL$

IOERR1?

ERRZZ

IOERRZ:

ERR3:

IDERR3S

ERR43

IDERR4S

Example 1@-7

FILE CONTROL SERVICES

OFEN$R
DIRS
MOV
CLRE
MOV
CALL
MOV
READIS
WAITS
LIRS
Lime
MOV
MOV
MOV
IR
AL
SOR
CLOSES
EXIT$S
code

TSTR
REQ
MOV
ER
MOV
ER

TSTR
REQ
MOV
EBR
MOV
ER

TSTHR
REQ
MOV
BR
MOV
ER

TSTR
REQ
MoV
EBR
MOV

EFDByysyesyERRL 7 Oren file

FFROMFT i Ask for a VRN

I0SR+2 RO # Fut null at end
RUFF(RO) i of digit string
#BUFF RO i RO =3 URN

$COTR 3 Convert to bimary
R1yVEN+2 i Store as low VEN
FFORy » v BVENy » s v ERR2 3 Read in the blochk
vy y ERR3 i Wait until done

#D0ONE i Tell them I/0 is done

8 lines of &4,

characters each

#BLOCK«RO 3 RO =» 1lst line to dums
#¥8.rR1 i # of lines to dume
ROsDUMP+Q.I0FL 7 Addr of current line
FDUMF # Dame it
+64. RO i Foint at mext line
Rirs1% 3 Dume all 8. lines
#FIRyERR4 i Close file

i Exit
FoERR+1L(RO) 3 I/0 or directive error?
TOERR1 i Brarnch orn 1/0 error
FMES3INyR1 3 o=x Dir error messade 3
FCSERR 3 Branch to common code
#MES3IyR1 3 o= I/0 error messase 3
FCSERR i Branch to common code
F+eERR+1 (RO} 5 170 or directive error?
I0ERR2 i Branch on 1/0 error
EMES4DsR1 3 = Dir error messase 4
FCSERR 3 Branch to common code
EMES4IsR1 3 =x [/0 error messade 4
FCSERR 3 Branch to common code
F+ERR+1L(RO) $ I/0 or directive error?
IOERR3 # Bramch on 1/0 error
FMESSIy R 3 o= Dir error messadge 5
FCSERR 3 Erarch to common code
#MESSI s R $ =» I/0 error messade 5
FCSERR 3 Eranch to common code
F+ERR+1 (RO $ 170 or directive error?
I0ERR4 3 Branch on 1/0 error
#MESAIyR1 3 =x [ir error messadge &
FCSERR ¥ Branch to common code
EMESS6IvR1 3 =x I/0 error messadge 6y

H

fall into common code

Reading a File With Block I/O (Sheet 2 of 3)

485

FILE CONTROL SERVICES

.01 FCBERRS
102 MOVR FoERR(RO) »R2 i Sidgn extend error code
103 MOV R2s 106K i and move inmto 108E
104 MOV FEXSERR » RS § Exit status in RS

105 FORMAT:S

106 MOV FIOSHyR2

Q|07 MOV FEUFF y RO

108 CALL $EDMSE

109 RIOWSS H#I0.WVEs#Sedlses

Set ur for $EIMSG

“HBUFFyR1+%#40> 3 DNisrlau
messasge

Close the file

Exit with status

111 CLOSES$ #FIDR
bl? ‘ EXS8T$S RS
113 +ENI START

T @ E> W Er Gr e

R Session

*RUN BLOCK2
VIRTUAL EBLOCK: 2

HERE I8 THE RLOCK?

RGO RCRAORECRERERNERERCRFRCRORERARERACPRPREeREREMPIERRRRRCRRORR
& 2 6 eefefeargefeferefareneereeeerRrerReseseeRree

FREREeCARERE PReeeReeee ereeegeerereeeeeeferReeereeeee
FRERREEREE PReees geeeeeesrerefpererererRererReree
FEARRREECRRSEER O ERERRERORORERERRERLEERRERRRPERRERRERRREREE
BEAEEARACVERRC EEMNEERIAVEARAAAREACEARREANPAACRAEANECERAERAR
R 26 G gaeererepgegefeeerReeeerreeeereRee
FRREEEEAPECARAE WmpaRees ReerepegererfeeeereeereeReeeeee

ERReE

Example 1@-7 Reading a File With Block I/O (Sheet 3 of 3)

486

FILE CONTROL SERVICES

ADDITIONAL TOPICS

Deleting a File

Use the DELETS macro to delete a file. If the file is open,
DELETS closes the file and then deletes 1it. 1If the file is
closed, DELETS just deletes the file. The format of the DELETS
call is:

DELETS fdb,err

DELETS FDB3

NOTE
Unlike the DCL DELETE command, if no version
is specified, the latest version of the file

is deleted.

File Control Routines

You can use a number of internal FCS routines in your task.
Some of the available functions include:

e Filling in an FDB filename block from a dataset descriptor
or default filename block.

e Finding, inserting, or deleting a directory entry.
e Marking a place in a file for later return.

e Setting a pointer to a byte within a virtual block, or to
the start of a record in a file.

® Renaming, extending or truncating a file.

e Marking a temporary file for deletion, or deleting a file
by FDB filename block.

We have already discussed the use of the routines .MARK and
.POINT for marking a place in a file so that you can later return
to it, and .POSRC for locating a record with random access in
. locate mode. See Chapter 4 of the IAS/RSX-11 I/0O Operations
Reference Manual for a description of each of the file control
routines, plus 1nformation on how to use them.

487

FILE CONTROL SERVICES

Command Line Processing

You can use two other collections of routines to facilitate
input and processing of command lines, which are useful in general
or utility tasks. The routines and their functions are:

e Get Command Line (GCML)

- Performs command line input operations (issues
prompts, gets input)

e Command String Interpreter (CSI)

- Pparses the file specification in a command 1line from
GCML into a dataset descriptor, for use by FCS

- Parses and processes any switches and switch values in
the command line.

See Chapter 6 on Command Line Processing in the
IAS/RSX-11 Operations Reference Manual for a description of the
command line processing routines. The program CSI.MAC should be
available on-line (under UFD [202,1]). It 1is also listed in
Appendix G, and contains an example of the use of GCML and CSI.
This example is needed to do optional exercise 6 for this module.

Now do the Tests/Exercises for this module in the Tests and
Exercises book. They are all lab problems. Check your answers
against the solutions provided, either the on-line files (should
be under UFD [2@2,2]) or the printed copies in the Tests/Exercises
book.

If you think that you have mastered the material, ask your
course administrator to record your progress on your Personal
Progress Plotter. You will then be finished with this course.

If you think that you have not yet mastered the material,
return to this module for further study.

488

APPENDICES

APPENDIX A
SUPPLIED MACROS

The supplied macros are designed for simple invocation. They
are intended for use early in the course (before QIOs are taught)
to provide easy ways of doing I/O to TI:, and in 1labs to make
writing programs easier for the student. They are also used in
some example programs to allow brevity of code and to establish
consistency in error checking.

These macros are contained in the macro library PROGMACS.MLB
and can be assembled by wusing the following assembler and
task-builder calls:

MACRO/LIST LB:[1,1]PROGMACS/LIBRARY,dev: [ufd] SAMPLE
(in MCR, MAC SAMPLE,SAMPLE=LB:[1,1]PROGMACS/ML,dev: [ufd] SAMPLE)

! Needed to include
! the internal

! subroutines

(in MCR, TKB SAMPLE,SAMPLE=SAMPLE,LB:[1,1]PROGSUBS/LB)

LINK/MAP SAMPLE,LB:[1,1]1PROGSUBS/LIBRARY

NOTE
If you make copies of PROGMACS.MLB and
PROGSUBS,.OLB in your UFD (or enter a
synonym), then the LB:[1,1] and the dev:[ufd]
can be omitted.

This appendix includes directions for wusing the supplied

macros, the MACRO-11 source code for the macros, and any
internally-called subroutines.

491

SIMPLE MESSAGE OUTPUT

Invocations:

Description:

Examples:

Outputs:

Note:

Task—-Building:

TYPE <message>
TYPE <message>, ,psect
TYPE message—address,message-length

In the first two forms, supply the text of
the message; the macro will generate the
storage. Use the second form if you are pro-
gramming in a Psect other than the default;
supply the name of the Psect in which you are
writing.

In the third form, provide the message address
and length using standard addressing modes.
The message can be ASCII or ASCIZ. If it is
ASCIZ, supply a value of # for the message
length; if it is ASCII, supply the length in
bytes.

MSG1: .ASCIZ /THIS IS MESSAGE #1/
MSG2: .ASCII /THIS IS MESSAGE #2/
MSG2LN=,-MSG2

TYPE #MSG1,#0
TYPE #MSG2, #MSG2LN
TYPE <THIS IS MESSAGE #3>

All registers are preserved.

C-bit is set for error;
clear for no error.

Event flag 24(10) is used for synchronization.
Avoid using this flag for other purposes in
your task.

This macro requires subroutine modules TYPOUT
and LENGTH from PROGSUBS.OLB.

492

SIMPLE MESSAGE INPUT

Invocations:

Description:

Outputs:

Note:

Task-Building:

INPUT buffer,length

Accepts input data from TI:, into specified
buffer. Length is in bytes. Use standard
addressing modes for all arguments.

R points to the input buffer.
Rl contains the byte count from the I/O0 status
block if there is no error.

C-bit is set for error;
clear for no error.

For directive errors, Rl is clear; S$SDSW
contains directive error code.

For I/0 errors, Rl contains error code
from the I/0 status block.

Event flag 24(10) is used for synchron-
ization. Avoid using this flag for other
purposes in your task.

This macro requires subroutine module TYPIN
from PROGSUBS.OLB.

493

ERROR MESSAGE MACROS

Error message macros generate error messages appropriate to
Executive directives, I/0 operations, and FCS calls.

All macros have message, length, and Psect arguments whose
interpretations are identical to those for the TYPE macro.

These are used to specify the user-defined section of the
error message.

The calling program must check for acceptable errors
before <calling the error message macro, because the error

routine aborts the task.

All macros exit unconditionally with "severe error" status
after the error message is printed.

All macros require the subroutine modules EREXIT, TYPOUT,
and LENGTH from PROGSUBS.OLB.

EXECUTIVE DIRECTIVE ERRORS

Invocations: DIRERR <{message>

DIRERR <message>, ,psect

DIRERR message—-address,message-length
Notes: User should check C-bit and dismiss acceptable

errors before calling DIRERR.

Format of DIRECTIVE ERROR
Message: <user-defined message>

DSW = <value>.

494

1/0 ERRORS

Invocations:

Notes:

Format of
Message:

FCS ERRORS

Invocations:

Notes:

Format of
Message:

IOERR iosb,<message>
IOERR iosb,<message>, ,psect
IOERR iosb,message-address,message-length

iosb is a pointer to the I/O status block.

User should check the low-order byte of the
first word of the I/O status block, and dismiss
acceptable errors before calling IOERR.

I/0 ERROR
<user-defined message>

I/0 STATUS BLOCK = <hb>,<1b>/<2nd word>

hb is the high byte of the first word.
l1b is the low byte of the first word.

FCSERR fdb,<message>
FCSERR fdb,<message>, ,psect
FCSERR fdb,message—-address,message-length

fbd is a pointer to the file descriptor block
for the operation which caused the error.

User should check the C-bit and/or check F.ERR
in the FDB, and dismiss acceptable errors before
calling FCSERR,

FCS ERROR
<user-defined message>
DSW = <value>

or
FCS ERROR

<user—-defined message>
I/0 ERROR CODE = <value>.

495

MACRO-11 CODE FOR SUPPLIED MACROS

1 +MACRO TYFE MESSGyLENSFSCT
2 +NLIST
3 it
4 $ COPYRIGHT (C) 1981 RY DIGITAL EQUIFMENT CORFORATION
3 H .
é $ Macro to invoke the *"TYFOUT" routine to twre a line on
7 $ TIC,
8 H
? i Invoke using ome of two forms?
10 ¥
11 H TYFE Lmesssgel
12 i or
13 } TYFE addressy lendgth
14 H
15 y Inm the first form wou srecifw the text of the messade.
16 # The macro reserves storade for the strinsg.
17 H
18 # WARNING: The character is used as the delimiter in a
19 $ +ASCIT directive when wou invoke the first formy so
20 §owou maw not use this character in wour messadge.
21 H
22 $ Im the second form wou must use addressing modes to
27 ¥ srecifuy the address and lendgth of a string which wou
24 3 have reserved inm your erodgram. The first ardument is
25 ¥ the address of an ASCII or ASCIZ strimg., The second
26 i ardument should have a value of 0 if the string is
27 i ASCIZy else should be the length of -the ASCII string.
28 ¢ addressing modes using the stack rointer are not
29 ¥ allowed.
X0 H
31 $ I wou use the first form and are srodramming in other
32 i thamn the blank Psecty wou must exrlicitly rrovide 3
33 Forull "LEN" ardgumenty and srecifw 3 third ardument
34 i (rsect).e This ardumenrt must be the mame of the Fsect
35 §F in which wou are srogramming.
3é H
37 ¥ Needed subroutine modules?! TYFPOUT and LENGTH
38 H
39 § swmbols SAV.RRP = -1 if Rn is not saved omn the
40 1 stack
41 H == O indicates Rn is stored on
42 § the stack at SAV.Rn(SF).
43 $-
44 LLIST
45 +GLORL TYFOUT ¥ Subroutine to issue QIO
44 ¥ directive
47 SAVL.RO = ~1 ¢ Assume no need to save
48 i $ RO
49 SAV.R1 = ~1 ¥ Assume no need to save
50) H R1
91 SAV.R2 = -1 # Assume no need to save
52 i R2

496

JIF R LEN H
14
+FEECT MSGTXT ;
$BEMES=, §
+ASCTITI “MESSG®
$SSLEN=,-$$$MES
+FSECT PSCT ¥
MOV ROs ~(SF) ;
MOV F$$$MES RO §
MOV R1s~(SF) §
MOV FFESLENPR §
SAV.RO = 2 H
SAV.R1 = O ;
+IFF

a
H
a
’

- e

If arguments are not alreadwy in
save them temrorarily on

+NTYPE ADM.ALMESSG

;
i
+IF NEsAIM.AL §
MOV MESSGy—-(SF) §
§
SAV.RO = O ¥
t
SAV.RZ = 0 ;
JENDC
+NTYFE ADM.AZ2YLEN
+IF NEsAIIM.A2-1
MOV LENy~-(8F)
SAV.R1 = 0

+IIF GE»SAV.ROr SAV.RO=8

N
H
s
;
s
H
s
H
s
E
s
;

A
N
’
s
H

V.RO+2 ¥

Blamk LEN ard means
first form

Set ur text in
MSGTXT

Fsect

EBack to original Fsect
Save old RO

RO =» messade

Save old R1

R1 = messade lendth
Note RO saved on stack
Note R1 saved on stack

Second form of
invocation
the correct redistersey

the stackhk

Addressing mode of
MESSG

If anuthing but

Save ardgument on
stachk

RO will be saved here
later

We’ll need to save R2

IROI
the

Addressing mode of LEN
If anuthing but *"R1"

Save ardgument on the
stachk

Rl will he saved here
later

Increase
offset of RO

We’ll need to save R2

Swar the redisters with their argument values which we

SAV.R2 = 0
+ENIC
stored omn the stack.
+IF EQySAV.R2 H
MOV R2y—-(5F) H

+IIF GEsSAV.RO»

a

7

+IIF GEsSAV.R1»

»

y

+ENDC

497

SAV.RO=8AV.RO+2

SAV.R1=8AV.R1+2 5

If we need to save R2
Save R2

Increase

of RO
Increase

of R1

offset

offset

104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125

+IF

MOV
MOV
MOV
+ENDC

«IF

MOV
MOV
MOV
+ENDC

+ENDC

a
y

Cal.L.

GE»SAV.RO
ROsR2
SAV.RO(SP)I»RO
R2sBAV.RO(SF)
GE +»SAV.R1
R1yR2

SAV.R1(SF)yR1
R2»8AV.R1{SF)

TYFOUT

Restore redisters
+IIF GE»SAV.R2y MOV
+IIF GEvSAV.R1» MOV
+IIF GE«8AV.ROy MOV

« ENDIM

TYFE

498

stacks

If Rli‘s
stacks

> wr wr @>

If RO‘'s arg was rut on

sWwar RO with its
argument value

ard was rut on

Swar R1 with its
argument value

Forms of invocation

(SF)+sR2
(SFY+rR1
(8F)+yRO

er ‘er ‘e>

Restore old R2
Restore old ki
Restore old RO

M NS o

M| €y @y WP S IR NG CR MEP WS WM 6> M3 WP CF WP WP W W> Wr WS Er CP > Er WS> N Wr T \GF wr TF QF G @

+MACRO INFPUT RUFFERyLEN
COPYRIGHT (C) 1981 RBY DIGITAL EQUIFMENT CORFORATION

Macro to invoke the "TYFPIN' routinme to irmeut data from
TIS.

Inone using?
INFUT sddressy lensgth

where address and length are the address and
length of the inrut buffer.

OUTFUTS Nata is inrut synchromously from LUN S
RO => bhuffer

C-hit is set for errory clear for no
error (for directive or 1I/0 errors)

If mo errory R1 containms buwte count from
170 status block.

IT 8 directive error is encounteredy Rl
is clearsys $08W contsins error code

If an X170 error is encounteredys RI1
contains error code from I/0 status block

Needed subroutine moduled TYFIN

WARNINGS 1. ROUTINE USES EVENT FLAG #24 FOR
SYNCHRONIZATION
2+« RO AND R1 ARE DESTROYED

+GLOBL TYFIN 3 Subroutine to issue QIO
y directive
+NTYFE ADRMODyBUFFER $ Checlk addressing mode

+ IF NE s ATIRMOL i Buffer rointer alreasdwy in RO?
MOV RUFFERyRO 5 Nos move it there

+ENDC
+NTYPE ADRMODYLEN 5 Checlk addressing mode

+ IF NE »y ADRMOD -1 i Length alreadw in R17
MOV LENyR1 $ Nos move it there

JENDIC

CALL TYFIN Call subroutine to issue QIO
' directive i

+ ENDM

499

T DRI

L&

et el il R
XN UEDUNNEOTEOND

b3
<

21
22
23
24
25
26
27
28
a9
30
31
32
33
34
335

36

38
39
40
41
42
43

45
46

'@y > N> G A NEF CF MR B> G NGF R M M N3 G SF TF NGx NGRS er NCr S @ NG e

»

§
TY

14

-r

JTITLE TYFOUT
COFYRIGHT (C) 1981 RBY DIGITAL

Suproutine to outrut to TI?

EQUIFMENT CORFORATION

TYFOUT erovides a8 simele waw for MACRO-11 routines to
ture oult 8 messase on TI.
cal.l? JER FCyTYFOUT
INFUTSS RG => ABCII or ASCIZ messade
R1 = O if string is ABCIZ
= =0 for ASCII string of length n
LUN 9 dig asssumed Lo he assigned to TIZ
QUTRUTS Messasge is outrul sunchromousls to LUN S
All registers sreserved
C-hit is set for errory clear for no
error
WARNINGS Routine uses event fladg %24 for
sunchronization
The macro "TYPE® can be used to invoke this routine

in 8 fairlwy transrarent

+GLORL LENGTH
+MCALL QIOWsS
FOUT:! TST R1
ENE 14
CALL LENGTH
: MoV R2s - (SF)
SUR ¥4y 5F
MOV SFyR2

o 2 garden varietw outrut to

QIOWSS #I0.WUBy RS #24,y
RCC 2%
AN ¥4, 5

500

marrer.

Subroutine to determine
length of string
Sustem macro

©r ‘er ‘>

ASCITI inrut or ASCIZT

EBranch if ASCII. Rl
already has lendgth

Find length of string
(returned in R1)

Save R2 on stachk

Reserve srace for JT0SE

R2=>108B

TI

vyR2»9<ROsR1y#40:>

Branch on directive OK

er Wr @F @ W> @3 wr e

Directive error,. Purde

I08E from stachk

47
48
49
50
G1
my

53
54
55
56
57
58
59
&0
61
62
63
&4

&0

)

Ay wr ‘ar e»

'

262

7

343

4%
3% 1

C

s ver s (3]

6% ¢

ER

Directive succeeded.

wte counts
CMPR
REQ
SEC

ER
cLC

78T
OMMON EXIT
MOV

RETURN
+EEND

6%

rurge stack

FIG5.5UC» (SF)+

4%
9%

(SF)+

(SF)Y+sR2

501

Y
v

Record any

|E € S AE> > W W EF

- er

Exit (with C-bit set)

I/0 errorsy record

170 error?

Branch if no error

Set C-bit to indicste
error

Eranmch to get I/70 count
Clear C~bit to indicate
Mo error

Clean wur stack

Restore R2
Return

= O N DG

3

4ot bt et s
IREN

N

i1

-
&

17
18

20
"
e ol
2
22
23
24
25
26
27
28
29
30

)

33
34
35
36
37
38
3%
40
41

el
ol

43
44
45
46
47
48
49
50

51

Er RS > CH NEF W R S NEF N> ER T3 R %GR NG NER TR MIP N> G G2 S: G N> SER W2 R NCr I R CF G EF e G G

Y
b

»
¢

(Y

LTITLE TYPRPIN Subiroutine to inmrut from TIC

COFYRIGHT (C) 1981 RY DIGITAL EQUIFMENT CORFORATION

TYFIN srovides

a simrle waw for MACRO-11 routines to

et data from TI!.

CALL$

INFLTS?

QUTRUTS:

WARNINGS

JSR FCyTYPIN

RO = Inrut buffer
Rl 4 Length of buffer in butes

LUN 5 is assumed Lo be assigrned to TI?
Iate is irmeul swunchronowsly from LUN 5
RO is unchanged

C-bit is set for errory clear for no
error (for directive or I/0 errors)

If no errory R1 contains bute count from
I70 status block.

It a directive error is emncountereds R1
is cleasry $05W contains error code

I am 1I/0 error is encountereds Ri
contains error code from 1/0 status
tlook

ROUTINE USES EVENT FLLAG #24 FOR
SYNCHRONIZATION

The macro "INFUT® cen be wsed to invoke this routine

in 8 Tairly

+MCALL

TYFINIZ MOV

SUR
MOV

o 8 darden
QIOWSS
RCC
Al
CLR

8EC
EBR

R2y-(SF)

transrarent manner.

RIDWSES i Sustem macro

i Save R2
#4 ¢ 8F i Reserve srace for I0SE
SFRyR2 $ R2=:I08K

variety inrut from TI?

FIORVEEG2 %24, 5y yR2y RO R1:

24 3 Branch on directive 0K
49 SF ¢ Directive error. Purde
3 I0SE from stachk
R1 i Note directive error
¥
&% § oexit

502

R R NN Y

z
U

[S Y
DOIrI= OGO NG

-
o

b et et
NN O

3 P

s
= O

1O

22

5

i

3 T
S LI

¥

23
26
27

3 Directive succeeded. Check for I/0 errorssy record
§ bule counts
¥

2% MOV
CHMFR
REQ
TST
SEC
ER

442 cLc
MOV

§

i COMMON EXIT

§

652 MOV
RETURN
+END
+TITLE

$

H

§

s

i

i CALL:

;

i INFUTS

§

i OUTFUT?

§

;

§

LENGTH!: CLR
MOV

143 TSTR
REQ
INC
EBR

262 MOV
RETURN
+END

rurge stack

(SFY+sR1 § Get success/error code
#£I5.8UCyR1 3 I/0 error?
4% $ Brnch if rno error
(SF)Y+ # Error. Forget asbout
i I/70 count
3 Just return with C-bit
s set and 170 status in
3y Rl
&% 3 Branch to common exit
3 Clear carry hit
(SPY+eR1 $ Return I/0 count in R1

Restore R2
Return

(SF)+yR2

«r ‘er

LENGTH

COFYRIGHT (C) 1981 RY DIGITAL EQUIFMENT CORFORATION

LENGTH finds the lendgth of an ASCIZ string

calLL LENGTH
RO =x ABCIZ string
RO rreserved

R1 = Length of string (not includinsg
terminating null)

R1 # Clear counter
ROy~ (SF) i Save rointer to
$ bedinning of string
(RO>+ § Real character or null
y bute?
2% 5 Null means end of
i string
R1 # Count real charascter
1% 3 And look at next bute
(SF)Y+RO 3 Restore original
i rointer
i Return

503

NN DN

10

22
23
24
25
26
27
28
29
30

32

EF M WF Wr P G N3 TP NP Q> N3 W W €3 WP S N3 NCH NEr W > VG WD M W N3 RF G S NCF G GR Nr W Q> T3 W w@r Wk Wr M G TR

+MACRO DIRERR MESSAGyLENsFSCT
COPYRIGHT (C) 1981 BY DIGITAL EQUIFMENT CORFORATION

Macro to denerate 3 "directive error" messase and
Frint out the value of the DISWy slus 3 user~defined
message. The task is forced to exit after the messade
is rrinted.

The form of the resultant error messadge is!

DIRECTIVE ERROR
“USER~DEFINED MESSAGE:
nsWw = <VALUEX

It is suddgested that the user-defined messade identifw
the oreration which returrned the error.

It is the caller’s resronsibility to check the c-bit
srior to invoking DIRERR. This convention allows the
user to accert certain tures of errorsy then invoke
DIRERR for anw other kinds of errors,

Invoke using one of two forms?

NIRERR < messadgel
or
NIRERR ANDRESSs LENGTH

In the first form gou srecify the text of the messade.
The macro reserves storadge for the strindg.

Irn the second form wou must use addressing modes to
sracify the address and lendgth of a8 string which wou
have reserved in wour srogram. The first ardument is
the address of am ASCII or ASCIZ string. The second
ardgument should have a8 value of 0 if the string is
ASCIZy else should be the length of the ASCII string.

If wou use the first form and are eprodgramming in other
than the blank Fsectr wou must exrlicitly rrovide a3
rmull *len® ardumenty and surrly as the third ardgument
the name of the Psect to return to.

504

45
46
47
48
49
90
51
52
53
54
1]
56

+GLOBL
+GLOEBL

+GLORL
i Offsets into

+GLORL.

+GLORL.

+GLORBL
]

MoV
+IF R LEN

+FSECT
SHEEMES=.

+ASCTI
$EHELEN=, ~$$$MES

+FSECT

MOV

MOV

+IFF
MOV
MOV

+ENDC
MOV
MOV
JMF

+ ENDIM

EREXIT
LIRERY

Common routine
*LDIRECTIVE ERROR®

ineut string for
$EDMSG »
$EIMSG argument block

wr Gr W ‘er 6r

ERARGS -

argument block?

E « RUMA i User-messade address
E + RUML. i User-messade length
E+.ROSW i DSW value
FERARGSyR2 ¥ R2=-$EDMSG ardg block
¢ Rlanmk len arg means
3 first form
MSGTXT
/MESSAG/
FSCT
#$$SMESE +RUMA(R2) Load messade addr

H
FE$SLENYE.RUMLL(R2)Y # and messade lendgth
5 into ard block

MESSAGYE.RUMA(R2) ¢ Load messade addr
LENyE .RUML(R2) ¥y and messadge lendgth
§ into arg blochk

$NSWELRDSW(R2)Y # Load DNSW into ardg block
*¥UIRERIYR3 $} R3=:$EIMSGE ineut string
EREXIT # Jume to common error

]

exit routine

505

O N LD LR

10

25

27
28
29
30
31
32
33
34

35

42

45
46
47
48
49
50
G91

52

P WP ME WP NP WP WH WS R MR WP GF VP SF W W WP WD W R IS WP E> T I T3 WS C> AP M G I G > M WP B3 Gr WF WP G WH CH WP W Er W WP 'SH NP @

-3

i

+MACRO IOERR TOSEMESSGLENYFSCT
COFYRIGHT (C) 1981 RY DIGITAL EQUIFMENT CORFORATION

Macro to denerate an "1/0 error”® messade and =rint out
the value of the 1/0 status blockr rlus a user—defined
message, The tssk is forced to exit after the messade
is rrinted,

The form of the resultant error messade ist

170 ERROR
Tuser-defined messasel
I/70 STATUS BLOCK = <hbh>y<lbh>/<2nd word:>

where "hbh® and "lb" are the high bute and low bute of
the first word of the I/0 status block.

It is sudgdgested that the user-—defined messade identifwy
the oreration which returrned the error.

It is the caller’s resronsibhility to check the first
word of the I/0 status block srior to invoking JOERR:»
to see whether the oreraltion has been a8 success or a
failure., This convention allows the user to accert
certain tures of errorsy thern invoke I0ERR for anw
other kinds of errors.

Invoke using one of two forms?

I0ERR insbryimessader
or
TOERR ioshsaddressy length

In either form "iosb® is the address of the 1/0 status
blocky in any addressing mode.

In the first form wou srecifwy the text,of the messade.
The macro reserves storage for the string,

In the second form wou must use addressing modes to
srecify the address and lendgth of a8 strindg which »ou
have reserved in wour srogram. The second argument is
the address of an ASCII or ASCIZ string. The third
argument should have a value of 0 if the string is
ASCIZy else should be the length of the ASCII string.

IT wou use the first form and are rrodgramming in other
than the blank Fsecty wou must exrlicitly rrovide s
mall *LEN® argumentr and surele as the fourth argument
the mame of the Fsect to return to.

506

a3
54
595
56
57
58
59
60
&1
62

63

65

70

+ GLOEBL
+ GLORL

+GLOBL

i Dffsels into

»
4

+IF B

$HSMES=,

$EBLEN=,~$$HMES

+ENDC

i Corw I/0

er as

+GLORL,
+GLOBL
+GLORBL

MOV
LEN
+FSECT
+ASCII
+FSECT

MOV
MOV

MOV
MOV

MOV
MOVE

MOV
MOVE

MOV
MOV

MOV
JMF

+ ENDM

status block

EREXIT
TOERIN

. o> > e

ERARGS
ardgument block?
E.RUMA
E + RUML
E.RIQS

e » e er

FERARGS s R2

<> G w

MBGTXT
/MESSG/
FSCT

FEESMESERUMA(R2)
F$SSLENSE.RUML (R2)

MESSGE.RUMA(RZ)
LENyE «RUML (R2)

T08EsR1
L(R1)9yR3

R3yE.RIOS(RY)
(R1)>yR3

;
;
y
i
;
s
5
RIyE.RIOSH2(R2) 5
2(R1)yE.RIOSHA(R2)

#I0ERINyR3

EREXIT

w> W e W

507

into $EDMSE

Common routine

'I/0 ERROR"* inFut
string for $EIMSG
SENMSG argument block

User-messade address
User-messade lendgth
First word of I/0
status block

R2=:-4ENMSG ard bhlock
Blank LEN ardg means
first form

lLoad messasge addr
and messadge lensth
into ardg block

. €>

lLoad messadge addr
and messade lendgth
into arg blochk

e er ey

arg block
R1 =» I/0 status block
Get hi bute of first
word {(and sign—-extend
it?
Cory into arg block
Get lo bute and
sign-extendg
Cory into ardg block

¥ Corw 2nd word of

i IOSER
R3 $EIMSG ineut
string
Jums to common
exit routine

P

error

NVDNOG D LI

G Er W EF WP W WS C3 WP WP S W> P W 3 GF T3 WP G CF WP S SR EP WP G WP WP G2 W3 S W EF NG W3 CF MF WP N3 EF > P NS> W € €F > WP WF GF W WE Wr E>

+MACRD FCSERR FLDRyMESSGyLENYFSCT
COPYRIGHT (C) 1981 RY DIGITAL EQUIFMENT CORFORATION

Macro to demnerate an "FCS ERROR®" messade and erint out
the error code rlus 8 user-defined messade. The task
is forced to exit after the messadge is erinted.

The form of the resultant error messade is!?

FCS ERROR
<USER-DEFINEDR MESSAGE:
nsWw = <VALUE

or

FC8 ERROR
“USER-~DEFINED MESSAGE:
I/0 ERROR CODE = <VALUE>

It is suddgested that the user—defined messade identifw
the oreration which returrmed the error.

It is the caller’s resronsibility to check F.ERR in
the FIE srior to invoking FCSERRy to see whether the
oreration has beern a3 success or a failure. This
convention allows the user to accert certain tures of
errorsy thern irvoke FCSERR for anw other kinds of
Errors.

Invoke using one of two forms?

FCSERR fdby messaderr
or
FCSERR fdbyaddressylensth

Im either formy *fdb" is the address of the file
descrirtor block for the FCS oreration which has
generated the error.

In the first form wou srecify the text of the messade.
The macro reserves storadge for the string.,

In the secornd form wou must use addressing modes to
srecify the address and lendgth of a string which wou
have reserved in wour rrogram. The second argument is
the address of am ASCII or ASCIZ string. The third
argument showuld have a value of 0 if the string is
ASCIZy else should be the length of the ASCII strins.

If wou use the first form and are srodramming in other
than the blank Fsecty wou must exrlicitly rrovide a2
mall "lem® arduments and surerly as the fourth srdument
the name of the Fsect to return to.

508

T

-r

+GLORBL EJ.RUMA i
+GLOBL E.RUML]
+GLORL E.RCOD ¥
$ H
]
+MCALL FROFS$L
FROF$L H
¥
MOV *ERARGS yR2 H
+IF R LLEN ;
¥
+FSECT MSGTXT
$$SMES=,
JASCII /MESSG/
$SSLEN=,~S$SMES
+FEECT PSCT
MOV #$$HMESE.RUMACRZ)
MOV F6$SLENYE .RUML (R2)
+IFF
MOV MESSGYE .RUMA(RZ)
MOV LENYE +RUML.(R2)
+ENDC
MOV FORsR1 H
H
MOVE F+ERR(R1) RO $
H
MOV ROSE.RCODCR2) H
TSTR F+ERR+1(R1) §
;
REQ 10 H
¥ Directive error?
MOV #FCSNIRYR3 ;
$
JMF EREXIT §
H
10 MOV *FCSIOYR3]
H
JMP EREXIT H
H
+ENDIIM

+GLORL
+GLORL
+GLOEL
Offsets into

EREXIT
FCSDIRSFCSIO
ERARGS
argument block?

509

- Cr w>

Common routine
$EIMSG inrut strindgs
$EDMSG ardument bhlochk

User-messade address
User-messade lensth
Error code (IISW value
or 1/0 error)

Define FOR offsets

R2=:>$EIIMSG ardg block
Elank len ard means
firgt form

y Load messade addr
3y and messade lendgth
¥y into arg block

Load messade éddr
and messadge lendth
into arg block

. wr w»

Ri=> file descrirtor
tlock
Get error code
(sign—-extend) and
store into arg block
Dlirective error or 1/0
error?
Branch on I/0 error
R3=x
ERROR®
Jumes o common
exit routine
R3=»*FCS I/0 ERROR"™
S$EDIMSG strindg
Jume to common error
exit routine

"FCS DIRECTIVE
$EDIMSG string
error

L and
M OWON™AD NN

-
18]

13

PG> NP Mr WX wr S Sr WP W Gr W P G E» G A SR G G 0> WF W EH

3

+TITLE EREXIT ERROR EXIT ROUTINE
COFYRIGHT (C) 1981 RY DIGITAL EQUIFMENT CORFORATION

This is & common exit routime called by the
error-srocessing macros DIRERRy YOERR» and FCSERR. It
tures out an error message and forces the task to exit
with status “"severe error®.

Call? o JMF EREXIT

InrFuts? R2 = ERARGS ($EIMSG ardgument block:s
defined in this routine)

The argument block has alreadwy
been filled in with the
user-messade descrirtory and the
sustem error code (DSW value or
I08R rointer). A user—-messade
lendgth = 0 means that the

yser messade is in ASCIZ form.

R3 => 0ne of the $EIMSG imrut strings
defined in this routine

+GLORL $EDMSG

+GLOBL LENGTH Comeputes lendgth of
ASCIZ strindg

Sustem macro

Surrlied macro

+MCALL EXST$C
+MCALL TYPE

&
¥
a
’
a
y
a
y

EX$SEV = 4 i Error exit status

SEDMSG inrut strings?

IRERI!: ASBCII /ZNDIRECTIVE ERROR/

+ABCIT /UNZVA/
+ABCIZ /ANDISW = XD/

y
FOCSDIRY: (ASCII /ZNFCS ERROR/

a

+ASCIT JZANZVA/
JASCIZ /ZNDSW = XD/

¥
TOERINS: LASCII @%NI/0 ERRORE

a

+ABCIT /ZNZVA/
+ABCIZ @XANI/O STATUS BRLOCK = XDy XD / ZD@

y
FCSI0: JASCII @ANFCS ERRORE

> ey

+ASCIT /ANZVA/
+ASCIZ @ZNI/O ERROR CODE = ZDe

510

53
54

1:]

63

OUTEUF: +BLKE 200,
+EVEN

i $EIMSG ardument block

ERARGS ¢

E+ RUML. ==, ~ERARGS
SWORD

E+RUMA==, -ERARGS
+WORD

¥ Error codes

E s ROGW==, ~-ERARGS

E+RIOQ8==,~ERARGS

E+RCOND==, ~ERARGS

+WORD
+WORD
+WORD
i
EREXIT::
T8T E.RUML (RZ)
ENE 1%
MOV E+RUMA(R2) yRO
caLL LENGTH
MOV R1sE RUMLC(R2)
’
142 MOV FOUTEBUF »RO
MoV R3sR1

CALL $EIMSG
TYPE FOUTERUF sR1

EXST$C EX$SEV
+ EENT

511

- - <

«r @ wr

Wr WX G WS €> > WP > WS> NGr NCr > WP CE CE Cr A

$EIMSG outrut buffer

User—-messade lendgth
User-messade address

NSW for DIRERR
1088 for IO0ERR
FCS code for FCSERR

User messade ASCII or
ASCIZ?

ASCII

If ASCIZy find lendgth
RO =» user messade
(returned in R1)

Set length field in
argument block
Outrut buffer for
SEIMSG

Fut ineut string
#ointer into rrorer
redister for $EDMSG
(returns lensgth inm R1)

Ture out formatted
messadgde

Exit/severe error

APPENDIX B

CONVERSION TABLES
Table B-1 Decimal/Octal, Word/Byte/Block Conversions
Words (10) /Words(8) Bytes(10)/Bytes(8) Blocké(lﬂ)/Blocks(8)
1/1 2/2
32/40 64/100 1/1
1K =1024/2000 2048/4000 32/40
2K =2048/4000 4096 /10000 64/100
4K =4096/10000 8192/20000 128/200
8K =8192/20000 16384/40000 256/400
16K =16384/40000 32768/100000 512/1000
32K =32768/100000 65536/200000 1024/2000
64K =65536/200000 131072/400000 2048/4000
128K=131072/400000 262144/1000000 4096/10000
Table B-2 APR/Virtual Addresses/Words Conversions
APR Virtual Addresses Words
2 200003-017776 #-4K
1 020000-337776 4-8K
2 P40000-0357776 8-12k
3 3600008-077776 12-16K
4 100000-117776 16-20K
5 120000-137776 20-24K
6 140000-157776 24-28K
7 160000-177776 28-32K

513

'APPENDIX C
FORTRAN/MACRO-11 INTERFACE

CALLING A MACRO-11 SUBROUTINE FROM A FORTRAN PROGRAM
FORTRAN Program Call:

CALL SUBNAM (I,J,K)
MACRO translation:

1. Set up table of arguments.

R5 =-—=-> Count=3

Address of I

Address of J

Address of K

2. Issue subroutine call.
JSR PC,SUBNAM
or
CALL SUBNAM
The FORTRAN Callable MACRO-11 Subroutine

Accessing:

; Argument count = (R5)
; Argl = @2(R5)

; Arg2 = @4 (R5)

: Arg3 = @6 (R5)

SUBNAM: : .

RTS PC ; or RETURN

515

CALLING A FORTRAN PROGRAM FROM A MACRO-11 PROGRAM

In the MACRO program:

LINK: «BYTE
«WORD
«WORD
.WORD
A: .WORD
B: «WORD
C: «WORD

.

~
[

QWD DY W

MOV #LINK,R5
JSR PC,SUB

In the FORTRAN program:

SUBROUTINE SUB (L,M,N)
N=L+M

RETURN

END

NOTE
This method is also used to call a FORTRAN
callable subroutine (written in MACRO-11l).

Example 7-3 in the Static Regions module shows a

shareable

library LIB.MAC, which contains FORTRAN callable subroutines.
USELIB.MAC, also in Example 7-3, shows a referencing task which

calls subroutines in the library.

516

APPENDIX D
PRIVILEGED TASKS

RSX-11M systems have two classes of tasks, privileged and
nonprivileged. The basic difference is that privileged tasks have
certain system-access capabilities that nonprivileged tasks do not

have.

These privileges include one or more of the following:

Access to Executive routines and data structures
Automatic mapping to the I/O page
Bypass of system security features.

NOTE

Privileged tasks may be hazardous to a run-
ning system.

Use one of the following qualifiers (switches) to build a
privileged task.

l.

/PRIVILEGE: @ qualifier (MCR /PR:#)

This task is built in the same way as a nonprivileged task
and does not map to the Executive or the I/O page. It
can, however, do the following:

e Bypass file protection

e Issue directives which require privileges (e.g., Alter
Priority, QIO for Write Logical Break-through)

e 1Issue QIOs to write 1logical blocks to a mounted
volume, regardless of who issued the MOUNT or ALLOCATE
command.

/PRIVILEGE:4 or /PRIVILEGE:5 (MCR /PR:4 or /PR:5)

This task has the privileges of a /PRIVILEGE:® task, plus
it maps to the Executive and the I/0O page. The user task
code is mapped beginning at APR 4 or 5, as specified. The
APRs below the one specified are wused to map to the
Executive, and APR 7 is used to map - the I/O page. Use
/PRIVILEGE:4 if the Executive is 16K words or less; use
/PRIVILEGE:5 if the Executive 1is between 16K and 20K
words. If the task code extends beyond the end of the
addresses mapped by APR 6, then APR 7 is used to map the
excess code, and the task does not map to the I/0 page.

517

Privileged tasks are discussed in detail in the RSX-11M
Internals Course. See also Chapter 6 on Privileged Tasks in the
RSX-11M/M-PLUS Task Builder Manual.

518

APPENDIX E
TASK BUILDER USE OF PSECT ATTRIBUTES

The Task Builder collects scattered occurrences of program
sections of the same name and combines them in a single area in
your task image. The program section attributes control how the
Task Builder collects and places each program section.

See Chapter 2 of the RSX-11M/M-PLUS Task Builder Manual for a
complete discussion of program section attributes.

Example of allocation code attributes:
CON (concatenate) versus OVR (overlay)
1., A.O0BJ has Psect Q,CON - length 100(14) words
B.0OBJ has Psect Q,CON - length 58(14) words
When task-built:

LINK A,B

Yields 150(10) words in Psect Q
(first A's 100 (10) words, then B's 50(18) words).

2. A.OBJ has Psect Q,0VR - length 100(10) words
B.OBJ has Psect Q,0VR - length 50(18) words
When task-built:

LINK A,B
Yields 108 (10) words in Psect Q

(A's 100(10) words. B's 5@(1¢) words are the
same as A's first 50(10) words).

519

Example of scope code attributes:

LCL (local) versus GBL (global)

Overlay Tree B.ODL file:
BF
Bl B2 .ROOT B-*!(Bl,B2-B3)

I_..l_____l .END

B

Task-build command (for all): LINK B/OVERLAY DESCRIPTION

1.

B.OBJ has Psect Q,LCL,CON - length 106(19) words
Bl.0BJ has Psect Q,LCL,CON - length 50(10) words
When task-built:

Yields 100 (10) words in Psect Q in root segment B
Yields 50(10) words in Psect Q in overlay segment Bl

B.OBJ has Psect Q,GBL,CON - length 100(1¢) words

Bl.0OBJ has Psect Q,GBL,CON - length 50(10) words

When task-built:

yields 150 (10) words in Psect Q in root segment B (in the
segment closest to the root); B's 1006(19) words, then
Bl's 50(14) words.

If GBL,OVR instead, yields 10#(10) words in Psect Q in the

root segment. B's 100 words, with Bl's 50(10) words the
same as B's first 50(10) words.

520

3. B2.0BJ has Psect Q (LCL or GBL) - length 106 (10) words
B3.0BJ has Psect Q (LCL or GBL) - length 50(18) words
When task-built:
If CON, yields 150(10) words in Psect Q in overlay segment

B2 (allocation collected, since it 1is all in the same
overlay segment).

If OVR instead, 100(10) words 1in Psect Q 1in overlay
segment B2, B3's 50(10) words are the same as B2's first
50 (10) words.

LCL and GBL are wused only for overlaid tasks. In a
non-overlaid task or within an overlay segment in an overlaid

task, allocations are <collected when either LCL or GBL is
specified, as in Example 3.

Example of FORTRAN COMMONs at Psects:

Psect attributes are always: RW,D,GBL,OVR,REL
COMMON /RDATA/ 1(108)

Macro translation:

.PSECT RDATA,RW,D,GBL,OVR,REL

521

APPENDIX F
ADDITIONAL SHARED REGION TOPICS

SHARED REGIONS WITH OVERLAYS

e Can be referenced using a smaller window in referencing
task

e Reuse virtual addresses in the referencing task
e Must be memory-resident overlays

e Have overlay structures which are placed in the .STB file
and later placed in root segment of referencing task.

BUILDING A RESIDENT LIBRARY WITH OVERLAYS
1. Code and assemble library modules.
2. Write regular .ODL file to define .overlay structure.
e Typical structure has a null root.
3. Task-build as a shared region.

e Only symbols defined or referenced 1in the root are
included in the .STB file.

e Force inclusion of global references into root, when
necessary, using GLBREF option.

Example .ODL file OVRLIB.ODL (Figure F-1):

. NAME OVRLIB
«.ROOT OVRLIB-*! (H,I-J)
. END

Example task-build command: .

>LINK/NOHEADER/MAP/SYMBOL_TABLE/OPTIONS OVRLIB/OVERLAY-
->_DESCRIPTION B

Option? STACK=0

Option? PAR=OVRLIB:140000:40000

Option? GBLREF=H,I,J

Option? <RET>

523

Referencing task ‘is created using regular procedure to
reference library OVRLIB.

See section 5.1.4 (on Shared Regions with Memory-Resident
Overlays) in the RSX-11M/M PLUS Task Builder Manual for additional
information.

PHYSICAL
MEMORY
VIRTUAL _
MEMORY - /'z J
TWE .
i
160000 APR7
140000 APR6 | H
120000 APR5
100000 APR4
60000 APR3 |—
INITIAL
40000 APR2 | G LoAp
(16K WORDS) —_—
: G
20000 APR1 |
0 APRO — _

TK-7773

Figure F-1 A Shared Region With Memory-Resident Overlays

524

REFERENCING MULTIPLE REGIONS IN A TASK

e Use the usual procedure if:

- The number of available APRs in the referencing task
is sufficient

- Shared regions are logically independent (one 1library
does not call the other library)

e If shared regions are built absolute, APRs (and virtual
addresses) cannot overlap.

Example task-build for 1logically independent 1libraries (Figure
F-2):

Libraries: ARES built absolute at V.A. 1600008 (8); length 4K
‘ words
BRES built absolute at V.A. 1200600(8); length 6K
words

Referencing task: REF
>LINK/MAP/OPTIONS REF
Option? RESLIB=ARES/RO

Option? RESLIB=BRES/RO
Option? <RET>

525

PHYSICAL

MEMORY
/
/ BRES
/
/
VIRTUAL VA
MEMORY // //
TASK REF S/
ARES \’4\7&/\
—
160000 APR7 (4K WORDS) / /
' UNUSED —~L__ ARES
/T~
40000 APRG
1 BRES //
(6K WORDS) y
120000 APR5
UNUSED
100000 APR4
——
\\\\\
60000 APR3
REF
40000 APR2 6K DS
REF
20000 APR1
0 APRO
———
\\\\\
TK-7772
Figure F-2 Referencing Two Resident Libraries

526

INTERLIBRARY CALLS
One library can call another library

FORRES calls FCSRES

To build 1libraries with interlibrary calls, use any of these
techniques.

e Build as a single combined 11brary, then build referencing
task (Figure F-3).

e If referenced library does not contain overlays (Figure
F-4): ~

- Build referenced library.

- Build referencing 1library, specifying referenced
library to resolve calls.

- Build referencing task, specifying ohly referencing
library.

e If referenced library has overlays (Figures F-5 and F-6):

- You must revector interlibrary calls to allow access

to overlay structure and autoload vectors (always in
root of referencing task).

— Once revectoring is included, build shared regions and
referencing task as if regions are logically
independent.

Example task-build commands for each technique follow.

Example task-build command for combined 1libraries (Figure
F-3):

>LINK/MAP/NOHEADER/SHAREABLE : LIBRARY/SYMBOL TABLE-
->/0OPTIONS F4PRES,LB:[1,1]1F4POTS/LIBRARY

Option? STACK=0

Option? PAR=F4PRES:120000:60000

Option? <RET>

Referencing task 1is created using normal procedure to
reference the library F4PRES.

527

PHYSICAL

MEMORY
~
~
VIRTUAL _ apRES
MEMORY -~
- {(FCSRES)
160000 APR7 | _ FAPRES
* (FCSRES) -
140000 APR6 |- 12K WORDS e
120000 APR5
100000 APR4 [
60000 APR3 USER
40000 APR2 L.
USER _
20000 APR1 |- (12K WORDS) -
-~
//
0 APRO ~

TK-7776

Figure F-3 Referencing Combined Libraries

528

Example task-build commands for building one library, then
building the second (referencing) library (Figure F-4):

>LINK/MAP/NOHEADER/SHAREABLE: LIBRARY/SYMBOL TABLE-
->/OPTIONS/CODE:PIC FCSRES -
Option? STACK=#

Option? PAR=FCSRES:0:20000 -

Option? <RET>

>LINK/MAP/NOHEADER/SHAREABLE: LIBRARY/SYMBOL TABLE-
->/OPTIONS F4PRES,LB:[1,1]F4POTS/LIBRARY -
Option? STACK=0

Option? LIBR=FCSRES:RO

Option? PAR=F4PRES:140000:40000

Option? <RET>

Referencing task 1is created using normal procedure to
reference Jjust the 1library F4PRES. F4PRES must be mapped using
APRs 6 and 7 because it is built absolute. FCSRES 1is mapped at
the next available APR, namely APR 5, because it is built position
independent.

529

160000

140000

120000

100000

60000

40000

20000

APR

APR

APR

APR

APR

APR

APR

APR

Figure F-4

VIRTUAL
MEMORY

F4PRES
(8K WORDS)

FCSRES
(4K WORDS)

PHYSICAL

MEMORY

F4APRES

UNUSED

USER
(12K WORDS})

FCSRES

USER

TK-7771

Building One Library, Then Building
a Referencing Library

530

FCS1 FCS2 F4PCLS) USER

—& FSRPT::—
—» .OPEN:: .GET:: CALL .OPEN
.OPEN::‘j
DISPAT: JMPTBL:: .
L]
OPEN®=
PUT
‘GET
[]
AUTOLOAD ROUTINE, MAPS TO .
FCS1, THEN TRANSFERS CONTROL

TK-7777

Figure F-5 Revectoring

See Section 5.2.1.3 (on User Task Vectors Indirectly Resolve
all Interlibrary References) in the RSX-11M/M-PLUS Task
Builder Manual for additional information on revectoring. See

also Section 5.2.3 on Examples for commented task-build commands
for building libraries with revectoring.

531

Example
(Figure

task-build commands when revectoring are used
F-6):

>LINK/MAP/NOHEADER/SHAREABLE: LIBRARY/SYMBOL_TABLE-
->/0PTIONS/CODE:PIC FCSRES/OVERLAY DESCRIPTION

Option?
Option?
Option?
Option?
Option?

Option?
Option?

STACK=0
PAR=FCSRES:0: 20000
GBLREF=,CLOSE
GBLREF=,CSI1
GBLREF=,CSI2

GBLREF=,WAIT
<RET>

>LINK/MAP/NOHEADER/SHAREABLE: LIBRARY/SYMBOL TABLE:-
->F4PCLS/TASK:F4PCLS/OPTIONS F4PRES,LB:([1,1]F4POTS-
->/LIBRARY,LB:[1,1]SYSLIB/INCLUDE:FCSVEC

Option?
Option?
Option?
Option?
Option?
Option?

.

Option?
Option?

STACK=0
PAR=F4PCLS:140000:40000
GBLINC=,FCSJT
GBLXCL=.CLOSE
GBLXCL=.CSI1
GBLXCL=,CSI2

GBLXCL=.WAIT
<RET>

Referencing task 1is <created wusing normal procedure

reference libraries FCSRES and F4PCLS.

532

to

PHYSICAL

MEMORY
VIRTUAL -
/
MEMORY - F4PCLS
—~ N\Ps?
y
/
160000 APR7 |- FAPCLS —
(8K WORDS) —
— - _
140000 APR6 — *’T"ME 2 FCS2
FCS1 FCS2 — =
120000 APRS | (4K WORDS) | (4K WORDS) | st
100000 APR4 [
60000 APR3
40000 APR2 | T
: USER Lo Al’)A:N
D
20000 APR1 | (12K WORDS) \MAi USER
0 APRO .

TK-7775

Figure F-6 Using Revectoring When Referencing Library Has Overlays

533

CLUSTER LIBRARIES

Task

e Allow shared libraries to overlay each other (Figure F-7).

- Can use one window for several libraries.

- Only enough virtual address space 1is needed
largest 1library.

e One library can call another.
- Generally moving in one direction only.

- First library in cluster 1is initially mapped
autoload).

- When a call is made to another library in cluster:

Autoload routines save mapping context and
called library for a call.

Original 1library 1is remapped for return
subroutine.

for

(no

map

from

e Revectoring is necessary for interlibrary calls (Figure

F-5).

- Special <coding must be included in the resident

libraries.

e Some special rules must be followed when building
resident libraries.

the

e Are useful for FORTRAN tasks wusing the resident object
‘time system (FORRES, F4PRES, or F77RES), plus layered

products.

See Section 5.2 on Cluster Libraries 1in the RSX-11M/M-PLUS

Builder Manual for additional information.

Example of task-build command:

>LINK/MAP/OPTIONS/CODE:FPP CLSDEM,LB:[1,1]HLLFOR,-
->LB:[1,1]F4POTS/LB,LB:[1,1]FDVLIB/LB

Option? CLSTR=F4PCLS,FMSCLS,FCSRES:RO

Option? <RET>

534

160000

140000

120000

100000

60000

40000

20000

0

-~
-
VIRTUAL et
MEMORY - o
7 QB
APR7 |F4PCLS FMSCLS 7 > g
~(8K) | 8K) [LocTecss | P
7
APRG (ak) | @xy |~
e
APRS5 |-
APR4 |-
TASK
APR3 | (22K WORDS)
APR2 |
APRT |
APRO

Figure F-7

PHYSICAL
MEMORY

F4PCLS

FMSCLS

FCS2

FCs1

TASK

Cluster

160000

140000

120000

100000

60000

40000

20000

0

T,

ME 4 (MAP)

VIRTUAL
‘ MEMORY
7 ~—
PRy |F4POLS [FMSCL /% ~—
B8K) | (8K} [Fest] Fes2
APRS 14K | 4K
%8855
APRS |
APR4 L
TASK
APR3 L (22K WORDS)
APR2 |
APR1 |
APRO

Libraries (Sheet 1 of 2)

535

PHYSICAL
MEMORY

F4PCLS

FMSCLS

FCS2

FCS1

TASK

TK-7815

160000 APR7

140000 APR6

120000 APRS

100000 APR4

60000 APR3

40000 APR2

20000 APR1

0 APRO

| FAPCLS |[FMSCLS %

VIRTUAL
MEMORY

@K} | Fes
(4K)

TASK
(22K WORDS)

Figure F-7

PHYSICAL
MEMORY

F4PCLS

FMSCLS

Fcs2

FCS1

TASK

160000 APR7

140000 APR6

120000 APRS

100000 APR4

60000 APR3

40000 APR2

20000 APR1

0 APRO

536

-

VIRTUAL
MEMORY

%
F4PCLS|FMSCLS %

[(8K)

(8K)

TASK
(22K WORDS)

PHYSICAL
MEMORY

F4PCLS

FMSCLS

FCS2

FCs1

Cluster Libraries (Sheet 2 of 2)

TASK

TK-7778

APPENDIX G
ADDITIONAL EXAMPLES

The following examples should be available on-line, probably
under UFD [292,1]. They are needed for the Tests/Exercises.
Therefore, they are listed here in case -they are not available
on-line at your site.

1 +TITLE READF

2 IDENT /017

X +ENARL LC i Enable lower case

4 Pt

5 $ File READIF.MAC

& H '

7 $ This task starts urr sebts event flag 1y reads the

8 i event flasgsy moves bthem into registers RO-R3 and then
9 § exits, It uses the $ form of the directive calls.

10 H

11 ¥ The flags are returned as follows?

12 i

13 H word O = event flads 1-16

14 H word 1 = event Tladgs 17-32

15 § word 2 = event flasgs 33-48

16 § word 3 = event Tlags 4964

17 § it set mesns Fladg is seby

18 H it cleasr means fTladg is clear

19 § -
20
21 MCALL ROAFSySETF$.EXITS$SyDIRE ¢ Sustem macros
a0
23 BUFF$ « BLRW 4 ¥ Buffer for event flag
24 ¥ values

25 READ? RIAFS RBUFF § IFR Tor Read ALl Event
26 i Flags directive

27
28 GETF ¢ SETF$ L ¥ DFR for Set Event Flad
29 i directive

30

21 START: CLR R4 § Clear error counter
32 LIRS ESETF i Set event flag 1

33 RCS ERRL # Branch on dir error
34 : NIRS #READ # Read the event flads
35 i (1 - &4,

346 RCS ERR2 # Branch on dir error
37 MOV BUFF s RO # Move the event Tlad
38 MOV BUFF+2yR1 ¥ wvalues into the

39 MOV RUFF+4sR2 i redisters

4Q MOV BUFF+6yR3

41 107 # Trar and diselay

42 i redisters

43

44 § Come here on directive errors

45 ERR2: INC R4 # R4=2 for read error
44 ERR11: INC R4 # R4=1 for set event
47 3 flag error

48 MOy $NS5WRO # Error code into RO
49 107 3 Trar and disrlay the
50 ¥ redgisters

51 +END START

Example G-1 Reading the Event Flags (for Exercise 1-1)
537

1 LTITLE (€81

2 «IDENT 701/

3 +ENARL LC i Emable lower case

4 $

5 i 08T dllustrates the use of the command string

& y interrreter. This task asccerts & command line from the
7 $ terminal in the Torms

g8 i

9 H devilyayulfilename.iletwresversion/switoh
10 H
11 i where switch can bhe?

12 H NHE - lelete file

13 ¥ ODIIN ~ Qisrlaw N cories of Tile
14
15 +MCALL GOMLES»GOMLSyCSTI$»COI$1,CHTH2

146 +MOALL CSI$SV,CHISSWyCETEND
17 JMEALL FORSZSsFRRIF$ s FIIRCHAsFROFP$AsFINITS
18 SMOALL QIOWSSyQIOWEyDIRSGyEXITSHS

19 JMCALL DELETS»OFENSRy OFENSWsGETSyFUTEyCLOSES
20
21 SNLIST EREX
22
23 i LOCAL DATA

38
39

41
42
43
44
45
46
47
48
49
50
51
52

33

Example G-2

TYPEL?
TYFER?
TYFE3?
TYFE4!
ERR1 ¢

ERR4

BUFF?
TRUFF ¢
FMT?$
DaTA?
DELTXT?

TYTXT?
NOTXT?

CELK?

RIOWS
QIOWS
QI0WS
QIOWS
+ASCIT

TOWVBy Sy losy s ERRLySIZ1 v 40>
TOWVBySely ey v TERR2,81Z2v40
IO WUEySsyLlyey v TERR3» 8123405
TOWVReEvlyr oy ERRA»EIZA49 400
JGET COMMAND LINE ERROR/S

SIZ1=.~ERR1

SASCTYT

/08T ERROR. ILLEGAL COMMANIY

§IZ2 , ~ERR2

+ASCIY

/08T ERROR. FILE SFEC ERROR/

8123=,-ERRY

JASCTY

ZERROR FERFORMING TABK/

SlZ4=.~ERR4

+ BLKE
+BLKE
+ABCIZ
+EVEN
+WORD
+ASCIT
+ASCTI
+ABCTT
+EVEN

C8I%
+BLKE
+EVEN

DEMSK
DIMSK

0

it

Using the Routines GCML

Outeut text huffer
Transfer buffer
A X474 IR/

100. §
132, §
/YOU HAVE REQUESTED

i Argument block
/NELETE/<Q» i ASCIT text
ZTYRE /£ 2Qm Qe
/NOTHING/

3 lNefine C8I offsetls
C.8IZE i allocate CBI storage
1 ¥ Nelete mask
2 i Disrlay mask

and CSI (for Exercise 10-6)

(Sheet 1 of 3)

538

54 SUWTRIL. ¢ 3 Switch descrirtor tabhle
3] CHI$SW DEsDEMSK i Delete switch = DE

& COT$SW DIsNIMBKysy yNUM § Disrlawy switch = 01y
57 i also allow DIIN

58 CSISND i Eng of switch table

5

&0 CSI$8V OCTALsCOFYs2¢NUMF Value N for /ZDIIN is
&1 $dim octal and will

&2 i he stored in COPY

63 CSIEND $ Ermd of switch value

&4 i table

65

&é SGET COMMAND LINE BLOCK DEFINITIONS

&7

68 FERSZs 1 y GCOML uses record I/0
49

70 GRLK? GOUMLES sC8Ye S i Promet with ‘C817 on
71 i LUNS

72 FIgS FROROF & i FIIR for file to delete
73 i or disrlaw.

74 FIORCS$A sTRUFF« 132, ¢ URE AT TRBUFFy length
7% i 132,

76 FOOF$A 1+CRLKHC.DSNS § LUN 1y datasetl

77 i descristor from C8I1

78

79 F ONOTE: Need a 2nd FIOR for disrlay

80

81 +EVEN

82

83 JMFTERL S +WORD NONEsDELETE «DISFLY § Jume table for

84 i osubroutines derendins
83 iooon switches

8é

87 COPY?: LWORD 4] § Value for N in /ZDIIN
88 sENARLE ISR

89

20 START: FINITS 3 Initislize FCSy this
21 3 ds normally done with
92 # an OFEN statement.

?3 i For delete we do not
94 ¥ need an oren statement.
5 NEXT? GOML.% #GRLK 3 Fromet and dget commarnd
2?6 RCC 10% $ Eranch if command 0K
97 i Checlk for ~Z. IT 7Ze exit.

%8 CMFR H$GE JEOF yGRLK+GL.ERR 5 Is it —Z7

@9 BNE REAMLER i Branch on other error
100 EXIT$S Exiat

101 REALER: DIRS #TYFEL i Diselaw error text for
102 i dget command line error
103 EXIT$S 5 EMit

104

105 i Parse ineut Tor illedgasl characters

106

107 10%3 CSI41 FORLKy GRLKAG . CMLD+E2 » GRLK4G.CMLD 7 Format
108 iodie 08T addry addr of
109 ‘ 3 commands lensgth of

110 i commarnd

Example G-2 Using the Routines GCML and CSI (for Exercise 10-6)
(Sheet 2 of 3)

539

py

3

pory

F3

1
1
1

-t
[

114
115

RCC 20%
LIRS #TYFER

@ wy e

EXIT$S

Branch on OK commanc

Nisrlaw error bLext for
illedgal command

Esit

116 i Create a datssel descrirtor from the file srecification

117
118 208!
119
120

121
122
123

124

CEI$2 FCRLKy OUTFUT » kSWT

RCEC 304
DIRS FTYFES

ey ar ey @

EXIT$S

125 i Call the arsrorriate subroutine

126
127 3042
128
129
130
131
132
133
134

MOV DR RO

MOV CRLEAC MKW s R
AL R1

CALL @IMFTERL(RL)
BR NEXT

‘es wr ey R SR SR es

135 i Subroutine NONEs entered it no

136

137 NONE

138
139

141

143
144

M MOV ENOTXT s DATA H
H

140 # Common disrlay messase oode
142 OUTM: MOV FRUFF s RO §
MOV EFMT e R §
MOV FUATAR2 H
CaLL. $ENMGEE §

145
144
147
148

QIOWSES #TOWVEySGedile o vy
RETURN

<

es

Bl § Exrect outeut file
Poosrec
EBranch on file srec OK
Nisrlay text for file
BREC @rror
Esit

Address of file
descristor

Maalk value = 0y 1y or 2

Nouble Tor word offset
into Jums tahle

Call the subroutine

Get next command line

switches srecified

Set ur for outrut of

messase

Setlt ur Tor $EIMSG

Edit messase
SEBUFF sy R1» #40> § Disrlaw
Retiirr

149 3 Subroutinme DELETE -~ Jdust disrlswy a messase

150

181 DELETES: MOV FOELTXT» DATA

1550

[Pl
153
154

155

BR QUTM

a
¥
a
¢
2
¥
A
v

Set ur fov outeut of
messase

Erarnch Lo common
disrlay code

156 # Subroutine DIGPLY ~ Jdust disrlay a messade

1587

158 nDIsPLY: MoV FTYTXT s IATA

159
160
161
162

Example G-2

BR OUTM

a
¥
»
¢
§
N
¥

+END START

Using the Routines GCML and CSI (for Exercise 10-6)

Set ur for outeut of
messase

Branch to common
disrlay code

(Sheet 3 of 3)

540

APPENDIX H
LEARNING ACTIVITY ANSWER SHEET

Learning Activity 2-1 (Directives)

1.

Either: a) Do some work, then check the flag by using the
CLEF$ 35. directive. Check the DSW. IS.SET (=+2) means
the flag was set; IS.CLR (=0) means the flag was clear,
or b) read flags 4 through 64 using RDAFS$ and then test
bit 2 of the third word in the buffer to read flag 35. 1In
either case, keep doing more specific work and
periodically check the flag.

The Executive, would only set event flag 1 for Task A. It
would not set Task B's event flag 1; therefore, Task B
wouldn't realize that the data had been sent.

Local flags are accessible only to the task itself. They

are specifically provided for synchronization between the
Executive and a task.

541

Learning Activity 6-1 (Overlays)
1.

.ROOT-*! (P, Q)
. END

2. LINK/MAP ROOT,P,0Q

Learning Activity 6-2

1. Diagram

MAIN
2. .ROOT MAIN-TOTAL-* (A-(JOB1l,JOBXX),B)
.END

3. .ROOT MAIN-TOTAL-*| (A-! (JOB1,JOBXX),B)
.END A

4. .ROOT MAIN-TOTAL-*} (A-(JOB1l,JOBXX),B)
. END

542

Learning Activity 10-1 (File Control Services)
Without a User Record buffer (no spanning of blocks):

FDBDFS$

FDRCSA FD.PLC

FDOPSA 1, DFNB
DFNB: NMBLKS YOURS ,MAC

Use locate mode
Use LUN 1, default name block
File Spec

~e wo wo

With a User Record Buffer

FDBDF$
FDRCSA FD.PLC,URB,80.; 80.= maximum record size,
Record size can be checked after

the file is opened as well.

N we we

FDOPSA 1,DFNB
DFNB: NMBLKS$ YOURS.MAC

You can use a dataset descriptor as well.
If you use a default name block to specify TI:, use:

NMBLKS ,,,TI,0

543

GLOSSARY

GLOSSARY

ASYNCHRONOUS SYSTEM TRAP (AST) - A system condition which occurs
as a result of a specified event such as completion of an 1/0
request.

On occurrence of the event, control passes to an AST service
routine, and the AST is added to an Executive first-in first-out
queue for the task in which the service routine appears.

ATTACH - Device: Dedicate a physical device unit for exclusive
use by the task that requested attachment.

A task attaches a given device by issuing a QIO directive, or QIO
and WAIT directive, specifying the I/O0 function I0.ATT.

Region: 1Include a region in a task's logical address space.

A task attaches a region by issuing an Attach Region directive or
by being the target of another task's Send-By-Reference directive.

CLUSTER LIBRARIES - A special setup with shared resident libraries
which permits a task to use the same virtual address window to map
several difficult libraries. For example, the resident FORTRAN
Object Time System and the resident FCS library could use the same
virtual addresses. The run-time routines map and remap the
regions as they are needed, somewhat similar to what happens with
regular memory-resident overlays.

DATASET DESCRIPTOR - A six-word area in the user task containing
sizes and addresses of ASCII data strings, which FCS consults in
order to obtain a run-time file specification,

A dataset descriptor for a given file 1is a wuser-created data
structure which contains a file specification for that file.

When the filename block associated with a given file does not
contain sufficient information to enable FCS to do run-time file
processing on that file, FCS tries to get the needed information
from the file's dataset descriptor, if specified. oOtherwise, FCS
consults the file's default filename block, if specified, in order
to get the desired information. :

DEFAULT FILENAME BLOCK - An area in the user task that supplies

FCS with those default values that are needed to build a routine
file specification. '

When the filename block associated with a given file does not
contain sufficient information to allow FCS to process the file,
and when a dataset descriptor does not contain the needed
information, then FCS <consults the default filename block
associated with the file to obtain the missing information.

547

GLOSSARY

A default filename block may be used to supply a default name,
extension, and/or version for the file. The MACRO programmer uses
the NMBLKS macro to create this block at assembly time.

DETACH - Device: Free an attached physical device unit for use by
tasks other than the one that attached it.

A physical device unit can only be detached by means of an IO0.DET
I1/0 function issued by the task that attached it, or by the
Executive, if the task 1is terminated with the device still
attached.

Region: Remove a region from a task's logical address space.

A task detaches a region by issuing a Detach Region directive or
by exiting.

DIRECTIVE STATUS WORD - A word in the user task header into which

the Executive returns status information about the most recently
called directive.

After processing a directive, the Executive passes the status of
that directive to the issuing task by putting a success or error
code into the task's Directive Status Word, which is assigned the
global 1label $DSW. If $DSW is negative, the Executive rejected
the directive; 1if $DSW is +1, the directive was successful.

EVENT FLAG - A software flag which can be specified in a program
request to indicate to the issuing task which of several specified
events has occurred.

There are 96 (10) event flags.

Event flags 1 - 32(19) are local
33(19) - 64(1@) are system global flags
65(10) - 96(19) are group global flags

Local flags are used for intra-task synchronization, while group
global and system global flags are used for inter-task
synchronization and communication.

EXECUTIVE DIRECTIVE - A program request for Executive services.

An Executive directive is issued from a FORTRAN program by calling
a subroutine in the system object library. It is issued from a
MACRO-11 program by invoking a macro in the system macro library.

FILE DESCRIPTOR BLOCK (FDB) - The tabular data structure which

provides FCS with information needed to perform I/O operations on
a file. '

548

GLOSSARY

A task must allocate, through <calls to the FDBDF$ macro, or
dynamically through the use of run-time macros.

FILE STORAGE REGION (FSR) - The area in user task which FCS uses
to buffer all wvirtual blocks read or written during record
processing.

FCS requires one FSR block buffer for each file to be opened at
the same time for record I/0. When the task requests a record
that is not in the FSR buffer, FCS reads a virtual block from the
file 1into the task's file storage region. On the other hand, FCS
writes virtual blocks in the file storage region to the file when
a record must be put to the file,.

The user task allocates this area by issuing an FSRSZS$ macro.

FILENAME BLOCK - The part of a file's File Descriptor Block which
FCS uses for building, and later using, a file specification.

The filename block contains the file's UFD, name, extension,
version number, device name, and unit. When a file is initially
opened, FCS fills in the filename block from user-supplied
information in the dataset descriptor and/or default filename
block.

I/0 STATUS BLOCK - A two-integer array which receives success or
error codes on completion of an I/0 request. If an I/O status
block has been specified in an I/O request, the Executive clears
both words when the I/0 operation is queued. On completion, the
low byte of the first word contains +1 if the I/0 was successful,
and a negative error code otherwise.

If the I/0 function involved a transfer, the second word contains,
on completion, the number of bytes transferred.

LOGICAL ADDRESS SPACE - The set of all physical addresses to which
a task has access rights.

If a task is running on a mapped system that includes support for
the memory management directives, it may issue directives in order
to manipulate its logical address space at run time.

LOGICAL BLOCK - A 512(19) byte (256(19) word) block of data on a
block addressable volume.

To achieve device independence, each block addressable volume Iis
organized into 1logical blocks, numbered @ to n-1, where n is the
number of logical blocks on the volume.

The mapping of logical blocks to physical blocks is handled by the
driver. ‘

549

GLOSSARY

LOGICAL UNIT NUMBER (LUN) - A number associated with a physical
device unit during a task's I/0 operations.

The association of a LUN in a task with a given physical device
may be done by the Task Builder, by the operator using the
REASSIGN command, or at run time by the task, by issuing an Assign
LUN directive.

RANDOM ACCESS - A method of I/O to disk files in which records (or
virtual blocks) are specified by record (or virtual block) number.

Under FCS, a file must be organized into fixed length records in
order for a task to do random access to the file.

FCS supports the use of block I/0, in which wvirtual blocks are
read from, or written to, the file without regard for the
structure of those blocks. The FORTRAN language does not support
block I/0.

READ/WRITE MODE - An FCS file access method in which the user task
uses the READ$ and WRITES macros to do block-structured I/0 to a
file.

REGION - An area consisting of one or more contiguous 32.-word
blocks of physical memory.

A region may be named or unnamed, but is always assigned a unique
region 1ID. A region has an associated protection word which
specifies the access rights a task may have with respect to that
region. Any task that satisfies the region protection word may
attach a named region, but no task can attach an wunnamed region
unless the task has the region 1ID.

RESIDENT COMMON - A shared region which contains data.

RESIDENT LIBRARY - A shared region containing subroutines and/or
functions.,

SEQUENTIAL ACCESS - A mode of record access in which the n+lth
record in the file is processed after the nth record in the file.

Each record is assigned a record number, and each successive GET
or PUT causes the record number to be incremented.

SYNCHRONOUS SYSTEM TRAP (SST) - A "software interrupt" which
typically occurs as a result of an error or fault within the
executing task.

On recognition of an SST, the Executive aborts the task, unless
there is an SST vector table to an SST routine in the task.

550

GLOSSARY

VIRTUAL ADDRESS - A 16-bit address which may be directly specified
using one ol the general purpose registers.

A task specifies a virtual address whenever it wuses one of the
addressing modes in executing an instruction. Up to 32K virtual
word addresses may be specified by a task.

On a mapped system, the memory management hardware dynamically
maps virtual addresses to real physical addresses.

VIRTUAL ADDRESS WINDOW - A contiguous chunk of a task's wvirtual
address space.

Each virtual address window in a task begins on a 4K word boundary
and consists of one or more 32(19) word blocks of virtual address
space. Each window has a unique number assigned to it by the
Executive, Window @ always maps the task's header, stack, and
code. A task may divide its wvirtual address space 1into eight
windows.

VIRTUAL BLOCK - One of the logical blocks belonging to a file.

Each file consists of one or more 1logical blocks. The logical
blocks belonging to a file are called virtual blocks 1, 2, 3, etc.
The mapping of virtual blocks in a file to logical blocks on disk
is performed by the file system.

WINDOW DESCRIPTOR BLOCK (WDB) - A data structure used in a task in
order to represent a dynamically created window.

551

