g SIC-PLUS

Language Manual

* ,/W

- Wﬂw

DEC-11-ORBPA-A-D

BASIC-PLUS
Language Manual

FOR USE WITH RSTS-11

(PDP-11 Resource TIME-SHARING SYSTEM)

E PO

THE SOFTWARE DESCRIBED IN THIS DOCUMENT IS SUPPORTED
BY DEC UNDER CATEGORY 1 AS DEFINED ON PAGE V
OF THIS DOCUMENT.

FOR ADDITIONAL COPIES, ORDER NO. DEC-11-ORBPA-A-D FROM DIGITAL EQUIPMENT
CORPORATION, SOFTWARE DISTRIBUTION CENTER, MAYNARD, MASSACHUSETTS 01754

First Printing, May 1971
Second Printing, Feb. 1972
Second Edition, October, 1972

Your attention is invited to the last two pages of
this document. The Reader's Comments page, when
completed and returned, is beneficial to both you
and DEC. All comments received are considered when
documenting subsequent manuals. The How To Obtain
Software Information page offers you a means of
keeping up to date with DEC's software.

Copyright () 1971, 1972 by Digital Equipment Corporation

This document is for information purposes only
and is subject to change without notice.

Associated Documents:

RSTS-11 System User's Guide
DEC-11-ORSUA-A-D

RSTS-11 System Manager's Guide
DEC-11-ORSMA-A-D

The following are trademarks of Digital Equipment
Corporation:

DEC PDP-11

DIGITAL (logo) FOCAL-11

COMTEX~-11 UNIBUS

DECtape RSTS-11
RSX-11

ii

PREFACE

This manual contains a comprehensive description of the PDP-11
BASIC-PLUS language as implemented on the Resource-Sharing Time-
Sharing System, RSTS-11l. Information is organized for the benefit
of the beginning programmer, as it allows the reader to gradually

acquire increased programming capabilities.

A companion volume, the RSTS-11l System User's Guide, describes on-
line operation of the RSTS-11 system as well as various useful sys-
tem details.

The BASIC-PLUS language is an extension of BASIC! as originally
developed at Dartmouth College. The experienced BASIC programmer may
find the appendices sufficient for his use. However, BASIC-PLUS

offers many features not found in standard Dartmouth BASIC or any
other version of BASIC.

BASIC-PLUS incorporates the following special features:

1. Matrix Computations: a set of 13 commands is avail-
able for performing matrix computations.

2. Alphanumeric String Capabilities: alphabetic and/or
alphanumeric strings can be manipulated with the same
ease as numeric data. Individual characters within
these strings can be accessed by the user.

3. Program Control and Storage Facilities: facilities
are included for storing both programs and data on
any mass storage device (such as DECdisk or DECtape)
and later retrieving them for use during program
execution. Programs can be entered from the RSTS
terminal paper tape reader as well as from the high-
speed paper tape reader available on the computer.

Lack of data storage facilities has always hampered
BASIC from becoming as useful a language as, for
example, FORTRAN. With this ability and the ease of
learning the BASIC language, the new user has an ex-
tremely powerful tool at his command.

!BASIC is a registered trademark of the Trustees of Dartmouth College.

iii

Program Editing Facilities: an existing program can
be edited by adding or deleting lines, or renaming
the program. The user can combine two programs into
a single program and request the listing of a program,
either in whole or in part on his terminal or on a
line printer.

Formatting of Output: controlled formatting of pro-
gram output includes facilities for tabs, spaces,

and the printing of column headings, as well as pre-
cise specifications of the output line formatting and
floating dollar sign, asterisk fill, and comma inser-
tion in numeric output.

Immediate Mode of Operation: commands typed by the user
are immediately executed by BASIC-PLUS instead of being
stored for later execution.

Access to System Peripheral Equipment: the user pro-
gram is able to perform input and output with various
equipment, such as paper tape reader/punch, disk, DEC-
tape, industry-compatible magnetic tape, line printer,
and card reader. (Details on device operation can be
found in the RSTS-11 System User's Guide.)

Record I/0: language extensions provide a means of
handling records composed of fixed-length fields in
a highly efficient manner.

Documentation and Debugging Aids: the insertion of
remarks and comments within a program is simple in
this version of BASIC. Debugging of programs is
aided by the printing of meaningful diagnostic mes-
sages which pinpoint errors detected during the pro-
gram execution.

iv

SOFTWARE SUPPORT CATEGORIES

Digital Equipment Corporation (DEC) makes available four categories of software. These
categories reflect the types of support a customer may expect from DEC for a specified software
product. DEC reserves the right to change the category of a software product at any time.

The four categories are as follows:

CATEGORY |
Software Products Supported at no Charge

This classification includes current versions of monitors, programming languages, and
support programs provided by DEC. DEC will provide installation (when applicable), advisory,
and remedial support at no charge. These services are limited to original purchasers of DEC
computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category | to
Category 1l for a particular customer if the software product has been modified by the customer
or a third party.

CATEGORY 11
Software Products that Receive Support for a Fee

This category includes prior versions of Category | programs and all other programs avaii-
able from DEC for which support is given. Programming assistance (additional support), as
available, will be provided on these DEC programs and non-DEC programs when used in con-
junction with these DEC programs and equipment supplied by DEC .

CATEGORY 111
Pre-Release Software

DEC may elect to release certain software products to customers in order to facilitate
final testing and/or customer familiarization. In this event, DEC will limit the use of such
pre-release software to internal, non-competitive applications. Category 1l software is only
supported by DEC where this support is consistent with evaluation of the software product.
While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a
pre-release, there exists no commitment to respond to these reports.

CATEGORY 1V
Non-Supported Software

This category includes all programs for which no support is given

CONTENTS

PART I RSTS-11 AND THE BASIC-PLUS LANGUAGE

CHAPTER 1 AN INTRODUCTION TO RSTS-11
1.1 INTRODUCTION TO PROGRAMMING 1-1
1.2 INTRODUCTION TO TIME-SHARING 1-2
1.3 THE BASIC-PLUS PROGRAMMING LANGUAGE 1-2
1.4 CONVENTIONS USED IN THIS MANUAL 1-3

CHAPTER 2 FUNDAMENTALS OF PROGRAMMING IN BASIC-PLUS
2.1 EXAMPLE BASIC PROGRAM 2-1
2.2 LINE NUMBERS 2-1
2.3 STATEMENTS 2-3
2.3.1 Multiple Statements on a Single Line 2-3
2.3.2 A Single Statement on Multiple Lines 2-3
2.4 SPACES AND TABS 2-4
2.5 EXPRESSIONS 2-5
2.5.1 Numbers 2-5
2,5.2 Variables 2-6
2.5.3 Mathematical Operators 2-7
2.5.4 Rational Symbols 2-8
2,5.5 Logical Operators 2-9

CHAPTER 3 ELEMENTARY BASIC STATEMENTS
3.1 REMARKS AND COMMENTS 3-1
3.2 LET STATEMENT 3-2
3.3 PROGRAMMED INPUT AND OUTPUT 3-3
3.3.1 READ, DATA, and RESTORE Statements 3-4
3.3.2 PRINT Statement 3-6
3.3.3 INPUT Statement 3-9
3.4 UNCONDITIONAL BRANCH, GOTO STATEMENT 3-11
3.5 CONDITIONAL BRANCH, IF-THEN AND IF-GOTO STATEMENTS3~12
3.6 PROGRAM LOOPS 3-15
3.6.1 FOR and NEXT Statements 3-16
3.6.2 Subscripted Variables and the DIM Statement 3-19
3.7 MATHEMATICAL FUNCTIONS 3-22
3.7.1 Examples of Particular Intrinsic Functions 3-23
3.7.2 RANDOMIZE Statement 3-26
3.7.3 User-Defined Functions : 3-27
3.8 SUBROUTINES 3-32
3.8.1 GOSUB Statement 3-33
3.8.2 RETURN Statement 3-33
3.8.3 Nesting Subroutines 3-34
3.9 STOP AND END STATEMENTS 3-34

vii

PART II

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

BASIC-PLUS ADVANCED FEATURES

4

4.1

o>
.
o>

n

. . . « o o o e
e o e+ s o
LW

U L Lt L LMuLtututn

ULl B W N RRRREE

[

B R R R N I e)
. . L] L] . L . .
Ao U1 > W N
P

N =

o]

IMMEDIATE MODE OPERATIONS

USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

PROGRAM DEBUGGING
MULTIPLE STATEMENTS PER LINE
RESTRICTIONS ON IMMEDIATE MODE

CHARACTER STRINGS

CHARACTER STRINGS
String Constants
Character String Variables
Subscripted String Variables
String Size
Relational Operators

ASCII STRING CONVERSIONS, CHANGE STATEMENT
STRING INPUT
STRING OUTPUT

STRING FUNCTIONS
User-Defined String Functions

INTEGER VARIABLES AND INTEGER ARITHMETIC

INTEGER CONSTANTS AND VARIABLES
INTEGER ARITHMETIC

INTEGER I/O

USER DEFINED INTEGER FUNCTIONS

USE OF INTEGERS AS LOGICAL VARIABLES

MATRIX MANIPULATION

BASIC-PLUS ARRAY STORAGE

MAT READ STATEMENT

MAT PRINT STATEMENT

MAT INPUT STATEMENT

MATRIX INITIALIZATION STATEMENTS

MATRIX CALCULATIONS
Matrix Operations
Matrix Functions

ADVANCED STATEMENT FEATURES

DEF STATEMENT, MULTIPLE LINE FUNCTION DEFINITIONS

ON-GOTO STATEMENT

viii

(S, T I IS T N T N NCNC
R R N O
AR I I N SRR Ny
H o

5-11

6-1
6-2

6-3

NN NN NN
]
NSOy i w NN+

PART III

CHAPTER

CHAPTER

O 00O O0OOKWOO O O MW

ON-GOSUB STATEMENT

ON ERROR GOTO STATEMENT
RESUME Statement
Disabling the User Error Handling Routine
The ERL Variable

IF-THEN-ELSE STATEMENT
CONDITIONAL TERMINATION OF FOR LOOPS

STATEMENT MODIFIERS
The IF Statement Modifier
The UNLESS Statement Modifier
The FOR Statement Modifier
The WHILE Statement Modifier
The UNTIL Statement Modifier
Multiple Statement Modifiers

SYSTEM FUNCTIONS AND STATEMENTS

BASIC-PLUS I/0

« o s e
N wN =

.

* o o o o
Ui w N

W W W VWWOWWYWWVWWLWLWYW VW VW VW VVWVLWYWWVYO VO O
.
W 0 J AR U1 & W NDNDNNODNND -

10

10.1
10.2
10.3
10.4

DATA STORAGE CAPABILITIES

FILE STORAGE

OPEN STATEMENT
RECORDSIZE Option
CLUSTERSIZE Option
Formatted ASCII I/0

File-Structured Vs. Non-File-Structured Devices

Opening the User Terminal as an I/O Channel
OUTPUT TO NON-TERMINAL DEVICES
INPUT FROM NON-TERMINAL DEVICES
CLOSE STATEMENT

VIRTUAL DATA STORAGE
Virtual Core DIM Statement
Virtual Core String Storage
Opening a Virtual Core File
Virtual Core Programming Convention
Programming Example

NAME-AS STATEMENT, FILE PROTECTION AND RENAMING
KILL STATEMENT
CHAIN STATEMENT

BASIC-PLUS INPUT AND OUTPUT OPERATIONS

READ AND DATA STATEMENTS
RESTORE STATEMENT

INPUT STATEMENT

PRINT STATEMENT

10.4.1 PRINT-USING Statement
10.4.2 MAT PRINT Statement
10.4.3 PRINT Functions

ix

8-19
8-20
8-21
8-22

8-22

v
HHERWVLO -
W N

W W OV VVLOVVWLY W
to I
=
PN

I
[
wn

(Ve Ve Vo]
1
e
[oo 20N Ne)

9-19

o
U
N
o

9-20
9-21
9-22
9-23

10-1
10-2
10-3

10-5
10-7
10-13
10-14

CHAPTER

CHAPTER

11 RECORD I/O

11.1 OPENING A RECORD I/O FILE

11.2 CLOSING A RECORD I/O FILE

11.3 THE GET AND PUT STATEMENTS

11.3.1 The RECOUNT Variable

11.3.2 The COUNT Option

11.3.3 The RECORD Option

11.4 WORKING WITH RECORD I/O FILES

11.4.1 The FIELD Statement

11.4.2 LSET and RSET Statements

11.4.3 Notes on the Use of the LET Statement
11.5 CVT CONVERSION FUNCTIONS

11.6 EXAMPLES OF RECORD I/O USAGE

11.7 THE XLATE FUNCTION

11.8 EXTENDING DISK FILES

12 DEVICE DEPENDENT I/O OPERATIONS

12.1 NOTES ON DISKS, PUBLIC AND PRIVATE

12.2 THE UPDATE OPTION FOR DISK FILES

12.3 MAGTAPE INPUT/OUTPUT FUNCTIONS

12.3.1 The File-Structured Magtape OPEN

12.3.2 File-Structured Magtape File Labels
12.3.3 The File-Structured Magtape CLOSE Statement
12.3.4 The Non-File Structured Magtape OPEN Statement
12.3.5 The Non-File Structured Magtape CLOSE Statement
12.3.6 The MODE Specification

12.3.7 The MAGTAPE Function

12.3.7.1 Off-Line (Rewind and Unload) Function
12.3.7.2 WRITE End-of-File Function

12.3.7.3 Rewind Function

12.3.7.4 Skip Record Function

12.3.7.5 Backspace Function

12.3.7.6 Set Density and Parity Function
12.3.7.7 Tape Status Function

12.3.8 Magtape Error Handling

12.3.9 The

KILL and NAME AS Statements

12.4 CARD READER USAGE

12.5 LINE PRINTER OPTIONS
12.5.1 Special Character Handling

12.5.2 The
12.6 USING

LPFORM Option
VT@5 (AND VT@6) DISPLAY TERMINALS

APPENDIX

.

&'b?’b b
W N

APPENDIX B

APPENDIX

Q

oo Ne!
[S]

APPENDIX

.
o> wn -

0

APPENDIX E

oo lic}
=W

APPENDIX F

APPENDIX G

INDEX

BASIC-PLUS LANGUAGE SUMMARY
SUMMARY OF VARIABLE TYPES
SUMMARY OF OPERATORS

SUMMARY OF FUNCTIONS
SUMMARY OF BASIC-PLUS STATEMENTS

BASIC-PLUS COMMAND SUMMARY

ERROR MESSAGE SUMMARY
USER RECOVERABLE ERRORS
NON-RECOVERABLE ERRORS
SYSTEM IDENTIFICATION MESSAGE

BASIC-PLUS CHARACTER SET
BASIC~PLUS CHARACTER SET
ASCII CHARACTER CODES
CARD CODES
RADIX-50 CHARACTER SET

VIRTUAL ARRAY FACILITY

ARRAY STORAGE

TRANSLATION OF ARRAY SUBSCRIPTS INTO FILE

ADDRESSES
ACCESS TO DATA IN VIRTUAL ARRAYS

ALLOCATING DISK STORAGE TO VIRTUAL FILES

RSTS FLOATING-POINT AND INTEGER FORMATS

FLOATING-POINT FORMATS
INTEGER FORMAT

SELECTED BIBLIOGRAPHY

xi

PART I

RSTS-~11 AND THE BASIC-PLUS LANGUAGE

This first Part describes the RSTS-11l system, its hardware and
user features, and the simplest.levei of the BASIC language. BASIC
as described here is essentially Dartmouth BASIC as originally
developed. Part II describes the extended capabilities of BASIC—
PLUS. As part of the introductory material, the reader will find
references to some of the extended capabilities. Part III describes
the complete range of BASIC-PLUS I/0, including record I/0 and

information on particular I/0O devices.

As a language, BASIC is easy to learn. BASIC-PLUS provides
many advanced features which allow BASIC to be a useful tool for
the more experienced programmer. BASIC does not, however, penal-
ize the beginhing user. Almoét any problem can be solved with the
statements available in Part I. The statements and features in
Parts II and III allow the user to write more efficient code to

better use machine time and core space.

CHAPTER 1

AN INTRODUCTION TO RSTS~11

In this manual, the RSTS-1l user need only be concerned with
the writing and execution of correct programs in the BASIC-PLUS
language. A description of the various RSTS-11 commands (NEW, OLD,
LIST, RUN, etc.) can be found in the RSTS-11 System User's Guide.

1.1 INTRODUCTION TO PROGRAMMING

For the benefit of the new programmer approaching his first com-

puting experience, there are four phases in programming a computer:

a. writing the computer program,

b. entering the program to the computing system,
c. testing and debugging the program, and

d. running the finished program.

BASIC-PLUS is the language in which the user writes programs de-
signed for the RSTS-11 system. Input of the completed program is
generally performed from the terminal keyboard on RSTS-11.

A program can be input through various peripheral devices, such as

the paper tape reader, magnetic tape, DECtape, or punched cards; how-
ever, the initial creation of a BASIC program is usually performed
on-line to the computer from the terminal keyboard.

Ideally a program runs correctly as written; but in practice
this is seldom the case. A program can contain simple typing mis-
takes or complex logical errors. Typing and syntactical errors are
detected as the program is typed at the keyboard and appropriate er-
ror messages are printed. BASIC-PLUS also evaluates the entire pro-
gram for commonly made errors and generates messages which explain
the mistakes to the user. Program errors are corrected on-line from
the terminal keyboard.

The testing and debugging process is continued until the program
appears to execute correctly. This is a good time to explain to the
new user that a computer program only does what the programmer has

written. The calculations performed by the computer are not necessar-
ily those that will produce the correct results. In order to obtain
correct results from a computer, the user must write a program which
is not only free of detectable errors, but one which correctly ana-

lyzes his problem.

RSTS-11 provides keyboard commands which enable the user not
only to create and execute his program but also to save the program
within the system for later retrieval and execution or modification.

This saving process is known as storing or filing the program.

1.2 INTRODUCTION TO TIME-SHARING

RSTS-11 is a time-sharing system. This means that when a user

is working with RSTS, he has the illusion that he is the only user on

the computer,

Many users can be on-line to RSTS at one time because RSTS con-
trols the scheduling of execution times. RSTS has one or more users
in core at one time. Users are brought into core from disk, allowed
to execute for a short time, and returned to disk. This process is
called swapping. RSTS takes note of the state at which execution

stops and is able to resume operation at that point.
1
Each user is allotted a block of core between 2K and 8K for stor-

age of his particular program. This block is swapped between core
and disk. If only one user job is active in the system at a given
time, that job is allowed to execute without interruption until

another program is ready.

1.3 THE BASIC-PLUS PROGRAMMING LANGUAGE
BASIC is one of the simplest of all programming languages because

of the small number of powerful but easily understood statements and
commands and its easy application to problem solving. The wide use
of BASIC in scientific, business, and educational installations at-
tests to its value and straightforward application. (For a bibliog-
raphy of texts on BASIC and other elementary computing texts, see

Appendix G.)

BASIC is similar to many other programming languages in various
respects but is especially suited for time-sharing because of its
conversational nature. A conversational language is one which allows
the user to communicate with the language processor by typing on the

terminal keyboard. BASIC responds by printing on the terminal,

1
The term "K" refers to 1§24 (decimal) words of storage in a computer
Hence, 2K=2f48 words and 8K=8192 words.

1-2

providing for an interactive man/machine relationship.

BASIC-PLUS contains both the elementary statements used to write
simple programs and many new advanced programming features and state-
ments to produce more complex and efficient programs. The key word
here is efficient. As the user progresses and gains programming ex-
perience, he will naturally find himself becoming more efficient and
able to use the more sophisticated data manipulations. Almost any
problem can be solved with the simple BASIC statements. Later in the

user's programming experience, the advanced techniques can be added.

1.4 CONVENTIONS USED IN THIS MANUAL

Certain documentation conventions are used throughout this manual
to clarify examples of BASIC syntax. Each BASIC statement is de-
scribed at least once in general terms using the following conven-

tions:

a. Items in italic type (formula, variable, etc.) are supplied
by the user according to rules explained in the text. Items
in capital letters (LET, IF, THEN, etc.) must appear exactly
as shown because they form the vocabulary of the BASIC language.

b. The term line number used in examples indicates that any
line number is valid.

c. Angle brackets indicate essential elements of the statement
or command being described. For example:

line number{LET}<variable> = <expression>
d. Square brackets indicate a choice of one element among two

Or more possibilities. For example:

THEN <statement>
line number IF <expression> | THEN <line number>
GOTO <Iline number>

e. Braces indicate an optional statement element or a choice
of one element among two or more optional elements:

THEN <statement> {ELSE <statement> |
line number IF <expression> THEN <line number>|' ELSE <line number>
GOTO <line number>

The use of some terms in this document may be unfamiliar to the
new user. The following definitions and explanations are valid
throughout this manual:

a. BASIC prints on the teleprinter whereas the user types
on the keyboard.

b. A statement is a single BASIC language instruction. Each
BASIC program line is preceded by a line number and termi-
nated by the RETURN key. A program line may contain a
single statement or several statements separated by colons
(see Section 2.3.1).

c. Commands cause BASIC to perform some operation im-
mediately and are not preceded by a line number.

A command is terminated by typing the RETURN key.

d. A user program consists of a series of statements
written by a person using the BASIC-PLUS language.

e. The RSTS-11 terminal is in most cases an ASR-33
Teletype'. However, RSTS-11 can accommodate a wide
variety of other terminals such as a DECwriter or
VT@5 display. The RSTS-11 user terminal is alter-
natively referred to as terminal, teleprinter, or
keyboard, depending upon whether a part or the
whole device is indicated. The use of terminals
and other peripheral devices is described in the
RSTS-11 System User's Guide.

f. The term BASIC is used interchangeably to indicate
the BASIC language and the BASIC Interpreter (the
system program which accepts and executes BASIC
programs) .

1 Teletype is a registered trademark of the Teletype Corporation.

CHAPTER 2

FUNDAMENTALS OF PROGRAMMING IN BASIC-PLUS

2.1 EXAMPLE BASIC PROGRAM

The program in Figure 2.1 is an example of a user program writ-
ten in the BASIC-PLUS language. It illustrates the syntaf‘and ele-
ments of the language as well as standard formatting of statements

and the appearance of terminal output.

The user program (the lines numbered 10 through 200) may at this
time mean little, although the remark in the first line (line 10)
and the printed results (following the word RUNNH) show that the pro-

gram computes interest payments.

A user program is composed of lines of statements containing
instructions to BASIC. Each line of the program begins with a line
number that serves to identify that line as a statement and to in-
dicate the order in which statements are to be evaluated for execution.
Each statement starts with a word specifying the type of operation to

be performed.

2.2 LINE NUMBERS

Each BASIC program line is preceded by a line number. Line
numbers:

a. indicate the order in which statements are normally
evaluated;

b. enable the normal order of evaluation to be changed;
that is, the execution of the program can branch or
loop through designated statements (this is explained
further in the sections on the GOTO, GOSUB, and
IF~-THEN statements in Chapter 3); and

c. enhance program debugging by permitting modification
of any specified line without affecting any other
portion of the program.

Line numbers are in the range 1 to 32767. BASIC maintains pro-
grams in line number sequence, rather than the order in which lines
are entered to the system. It is good programming practice to num-
ber lines in increments of 5 or 10 when first writing a program, to
allow for insertion of forgotten or additional lines when debugging
the program.

!The syntax of a language is the collection of rules governing the
combination of language elements.

2-1

LISTNH

10
20
36
40
50
6@
70
g8a
S3
100
110
120
139
148
152
160

178
188
156
200

REMARK - THIS PROGRAM COMPUTES INTEREST PAYMENTS

INPUT "INTEREST IN PERCENT" ;J

LET J=J/188

INPUT "AMOUNT OF LOAN"; A

INPUT "NUMBER OF YEARS™; N

INPUT "NUMBER OF PAYMENTS PER YEAR"; M

LET Nz=N*M: I =J/M: B=l+]

LET R-AXxI/(Cl-1/BtN)

PRINT

PRINT ™ AMOUNT PER PAYMENT ="

PRINT " TOTAL INTEREST ="

PRINT

LET B=A

PRINT "INTEREST APP TO PRIN BALANCE OF PRIN"

LET L=Bxl: P=R-L: B=B~P

PRINT INT(L*10t2+,5)/108t2, INT(P*x18t2+,5)/1012,
INT(B%1212+.5)/71012

IF B>=R GOTO 158

PRINT INTC((B*I)%1812+,5)/18t2, INT((R-B*I)*1812+,5)/10812

PRINT "LAST PAYMENT =" INT((B*I+B)*1012+,5)/10812

END

s INT(Rx1@812+,5)/1812
¢t INTC(RkN=-A)*10124+,5)/1812

READY

RUNNH

INTEREST IN PERCENT? 7.5
AMOUNT OF LOAN? 2588

NUMBER OF YEARS? 2

NUMBER OF PAYMENTS PER YEAR? 4

AMOUNT PER PAYMENT = 339.44
TOTAL INTEREST = 215,51
INTEREST APP TO PRIN BALANCE OF PRIN
46.88 292.56 2207.44
41,39 298.85 1989,39
35.8 383,64 1685,75
38.11 309.33 1296,42
24,31 315,13 581,28
18.4 321,84 660.24
12,38 327.86 333.18
§.25 333.19

LAST PAYMENT = 339.43

READY

Figure 2-1

Example BASIC Program

When a program is executed (with the use of the RUN command),
the BASIC processor evaluates the statements in the order of their
line numbers, starting with the smallest line number and going to the
largest.

2.3 STATEMENTS

Each line number is followed by a BASIC statement. The first
word of a BASIC statement identifies the type of statement and informs
BASIC of the operation to be performed and how to treat the data
(if any) which follows the word.

2.3.1 Multiple Statements on a Single Line

More than one statement can be written on a single line as long
as each statement (except the last) is terminated with a colon. Thus
only the first statement on a line can (and must) have a line number.
For example:

13 INPUT A»RB,C

is a single statement line, while:
20 LET X=X+1: PRINT X»Y,Z: IF Y=2 GOTO 14

is a multiple-statement line containing three statements: a LET, a
PRINT, and an IF-GOTO statement.

Any statement can be used anywhére in a multiple-statement line
except as noted in the discussion of the individual statements.

2.3.2 A Single Statement on Multiple Lines

A single statement can be continued on successive lines of the
program. To indicate that a statement is to be continued, the line
is terminated with the LINE FEED key instead of the RETURN key. The
LINE FEED performs a carriage return/line feed operation on the ter-
minal and the line to be continued does not contain a line number.
For example:

18 LET J7=C7=X4%x3)%(7=A/
(A-B)=-17)

where the first line was terminated with the LINE FEED key is equiva-
lent to:
13 LET W7=C9-Xa4x3)%(Z=L/C(LA-BY)=17)

Note that the LINE FEED key does not cause a printed character to
appear on the page.

The length of a multiple-line statement is limited to 255 charac-

ters. 2-3

Where the LINE FEED key is used, it must occur between the ele-
ments of a BASIC statement. That is, a BASIC verb or the designation
of a subscripted array element (see Section 3.6,2), for example,
cannot be broken with a LINE FEED.

16 IF Al=8
THEN 180

is acceptable where a LINE FEED follows f#, but:

1A IF Al=0 TH
EN 127
ILLEGAL IF STATEMENT AT LINE 19

is not acceptable nor is:

IF A
1= THEN 169
ILLF3AL CONDITIONAL CLAUSE

nor is:

16 IF Al=0 THEN 1
IeYs

¥OPIFIFE EFROR AT LINE 10

and each illegal form will generate an error message.

2.4 SPACES AND TABS

Spaces can be used freely throughout the program to make state-

ments easier to read. For example:

14 LET R = D¥2+1

instead of:

17LETB=D*k2+1
or

1 1, ETR = D ¥ 2+l

The above statements are identical in effect.

TABS, like spaces, are used to make a program easy to read.
An example follows:

17 FOR K=1 TO 3

20 FOR I=1 TO 19

30 FOR J=1 TO 19

40 ACI»Jd) = K/C(I+Jd=1)+AC1,d)
54 NEXT J

63 NEXT I

73 NEXT K

2.5 EXPRESSIONS
An expression is a group of symbols which can be evaluated by
BASIC. Expressions are composed of numbers, variables, functions, or

a combination of the preceding separated by arithmetic or relational
operators.

The following are examples of expressions acceptable to BASIC-
PLUS:

Arithmetic Expressions Logical Expressions
4 X<Y
A7* (B+2+1) ((A>B) OR (C=D)) AND A/E<>(C,D

Not all kinds of expressions can be used in all statements, as is cx-
plained in the sections describing the individual statements. In i
following sections the reader is introduced to the elements which

compose BASIC expressions.

2.5.1 Numbers

Numbers, called numeric constants because they retain a constant
value throughout a program, can be positive or negative. Appendix F
explains the integer and floating-point number formats. Numeric

constants are written using decimal notation, as follows:

+2
-3.675
1234.56
-123456
-.geppa1

The following are not acceptable numeric constants in BASIC:

Wi
=S
~

However, BASIC can find the decimal expansion of those two mathemati-

cal formulas as shown below:

is expressed as 14/3

w|+=
o

V7 1is expressed as SQR(7)

These formats are explained in later sections.

Scientific notation allows further flexibility in number
representation. Numeric constants can be written using the

letter E to indicate "times ten to the power," thus:

.99@123456 can be written in BASIC as 123.456E-6
1234560040. can be written in BASIC as 123456E4
~-1234567890947. can be written in BASIC as =-1.2345679El¢

The E format representation of numbers is wvery flexible since a number
such as .00l can be written as 1E-3, .01lE-1, 100E-5, or any number of
ways. If more than six digits are generated during any computation,
the result of that computation is automatically printed in E format.
(If the exponent is negative, a minus sign is printed after the E;

if the exponent is positive, a space is printed: 1E-§4; 1E g4.)

The combination E7, however, is not a constant, but a variable.

The term 1E7 is used to indicate that 1 is multiplied by 107.

The range of floating-point numbers is (approximately) as follows:

X=g or in the range 10“38 < ABS(X) < 10+38

2.5.2 Variables

A variable is a data item whose value can be changed by the
program. A numeric variable is denoted by a single letter or by a
letter followed by a single digit. Thus BASIC interprets E8 as a
variable, along with A, X, N5, L@, and O0l. (Subscripted, integer, and

character string variables are described in later sections.)

Variables are assigned values by LET, INPUT, and READ statements.
The value assigned to a variable does not change until the next time

a LET. INPUT or READ statement is encountered that contains a new

value for that variable or when the variable is incremented by a FOR
statement. (These conditions are explained further in later sections.
All variables are set equal to zero (f) before program execution.

It is only necessary to assign a value to a variable when an initial
value other than zero is required. However, good programming prac-
tice would be to set variables equal to § wherever necessary. This

ensures that later changes or additions will not misinterpret values.

2.5.3 Mathematical Operators

BASIC automatically performs the mathematical operations of ad-
dition, subtraction, multiplication, division and exponentiation.
Formulas to be evaluated are represented in a format similar to stan-
dard mathematical notation. There are five arithmetic operators used

to write such formulas; they are as follows:

Operator Example Meaning
+ A+B Add B to A
- A-B Subtract B from A
* A*B Multiply A by B
A/B Divide A by B
4 A+B Calculate A to the B power, AB

BASIC-PLUS permits the operator ** in place of 4+ to denote the

exponentiation operation. For example:
A¥x*B

indicates the quantity A raised to the B power, AB. The ** operator
is included for compatibility with some other BASIC processors. The
symbol 4 is generally considered the BASIC symbol for exponentiation

and is used throughout this manual.

Unary plus and minus are also allowed, e.g. the - in -A+B or the
+ in +X-Y. Unary plus is ignored. Unary minus is treated as explained

below.

When more than one operation is to be performed in a single formu-
la, as is most often the case, rules are observed as to the precedence
of the above operators. The arithmetic operations are performed in

the following sequence, with (a) having the highest precedence:

2-7

a. Any formula within parentheses is evaluated before the
parenthesized quantity is used in further computations.
Where parentheses are nested, as follows:

(A+(B* (D+2)))
the innermost parenthetical quantity is calculated first.

b. 1In the absence of parentheses in a formula, BASIC performs

operations as follows:

1. exponentiation

2, unary minus
3. multiplication and division
4, addition and subtraction

Thus, for example, -A+B with a unary minus, is a legal

expression and is the same as -(A4B). This implies that
-242 evaluates as -4. The one extension of this rule is
that the term A+-B is allowed and is evaluated as A% (-B).

c. 1In the absence of parentheses in a formula involving more
than one operation on the same level in (b) above, the
operations are performed left to right, in the order that
the formula is written. For example:

A/B/C is evaluated as (A/B)/C
A*B/C 1is evaluated as (A*B)/C
The expression A+B*C4D is evaluated as follows:
first, C is raised to the D power
second, the result of the first operation is multiplied by B
third, the result of the previous operation is added to A.

Parentheses are used to indicate any other order of evaluation. For
example, if it is the product of B and C that is to be raised to the

D power, the expression would look as follows:
A+ (B*C) 4D
If it is desired to multiply the quantity A+B by C to the D power:

(A+B) *C4D

The user is encouraged to use parentheses even where they are not
strictly required in order to make ~xpressions easier to read. Am-
biguities can exist only in the programmer's mind, the computer always

performs the operations as explained above.

2.5.4 Relational Symbols

Relational symbols are used in IF-THEN statements (see Section 3.5);
in conditional FOR loops (see Section 8.6); and in IF, UNLESS, WHILE
and UNTIL clauses (see Sections 3.5, 8.5, and 8.7) where it is neces-
sary to compare values. The relational symbols are as follows (where

A and B are variables or expressions):

Mathematical BASIC

Symbol Symbol Example Meaning
= = A=B A is equal to B
< < A<B A is less than B
< <= A<=B A is less than or equal to B
> > A>B A is greater than B
> >= A>=B A is greater than or equal to B
<> A<>B A is not equal to B
x == ==B A is approximately equal to B.

The term "approximately equal to" means that the two quantities

look the same when printed. Within the computer, floating-point
numbers can differ by a miniscule amount in the last decimal place
but still be considered equal for all practical purposes. This last
decimal place within the computer does not always cause two numbers

to have a different value when printed. Numbers are carried inter-
nally at greater than 6 digits of precision, but are rounded to 6
digits for output or a ¥ comparison. Thus, two numbers identical
when rounded to 6 digits of precision are approximately equal, whereas
two numbers equal to the internally carried limits of precision are

truly equal (=).

2.5.5 Logical Operators

Logical operators are used in IF-THEN and such statements (see
Section 3.5) where some condition is used to determine subsequent
operations within the user program. The logical operators are as

follows (where A and B are relational expressions):

Operator Example Meaning
NOT NOT A The logical negative of A. If A is true,

NOT A is false.

AND A AND B The logical product of A and B. A AND B has
the value true only if A and B are both true
and has the value false if either A or B is
false.

OR A OR B The logical sum of A and B. A OR B has the
value true if either A or B is true and has
the value false only if both A and B are
false.

XOR A XOR B The logical exclusive OR of A and B. A XOR B
is true if either A or B is true but
not both, and false otherwise.

IMP

EQV

A IMP B

A EQV B

The logical implication of A and B. A IMP
B is false if and only if A is true and B is
false; otherwise the value is true.

A is logically equivalent to B. A EQV B has
the value TRUE if A and B are both true or
both false, and has the value false otherwise.

The following tables are called truth tables and describe graphi-

cally the results of the above logical operations with both A and B

given for every possible combination of values. In logical operations,

the only possible values a term can have are true and false (T and F).

A AND B

T T I b

H A4 = 4w

L e B |

A XOR B

Lo I I I I [

m A3 9 3]

L I I |

A IMP B

L I T = I

" o3 1" 3 |W

H 3 M9

A B |A OR B
T T T
T F T
F T T
F F F
A B |aAEQU B
T T T
T F F
F T F
F F T

A NOT A

=
]

CHAPTER 3

ELEMENTARY BASIC STATEMENTS

This Chapter describes the simplest forms of the more elementary
BASIC statements. These statements are sufficient, by themselves, for
the solution of most problems. Once these statements are mastered,
the user can investigate the more advanced applications of these state-
ments and the additional statements and features explained in Parts
ITI and III.

The reader should understand that any problem which can be
solved with the more advanced techniques can also be solved with the
simpler statements, although the solution may not be as efficient.
As long as the user understands the details of his problem he can
represent it in BASIC on a number of levels ranging from the simple
to the sophisticated.

3.1 REMARKS AND COMMENTS
It is often desirable to insert notes and messages within a user

program. Such data as the name and purpose of the program, how to
use it, how certain parts of the program work, and expected results at
various points are useful things to have present in the program for

ready reference by anyone using that program.
There are two ways of inserting comments into a user program:

a. the REMARK statement, and

b. use of the exclamation mark (!)

The word REMARK can be abbreviated to REM for typing convenience,
and the message itself can contain any printing characters on the key-
board. BASIC completely ignores anything on a line following the let-
ters REM. (The line number of a REM statement can be used in a GOTO
or GOSUB statement, see Sections 3.4 and 3.8.1, as the destination of

a jump in program execution.) Typical REM statements are shown below:

13 REM = THIS PROGRAM COMPUTES THE
11 REM = ROOTS OF A QUADRATIC ER/IJATION

The exclamation mark is normally used to terminate the executable
part of a line and begin the comment part of the line. The ! character

3-1

can also begin the line, in which case the entire line is treated as a
comment. For example:

125 LET A=2+4*SOQR(C) !'SET A EQUAL TU INITIAL VALUE

139 PRINT A/2+1 'PRINT SECOND CALCULATED VALUE

14 VCOMMENT

in every statement other than the DATA statement, BASIC ignores every-
thing on the line following the exclamation mark. An exclamation mark
must not appear on the same line as a DATA statement unless it is part
of an item in the DATA statement. (Tabs are useful for inserting space

between the statement and comment parts of a line to improve readability.)

Messages in REMARK statements are generally called remarks, those
after the exclamation mark, comments. Remarks and comments are printed

when the user program is listed but do not affect program execution.

The lines below indicate three ways of putting the same remark on
two lines. Lines 10 and 11 are REM statements. Line 20 is one REM
statement broken into two lines with the LINE FEED key. Line 30 is
one comment (begun with a !) and broken into two lines with the LINE
FEED key.

1% REM THIS PROGRAM COMPUTES THE
11 REM RIOTS OF A QUADRATIC EQUATION

20 REM THIS PROJGRAM COMPUTES THE
ROOTS OF A QUADRATIC EQUATION

30 ! THIS PROGRAM COMPUTES THF
ROOTS OF A QUADRATIC ERUATION

3.2 LET STATEMENT
The LET statement assigns a numeric value to a variable. Each

LET statement is of the form:

line number{LET}<variable>=<expression>

This statement does not indicate algebraic equality, but performs the
calculations within the expression (if any) and assigns the numeric
value to the indicated variable. For example:

12 LET X=X+1

26 LET ¥2=(A4-X13)*%(Z~A/B)
In line 10, the old value of X is increased by one and becomes the new
value of X. 1In line 20, the formula on the right hand side is evalu-

ated and the numeric value assigned to W2.

3-2

The LET statement can be a simple numerical assignment, such as

50 LET A=35

or require the evaluation of a formula so long that it is continued on

the next line (see Section 2.3.2).

BASIC-PLUS allows the user to completely omit the word LET from
the LET statement. The user may find it easier to type:

1 X=12%(S+7)
than
18 LET X=12%(S+7)

This is a convenience and does not alter the effect of the statement.
The LET statement can be used anywhere in a multiple statement
line, for example:
10 X=442 ¥Y=X12+Y1: B2=3+.5%4A

The LET statement allows the user to assign a value to multiple

variables in the same statement. For example:
16 LET Xs5YsZ = S5e7

causes each of the three variables to be set equal to 5.7.

3.3 PROGRAMMED INPUT AND OUTPUT

This Section describes the techniques used in performing BASIC
program I/0 (an abbreviation for the term Input/Qutput which includes
the processes by which data is brought into and sent out of the computer) .
The most elementary forms of the PRINT, INPUT, READ, and DATA statements
are presented here so that the user is able to create simple BASIC
programs.,

Using the LET statement, already described, and the following
executable statements, the user can easily write a BASIC programn,
If he should want to try his program, these simple I/O statements
provide a means of obtaining tangible output.

More advanced I/0 techniques are described in Part III.

3.3.1 READ, DATA, and RESTORE Statements

READ and DATA statements are used to enter information into the
user program during execution. A READ statement is used to assign to
the listed variables those values which are obtained from a DATA state-
ment. Neither statement is used without the other.

A READ statement is of the form:

line number READ <variable list>

A DATA statement is of the form:

line number DATA <value list>

A READ statement causes the variables listed to be assigned se-
quential values in the collection of DATA statements. Before the
program is run, BASIC takes all DATA statements in the order they
appear and creates a data block. Each time a READ statement is
encountered in the program, the data block supplies the next value.
If the data block runs out of data, the program is assumed to be fin-
ished and an OUT OF DATA message is printed by BASIC.

READ and DATA statements appear as follows:

156 READ XsoYsZsX15Y2,09
337 DATA 452517
340 DATL €el3LE-3, =1vL£4321s 31415927

Note that only numbers are used in this particular DATA statement.
(Input of string data is treated in Section 5.3.) The assignments
performed by line 15§ are as follows:

[N
nun

4
2
1.7
X1=6.734E3
Y2=-174.321
Q9=3.1415927

Since data must be read before it can be used in a program, READ
statements normally occur near the beginning of a program. The loca-
tion of DATA statements is arbitrary, as long as they occur in the

correct order. A good practice is to collect all DATA statements

near the end of the program. A DATA statement must be the only state-
ment or the last statement on a line, while a READ statement can be

placed anywhere in a multiple statement line.

NOTE

Comments are not permitted at the end of
a DATA statement.

If it should become necessary to use the same data more than
once in a program, the RESTORE statement makes it possible to recycle
through the complete set of DATA statements in that program, beginning
with the lowest numbered DATA statement. The RESTORE statement is of
the form:

line number RESTORE
For example:

30 RESTORE

causes the next READ statement following line 3§ to begin reading data
from the first DATA statement in the program, regardless of where the

last data value was found.

The same variable names can be used the second time through the
data or not, as is most convenient, since the values are being read
as though for the first time. 1In order to skip unwanted values, dummy
variables must be read. In the following example, BASIC prints:

4 1 2 3

on the last line because it did not skip the value for the original
N when it executed the loop beginning at line 45.

LISTNH

12 REM PROGRAM TO ILLUSTRATE USE OF RESTORE
15 READ N: PRINT "VALUES OF X ARE:"

28 FOR I=1 TO N: READ X: PRINT X,

25 NEXT 1

3@ RESTORE

35 PRINT: PRINT "SECOND LIST OF X VALUES"
48 PRINT "FOLLOWING RESTORE STATEMENT:"

45 FOR I=1 TO N: READ X: PRINT X,

56 NEXT 1

60 DATA 4,1,2

70 DATA 3,4

88 END

READY

RUNNH

VALUES OF X ARE:

I 2 3 4
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

4 1 2 3
READY

When reading a BASIC program from the terminal paper tape reader
often the last line read is the READY printed by BASIC when the pro-
gram was listed (and punched on the tape at the same time). BASIC
interprets this as a READ Y command (in immediate mode) and, if there

are no DATA statements in the program, gives an "OUT OF DATA" message.

3.3.2 PRINT Statement

The PRINT statement is used to output data onto the terminal

teleprinter. The general format of the PRINT statement is:
line number PRINT {list}

where the list can contain expressions, text strings, or both. As
the braces indicate, the list is optional. Used alone, the PRINT

statement:

25 PRINT

causes a blank line to be printed on the teleprinter (a carriage

return/line feed operation is performed).

PRINT statements can be used to perform calculations and print
results. Any expression within the list is evaluated before a value
is printed. Consider the following program:

LISTNH
18 LET Azl: LET B=2: LET C=3+A
2@ PRINT
38 PRINT A+B+C
READY
RUNNH
7

READY
All numbers are printed in the form:

space
E p-] <number> <space>

The PRINT statement can be used anywhere in a multiple statement

line. For example:
189 Azl: PRINT A: A=A+5: PRINT: PRINT A

would cause the following to be printed on the terminal when executed:

RUNNH
1

§
READY

Notice that the teleprinter performs a carriage return/line feed at the
end of each PRINT statement. Thus the first PRINT statement causes a 1
and a carriage return/line feed, the second PRINT statement is respon-
sible for the blank line, and the third PRINT statement causes a 6 and

another carriage return/line feed to be output.

BASIC considers the terminal printer to be divided into five zones
of fourteen spaces each'. When an item in a PRINT statement is followed
by a comma, the next value to be printed appears in the next available
print zone. For example:

18 LET A=3: LET B=2
2¢ PRINT A,B,A+B,A*B,A-B,B-A

When the preceding lines are executed, the following is printed:

3 2 5 () 1
-1
Notice that the sixth element in the PRINT list is printed as the
first entry on a new line, since a 72-character line has five print zones.

Two commas together in a PRINT statement cause a print zone to be
skipped. For example:
LISTNH

18 LET A=zl: LET B=2
20 PRINT A,B,,A+B

REARY

RUNNH
1 2 3

READY

If the last item in a PRINT statement is followed by a comma, no
carriage return/line feed is output, and the next value to be printed
(by a later PRINT statement) appears in the next available print zone.
For example:

LISTNH

18 Az1:B=2:C=3
20 PRINT A,:PRINT B: PRINT C

READY
RUNNH

1 2
3

READY

fTerminals with greater than 83 columns have additional print zones
in units of fourteen spaces.

3-7

If a tighter packing of printed values is desired, the semicolon
character can be used in place of the comma. A semicolon causes no
further spaces to be output. A comma causes the print head to move
at least one space to the next print zone or possibly perform a car-
riage return/line feed. The following example shows the effects of
the semicolon and comma.

LISTNH

18 LET A=zl: B=2: C=3
28 PRINT A;:B;C;

3¢ PRINT A+13B+13C+l
4¢ PRINT A,B,C

READY

RUNNH
1 2 3 2 3 4
1 2 3

READY

The PRINT statement can be used to print a message, either alone
or together with the evaluation and printing of numeric values. Charac-
ters are indicated for printing by enclosing them in single or double
quotation marks (therefore each type of quotation mark can only be
printed if surrounded by the other type of guotation mark). For

example:

LISTNH
12 PRINT "TIME'S UP"
2@ PRINT '"NEVERMORE™®

READY

RUNNH
TIME'S UP
"NEVERMORE"

READY

As another example, consider the following line:

40 PRINT "AVERAGE GRADE IS";X

which prints the following (where X is equal to 83.4):

AVERAGE GRADE IS 83.4

When a character string is printed, only the characters between
the quotes appear; no leading or trailing spaces are added. Leading
and trailing spaces can be added within the guotation marks using the
keyboard space bar; spaces appear in the printout exactly as they are
typed within the quotation marks.

3-8

When a comma separates a text string from another PRINT list item,
the item is printed at the beginning of the next available print zone.
Semicolons separating text strings from other items are ignored. Thus,

the previous example could be expressed as:

47 PRINT '"AVERAGE GRADE IS" X

and the same printout would result. A comma or semicolon appearing
as the last item of a PRINT list always suppresses the carriage re-

turn/line feed operation.

The following example demonstrates the use of the formatting

characters, and ; with text strings:

127 PRINT “STUDENT NIJMBER'"X,'"GRADE ='"G;"AVE. ="A3;
13% PRINT "NOC. IN CLASS ="N

could cause the following to be printed (assuming calculations were
done prior to line 130):

STIJDENT NUMBER 119058 GRADE = 87 AVE. = 85.44 NO. IN CLASS = 26

3.3.3 INPUT Statement

The second way to input data to a program is with an INPUT state-
ment. This statement is used when writing a program to process data
to be supplied while the program is running. During execution, the
programmer can type values as the computer asks for them. (Non-
terminal INPUT is described in Part III.) Depending upon how many
values are to be accepted by the INPUT command, the programmer may
wish to send himself a message reminding him what data is to be
typed at what time (this can be done with the PRINT or INPUT statement).

The INPUT statement is of the form:
line number INPUT <list>
For example:

13 INPYJT A,R,C

causes the computer to pause during execution, print a question mark,

and wait for the user to type three numeric values separated by

commas. The values typed are entered to the computer by typing the
RETURN key or the ESCAPE key (ESC on some terminals, ALT MODE on others).

In the example program following, four questions are asked at
execution time: INTEREST IN PERCENT?, AMOUNT OF LOAN?, NUMBER OF
YEARS?, and NO. OF PAYMENTS PER YEAR?. The programmer knows which
value is requested and proceeds to type and enter the appropriate

value.

LISTNH

12 REM PROGRAM TO COMPUTE INTEREST PAYMENTS
15 INPUT "INTEREST IN PERCENT"; J

26 LET J=J/1@@

25 INPUT "AMOUNT OF LOAN";: A

32 INPUT "NUMBER OF YEARS™; N

35 INPUT "NO., OF PAYMENTS PER YEAR"; M

49 N=N*M: 1=J/M: B=1+I: R=A*I/C1-1/BtN)

45 PRINT: PRINT "AMOUNT PER PAYMENT ="3R

5¢ PRINT " TOTAL INTEREST =" sREN-A

55 PRINT: B:=A

68 PRINT "INTEREST APP TO PRIN BALANCE OF PRIN"
65 L=BxI: P=R-L: B=B-P

§7 PRINT L,P,E

7¢ IF B>zR GOTO 65

75 PRINT BxI,R-Bxl

8% PRINT "1AST PAYMENT WAS "B*I+B

85 END

READY

RUNNH

INTEREST IN PERCENT? S
AMOUNT OF LOAN? 2520

NUMBER OF YEARS? 2

NO. OF PAYMENTS PER YEAR? 4

AMOUNT PER PAYMENT = 344,96l
TOTAL INTEREST : 259,688

INTEREST APP TO PRIN BALANCE OF PRIN

56.25 288.711 2211.29
49,754 295.207 1916.08
43,1119 301,849 1614,23
36,3202 388,641 1385.59
29,3758 315,585 590.0887
22,2752 322,686 667.321
15.2147 329,946 337.375
7.59893 337.37

LAST PAYMENT WAS 344,966
READY

As in the previous program, the question mark generated by BASIC
is grammatically useful if a printed question is to prompt the typing
of the input values.

The output for the program begins after the word RUNNH and in-
cludes a verbal description of the numbers. This verbal description
on the output is optional with the programmer, although it has a def-
inite advantage in ease of use and understanding.

When the correct number of variables have been typed in answer
to the printed ? character, type the RETURN key to enter the values to
the computer. If too few values are listed, the computer prints
another ? to indicate that more data is requested. If too many values
are typed, the excess data on that line is ignored.

Messages to be printed at execution time can be inserted within
the INPUT statement itself. The message is set off by single or dou-
ble quotes from the other arguments of the INPUT statement. For example

10 INPUT '""YOUR AGE IS ";A

is equivalent to

13 PRINT "YOUR AGE 1S "3
20 INPUT A

The use of the comma or semicolon character (or no character) to
separate a character string to be printed from input variable names is
analogous to the PRINT statement (see Section 3.3.2).

3.4 UNCONDITIONAL BRANCH, GOTO STATEMENT

The GOTO statement is used when it is desired to unconditionally

transfer to some line other than the next sequential line in the pro-
gram. In other words, a GOTO statement causes an immediate jump to a
specified line, out of the normal consecutive line number order of
execution. The general format of the statement is as follows:

line number GOTO <line number>

The line number to which the program jumps can be either greater than
or less than the current line number. It is thus possible to jump
forward or backward within a program.

Consider the following simple example:

18 LET A=2

28 GOTO 58

38 LET A=SQR(A+14)
58 PRINT A,A%A

When executed, the above lines cause the following to be printed:

2 4
When the program encounters line 20, control transfers to line 50;
line 50 is executed, control then continues to the line following line

50. Line 30 is never executed. Any number of lines can be skipped in

either direction.

When written as part of a multiple statement line, GOTO should
always be the last statement on the line, since any statement fol-
lowing the GOTO on the same line is never executed. For example:

11@ LET A=ATN(B2): PRINT A: GOTO 50

3.5 CONDITIONAL BRANCH, IF-THEN AND IF-GOTO STATEMENTS
The IF-THEN and IF-GOTO statements are used to transfer condition-

ally from the normal consecutive order of statement numbers, depending
upon the truth of some mathematical relation or relations. The basic

format of the IF statement is as follows:

THEN<statement>
line number IF <condition> THEN<line number>
GOTO<line number>

The specified condition is tested. If the relationship is found false,
then control is transferred to the statement following the IF state-
ment (the next sequentially numbered line). If the condition is true,
the statement following THEN is executed or control is transferred to
the line number given after THEN or GOTO. (An extension of this state-
ment, the IF-THEN-ELSE statement, is described in Section 8.5.)

3

12

The deciding condition can be either a simple relational expres-
sion in which two mathematical expressions are separated by a rela-
tional operator, or a logical expression in which two relational or

logical expressions are separated by a logical operator. For example:

Relational Expression Logical Expression
A+2>B A>B AND B<=SQR(C)

Both types of condition, when evaluated, are either true or false; no
numeric value is associated with the results of an IF statement. The
relational and logical operators are described in Sections 2.5.4 and

2.5.5 and are presented in Appendix A for reference.
75 IF A%B>=B%(B+1) THEN LET D4=D4+1

In the above line the quantities A*B and B*(B+l) are compared. If the
first value is greater than or equal to the second value, the variable
D4 is incremented by 1. If B*(B+l) is greater than A*B, D4 is not incre-
mented and control passes immediately to the next line following line 75,

When a line number follows the word THEN, the IF-THEN statement
is the same as the IF-GOTO statement. The word THEN can be followed
by any BASIC statement, including another IF statement. For example:

25 IF A>B THEN IF B>C THEN PRINT ''A>B>C"
25 IF A>B AND B>C THEN PRINT "A>B>C"

The preceding two lines are logically equivalent and perform the fol-

lowing operation:
if B is both less than A and greater than C, the message
A>B>C

is printed, otherwise the line following line 25 is executed.

In the following example, the IF-GOTO statement in line 20 is
used to limit the value of the variable A in line 10. Execution of
the loop continues until the relationship A>4 is true, then immediately
branches to line 55 to end the program. (A program loop is a series
of statements which are written so that, when the statements have been
executed, control transfers to the beginning of the statements. This

process continues to occur until some terminal condition is reached.)

3-13

LISTNH

10 LET A=A+l: X=At2

22 IF A>4 GOTO 55

25 PRINT X

3@ PRINT "VALUE OF A IS" A
48 GOTO 19

55 END

READY

when the above loop is executed, the following is printed:

RUNNH

V;LUE OF A IS |
V:LUE OF A IS 2
VzLUE OF A IS 3
VAEUE OF A IS 4

READY

(The novice BASIC programmer is advised to follow the operation of the

computer through these short example programs.)

In IF statements, the following priorities are associated with
each operator, in order to provide unambiguous evaluation of the con-

ditions specified (where a. has the highest priority):

a. expressions in parentheses

b. intrinsic or user-defined functions

c. exponentiation (+4)

d. unary minus (-), that is, a negative number or

variable such as -3, ~A, etc.
multiplication and division (* and /)

addition and subtraction (+ and -)

relational operators (=, <, <=, >, >=, ==, <>)
NOT

AND

OR and XOR

IMP

EQV

[S S RO Lo SO B o N)

Within the operators indicated in any one group above, operations pro-

ceed from left to right.

Examples of IF-THEN statements follow:

10 IF A>B THEN 100 !SIMPLE COMPARISON
20 IF A=B OR B=C THEN 200
3% IF A>B THEN A=-B 'ASSIGNMENT BY A LET STATEMENT

46 IF X>Y IMP Y>Z THEN PRINT "“QED"

An IF statement would normally be the last statement on a multiple
statement line (to avoid confusion); however, the following rules
govern the transfer path of the IF statement in other positions:

a. The physically last THEN clause is considered to be fol-
lowed by the next statement (or statements) on the line:

12 IF A=1 THEN PRINT A3;:PRINT "TRUE CASE": GOTO 2@
15 PRINT "NOT = 1"

where A#1, the following line is printed:
NOT =1

where A=1, the following line is printed:
1 TRIJE CASE

b. All other THEN clauses are considered to be followed
by the next line of the program:

20 IF A>B THEN IF B>C THEN PRINT "B>C": GOTO 390
25 PRINT '"A<=n"

Only in the case where "B>C" is printed is the state-
ment GOTO 3¢ seen and executed.

3.6 PROGRAM LOOPS

Loops were first mentioned in the section on the IF-THEN
and IF-GOTO statement. Programs frequently involve performing cer-
tain operations a specific number of times. This is a task for which
a computer is particularly well suited. With simple tasks, such as
computing a list of prime numbers between 1 and 1,000,000, a computer
can perform the operations and obtain correct results in a minimal
amount of time. To write a loop, the programmer must ensure that the
series of statements is repeated until a terminal condition is met.

Programs containing loops can be illustrated by using two ver-
sions of a program to print a table of the positive integers 1 through
100 together with the square root of each. Without a loop, the first
program is 101 lines long and reads:

18 PRINT 1, SQR(1)
22 PRINT 25 SQR(2)
33 PRINT 3, SQR(3)

990 PRINT 99, SQR(99)
1209 PRINT 129, S@R(100)
1210 END

3-15

With the following program example, using a simple sort of loop,
the same table is obtained with fewer lines:

10 LET X=1

23 PRINT X»SQR(X)

30 LET X=X+1

43 IF X<=100 THEN 20
54 END

Statement 10 assigns a value of 1 to X, thus setting up the initial
conditions of the loop. In line 20, both 1 and its square root are
printed. In line 30, X is incremented by 1. Line 40 asks whether X
is still less than or equal to 100; if so, BASIC returns to print the
next value of X and its square root. This process is repeated until
the loop has been executed 100 times. After the number 100 and its
square root have been printed, X becomes 10l. The condition in line 40
is now false so control does not return to line 20, but goes to line 50
which ends the program.

All program loops have four characteristic parts:

a. initialization, the conditions which must exist for the
first execution of the loop (line 10 above);

b. the body of the loop in which the operation which is
to be repeated is performed (line 20 above);

c. modification, which alters some value and makes each
execution of the loop different from the one before
and the one after (line 30 above);

d. termination condition, an exit test which, when satisfied,
completes the loop (line 40 above)., Execution continues to
the program statements following the loop (line 50 above).

3.6.1 FOR and NEXT Statements
The FOR statement is of the form:

line number FOR <variable>=<expression> TO <expression> {STEP <expression>}

For example:

18 FOR K=2 TO 20 STEP 2

which causes program execution to cycle through the designated loop
using K as 2, 4, 6, 8,..., 20 in calculations involving K. When K=20,
the loop is left behind and the program control passes to the line fol-
lowing the associated NEXT statement. The variable in the FOR state-
ment, K in the preceding example, is known as the control variable.

The control variable must be unsubscripted, although a common use
of such loops is to deal with subscripted variables using the control
variable as the subscript of a previously defined variable (this is
explained in further detail in Section 3.6.2). The expressions in the
FOR statement can be any acceptable BASIC expression as defined in
Section 2.5.

The NEXT statement signals the end of the loop which began with
the FOR statement. The NEXT statement is of the form:

line number NEXT <variable>

where the variable is the same variable specified in the FOR statement.
Together the FOR and NEXT statements describe the boundaries of the
program loop. When execution encounters the NEXT statement, the com-
puter adds the STEP expression value to the variable and checks to see

if the variable is still less than or equal to the terminal expression
value. When the variable exceeds the terminal expression value, con-
trol falls through the loop to the statement following the NEXT statement.

If the STEP expression is omitted from the FOR statement, +1 is
the assumed value. Since +1 is a common STEP value, that portion of the
statement is frequently omitted.

The expressions within the FOR statement are evaluated once upon
initial entry to the loop. The test for completion of the loop is made
prior to each execution of the loop. (If the test fails initially, the
loop is never executed.)

The control variable can be modified within the loop. When control
falls through the loop, the control variable retains the last value used
within the loop.

The following is a demonstration of a simple FOR-NEXT loop. The
loop is executed 10 times; the value of I is 10 when control leaves the
loop; and +1 is the assumed STEP value:

16 FOR I=1 TO 19
200 PRINT 1

38 NEXT 1
40 PRINT 1

The loop itself is lines 10 through 30. The numbers 1 through 10 are
printed when the loop is executed. After I=10, control passes to line
40 which causes 10 to be printed again. If line 10 had been:

19 FOR1 = 1@ TO 1 STEP -1

the value printed by line 40 would be 1.

i# FOR 1 = 2 TO 44 STEP 2
20 LET I = 44
30 NEXT 1

The above loop is only executed once since the value of I=44 has been
reached and the termination condition is satisfied.

1f, however, the initial value of the variable is greater than
the terminal value, the loop is not executed at all. A statement
of the format:

1 FOR I = 2 TO 2 STEP 2

cannot be used to begin a loop, although a statement like the follow-

ing will initialize execution of a loop properly:
19 FOR 1=20 TO 2 STEP -2

For positive STEP values, the loop is executed until the control
variable is greater than its final value. For negative STEP values,
the loop continues until the control variable is less than its final

value.

FOR loops can be nested but not overlapped. The depth of nesting
depends upon the amount of user storage space available (in other
words, upon the size of the user program and the amount of core each
user has available). Nesting is a programming technique in which one
or more loops are completely within another loop. The field of one
loop (the numbered lines from the FOR statement to the corresponding

NEXT statement, inclusive) must not cross the field of another loop.

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two Level Nesting

FOR Il = 1 TO 1¢ FOR I1 = 1 TO 1§
cFOR I2 = 1 TO 19 FOR I2 = 1 TO 14
NEXT I2 NEXT Il
CFOR I3 =1 TO 19 NEXT 12
NEXT I3
NEXT Il
Three Level Nesting
~= FOR Il = 1 TO 1§ FOR I1 = 1 TO 14
FOR I2 = 1 TO 1¢ FOR I2 = 1 TO 1§
FOR I3 = 1 TO 18 FOR I3 = 1 TO 19
NEXT I3 NEXT I3
FOR I4 = 1 TO 19 FOR I4 = 1 TO 19
NEXT I4 NEXT I4
NEXT I2 NEXT Il
— NEXT Il “—— NEXT I2

3-18

An example of nested FOR-NEXT loops is shown below:

5 DIM X(S5,10)

18 FOR A=1 TO 5

26 FOR B=2 TO 10 STEP 2
30 LET X(A»B)= A+B

490 NEXT B

560 NEXT A

55 PRINT X(5,18)

Upon execution of the above statements, BASIC prints 15 when line

55 is processed.

It is possible to exit from a FOR-NEXT loop without the control
variable reaching the termination value. A conditional or uncondition-
al transfer can be used to leave a loop. Control can only transfer
into a loop which had been left earlier without being completed, en-

suring that termination and STEP values are assigned.

Both FOR and NEXT statements can appear anywhere in a multiple

statement line. For example:

1¢ FOR I=1 TO 10 STEP 5: NEXT I: PRINT "I=";I1

causes:

to be printed when executed.

Neither the FOR nor NEXT statement can be executed conditionally in
an IF statement. The following statements are incorrect:

15 IF I<>J THEN NEXT I
16 IF I=J THEN FOR I=1 TO J

3.6.2 Subscripted Variables and the DIM Statement

In addition to the simple variables which were described in
Chapter 2, BASIC allows the use of subscripted variables. Subscripted
variables provide the programmer with additional computing capabili-

ties for dealing with lists, tables, matrices, or any set of related
variables. In BASIC, variables are allowed one or two subscripts.

The name of a subscripted variable is any acceptable BASIC vari-
able name followed by one or two integer expressions in parentheses.

For example, a list might be described as A(I) where I goes from 1

to 5 as shown below (all matrices are created with a zero element,

even though that element is never specified):
A(g), A(1), A(2), A(3), A(4), A(5)
This allows the programmer to reference each of six elements in the

list, which can be considered a one dimensional algebraic matrix as

follows:

A(%)
A(l)
A(2)
A(3)
A(4)
A(5)

A two dimensional matrix B(I,J) can be defined in a similar man-

ner and graphically illustrated as follows:

B(g,9) | B, 1) | B2 | 3.3 / /[0
B(1,9) | B(1,1) | B(1,2) | B(1,3) / / B(1,J)
B(2,0) | B(2,1) B(2,2) B(2,3) | / / B(2,J)
B(3,9) B(3,1) B(3,2) B(3,3) B(3,J)

B(I,¢) | B(I,1) B(I,2) B(I,3) | >N—"I]\, B(I,J)

Subscripts used with subscripted variables throughout a program can

be explicitly stated or be any legal expression.

It is pdssible to use the same variable name as both a sub-
scripted and an unsubscripted variable. Both A and A(I) are valid
variables and can be used in the same program. However, BASIC does
not accept the same variable name as both a singly and a doubly sub-
scripted variable name in the same program (A(I) and A(I,f) would
refer to the same data item).

A dimension (DIM) statement is used to define the maximum
number of elements in a matrix. ("Matrix" is the general term
used in this manual to describe all the elements of a subscripted
variable.) The DIM statement is of the form:

3-20

line number DIM <variable (n)>,<variable(n,m)>,...

Where the variables specified are indicated with their maximum sub-

script value(s).

For example:

10 DIM X(5)» Y(4,2), AC10,10)
12 DIM 14C1088)

.Only integer values (such as 5 or 5070) can be used in DIM
statements to define the size of a matrix. Any number of matrices
can be defined in a single DIM statement as long as their

representations are separated by commas.

If a subscripted variable is used without appearing in a DIM
statement, it is assumed to be dimensioned to length 10 in each dimen-
sion (that is, having eleven elements in each dimension, @# through 1f).
However, all matrices should be correctly dimensioned in a program.
DIM statements are usually grouped together among the first lines of

a program.

The first element of every matrix is automatically assumed to
have a subscript of zero. Dimensioning A(6,10) sets up room for a
matrix with 7 rows and 11 columns. This zero element is illustrated

in the following program:

LISTNH

18 REM - MATRIX CHECK PROGRAM
20 DIM A(6,1@)

38 FOR I=0 TO 6

4¢ LET A(I,®) =1

5¢ FOR J=0 TO 189

68 LET A(@,J) = J

78 PRINT ACI,J);

88 NEXT J: PRINT: NEXT I

S€ END

READY
RUNNH

DAV EUCUN-=
e —
SN
Sevenaw
[R R N K ~R ~J¥
[N N N -} ¥ RV
LR ~N ~N N N ~We,\
[~ ~N -N N ¥ ~N]
[RN N N N ~Ne:]
(KN -~N N N “N¥
aeewew—

READY

Notice that a variable has a value of zero until it is assigned a

value.

If the user wishes to conserve core space he may make use of
the extra variables set up within the matrix. He could, for
example, say DIM A(5,9) to obtain a 6 x 10 matrix which would then
be referenced beginning with the A(#,8) element.

The size and number of matrices which can be defined depend

upon the amount of user storage space available.

Additional information on matrices can be found in Chapter 7.

A DIM statement can be placed anywhere in a multiple statement
line. A DIM statement can appear anywhere in the program and need
not appear prior to the first reference to an array, although DIM
statements are generally among the first statements of a program
to allow them to be easily found if any alterations are later

required.

3.7 MATHEMATICAL FUNCTIONS

Within the course of a user's programming experience, he
encounters many cases where relatively common mathematical operations
are performed. The results of these common operations can often be-
found in volumes of mathematical tables; i.e., sine, cosine, square
root, log, etc. Since it is this sort of operation that computers
perform with speed and accuracy, such operations are built into
BASIC. The user need never consult tables to obtain the value of
the sine of 23° or the natural log of 144. When such values are

to be used in an expression, intrinsic functions, such as:

SIN(23*PI/188)
LOG (144)

are substituted.

The various mathematical functions available in BASIC-PLUS
are detailed in Table 3.1.

Table 3.1

Mathematical Functions

Function
Code Meaning

ABS (X) returns the absolute value of X

SGN (X) returns the sign function of X, a value
of 1 preceded by the sign of X, SGN(g)=g

INT (X) returns the greatest integer in X which is
less than or equal to X, (INT(-.5)=-1)

FIX(X) returns the truncated value of X,
SGN (X) *INT (ABS (X)) , (FIX(-.5)=§)

COS (X) returns the cosine of X in radians

SIN(X) returns the sine of X in radians

TAN (X) returns the tangent of X in radians

ATN (X) returns the arctangent (in radians) of X

SQR (X) returns the square root of X

EXP (X) returns the value of etX, where e=2.71828...

LOG (X) returns the natural logarithm of X, log X

LOG1d (X) returns the common logarithm of X, loglgx

PI has a constant value of 3.1415927

RND (X) returns a random number between @ and 1;
the same sequence of random numbers is
generated each time a program is run
requiring the use of the random number
generator. The value of X is ignored.

RND alternate form for calling the random number

function.

Most of these functions are self-explanatory. Those which are

not are explained in the following section.

3.7.1 Examples of Particular Intrinsic Functions

Siyn Function, SGN(X)

The sign function returns the value +1 if X is a positive value,

g if X is §, and -1 if X is negative. For example: SGN (3.42) = 1,

SGN (-42) = -1, and SGN(23-23) = 4.
LISTNH
18 REM - SGN FUNCTION EXAMPLE
28 READ A,B

25 PRINT "A="A,"B:="D

3@ PRINT "SGN(A)="SGN(A),” SGN(B)="SGN (B)
48 PRINT "SGNCINT(A))="SGNC(INT(A))

58 DATA -7,32, .44

68 END

READY

RUNNH

A:-7.32
SGN(A)=-]
SGNCINT(A))=-1

B:- .44
SGN(B)= |

REABY

Integer Function, INT (X)

The integer function returns the value of the greatest integer
not greater than X. For example, INT(34.67) = 34. INT can be used
to round numbers to the nearest integer by asking for INT(X+.5). For
example, INT(34.67+.5) = 35. INT can also be used to round to any
given decimal place, by asking for

INT (X*1@4 D+.5)/1@%D

where D is the number of decimal places desired, as in the following

program:

LISTNH

10 REM~ INT FUNCTION EXAMPLE

20 PRINT "NUMBER TO BE ROUNDED";
38 INPUT A

4@ PRINT "NO, OF DECIMAL PLACES™;
56 INPUT D

68 LET B=INT(Ax1@tD+.5)/101D

7@ PRINT "A ROUNBED :="B

88 GO TO 24

9@ END

READY

RUNNH

NUMBER TO BE ROUNDED? 55,65342
NO, OF DECIMAL PLACES? 2

A ROUNDED = 55,65

NUMBER TO BE ROUNDED? 78.375
NO. OF DECIMAL PLACES? -2

A ROUNDED = la9

NUMBER TO BE ROUNBED? 67.89
NO. OF DECIMAL PLACES? -1

A ROUNBED = 78

NUMBER TO BE ROUNDEBR? tC

REARY

For negative numbers, the largest integer contained in the number
is a negative number with the same or a larger absolute value. For
example: INT(-23)= -23, but INT(-14.39) = -15.

NOTE

+C in the above program terminates
program execution. See the RSTS-1l
System User's Guide.

Random Number Function, RND (X)
The random number function produces a random number between 0 and

1. The numbers are reproducible in the same order for later checking
of a program. The argument X in the RND(X) function call can be any
number, 'as that value is ignored.

LISTNH

10 REM - RANBOM NUMBER EXAMPLE
25 PRINT "RANDOM NUMBERS”

32 FOR I=1 TO 3@

4@ PRINT RND(D),

58 NEXT 1

68 END

READY

RUNNH

RANDOM NUMBERS

771827 . 78183 «75174 «473969 «7181555E-1
«2083217 «5159 «266445 «955597 «335541
412872 0457367 «283508E~-1 «538025E-1 «8T6575E-1
921722 «921417 23308082 «185255 «534515
+259796 « 748138 «158665 « 178746 6568488
474213 .828888 785414 « 772491 286224

READY

In order to obtain random digits from 0 to 9, change line 40 to read:

48 PRINT INTCI@*RND()),

and tell BASIC to run the program again. This time the results are:

RUNNH
RANBOM NUMBERS

7 7 4)
2 5 2 9 3
4 4 e g g
S S 2 | 5
2 7 | | 6
4 8 7 1 2
READY

It is possible to generate random numbers over any range. For exam-~
ple, if the range (A,B) is desired, use:

(B=A) *RND (@) +A

to produce a random number in the range A<n<B.

Since the parameter X in RND(X) is ignored, there is an alternate
means of calling the random number generator having no arguments: RND.
The following line is, therefore, acceptable:

43 PRINT RND»
similarly, if a number in the range (A,B) is desired, the formula:

(B-A) *RND+A

can be used.

3.7.2 RANDOMIZE Statement
The RANDOMIZE statement is written as follows:

line number RANDOMIZE

or, alternatively:

line number RANDOM

I1f the random number generator is to calculate different random
numbers every time a program is run, the RANDOMIZE statement is used.
RANDOMIZE is placed before the first use of random numbers (the RND
function) in the program. When executed, RANDOMIZE causes the RND
function to choose a random starting value, so that the same program
run twice gives different results. For this reason, it is a good
practice to debug a program completely before inserting the RANDOMIZE

statement.

To demonstrate the effect of the RANDOMIZE statement on two runs
of the same program, we insert the RANDOMIZE statement as statement 15
in the following program:
LISTNH
15 RANPOMIZE

20 FOR I=1 TO 5
25 PRINT “"VALUE™ I " IS™ RNN(@)

38 NEXT 1

35 END

READY

RUNNH

VALUE 1| IS .797943
VALUE 2 IS .380879
VALUE 3 1S .6189588
VALUE 4 1S .13214l1E-!
VALUE 5 IS .5@8392
READY

3-26

RUNNH
VALUE 1 IS ,273841
VALUE 2 IS ,225372

VALUE 3 IS .894867
VALUE 4 1S .348851

VALUE 5 IS .591383
READY

The output from each run is different.

3.7.3 User-Defined Functions

In some programs it may be necessary to execute the same sequence
of statements or mathematical formulas in several different places.
BASIC allows the programmer to define his own functions and call these
functions in the same way he would call the square root or trig
functions.

These user-defined functions consist of a function name: the
first two letters of which are FN followed by any valid variable name.
For example:

FNA
FNAl

The function is defined once at the beginning of the program be-
fore its first use. The defining or DEF statement is formed as
follows:

line number DEF FNo(arguments) = <expression (arguments)>
where o is any legal variable name. The arguments ﬁay consist of
zero to five dummy variables. The expression, however, need not con-
tain all the arguments and may contain other program variables not
among the arguments. For example:

14 DEF FNA(S) = S42
causes a later statement:
20 LET R = FNA(4)+1

to be evaluated as R=17. As another example:

5@ DEF FNB(A,»B) = A+X12
60 Y=FNB(14.4,R3)

causes the function to be evaluated with the current value of the
variable X within the program. 1In this case the dummy argument B
(which becomes the actual argument R3 in the function call) is unused.

3-27

The two following programs

Program #1:
LISTNH
1@ DEF FNSC(A) = AtA
28 FOR I=1 T0 5
3@ PRINT I, FNS(D)
40 NEXT 1
5¢ END

READY
Program #2:
LISTNH
18 DEF FNS(X) = X1*tX
28 FOR I=1 T0 5
3@ PRINT I, FNS(I)
4@ NEXT I
5@ END

READY
cause the same output:

RUNNH

| 1

2 4

3 27

4 256
5 3125

READY
The arguments in the DEF statement can be seen to have no signif-
icance; they are strictly dummy variables. The function itself can
be defined in the DEF statement in terms of numbers, variables, other

functions, or mathematical expressions. For example:

1@ DEF FNA(X) = X12+43%X+4
20 DEF FNB(X) = FNA(X)/2 + FNA(X)
30 DEF FNC(X) = SQR(X+4)+1

The statement in which the user-defined function appears can have
that function combined with numbers, variables, other functions, or

mathematical expressions. For example:
40 LET R = FNA(X+Y+Z)*N/(Yt12+D)
A user-defined function can be a function of zero to five vari-
ables, as shown below:
25 DEF FNL(XsY,>Z) = SQR(X12 + Y12 + Z12)

A later statement in a program containing the above user-defined

function might look like the following:
55 LET B = FNL(D»L»R)

where D, L, and R have some values in the program.

3-28

LISTNH

1 ! MODULUS ARITHMETIC PROGRAM
5 ! FIND X MOD M

18 DEF FNM(X,M = X=-MkINT(X/M
15 1

20 ! FIND A+B MOD M

25 DEF FNA(A,B,M) = FNM(A+B,M)
g !

35 1 FIND AxB MOD
42 DEF FNB(A,B,M
41 |

45 PRINT

5@ PRINT "ADDITION ANB MULTIPLICATION TABLES, MOD M"
55 INPUT "GIVE ME AN M™3:M

68 PRINT: PRINT "ADDPITION TABLES MOD "M

65 GOSUB 808

76 FOR I=8 TO M-l

75 PRINT I;" "3

82 FOR J=8 TO M-Il

85 PRINT FNA(I,J,M);

9¢ MNEXT J: PRINT: NEXT I

188 PRINT: PRINT

118 PRINT "MULTIPLICATION TABLES MOD " M

120 GOSUB 8489

138 FOR 1= TO M-l

140 PRINT I:" "3

15@ FOR J=0 TO M-l

160 PRINT FNB(I,J,M;

1706 NEXT J: PRINT: NEXT I

188 STOP

806 !SUBROUTINE FOLLOWS:

810 PRINT: PRINT TAB(4);8;

820 FOR I=1 TO M-]

838 PRINT I3s NEXT I: PRINT

840 FOR 1=l TO 2%M+3

858 PRINT "-"3: NEXT I: PRINT

868 RETURN

878 END

=X

FNM(AXB, M)

READY

Figure 3-2

Modulus Arithmetic

3-29

RUNNH

ADDITION AND MULTIPLICATION TABLES, MOD M
GIVE ME AN M? 7

ADDITION TABLES MOD 7
g 1 2 3 4 5 6

2 g 1 2 3 4 5 8§
1 I 2 3 4 5 6 4@
2 2 3 4 5 6 @ 1
3 3 4 5 6 @ 1 2
4 4 5 6 9 | 2 3
S S 6 8 1 2 3 4
§ 6 @ 1 2 3 4 5

MULTIPLICATION TABLES MODP 7

2 g 0 ¢ 2 8 8 9
1 B 1 2 3 4 5 6
2 g 2 4 6 1 3 5
3 g 3 6 2 5 1 4
4 g 4 1! 5 2 6 3
5 g 5 3 1 6 4 2
6 @ 6 5 4 3 2 1
STOP AT LINE 188
READY

Figure 3-2 (Cont.)

Modulus Arithmetic

3-30

The number of arguments with which a user-defined function is
called must agree with the number of arguments with which it is de-

fined. For example:

1% DEF FNA (X) = X%2 + Xs2
20 PRINT FNA(3,2)

will cause an error message:

ARGUMENTS DON'T MATCH AT LINE 20
In a DEF statement or function reference, where a function has
zero arguments, the function name can be written with or without

parentheses. For example:

10 DEF FNA = ¥X12
5% Rl = FNBQ)
When calling a user-defined function, the parenthesized arguments

can be any legal expressions. The value of each expression is sub-
stituted for the corresponding function variable. For example:

1% DEF FNZ(X)=%12
o0 LET A=°
30 PRINT FN/ZC2+0)

line 30 causes 16 to be printed.

If the same function name is defined more than once, an error
message is printed.
100 DEF FNX(X)=Y12
21 DEF FNY(X)=X+X
TLLFZAL FN REDEFINITION AT LINF 22
The function variable need not appear in the function expression

as shown below:

1n DEF FNA (X) = 4 +2
20 LET R = FNACIQ)+1
3% PRINT R
40 END
RUNNH

7

The program in Figure 3-2 ~ontains examples of a multi-variable

DEF statement in lines 10, 25, and 40.

3-31

3.8 SUBROUTINES

When a particular mathematical expression is evaluated several
times throughout a program, the DEF statement enables the user to
write that expression only once. The technique of looping allows the
program to do a sequence of instructions a specified number of times.
If the program should require that a sequence of instructions be ex-
ecuted several times in the course of the program, this is also

possible.

A subroutine is a section of code performing some operation re-
quired at more than one point in the program. Sometimes a compli-
cated I/0 operation for a volume of data, a mathematical evaluation
which is too complex for a user-defined function, or any number of

other processes may be best performed in a subroutine.

More than one subroutine can be used in a single program, in
which case they can be placed one after another at the end of the
program (in line number sequence). A useful practice is to assign
distinctive line numbers to subroutines; for example, if the main
program uses line numbers up to 199, use 200 and 300 as the first

numbers of two subroutines.

LISTNH

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
18 DEF FNA(X)= ABSCINT(X))

28 INPUT A,B,C

30 GOSUB 109

48 LET AzFNA(A)

56 LET B=FNA(B)

68 LET C=FNA(C)

72 PRINT
82 GOSUB 1@@
9% STOP

1¢¢ REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS

118 REM - OF THE EQUATION: AXt2 + BX + C = @

128 PRINT " THE EQUATION IS ™ A "%X12 + " B "X + " C
132 LET D=B%B - 4%Ax%(C

142 IF D<>@ THEN 172

158 PRINT "ONLY ONE SOLUTION,,, X ™; -B/(2%A)

168 RETURN

17¢ 1F D<@ THEN 288

188 PRINT " TWO SOLUTIONS...X ="3

185 PRINT (-B+SQR(D))/(2%A): "AND X ="3: (=B=SQR(D))/(2%A)
195¢ RETURN

200 PRINT "IMAGINARY SOLUTIONS... X = ("3

225 PRINT ~B/(2%A) "," SQR(-D)/(2%A) ") AND ("

287 PRINT -B/(2%A) ","; =-SQR(-D)/(2%A) ")"

2128 RETURN

992 END

READY

3-32

RUNNH

? 1’05’-.5

THE EQUATION IS I X112 4+ .5 %X + -,5
TWO SOLUTIONS,..X = .5 AND X =-I

THE EQUATION IS I *¥Xt2 + 2 X + 1
IMAGINARY SOLUTIONS... X = (8 , 1 > AND (& ,-1)
STOP AT LINE S@

READY

Lines 100 through 210 constitute the subroutine. The subroutine
is executed from line 30 and again from line 80. When control returns
to line 90 the program encounters the STOP statement and terminates

execution.

3.8,1 GOSUB Statement
Subroutines are usually placed physically at the end of a program

before DATA statements, if any, and always before the END statement.
The program begins execution and continues until it encounters a GOSUB

statement of the form:
line number GOSUB <line number>
where the line number following the word GOSUB is the first line num-

ber of the subroutine. Control then transfers to that line in the

subroutine. For example:
58 (30SUR 250

Control is transferred to line 2@@ in the user program. The first

line in the subroutine can be a remark or any executable statement.

3.8.2 RETURN Statement
Having reached the line containing a GOSUB statement, control

transfers to the line indicated after GOSUB; the subroutine is proc-
essed until the computer encounters a RETURN statement of the form:

line number RETURN

which causes control to return to the statement following the orig-
inal GOSUB statement. A subroutine is always exited via a RETURN

statement.

Before transferring to the subroutine, BASIC internally records
the next sequential statement to be processed after the GOSUB state-
ment; the RETURN statement is a signal to transfer control to this
statement. 1In this way, no matter how many subroutines or how many

times they are called, BASIC always knows where to go next.

3.8.3 Nesting Subroutines

Subroutines can be nested: that is, one subroutine can call
another subroutine. If the execution of a subroutine encounters a
RETURN statement, it returns control to the line following the GOSUB
which called that subroutine. Therefore, a subroutine can call
another subroutine, even itself. Subroutines can be entered at any
point and can have more than one RETURN statement. It is possible
to transfer to the beginning or any part of a subroutine; multiple

entry points and RETURNs make a subroutine more versatile.

The maximum level of GOSUB nesting is dependent on the size of
the user program and the amount of core storage available at the

installation. Exceeding this limit results in the message:

MAXIMUM CORE SIZE EXCEEDED AT LINE Xxx

where xxx is the line number of the line containing the error.

3.9 STOP AND END STATEMENTS
The STOP and END statements are used to terminate program execu-
tion. The END statement is the last statement in a BASIC program.

The STOP statement can occur several times throughout a single pro-

gram with conditional jumps determining the actual end of the program.

The END statement is of the form:
line number END

The line number of the END statement should be the largest line num-
ber in the program, since any lines having line numbers greater than
that of the END statement are not executed and are not retrieved

by the OLD command (although they are saved with the SAVE command).

NOTE

A program will execute without an END statement;
however, an error message is printed if a pro-
gram is recalled having been saved without an
END statement.

The STOP statement is of the form:

line number STOP

3-34

and causes:

STOP AT LINE line number
READY

to be printed when executed. A CONTINUE command entered at this point
resumes execution at the statement following STOP.

Execution of a STOP or END statement causes the message:
READY
to be printed by the teleprinter. This signals that the execution of

a program has been terminated or completed, and BASIC is able to ac-
cept further input.

3-35

PART II

BASIC-PLUS ADVANCED FEATURES

This part of the manual describes the special features of BASIC-
PLUS which make the language a superior tool for all manner of data
manipulation. Additional capabilities of the statements previously
described are included, along with new statements, character string
manipulating facilities, integer mode variables and arithmetic, and
intrinsic matrix functions. Also described is the immediate mode of

operation which causes BASIC to treat single statements as commands.

In general, the new techniques presented here allow the user to
write programs which conserve core space and reduce execution time.
With the ability to manipulate character strings, the user can write

sophisticated programs to handle a wide range of data.
The matrix functions allow the user to perform matrix I/0 and

the matrix operations of addition; subtraction, multiplication,

inversion and transposition.

IT

CHAPTER 4

IMMEDIATE MODE OPERATIONS

4.1 USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION
It is not necessary to write a complete program to use BASIC-PLUS.

Most of the statements discussed in this manual can either be included
in a program for later execution or be given on-line as commands, which
are immediately executed by the BASIC processor. This latter facility
permits the RSTS-1l user to have an extremely powerful desk calculator

available whenever he is on-line.

BASIC-PLUS distinguishes between lines entered for later execution
and those entered for immediate execution solely on the presence {(or
absence) of a line number. Statements which begin with line numbers
are stored; statements without line numbers are executed immediately

upon being entered to the system. Thus the line:
19 PRINT "“THIS IS A FPL¥-11"

produces no action at the console upon entry, while the statement:

FEINT “THIE IS A rFhE-11"
THIS IS A PDE-11

READY

when entered causes the immediate output shown above. The READY mes-
sage is then printed to indicate the system readiness for further in-

put.

4.2 PROGRAM DEBUGGING
Immediate mode operation is especially useful in two areas : pro-

gram debugging and the performance of simple calculations in situations
which do not occur with sufficient frequency or with sufficient com-

plications to justify writing a program.

In order to facilitate debugging a program, the user can
place STOP statements liberally throughout the program. Each STOP
statement causes the program to halt, printing the line number at which
the STOP occurred; at which time the user can examine various data

values, perhaps change them in immediate mode, and then give the

CONT

command to continue program execution. However, a syntax error in
immediate mode or one of several other conditions could prevent

continuation of program execution with the CONT command.

When using immediate mode, nearly all the standard statements

can be used to generate or print results.

The user can also halt program execution at any time by typing
CTRL/C. Immediate mode can then be used to examine and/or change
data values. Typing the CONT command resumes program execution.

Whenever execution cannot be continued, the message:
CAN'T CONITINUK
FFADY

is printed upon entering the CONT command.

4.3 MULTIPLE STATEMENTS PER LINE

Multiple statements cannot be used on a single line in immediate

mode. For example:

A=1: PHRINT A
ILLEGAL IN IMMEDIATE MODE

READY

The use of the FOR modifier (and all other modifiers described
in Section 8.7) is allowed. Thus a table of square roots can be

produced as follows:

PRINT I, SQR(I) FOR I=! TO 1@
. 1

1.41421
1.73205
2

2.,23607
2.,44549
2,64575
2,82843
3

2 3.16228

—_O RO D WN —

READY

4.4 RESTRICTIONS ON IMMEDIATE MODE
Some statements, particularly those that would cause execution of

lines within a user's stored program, are not allowed in immediate

mode. These statements include:

GOTO
GOSUB
References to user-defined functions

Thus the following dialog might result if the user defined a function

in his program and tried to reference it in immediate mode.

1@ DEF FNA(X) = Xt2 + 2%X ISAVED STATEMENT
PRINT FNAC(I) IIMMEDIATE MODE

PLEASE USE THE RUN COMMAND
READY

Certain commands make no logical sense when used in immediate mode.

Commands in this category include:

DEF
DIM
DATA
FOR
RETURN
NEXT
FNEND

When any of these are given, the message ILLEGAL IN IMMEDIATE MODE is

printed:

DEF FNX(Y)=1
ILLEGAL IN IMMEDIATE MODE

HEADY

CHAPTER 5

CHARACTER STRINGS

5.1 CHARACTER STRINGS

The previous chapters describe the manipulation of numerical in-

formation; however, BASIC also processes information in the form of

character strings. A string, in this context, is a seguence of charac-

ters treated as a unit. A string can be composed of any combination

of the characters in Table 5-2.

Without realizing it, the reader has already encountered character

strings. Consider the following program which prints the name of a

month, given its number:

LISTNH
10 INPUT "TYPE A NIJMRER
15 IF N<1 OR N>12 THEN

PRrINT "NIMBER

BETWEEN 1 AND 1235
0T OF RANGE":G0TU

20 IF N>3 THEN PRINT "THE'" N "TH MONTH IS
25 IF N=1 THEN PHINT "THE FIRST ¥ONTH IS

30 IF N=2 THEN PRINT "THZ SECUND wUNTH IS FERM
35 IF N=3 THEN PRINT "THE THIRD MONTH IS

40 IF N=4 THEN PRINT *"APKIL"

45 IF N=5 THEN PrRINT "MAY"

50 IF N=6 THEN PRINT "JINE"

55 IF N=7 THEN PRINT "JJLY"

66 IF N=R THEN PHINT "AUJGIST"

65 IF N=9 THEN PRINT "SERTEMRBEIM
79 IF N=10 THEN PRINT "OCTORRR"

75 IF N=11 THEN PRINT "NOUVEMBER®"
80 IF N=12 THEN PRINT “DRECEMBER"™
85 END

READY
RIINNH
TYPE A NIJMRER BETWEEN 1 AND 1272 9

THE 9 TH MONTH IS SEPTENRER

READY

In Chapter 3 the INPUT and PRINT statements were shown printing

messages along with the input and output of numeric values (see lines
10 and 15 above).

These messages consist of character string constants
(just as 4 is a numeric constant). In a similar way,

there are char-
acter string variables and functions.

5.1.1 String Constants

Just as numbers can be used as constants or referenced by vari-

able names, BASIC-PLUS allows for character string constants. Charac-

ter string constants are delimited by either single or double quotes.
For example:

145 LET Y$ = "FILE4"
33 Bl$ = 'CAN'
8 IF AS = "YES" GOTO 258

where "FILE4", 'CAN' and "YES" are character string constants.

5.1.2 Character String Variables

Variable names can be introduced for simple strings and for both
lists and matrices composed of strings (which is to say one and two
dimensional string matrices). Any legal name followed by a dollar
sign ($) character is a legal name for a string variable. For example:

A$
C7$

are simple string variables. Any list or matrix variable name fol-

lowed by the $ character denotes the string form of that variable.
For example:

V$ (N) M2$ (N)
Cs (M,N) Gl$ (M,N)

(where M and N indicate the position of that element of the matrix
within the whole) are list and matrix string variables.

The same name can be used as a numeric variable and as a string
variable in the same program with the restriction that a one and a
twvo dimensicnal matrix cannot have the same name in the same program.

For example:

A A(N)
AS AS$ (M,N)

can all be used in the same program, but
A (N) and A(M,N)
cannot. Likewise,
A$(N) and AS(M,N)
cannot both occur in the same program.
Just as numeric variables are automatically initialized to @ when a
program is run, string variables are initialized to a null string

containing zero characters (the character string constant "").

5.1.3 Subscripted String Variables

String lists and matrices are defined with the DIM statement, as

are numerical lists and matrices. For example:

19 DIM S513(5)

indicates the S1$ is a string matrix with six elements, S1$(#) through
S1$(5), which can be separately accessed. If a DIM statement is not
used, a subscripted string variable is assumed to have a dimension of
10 (11 elements including the zero element) in each direction. Note
that the dimension of a string matrix specifies the number of strings
and not the number of characters in any one string. For example, if
the first statements in a program are:

19 FOR I=1 TO 7
272 LET Rs(I)="PCP-11"
3% NEXT 1

they would cause a list B$(n) to be created having 11 accessible ele-
ments, B$ () through B$(18). The elements B$(1l) through B$(7) are set
equal to "PDP-11" and the others would be null strings (have no char-
acters). As a general rule, all lists and matrices should be dimen-

sioned to the maximum size being referenced in the program.

5.1.4 String Size
A character string can contain any number of characters limited

only by the amount of core storage available. However, the

LINE FEED key cannot be used to type a string on two or more terminal
lines. Since core storage is limited, strings can also be saved in
files on the system disk (see Section 9.6.2).

5.1.5 Relational Operators

When applied to string operands, the relational operators indi-

cate alphabetic sequence. For example:
55 IF A%(CI) < A$CI+1) GOTO 190

When line 55 is executed the following occurs: A$(I) and A$(I+l) are
compared; if A$(I) occurs earlier in alphabetical order than AS$(I+l),
execution continues at line 100. Table 5-1 contains a list of the

relational operators and their string interpretations.

Table 5-1

Relational Operators Used With
String Variables

Operator Example Meaning

= AS$ = BS The strings AS$ and B$ are equivalent.

< AS$ < BS The string A$ occurs before B$ in alpha-
betical sequence.

<= A$ <= BS$S The string A$ is equivalent to or occurs
before B$ in alphabetical sequence.

> A$ > BS The string A$ occurs after B$ in alpha-
betical sequence.

>= AS$ >= BS The string AS$ is equivalent to or occurs
after B$ in alphabetical sequence.

<> AS <> BS The strings A$ and B$ are not equivalent.

In any string comparison, trailing blanks are ignored. That is to
say "YES" is equivalent to "YES ". Where two strings of unequal length
are compared, the shorter is padded with trailing blanks to the length of
the longer string. A null string (of length zero) is considered to be
completely blank and is less than any string of length greater than zero
unless that string consists of all blanks in which case the two strings

are equal.

5.2 ASCII STRING CONVERSIONS, CHANGE STATEMENT

Individual characters in a string can be referenced through use
of the CHANGE statement. The CHANGE statement permits the user pro-
gram to transform (the entirety of) a character string into a list of

numeric values or a list of numeric values into a character string.
Each character in a string can be converted to its ASCII equivalent
or vice versa. Table 5-2 describes the relationship between the ASCII

characters and their numerical values.

As an illustration, consider the following:

LISTNH

19 DIM X(3)

15 LET A$ = "CAT"

26 CHANGE AS$ TO X

25 PRINT X(B)sX (1) 3X(2)3X(3)
3@ END

READY

RUNNH
3 67 65 84

READY

X(1l) through X(3) take on the ASCII values of the characters in the
string variable A$. The first element of X, X (@), becomes the number
of characters present in A$. If more characters are present in the
string variable than can be accommodated in the numeric list, the
message "SUBSCRIPT OUT OF RANGE" is printed. The first element of
the list becomes the number of characters in the string which have
been successfully transformed into numeric values, and will be less

than or equal to the dimension of the list.

Table 5-2

ASCII Character Codes

ASCII ASCII ASCII
Decimal Char- RSTS Decimal Char- RSTS Decimal Char- RSTS
Value acter Usage Value acter Usage Value acter Usage
2 NUL FILL character 43 + 86 v
1 SOH 44 ’ 87 W
2 STX 45 - 88 X
3 ETX CTRL/C 46 . 89 Y
4 EOT 47 / og Z
5 ENQ 48 @ 91 [
6 ACK 49 1 92 \
7 BEL BELL 5@ 2 93]
8 BS 51 3 94 "~ or 4
9 HT HORIZONTAL TAB 52 4 95 _ or «
1 LF LINE FEED 53 5 96 ~ Grave accent
11 VT VERTICAL TAB 54 6 97 a
12 FF FORM FEED 55 7 98 b
13 CR CARRIAGE RETURN 56 8 99 c
14 SO 57 9 199 d
15 SI CTRL/O 58 : 121 e
16 DLE 59 ; 182 £
17 DC1 6g < 123 g
18 DC2 61 = 184 h
19 DC3 62 > 195 i
20 DC4 63 ? 1¢6 3
21 NAK CTRL/U 64 @ 187 k
22 SYN 65 A 198 1
23 ETB 66 B 199 m
24 CAN 67 o 11g n
25 EM 68 D 111 o
26 SUB CTRL/Z 69 E 112 P
27 ESC ESCAPE! 78 F 113 q
28 FS 71 G 114 r
29 GS 72 H 115 S
kY RS 73 I 116 t
31 uUs 74 J 117 u
32 SP SPACE 75 K 118 v
33 ! 76 L 119 \
34 " 77 M 120 x
35 # 78 N 121 y
36 $ 79 (0] 122 z
37 % 8g P 123 {
38 & 81) 124 | Vertical Line
39 ! 82 R 125 }
a9 (83 S 126 T Tilde
41) 84 T 127 DEL RUBOUT
42 * 85 U

'ALTMODE (ASCII 125) or PREFIX (ASCII 126) keys which appear on some terminals are
translated internally into ESCAPE.

NOTE

The decimal values 128 through 255 can appear in character strings. For most
practical purposes, the characters represented by N and N+128 (decimal) are the
same. However, the characters CHR$ (N) and CHRS (N+128) do not test as equal if com-
pared. Users should be careful when performing output of these values since they may
have some significance in certain device-dependent operations (see Chapter 12).

5-6

Another program which transforms a character string into a list

of numeric values is shown below:

LISTNH
180 DIM A(65)
15 READ A$

2@ CHANGE A$ TO A

25 FOR 1:=8 TO A(®)

3¢ PRINT A(I);eNEXT I

35 DATA ABCDEFGHIJKLMNOPQRSTUVWXYZ
42 END

READY
RUNNH
26 65 66 67 68 69 78 TI 172

82 83 g4 85 86 87 88 8% 90
READY

Notice that A(g) = 26.

73

74

75

76 71 78

79 88 8l

To change numbers into string characters, CHANGE is used as

follows:

LISTNH

12 FOR 1=0 TO 5

15 READ A(I)

20 NEXT 1

25 DATA 5,65,66,67,68,69
38 CHANGE A TO ag

35 PRINT A
ag EN5 s
READY

RUMNH
ABCDE

READY

This program prints ABCDE because the numbers 65 through 69 are
the code numbers for A through E.

Before CHANGE is used in the matrix-to-string direction, the pro-
grammer must indicate the number of characters in the string as the
zero element of the matrix. In line 15 of the previous program, A(f)
is read as 5. The following is another example of a numeric list to

character string conversion:

LISTNH

18 DIM V(128)

15 INPUT "HOW MANY CHARACTERS" V(@)
20 FOR I=l TO V(@)

25 INPUT V(1)

30 NEXT I

35 CHANGE V TO AS

42 PRINT AS$

50 END

READY

RUXNNH

HOW MANY CHARACTERS? 3
? 67

7 64

7 817

cew

READY

Numbers which have no character equivalent in Table 5-2 do not

cause a character to be printed.

5.3 STRING INPUT
The READ, DATA and INPUT statements can be used to input string

variables to a program. For example:

1?7 READ AS$, B, C, D
2¢ DATA 17, 14, 13,4, CAT

causes the following assignments to be made:

AS = the character string "17"
B =14
c = 13.4

reading D as CAT causes the message ILLEGAL NUMBER AT LINE 10
to be printed.

Quotation marks are necessary around string items in DATA state-
ments only if the string contains a comma or if leading, trailing or
embedded blanks within the string are significant. Quotes (single or
double) are always acceptable around string items, even though not
always necessary. For example, the items in line 40 in the following
program are all acceptable character strings and would be read as

printed.
5-8

LISTNH

18 READ A%,B$,C$,D$,ES

20 PRINT A$;B$;C$;D$ES

30 PRINT A$,B$,C$,DS$,ES

42 DATA "MR, JONES",MISS SMITH, "MRS. BROWN", "MISS", ""MR"°

READY

RUNNH

MR. JONESMISSSMITHMRS, BROWNMISS"MR"

YR. JONES MISSSMITH MRS. BROWN MISS "MR"
READY

A READ statement can appear anywhere in a multiple statement line,

but a DATA statement must be the last statement on a line. See also
the MAT READ statement which reads matrices (either numeric or string),
Section 7.2.

NOTE

The data pool composed of values from the
programmed DATA statements is stored in-
ternally as an ASCII string list. Where

a numeric variable is read, the appropriate
ASCII to numeric conversions are performed.
Where a string variable is read, the string
is used as it appears in the DATA statement.
If the item did not appear in quotes, lead-
ing, trailing and embedded spaces are ig-
nored. If the item did appear in quotes,
the string variable is equated to the en-
tire string within the quotes.

The INPUT statement is used to input character strings exactly
as though accepting numeric values. For example:

13 INPUT "YO'IR NAME'";NS,"YOJR AGE":;A

is functionally equivalent to:

372 PRINT “YQiJR NANME";
35 INPUT N3
40 PRINT "YO'IR AGE';
45 INPUT A

Another feature of the INPUT statement when used with character
string input is the INPUT LINE statement of the form:

line number INPUT LINE <string variable>

For example:
1 INPYJT LINE A%

which causes the program to accept a line of input from the terminal
with embedded spaces, punctuation characters, or quotes. Any characters
are acceptable in a line being input to the program in this manner,

The program can then treat the line as a whole or in smaller segments

as explained in Section 5.5 which describes string functions.

No text string can be output with the INPUT LINE statement, this
facility is only available in the INPUT statement. For example:

17 INPUT LINE “TEXT"; A%
SYNTAX ERROR AT LINE 10

An INPUT LINE statement reads the entire line as typed by the
user, including the line terminating character. The line terminator
is one of the following:

a. Carriage return/line feed, generated by typing

the RETURN key (appends the ASCII values 13 and
14 to the character string);

b. Line feed, generated by typing the LINE FEED
key {appends the ASCII values 1§, 13 and # to
the character string): or

c. ESCAPE, generated by typing the ESCAPE, ALT MODE
or PREFIX key, depending upon the terminal (ap-
pends an ASCII 27 to the character string).

5.4 STRING OUTPUT

When character string constants are included in PRINT statements,

only those characters within quotes are printed. No leading or trail-

ing spaces are added. For example:

LISTNH

10 X=102:Y=2.012A%=""A="
20 PRINT A%;X" B="Yy

3% PRINT "DONE"

47 END

READY
RINNH
A= 1 B= 2.91
DONE

READY

Semicolons separating character string constants from other list items
are optional. For example, in line 20 (above) note that the variable Y

is not separated from the character string " B=" by a semicolon.

Character string output can also contain the string functions de-

scribed in Section 5.5.

5.5 STRING FUNCTIONS

Like the intrinsic mathematical functions (e.g., SIN, LOG), BASIC-
PLUS contains various functions for use with character strings. These
functions allow the program to concatenate two strings, access part of
a string, determine the number of characters in a string, generate a
character string corresponding to a given number or vice versa, search
for a substring within a larger string, and perform other useful opera-
tions. (These functions are particularly useful when dealing with whole
lines of alphanumeric information input by an INPUT LINE statement.)
The various functions available are summarized in Table 5-3.

5.5.1 User-Defined String Functions

Character string functions can be written in the same way as
numeric functions. (See Section 3.7.3 and 8.1.) The function is in-
dicated as being a string function by the $ character after the func-

tion name.

User-defined string functions return character string values, al-
though both numeric and string values can be used as arguments to the
function. For example, the following multiple-line function (see
Section 8.1) returns the string which comes first in alphabetical or-
der:

1% DEF FNF$(A3%,B3)
20 FNF$=A$%

3% IF A$>B3 THEN FNF$=R%
40 FNEND

The following function combines two strings into one string:

19 DEF FNC$(X$,Y$)I=X5+Y$

Numbers cannot be used as arqguments in a function where strings

are expected or vice versa. Line 80 is unacceptable:

12 DEF FNA$(A%) = CHRS(LENCA$)+1)
82 LET Z=FNA$(4)

The message:

ARGAJMENTS DON'T MATCH AT LINE 87

is printed.

The following code is a string function which returns the leftmost

five characters from the sum of three arguments:

LISTNH

75 DEF FNAS(X>Y»7) = LEFT(NIMS(X+Y+7)55)
8% PRINT FNAS(1M7,20,3)

READY

RUNNH
123

READY

NUMS$ (123) is a five-character string, as follows:

" (space) 123 (space) "

Table 5-3

String Functions!

Function Code

Meaning

LEFT (A$,N%)

RIGHT (A$,N%)

MID (A$,N1%,N2%)

LEN (AS)

CHRS (N%)

ASCII(AS)

DATES (N%)

Indicates a substring of the string A$ from the first
character through the NtP character (the leftmost N
characters of the string A$). For example:

PRINT LEFT(A$,7%)

ABCDEFG
Indicates a substring of the string A$ from the Nth
character through the last character in A$ (the right-
most characters of the string A$ starting with the
Nth character). For example:

PRINT RIGHT(AS$,203%)
TUVWXYZ

Indicates a substring of the string A$ starting with
character N1, and N2 characters long (the characters
between and including the N1 through N1+N2-1 characters
of the string A$). For example:

PRINT MID(A%,15%,5%)
OPQRS

Indicates the number of characters in the string A$
(including trailing blanks). For example:

PRINT LENCAS)
26

Indicates a concatenation operation on two strings.
For example "ABC"+"DEF" is equivalent to "ABCDEF".
"12"+"34"+"56" is equivalent to "123456".

Generates a one-character string having the ASCII
value of N (see Table 5-2). For example: CHRS$(65) is
equivalent to "A". Only one character can be generated.

Generates the ASCII value of the first character in
A$. For example, ASCII("X") is equivalent to 88, the
ASCII equivalent of X. If B$ = "XAB", then ASCII (BS)
= 88.

where N=@, this function returns the current date in
the form:
12-Aug-72

This quantity can be printed on output by simple ref-
erence to the function. It should be noted that dates
are output using both upper and lower case letters,
i.e., Jan, Feb, Mar, etc. where the output device is
capable of generating lower case letters. Where N#f,
the function translates N into a date string. (See
Section 8.8.)

'A$ in the immediate mode examples is assumed to be
"ABCDEFGHIJKLMNOPQRSTUVWXYZ".

Table 5-3

String Functions (continued)

Function Code

Meaning

INSTR(N1%,AS,BS)

SPACES (N%)

NUMS (N)

VAL (AS$)

TIMES (N)

Indicates a search for the substring B$ within the
string AS$ beginning at character position Nl. Re-
turns a value of @ if B$ is not in AS$, and the char-
acter position if B$ is found to be in A$ (character
position is measured from the start of the string with

the first character counted as character l1). For
example: . o .
PAINT INST (54508, 0P™)
15

Indicates a string of N spaces, used to insert
spaces within a character string.

Indicates a string of numeric characters represent-
ing the value of N as it would be output by a PRINT
statement. NUMS$ (n)=(space)n(space) if n>@ and

NUM$ (n) =-n (space) if n<@. For example:

PRINT NUMS (1 eAA)"AY

Computes the numeric value of the string of numeric
characters AS$ (may include digits, +, -, . and E).
If AS contains any characters not acceptable as
numeric input with the INPUT statement, an error
results. For example:

DEINT VALl .5E1")
15
Where N=@, this function returns the current time-
of-day as a string of the form:
1:3¢ PM

where N#@, the function translates N into a time
string (see Section 8.8).

CHAPTER 6

INTEGER VARIABLES AND INTEGER ARITHMETIC

6.1 INTEGER CONSTANTS AND VARIABLES

Normally, all numeric values (variables and constants) specified
in a BASIC program are stored internally as floating-point numbers.
If operations to be performed deal with integer numbers, significant
economies in storage space can be achieved by use of the integer
data type (which uses only one computer word per value). Integer
arithmetic is also significantly faster than floating-point arith-
metic. Integer variables (and constants) can assume values in the
range -32768 to +32767.

A constant, variable, or function can be specified as an inte-

ger by terminating its name with the % character. For example:

100% A% FNX% (Y)
-4% Als FNL$% (N%,L%)

The user is expected to indicate where an integer constant is to be
generated by using the % character. Otherwise a floating-point value
is normally produced.

When a floating-point value is assigned to an integer variable,
the fractional portion of that number is lost. The number is not
rounded to the nearest integer value. (A FIX function is performed
rather than an INT function.) For example:

AZ==1.1

causes A% to be assigned the value -1.

6.2 INTEGER ARITHMETIC

Arithmetic performed with integer variables is performed modulo
2415. The number range -32,768 to +32,767 is treated as continuous,
with the number after +32,767 equal to ~32,768. Thus, 32767% + 2% =
=32767% and so on.

Integer division forces truncation of any remainder; for example
5%/7%=0 and 199%/100%=1. Operations can pbe performed in which both
integer and floating-point data are freely mixed. The result is stored
in the format indicated as the resulting variable, for example:

25 LET X2 = N% + FNA(R)Y*2

The result of the expression on the right is truncated to provide an

integer value for X%.

Arithmetic is performed in integer mode only when an explicit
integer term appears in the statement to the left of an operator and
no floating-point term appears to the right. Thus, for example:

PRINT 27Z/4
q

prints a @ (since 4 is expressed as an integer), but

PHINT 27Z/4.
5
prints .5 (since 4. ic stored internally as a floating-point number).

Where program size is critical, the use of the % character to
generate integer values is encouraged as it uses significantly less

storage space. For example:
19 FOR I%2=1%Z TO 107
takes less storage space and executes faster than:

1@ FOR I=1 TO 12

6.3 INTEGER I/0

Input and output of integer variables is performed in exactly
the same manner as operations on floating-point variables. (Remember
that in cases where a floating-point variable has an integer value it
is automatically printed as an integer but is still stored internally
as a floating-point number and hence takes more storage space.) It is
illegal to provide a floating-point value for an integer variable
through either a READ or INPUT statement. For example:

LISTNH

19 READ A, BZ, C, D7, E
22 PRINT A, BZ, C, DZ, E
30 DATA 2.7,3,4,5.7,6.8

READY

RUNNY
ILLEGAL NUMBER AT LINE 10

READY

when line 3¢ is changed to
33 DATA 2.7,3,4,5,6.8
the following is printed:

RUNNH
2.7 3 4 5 6.8

READY

6.4 USER DEFINED INTEGER FUNCTIONS

Functions can be written to handle integer variables as well as
floating-point variables (see Sections 3.7.3 and 8.1). A function is
defined to be of integer type by following the function name with the

% character.

A function to return the remainder when one integer is divided
by another is shown below:

10 DEF FNRACIZ»JZ) = 1%Z=J% * (I%/J%)
and could be called later in a program as follows:
107 PRINT FNRZ(AZ,113)
Integer arguments can be used where floating-point arguments are
expected and vice versa as the system performs the necessary conver-

sions. However, strings cannot be used where numbers are required (or

vice versa).

75 DEF FNAZ(X%) =X%-17%
80 LET ZZ=FNAZ(12.34)

is acceptable. Z equals 11 after line 80 has been executed.

6.5 USE OF INTEGERS AS LOGICAL VARIABLES

Integer variables or integer valued expressions can be used within
IF statements in any place that a logical expression can appear. An
integer value of g% corresponds to the logical value FALSE, and any
non-zero value is defined to be TRUE. The logical operators (AND, OR,
NOT, XOR, IMP, EQV) operate on logical data in a bitwise manner. For
example, (X% AND Y$%) could be used to mask a particular bit pattern in
Y%. The integer -1% (which is represented internally as sixteen binary
ones) is normally used by the system when a TRUE value is required.

Logical values generated by BASIC always have the values -1% (TRUE)
and g% (FALSE).

The following Immediate Mode sequence illustrates the use of in-

tegers in logical applications:

IF -17 THEN PRINT " TRUE™ ELSE PRINT "FALSE"
TRUE

READY

IF =17 AND @2 THEN PRINT " TRUE"™ ELSE PRINT "FALSE"
FALSE

READY

IF 47 AND 27 THEY PRINT " TRUE"™ ELSE PRINT "FALSE"
FALSE

READY

TF =17 IMP =17 THEN PRINT " TRUE™ ELSE PRINT "FALSE"
TRUE

READY

IF 1<@ XOR =17 THEN PRINT " TRUE" ELSE PRINT "FALSE"
TRUE

READY

If the LET statements in lines 3¢ and 48 were moved to some other line
numbers, lines 11§ and 12¢ would also require a change.

8.5 IF-THEN-ELSE STATEMENT

The IF-THEN statement allows the program to transfer control to
another line or execute a specified statement depending upon a stated

condition.

The IF-THEN-ELSE statement is the same as the IF-THEN statement,
except that rather than executing the line following the IF statement,
another line number or statement can be specified for execution where

the condition is not met. The statement is of the form:

{ELSE<Zine number>}

THEN< line number>
ELSE<statement>

line number IF<condition> THEN<s tatement>
GOTO<line number>,

where the condition is defined as one of the following:

<relational expression> <logical operator> <relational expression>
and a relational expression is defined as:

<expression> <relational operator> <expression>

as described in Section 3.5. The relational condition is tested; if
it is true the THEN/GOTO part of the statement is executed. If the
condition is false, the ELSE part of the statement is executed. Fol-
lowing the word ELSE is either a statement to be executed or a line
number to which control is transferred.

As an example of an IF-THEN-ELSE statement:
*S5 Ik X>Y THEN PRINT "GREATFR" FLSE PERINT "NOT GEFATFE"

An IF statement can follow either the THEN or ELSE clause in the above

statement, making it possible to nest IF statement to any desired level.
For example:

109 1F A>R THEN IF R>C TdEN PRINT "A>R>C"

CHAPTER 7

MATRIX MANIPULATION

This Chapter deals with BASIC-PLUS matrix manipulation commands. Ma-

trices can be composed of variables of any type. A single matrix, how-
ever, is composed of a single type of data: floating-point, integer,

or character string. The MAT operations do not set the zero elements

[A(ﬂ» or B(#,n) and B(n,d)] of the specified matrix to conform with

the requested operation.

7.1 BASIC-PLUS ARRAY STORAGE

A BASIC-PLUS program can define the size of a matrix in one of
two ways: explicitly, by including the matrix in a dimension state-
ment, or implicitly, where the matrix does not appear in any dimension
statement. Implicitly dimensioned matrices are assumed to have ten
elements in each dimension referenced (size 10 for a one-dimensional
matrix and size 10 by 10 for a two-dimensional matrix, with each
dimension also having a zero row and column). Implicitly dimensioning
the matrix A(I,J), for example, has the same effect as explicitly in-

cluding the following statement:

19 DIM AC19,17)

Dimensioning a matrix (explicitly or implicitly) establishes two
quantities for the system: the default number of elements in each
row and column and the maximum number of elements in the matrix.
Through use of the MAT commands, described in this Chapter, the program
can alter the number of elements in each row and the number of columns
in the matrix as long as the total number of elements does not exceed
the number defined when the matrix was dimensioned. Changing the num-
ber of elements in either or both dimensions is termed redimensioning
the matrix.

When a matrix is redimensioned, the user program should take
care not to reference elements outside the currently dimensioned
range of the matrix. For example, if the range of matrix A is 5 by 7,
referencing A(3,8) is improper and, although no error is generated,
generally results in some element elsewhere in the matrix being

destroyed.

7.2 MAT READ STATEMENT

The MAT READ statement is used to read the value of each element
of a matrix from DATA statements. The format of the statement is as

follows:
line number MAT READ <list of matrices>

Each element in the list of matrices indicates the maximum amount of
the matrix to be read (which cannot be greater than the dimensioned
size of the matrix). The individual elements are separated by commas.
If the matrix name is used without a subscript, the entire matrix is
read. For example:

181 DIM A(22,20)
20 MAT READ A

The above lines read a twenty by twenty matrix of floating-point data.
Data is read row by row; that is, the second subscript varies most

rapidly. If line 20 had read:

20 MAT BEAD A(5,15)

a five by fifteen matrix would be read and the matrix A would be re-

dimensioned.

7.3 MAT PRINT STATEMENT

The MAT PRINT statement prints each element of a one or two

dimensional matrix. The statement is of the form:
line number MAT PRINT <matrixz name> {.}
I

If the matrix name consists of an unsubscripted matrix name, the
entire matrix is printed. If the matrix name is subscripted, then
the subscript indicates the maximum size of the matrix to be printed
(but does not redimension the matrix). Only one matrix can be out-

put by a single MAT PRINT statement.

If the matrix name is followed by a semicolon (;), the data
values are printed in a packed fashion. If the matrix name is
followed by a comma (,), the data values are printed across the

line with one value per print zone. If neither character follows

the matrix name (the null case), each element is printed on a
separate line.

10 DIM AC1D5,10),B(203,20)

120 MAT PRINT A3 TPRINT 18%13 MATRIX»PACKED FOURMAT
139 MAT PRINT B(NsM)» . T'PRINT N*M MATRIXs S5 ELFEMENTS
IPER LINE

One dimensional arrays can be printed in either row or column
format.

MAT PRINT V

where V is a singly dimensioned array, prints the array V as a
column matrix, and

MAT PRINT V.
prints the array V as a row matrix, five values per line.
¥AT PRINT VU3

prints the array V as a row matrix, closely packed. For example:

LISTNH

18 DIV AC7)»X(5)

20 MAT READ A»¥X

37 MAT PRINT A3 :PRINT:MAT PRINT X

40 DATO 2152P2523,24535,36537551552553,54,5%
5% END

READY

RUNNY

21 22 23 24 35 36 37
51

52

53

54

55

7.4 MAT INPUT STATEMENT

The MAT INPUT statement is used to input the value of each
element of a predimensioned matrix. The statement is of the form:

line number MAT INPUT <iist of matrices>

Input is read from the keyboard, as with a normal INPUT statement.

and a ? character is printed when the program is ready to accept the

input. The LINE FEED key can be used to continue typing data on suc-
ceeding lines. The RETURN or ESCAPE key is used to enter the data to
the system. MAT INPUT does not affect row zero or column zero of the

matrix.

The MAT INPUT statement allows input of integer, floating-point
or character string values depending upon the variable names. Where
more than one matrix is to be input by the same MAT INPUT statements,

the names are separated by commas. For example:

10 DIM AZ(2A3),B(15)
20 MAT INPJT A%4sRB

causes the program to input twenty integer elements for the array

A% and fifteen floating-point values for the array B.
Where an array or matrix element is specified, for example:
200 MAT INWPIJT NZ%Z(25)

only 25 elements of the array are input, regardless of the number of
elements originally specified when the array was dimensioned. The

array is then redimensioned. For example:

59 DIM AC200,23),B%2(2,2)

.
.

190 MAT INPUT A(251)
119 MAT INPUT BZ%,CH

The matrix A is redimensioned in line 1@g@g. The INPUT statement pro-
ceeds to accept input until the entire matrix has been read or the
RETURN or ESCAPE delimiter is encountered. Several lines can be
input by terminating the physical keyboard line with a line feed to

indicate continuation on the following line.

Following the input of a matrix, the two variables NUM and NUM2
contain the number of elements input. NUM contains the number of
elements entered in the last row, and NUM2 contains the number of
rows input. For example, the following program inputs a variable
size matrix (up to 1g*1g9):

59 DIM AC10,19)

123 INPJT “TYPE MATRIX DIMENSIONS';N,M

112 MAT INPUT A(N,WM)

120 !'CHECK TO SEZ IF ENTIRE MATRIX ¥AS ENTERED
133 IF NIJMkNIM2=N*M THEN 1909

149 PRINT YO DIDN'T ENTER THE WHOLE MATRIX*
159 GOTO 100

Unlike the INPUT statement, no text string can be output with the MAT
INPUT statement. For example:

123 MAT INPIT "“TEXT" A7
SYNTAX ERROM AT LINE 102

7.5 MATRIX INITIALIZATION STATEMENTS

A matrix initialization statement allows the user to create ini-
tial values for the elements of a matrix. The statement is of the

form:

{(DIMJ,DIMZ)}

line number MAT <name>=<value> (DIM1)

The name specified is the name of a predimensioned matrix, and the op-
tional DIMI and DIM2 specifications indicate the size of the matrix

to be initialized. When specified, DIMI and DIM2 cause the matrix to
be redimensioned. The value can be one of the following:

Value Meaning
ZER Sets all elements of the matrix to @ (this is

true of all matrices when they are first cre-
ated). (Function does not set row § or column

g.)

CON Sets all elements of the matrix to 1. (Function
does not set row g or column f.)

IDN Sets up an identity matrix (all elements are f

except for those on the diagonal, A(I,I), which
are 1). (Function does not set row # or column

g.)

If no dimensions are indicated (DIM1 and DIM2 are not specified)
in a matrix initialization statement, the existing dimensions of the

matrix are assumed to be unchanged. For example:

12 DIM AC19510)sB(15),C(23,2%)

20 MAT A=ZER I1SETS ALL ELEMENTS OF A=0
34 MAT B=CONC1%) !SETS FIRST 14 ELEMENTS OF B=1

4% MAT C=IDNC19,1%)

It should be noted that these instructions do not set row zero

or column zero.

7.6 MATRIX CALCULATIONS

Mathematical operators and two intrinsic functions are available
for use with matrices.

7.6.1 Matrix Operations

The operations of addition, subtraction, and multiplication can

be performed on matrices using the common BASIC mathematical symbols.

Each of the matrix operation statements is begun with the word
MAT and followed by the expression to be evaluated. Each of the ma-
trices involved must be predefined in a DIM statement. The subscripts
of the matrices need not be indicated on the statement. The matrices
indicated for any operation must be conformable to that operation. A
subset of one matrix cannot be indicated as part of an operation.

1160 DIY ACSA), 1(85), CC(50)

129 ~»aT (=p+R

KIINNH

MATEIX LIMFNSION FEEOR AT LINK 120
RFEATY

In order for line 120 to execute properly, line 110 should read:

119 RIM ACSAIRISE), ((H0)

Multiplication of conformable matrices is indicated as follows:

12 DIM DC1A,5)5C(5513),R(13519)
2% MAT R = D#C

By conformable matrices is meant that the number of columns in matrix
D is equal to the number of rows in matrix C. The dimensions of the
matrix R must be large enough to contain the number of columns in D

and the number of rows in C. The operation MAT A=A*B is illegal.
Scalar multiplication of a matrix is performed as follows:
115 MAT C = (K)*4

Each element of matrix A is multiplied by the scalar value (constant,

variable, or formula) K, indicated in parentheses.

7-6

The form MAT A= (K)*A is legal. Matrix A can be copied into matrix C

(providing sufficient space is available in matrix C) as shown below:

120 MAT C=A

7.6.2 Matrix Functions

Functions exist for the performance of transposition and inver-

sion of matrices.
159 MAT C=TRNC(CA)

causes matrix C to be set equal to the transpose of matrix A. That
is, C(1,J)=A(J,1) for all I,J; matrix C is redimensioned if necessary.
For example:

10 DIM X(155,25)5N(5512)5M(555)

75 MAT X=TRN(N)
159 MAT N=INV(M)

causes N to be computed as the inverse of matrix M (M must be a square
matrix). After the inversion is complete, the function DET is set to
the value of the determinant of matrix M. (If the matrix being in-
verted is sufficiently singular to make it impossible to complete the in-
version, the message CAN'T INVERT MATRIX is printed.) The value of DET,

then, can be used as a variable in any formula. For example:

209 MAT A = INV(X)>: DI1=DET
2171 MAT B = INV(A): D2=DET
220 IF Dl=1/D2 GOTO 344 ELSE PRINT "KELATIONSHIP TRrUE"

Matrix inversion, like the other BASIC-PLUS matrix operations,
does not operate on the elements of the row # and column @ of the
matrix; however, inversion destroys the previous contents of these
elements. The operation MAT A = INV(A) is legal.

CHAPTER 8

ADVANCED STATEMENT FEATURES

8.1 DEF STATEMENT, MULTIPLE LINE FUNCTION DEFINITIONS

In Chapter 3 the DEF statement is described as having the ability
to create a one-line function which the user can call as an element in
a BASIC statement. The user has, by now, probably felt the need for a
user-defined function which can extend onto more than one line: such
a facility is available. The format for a multiple-line function

definition is as follows:

line number DEF FN<identifier><(dummy arguments)>
<body of definition>

line number FNEND

The multiple-line DEF function is distinguished from the one-line
user functions by the absence of an equal sign following the func-
tion name on the first line. (From zero to five arguments of any
type or mixture of types can be used.) The valu~ returned by the
function is the value of Fli<identifier> at the time the FNEND state-
ment is encountered. Somewhere within the multiple-line definition

there must be a statement of the form:

line number {LET} FN<identifier> = <expression>

It is the value of this expression which is returned as the value of
the function. (There may be more than one such statement, as in the
example below.)

The function example below determines the larger of two numbers
and returns that number. The use of the IF-THEN statement is fre-

quently found in multiple line functions as follows:

10 DEF FaNvi(XsY)

260 LET FaM=¥

39 IF Y<=X THEN 50
40 LET FNv=Y

52 FNRAND

1

As another example, the following is a recursive’ function that com-

putes N-factorial:

LISTNH

10 DEF FNF((MZ)

oA IF M%=1%Z THEN FNF=1 ELSE FNF=MZ#%FNF(M%-12)
39 FNEND

35 INPYT "VALIJE FOR FACTORIAL"3M

40 PRINT M"FACTORIAL EQUALS'FNF (M)

52 END

READY

RIJNNH
VALJE FOR FACTORIAL? 4
4 FACTORIAL EQUALS 24

READY

Any variable referenced in the body of a function definition which is
not an argument of that multiple line DEF function has its current
value in the user program. Multiple-line DEF functions can be nested
(one multiple-line definition can reference another multiple-line
definition or itself). There must not be a transfer from within the
definition to outside its boundaries or from outside the definition
into it. The line numbers used by the definition must not be refer-

enced elsewhere in the program.

The parameters with which a user-defined function is called are
strictly formal; attempts by the program to modify them are cancelled

when the function exits to its calling program:

LISTNH

1% DEF FNB(X)

20 X=0: FNB=10
39 FNEND

40 A=1: B=FNB(A)
59 PRINT AsRB

63 END

READY

RIINNH
1 10

READY

1
The term recursive refers to an inherently repetitive process in which

the result of each cycle is dependent upon the result of the previous
cycle.

A is not set to @ by the function FNB(A). However, any variable ref-
erencec in the body of the function definition which is not one of the
function arguments will retain, after exit from the function, any value
assigned to that variable during the execution of the function.

Functions cen be written in any type and can contain any variety

of argument types. For example:

LISTNH

19 DEF FNA$(A,B,C3%)

26 IF A>B GOTO 40

3% FNA$=CHR$(A+1): GOTO 50

43 FNA$=CHRS(A+C%)

50 FNEND

69 INPUT "VALYJES FOR A,B,C2"3A,B,C%

74 PRINT "FNA$(A,B,C2) = "FNASCA>R,C3Z)
&3 END

READY

RTINNH

VALUJES FOR A»B,C%? 36575524
FNAS(A»B,CZ) = <

READY

RUNNH

VALUJES FOR AsBsCZ? 45¢2,5.6758
FNA$(A»B>CZ) = 5

READY

8.2 ON-GOTO STATEMENT

The simple GOTO statement allows the user to unconditionally
transfer control of the program to another line number. The ON-GOTO
statement allows control to be transferred to one of several lines
depending on the value of an expression at the time the statement is

executed. The statement is of the form:

line number ON <expression> GOTO <list of line numbers>

The expression is evaluated and the integer part of the expression is

used as an index to one of the line numbers in the list. For example:

54 ON ¥ GOTO 100,200,300

transfers control to line number 1@@ if the value of X is 1, to line
number 2@f@ if X is 2, and to 3¢@ if X is 3. Any other values of X
(other than 1, 2, or 3 in this example) cause an error message to be
printed (or a transfer to an ON ERROR-GOTO routine with ERR=58).

8.3 ON-GUSUB STATEMENT

The GOSUB and RETURN statements are used to allow the user to
transfer control of his program to a subroutine and return from
that subroutine to the normal course of program execution (see
Section 3.8 for details). The ON-GOSUB statement is used to condi-
tionally transfer control to one of several subroutines or to one
of several entry points to one (or more) subroutine(s). The state-

ment is of the form:

line number ON <expression> GOSUB <list of line numbers>

Depending on the integer value (truncated if necessary) of the ex-
pression, control is transferred to the subroutine which begins at
one of the line numbers listed. Encountering the RETURN statement
after control is transferred in this way allows the program to resume

execution at the line following the ON-GOSUB line.

An example of the statement follows:

83 ON X-Y GOSYUB 903,933,1914

When line 80 is executed, the value of X-Y being either 1, 2, or 3
causes control to transfer to line 900, 933 or 1014, respectively.

If the quantity X-Y is not equal to 1, 2 or 3, the error message:;

ON STATEMENT OUJT OF RANGE AT LINE 89

is printed (or the user can transfer to an ON ERROR-GOTO routine with
ERR=58).

Since it is possible to transfer into a subroutine at different
points, the ON-GOSUB statement could be used to determine which por-

tion of the subroutine should be executed.

8-4

8.4 ON ERROR GOTO STATEMENT

Certain errors can be detected by BASIC while executing a user
program. These errors fall into two broad areas: computational
errors (such as division by @) and Input/Output errors (reading an
end-of-file code as input to an INPUT statement). Normally the
occurrence of any of these errors causes termination of the user

program execution and the printing of a diagnostic message.

Some applications may require the continued execution of a user
program after an error occurs. In these situations, the user can
execute an ON ERROR GOTO statement within his program. This state-
ment tells BASIC that a user subroutine exists, beginning at the
specified line number, which will analyze any I/0 or computational
error encountered in the program and possibly attempt to recover

from that error.
The format of the ON ERROR GOTO statement is as follows:
line number ON ERROR GOTO {<line number>}

This statement is placed in the program prior to any executable
statements with which the error handling routine deals. If an error
does occur, user program execution is interrupted and the user

written error subroutine is started at the line number indicated. The
variable ERR, available to the program, assumez one of the values listed
in Table 8-1. Table 8~1 is also contained in Appendix C, the com-

plete RSTS error message summary.

When an error is encountered in a user program, BASIC checks to
see if the program has executed the ON ERROR GOTO statement. If this
is not the case, then a message is printed at the user's terminal and
the program proceeds (if the error does not cause execution to
terminate). If the ON ERROR-GOTO statement was executed previously,
then execution continues at the specified line number where the
program can test the variable ERR to discover precisely what error

occurred and decide what action is to be taken.

Table 8-1

User Recoverable Errors

(C) indicates that program execution continues, following printing of

the error message,

if an ON ERROR GOTO statement is not present.

Otherwise, execution terminates and the system prints the READY mes-

sage.

ERR

Message Printed

Meaning

1

10

BAD DIRECTORY FOR DEVICE

ILLEGAL FILE NAME

ACCOUNT OR DEVICE IN USE

NO ROOM FOR USER ON DEVICE

CAN'T FIND FILE OR ACCOUNT

NOT A VALID DEVICE

I/0 CHANNEL ALREADY OPEN

DEVICE NOT AVAILABLE

I/0 CHANNEL NOT OPEN

PROTECTION VIOLATION

The directory of the device refer-
enced is in an unreadable format
or an attempt was made to perform
a directory oriented access to a
non-directory device.

The filename specified is not ac-
ceptable. It contains embedded
blanks or unacceptable characters.

The specified operation cannot be
performed because the file is al-
ready open by some user. This
message has a general "file in use"
meaning.

Storage space allowed for the cur-
rent user on the device specified
has been used or the device as a
whole is too full to accept further
data.

The file specified or current user
account numbers were not found on
the device specified. This message
has a general "not there" meaning.

Attempt to use an illegal or non-
existent device specification

An attempt was made to open one of
the twelve I/0 channels which had
already been opened by the program.

The device requested is currently
reserved by another user.

Attempt to perform I/O on one of the
twelve channels which has not been
previously opened in the program.

The current user is not allowed to
perform the requested operation on
the specified file. Input may have
been requested from an output-only
device or vice versa. This message
has a general "can't do that" mean-
ing.

8-6

ERR

Message Printed

Meaning

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

END OF F1LE ON DEVICE

FATAL SYSTEM I/O FAILURE

USER DATA ERROR ON DEVICE

DEVICE HUNG OR WRITE LOCKED

KEYBOARD WAIT EXHAUSTED

NAME OR ACCOUNT NOW EXISTS

TOO MANY OPEN FILES ON UNIT

ILLEGAL SYS() USAGE

DISK BLOCK IS INTERLOCKED

PACK IDS DON'T MATCH

DISK PACK IS NOT MOUNTED

DISK PACK IS LOCKED OUT

ILLEGAL CLUSTER SIZE

DISK PACK IS PRIVATE

DISK PACK NEEDS 'CLEANING'

Attempt to perform input beyond the
end of a data file.

An I/0 error has occurred on the
system level. The user has no
guarantee that the last operation
has been performed.

One or more characters may have
been transmitted incorrectly due

to a parity error, bad punch com-
bination on a card or similar error.

User should check hardware condition
of device requested. Possible causes
of this error include a line printer
out of paper or high-speed reader
being off-line.

Time requested by WAIT statement has
been exhausted with no input received
from the specified keyboard.

An attempt was made to rename a file
with the name of a file which already
exists, or an attempt was made by

the system manager to insert an ac-
count code which is already within
the system.

Only one open DECtape output file

is permitted per DECtape drive. Only
one open file per magtape drive is
permitted.

Illegal use of the SYS system func-
tion.

The requested disk block segment is
already in use (locked) by some other
user.

The identification code for the
specified disk pack does not match
the identification code on the pack.

No disk pack is mounted on the speci-
fied disk drive.

The disk pack specified is mounted
but .emporarily disabled.

The specified cluster size is unac-
ceptable.

The current user does not have ac-
cess to the specified private disk
pack.

Non-fatal disk mounting error; use
CLEAN system call.

8-7

ERR

Message Printed

Meaning

26

27

28

29
30-41

42

43

44

45

46

47

48

43
50

51

52

53

54

FATAL DISK PACK MOUNT ERROR

I/0 TO DETACHED KEYBOARD

PROGRAMMABLE 4C TRAP

CORRUPTED FILE STRUCTURE
not assigned

VIRTUAL BUFFER TOO LARGE

VIRTUAL ARRAY NOT ON DISK

MATRIX OR ARRAY TOO BIG

VIRTUAL ARRAY NOT YET OPEN

ILLEGAL 1/0 CHANNEL

LINE TOO LONG

FLOATING POINT ERROR

ARGUMENT TOO LARGE IN EXP

not assigned

INTEGER ERROR

ILLEGAL NUMBER

ILLEGAL ARGUMENT IN LOG

IMAGINARY SQUARE ROOTS

Fatal disk mounting error.

I/0 was attempted to a hung up data-
set or to the previous, but now de-
tached, console keyboard for the job.

ON ERROR-GOTO subroutine was entered
through a program trapped CTRL/C.

See a description of the SYS system
function.

Fatal error in CLEAN system call.

Virtual core buffers must be no
more than 512 decimal bytes long.

A non-disk device is open on the
channel upon which the virtual
array is referenced.

In-core array size is too large.

An attempt was made to use a virtual
array before opening the correspond-
ing disk file.

Attempt was made to open a file on
an I/0 channel outside the range of
the integer numbers 1 to 12.

Attempt to input a line longer than
255 characters (which includes any
line terminator). Buffer overflows.

Floating point overflow or underflow.
(C) If no transfer is made to an
error handling routine, a @ is re-
turned as the floating point value.

Maximum is in the range -89<arg<+88.
Value returned is zero. (c)

Attempt to use a number as an integer
when that number is outside the allow-
able integer range. (C) If no trans-
fer is made to an error handling rou-
tine, a # is returned as the integer
value.

Improperly formed input. For example,
"1l..2" is an improperly formed number.

Negative or zero argument to log func-
tion. Value returned is the argument
as passed to the function. (C)

Attempt to take square root of a number
less than zero. The value returned is
the square root of the absolute value
of the argument. (C)

8-8

ERR Message Printed

Meaning

55 SUBSCRIPT OUT OF RANGE

56 CAN'T INVEIT MATRIX

57 OUT OF DATA

58 ON STATEMENT OUT OF RANGE
59 NOT ENOUGH DATA IN RECORD
60 INTEGER OVERFLOW, FOR LOOP
61 DIVISION BY @

Attempt to reference an array element
beyond the number of elements created
for the array when it was dimensioned.

Attempt to invert a singular matrix.

The DATA list was exhausted and a
READ requested additional data.

The index value in an ON-GOTO or
ON-GOSUB statement is less than one
or greater than the number of line
numbers in the list.

An INPUT statement did not find
enough data in one line to satisfy
all the specified variables.

The integer index in a FOR loop
attempted to go beyond 32766 or
below -32766.

Attempt by the user program to divide
some quantity by zero. (C) If no
transfer is made to an error hand-
ling routine, a @ is returned as

the result.

8.4.1 RESUME Statement

After the problem is corrected (if this is both possible and

desired by the program), execution of the user program can be resumed
through use of the RESUME statement (which is placed at the end of

the error handling routine, much like a RETURN statement in a normal

subroutine). The RESUME statement causes the program statement that

originally caused the error to be reexecuted. If execution is to be

restarted at some other point within the program (as might be the case

for a non-correctable problem),

the new line number can be specified

in the RESUME statement at the end of the error handling routine.

The format of the RESUME statement is as follows:

line number RESUME {<line number>}

For example:

2007 RESIIME
20M1 RESTME 104

The line 2@@@ restarts the user program at the line in which the

error was detected, and is equivalent to the statement:

2000 RESUME 4

Line 2001 above restarts the user program at line 100 (which can be
used to print some terminal message for that particular operation).

A RESUME statement should always be included in the error hand-

ling routine.

8.4.2 Disabling the User Error Handling Routine

If there are portions of the user program in which any errors
detected are to be processed by the system and not by the user program,
the error subroutine can be disabled by executing the following state-

ment:

line number ON ERROR GOTO #

which returns control of error handling to the system. An equivalent

form is:

line number ON ERROR GOTO

in which case line @ is assumed. Executing this statement causes the
system to treat errors as it would if no ON ERROR GOTO had ever been
executed.

Generally, the error handling subroutine detects and properly
handles only a few different errors; it is useful to have the RSTS
system handle other errors, if they occur. For this reason, RSTS
allows the ON ERROR GOTO @ statement to be executed within the error
subroutine itself. Special treatment is accorded this case, in that
the disabling occurs retroactively; the error which caused entry to
the error subroutine is then reported and a message printed as though
no ON ERROR GOTO statement had been in effect.

As an example of this feature, consider an application in which
inexperienced users interact with a BASIC program. These users may
not know what to type at the terminal, and the program may want to
prompt them. The program tells the system to allow up to 60 seconds
for the user to respond (via the WAIT function, described in Section
8.8) and then to alert it that the user has not replied. The program

then prints additional information for the user.

13 ON ERROR GOTO 1260 ISET UP ERROR ROUTINE

20 VAIT(6D) TWAIT 6% SEC. FOR REPLY
30 INPHIT "YOiIIR NAME';NS$!GET STUDENT NAME
53 STOP

.
.

t

1209 'THIS IS THE EREOR HANDLING ROUTINE

1210 IF EkR<>15 THEN ON ERRON GOTU © 1WAIT ERKRURS ONLY
1220 PRINT 'SKIP TO NFEW LINE

12372 PRINT “PLEASE TYPE YOUR NAME"™

1942 PRINT "AND THEN HIT THE 'RETUEN' KEY"

1059 RESUNME 'TRY AGAIN

In this example, if the call to the error subroutine was caused by
some error other than the KEYBOARD WAIT EXHAUSTED error, the program
would exit via the ON ERROR GOTO & in line 1g1@. This permits the
appropriate error message to be printed on the user's terminal. Note
that exiting via the RESUME at line 1§58 causes the INPUT statement to
be restarted.

8.4.3 The ERL Variable

It is sometimes useful to be able to recognize the line number
at which an error occurred. Following an error detection, the integer
variable ERL contains the line number of the error.

ERL would be used, for example, to indicate which of several
INPUT statements caused an END OF FILE error.

Care must be taken in use of the ERL variable since changing or
resequencing the line number field of all or some statements within
the program can alter the value of the ERL variable as it appears

within an expression context. For example:

12 0N EEROF GOTO 1093

28 INPOT "IYPE TLO NON=ZEFO NUMBFRE'; As R
3G LET X=4a/P

47 LET X=X+P/A

50 PRINT X

€0 ST0P .

122 1F FLE<>61 THFN ON i HEOE GOTO @
117 BFINT "FIKST NUVBFK WAS 0" IF WhL=ap
190 BEINT "SFCOND NUMRER &AE 6% IF FRL= 30

LISTNH
10 INPUT A>BsC
20 IF A>R THEN
IF B>C THEN PERINT "As>R>(C"”
ELSE IF C>aA
THFN FRINT ''C>A>R"
FLEE PEINT "a>C>R"
ELSFE IF A>C THFN PKINT "R>a>("
FLSE IF B>C
THEN FRINT "B>(C>p"
FLSE FRINT "C>R>A'
3% FND

FFADY
FUNNH

?7 259,21
C>R>A
KrEADY
FEUNNH

? 35651

F>a>C

KEADY

The use of the LINE FEED and TAB characters greatly improves the

legibility of complex program statements such as line 20 above.

The IF-THEN-ELSE statement can appear anywhere in a multiple-
statement line. However, if this statement is followed by any other

statements, the following rules apply:

The physically last THEN or ELSE clause is considered to be
followed by the next statement on the line:

19 IF aA=1 THFN 100 FLSF PFRINT A FRINT "ONE"

where A#1, the value of A and the text string ONE are printed.

All other THEN or ELSE clauses are considered to be followed
by the next line of the program:

20 IF A>R THEN IF B<C THEN PFKINT "B<(C": GO10 30
25 PRINT "A<R"

Only in the case where "B<C" is printed is the statement
GOTO 3@ seen and executed.

If either A<B or B>C, the line "A<B" is printed.

8.6 CONDITIONAL TERMINATION OF FOR LOOPS

In the simple FOR-NEXT loop described in Section 3.6.1, the for-
mat of the FOR statement is given as:

line number FOR<variable>=<ezpression>TO<expression>{STEP<expression>}

There are many situations in which the final value of the loop variable

is not known in advance and what is really desired is to exXecute the

loop as many times as necessary to satisfy some condition.

In evaluat-

ing a function, for example, this condition might be the point at which

further iterations contribute no further accuracy to the result.

BASIC-PLUS provides a convenient way of specifying that a loop is to

be executed until a certain condition is detected or while some con-

dition is true.

line numberFOR<variable>=<expression>{STEP<expression>}WHILE<

and

line numberFOR<variable>=<expression>{STEP<expression>}UNTIL<

These statements take the forms:

relational,
expression

relational>
expression

The condition has the same structure as specified in an IF statement

(see Section 3.5) and can be just as elaborate, if necessary.

Before

the loop is executed and at each loop iteration the condition is tested.

The iteration proceeds if the result is true (FOR-WHILE) or false
(FOR-UNTIL) .

The difference between a FOR loop specified with a WHILE or UNTIL

and one spvecified with a terminal value for the loop variable is

worth noting, in order to avoid potential pitfalls in the usage of

each. Consider the two loops in the program below:

LISTNH

10
15
20
25
54
5%
60
65
75

FOFE I=1 TO 10
PRINT I3

NEXT 1

PRINT "I="1

FOE I=1 UNTIL I>10
PRINT I3

NEXT I

PRINT "I="1

FND

RFADY

FIINNH

1
1

2 3 4 5 6 7T 8 9 10 I=
2 9 18 I=

W

o]
o
o)}
=
x

KEADY

8-14

10
11

Each of these loops prints the numbers from 1 to 10. When the loop
at line 10 is done, however, the loop variable is set to the last
value used (that is, 10). In the second loop beginning at line 50,
the loop variable is set to the value which caused the loop to be

terminated (that is, 11).

Next consider the two loovs following:

LISINH
17 X=10

20 FOE I=1 TO X

20 X=x/2: PRINT Isx
43 NFXT 1

54 PRINT

A X=10

Y% FOR I=1 IWTIL I>X
80 X=X/Pt FEINT I,X
99 NFXT I)
95 FND

HEADY

RUNNH
9
9.5
1.25
.(‘PS
« 3105
« 15625
«AT78125
» 39AFP5E-1
«195313F-1
? «9Y6S563F-2

=0 X [N D DN -

VIO

I

KEADY

In the case of the loop beginning with line 20, the iteration stops
when I exceeds the initial value of X (that is, 10). Even though the
value of X changes within the loop, the initial value of X determines
the performance of the loop. In the second loop, the current value
of X determines when the iteration ceases. Thus, after three itera-
tions, I is greater than X in the second loop and the loop is termin-
ated. (The STEP value when omitted, is still assumed to be 1.)

These forms of loop control are particularly useful in iterative
applications where data generated during the loop execution determines

loop completion.

Consider the problem of scanning a table of values until two
successive elements are both 0, or the end of the table is reached:

.

10 FOK I=1 INTIL I=N OF X(I)=3 AND XKC(I+1)=0
115 NFXT I

L]

The following two programs also illustrate the FOR-UNTIL and
FOR-WHILE constructions:

LISTNH

10 INPUT "LETTFF IS8"5Y%

2 X&="": FOR I=1 INTIL X3%=Y$% OF X§='2Z2"

3% EFAD X%¢ NFXT 1

4 DATA AsPsCoPsFsFsCoHsIs oKL asMaNsOsPsNsWs SoTallsUsbsXsYsZoZ422
8 rPrRINT "LETTER 1S NUMBRR"I-]

9G END

READY

FUNNH

LETTEK 182 C
LETTEK 1& NUMBEE 3

FFADY

FUNNH
LETTFR 187 @
LFTTEE IS NUMREER 17

READY

LISTNRH

18 INPUT "WORD'"3YS

200 XK&=*"": FOF I=1 WHILF X$<=Y$%

30 READ X%: NEXT I

40 DATA AsBsCosDsFsFsCrHsIsJsKsLoMsNsQOsPs Qs Fs So Toils UsWaXsYsZsZ77
S PRINT “WOED BEGINS WITH LETTER" 1~-2

90 END

READY

RUNNH

VOED? FIRST
“OED BECINS WITH LETTEFE 6

KFADY

RKUNNH
WOFD? LAST
WOED BEGINS WITH LETTFE 12

READY

8.7 STATEMENT MODIFIERS

To increase the flexibility and ease of expression within BASIC-
PLUS, five statement meodifiers are available (IF, UNLESS, FOR, WHILE,
and UNTIL). These modifiers are appended to program statements to
indicate conditional execution of the statements or the creation of

implied FOR loops.

8.7.1 The IF Statement Modifier

The form:

<statement>I1F<condition>

is analogous to the form:

IF<condition>THEN<statement>

For example:

1@ PRINT X IF X<>@
is the same as:

12 IF X<>@ THEN PRINT X

The statement is executed only if the condition is true.

When a statement modifier appears to the right of an IF-THEN
statement, then the modifier operates only on the THEN clause or the
ELSE clause, depending on its placement to the left or right of ELSE.

For example:

100 IF 1=1 THEN PRINT "HELLO" ELSE PRINT "BYE" IF 1=0

will print:

HELLO

since the test 1=1 1is true. The modifier IF 1=§ is false, but

as it applies only to the ELSE clause, it is never tested.

It is not possible to include an ELSE clause when using the

modifier form of IF .

8-17

Several modifiers may be used within the same statement. For

example:

70 PRINT X(1,J) IF I=J IF X(I,J)<>0
which will print the value of X(I,J) only if the value of X(I,J) is

non-zero and if I equals J. Whenever there is more than one modifier

on a line, the modifiers are executed in a right-to-left order.

That is, the rightmost one is executed first, and the leftmost one is
executed last. This situation is described by the term "nested

modifiers".

An additional operational advantage of this interpretation of IF
modifiers is illustrated in the discussion of FOR modifiers in Section
8.7.3.

8.7.2 The UNLESS Statement Modifier

The form:

<statement> UNLESS <condition>

causes the statement to be executed only if the condition is false.

For example, the following statements are all equivalent:

190 PRINT A UNLESS A=0

20 PRINT A IF NOT A=0

30 IF NOT A=0 THEN PRINT A
40 IF A<>® THEN PRINT A

This particular form simplifies the negation of a logical condition.

8.7.3 The FOR Statement Modifier

The form:
<statement>FOR<variable>=<expression>T0<expression>{STEP<eapression>}
or, the form

e tatanont FORCuarich eo=<esprensions STap<sspression) [TILE<Epression

can be used to imply a FOR loop on a single line. For example (using
none of the optional elements):

1% PRINT I, SORCI) FOR I=1 TO 1A

8-18

This statement is equivalent to the following FOR-NEXT loop:

2 FOR I=1 TO 10O
25 PRINT I, SQRCIJ: NFEXT 1

In cases where the FOR-NEXT loop is extremely simple, the necessity
for both a FOR and a NEXT statement is eliminated. Notice that this
implied FOR loop will only modify (and hence execute iteratively) one

statement in the program. Any number of implied FOR loops can be used

in a single program.

As in the case with all modifiers, a FOR modifier in an IF state-
ment operates only on the THEN or ELSE clause with which it is associ-
ated, and never on the conditional expression to the left of the THEN.
Thus, if it was desired to print all non-zero values in a matrix X(1992),
the following program would not operate properly:

16 DIM X(109)
15 READ X(I) FOR I=1 TO 109 7
20 IF X(I1)<>@® THEN PRINT I,X(I) FOk I=1 T0 1006

since the implied FOR loop at line 20 applies only to the THEN PRINT...

part of the statement, and not to the IF... part. The first value of X

tested is X(100), since I remained at 100 from statement 15. To achieve
the desired effect, it is only necessary to state line 20, not as an IF

statement, but rather as a PRINT statement with nested modifiers; for

example:

28 PRINT I,X(I) IF X(I)<>® FOK I=1 10 10¢

when expressed in the latter form, the nested modifier rule takes effect,
and all the values of X(I) are tested and printed as appropriate.

The WHILE and UNTIL clauses are explained in Section 8.6.

8.7.4 The WHILE Statement Modifier

The form:

<statement> WHILE <condition>

is used to repeatedly execute the statement while the specified con-
dition is true. For example:

19 LET X=Xt2 WHILE Xt2<1Eé

is equivalent to:

10 LET X=Xt2
1S IF X<1E6 THFN 18

The WHILE modifier (and the UNTIL modifier in Section 8.7.5) operates
usefully only in iterative loops where the logical loop structure modi-
fies the values which determine loop termination. This is a significant
departure from FOR loops, in which the control variable is automatically
iterated; a WHILE statement need not have a formal control variable.

The following statements never terminate properly; such program se-
quences are called infinite loops:

10 X=X+1 WHILE I<1000
15 PRINT I,ACI) WHILE ACI)<>Q

In both cases, the program fails to alter the values which are used to
determine when the loop is done.

A successful application of the WHILE modifier is shown below:

5 !'TEST OF SQUARFE ROOT KROUTINE
19 X=X+1 WHILE X=SQR(Xt2)
22 PRINT X

8.7.5 The UNTIL Statement Modifier

The form:
<statement> UNTIL <condition>

is used to repeatedly execute the statement until the statement be-

comes true; which is to say, while the statement is false.
example:

For

19 X=X+1 IINTIL X<>SOR(X?t2)

is the same as

13 X=X+1
20 IF X=SORCX12) THEN 10

8.7.6 Multiple Statement Modifiers

More than one modifier can be used in a single statement. Multiple

modifiers are processed from right to left. For example:

10 LET A=B IF A>0) IF B>0

which is equivalent to:

160 IF B>0 THEN IF A>Q THEN A=R

or

10 IF B>3 AND A>3 THEN LET A=R
or

10 IF R<=0 THEN 40

20 IF A<=0 THEN 40

3% LET A=B

.

A two dimensional matrix (m by n) can be read one row at a time as
follows:

53 READ A(I,J) FOR J=1 TO ™ FOr I=1 TO N

which is equivalent to:

506 MAT READ A(N.M)

and to:

5 FOR I=1 TO N
55 FOR J=1 TO ¥
601 XEAD ACI,J)
65 NEXT J

71 NEX

Also see Section 8.7.3 which described the interaction of FOR and IF
modifiers.

8.8 SYSTEM FUNCTIONS AND STATEMENTS

RSTS-11 has several system functions which allow the user to
obtain certain information about or perform operations with the
system. The functions are described in Table 8-2,

Table 8-2

SYSTEM FUNCTIONS

Function

Meaning Sample Usage

DATES (@) returns the current day, month PRINT DATE$(2)

and year, in the form: 18-AUG-72
2-Mar-72 KEADY
Note that the date contains
both upper and lower case
characters (where lower case
is not available on some ter-
minals, only upper case letters
are used).

DATES (N) returns a character string cor- 155 PRINT X%(I1), DATES(I)
responding to a calendar date.
The formula used to translate
between N and the date is as
follows:

(day of year)+[(number of years
since 1970)*1ggg]

DATES (1) = "gl-Jan-7¢g"

DATES (2g6¢) = "29-Feb-72"

TIMES (d) returns the current time of day 75 IF TIMES(®) >= "g5:45 PM"
as a character string as fol- THEN PRINT "“TIME TO QUIT"™
lows:

TIMES (@) = "@#5:3¢ PM"
. . PEINT TIMES$C1)
TIMES (N) returns a string corresponding 11259 PM
to the time at N minutes before
midnight, for example: READY
TIMES$ (1) = "11:59 PM" ,
TIMES (1448) = "12:4@ AM" PRINT TIMESC1430)
TIMES (721) = "11:59 AM" 12240 AM

N must be less than 1441 to

return a valid string. READY

TIME (@) returns the clock time in sec- 25 IF TIMEC(2)>43200
onds since midnight. THEN PHINT "AFTERNOON™

TIME (1) returns the central processor 19 IF TIMEC1)>>30% THEN STOP
(CPU) time used for this job
in g.1 second gquanta.

TIME (2) returns the connect time (time 10 IF TIME(2)>1800 THEN STOP
during which the user has been
logged into the system) for this
job in minutes.

SWAP% (I%) causes a byte swap operation 12 PRINT CHRS$(SWAPZCIZ))
to occur on the integer vari-
able I%; returns the value of
I% with the bytes swapped.

RADS (I%) converts an integer to a 3- 55 FRINT KADSCIZ)

character string. This func-
tion is used to convert a value
(expression in Radix-5@ format),
back into ASCII. Radix-5f¢ is

explained in Appendix D.

8-22

There are also two special system statements that can be used
within a BASIC-PLUS program; these are SLEEP and WAIT. Both state-
ments allow the user to suspend his program for a stated interval.

The SLEEP statement is of the form:
line number SLEEP <expression>

SLEEP is used to dismiss the currently running program for the number
of seconds indicated by the expression. At the end of this period the
program is again runnable. Thus, the user is guaranteed at least this
number of seconds idle time, possibly slightly more depending upon the
number of jobs currently active on the system.

The WAIT statement is of the form:

line number WAIT <expression>
WAIT is used to set a maximum period for the system to wait for input
from the user keyboard. If no delimiter is typed at the keyboard
(RETURN, LINE FEED, ESCAPE) within the number of seconds specified by
the expression, the program is restarted and a WAIT EXHAUSTED error
occurs, which can be detected using ON ERROR-GOTO. The WAIT statement

is used in conjunction with the INPUT statement. As an example:

LISTNH

1¢ ON ERROR CGOTO 12¢
2f WAIT 15

32 INPUT "16+16 =';5A
40 WAIT O

50 IF A=32 THEN PRINT "RIGHT!"
ELSE PKRINT '"NO» TRY AGAIN': CGOTC 10
79 STOP
188 IF ERR<>15 THEN ON ERKOK GOTO 0
118 PRINT "WAXE UP!"™
120 RESUME 39
136 END

READY

RUNNH

l6+16 =7 WAKE UP!
l6+16 =2 21

NO» TRY AGAIN
16+16 =2 32
RIGHT!

In this example line 1#f@ is executed only if the user fails to
respond within 15 seconds. The use of WAIT g restores the terminal
to its normal state in which no timeout occurs, but rather the

system waits until a line is entered, however long that may take.

8-23

PART III

BASIC-PLUS I/O

This part of the manual contains a complete
description of all BASIC-PLUS I/O operations.
A brief review is made of the simple forms of
READ, DATA, PRINT, RESTORE and INPUT along
with the more advanced forms of these state-
ments. Virtual core matrices, Record I/O and
device dependent operations are also described.

I1I

CHAPTER- 9

DATA STORAGE CAPABILITIES

9.1 FILE STORAGE

Previously, techniques have been presented for entering data
into a program as the program is written (via READ and DATA statements)
or from the user terminal while the program is executing (via the
INPUT statement). Both techniques are inefficient when the amount of
data to be read or written increases beyond a few items. In order to
improve operation, BASIC-PLUS provides the user with facilities to
define and manipulate Input/Output data files.

A BASIC-PLUS data file consists of a sequence of data items
transmitted between a BASIC program and an external Input/Output de-
vice. The external device can be the user terminal, some other
terminal, disk, line printer, card reader, magnetic tape device,
DECtape, or high-speed paper tape equipment.

Each data file has both an external name by which it is known
within the RSTS system (the name of the file on a disk storage device,
for example) and an internal file designator (a number used to ref-
erence the file). An OPEN statement (see Section 9.2) is used to

associate an external file specification with an internal file channel.

An external file specification contains some or all of the
following information:

device:filename.extension[proj,prog]<protection>

If the device designator is not present in a file specification, the
system device (public structure)*is assumed. For non-file-structured
devices, only the device designator need be specified; any filename,

extension, project-programmer codes, and protection code specified
are ignored.

*More information on public and private disks can be found in Chapter
12.

Where a device designator appears, it can be one of the following:

Table 9-1
Device Designations

Device

Designation

Device

File-Structure devices

DF:

DFf@:
DK@
DPJ:
DT@:

MT@:

Non-File-Structured devices

to
to

to

to

DK7:
DP7:

DT7:

MT7:

RSTS public disk structure as a whole

RF11 disk
RK11l disk pack units @ through 7
RP11 disk pack units @ through 7

DECtape units @ through 7
Industry compatible magnetic tape units §

through 7 (magnetic tape can also be treated
as a non-file-structured device)

PR:
PP:
LP:
CR:

KB:

KBg: to KBlé6:

High-speed paper tape reader
High-speed paper tape punch
Line printer

Card reader

current user terminal
other user terminals on the system

For file-structured devices, each file is assigned a filenagme and

extension.

acters.

The filename is a string of one to six alphanumeric char-

The filename extension consists of a dot (.) followed by a

one to three alphanumeric character string, usually specifying the

file type.
dot and filename extension field are omitted from the file designa-

tion.

A null or blank extension is permitted, in which case the

The extensions recognized by the RSTS-11 system are as follows:

Table 9-2

Reserved File Extensions

Automatically Assumed on
Extension Significance Appended on Qutput Input
.BAS indicates a BASIC-PLUS to BASIC-PLUS source by the OLD command,
source program to be programs stored with also assumed by RUN,
compiled; stored in a SAVE or REPLACE CHAIN and UNSAVE in
ASCII format. command. the absence of a.BAC
file of the same name.
.BAC indicates a compiled to BASIC-PLUS pro- by the RUN, CHAIN and
BASIC-PLUS program; grams on which a UNSAVE commands.
stored in a binary COMPILE command is
format, canriot be performed.
altered.
.SYS indicates RSTS Monitor no. no.
files
. TMP indicates a temporary no. no.

BASIC-PLUS file. These
files are used while
creating or editing a
BASIC program. They
are deleted when no
longer needed.

The [proj,progl field (containing the project and programmer num-
bers) identifies the owner of the file. If it is omitted the owner
is assumed to be the current user. This field is meaningful only for
disk and magtape files; it has no significance for DECtape files or files
on non-file-structured devices. The two numbers forming the field
are decimal numbers between 1 and 254, separated by a comma, and

enclosed in square brackets.

NOTE

The PDP-1l1 DOS Monitor uses octal UIC
values in the range 1,1 to 376,376.
Transferring magtape files between
RSTS and DOS causes an effective
decimal-to-octal conversion between
RSTS project-programmer number and
DOS UIC code. RSTS DECtape files are
assigned a [1,1] UIC code.

Use of the $ character (dollar sign) in the project-programmer
field indicates that the file is stored under the system library
account ([1,2]).

When creating a file (with OPEN or OPEN FOR OUTPUT, see Section
9.2) or renaming a file (with the NAME AS statement, see Section 9.7)

a protection field can be specified. Files can be read and/or write

protected against three classes of users where distinctions are made
on the basis of the project and programmer number of the user attempt-
ing to access the file. The three classes of users are:

a. owner;

b. group, all users having the same project number as the
owner (termed the owner's group):; and

c. others, all other users not in the owner's group

The following table is used to determine the value of the protection
code to achieve the desired file protection:

Table 9-3

Protection Codes

Code Meaning
1 read protect against owner
2 write protect against owner
4 read protect against owner's group
8 write protect against owner's group
16 read protect against all others not in
owner's group
32 write protect against all others not in

owner's group

Protection codes are stored within the system as character strings and
consist of a one-or two-digit decimal number within paired angle
brackets. The decimal number is the sum of the desired combination of
protection code values contained in Table 9-3. For example: a pro-
tection code of <48> would deny read or write access to anyone logged
into the system under an account number whose project number differs
from the owner. The code <48> is the sum of 32 (write protect against
all others) and 16 (read protect against all others). Similarly, the
code <42> protects a file against any write operations (32=write pro-
tect against all others, 8=write protect against other group members,

and 2=write protect against owner, 42=32+8+2).

Protection codes are normally specified only in the NAME AS state-
ment which allows the user to change the name and protection code of

any file which he has previously created (see Section 9.7). However,

protection codes can be specified as an optional part of any filename.

For example,

OLD FILE.BAS<60>
which would be equivalent to

OLD FILEBAS

or

OLD FILE

In creating disk files a default protection code of
<6@> is supplied. This permits only the owner to access the file.
(The file is read and write protected against everyone but the owner,
since code <6@>= 32 + 16 + 8 + 4). For example, the command

SAVE FILE1l

READY

saves the current BASIC-PLUS program as FILEl.BAS with a protection
code of <60>,

9.2 OPEN STATEMENT

The OPEN statement associates a file on a file-structured device
or some non-file-structured device with an I/0 channel number inter-
nal to the BASIC program. BASIC-PLUS permits up to 12 files to be
open at a given time, and, therefore, permits internal file designa~-

tors to be integers between 1 and 12.

The general form of the OPEN statement is as follows:

FOR INPUT

. . < .
line number OPEN <string> {FOR OUTPUT} AS FILE <expression

One or more of the following specifications can be appended to the
end of the statement (and are described in Sections 9.2.1 and 9.2.2):

{,RECORDSIZE <expression>} {,CLUSTERSIZE <expression>}

The etring field is a character string constant, variable or expres-
sion that contains the external file specification (as described in
Section 9.1) of the file to be opened. The AS FILE expression
must have an integer value between 1 and 12, corresponding to the
internal channel number on which the field is being opened.

There are three distinct forms for the OPEN command:

OPEN<s tring> FOR INPUT
OPEN<s tring> FOR OUTPUT
OPEN<s tring>

The form of the OPEN statement used determines whether an existing
file is to be opened or a new file created.

a. An OPEN FOR INPUT statement causes a search for an already
existing file (since the statement indicates the file is
an input file). If no file is found, the FILE NOT FOUND
error occurs. For example:

5% OPEN "FILE.DAT'" FOR INPUT AS FILE 1

b. An OPEN FOR OUTPUT statement causes a search for an already
existing file which, if found, is deleted. A new file is then
then created.

75 OPEN "DATA.@1<40>" FOR OUTPUT AS FILE 3

c. An OPEN statement without an INPUT or OUTPUT designation
attempts to perform an OPEN FOR INPUT operation as
described above. If this fails, a new file is created.

12371 OPEN “MATR.TERY™ AS FILE 7

The OPEN statement does not control whether the program attempts
to perform input or output on the file or whether read and/or write
access to the file is granted!; these privileges are controlled by
the file protection code.

!Magtape is an exception to this rule, see Chapter 12.

If an assignable device (all devices other than disks are avail-
able or assignable to a single user at any given time) is referenced
in any OPEN statement and that device is already in use by another
user, a DEVICE NOT AVAILABLE error occurs.

When used with disk files, an OPEN FOR INPUT or OPEN FOR OUTPUT
allows either read or write operations on the opened file. However, on
DECtape and magnetic tape devices, the FOR INPUT and FOR OUTPUT clause
restricts operations on that file to the type of operation specified.

NOTE

Only one person can have write access to a file at a
single time (unless UPDATE mode is used, see Section
12.2); and user write access is always denied to a
file with a .BAC extension, since compiled files can
only be run.

The next two sections in this manual describe the RECORDSIZE
and CLUSTERSIZE options of the OPEN statement. As these are sophis-
ticated file handling tools, it is suggested that the novice user
initially skip these sections and continue with Section 9.2.3.

9.2.1 RECORDSIZE Option

When any file is opened, the system creates a buffer area in the
user's core space to buffer all I/O to and from the file. Normally
the amount of space reserved is determined by the device, as each
device has a default device buffer size as described in Table 9-4,

Table 94

Default Device Buffer Sizes -

Device Default Device Buffer Size
disk (DFn:,DKn:,DPn:) 512 characters (or bytes)
DECtape (DTn:) 510 characters (or bytes)
Magtape (MTn:) 512 characters (or bytes)
High-speed reader (PR:) 128 characters (or bytes)
High-speed punch (PP:) 128 characters (or bytes)
Line printer (LP:) 128 characters (or bytes)
Card reader (CR:) 82 characters (or bytes)
User terminal (KB:) 128 characters (or bytes)

With the RECORDSIZE option the user program can specify the
allocation of more buffer space than is provided by the default case.
However, in some cases the particular device driver may not permit
additional space to be used. For example:

Table 9-5

Use of RECORDSIZE

Device Possible Buffer Alterations

Disk The disk drivers permit use of any
buffer size that is an even multiple
of 512 bytes.

DECtape The DECtape driver uses only the first
510 bytes of the available buffer
space.

Magtape File-structured magtape uses only

the first 512 bytes of the avail-
able buffer space. Non-file-
structured magtape can use any
buffer size (see Section 12.3.4).

High-speed reader

High-speed punch These non-file-structured devices
Line printer can use any selected buffer size.
User terminal

Card reader The card reader driver uses only the
first 82 characters of the available
buffer space.

The RECORDSIZE option has significant advantages when used with
magtape and disk files. RECORDSIZE permits non-file-structured access
to magtape records of any length (see Section 12.3.4). On a disk
file, total throughput can be improved by using a larger buffer size
as this permits a single disk transfer to read a large quantity of data.
As an example of the use of the RECORDSIZE option:

173 OPEN *"MASTER.DAT" FOR INPUT AS FILE 1%, RECORDSIZE 22482

If the file MASTER.DAT were on an RF1ll disk and occupied a contiguous
area on that disk, a 2@§48-byte transfer would take about 33ms while
four 512-byte transfers would take about 83ms (on the average). If the
file did not reside in a contiguous disk area, the RSTS Monitor would
break the 2@48-byte transfer into four 512-byte transfers. Even in
this last case, the system overhead to perform the tfansfer would be
less.

This example raises the question of how to ensure that a file
occupies a contiguous disk area. This can be done by means of the
CLUSTERSIZE option described in the following Section.

9-8

9.2.2 CLUSTERSIZE Option

The CLUSTERSIZE option is applicable only to disk files and only
when these files are initially created with an OPEN or OPEN FOR OUTPUT
statement. The CLUSTERSIZE specification is ignored if this is not

the case.

The RSTS system divides each disk into a number of 256-word
blocks. Each block is assigned a unique physical block number be-
tween 1' and 65,535. Physical block numbers are assigned such that
block n is physically contiguous with blocks n+l and n-1.

A number of contiguous blocks taken together as a unit are called
a cluster. RSTS permits clusters to be 1, 2, 4, 8, 16, 32, 64, 128
or 256 blocks long. When the disk is refreshed (the process by which
the disk is initialized, or cleared, for use on RSTS) a minimum
cluster size can be established. This minimum cluster size (also
called the pack cluster size) can be 1, 2, 4, 8 or 16 blocks (normally
the pack cluster size is a single block long).

For each file on the system, an entry is made in the owner's
file directory (User File Directory or UFD) containing the filename,
cluster size for the file, and a sequential list of blocks belonging
to that file,

A UFD has a fixed maximum size which is determined when the UFD
is created?. A UFD on any one disk cannot exceed 112 (decimal) blocks
(28,672 words). 1If all files were a minimum size (7 or fewer clusters
long) a UFD would have room for a maximum of 1157 files. To keep the
list of blocks belonging to the file as short as possible, the UFD con-
tains a one-word entry for the first block of each cluster. Knowing the
first block number of the cluster and the number of blocks in the
cluster is sufficient to determine all of the blocks in the cluster.

Block # of each disk is reserved for a bootstrap record and is
not used by any file.

The maximum size of a UFD is seven times the cluster size for

that UFD, which is established when the UFD is created, and may be
1, 2, 4, 8 or 16 blocks. The figures given in the text assume

a UFD cluster of 16.

Because of the size limit on the UFD, large files benefit from
the specification of large cluster sizes. In an extreme example, the
UFD would be completely filled by a single file of 24,283 blocks
where the file cluster size is one block. However, with a cluster
size of 256 blocks, only 128 words of the UFD are required to describe
this file.

Since most user files are not extremely large, omitting the
CLUSTERSIZE option when creating the file makes little practical
difference. Omitting the CLUSTERSIZE option has the effect of assign-
ing a cluster size equal to the pack cluster size for the disk on
which the file resides.

Once a file is opened on an internal I/0 channel, all I/O re-
quests by the BASIC program are handled by means of a read or write
call from BASIC-PLUS to the Monitor, directed to the nth logical
block of the file. The RSTS system translates the logical block
number into a physical block number., This is done by reading the
list of physical clusters belonging to the file (as kept in the UFD)
and finding the entry corresponding to the nth logical block. To
minimize the overhead involved in reading the UFD, which is stored
on the disk, part of this list of clusters belonging to a file is kept
in core. This part of the list is called the in-core file windaw.
The in-core file windaow is composed of seven entries from the list
of file clusters. Since each entry corresponds to one cluster of
the file, with a file cluster size of one block, 7 blocks (or 1792
words) of the file are described by the in-core file window. These
7 blocks can then be read or written without accessing the complete
list from the UFD stored on the disk. Similarly, with a file cluster
size of 256 blocks, the in-core file window describes the location of
1792 blocks of the file or over 45¢,99@ words. This means that when
performing random access I/O to virtual core arrays and RECORD I/0 files,
any of the 1792 blocks would be read or written without referencing
the UFD.

As an example of the use of the CLUSTERSIZE option:

134 OPEN "MAT «DAT'" FUR UJTPUT AS FILE 1%, CLUSTERSIZE 128%

In this case the file MAT.DAT is created with a cluster size of 128
blocks. Note that the file is initially 128 blocks long and is ex-

tended as needed in 128-block increments.

9-10

Since files with large cluster sizes must be extended by a
whole cluster at a time and since clusters are always contiguous
blocks, it may not always be possible to find sufficient contiguous
free blocks to extend the file. The user should be aware of this
possibility whenever he creates a file with a cluster size larger

than the pack cluster size (the minimum cluster size for that disk).

As another example (typing LINE FEED following FILE 1%,):

170 OPEN "DATA" FOR OITPIT AS FILE 1%,
RECORDSIZE 284874, CLIJSTERSIZE 4%

The RECORDSIZE option improves disk throughput when multiple blocks can

be read or written in a single transfer (see Section 9.2.1). By creat-

ing the file with a cluster size of 4 (1§24 words or 2@48 characters per
cluster) the user guarantees that logical blocks @#-3, 4-7, etc. of

his file are physically contiguous on the disk.

9.2.3 Formatted ASCII I/0

BASIC-PLUS permits access to data files by three methods:

a. Formatted ASCII;
b. Virtual core arrays, described in Section 9.6; and

c. RECORD I/O, described in Chapter 11.

Formatted ASCII data files are the simplest method of data storage,
involving a logical extension of the PRINT and INPUT statements
to be used in conjunction with the OPEN statement.

The formats for INPUT and PRINT statements to be used with the
OPEN statement are as follows:

line number INPUT #expreseion>,<ligt>

line number PRINT K expression> < ligt>

where the expression has the same value as the expression in the OPEN
statement (the internal file designator) and the ligt is a list of
variable names, expressions, or constants as explained in the Sections
describing the PRINT and INPUT statements.

For example:

14 OPEN '"PR:" FOR INPIT AS FILE NI1#%
on INPIT 4N14, A%

Line number 1§ above causes the paper tape reader to be opened as an
input source with the internal file designator whose value is con-
tained in the integer variable N1%. Line number 2§ causes input to
be accepted from logical I/0 channel N1%; and the input is associated
with the variable A$. (N1% must have a value between 1 and 12)

9.2.4 File-Structured Vs. Non—File—Structured Devices

RSTS-11 distinguishes between file-structured (disk, DECtape
and magtape) devices and non-file-structured (all other) devices.
When a file is to be found or created on a file-structured device,
the file specification string in the OPEN statement must include both
a device designation and a filename. On non-file-structured devices,
the device name alone identifies a file (filename and extension, if

specified, are ignored). For example:

DTf: is insufficient information to specify a file,.

DT :FRED is sufficient to specify the file FRED on
DECtape unit #.

PP: uniquely specifies the high-speed punch.

PP:FILE specifies a file on the high-speed punch, the

filename is ignored.

File specification syntax is such that the default device (the public
disk storage area) need not be specified. For example:

DF:QUIZ
is equivalent to:

QUIZ

9.2.5 Opening the User Terminal as an I/O Channel

The internal file designator (following the # character in the
INPUT or PRINT statements) is always in the range 1 to 12, File
designator § is, by definition, always open as the user's terminal.
Internal file designator @ cannot be closed or opened, Use of file
#f is indicated below (no OPEN #§ statement is necessary or allowed),

12 INPIIT #0a, AS$

is equivalent to:

12 INPIT A%

It is sometimes useful to be able to request keyboard input
without having the "?" prompting character printed first. This can
be accomplished by opening the user's terminal ("KB:") on some inter-
nal file designator other than @#. The ? character is only generated

for input requests on file #§, as shown in the following example:

LISTNH

1% OPEN "KB:" AS FILE |

20 PRINT "WITH JSE OF INTERNAL FILE DESIGNATOR"

3% PRINT "TYPE YOUJR NAME, FOLLOWED RBY RETURN KEY"
49 INPUT #1, A%$3 "THANK YOU"

53 PRINT: PRINT

67 PRINT “FOR COMPARISON, WITHOUT FILE DESIGNATOR'"
7% PRINT "TYPE YOUR NAME, FOLLOwED BY RETIRN KEY'
BA INPHT AS%3 “THANK YOU*

9 END

READY

RINNH

WITH "JSE OF INTERNAL FILE DESIGNATOR
TYPE YOJR NAME, FOLLOWED RY RET'JRN KEY
Je Pe JONES

THANK YOIJ

FOR COMPARISON, WITHOUT FILE DESIGNATOR
TYPF YOUR NAME, FOLLOWED RY RETIJRN KEY
7?7 Je Pe JONES

THANK YOJ

READY

9-13

9.3 OUTPUT TO NON-TERMINAL DEVICES

In order to direct output to a device other than the user ter-
minal, the PRINT command is formatted as follows:

line number PRINT #<expression>,<list>

where the expression is the internal channel number (the internal
file designator) of a previously opened output file (see Section 9.2).
The list of information to be output can include any of the output
information described as applicable to the PRINT statement. For
example:

1@ OPEN *DATAL1' FOR OUTPUT AS FILE 7%
o PRINT #7%, "START UF DATA FILE"

The above lines open a file called DATAl on the disk with internal
channel number 7 (of 12 possible open files available in the system).
The first line in that file reads: START OF DATA FILE.

To output a table of square roots on the line printer, the

following program could be used:

LISTNH

1 LET I1$="LP:"

o OPEN I% FOR OJTPIT AS FILE 12

3% PRINT #1%4, I,SORCI) FOR I=1% TO S%

43 END

READY

RIINNH

READY

The results would appear on the line printer as follows:

—

41421
737205

Mmoo WwnN

1
1
1
?
2.23F07

9.4 INPUT FROM NON-TERMINAL DEVICES

Like the PRINT statement, the INPUT statement can operate upon

devices other than the user terminal., The form:

line number INPUT #<expression>,<list>

causes input to be accepted from the previously opened file or device
indicated in the expression (see Section 9.2). As long as the value
of the expression is non-zero, the specified file is read through one
of the 12 internal I/O channels. 1If the expression is zero, or
missing completely, input is from the user terminal. No ? character
is printed on the terminal when input is requested from a device
other than the user terminal, opened on file #@. For example:

18 OPEN "PR:' FOR INPUJT AS FILE 3
20 INPUT #3, A%,RB$

causes the strings A$ and B$ to be read from the high-speed paper

tape reader.

Note that the data format is identical to the standard INPUT
format. If the user wants to read numeric data from a file previously
created (on disk or DECtape, for example) he should insert commas and
carriage returns in the data when he places the data in the file.

For example:

193 OPEN "DTA:LEN" FOR OVTPIJT AS FILE 17
113 PRINT #17Z, A "," B "," C

1268 CLOSE 17

137 OPEN "DTA:LEN" AS FILE 1%

140 INPIT #1Z, A,BsC

159 PRINT A»B,C

is an acceptable sequence to print three values onto a DECtape file,
read them from that DECtape file, and print the three values on the
user terminal. As in the example above, once a file is opened it
can be closed and reopened through the use of a second OPEN state-
ment. Reopening the file moves the position pointer within the

file back to the beginning of the file, so that the entire file be-
comes available again for sequential referencing.

9.5 CLOSE STATEMENT

The CLOSE statement is used to terminate I/0O between the BASIC
program and a peripheral device. Once a file has been closed, it can
be reopened for reading Qr writing on any internal file designator.

9-15

All files must be closed before the end of program execution. The
CLOSE statement causes the output of the last block to an output file.
Execution of a CHAIN statement automatically closes any open files,
but does not cause the output of the last blocks to output files. The
format of the CLOSE statement is as follows:

line number CLOSE <expression> {,<expression>...}

The expression indicated has the same value as the expression in the
OPEN statement and indicates the internal channel number of the file
to close. Any number of files can be closed with a single CLOSE
statement; if more than one file is to be closed, the expressions

are separated by commas. The CLOSE statement writes the current
contents of the I/0 buffer of an output file to the file before
closing it and frees core storage space for the program to open other

files (a maximum of 12 depending upon available space). For example:

255 CLOSE 2,4
345 CLOSE 14

Line 255 above closes the files opened on internal I/0 channels 2 and

4. Line 345 closes the file open on internal I/O channel 10.

The RSTS system detects the character CTRL/Z, ASCII code 26, as
an end-of-file indicator on formatted ASCII files. The user program
creating a file is expected to insert a CTRL/Z in a formatted ASCII
file prior to executing the CLOSE statement. This can be done most
simply with the statement:

100 PRINT #NZ%Z, CHR$(26);
which writes ine CTRL/Z character into the file opened on channel
N%. (This end-of-file character need be inserted by the user program

only into formatted ASCII files.)

9.6 VIRTUAL DATA STORAGE

Many applications require a capability to individually address
and update records on a disk file in a random (non-sequential)
manner. Other applications may require more core memory for data
storage than is economically feasible. BASIC-PLUS fills both these
requirements with a simple random-access file system called virtual

core.

The BASIC-PLUS virtual core system provides a mechanism for the
programmer to specify that a particular data matrix is not to be
stored in the computer core memory, but within the RSTS-11 disk
file system instead. Data stored in disk files external to the user
program remain, even after the user leaves his terminal, and can be
retrieved by name at a later session. Items within the file are
individually addressable, as are items within core matrices. In fact,
it is the similar way in which data are treated in both core and

random-access files which leads to the name virtual core.

The matrix format is used to store data because in a normal
data file, described in Section 9.2.3, the PRINT and INPUT statements
deal only with the next sequential data element. A normal data file,
then, is limited in its applications and depends upon a strictly
sequential treatment of I/O. With virtual data storage, the
user can reference any element of one or more matrices within
the file, no matter where in the file that element resides.
This random access of data allows the user non-sequential
referencing of the data for use in any BASIC statement. The
virtual core matrices are read into memory automatically by the

system.

9.6.1 Virtual Core DIM Statement

In order for a matrix of data to exist in virtual core, it
must be declared in a special form of the DIM statement. This

special DIM statement is as follows:

line number DIM#<integer constant>,<list>

where the integer constant is between 1 and 12 and corresponds to
the internal file designator on which the program has opened a disk
file (see below). The variable list appears as it would in a DIM
statement for a core-resident matrix. Thus, a 100 by 100 matrix

could be defined as:

10 DIM #12%, AC100,107)

Floating-point constants, integer constants and strings can be

stored in virtual core matrices. More than one matrix can be speci-

fied in one virtual core field. For example:

25 DIM #17%, ACIAABIs BE(20AD), C3(2500)

allocates space for 1lgg@ floating-point numbers, 2f@f integer
numbers and 25@¢ character strings (16 characters long each). How-
ever, if a virtual array is defined in this fashion, future refer-

ences should always dimension the arrays to the same size.

9.6.2 Virtual Core String Storage

One of the few differences in data handling between core and
disk matrices occurs in the storage of strings within string matrices
in virtual core. Strings in the computer memory are of variable
length from @ characters to any arbitrary length. Strings in virtual
core matrices are of fixed length from @ characters to a specified
maximum length (all elements of a single string array have the same
maximum length). This fixed length can be defined by the program and
varies from 2 characters to 512 characters. The system forces the
maximum length to be a power of 2; i.e., one of the following lengths:

2, 4, 8, 16, 32, 64, 128, 256, 512

Each element in the virtual core string need not use the maximum length
available, even though space is reserved for each element to be the
maximum size. If the user indicates other than one of the values above,
he receives the next higher size. Thus:

19 DIM #1%, X3(id) = 65
is equivalent to:

13 DIM #1%Z, X5(10)

128

If no length is specified, a default length of 16 characters is
assumed. The maximum length of virtual core strings is specified

as an expression in the DIM statement, using the form:

line number DIM #<integer constant>,<string (dimension(s))>=<integer constant>

For example:

15 DIM #1Z, ASC(100)=32%, B$C10MA)=4%s C3C103)

9-18

where: AS$ consists of 101 strings of 32 characters each, maximum;
B$ consists of 101 strings of 4 characters each, maximum;
C$ consists of 101 strings of 16 characters each, maximum.

If a length attribute is given in a DIM statement for an in-core
string matrix, it is ignored, since core storage is allocated dyna-

mically to hold a string of any length.

9.6.3 Opening a Virtual Core File

In order for the user to reference his virtual core file, he must
first associate a disk file (by name) with an internal channel designator
from 1 to 12 (which is then used in the virtual DIM declaration). This
is done with an OPEN, OPEN FOR INPUT, or OPEN FOR OUTPUT statement:

FOR INPUT

FOR ourpur! AS FILE <expression>

line number OPEN <string>{

where the 8tring is the name of a disk file and the expression speci-
fies an internal file designator (this is the same format described

in Section 9.2); thus:

35 OPEN "ACCT'" AS FILE 1%

associates the file named ACCT with internal channel 1. If ACCT
already exists, then the existing file is used. If there is no file
named ACCT, one would be created. If the user wishes to destroy an
old file named ACCT and create a new file of the same name, he can

use the statement:

35 OPEN "ACCT'™ FOR OUTPUT AS FILE 1%

which causes the file to be deleted if it already exists and a new file
created (in which case the file is deleted if not used). If the user
wants to be alerted that the file ACCT is not present, he could

write:

35 OPEN "ACCT' FOR INPUT AS FILE 1%

which would cause an error message to be printed if ACCT is not

found.

NOTE

Virtual core arrays do not permit internal

buffers larger then 512 characters; there-

for, the RECORDSIZE option is not used when
opening a virtual core array file.

9.6.4 Virtual Core Programming Convention

Recoverable errors occur when using virtual core if the user

program does any of the following:

1. Reference a virtual core array without first opening
the file.

2. Reference a non-disk file (for example, DECtape or the
line printer) as a virtual core array.

3. Exceed virtual core, that is, define a matrix that is
bigger than the amount of available disk storage on the
system.

It is important to remember that a virtual core file must be
closed before stopping the program (like any other file). Users are
urged to read Appendix E which describes the system implementation of
the virtual core processor. A mastering of this information will
produce programs which utilize the system resources in an efficient
manner.

9.6.5 Programming Example

As an example of virtual core usage, consider the problem of
implementing an information retrieval system for a small organization.
There might be 1000 employees, each needing a 256-character record
containing the name, home address, home phone, work station and
phone extension of the employee. Rather than order the records in a
sequential file, it might be decided to maintain a separate index file
containing only badge numbers. The sequence of employee records in
the master file is the same as the badge number sequence in the
index file. Thus, to extract information on an employee with badge
n, we find his badge number in the index file and use the index
found to retrieve his data from the master file. Since the number of
employees is small, integer data can be used in the badge file; only
alphanumeric data is stored in the master file.

A section of BASIC code which prints an employee's name, given

his badge number, might appear as follows:

19 'PROGRAM TO LOOK JP NAMES IN MASTER FILE

20 OPEN "BADGE" AS FILE 1% !OPEN BADGE FILE
30 OPEN "MASTER' AS FILE 2% !'0OPEN MASTER FILE
40 DIM #17, BZ(1000) 11093 BADGE NUMBERS
54 DIM #2Z, A$C1000)=256% 11009 RECORDS, EACH
1256 CHARACTERS LONG
63 INPUT ‘''BADGE NIMBER";EZ 'GET EMPLOYEE NUMBER
76 GOTO 100 IF B%Z(IZ%Z)=EZ FOR I%Z=1% TO 1020% 1S BADGE IN FILE?
83 PRINT ''NO SUCH EMPLOYEE": GOTO 60 INO
100 !'WE NOW HAVE INDEX INTO FILE,IZ !{YES
110 R$=A%$(C1%) !BRING RECORD INTO MEMORY

120 PRINT "NAME IS"3;MID(R$,12,15)!'NAME STORED FROM COLUMN 10 TO 15

9.7 NAME-AS STATEMENT, FILE PROTECTION AND RENAMING

The NAME-AS statement is used to rename and/or assign protection
codes to a disk or DECtape file, and can only be used on a given file
by someone logged into the system under the account number which
owns the file. The format of the statement is as follows:

line number NAME<string>AS<string>

The specified file (the first string indicated) is renamed (as the
second string indicated). When the file resides on a device other
than the default device (system disk), the device must be specified
in the first string and may optionally be specified in the second
string. No filename extension assumptions are made by NAME-AS; the
filename extension must be specified in both strings if any exten-
sion is present in the old filename or desired in the new filename.

For example:
75 NAME *"DT@:0LD.BAS™ AS "NEW.BAS"
is equivalent to:
75 NAME ""DT@:0LD.BAS' AS "DTQ :NEW +BAS"
but the statement:
90 NAME *"FILE1.BAS" AS "FILE2"
is not advised since FILE2 has no extension and could not subsequently

be called into core via the OLD or RUN commands (which require

filename extensions).

9-21

A file protection code can be specified within typed angle
brackets as part of the second string although it is not required. If
a new file protection code is specified, it is reflected in the protec-
tion assigned to the renamed file. If no new protection code is
specified, the old protection code is retained. See Section 9.1 for
a complete description of protection codes.

19» NAME “FILE.EXT" AS "FILE.EXT<40>"

changes only the protection code of the file FILE.EXT stored on the
system disk.

200 NAME "DT@:ABC.BAS" AS "XYZ «BAS"

changes the name of the file ABC.BAS on -DECtape unit @g. Since no
transfer of the file from one device to another can be performed with
the NAME-AS statement, it is not necessary to mention DT@: twice;
that is, the device of the new filename need not be specified. How-

ever, a diagnostic is generated if a device other than the old device
is specified.

120 NAME "NEW'" AS "NEW1"
changes only the name of the disk file NEW. (To transfer a file

between devices, use the PIP system program described in the RSTS-11
System User's Guide.)

9.8 KILL STATEMENT

The KILL statement is of the form:
line number KILL <string>

and causes the file named string to be deleted from the user's file
area. (The file can no longer be opened, but if it is already open
the file remains available until it is closed.) For example, when
the user has completed all work with the file XYZ (note that the
filename has no extension) on the system disk, he could remove the
file from storage by executing the following statement:

455 KILL "XYz2"

9-22

A user is not allowed to KILL a file that is write-protected
against him. (He must use the NAME-AS statement to change its pro-

tection first.)

The KILL (and NAME-AS) statement can be issued in immediate
mode. It should be noted that KILL is more general than UNSAVE,
which is primarily used to delete source (.BAS) files (see the RSTS-11
System User's Guide). KILL can be used to delete any file, including

a file with a null extension (which the UNSAVE command cannot delete).

9.9 CHAIN STATEMENT

If a user program is too large to be loaded into core and run
in one operation, the user can segment the program into two or more
separate programs. Such programs are called into core for execution
by means of a CHAIN statement. Each program section is assigned a
name and control can be transferred between any two programs. A
CHAIN statement is of the form:

line number CHAIN <string> (<line number>}

and causes the program named by the string to be called, compiled

(if necessary), and executed. The line number, if specified, desig-
nates the line at which the program is to be started. If the line
number is omitted, the program is started at the lowest numbered
line (as though a RUN command had been used). The CHAIN statement

is the last statement executed in each program segment other than the
last segment. For example:

1203 CHAIN "MAIN.BAC®™ 2000
causes the program MAIN.BAC to be loaded and started at line 2@¢g.
Chaining to precompiled program files (.BAC files) is consid-
erably more efficient than chaining to BASIC source program files

since .BAS files require compilation upon each call.

Communication between chained programs is performed by means of

the user's file area.

When the CHAIN statement is executed, all open files for the
current program are closed, the new program segment is loaded, and
execution continues. Any files to be used in common by several pro-

grams should be opened in each program.

CHAPTER 10

BASIC-PLUS INPUT AND OUTPUT OPERATIONS

10.1 READ AND DATA STATEMENTS

A READ statement is used to assign to a list of variables values
obtained from a data pool composed of one or more DATA statements.

The two statements are of the form:

line number READ <list of variables>

line number DATA <list of values>

The list of variables can include floating point, integer, subscripted,
or character string variables. The list of values must correspond in
type with the variables to which the value will be assigned (the ex-
ception is that integer and floating point values are interchangeable,

although they are stored according to the type of the variable).

The data pool consists of all DATA statements in a program.
Values are read starting with the DATA statement having the lowest
line number and continuing to the next higher, etc. The location of
DATA statements in a program is irrelevant, although for simplicity
they are usually kept together toward the end of the program. (The
DATA statements must occur in the proper numeric sequence, however.)
A DATA statement must be the only statement on a line, although a
READ statement can occur anywhere on a line. Comments are not per-
mitted at the end of a DATA statement.

If a READ statement is unable to obtain further data from the
data pool, an error message is printed and program execution is ter-
minated. (This error can be treated through the ON ERROR GOTO state-

ment, Section 8.4.)

Quotes are necessary in DATA statements only around string items
which contain a comma or where leading, trailing or embedded blanks
within the string are significant. The data pool, composed of values
from the program's DATA statements, is stored internally as an ASCII
string list. When a numeric variable is read, the appropriate ASCII
to numeric conversions are performed. When a string variable is

read, the string is used as it appears in the DATA statement. If

10-1

the item did not appear in quotes; leading, trailing, and embedded
spaces are ignored. If the item did appear in quotes, the string

variable is equated to the entire string within the quotes.

Matrices are read from DATA statements via the MAT READ statement

of the form:

line number MAT READ <matrig>

This reads the value of each element of a predimensioned matrix from
the data pool. Each element in the list of matrices indicates the
maximum dimension of the matrix to be read (which cannot be greater
than the dimensioned size of the matrix). Individual elements are

separated by commas. For example:

16 DIM A(20520),B(52)
20 MAT READ A
3¢ MAT READ 3(35)

The above lines read values for the 20 x 20 matrix A and 35 out of
the possible 50 values for the B matrix (remaining elements are zero) .
Data is read in row by row; that is, the second subscript varies most

rapidly.

10.2 RESTORE STATEMENT

The RESTORE statement reinitializes the data pool of the program's
DATA statements. This makes it possible to recycle through the DATA
statements beginning with the lowest numbered DATA statement. The
RESTORE statement is of the form:

line number RESTORE
For example:
85 RESTORE
causes the next READ statement following line 85 to begin reading data
from the first DATA statement in the program, regardless of where the
last data value was found. See Section 3.3.1 for an example program

using the RESTORE statement.

The RESTORE statement can be placed in any position on a multiple

statement line.

10-2

10.3 INPUT STATEMENT

The INPUT statement allows data to be entered to a running pro-
gram from an external device, the user's keyboard, disk, DECtape,
paper tape reader, etc. The full form for this statement is:

line number INPUT {#<expression>,} <variable list>
In many cases the simpler form:
line number INPUT <variable list>

is used. This last form causes a ? to be printed at the terminal
and the system then waits for the user to respond with the appropri-
ate values. If sufficient values are not typed, the system prints
another ?; if too many values are typed, excess values are ignored.
This last form also allows the user to insert strings to be printed

between the variables to be input. For example:

12 INPUT "YOUR NAME IS";N$,"ACCOUNT NUMBER";A;'"THANK YOU"

when executed would allow the following interaction at the terminal

(the underlined characters are typed by the user):

YOUR NAME IS? JEAN
ACCOUNT NUMBER? 470
THANK YOU

The format:
line number INPUT #<expression>, <variable list>

causes input to be read from the file or device indicated, in the ex-
pression, by the internal file designation number given when the file
was opened. (See Section 9.2 for a description of the OPEN
statement.) If the value of the expression is non-zero and the
specified file is open to the user terminal as an input device, then
no ? character is printed at the terminal when input is requested.

For example:

75 OPEN "KB:* FOR INPUT AS FILE 2
8A INPUT #2,A

10-3

The system then pauses while the user types a numeric value for the
variable A, although no prompting ? or character string message is
printed on the terminal.

Another format of the INPUT statement allows for the entering
of an entire line of data as a single character string entity, re-
gardless of embedded spaces or punctuation. This is different from
the normal mode of string input, where the comma, apostrophe, single
quote and double quote characters have special significance. The
format is:

line number INPUT LINE{#<expression>,}<string variable>

For example:

25 INPUT LINE A%

would pause and allow the user to enter a line followed by the
RETURN, LINE FEED or ESCAPE key (see also Section 5.3). The end of
the line being input is the carriage return/line feed sequence (or
line feed/carriage return/null or ESCAPE, see Section 5.3) which is
appended to the data typed by the user. As another example:

2¢ OPEN "F2.DAT" FOR INPUT AS FILE 7
25 INPUT LINE #7, B$%

These lines cause the system to open a file F2 on the system disk on
channel 7 (of 12 possible channels) to input a line of characters
up to the next LINE FEED character. (See Table 9-4 for the size of

buffers available for each device.)

The MAT INPUT statement is used to input the values of a predi-
mensioned matrix from a specified input device. Where no device is

specified, the input is accepted from the user terminal. For example:

200 MAT INPUT A(20)

causes 20 floating-point values to be accepted as elements of the

matrix A. A statement of the form:

line number MAT INPUT{#<expression>, }<variable list>

causes the input to be read from a file or device previously opened
on the internal channel indicated by the expression.

10-4

45 DIM B(19,25)
59 OPEN "DT1:DATAl' FOR INPUT AS FILE 1
55 MAT INPUT #1, B(16,25)

The above lines cause the file DATAl on DECtape 1 to be opened for
input on channel 1 (of 12 possible channels) and a matrix of values
for the elements of B to be read to fill B(10,25). The zero elements
are not assigned a value. When input is from the user terminal,

is printed; however, reference to another device does not cause the
printing of the prompting character. Depending upon the name of the
matrix, the MAT INPUT statement allows input of floating-point, inte-

ger, or character string values.

10.4 PRINT STATEMENT

In its simplest form, the PRINT statement:

line number PRINT

causes a carriage return/line feed to be performed on the user ter-

minal. The format:

line number PRINT <list>

causes the printing of the elements in the list on the user terminal.
An element in the list can be any legal expression. When an element
is not a simple variable or constant, the expression is evaluated
before a value is printed. The list can also contain character
strings between quotes which are printed exactly as typed between

quotes.
NOTE

If a character string is enclosed in a PRINT state-

ment with an initial quote and no terminating quote,
a terminating quote is considered to follow the last
character of that PRINT statement. For example:

10 PRINT "NAME IS AS$

13 PRINT "NAME IS As"
20 PRINT "NAME IS"™ A%

Line 1¢ is shown in two equivalent forms. Line 29 is
the correct form to generate the printed line:

NAME IS JOHN DOE

where A$ = "JOHN DOE".

10-5

Elements in the list are separated by commas or semicolons. For
example:

19 A=1: B=2: C=3
15 PRINT A3 A+B+C, C-A, "END"

when executed causes the following line to be printed:

1 6 2 END

A terminal line is considered to be divided into five'! print zones of
fourteen spaces each. Use of these zones involves the comma character
which causes the print head to move to the next available print zone
(from 1 to 14 spaces away). If the fifth print zone on a line is

filled, the print head moves to the first print zone on the next line.
The semicolon character functions as follows:

a. if an integer or floating-point variable, function, or expres-
sion is followed by a semicolon, the value is printed with a
preceding minus sign if the number is negative, or a preced-
ing space if it is positive. The number is then followed by
a single space.

b. character strings and string variables followed by a semi-
colon are printed with no preceding or trailing spaces.

Any PRINT statement which does not end with a semicolon or comma
character causes a skip to the next line after printing the elements
in the list. The presence of the punctuation character at the end of
the PRINT lisl causes the next PRINT statement to continue on the samc

line under the conditions already defined.
In general, the output rules for the PRINT statement are:

a. suppression of leading and trailing zeros to the right
of a decimal point. Where a number can be represented
as an integer, printing of the decimal point is also
suppressed.

b. at most six significant digits are printed.

c. most numbers are printed in decimal format. Numbers
too large or too small to be printed in decimal format
are printed in exponential format.

d. character string constants are printed without leading
or trailing spaces.

!The actual number of print zones is INT (n/l14), where n is the size
of the print line.

10-6

e. extra commas cause print zones to be skipped.

f. semicolons separating character string constants from
other list items are optional; omitting punctuation has
no effect on the output format in this case,

Output can be directed to a device other than the user terminal
with the following command:

line number PRINT #<expression>,<list>

Where the expression is the number of a previously opened output file,
out of 12 possible open files (see Section 9.2). For example:

19 OPEN "PP:" FOR OUTPUT AS FILE 3
53 PRINT #3s, BsDsA+7,FNX(B)

causes four values to be punched onto paper tape by the high speed
punch which is opened for output as file 3, of 12 possible files.

10.4.1 PRINT-USING Statement

In order to perform formatted output, the following statement
is used:

line number PRINT{#<expression>,}USING <string>,<list>

where the expression (which is optional) indicates the file or device
which is the destination of the output; the string is either a string
constant, string variable, or string expression which is an exact image
of the line to be printed; and the list is a list of items to be printed.
All characters in the string are printed as they appear except for the
special formatting characters and character combinations described on
the following pages. The string, or portions of the string, are re-
peated until the list is exhausted. The string is constructed accord-
ing to the following rules:

Exclamation Point

An exclamation point identifies a one character string field.
The string is specified in the <list> within the PRINT statement.
For example:

13 PRINT USING "!11", »AR", wgpw, oppe

10-7

which causes:

ACE

to be printed at the user's terminal. The first character from
each of the three string constants or variables is printed. Any
other characters beyond the first are ignored.

String Field

A variable string field of two or more characters is indicated
by spaces enclosed between backslashes. The backslash character
(\) is produced by typing SHIFT/L on the Teletype keyboard. En-
closing no spaces indicates a field two columns wide, one space is

equivalent to a field three columns wide, etc. For example:
2¢ PRINT USING "\\\ \", "ABCD", "EFGHI"

causes

ABEFGH

to be printed at the user's terminal. The first two backslashes
have no spaces enclosed, hence permit the printing of two charac-
ters (AB). The second two backslashes enclose two spaces and
permit the printing of four characters (EFGH). No spaces are
printed unless specifically planned.

Numeric Field

Numeric fields are indicated with the # character. Any decimal
point arrangement can be specified and rounding is performed as
necessary (not truncation). For example:

33 PRINT USING "###«##'"5 12.345

causes

1235

10-8

to be printed on the user's terminal, while

40 PRINT USING "####"s 12.345
5A PRINT USING "“####+"512.345
6@ PRINT USING “##", 100

causes

i2
12.
Z 100

to be printed on the user's terminal. Numeric fields are right justi-
fied; that is, if a number does not fill the allotted space, leading
blanks precede the number. When the field specified is too small

for a constant or variable to be printed, the % character is printed
to indicate the error. The number is then printed.

If the format field specifies a digit as preceding the decimal
point, at least one digit is always output before the decimal point.
If necessary, that digit is zero.

Asterisks

If a number field designation begins with **, any unused spaces
in the number are filled with asterisks. For example:

10 A=27+95: B=107.50¢ C=1007.50
20 PRINT USING “**##.##'", AsB,C

prints the following:

*%27 « 95
*107 50
109750

Notice that the ** characters act as two additional # characters
as well as allowing asterisk fill,

Exponential format (see below) cannot be used in a field with

leading asterisks. Negative numbers cannot be output using asterisk
fill unless the sign is output following the number (see below).

10-9

Exponential Format

When the exponential form of a number is desired, the numeric
field is followed by the string +4++ (four 4 characters) which
allocates space for E-xx., Any arrangement of decimal points is
permitted. For example:

S FS="##t1111454485"
190 A=10000.
20 PRINT USING F$,A,A

causes
10E a3 100080
to be printed at the user's terminal.
All format positions are used to output a number with an expo-~
nent. The significant digits are left justified and the exponent is

adjusted.

Trailing Minus Sign

If a number field designation is terminated with a minus sign,
the sign of the output number is printed following the number,
rather than preceding it. A blank is printed to indicate a positive
number.

13 A==10.5
20 PRINT USING "##F#- #F#FH##"s AsA

which prints:
1#50- =10+50
Note that if the trailing minus is not used, space must be re-

served in the number field designation for the sign to precede the
number.

10-10

Dollar Signs

If a number field designation begins with $$, a dollar sign
immediately precedes the first digit of the number:

10 A=77.44: B=304.55: C=2211.49
20 PRINT USING "$3##.44", AsBsC

which prints:

$77.44
$304.55

% 2211.4 (jnsufficient space to print C along with $

character)

Note that the $§ characters provide for the printing of two addition-
al characters in the number. Since one character is a $, the effect
is to allow for one additional # designation beyond the ones typed

by the user.

Exponential format (see above) cannot be used in a field with
leading dollar signs. Negative numbers cannot be output using the
floating dollar character unless the sign is output following the
number (see above).

Commas

If one or more commas appear to the left of the decimal point
(if any) in a number field designation, then commas are inserted
every three digits to the left of the decimal point. A comma to

the right of the decimal point is considered a printing character.

For example:

10 PRINT USING "#,F#fssf et #FF#eFs8"s 12345+5,123456,1

prints the following:

12,345.50 123.5,1

Insufficient Format

If insufficient format characters are present in a field when

a number is output, a % character is printed in the first position

10-11

of the field followed by the number in standard format, usually
causing the field to be widened to the right. The user is
guaranteed his entire number. For example:

1@ PRINT USING "##.#8 ##.#4", 12345, =12.5

prints the following:

1235 %-12.5

Rounding occurs when digits are dropped at the right of numbers. If
rounding causes the number to exceed the format allowed, the 3% char-
acter is used. For example:

10 PRINT USING "e## oH#EFT, 41255 0999
prints the following:

«13 % 999

Format Too Large

If a numeric field specification results in an attempt to
output more significant digits than are available for the number,
zeros are substituted for all digits following the last significant
digit. Six significant digits are available with the 2-word,
single precision math package and fifteen digits with the 4-word,
double precision math package.

PRINT Statement Punctuation

when the PRINT-USING statement is used, the usual PRINT state-
ment punctuation characters (commas and semicolons) have no effect
on the output format, except that a semicolon at the end of the
PRINT list does inhibit termination of the printed line.

10 PRINT USING "## #¥ ##'", 152,53

prints the following:

10-12

As another example:

18 PRINT USING "#.#4", 2453
20 PRINT wxmw

prints

2.50X%

2s another example:

18 LET A=1.32111: B=2.45457

IS LET F$ = " As##.#f Boffefs"
20 OPEN "LP:' FOR OUTPUT AS FILE 4
25 PRINT #4, USING F$, A,B

would cause:

Az {,32 PRm 2,45

to be printed on the line printer.

10.4.2 MAT PRINT Statement

The MAT PRINT statement allows for easy printing of a predimen-

sioned matrix. The statement is of the form:

line number MAT PRINT {#<expression>,}<matrix>

for example:

15 DIM A(16)
25 MAT PRINT A(15)

If the specified matrix name is unsubscripted, the entire matrix is
printed. If the matrix specification is subscripted, the subscript(s)

indicates the maximum size of the matrix to be printed.

The matrix name can be followed by a semicolon to indicate that
the values are to be printed in a packed fashion, or by a comma to
indicate that each element is printed in its own zone. For example:

19 DIM A(12510),B(10,23)
20 OPEN "LP:'" FOR OUTPUT AS FILE 1

120 MAT PRINT #1, A3 !PRINT MATRIX A IN PACKED FORMAT
139 MAT PRINT #1, BC10,10), '10%10 MATRIX IS PRINTED,
!5 VALUES PER LINE

10-13

Row and column matrices can also be printed. For example:

12 DIM A(S).»
op OPEN "LP:
3% MAT PRINT
4@ MAT PRINT

Line 3§ causes A to

R(12)
w FOR UJTPHIT AS FILE 1

#1, A 1PRINT ON ONE LINF ON CHANNEL 1
#1, B {PRINT IN COLIIMN FORMAT ON

' CHANNEL 1

be printed as a row matrix, closely packed; line

4p causes B to be printed as a column matrix., The form:

70 MAT PRINT

A

would cause the matrix A to be printed as a row matrix, five values

per line (at the user terminal).

10.4.3 PRINT Functions

In order to aid in formatting simple and complex PRINT statements

the following functions are provided:

Function Meaning
POS (X) Returns the current position on the output
line; where X is the I1/0 channel number.
POS (@) returns the value for the user's
terminal.
TAB (X) Tab to position X in the print record. For

example, a standard Teletype has 72 printable
columns numbered @ through 71. TAB(4) causes
sufficient spaces to be output to move the print
head to column 4. If the print head is currently
past position 4, no spaces are output.

For example:

18 PRINT wX" 3 TARC1A)3P0OS(D)

causes the following to be printed:

X
‘___V,__/A

ositio
P nl 9 spaces

19

position 1¢

10-14

CHAPTER 11

RECORD I/O

There are three methods of performing I/O in BASIC-PLUS. For-
matted ASCII I/O is simple and flexible, but requires conversion of
numbers by the system from an internal form to an externally usable
ASCII representation and does not permit random access to files.

I/0 to virtual core arrays permits high-speed random access to files
but can be used only on disk files and does not allow true intermixing
of string and numeric elements or use of the RECORDSIZE specification.

The third type of I/0, Record I/O, permits the user program to
have complete control of I/0 operations. Properly used, Record 1/0
is the most flexible and efficient technique of data transfer avail-
able under BASIC-PLUS. These advantages are obtained at the cost
of the simplicity of the formatted ASCII and virtual array I/0. Less
experienced users should first experiment with the simpler I/0 tech-
niques before attempting Record I/0.

Record I/0 is an optional feature not available on all RSTS-11
systems. If Record I/O is not present on a system, any attempt to

use it results in an error message.

11.1 OPENING A RECORD I/O FILE

To open a file for Record I/0 requires an OPEN statement,
described in Section 9.2. One additional field has been added to
the OPEN statement, the MODE field. The complete format of the
OPEN statement is as follows:

{FOR INPUT }
FOR OUTPUT

{/RECORDSIZE <expr>} {,CLUSTERSIZE <expr>} {,MODE <expr>}

line number OPEN <gtring> AS FILE <expr>

The MODE oétion is used to establish device-dependent properties of
the file. For disk files MODE indicates that the file is to be
opened in UPDATE mode (see Section 12.2). For non-file structured
magtape operations, MODE establishes the density and parity set-
tings for the magtape (sez Section 12.3.6). For line printer opera-
tion, MODE is used in conjunction with the optional forms control

to establish the current form length (see Section 12.5.2). On all
other devices the MODE option has no effect.

11-1

The RECORDSIZE and CLUSTERSIZE options can be specified for
Record I/0 files as described in Sections 9.2.1. and 9.2.2.

11.2 CLOSING A RECORD I/0O FILE

Every Record I/0 file must be closed once I/0 operations
on that file are completed. Files are closed with the CLOSE
statement, as described in Section 9.5. The CLOSE statement

is of the form:
line number CLOSE <expr>{,<expr>...}

where the value of the expression(s) specifies one of the twelve I/0
channels.

Two cautions apply to closing Record 1/0 files. First, the
CLOSE statement for formatted ASCII and virtual array files causes
the final record of the file to be written before closing the file.
However, all I/O to Record I/0 files is explicitly performed (with
GET and PUT statements). The user program must ensure that the
last record is explicitly written onto a Record I/0 file.

Second, if a Record I/0 file is later to be read as a formatted
ASCII file, the user program must insert a CTRL/Z which is a CHRS (26)
following the last character in the file. CTRL/Z is required as
the end-of-file character for formatted ASCII files. The CTRL/Z
need not be inserted into any file which is not to be read as a
formatted ASCII file.

11.3 THE GET AND PUT STATEMENTS

Input and output to Record I/O files is performed directly
between the device channel and the I/0 buffer created by the OPEN
statement. All I/O is specified in terms of single records, using
the GET and PUT statements. GET and PUT are of the form:

line number GET #<exprl> {,RECORD <expr2>}

line number PUT #<exprl> {,RECORD <expr2>} {,COUNT <expr3>}

If the RECORD option (see Section 11.3.3) is not used, the GET
statement reads the next sequential record from the file open on the
channel designated by <exprl>. The record is placed in the I/O buffer
which was associated with the channel by the OPEN statement. The size
of the record depends upon the characteristics of the device on which
the file resides, as described in Table 11-1.

11-2

Table 11-1
Device Record Characteristics

Device Input Record Characteristics

disk Records (sometimes called blocks or segments) are
always 512 characters long. When the RECORDSIZE
option is specified in the OPEN statement, and a
buffer longer than 512 characters is created, the
system reads as many full records as possible. If
several disk records are read with a single GET
statement, the next sequential record is that
record immediately following the last record read.

DECtape Records are always 510 characters long. The
RECORDSIZE option has no effect on DECtape I1/0.

magtape When performing file-structured 1I/0, magtape rec-
ords are always 512 characters. With non-file
structured I/0, magtape records can be of any
length; only one record can be read per GET state-
ment; and the record length cannot exceed the buf-
fer size as determined by the RECORDSIZE option.

keyboard The GET statement obtains one line from the key-
board, up to the first line delimiter (CTRL/Z,RETURN,
LINE FEED or ESCAPE).

card reader A record consists of a single card. The RECORD-
SIZE option has no effect on card reader input.

paper tape RSTS-11 reads a full buffer of input from the
paper tape reader unless an end-of-tape is de-
tected.

Similarly, if the RECORDP and COUNT (see Section 11.3.2) options
are not used, the PUT statement writes the contents of the I/O buffer
for the specified. I/0 channel onto the next sequential record of the
file. The expression <ezprl> specifies the internal channel number
on which the file was opened. PUT writes a single record on the
device, with the exception of disk files which permit several records
to be written at a single time (using the RECORDSIZE option to increase
I/0 buffer size).

11.3.1 The RECOUNT Variable

Non-file structured devices, as can be seen in the description
of the GET statement, can read less than a full buffer of data.
To permit the program to determine how much data was actually read,
a system variable, RECOUNT, contains the number of characters read
following every input operation.

RECOUNT is used primarily for non-file structured input; how-
ever, it may also be used with file-structured devices. On file-
structured DECtape and magtape input, RECOUNT is set to the standard
record length (510 characters for DECtape and 512 characters for

11-3

magtape). On disk file input, RECOUNT is set to the RECORDSIZE or
the next lower multiple of 512 if the RECORDSIZE is not an even
multiple of 512.

RECOUNT is set by every input operation on any channel (includ-
ing channel g). It is, therefore, essential that the RECOUNT value

be tested immediately following the GET statement.

11.3.2 The COUNT Option

The COUNT option used in a PUT statement with a non-file
structured device specifies the number of characters to write in
the current record. However, the COUNT expression cannot be
greater than the size of the I/0 buffer.

For example, where internal channel 1 is opened as magtape
unit # (non-file structured magtape), the following statement could

be used to write an 80-character record:

19® PUT #1%,COUNT 802

For files on file-structured devices (disk and DECtape) the COUNT
option is ignored.

11.3.3 The RECORD Option

With disk files, the user has the capability of performing
random access I/0O to any record of the file. Records in a disk
file are always 512 characters long and are logically numbered
within the file from 1 to n, where n is the size of the file.

The RECORD expression provides the logical record number of
the file to GET or PUT. For example, assuming a disk file opened
on internal channel 1, the following statement writes the contents
of the 1/0 buffer associated with channel 1 on records 14 through
99 of that disk file:

20» PUT #1%Z, RECORD IZ FOR 1%=10% TO 99%
More than one record can be read or written by assigning a large
1/0 buffer to the file with the RECORDSIZE option in the OPEN

statement. (The size of the buffer does not affect the numbering
of the records within the file.)

11-4

If the disk file on channel 1 were opened with a RECORDSIZE of
1924 characters (which would cause two 512-character records to be
written with each PUT) the PUT statement would be written as follows:

20 PUT #1%, RECORD 1% FOR 1%Z=10% TO 98% STEP 2%

After performing a random access GET or PUT on a disk file, the
next GET or PUT statement on that channel accesses the next sequen-
tial record if no RECORD. number is specified. For example:

290 OPEN "DATA"™ AS FILE 1%, RECORDSIZE 512%
373 GET #1%, RECORD 997%
310 PUT #17

The PUT statement at line 31§ writes record 1g@g of the disk file.

11.4 WORKING WITH RECORD I/0 FILES

Techniques for opening, closing, reading and writing record
I/0 files have been described. Techniques for moving data into or
out of the file are provided by extensions to the BASIC language
permitting the program to access, as characters, and modify the con-
tents of the I/0 buffer associated with an internal channel. This
is accomplished by means of the FIELD, LSET, and RSET statements.

11.4.1 The FIELD Statement

The FIELD statement is used to dynamically associate string names
with all or part of an I/O buffer. The FIELD statement has the form:

line number FIELD #<expr>, <exprl> AS <stringvarl>

{,<expr2> AS <stringvar2>...}

where <expr> is an internal channel number associated with some file
by an OPEN statement; <exprl> is the length, in characters, of the
associated string variable; and <stringvarl> is a unique string vari-
able name. The names are associated from left to right with suc-
cessive characters in the I/O buffer assigned to the designated in-

ternal channel number. For example:

75 FIELD #2Z, 10%Z AS A%, 20% AS B%, 3% AS F$%

Statement 75 associates three strings, A$, B$, and F$ in the I/O
buffer, with lengths of 10, 20, and 3 characters, respectively. The

11-5

total number of characters represented in this statement is 33.
The total number of characters must be less than or equal to the
actual I/0O buffer size (which is dependent on the device and the
RECORDSIZE option, as described in Section 9.2.1).

FIELD statements do not move data but rather permit direct
access to sections of the I/0 buffer via string variables. The
effect upon a string variable is temporary and is nullified by any
attempt to assign a value to the variable (other than with LSET
and RSET, described in Section 11.4.2). For example:

192 OPEN "FILE' AS FILE 27
119 FIELD #2%, 5% AS A$
128 LET A$ = 'ABCDE"

Line 12§ causes the string variable A$ to be removed from the I/0
buffer. The string ABCDE is not stored in the I/O buffer by line 12f.

A FIELD statement is an executable statement, rather than a
Compiler directive (such as a DIM statement). To illustrate:
suppose that each record of a disk file contains sixteen 32-character
sub-records and that each sub-record consists of one 5-character
field and one 27-character field. In order to extract the eighth sub-
record from the I/0 buffer, the following statement could be executed:

202 FIELD #1%, 224% AS D$, 5% AS B3, 27%Z AS AS

Line 200 causes the string variables B$ and A$ to point to the

desired sub-record. The string D$ is created to permit the first
seven sub~-records to be skipped. An even more dgeneral statement
could be used to obtain any of the sub-records in the I/0 buffer,

as follows:

209 FIELD #1%, (1%Z-1%2)%32%Z AS D%, 5% AS B3, 27%2 AS A:

When the statement above is executed, I% should contain the number
of the sub-record that B$ and A$ are to contain, as an integer from
1 to 16.

Subscripted string variables can also be used in FIELD state-
ments. For example, the following statements could be used to al-
Locate the sub-records, described in the previous example, to two
string arrays:

338 DIM A$(15), B$(15)

310 FOR 1% = %2 TO 152

3290 FIELD #1%, 1%%32% AS D$, 5% AS B$(IZ)» 27Z AS ASC1Z)
339 NEXT I%

With each iteration of the FIELD statement at line 320 the dummy
string D$ increases by 32 characters, making the displacement from
the start of the I/O buffer to the string B$(I%) equal to 32 times
I% characters. Once this loop is executed, the position of each
string in the arrays A$ and B$ is fixed, A$(f) and BS$(#) pointing
to the first sub-record and A$(15) and B$(15) to the last.

However, virtual array strings must not be defined as string
variables in a FIELD statement. When strings are defined as virtual
arrays they are required to be in a fixed place in both a disk file
and the I/O buffer for that file. Attempting to specify a virtual
array string variable in a FIELD statement will have no effect on
the virtual array string.

11.4.2 LSET and RSET Statements

Once the strings have been defined as part of the I/0 buffer
by a FIELD statement, it is necessary to be able to store values
in these strings without moving them from the I/0 buffer. The
LSET and RSET statements store values in a string without redefin-
ing the string position. These statements are of the form:

line number LSET <stringvar> {,<stringvar>...} <string>

line number RSET <stringvar> {,<stringvar>...} = <string>

where <stringvar> represents any legal string variable name (multiple
string variable names can be separated by commas) and <string> repre-
sents any legal string expression.

LSET and RSET store the value of the string expression into
the designated string or strings. The string previously stored in
the variable is overwritten. The length of the string is not
changed; if the new string is longer than the existing string, the
new value is truncated. If the new string is shorter than the
existing string, it is either padded with spaces on the right by
LSET or padded with spaces on the left with RSET. LSET, then,
causes the string to be left-justified in the field and RSET
causes the string to be right-justified.

11-7

The normal use of LSET and RSET, as described in this Section,
is to store data in strings allocated within an I/O buffer by a
FIELD statement. LSET and RSET can be used to assign a value to
any string variable within a BASIC-PLUS program.

11.4.3 Notes on the Use of the LET Statement

The LET statement cannot be used to place string values into
an I/O buffer as it causes the string to be redefined elsewhere.
Another restriction on LET occurs when that statement is used to

equate two strings, as follows:

59 LET A%$=B%

To avoid unnecessary character manipulation, this operation causes
A$ and B$ to reference the same string. Normally, any operation
which alters B$ causes that string to be moved, so no conflict
arises. However, LSET and RSET do not move strings; they alter

existing strings in a fixed position.

Therefore, if the value of B$ in line 50 above were altered
by an LSET or RSET statement, the value of A$ also changes. For
example:

4092 B% ='"ARC"
410 A% = B$
423 LSET B$ = "XYZ"

Both A$ and BS contain "XYZ" following the execution of line 42f.

This phenomenon has another ramification; if the string BS$
in this example had been defined by a FIELD statement as being
in some I/0 buffer, the string A$ would also be in the I/0 buffer
(being identical to B$). Executing a GET statement to read another
record into the I/O buffer would then change the value of AS$ as
well as BS.

When it is not desirable for the strings A$ and B$ to be physi-
cally identical, there is a means of causing the string B$ to be

moved into the string A$. This operation is performed as follows:

3@@ LET A% = B+

11-8

Line number 3f¢ appends a null string to B$, which has no effect on the
string A$ but causes the two strings to occupy different storage areas.

11.5 CVT CONVERSION FUNCTIONS

The FIELD, LSET, and RSET statements allow a program to store or
retrieve string data directly from an I/0 buffer. 1In order to permit
floating-point and integer values in Record I/O files, four conversion

functions are provided as described in Table 11-2.

Table 11-2
CVT Conversion Functions
Function Form Operation
A§ = CVT%S (I%) maps an integer into a 2-character string.
I%$ = CVTS$% (AS) maps the first two characters of a string

into an integer. If the string has fewer
than two characters, null characters are
appended as required.

A$ = CVTFS (X) maps a floating-point number into a 4- or
8-character string (depending upon whether
the 2-word or 4-word math package,
respectively, is being used on the system).

X = CVTSF (AS) maps the first four or eight characters

(depending upon whether the 2-word or

4-word math package, respectively, is being
used on the system) of a string into a
floating-point number. 1If the string has
fewer than the required number of characters,
null characters are appended.

These functions do not affect the value of the data, but rather its
storage format. Each character in a string requires one byte of
storage (8 bits); hence, characters may assume (decimal) values from
through 255 and no others. A 16-bit quantity can be defined as
either an integer or a 2-character string; 2-word floating point

numbers can equally be defined as 4-character strings.

The CVT functions perform two important functions: first, they
permit dense packing of data in records. For example, any integer
value between -32768 and 32767 can be packed in a record in two char-
acters using CVT%$; this would only be true for integers between -9
and 99 if the data were stored as ASCII characters. Second, converting
the internal numeric representation to an ASCII string (as with the
NUMS$ function) is a more time-consuming process than that performed
by the CVT functions. Thus, the CVT functions provide the means to
speed the processing of a large amount of data within a file.

11-9

11.6 EXAMPLES OF RECORD I/0 USAGE

LISTNH

18 OPEN "KB:" FOR OUTP!IT AS FILE 1

o9 FIELD #1, 10 AS A$, 10 AS B$, 10 AS C%
30 LSET A$='"12345"

4% RSET B$="67892"

50 RSET C$="UWXYZ"

63 PJT #1, COUNT 30

89 END

READY

Figure 11-1
Record I/O Example #1

In Figure 11-1, the device KB: is opened with the default size
(128 characters) buffer length by the OPEN statement at line 14.
The FIELD statement at line 2§ defines three l0-character segments
of the buffer as A$, B$ and ¢$. LSET at line 3§ installs "12345"
in the leftmost 5 of the first 1@ characters of the buffer via the
pointer A$. Similarly the second and third l@g-character pieces of

the buffer are set by lines 4@ and 5¢. When run, this program gener-
ates:

RIINNH
12345 67899 VWXYZ
READY

Note that no carriage return/line feed was output by the PUT state-
ment. (The Monitor outputs a CR/LF sequence as the first part of
the READY message.)

LISTNH -
17 OPEN "$SNOOPY.BAS*" AS FILE 1
op ON ERROR GOTO 100

3¢ OPEN "LP:*" FOR OUTPUT AS FILE 2, RECORDSIZE 512
42 FIELD #1, 512 AS A%

5@ FIELD #2, 512 AS B$

60 GET #1

70 LSET B% = AS

80 PUT #2

9 GOTO 69

12 CLOSE 1,2

154 END

READY

Figure 11-2
Record I/O Example #2

Figure 11-2 is a program to move data from a file named "SNOOPY.BAS"
in the system library (note the $ in the filename) onto the line prin-
ter. Both the line printer and the disk file buffers are initialized to 512

11-10

characters. The FIELD statements at lines 4§ and 5¢ set A$ and BS

to refer to these buffers. Data read at line 6¢ is transferred to

the line printer buffer by the LSET statement (RSET would also be accept-
able in this one case, since both A$ and B$ are the same length) at line
7¢. Then, at line 8§, this data is output to the line printer. The

loop terminates on end-of-file on attempting to read past the last

block of the SNOOPY.BAS file via the ON ERROR GOTO mechanism.

128 GET #2

110 FOR X=0 TO 420 STEP 80

120 FIELD #2, X AS A%, 80 AS BS$
180 NEXT X

196 PUT #2

Figure 11-3
FIELD Statement Example

FIELD statements can be used to perform blocking and deblock-
ing of records where appropriate, as in Figure 11-3.

12 DIM A%$(99)

2@ OPEN "PP:" FOR OUTPUT AS FILE 1, RECORDSIZE 200
3% FIELD #1, 2%1 AS Z%, 2 AS AS(I) FOR I=n TO 99
40 LSET ASCIZ) = CUT%%(I%Z) FOR 1%=0%Z TO 99%

53 PUT #1

6@ CLOSE 1

999 END

Figure 11-4
CVT Function Example

Figure 11-4 illustrates the use of the CVT functions to store
numerical data in compact form as strings of binary bytes. The
tape punched by this program has each integer represented on two
frames of tape. A similar program could be written to read this

binary tape.

11-11

11.7 THE XLATE FUNCTION

The XLATE function is provided for use with Record I/O to
translate a string from one storage code into another. For
example, while reading a magtape file, it might be necessary to
translate from EBCDIC code to ASCII code so that data could be
processed by the PDP-11. The XLATE function is of the form:

XLATE (<stringl>,<string2>)

For example:

X$ = XLATE (AS$,BS)

The first argument, <stringl>, is the source string; the second
argument <string2>, is the table string; the string value returned
by XLATE is called the target string. Characters are taken
sequentially from the source string, and the value of each charac-
ter (@ to 255) is used as an index into the table string (that is,
g means the first character of the table string, 1 means the second,
etc.). The character value from the table string is appended to
the target string unless the selected character in the table string
has a value of # or the table string is shorter than the index
value. This means that the target string is equal to or shorter
than the source string.

For example, the following program removes all characters
except "@" to "9" and changes the characters "8" and "9" into
"All and "B" .

LISTNH

1900 T$ = "@1234567AB"

11 T$ = CHRS(PZ%)+T$ FOR 1%Z=0% TO 47%

120 REM - LINE 119 PUT #'S CORRESPONDING TO CODES @ TO 47
130 INPUT S$ IGET STRING TO TRANSLATE
14 PRINT XLATE(S$,T$)

15@¢ END

READY

RUNNH

? 12XYZ34+-10987654321

12349BAT7654321

READY

11-12

11.8 EXTENDING DISK FILES

A disk file that is created by an OPEN FOR OUTPUT (or OPEN)
statement has a length of f. As records are written, the file
progressively grows in length; this growth is called extending the
file.

A more exact description of file extending is as follows:

a) 1Is there room in the last cluster! of the file for
the new record?

b) If so, then the file length is increased and the
previously unused space in that cluster is used.

c) If not, then a new cluster is appended to the file.
There is then room in the newest last cluster for
the new record so condition b) applies.

The amount of space actually allocated by the system to a file
may be greater than the file length. For example, if the file
clustersize is 4 and the first 6 records of that file have been
written, the file is of length 6 but is actually allocated 8 records

{2 clusters) of space.

A file is extended by attempting to write beyond the current
end-of-file. Hence, a program must have write privileges in order
to be able to extend a file. There is an exception to the rule that
having write access to a file permits a program to extend the file.
In UPDATE mode (see Section 12.2) several programs can have simultane-
ous write privileges on a single file. Nonetheless, if a program
opens a file in this special UPDATE mode, that program may not extend
the file. A file can only be extended when open in normal (non-UPDATE)

mode.

It is possible to extend a file by a number of records at one

time. For example:

190 OPEN "DATA"™ FOR OUTPUT AS FILE 1%
206 PUT #1272, RECORD 1067%

'Note that the file CLUSTERSIZE is the least increment by which a disk
file can be extended. Normally the CLUSTERSIZE would be one record (see
Section 9.2.2).

11-13

would create a file DATA and (when line 200 is executed) extend it
immediately to 100 records. Since the system overhead for extending
a file by a single record and by many records is nearly the same, it
is much more efficient to immediately extend a newly created file to
its final length than to extend it many times in increments of a
single record. Whenever the final size of a file is known, the file

should be extended to its full size in a single operation.

A similar technique applies to virtual core arrays. For example:

120 OPEN '"DATA" FOR 0JTPUT AS FILE 17
220 DIM #1, AC107200)
393 AC13690) = O

This extends the virtual core array A to its final length. Virtual
core arrays, however, are not'initially zeroed by the system. 1In
the example given above, A(f) through A(9999) contain indeterminate
values. Unless the user is careful these values could cause a pro-
gram failure. The user is advised to first zero the virtual core
array. This could be done as follows:

320 MAT A = ZER(10000)

However, this uses the more time consuming method of extending the
file. A more optimal approach would be:

370 AC1AAANZ)I=A: MAT A = ZER(14000)

which immediately extends the file to its maximum and then zeroes it

sequentially. These techniques have frequent practical application.

11-14

CHAPTER 12

DEVICE DEPENDENT I/O OPERATIONS

This Chapter describes special programming techniques that are
available in RSTS. These techniques permit the programmer full
control over input and output operations on specific devices; for
this reason they are called "device dependent" operations. The
material covered in this Chapter assumes familiarity with Chapters
9, 10, and 11.

12.1 NOTES ON DISKS, PUBLIC AND PRIVATE

In Chapter 9, the concept of device names for disks was intro-
duced with little explanation of when a disk is to be referenced
by name (e.g., DK2:) and when simply by default (i.e., no explicit
device is specified). To clarify this, the concept of public disks
and private disks must be explained.

A private disk is one that belongs to only a few user accounts,
conceivably to a single user account. Files can be created only ,
under these accounts, and can be read (or written) by other users
only if the protection code of the file permits. A user who does

not have an account on a private disk cannot create a file on it.

A public disk, on the other hand, is a disk on which any user
can create files. Every user has an account on a public disk as
soon as he references it. There is always at least one public disk
on the system, which is called the "system disk". All public disks
together on a system are called the "public structure" because the
system itself treats all of the public disks together as a unit. For
example, when a program creates a file in the public structure, that
file is placed on the public disk with the most space available. This
is done to ensure proper distribution of files across the disks in
the public structure. The actual determination of which disks on a
particular system are public and which are private is left to the
system manager. Therefore, this allocation will vary from system
to system.

12-1

Private disks are always referenced by a specific name (namely,
DK#: to DK7: or DP@: to DP7:). The public structure is normally
referenced by default; however, it has the specific name "DF:"
(DK: and DP: are acceptable alternatives). While it is permissible
to reference public disks by their specific names, this is not
recommended; it might result in a file that exists elsewhere in the
public structure not being found or even being deleted. The system
will not allow two files of the same name for a single user to exist
in the public structure.

Private disks may be mounted and dismounted while the system
is running. Private disks are normally loaded only when needed.

Public disks should be kept permanently mounted.

12.2 THE UPDATE OPTION FOR-DISK FILES®

In the description of disk files up to this point, the concept
of simultaneous user access to a single file has been largely ig-
nored. The system will permit several users to read from a single
file simultaneously. However, a problem does arise if multiple users
attempt to write onto a single file simultaneously. Two users could
conceivably try to write the same record of the file, resulting in a
loss of data. To avoid this conflict, the system permits only one
user at a time to have write privileges on any given file. Thus, a
user may fail to obtain write privileges even if the file is not
protected against writing. If this occurs the user must close the
file and reopen it at a later time, after the other user has finished
with the file and closed it.

It is exceptional for two users to have a file open simulta-
neously. However, in certain applications (for example, sales
order-entry applications) it might be normal for multiple users to be
updating a single master file. 1In these cases it is not satisfactory
to be constantly closing and reopening the file to obtain write
privileges, as this is a time-consuming operation. For this reason
a special UPDATE option is available with RSTS-11 that permits
multiple users to have write access to a file while guarding against

simultaneous writing of a single record.

l1UPDATE is an optional feature of RSTS-11 and may not be available in
all systems. UPDATE requires the Record I/O option.

12-2

To indicate that a file is being opened for UPDATE, the MODE
specification is used when the file is opened. For example:

107 OPEN '"MASTER' AS FILE 1%, ¥ODE 1%

when used with a disk file indicates that the file is opened for
UPDATE!. 1In this case the program is granted write privileges
unless such access is specifically prohibited by the protection code
of the file.

The system does not permit a file to be simultaneously open for
UPDATE and in normal (non-UPDATE) mode. Attempting to open a file
for UPDATE if it is already open by anyone in normal mode, or at-
tempting to open a file in normal mode if it is already oven for
UPDATE, results in a "PROTECTION VIOLATION" error.

Once a file has been opened for UPDATE, any read operation on
that file causes the record read to be put in a special "locked"
state. This means that no other user is permitted to read or write
that record until it is released (or unlocked) by the program that
locked it. Attempting to read or write a record that another user
has locked results in a "DISK BLOCK IS INTERLOCKED" error which can
be caught with an ON ERROR GOTO statement.

There are three ways for a program to unlock the record:

1. The next write operation on the file unlocks
the record.

2. Executing an UNLOCK statement. This statement
has the form:

line number UNLOCK #<expr>

where <expr> is the internal channel number
of the file that is opened for UPDATE.

3. Any error encountered while accessing the file unlocks
the RECORD.

To illustrate UPDATE, consider a simple inventorv application
where operators on several terminals can enter a part number and
order quantities. Assume that the file is sequenced in such a
fashion that the part number actually corresponds to the record
number of the file that contains information about this part, and
that the first four characters of the record contain the quantity

!T"he RECORDSIZE option may not be used on files that are opened for
UPDATE.

12-3

available as a (2-word) floating-point number. For this example
the remaining 5@8 characters are ignored. A program to handle
updating the quantity available is as follows:

LISTANH

170 ON ERROR GOTOQ 1024303 1FIND 03T AROJT EKRORS
2A@ OPEN "“INVENT.ORY" AS FILE 1, MODE 1 !OPEN FILE IN JPDATE MODE
364 FIELD #1, 4 AS C$ tC$ IS OTY IN FILE

400 INPUT “PART NIMBER'" ;N3"OUJANTITY';Q !GET PART # AND QTY

500 GET #1, RECORD N 'READ APPROPRIATE RECOKD
607 X=CVUTSF(C$)=-0 1COMPUTE QTY REMAINING
700 1F X>=0 THEN 807 TENOJGHE ON HAND?

713 UNLOCK #1 'PERMIT OTHER ACCESSES

720 PRINT *ONLY' CVTSF(C$) "ITEMS IN STOCK"™
'SEE IF ORDER WILL BE

730 GOTO 429 ! CHANGED

8303 LSET C$=CVTF&(X 'STORE NEW OTY ON HAND

85% PUT #1, RECORD N IREWRITE INTO FILE

290% GOTO 496 INEXT TRANSACTION

1007 IF ERR <>19 THEN ON ERROR GOTO 0 ! IGNORE NON-INTERLOCK ERRORS
1123 PRINT "¢AITING" 'LET HIM KNOW WE'RE HERE
1200 SLEEP 5 '%AIT FOR CURRENT ACCESS
1303 RESIME !'TRY AGAIN

1499 END

READY

12.3 MAGTAPE INPUT/OUTPUT OPERATIONS

Magtape I/0 is processed under RSTS-11 as one of two forms:
file-structured magtape and non-file structured magtape. File-
structured magtapes are always written with 512-byte blocks at 8gg
BPI (dump mode on 7-track tape) and odd parity. Each file is pre-
ceded by a magtape file label record; these files are completely
DOS-11 compatible.

Non-file structured magtapes may contain records of any size (up
to about 4K bytes) with any acceptable density or parity settings.

Conventionally, the last record on any magtape is followed by
three EOF (End-of-File) records to signify end of data on that tape.
In order to use the tape for file-structured processing, it must
first have these three EOF records written onto it. This can be done
by zeroing the magtape with PIP (see the RSTS-11 System User's Guide).

For example:
RIINS PIP

PIP - RSTS V4A-11 SYSTEN #213
*MTOs /7.8

would write three EOF records at the beginning of the magtape on
unit g.

12-4

Magtape output can only be done following the end of all previ-
ous data on that magtape. New files begin immediately subsequent to
the last file on the tape. New output is placed on the tape following
the first end-of-file record written at the end of the last output
operation; the other two EOF records are erased when the new file is
created. The new file, then, has three EOF records written to ter-
minate that file.

12.3.1 The File-Structured Magtape OPEN

File-structured processing on magtape permits device independent
programming and tape interchange with DOS-11 programs. To distinguish
between file-structured and non-file structured processing, a file
name must be specified in the OPEN statement. For example:

1@ OPEN "MT@:ABC" FOR INPUT AS FILE 1%

In this example, the file "ABC" is to be read from magtape unit #.

The magtape is rewound and the file "ABC" is located. The file is
write protected by the system (on magtape, therefore, OPEN FOR INPUT
means literally for input only). If the file "ABC" is not located,

a "CAN'T FIND FILE OR ACCOUNT" error occurs. There are two other
forms of the file-structured magtape OPEN statement: OPEN FOR OUTPUT,
and the simple OPEN. For example:

19§ OPEN "MT@:ABC" FOR OUTPUT AS FILE 1%

This statement causes the magtape on unit f to be rewound and a
search for the file "ABC" to be performed. If the file is located,
an error occurs. If the file is not located, a file label is writ-
ten following the last file on the tape, and the tape is left open
for writing. 1In this case, the file is read protected, so only
output may be done. An example of the third form of the OPEN state-
ment is as follows:

1¢gg OPEN "MT@:ABC" AS FILE 1%

Here neither FOR INPUT nor FOR OUTPUT is specified. This statement

causes the tape to be rewound, and a search for the file "ABC" to be
made. If the file is found, an OPEN FOR INPUT is performed; if the

file is not located, an OPEN FOR OUTPUT occurs. This is not a

12-5

recommended method for processing magtape since the program cannot
immediately determine which type of OPEN was performed.

12.3.2 File-Structured Magtape File Labels

To uniquely identify each file on the magtape, the file itself
i{s preceded by a file label. The file label is a l4-byte (7-word)
record that contains the following information:

Table 12-1

Magtape File Label Structure

Byte Contents
Bytes f@-1 Filename (Radix-5@), characters 1-3
Bytes 2-3 Filename (Radix-5@), characters 4-6
Bytes 4-5 File extension (Radix-5¢)
Bytes 6-7 Project-Programmer number
Byte 8 Protection code (always 155)
Byte 9 g (not used by RSTS-11)
Bytes 1@-11 Creation date
Bytes 12-13 g (not used by RSTS-11)

The project-programmer number is the account number of the current
user, unless some other number is specified in the OPEN statement.
If magtapes are to be interchanged with DOS-11 systems, a problem
may occur as RSTS-11 treats project-programmer numbers as decimal
values, and DOS-11 treats this number (called a UIC under D0OS-11) as
an octal value. To avoid interchange problems it is suggested that
all files on the tape be written with a [1,1] project-programmer
number, which is the same in both decimal and octal. For example:

1@ OPEN "MT@:ABC[1,1]1" FOR OUTPUT AS FILE 1%

would accomplish this. Note that the project-programmer number is
part of the filename string. There could be several files named

"ABC" on a tape having different project-programmer numbers associated
with them. Often a failure to find a file on a magtape is the result

of forgetting to specify the correct account number.
The protection code written in the file label is always 155 deci-
mal (233 octal) which is acceptable to DOS-11 (RSTS-11 and DOS-11

use different protection code values). RSTS-11 ignores the value of

12-6

the protection code when reading the file. This avoids interchange
conflicts with DOS-11.

12.3.3 The File-Structured Magtape CLOSE Statement

The CLOSE statement is used when the processing of a magtape
file is completed. 1If the file was open for output, three EOF
records are written when the file is closed to mark the end of data
on the tape. 1In all cases, if file-structured magtape processing was
used, the tape is rewound when the file is closed.

12.3.4 The Non-file Structured Magtape OPEN Statement

In non-file structured processing there are no special file
label records written on the tape. Essentially, the system passes
the data directly from the magtape to the user program. Therefore,
tapes of almost any format can be read or written with non-file
structured magtape operations, as long as the program is itself
set up to handle the actual tape format correctly.

In the OPEN statement, only a magtape unit is specified to
indicate non-file structured processing, no filename would be
specified. There are three forms for the OPEN statement, as
before. These are:

1@ OPEN "MT@:" FOR INPUT AS FILE 1%
or

1¢g@ OPEN "MT@:" AS FILE 1%
OPEN FOR INPUT and the simple OPEN statements are equivalent. No
magtape movement occurs and both reading and writing of records

is permitted. The third form is slightly different:

144 OPEN "MT@:" FOR OUTPUT AS FILE 1%

In this example, the OPEN FOR OUTPUT permits only writing. This is

the normal way of opening a magtape for writing.

12-7

12.3.5 The Non-file Structured Magtape CLOSE Statement

CLOSE has no special action on non-file structured magtapes
unless OPEN FOR OUTPUT was used. On a magtape that was OPEN FOR
OUTPUT, the CLOSE statement causes three EOF records to be written,
followed by backspacing over two of these EOF's, to position the tape

correctly for subsequent output operations.

In any case, if the magtape was open for non-file structured

processing, then it is not rewound on CLOSE.

12.3.6 The MODE Specification

With non-file structured magtape processing on 7-track magtape,

a MODE specification can be used in the OPEN statement to define the

tape density and parity. This parameter is formatted as follows:

line number OPEN<string>AS FILE <expr>, MODE D*4+P

where:
D = density
g = 248 BPI
1 = 556 BPI
2 = 8¢ BPI
3 = 8¢¢ BPI, dump mode’
P = parity
g = odd parity
1l = even parity

Where MODE is not specified, the tape is processed in odd parity

at 8¢¢ BPI (and dump mode for 7-track tapes). The MODE specification
is ignored on 9-track magtapes which are always processed in odd
parity at 8@gg BPI.

lon 9-track tapes, one line of the tape egquals one byte of data. On
7-track tape each line contains only 6-bits. This means that on
writing the tape the high two bits of each byte are lost and on read-
ing the tape the high two bits of each byte are set to zero. In dump
mode, each byte is written as two lines of tape, four bits per line,
and on reading, the low four bits of two consecutive lines are com-
bined to form a byte of data. In dump mode the high two bits of each
line on the magtape are zero.

12-8

For example:

1¢¢ OPEN "MT@:" AS FILE 1%, MODE 5%

would open magtape unit @ (assuming a 7-track drive) with 556 BPI
and even parity.

12.3.7 The MAGTAPE Function

The MAGTAPE function provides flexibility in non-file structured
processing by permitting the program control over all magtape func-
tions. The general form of the MAGTAPE function is as follows:

I% = MAGTAPE (F%,P%,U%)

where:
F$ is the function code (1 to 7)
P2 is the integer parameter

Us is the internal channel number on which
the selected magtape is open

I3 is the value returned by the function

The actual effect of executing the MAGTAPE function is determined
by the function code, F%. These functions are described in the
Sections which follow. In all examples in these Sections, assume
that magtape unit 1 had been opened on internal channel 2. That is,
the following statement had been executed prior to executing the
MAGTAPE function:

1¢¢ OPEN "MT1l:" AS FILE 2%

12.3.7.1 0Off-Line (Rewind and Unload) Function

Function code = 1
Parameter = unused
Value returned = 2

The Off-Line function causes the specified magtape to be
rewound and set to NOT READY. For example:

2¢@ 1% = MAGTAPE(1%,#%,2%)

rewinds and unloads the magtape open on internal channel 2.

12-9

12.3.7.2 WRITE End-of-File Function

Function code = 2
Parameter = unused
Value returned = g

The WRITE End-of-File function writes one EOF record at the

current position of the magtape. For example:

2¢F 1% = MAGTAPE (2%,0%,2%)

writes a EOF on the magtape that is open on internal channel 2.

12.3.7.3 Rewind Function

Function code = 3
Parameter = unused
Value returned = a

The Rewind function causes the selected magtape to be rewound.
For example:

2¢¢ 1% = MAGTAPE (3%,0%,2%)

rewinds the magtape open on internal channel 2 (this function does

not cause the magtape to be set to NOT READY, unlike function code 1).

12.3.7.4 Skip Record Function

4

number of records to skip (1 to 32767)
number of records not skipped (f# unless
EOF encountered)

Function code
Parameter
Value returned

The Skip Record function causes the magtape to advance down the
tape. The tape continues to advance until either the desired number
of records are skipped (in which case the value returned by the
function is @) or an EOF record is encountered (in which case the
value returned is the specified number of records to skip minus the
number actually skipped). For example, to skip from the current tape
position to just past the next EOF, the following function could be

used:

2@ I% = MAGTAPE(4%,32767%,2%)

12-10

This assumes that it is known that there are fewer than 32767 records
before the next EOF. 1In section 12.3.7.7, a more complex example
using the MAGTAPE function shows how to skip an entire file regard-

less of the number of records.

12.3.7.5 Backspace Function

5

number of records to backspace (1 to 32767)
number of records not backspaced (g unless
EOF or beginning-of-tape encountered)

Function code
Parameter
Value returned

The Backspace function is similar to the Skip function, except that
the tape motion is in the reverse direction. The beginning-of-tape
(BOT or Load Point) as well as EOF records can cause premature
termination of the Backspace operation (in which case the value
returned is the specified number of records to backspace minus the
number actually backspaced). The BOT is neither skipped nor counted

as a skipped record. For example:
2¢@ 1I% = MAGTAPE(5%,1%,2%)

would backspace one record on the magtape opened on internal channel

2, unless the tape was already at BOT.

12.3.7.6 Set Density and Parity Function

6
D*4+P
g (see note)

Function code
Parameter
Value returned

where:
D = Density
g = 2¢9 BPI
1 = 556 BPI
2 = 8@ggd BPI
3 = 8¢g BPI, dump mode
P = Parity
g = odd
1l = even

This function changes the density and parity of 7-track magtapes
to any selected:value. It is interpreted in exactly the same fashion
as the MODE specification in the OPEN statement (see Section 12.3.6).

12-11

On 9-track magtape a density of 8@¢ BPI with odd parity is always
used, and the density and parity function is ignored if used. For

example:

2¢@ 1% = MAGTAPE(6%,9%,2%)

would change the density and parity of the 7-track magtape opened on
internal channel 2 from its current setting to 8g@ BPI, even parity.

NOTE

File-structured magtapes must be written at 8¢
BPI dump mode with odd parity. Attempting to
use the MAGTAPE function to change the density
and parity of a file-structured magtape is an
error. In this case the function has no effect,
and the value returned is equal to the parameter
passed (D*4+P) rather than #.

12.3.7.7 Tape Status Function

Function code = 7
Parameter = unused
Value returned = status

The function returns the status of the specified magtape as

a 16-bit integer, with certain bits set depending on the current
status. The format is shown in Table 12-2. For example, to obtain

the status of the magtape opened on internal channel number 2:

2¢f 1I% = MAGTAPE(7%,§%,2%)

If the value of I% returned were 25,6f1 (decimal, or 62¢41 octal)
this would mean that it was 8g@ BPI, 9-track, odd parity, write
protected, and that the last command issued was to the file

and was READ. As another example of the use of the magtape status
function, suppose that a program wanted to advance to the next EOF
(i.e., skip over the current file). The Skip Record function could
do this, unless the file were longer than 32,767 records -- in which
case several skip record functions must be executed. The following

program statement executes a Skip Record function until the

next EOF is encountered:

20¢ 1I% = MAGTAPE (4%,32767%,2%):
IF (MAGTAPE (7%,0%,2%) AND 128%)=f% THEN 20§

12-12

Table 12-2

Magtape Status Word

Bit Test Meaning
15 I1%<g% Last command caused an error
14-13 (I$ AND 24576%)/8192% Density: g = 2¢¢ BPI
1 = 556 BPI
2 = 8¢¢ BPI
3 = 8¢ BPI, dump mode
12 (I$ AND 4£96%) = @% 9-track tape
(I% AND 4096%) <> @% 7-track tape
11 (I$ AND 2048%) = @% 044 parity
(I%$ AND 2#48%) <> @% Even parity
19 (I% AND 1@24%) <> g% Magtape is physically write locked
9 (I$ AND 512%) <> @% Tape is beyond end-of-tape marker
8 (I% AND 256%) <> % Tape is at beginning-of-tape (Load
Point)
7 (I%$ AND 128%) <> @% Last command detected an EOF
6 (I% AND 64%) <> @% The last command was READ and the
record read was longer than the I/0
buffer size (i.e., part of the rec-
ord was lost).
5-3 Unused
2-0 I% AND 7% Indicates last command issued:

g OFF~LINE

READ

WRITE

WRITE EOF

REWIND

SKIP RECORD
BACKSPACE RECORD

LI | T T 1 N 1 1}

Y UL W

12-13

12,3.8 Magtape Error Handling

For processing magtapes in a sophisticated fashion, it is impor-
tant to consider details of the system's handling of special magtape
error conditions. These are: parity error, record length error,

off-line (not ready) error and write lock error.

PARITY ERROR (also Bad Tape Error)

On input operations, the system attempts to read the record 15
times. If the error condition persists, a "USER DATA ERROR ON
DEVICE" error occurs. In this case, the read has been completed, but
the data in the I/0O buffer cannot be considered correct. On an output
operation, if the first attempt to write a record fails, the system
attempts to rewrite the record 15 times using write with Extended
Interrecord Gap tc space past a possible bad spot on the tape. If
the error condition persists, a "USER DATA ERROR ON DEVICE" error
occurs. In both cases, the tape is positioned just past the record

on which the error occurred.

RECORD LENGTH ERROR

This error can only occur during a read operation when the record
on the magtape is longer than the I/O buffer size, as determined by
the OPEN statement. The extra bytes in the record are not read into
memory but are checked for possible parity errors. No I/O error is
returned to the user progran; however, Bit 6 of the magtape status
word is set. Therefore, if a program is reading records of unknown
length from magtape, it is necessary to check for possible record
length errors after every read operation. This can be done as follows:

2@¢@ PRINT "RECORD TOO LONG" IF MAGTAPE(7%,0%,2%) AND 64%

Note that in the above example a non-zero integer tests as TRUE.

OFF-LINE ERROR

If the magtape unit is not ready, a "DEVICE HUNG OR WRITE LOCKED"

error occurs.

12-14

WRITE LOCK ERROR

Attempting any write operation on a magtape that is physically
write locked (i.e., a tape that does not have the write enable ring
inserted) results in a "DEVICE HUNG OR WRITE LOCKED" error.

12.3.9 The KILL and NAME AS Statements

The KILL and NAME AS statements described in Sections 9.8 and
9.7 are applicable only to disk and DECtape files, and cannot be used
with magtape files.

12.4 CARD READER USAGE

The card reader reads -cards punched with the standard codes, as
shown in Appendix D. One of the three sets of codes may be used on
a particular RSTS-11 system: @29, @26, and 14¢1 EBCDIC. Cards
punched in other formats are not acceptable to RSTS-11. The end-of-
file card for RSTS-11 contains a 12-11-@-1 punch in card column 1}.
Reading an end-of-file card causes an "END OF FILE ON DEVICE" error
to occur, which can be trapped with an ON ERROR GOTO statement.

RSTS-11 always suppresses trailing blanks on a card and always
adds a carriage return and a line feed character to the end of the
data read from the card. For example, consider a card punched as

follows:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(columns 1 to 26 are punched, 27 through 80 are blank), and the fol-

lowing program executes as shown:

1g¢ OPEN "CR:" AS FILE 1%
114 INPUT LINE #1%, AS$
12¢ PRINT LEN (AS)

l3g PRINT ll>l1 As Il<"

14¢ END

RUNNH
28

>ABCDEFGHIJKLMNOPQRSTUVWXYZ
<

'A card containing a 12-11-0-1-6-7-8-9 punch in column 1 is also ac-
cepted as an end-of-file card.

12-15

In this example the trailing spaces in card columns 27 through 80 are
deleted, and the characters carriage return/line feed are added
(making a total of 28 characters in the string A$). Cards can be
read with INPUT, INPUT LINE or GET statements.

If a card is misread, or contains any illegal punches, a
"USER DATA ERROR ON DEVICE" error occurs. If the card was read
with a Record I/0 GET statement, then any characters that contain
illegal punches are read as RUBOUT's (ASCII 127 codes). Therefore,

the program can determine in which column (s) the error(s) occurred.

12.5 LINE PRINTER OPTIONS

12.5.1 Special Character Handling

Certain characters have special characteristics on line printer

output. These are summarized in Table 12-3.

Table 12-3

Special Line Printer Characters

Character Function
CHRS (9) TAB, spaces over to next tab position
(columns 1, 9, 17, 25, etc.)
CHRS (14) Line feed
CHRS (12) Form feed (ignored if forms length # 66,

see Section 12.5.2)

CHRS (13) Carriage return (may be used for over-
printing on the LP1l)

CHR$ (96) to CHRS$(126) Lower case printing characters, converted
to upper case except on an upper/lcwer
case printer.

12.5.2 The LPFORM Option!

The LPFORM option permits a program to handle non-standard

length forms in the line printer?. To accomplish this, the forms

1L PFORM is an optional feature of RSTS-11 and may not be available on
all systems. LPFORM requires the Record I/0 option.

2Tl.le hardware option on the LP1l to automatically skip over perfora-
tions must be disabled for this option to execute properly.

12-16

length may be specified in the OPEN statement using the MODE speci-
fication (otherwise a forms length of 66 lines per page is assumed).

When certain special characters are sent to the printer, they
are interpreted as signifying the line number of the next line on
which to print (RSTS-11 skips down to this line by sending the proper
number of line feed characters to the printer).

The OPEN statement would have the following form:
line number OPEN "LP:" AS FILE <expr>, MODE <expr>

In this case the MODE expression is the form size, which may be from
1 to 126 lines per page. For example:

199 OPEN "LP:" AS FILE 1%, MODE 24%

sets the form length to 24 lines per page. Lines are numbered

from # to length-1; so in this example the lines are numbered g
through 23.

Characters whose values lie between # and 127 are output as their
ASCII equivalents. A character whose value is greater than or equal
to 128 is treated as follows: 128 is subtracted from the value. If
the resulting value is greater than the (page length - 1), it is ig-
nored. If the resulting value is less than the rage length but
greater than the current line number, the printer skips to thet line
on the current page. If the resulting value is less than or equal to
the number of the current line, the printer skips to the appropriate
line on the next page.

For example, to print a page header on line 2 and a page trailer
on line 2f, the following statements could be executed:

2¢¢ PRINT CHRS$ (128%+2%); "PAGE HEADER"
21¢ PRINT CHRS$ (128%+2@%); "PAGE TRAILER"

The system operator must ensure that the paper is initially set at

line § for the form control to function properly. When the form
length is set to some value other than 66 lines per page, form feed

12-17

characters (CHR$(12)) are ignored. In this case a form eject is not
done by the system when the printer is closed.

The LPFORM option has one additional capability. In some appli-
cations it is preferable to print the character "O" in place of the
character "@g". For example, a bill for one thousand dollars should
be printed as $1,000.00 rather than $1,0¢¢.¢¢. To accomplish this,
simply add 128 to the MODE with which the line printer is opened.

For example, to open the line printer with a form length of 24 and

convert all @'s to O's, the following statement would be proper:
1¢4 OPEN "LP:" AS FILE 1%, MODE 152%

(since 152=128+24).

12.6 USING VT@5 (AND VT@6) DISPLAY TERMINALS

The VTS5 and VTP6 alphanumeric display terminals recognize
certain control characters that are not used on Teletypes. These are
summarized in Table 12-4.

12-18

Table 12-4

Special Display Terminal Characters

Character Meaning

CHRS (8) BACKSPACE (move cursor left one character)

CHRS (11) CURSOR DOWN (one line, same position)

CHRS (14) Direct cursor control (VT@5 only).
The next two characters give x- and
y- coordinates of the new cursor position
on the 20-line by 72-character VT@5 screen.
The characters following CHR$ (14) are,
first, CHRS$(32+Y) and second, CHRS$(32+X).
Y is the y-coordinate, (# to 19), and X
is the x-coordinate (@ to 71).

CHRS (24) CURSOR RIGHT

CHRS$ (25) CURSOR LEFT!

CHRS (26) CURSOR UP (one line, same position)

CHRS$ (28) HOME DOWN! (move cursor to lower left
hand corner of display screen)

CHRS (29) HOME UP (move cursor to upper left hand
corner of display screen)

CHRS (36) ERASE EOL (erase to end of line)

CHRS (31) ERASE EOS (erase to end of screen)

se of these characters is not recommended on a VT@5 terminal.

12-19

APPENDICES

The following pages contain a summary
of the BASIC-PLUS language, the commands
described in the RSTS-1l System User's
Guide, error messages and other such
material. '

APPENDIX A
BASIC-PLUS LANGUAGE SUMMARY

A.1 SUMMARY OF VARIABLE TYPES

Type
Floating Point
Integer
Character String

Floating Point
Matrix

Integer Matrix

Character String
Matrix

Variable Name

single letter
optionally followed by a
single digit

any floating point variable
name followed by a % character

any floating point variable
name followed by a $ character

any floating point variable
name followed by one or two
dimension elements in
parentheses

any integer variable name
followed by one or two dimen-
sion elements in parentheses

any character string variable
name followed by one or two
dimension elements in paren-
theses

A.2 SUMMARY OF OPERATORS

Type
Arithmetic

Relational

Logical

String

Matrix

TIRANAVARVARANEAR

v

Operator

unary minus
exponentiation
multiplication, division
addition, subtraction

+ * > |

~ =

1

equals

less than

less than or equal to
greater than

greater than or equal to
not equal to
approximately equal to

NOT 1logical negation

AND logical product

OR logical sum

XOR 1logical exclusive or
IMP logical implication
EQV logical equivalence

+ concatenation

+,~- addition and subtraction

of matrices of equal dimen-

sions, one operator per

statement

* multiplication of con-
formable matrices

* scalar multiplication of

a matrix, see Section 7.5.1

Examples
A
I
X3
B%
D7%
M$
R1S
S(4) E(5,1)
N2 (8) Vv8(3,3)
A% (2) 1I%(3,5)

E3%(4) R2%(2,1)

C$ (1) ss(8,5)
A2$(8) V1$(4,2)

Operates Upon

numeric variables
and constants

string or
numeric variables
and constants

== undefined
for strings

relational ex-
pressions composed
of string or
numeric elements
with relational
operators

string constants
and variables

dimensioned vari-
ables. See Sec-
tion 7.6.1 for
further details.

A.3 SUMMARY OF FUNCTIONS

Under the Function column, the function is shown as:
Y=function

where the characters % and $ are appended to Y if the value returned
is an integer or character string.

A floating value (X), where specified, can always be replaced
by an integer value. An integer value (N%) can always be replaced
by a floating value (an implied FIX is done) except in the CVT%$
and MAGTAPE functions (the symbol I% is used to indicate the neces-
sity for an integer value).

Type Function Explanation

Mathematical =ABS (X) returns the absolute value of X,
Y=ATN (X) returns the arctangent of X in radians.
¥=CO0S (X) returns the cosine of X in radians,
Y=EXP (X) returns the value of etX, where e=2.71828,
Y=FIX(X) returns the truncated value of X,

SGN (X) *INT (ABS (X))
Y=INT (X) returns the greatest integer in X which
is less than or equal to X.
Y=LOG (X) returns the natural logarithm of X, log_X,
Y=LOG1#g (X) returns the common logarithm of X, loglﬁx.
Y=PI has a constant value of 3.14159
Y=RND returns a random number between f and 1,
Y=RND (X) returns a random number between # and 1,
Y=SGN (X) returns the sign function of X, a value
of 1 preceded by the sign of X,

Y=SIN(X) returns the sine of X in radians.
Y=SQR (X) returns the square root of X
Y=TAN (X) returns the tangent of X in radians.

Print Y$=POS (X%) returns the current position of the print

head for I/7 channel X, @# is the user's
Teletype. (This value is imaginary for
disk files.)

Y$=TAB (X%) moves print head to position X in the cur-
rent print record, or is disregarded if
the current position is beyond X. (The
first position is counted as #.)

String Y$=ASCII (AS) returns the ASCII value of the first char-
acter in the string AS,.
Y$=CHRS (X%) returns a character string having the

ASCII value of X. Only one character
is generated.

Y$=CVT%S$ (1I%) maps integer into 2-character string, see
Section 11.5.

Y$=CVTF$ (X) maps floating-point number into 4- or 8-
character string, see Section 11.5.

Y3$=CVT$% (AS) maps first 2 characters of string A$ into
an integer, see Section 11.5.

Y=CVTSF (AS) maps first 4 or 8 characters of string AS$
into a floating-point number. See Sec-
tion 11.5.

A-2

Type Function Explanation

String, Y$=LEFT (AS,N%) returns a substring of the string AS
cont'd. from the first character to the Nth
character (the leftmost N characters).
Y$=RIGHT (AS$,N$%) returns a substring of the string AS$

from the Nth to the last character;
the rightmost characters of the string
starting with the Nth character.
Y$=MID(A$,N1%,N2%) returns a substring of the string A$
starting with the N1 and being N2
characters long (the characters
between and including the N1
to N1+N2-1 characters).
Y%=LEN (AS) returns the number of characters in the
string A$, including trailing blanks.
Y%=INSTR(N1%,A$,BS$) indicates a search for the substring
B$ within the string A$ beginning at
character position N1l. Returns a
value @ if B$ is not in AS$, and the
character position of B$ if BS$ is
found to be in A$ (character posi-
tion is measured from the start of
the string).

Y$=SPACES (N%) indicates a string of N spaces, used
to insert spaces within a character
string.

YS$S=NUMS (N%) indicates a string of numeric charac-

ters representing the value of N as
it would be output by a PRINT state-

ment. For example: NUMS$(1.4999)
(space) 1 (space) and NUMS$ (-1.00¢%)
-1l (space).

Y=VAL (AS) computes the numeric value of the
string of numeric characters AS.
If A$ contains any character not
acceptable as numeric input with
the INPUT statement, an error re-
sults. For example:

VAL ("15")=15

Y$=XLATE (AS$,BS) translate A$ to the new string Y$
by means of the table string BS,
see Section 11.7.

System Y$=DATES (g%) returns the current date in the fol-
lowing format:
g2-Mar-71
Y$=DATES (N¢%) returns a character string correspond-

to a calendar date as follows:
N=(day of year)+[(number of
years since 1970)*1000]

DATES$ (1) = "@gl-Jan-7g8"
DATES (240) = "@g5-May-78"
Y$=TIMES (#%) returns the current time of day as a
character string as follows:

TIMES () = "@§5:3¢ PM"

A-3

Type

Matrix

Magtape

Function

Y$=TIMES$ (N%)

Y=TIME (#%)
Y=TIME (1%)

Y=TIME (2%)

Y$=ERR

Y$=ERL

Y$=SWAP% (N%)

Y$=RADS (N%)

MAT Y=TRN (X)
MAT Y=INV(X)

Y=DET

Y%=NUM

Y$=NUM2

Explanation

returns a string corresponding to the
time at N minutes before midnight,
for example:

TIMES$ (1) = "11:59 PM"
TIMES$ (1449) = "12:89 AM"
TIMES (721) = "11:59 AM"

returns the clock time in seconds since
midnight, as a floating point number.

returns the central processor time used
by the current job in tenths of seconds.

returns the connect time (during which
the user is logged into the system)
for the current job in minutes.

returns value associated with the last
encountered error if an ON ERROR GOTO
statement appears in the program.
See Section 8.4.

returns the line number at which the
last error occurred if an ON ERROR
GOTO statement appears in the pro-
gram. See Section 8.4.3.

causes a byte swap operation on the
two bytes in the integer variable N%.

converts an integer value to a 3-
character string and is used to con-
vert from Radix-58 format back to
ASCII. See Appendix D.

returns the transpose of the matrix X,
see Section 7.6.2.

returns the inverse of the matrix X,
see Section 7.6.2.

following an INV(X) function evaluation,
the variable DET is equivalent to the
determinant of X.

following input of a matrix, NUM con-
tains the number of elements entered
in the last row.

following input of a matrix, NUM2 con-
tains the number of rows input.

Y%=MAGTAPE (11%,12%,13%)

Y$=RECOUNT

provides program control over magtape

operations by means of several func-
tion specifications. See Section
12.3.7.

returns the number of characters read

following every input operation.
Used primarily with non-file struc-
tured devices. See Section 11.3.1.

A.4 SUMMARY OF BASIC-PLUS STATEMENTS

The following summary of statements available in the BASIC-PLUS
language defines the general format for the statement as a line in a
BASIC program. If more detailed information is needed, the reader is
referred to the section(s) in the manual dealing with that particular
statement.

In these definitions, elements in angle brackets are necessary
elements of the statement. Elements in square brackets are necessary
elements of which the statement may contain one. Elements in braces
are optional elements of the statement.

Where the term line number ({line number}) is shown in braces,
this statement can be used in immediate mode.

The various elements and their abbreviations are described below:
variable or var Any legal BASIC variable as described in A.1l

or Section 2.5.2.

line number Any legal BASIC line number described in
Section 2.2,

expression Or exp Any legal BASIC expression as described in
Section 2.5.

message Any combination of characters.

condition or cond Any logical condition as described in Sec-
tion 3.5.

constant Any acceptable integer constant (need not

contain a % character).
argument(s) Oor arg Dummy variable names.
statement Any legal BASIC-PLUS statement.

string Any legal string constant or variable as
described in Section 5.1.

protection Any legal protection code as described in
Section 9.1.

value(s) Any floating point, integer, or character
string constant.

-list The legal list for that particular statement.

dimension(s) One or two dimensions of a matrix, the maxi-
mum dimension(s) for that particular state-
ment.

Manual

Statement Formats and Examples Section

REM

{line number}

REM <message> 3.1
{1ine numberl}{<statement>}!<message>
14 REM THIS IS A COMMENT

15 PRINT IPERFORM A CR/LF
LET
{line number}{LET}<var>{,<var>,<var>...} = <exp> 3.2
55 LET A=4f: B=22
64 B,C,A=4.2 IMULTIPLE ASSIGNMENT
DIM
line number DIM<var(dimension(s))> 3.6.2
19 DIM A(28), BS$S(5,18), C%(45) 7.1
line number DIM #<constant>,<var(dimension(s))>=<constant>9.6.1
75 DIM #4, AS$(1g@2)=32,B(54,59) 9.6.2
RANDOMIZE 3.7.2
Tine number RANDOM{IZE}
55 RANDOMIZE
78 RANDOM
IF-THEN, IF-GOTO THEN<statement>
line number IF <cond> [THEN<Z£ne number>] 3.5
GOTO<line number>,
55 IF A>B OR B>C THEN PRINT "NOQO"
6§ IF FNA(R)= B THEN 25§
95 IF L<X+2 AND L<>@ GOTO 345

IF-THEN-ELSE

line number

3¢9
5¢
75

FOR

line number

20
55

IF

IF
IF
IF

THEN<statement> 8.5
<cond>} THEN<line number> ELSE<statement>

GOTO<line number> ELSE<line number>
B=A THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL"

A>N THEN 2¢¢ ELSE PRINT A
B==R THEN STOP ELSE 8¢

FOR <var>= <exp>TO <exp> {STEP<exp>} 3.6.1

FOR I=2 TO 4§ STEP 2
FOR N=A TO A+R

FOR-WHILE, FOR-UNTIL

line number

84
74
@5

NEXT

line number
25
6d

8.6
FOR <var> = <exp> {STEP<exp>}[WHILE] <cond>

FOR I
FOR N

UNTIL
1 STEP 3 WHILE I<X
2 STEP 4 UNTIL N>A OR N=B

FOR B= 1 UNTIL B>1f

NEXT <var>
NEXT I
NEXT N

Manual

Statement Formats and Examples Section

DEF, single line 3.7.3
line number DEF FN<var>(arg) =<exp(arg)> 5.5.1
2§ DEF FNA(X,Y,Z)=SQR(X42+Y+2+242) 6.4
DEF, multiple line
line number DEF FN<var>(arg) 8.1
<statements>
line number FN<var>=<exp>
line number FNEND
19 DEF FNF(M) !FACTORIAL FUNCTION
2¢ IF M=1 THEN FNF=1 ELSE FNF=M*FNF (M-1)
3¢ FNEND
GOTO 3.4
line number GOTO <line number>
199 GOTO 58
ON-GOTO
line number ON <exp> GOTO <list of line numbers> 8.2
75 ON X GOTO 95, 158, 45, 298¢
GOSUB
line number GOSUB <line number> 3.8.1
99 GOSUB 20y
ON-GOSUB
line number ON <exp> GOSUB <list of line numbers> 8.3
85 ON FNA(M) GOSUB 20Q@, 250, 4gg@, 375
RETURN
line number RETURN 3.8.2
375 RETURN
CHANGE 5.2
{line number} CHANGE| .4¥TdY name5j [<string var>
<string var> <array name>-*
25 CHANGE A$ TO X
7¢ CHANGE M TO R$
75 CHANGE B TO B$
OPEN 9.2
{line number} OPEN<string>{FOR(§§$ggT }JAS FILE <exp> g:g:;
{,RECORDSIZE<exp>}{,CLUSTERSIZE <exp>}{,MODE <ezp>}
1§ OPEN "PP:" FOR OUTPUT AS FILE Bl 9.6.3
2g OPEN "FOO" AS FILE 3
3¢ OPEN "DT4:DATA.TR" FOR INPUT AS FILE 1§
CLOSE 9.5
{line number} CLOSE <list of exp> 11.2
199 CLOSE 2
255 CLOSE 1@, 4, N1
3.3.1
READ 5.3
line number READ <list of variables> 6.3
25 READ A, B$, C%, F1l, R2, B(25) 10.1

Statement Formats

Manual

DATA
line number
399

RESTORE

line number
125

PRINT
{line number}
25
75
45

PRINT USING
{Tine number}
54
55
56

INPUT
line number}
25
55

INPUT LIWE
Tine number}
49
75

NAME-AS
Tine number}
455
270

KILL

SN\

ON ERROR GOTO
line number
)
525
526

RESUME
line number

190
655

CHAIN

line number
375

and Examples Section
3.3.1
DATA <list of values> 5.3
DATA 4.3, "STRING",85,49,75.¢84,1¢ 6.3
3.3.1
RESTORE 10.2
RESTORE
3.3.2
5.4
PRINT{{#<exp>, }<list>} 6.3
PRINT !GENERATES CR/LF 9.2.3
PRINT "BEGINNING OF OUTPUT";I,A*I 9.3
PRINT #4,"OUTPUT TO DEVICE"FNM(A)+2;B;A 10.4
PRINT {#<exp>, JUSING <string>, <list> 10.4

PRINT USING "##.##",A
PRINT #3, USING"\\###.## \\$#+t440 "A=" A, "B=",B
PRINT 47, USING B$,A,B,C

3.3.3
INPUT {#<eaxp>,}<iist> 5.3
INPUT "TYPE YOUR NAME " ,AS 6.3
INPUT #8, A, N, BS 9.2.3
9.2.5
9.4
5.3
INPUT LINE {#<exp>,} <string> 10.3
INPUT LINE RS
INPUT LINE #1, ES
9.7
NAME <string> AS <string>
NAME "NONAME" AS "FILE1<48>"
NAME "DT4:MATRIX"™ AS "MATAl1<48>"
9.8
KILL <string>
KILL "NONAME"
8.4
ON ERROR GOTO {<line number>}
ON ERROR GOTO 5@@
ON ERROR GOTO !DISABLES ERROR ROUTINE
ON ERROR GOTO @ !'DISABLES ERROR ROUTINE
8.4.1
RESUME {<line number>}
RESUME IOR RESUME @ ARE EQUIVALENT
RESUME 20§
CHAIN <string> {<line number>} 9.9

CHAIN "PROG2.BAC"

5¢4 CHAIN "PROG3.BAC" 75

Manual

Statement Formats and Examples Section
STOP 3.9
line number STOP
75 STOP
END 3.9
line number END
545 END
Matrix Statements
MAT READ 7.2
line number MAT READ <list of matrices>
55 DIM A(2g), B$(32), C%(15,19)
99 MAT READ A, B$(25), C%
MAT PRINT 7.3
{Tine number} MAT PRINT{#<exp>,} <matrix name>
1§ DIM A (2¢), B(15,20)
99 MAT PRINT A; {PRINT 1¢*1g MATRIX, PACKED
95 MAT PRINT B(14,5), {PRINT 1@*5 MATRIX, FIVE
{ELEMENTS PER LINE
97 MAT PRINT #2, A; IPRINT ON OUTPUT CHANNEL 2
MAT INPUT . 7.4
line number} MAT INPUT{#<exp>,} <list of matrices>
1 DIM BS$(48), F1l%(35)
2@ OPEN "DT3:F0O0" FOR INPUT AS FILE 3
3¢ MAT INPUT #3, B4, F1l%
MAT Initialization 7.5
ER
{line number}MAT <matrizx name>=[§0§]{dimension(s)}
ID
14 DIM B(15,16), A(10), C%(5)
15 MAT C% = CON IALL ELEMENTS OF C%(I)=1
2§ MAT B = IDN(19,14) !IDENTITY MATRIX 1@g*1g
95 MAT B = ZER(N,M) !CLEARS AN N BY M MATRIX
Statement Modifiers (can be used in immediate mode)
IF 8.7.1
<statement> IF <condition>
1§ PRINT X IF X<>f
UNLESS
<statement> UNLESS <condition> 8.7.2
45 PRINT A UNLESS A=f
FOR 8.7.3
<statement> FOR <var> = <exp> TO <exp>{STEP<exp>}
75 LET B$(I) = "PDP~11" FOR I = 1 TO 25
84 READ A(I) FOR I=2 TO 8 STEP 2
WHILE 8.7.4

<statement> WHILE <condition>
14 LET A(I) = FNX(I) WHILE I<45.5

Statement Formats and Examples

UNTIL
<statement> UNTIL <condition>
115 IF B @ THEN A(I)=B UNTIL I>5

System statements

<line number> SLEEP <expression>
198 SLEEP 20 IDISMISS JOB FOR 2§ SEC.

<line number> WAIT <expression>
525 WAIT A%+5 IWAIT A%+5 SEC. FOR INPUT

Record I/0 Statements

<line number> LSET<string var>{,<string var>}=<string>
98 LSET BS$="XYZ"

<line number> RSET<string var>{,<string var>}=<string>
258 RSET C$="67898"

Manual
Section

8.7.5

11.4.2

11.4.2

<line number> FIELD#<expr>,<expr>AS<string var>{,<expr>AS<string var>}

75 FIELD#2%,18% AS AS$, 28% AS BS

<line number> GET#<expr>{,RECORD<expr>}
199 GET#1%,RECORD 99%

<line number> PUT#<expr>{,RECORD<expr>}{,COUNT<expr>}
588 PUT#1%,COUNT 84%

<line number> UNLOCK#<expr>
788 UNLOCK #3%

11.4.1

11.3

11.3

12.2

APPENDIX B

BASIC-PLUS COMMAND SUMMARY

Section in
RSTS-11 System

Command Explanation : User's Guide
ASSIGN Used to reserve an I/0 device for the use of 2.6.3

the individual issuing the command. The speci-
fied device can then be given commands only
from the terminal which issued the ASSIGN.

BYE Indicates to RSTS that a user wishes to leave 2.1.3
the terminal. Closes and saves any files re-
maining open for that user.

CAT Returns the user's file directory. Unless an- 2.5.2
CATALOG other device is specified following the term
CAT or CATALOG, the disk is the assumed device.

COMPILE Allows the user to store a compiled version of 2.3.3
his BASIC program. The file is stored on disk
with the current name and the extension .BAC.
Or, a new file name can be indicated and the
extension .BAC will still be appended.

CONT Allows the user to continue execution of the 2.2.8
program currently in core following the execu-
tion of a STOP statement.

DEASSIGN Used to release the specified device for use 2.6.4
by others. If no particular device is speci-
fied, all devices assigned to that terminal
are released. An automatic DEASSIGN is per-
formed when the BYE command is given.

DELETE Allows the user to remove one or more lines 2,2.5
from the program currently in core. Following
the word DELETE the user types the line number
of the single line to be deleted or two line
numbers separated by a dash (-) indicating the
first and last line of the section of code to
be removed. Several single lines or line
sections can be indicated by separating the
line numbers, or line number pairs, with a
comma.

HELLO Indicates to RSTS that a user wishes to log 2.1.2
onto the system. Allows the user to input
project-programmer number and password.

KEY Used to re-enable the echo feature on the user 2.6.2
terminal following the issue of a TAPE command.
Enter with LINE FEED or ESCAPE key.

Section in
RSTS-11 System

Command Explanation User's Guide
LENGTH Returns the length of the user's current 2.5.1

program in core, in 1K increments.

LIST Allows the user to obtain a printed listing 2.2.4
at the user terminal of the program currently
in core, or one or more lines of that program.
The word LIST by itself will cause the list-
ing of the entire user program. LIST followed
by one line number will list that line; and
LIST followed by two line numbers separated
by a dash (-) will list the lines between and
including the lines indicated. Several single
lines or line sections can be indicated by
separating the line numbers, or line number
pairs, with a comma.

LISTNH Same as LIST, but does not print header con- 2.2.4
taining the program name and current date.

NEW Clears the user's area in core and allows the 2.2.1
user to input a new program from the terminal.
A program name can be indicated following the
word NEW or when the system requests it.

OLD Clears the user's area in core and allows the 2.4.2

user to recall a saved program from a storage

device. The user can indicate a program name

following the word OLD or when the system re-

quests it. If no device name is given, the

file is assumed to be on the system disk. A

device specification without a filename will

cause a program to be read from an input-only

device (such as high-speed reader, card reader).

RENAME Causes the name of the program currently in 2.2.6
core to be changed to the name specified after
the word RENAME.

REPLACE Same as SAVE, but allows the user to substitute 2.4.6
a new program with the same name for an old pro-
gram, erasing the old program.

RUN Allows the user to begin execution of the pro- 2,3.1
gram currently in core. The word RUN can be fol-
lowed by a file name in which case the file is
loaded from the system disk, compiled, and run;
alternatively, the device and file name can be
indicated if the file is not on the system disk.
A device specification without a file name will
cause a program to be read from an input only
device (such as high-speed reader, card reader).

RUNNH Same as RUN, but does not print header contain- 2.3.1
ing the program name and current date.

Command

SAVE

TAPE

UNSAVE

Section in
RSTS-11 System

Explanation User's Guide
Causes the program currently in core to be 2.4.1

saved on the system disk under its current

file name with the extension .BAS. Where

the word SAVE is followed by a file name or

a device and a file name, the program in core
is saved under the name given and on the de-
vice specified. A device specification with-
out a file name will cause the program to be
output to any output only device (line printer,
high-speed punch).

Used to disable the echo feature on the user 2.6.1
terminal while reading paper tape via the
low-speed reader.

The word UNSAVE is followed by the file name 2.4.5
and, optionally, the extension of the file to

be removed. The UNSAVE command cannot remove

files without an extension. If no extension

is specified, the source (.BAS) file is deleted.

If no device is specified, the disk is assumed.

Special Control Character Summary

CTRL/C

CTRL/O

CTRL/U

CTRL/Z

ESCape or
ALT MODE
Key

LINE FEED
Key

RETURN
Key

RUBOUT
Key

TAB or
CTRL/I

Causes the system to return to BASIC command 3.5
mode to allow for issuing of further commands
or editing. Echoes on terminal as 4C.

Used as a switch to suppress/enable output of 3.7
a program on the user terminal. Echoes as 10.

Deletes the current typed line, echoes as +U 3.6
and performs a carriage return/line feed.

Used as an end-of-file character. 3.9

Enters a typed line to the system, echoes on 3.2
the user terminal as a $ character and does
not cause a carriage return/line feed.

Used to continue the current logical line on 3.3
an additional physical line. Performs a
carriage return/line feed operation.

Enters a typed line to the system, results in a 3.1
carriage return/line feed operation at the user
terminal.

Deletes the last character typed on that physi- 3.4
cal line. Erased characters are shown on the
teleprinter between back slashes.

Performs a tabulation to the next of nine tab 3.8
stops (eight spaces apart) which form the
terminal printing line.

APPENDIX C

ERROR MESSAGE SUMMARY

Wherever possible, RSTS follows an error message with the phrase

AT LINE xxXX

where xxxx is the line number of the statement which caused the error.

For example:

1g TALK
ILLEGAL VERB AT LINE 14
READY

The additional message is not printed when no line number can be as-

sociated with the error.
TALK
WHAT?

READY

An (SPR) in the description of any error message in this Appendix
indicates an error which should never be seen by a user. If such a
message is received, the user should document how he obtained the error
and file a Software Performance Report with DEC, including the perti-

nent output.

C.1 USER RECOVERABLE ERRORS

A (C) in the description of the error message indicates that pro-
gram execution continues, following printing of the error messade,
if an ON ERROR GOTO statement is not present. Normally, execution
terminates on an error condition, the error message is printed, and
the system prints READY. The ERR column gives the value of the ERR
variable (see Section 8.4).

ERR Message Printed Meaning
1 BAD DIRECTORY FOR DEVICE The directory of the device refer-

enced is an unreadable format or an
attempt was made to perform a direc-
tory oriented access to a non-
directory device.

c-1

!
s]

> |

Message Printed Meaning

ILLEGAL FILE NAME The filename specified is not accept-
able. It contains unacceptable char-
acters or the filename specification
format has been violated.

ACCOUNT OR DEVICE IN USE Removal or dismounting of the account
or device cannot be done since one
or more users are currently using it.

NO ROOM FOR USER ON DEVICE Storage space allowed for the current
user on the device specified has been
used or the device as a whole is too
full to accept further data.

CAN'T FIND FILE OR ACCOUNT The file or account number specified
was not found on the device specified.

NOT A VALID DEVICE Attempt to use an illegal or nonexis-
tent device specification.

I/0 CHANNEL ALREADY OPEN An attempt was made to open one of
the twelve I/0 channels which had
already been opened by the program.
(SPR)

DEVICE NOT AVAILABLE The device requested is currently
reserved by another user.

I/0 CHANNEL NOT OPEN Attempt to perform I/O on one of the
twelve channels which has not been
previously opened in the program.

PROTECTION VIOLATION The user was prohibited from perform-
ing the requested operation because
the kind of operation was illegal
(such as input from a line printer)
or because the user did not have the
privileges necessary (such as delet-
ing a protected file).

END OF FILE ON DEVICE Attempt to perform input beyond the
end of a data file.

FATAL SYSTEM I/O FAILURE An I/0 error has occurred on the sys-
tem level. The user has no guarantee

that the last operation has been
performed. (SPR)

USER DATA ERROR ON DEVICE One or more characters may have been
transmitted incorrectly due to a par-
ity error, bad punch combination on
a card, or similar error.

DEVICE HUNG OR WRITE LOCKED User should check hardware condition
of device requested. Possible causes
of this error include a line printer
out of paper or high-speed reader
being off-line.

KEYBOARD WAIT EXHAUSTED Time requested by WAIT statement has

been exhausted with no input received
from the specified keyboard.

Cc-2

ERR

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30-41

42

43

Message Printed

NAME OR ACCOUNT NOW EXISTS

TOC MANY OPEN FILES ON UNIT

ILLEGAL SYS() USAGE

DISK BLOCK IS INTERLOCKED

PACK IDS DON'T MATCH

DISK PACK IS NOT MOUNTED

DISK PACK IS LOCKED OUT

ILLEGAL CLUSTER SIZE

DISK PACK IS PRIVATE

DISK PACK NEEDS 'CLEANING'

FATAL DISK PACK MOUNT ERROR

I/0 TO DETACHED KLYROARD

PROGRAMMABLE +C TRAP

CORRUPTED FILE STRUCTURE
not assigned

VIRTUAL BUFFER TOC LARGL

VIRTUAL ARRAY LOT 0N LISK

Meaning

An attempt was made to rename a
file with the name of a file which
already exists, or an attempt was
made by the system manager to in-
sert an account number which is
already within the system.

Only one open DECtape output file
is permitted per DECtape drive.
Only one open file per magtape
drive is permitted.

Illegal use of the SYS system func-
tion.

The requested disk block segment
is already in use (locked) by some
other user.

The identification code for the
specified disk pack does not match
the identification code already on
the pack.

No disk pack is mounted on the
specified disk drive.

The disk pack specified is mounted
but temporarily disabled.

The specified cluster size is unac-
ceptable.

The current user does not have ac-
cess to the specified private disk
pack.

Non-fatal disk mounting error;
the CLEAN operation in UTILTY.

use

Fatal disk mounting error. Disk can-

not be successfully mounted.

I/0 was attempted to a hung up
dataset or to the previous, but now
detached, console keyboard for the
job.

ON ERROR-GOTO subroutine was entered
through a program trapped CTRL/C.
See a description of the SYS system
functicn.

Fatal error in CLEAN operation.

Virtual core buffers must be 512
bytes long.

A non-disk device is open on the
channel upon which the virtual ar-
ray 1s referenced.

-3

ERR
44
45
46

47

48

49

50

51

52

53

54

55

56

57

58

Message Printed

MATRIX CR ARRAY TOO BIG

VIRTUAL ARRAY NOT YET OPEN

ILLEGAL I/0O CHANNEL

LINE TOO LONG

FLOATING POINT ERROR

ARGUMENT TOO LARGE IN EXP

not assigned

INTEGER ERROR

ILLEGAL NUMBER

ILLEGAL ARGUMENT IN LOG

IMAGINARY SQUARE ROOTS

SUBSCRIPT OUT OF RANGE

CAN'T INVERT MATRIX

OUT OF DATA

ON STATEMENT OUT OF RANGE

Meaning
In-core array size is too large.

An attempt was made to use a virtual
array before opening the correspond-
ing disk file.

Attempt was made to open a file on
an I/0 channel outside the range of
the integer numbers 1 to 12.

Attempt to input a line longer than
255 characters (which includes any
line terminator). Buffer overflows.

Floating point overflow or under-
flow. If no transfer is made to
an error handling routine, a # is
returned as the floating point
value. (C)

Acceptable arguments are within the
approximate range -89<arg<+88. The
value returned is zero. (C)

Attempt to use a number as an in-
teger when that number is outside
the allowable integer range. If
no transfer is made to an error
handling routine, a @ is returned
as the integer value. (C)

Improperly formed input or value.
For example, "l..2" is an improp-
erly formed number.

Negative or zero argument to log
function. Value returned is the
argument as passed to the function.

()

Attempt to take sguare root cof a

number less than zero. The value
returned is the square root of the
absolute value of the argument. (C)

Attempt to reference an array ele-
ment beyond the number of elements
created for the array when it was
dimensioned.

Attempt to invert a singular or
nearly singular matrix.

The DATA list was exhausted and a
READ requested additional data.

The index value in an ON-GOTO or
ON-GOSUB statement is less than one
or greater than the number of line
numbers in the list.

C-4

ERR Message Printed

59 NOT ENOUGH DATA IN RECORD
60 INTEGER OVERFLOW, FOR LOOP
61 DIVISION BY ¢

C.2 NON-RECOVERABLE ERRORS

Message Printed

ARGUMENTS DON'T MATCH

BAD LINE NUMBER PAIKk

BAD NUMBER IN PRINT-USING

CAN'T COMPILE STATEMENT

CAN'T CONTINUE

CATASTROPHIC ERROR

DATA TYPE ERROR

DEF WITHOUT FNEND

END OF STATEMENT NOT SEEN

EXECUTE ONLY FILE

Meaning

An INPUT statement did not find
enough data in one line to satisfy
all the specified variables.

The integer index in a FOR loop
attempted to go beyond 32766 or
below -32766.

Attempt by the user program to
divide some quantity by zero.
no transfer is made to an error
handler routine, a § is returned
as the result. (C)

If

Meaning

Arguments in a function call do not
match, in number or in type, the
arguments defined for the function.

Line numbers specified in a LIST or
DELETE command were formatted incor-
rectly.

Format specified in the PRINT-USING
string cannot be used to print one
or more values.

Program was stopped or ended at a
spot from which execution cannot be
resumed.

The user program data structures are
destroyed. This normally indicates

a BASIC-PLUS malfunction and, if re-
producible, should be reported to DEC
on a Software Performance Report form.
(SPR)

Incorrect usage of floating-point,
integer, or character string format
variable or constant where some other
data type was necessary.

A second DEF statement was encoun-
tered in the processing of a user
function without an FNEND statement
terminating the first user function
definition.

Statement contains too many elements
to be processed correctly.

Attempt was made to add, delete or
list a statement in a compiled (.BAC)
format file.

C-5

Message Printed

EXPRESSION TOO COMPLICATED

FIELD OVERFLOWS BUFFER

FILE EXISTS-USE REPLACE

FNEND WITHOUT DEF

FNEND WITHOUT FUNCTION CALL

FOR WITHOUT NEXT

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

CONDITIONAL CLAUSE

DEF NESTING

DUMMY VARIABLE

EXPRESSION

FIELD VARIABLE

FN REDEFINITION

FUNCTION NAME

Meaning

This error usually occurs when
parentheses have been nested too
deeply. The depth allowable is
dependent on the individual expres-
sion.

Attempt to use FIELD to allocate
more space than exists in the speci-
fied buffer.

A file of the name specified in a
SAVE command already exists. 1In

order to save the current program
under the name specified, use the
REPLACE command.

An FNEND statement was encountered
in the user program without a pre-
vious DEF statement being seen.

A FNEND statement was encountered
in the user program without a pre-
vious function call having been
executed. Function has been placed
incorrectly among executable state-
ments or an extra FNEND statement
has been found.

A FOR statement was encountered in
the user program without a corre-
sponding NEXT statement to terminate
the loop.

Incorrectly formatted condition ex-
pression.

The range of one function definition
crosses the range of another func-
tion definition.

One of the variables in the dummy
variable list of a user-defined
function is not a legal variable
name.

Double operators, missing operators,
mismatched parentheses, or some
similar error has been found in an
expression.

The FIELD variable specified is un-
acceptable.

Attempt was made to redefine a user
function.

Attempt was made to define a func-
tion with a function name not sub-
scribing to the established format.

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

INCONSISTENT FUNCTION USAGE

INCONSISTENT SUBSCRIPT USE

Message Printed

IF STATEMENT

IN IMMEDIATE MODE

LINE NUMBER(S)

MAGTAPE() USAGE

MODE MIXING

STATEMENT

SYMBOL

VERB

K OF CORE USED

LITERAL

STRING NEEDED

MATRIX DIMENSION ERROR

MATRIX OR ARRAY WITHOUT DIM

MAXIMUM CORE EXCEEDED

MISSING SPECIAL FEATURE

Meaning
Incorrectly formatted IF statement.

User issued a statement for execu-
tion in immediate mode which can
only be performed as part of a pro-
gram.

Line number reference outside the
range 1<n<32767,

Improper use of the MAGTAPE function.

String and numeric operations cannot
be mixed.

Attempt was made to execute a state-
ment that did not compile without
errors.

An unrecognizable character was en-
countered. For example, a line con-
sisting of a # character.

The BASIC verb portion of the state-
ment cannot be recognized.

A function is being redefined in a
manner inconsistent in the number or
type of arguments with one or more
calls to that function existing in
the program.

A subscripted variable is being used
with a different number of dimensions
from the number with which it was
originally defined.

Message printed by LENGTH command,
preceded by the appropriate number
describing the user program currently
in core to the nearest 1K.

A variable name was used where a
numeric or character string was
necessary.

Attempt was made to dimension a
matrix to more than two dimensions,
or an error was made in the syntax
of a DIM statement.

A matrix or array element was ref-
erenced beyond the range of an
implicitly dimensioned matrix.

User program grew to be too large
to run or compile in the area of
core assigned to each user at the
given installation.

User program employs a BASIC-PLUS
feature not present on the given
installation.

Cc-7

Message Printed

MODIFIER ERROR

NEXT WITHOUT FOR

NO LOGINS

NOT A RANDOM ACCESS DEVICE

NOT ENOUGH AVAILABLE CORE

NUMBER IS NEEDED

1 OR 2 DIMENSIONS ONLY

ON STATEMENT NEEDS GOTO

PLEASE SAY HELLO

PLEASE USE THE RUN COMMAND

PRINT-USING BUFFER OVERFLOW

PRINT-USING FORMAT ERROR

PROGRAM LOST-SORRY

REDIMENSIONED ARRAY

RESUME AND NO ERROR

Meaning

Attempt to use one of the statement
modifiers (FOR, WHILE, UNTIL, IF,
or UNLESS) incorrectly.

A NEXT statement was encountered in
the user program without a previous
FOR statement having been seen.

Message printed if the system is
full and cannot accept additional
users or if further logins are dis-
abled by the system manager.

Attempt to perform random access I/0
to a non-random access device.

The already compiled user program is
too large to run in the area of core
assigned to each user at the given
installation.

A character string or variable name
was used where a number was necessary.

Attempt was made to dimension a matrix
to more than two dimensions.

A statement beginning with ON does
not contain a GOTO or GOSUB clause.

User not logged into the system has
typed something other than a legal,
logged-out command to the system.

A transfer of control (as in a GOTO,
GOSUB or IF-GOTO statement) cannot
be performed from immediate mode.

Format specified contains a field too
large to be manipulated by the PRINT-

USING statement.

An error was made in the construction
of the string used to supply the out-
put format in a PRINT-USING statement.

A fatal system error has occurred
which caused the user program to be
lost.

Usage of an array or matrix within
the user program has caused BASIC-
PLUS to redimension the array im-
plicitly.

A RESUME statement was encountered
where no error had occurred to cause
a transfer into an error handling
routine via the ON ERROR-GOTO state-
ment.

c-8

Message Printed

RETURN WITHOUT GOSUB

STATEMENT NOT FOUND

STOP

STRING IS NEEDED

SYNTAX ERROR

TEXT TRUNCATED

TOO FEW ARGUMENTS

TOO MANY ARGUMENTS

UNDEFINED FUNCTION CALLED

WHAT?

WRONG MATH PACKAGE

C.3 SYSTEM IDENTIFICATION MESSAGE

Meaning

RETURN statement encountered in the
user program without a previous
GOSUB statement having been executed.

Reference is made within the program
to a line number which is not within
the program.

STOP statement was executed. The
user can usually continue program
execution by typing CONT and the
RETURN key.

A number or variable name was used
where a character string was neces-
sary.

BASIC-PLUS statement was incorrectly
formatted.

No BASIC-PLUS statement can be more
than 255 characters long.

The function has been called with
a number of arguments not equal to
the number defined for the function.

A user-defined function may have up
to five arguments.

BASIC-PLUS interpreted some state-
ment component as a function call
for which there is no defined func-
tion (system or user).

Command or immediate mode statement
entered to BASIC-PLUS could not be
processed. Illegal verb or improper
format error most likely.

Program was compiled with an incom-
patible version of RSTS. Program
source must be recompiled.

ERR code @ is associated with the system installation name

for use by the system programs.

APPENDIX D
BASIC-PLUS CHARACTER SET

D.1 BASIC-PLUS CHARACTER SET

User program statements are composed of individual characters.

Allowable characters come from the following character set:

A through 2
@ through 9
Space
Tab
and the following special symbols and keys:

$ Used in specifying string variables (Section 5.1),
or as the System Library file designator (RSTS-11 System
User's Guide).

$ Uced in specifying integer variables (Section 6.1).

vten Used to delimit string constants, i.e., text
strings (Section 5.1).

! Begins comment part of a line (Section 3.1).

: Separates multiple statements on one line
(Section 2.3.1).

Denotes a device or file # name, or is used as an
output format effector (Chapter 7 and Section 10.4).

' Output format effector and list terminator
(Section 3.3).

H Output format effector (Section 3.3).

LINE When used at the end of a line, indicates that
FEED the current statement is continued on the next
line (Section 2.3.2).

() Used to group arguments in an arithmetic ex-
pression (Section 2.5).

Used to group project-programmer number.

A
v

Used to delimit file protection codes.

Arithmetic operators (Section 2.5.3).

* +

Nt
>

= Replacement operator (Section 3.2).
Logical equivalence operator (Section 2.5.4).

< Logical "less than" operator (Section 2.5.4).

v

Logical "greater than" operator (Section 2.5.4).

Logical "approximately equal to" operator (Section 2.5.4).

D-1

D.2 ASCII CHARACTER CODES

Decimal ASCII RSTS Decimal ASCII RSTS
Value Character Usage Value Character Usage

64 @ 96 ®

65 A 97 a

66 B 98 b

67 C 99 c

68 D 100 d

69 E 101 e

70 F 102 £

71 G 103 g

72 H 104 h

73 I 105 i

74 J 106 j

75 K 107 k

76 L 108 1

77 M 109 m

78 N 110 n

79 o} 111 o

80 P 112 P

81 Q 113 q

82 R 114 r

83 S 115 s

84 T 116 t

85 U 117 u

86 v 118 v

87 W 119 w

88 X 120 X

89 Y 121 y

90 z 122 z

91 [123 {

92 \ Backslash 124 | Vertical Line

93 1 125 }

94 ~ or + 126 ~ Tilde

95 or + 127 DEL RUBOUT

D.3 CARD CODES

The RSTS card driver can be configured for one of three different
punched card codes. These are: DEC@29 codes, DEC@26 codes and 14¢1
(EBCDIC) codes. The RSTS-11 DEC@29 and DECP26 codes are the same as
the DOS-11 card codes. The particular set of codes used on the system
is determined by the system manager. In all cases, the end-of-file
(EOF) card must contain a 12-11-§-1 punch or a 12-11-g-1-6-7-8-9 punch

in column ¢.

CHARACTER ASCII 19 DEC@29 DECP26 1401 || CHARACTER ASCIIT,, DECP29 DECA26 1491
{ 123 12 g 12 g UNUSED
} ~125 11 g 11 g UNUSED

SPACE 32 NONE NONE NONE @ 64 8 4 8 4 8 4

! 33 12 8 7 12 8 7 11 & A 65 12 1 12 1 12 1
" 34 8 7 g8 5 g8 2 B 66 12 2 12 2 12 2
35 8 3 g 8 6 8 3 c 67 12 3 12 3 12 3
$ 36 11 8 3 11 8 3 11 8 3 D 68 12 4 12 4 12 4
% 37 g 8 4 g8 7 g 8 4 E 69 12 5 12 5 12 5
& 38 12 11 8 7 12 F 79 12 6 12 6 12 6
! 39 8 5 8 6 12 8 4 G 71 12 7 12 7 12 7
(49 12 8 5 7 8 4 8 7 H 72 12 8 12 8 12 8
) 41 11 8 5 12 8 4 g 87 I 73 12 9 12 9 12 9
* 42 11 8 4 11 8 4 11 8 4 J 74 111 11 1 111
+ 43 12 8 6 12 g 85 K 75 11 2 11 2 11 2
R 44 g 8 3 g 8 3 g 83 L 76 11 3 11 3 11 3
- 45 11 11 11 M 77 11 4 11 4 11 4
. 46 12 8 3 12 8 3 12 8 3 N 78 11 5 11 5 11 5
/ 47 g1 g1 g1 o) 79 11 6 11 6 11 6
) 48 2 2 2 P 8g 11 7 11 7 11 7
1 49 1 1 1l Q 81 11 8 11 8 11 8
2 5@ 2 2 2 R 82 11 9 11 9 11 9
3 51 3 3 3 S 83 g 2 g 2 g 2
4 52 4 4 4 T 84 g 3 g 3 g 3
5 53 5 5 5 U 85 g 4 g 4 g 4
6 54 6 6 6 v 86 g 5 g5 75
7 55 7 7 7 W 87 g 6 g6 g 6
8 56 8 8 8 X 88 g7 g 7 g 7
9 57 9 9 9 Y 89 g 8 g 8 g 8
: 58 8 2 11 8 2 8 5 Z 98 g9 g9 g9
; 59 11 8 6 g 8 2 11 8 6 [91 12 8 2 11 8 5 12 8 5
< 68 12 8 4 12 8 6 12 8 6 \ 92 g8 2 8 7 g8 6
= 61 8 6 8 3 11 8 7 1 93 11 8 2 12 8 5 11 8 5
> 62 g 86 11 8 6 8 6 + or © 94 11 8 7 8 5 unused
? 63 g8 7 12 8 2 12 ¢ < or 95 g 85 8 2 12 8 7

EOF is 12-11-g-1 punch or a 12-11-§-1-6-7-8-9 punch.

D.4 RADIX-58 CHARACTER SET

Radix-58

Character ASCII Octal Equivalent Equivalent
space 49 g

A~2Z 191 - 132 1 - 32

$ 44 33

. 56 34
unused 35

#-9 6g - 71 36 - 47

The maximum Radix-5@ value is, thus,
47%5g% + 47*50 + 47 = 174777

The following table provides a convenient means of translating
between the ASCII character set and its Radix-5§ equivalents. For
example, given the ASCII string X2B, the Radix-5@ equivalent is
(arithmetic is performed in octal):

X = 113999
2 = fgg24pp
B = ggggg2
X2B = 11542

Radix-5@ Character/Position Table

Single Char.
or Second Third
First Char. Character Character
A 993100 A gegasg A go0gd1
B BB6268 B 888124 B 2088982
c 811308 c 886178 c ge0843
D 614488 D 686248 D 208044
E B17588 E 6086318 E 488885
F 822668 F 688364 F 208886
G 625788 G B806438 G s88887
H 8314408 H 886586 H g00018
I 834148 I 8848558 I ggeg11
J 837288 J 8608624 J ga6d12
K #4234048 K 886678 K 808013
L g45484 L gag748 L gepg14
M 458588 M gd1414 M gadd1s
N #53684 N g61d68 N #dgd1e
0 4567448 o] g71134 o) 288417
P ge2080 P gg81284 P 2088290
Q 6651448 Q 881254 Q #8921
R 274208 R g81326 R gagp22
S g73388 s 861378 S #486823
T #76488 T g81448 T gggg24
U 141588 4] #1514 U 808825
v 1446484 \% gd1564 v ggdg26
W 147788 W 881634 W go8g27
X 1134484 X g41744d X 290438
Y 116188 Y g41754 Y gog831
A 121244 Z gd2828 Z go8832
$ 1243904 $ gd2474 $ gedd33
. 127449 . ga2144 . g808834
unused 132504 unused g42214 unused @g@FF35
') 135604 [} #2264 '} gagd36
1 149744 1 g#2334 1 g8 37
2 144489 2 ge24484 2 gaddag
3 147144 3 gd2454 3 g4l
4 1522484 4 g82524 4 gddga2
5 1553484 5 g92574 5 gdddas
6 legadd 6 go264d 6 goggaa
7 163549 7 282714 7 gaggas
8 1666909 8 g82764 8 goggie
9 171764 9 g83838 9 gagga7

APPENDIX E

VIRTUAL ARRAY FACILITY

The RSTS-11 virtual array facility provides the means for a
BASIC-PLUS program to operate on data structures that are too large
to be accommodated in core at one time. To accomplish this, RSTS-11
uses the disk file system for storage of data arrays, and only main-

tains portions of these files in core at any given time.

An essential difference between real arrays and their virtual
counterparts is the order in which array elements are referenced.
In real arrays, the referencing algorithm has no effect on the time
it takes to accomplish the references; while for virtual arrays, this
order can have a significant effect on the program execution time.
This Appendix describes the algorithms used in the RSTS-11l virtual
array processor, in order that users concerned with efficiency can
optimize their use of this facility.

Each RSTS-11 disk file appears to the user program as a con-
tiguous sequence of 256-word records. Any position in a file can
be specified internally with a two-component address; the first part
being the relative record within the file,and the second being the
position of the item within the block. One of the functions of the
virtual array processor is to transform, or map, each virtual array
reference into its corresponding file address.

Virtual arrays are stored as unformatted binary data. This
means that no I/O conversions (internal form-to-ASCII) need be per-
formed in storing or retrieving elements in virtual storage. Thus,
there is no loss of precision in these arrays, and no time wasted

performing conversions.

All references to virtual arrays are ultimately located via
file addresses relative to the start of the file. No symbolic in-
formation concerning array names, dimensions, or data types is stored
within the file. Thus, different programs may use different array
names to refer to the data contained within a single virtual array
file. The user must be cautious in such operations, since it is
his responsibility to ensure that all programs referencing a given
set of virtual arrays are referencing the same data. Consider the
following example:

Program ONE contains

1¢ DIM#1,X(18),Y(19)
2¢ OPEN "FILE" AS FILE 1

.
.

Program TWO contains

12 DIM#1,2Z(18),X(18)
2¢ OPEN "FILE" AS FILE 1

Whenever program TWO references the array %, it is using the data known
to program ONE as array X. Both X and Z are the first arrays in their
declarations, both contain floating-point data, and both are 1l elements
(X(#),...,X(18)) long. These two arrays, then, correspond in position,
type, and dimension.

References to the array X (in ONE) and to the array X (in TWO)
do not refer to the same data, even though both are using the same
virtual file (FILE). The concept of using relative position, rather
than name, to identify data items is familiar to users of the FORTRAN
common facility.

Within a single BASIC-PLUS program it is possible to open a single
virtual core array file twice on the same channel for the purpose of
reallocating the data within the file. For example:

145 OPEN "DATA" FOR INPUT AS FILE 1

154 DIM#1l, AS$(1g)=4

155 DIM#1l, B$(4)=16
The program now has access to the file DATA through both the array A$
and the array B$. Each element of B$ contains four elements of A$
(B$ (@) is equivalent to the elements A$(f) through A$(3), etc.). Note
that the file is open for input only and that the two DIM# statements
reference that file on a single channel number (#1 in this case).

Note also that the two statements:
75 DIM#1l, A(19)
8¢ DIM#l, B(19)
are not equivalent to the statement:
99 DIM#l, A(1#),B(19)

In the first case the arrays A and B are equivalent to each other and
constitute the first array in the file open on channel 1. In the

second case the arrays A and B are defined as both existing in the

file open on channel 1.

CAUTION

The user is advised not to open a single file
under two different channel numbers. For ex-
ample:

5¢ OPEN "VALUES" AS FILE 1
55 OPEN "VALUES" AS FILE 2

199 DIM#1, X$(26)
145 DIM#2, YS$(24)

causes two buffers to be created for the stor-
age of input to/from channel 1 and to/from chan-
nel 2. Data output to channel 1 is not avail-
able to channel 2, etc.

E.1 ARRAY STORAGE

Any data element in a virtual array is completely contained
within a single segment (256 words) of disk storage. This restric-
tion has no effect on integers and floating-point items, where the
size of data items is fixed (l-word integer, 2- or 4-word floating
point numbers), but does limit the maximum length of a virtual
string to 512 characters (512 bytes). The number of data elements
stored in each disk segment is a function of the size of each ele-
ment. For virtual strings, the number of elements is also related
to the maximum string length specified in the DIM# statement. The
size of a virtual string is defaulted to 16 characters, and can be
specified as: 2, 4, 8, 16, 32, 64, 128, 256, or 512. Table E-1
indicates the number of array elements stored in each segment of a

virtual file.

Table E-1

Virtual Array Storage Capabilities

Number of Elements

Data Type per Segment
Integer (%) 256
2-Word Floating Point 128
4-Word Floating Point 64
String ($) 512/N

(where the maximum length = N)

Strings in virtual storage occupy pre-allocated space in the
virtual file, and thus differ from strings in core storage, where
space is allocated dynamically. A disk segment containing virtual
strings can be considered to be a succession of fields, each of the
maximum string length. When a virtual string is assigned a new value,
it is stored left-justified in the appropriate field. If the new
string value is shorter than the maximum length, the remainder of the
field is filled with zeros. When the string is retrieved, its length
is computed as the maximum string length minus the number of zero-
filled bytes.

E.2 TRANSLATION OF ARRAY SUBSCRIPTS INTO FILF ADDRESSES

In order to translate an array subscript into a file address,
RSTS-11 computes (a) the relative distance from the specified item
to the first item in the array, and then adds (b) the relative dis-
tance from the first element of the array to the first item in the
file. The first quantity (a) is computed from the array subscript
and the number of elements per block, as shown in Table E-1. The
second number (b) is a constant for each array in a file, and is

computed from the parameters specified in the DIM# statement.

Since the DIM# statement contains the only information used to
define the structure of a file, it is possible for the user to speci-

fy different accessing arrangements for the same file in one or more

programs. For example, the user can reference the same data as
either a series of 32-byte strings (A2$) or l6-byte strings (AlS),
with the following statements:

19 DIM #1,A1$(1Q909) = 16 116 CHARACTER STRINGS.
2¢ DIM #1,A2S$(599) = 32 132 CHARACTER STRINGS.
30 OPEN 'FIL1l' AS FILE 1 IVIRTUAL ARRAY FILE.

The user should keep in mind that in BASIC-PLUS, as in most
BASICs, array subscripts begin with @, not 1. An array with di-
mension n, or (n,m) actually contains n+l, or [(n+l)*(m+1l)] elements.

User programs may define two-dimensional virtual arrays as
well as singly dimensioned ones. Two-dimensional arrays are stored
on disk (and in core) linearly, row-by-row. Thus, in the case of

an array X(1,2), the array appears logically as:

X(g,9) X(g,1) X(g,2)
X(1,4) X(1,1) X(1,2)

while physically it is stored as:

X(g,9) lowest address
X(g,1)
X(g,2)
X(1,9)
X(1,1)
X(1,2) highest address

If a virtual array is to be referenced sequentially, it is
usually preferable to reference the rows, rather than the columns,
in sequence. Consider the case in which it is necessary to com-
pute the sum of each row and column in two dimensional virtual
array. Program ONE below does this far more efficiently than pro-
gram TWO below:

10 REM PROGRAM 'ONE' TO COMPUTE SUMS EFFICIENTLY
2§ REM 'AR' CONTAINS VIRTUAL ARRAY

3¢ REM R(I) IS SUM OF ROW I

4 REM C(J) IS SUM OF COLUMN J

50 DIM #1,A(1¢,59) !1¢4 ROWS,5@ COLUMNS

6@ DIM R(1@), C(59)

7¢ OPEN 'AR' AS FILE 1 {OPEN VIRTUAL FILE

8¢ MAT R = ZER !INITIALIZE SUM

99 MAT C = ZER
190 FOR I = 1 TO 1§ IOPERATE ROW BY ROW
119 FOR J = 1 TO 5@ !DO EACH COLUMN IN ROW
12¢ R(I) = R(I) + A(I,J) !TOTAL ACROSS ROW
13¢ C(J) = C(J) + A(I,J) ! TOTAL DOWN COLUMN
149 NEXT J {NEXT COLUMN IN ROW
150 NEXT I !NEXT ROW
160 MAT PRINT R; IPRINT ROW TOTALS
17¢ MAT PRINT C; !PRINT COLUMN TOTALS
2g@ CLOSE 1
999 END

1§ REM PROGRAM 'TWO' HAS INEFFICIENT USE OF VIRTUAL CORE

20 REM 'AR' CONTAINS VIRTUAL ARRAY
3¢ REM R(I) CONTAINS SUM OF ROW I

4@ REM C(J) CONTAINS SUM OF COLUMN J
5¢ DIM #1,A(1¢,59) 119 ROWS, 5@ COLUMNS

6¢ DIM R(1f), C(589)

7¢ OPEN 'AR' AS FILE 1

8¢ MAT R = ZER

9g MAT C = ZER

95 REM - REFERENCING ARRAY ELEMENTS DOWN THE
96 REM - COLUMNS CAUSES EXTRA DISK REFERENCES

199 FOR J = 1 TO 50 I1OPERATE ONE COLUMN AT A TIME
11 FOR I = 1 TO 1§ {AND EACH ROW IN COLUMN

12¢ R(I) = R(I) + A(I,J) ITOTAL ACROSS ROW

13¢ C(J) = C(J) + A(I,J) !TOTAL DOWN COLUMN

140 NEXT I INEXT ROW IN COLUMN

15¢ NEXT J INEXT COLUMN

1690 MAT PRINT R;

179 MAT PRINT C:
2fg CLOSE 1
999 END

In virtual core arrays it is permissible to have two (or
more) arrays sharing the same file. That is, the following DIM#
statement is perfectly legal:

1g¢ DIM#1,A(1ggF),B%(999),C(1%28)

The matrix B% begins immediately after the 1@@g@th element
of A and the matrix C begins immediately after B%(999). There-
fore, the disk layout is as follows:

E-6

A(f)
A(l)

L, N

r/ . A,

A(999)
A(1ggg)
B% (@)
Bz (1)

AR

-
7

By
[

ot .

B% (998)

B%(999)
c(g)
C(1)

S
¢
3.
Q

Cc(999)
C(1999)

b)
.

Figure E-1 Virtual Array File Layout

There is, however, an exception to this rule. Elements in string
arrays are allocated a fixed number of bytes in the disk file. This
is either 2, 4, 8, 16, 32, 64, 128, 256 or 512 bytes of storage. A
single string element must not cross a disk block boundary (where
each disk block contains 512 bytes or 256 words). Consider the
following case:

1g¢ DIM A%(2),BS(19¢98)=4

The first three words of the disk block are allocated to As.
If the array B$ were to begin immediately after A%, one of the ele-
ments of B$ would cross a block boundary. Hence, B$ begins at the
start of the second block in the file rather than immediately after
A%,

The rule can be stated as follows: When more than one array
is assigned to a single virtual array file, each array begins imme-
diately following the last element of the preceding array unless
such an allocation would cause an element of the array to be split
across two disk blocks, in which case the array begins at the start
of the next block of the file, and the remaining words of the cur-
rent block are unused.

E.3 ACCESS TO DATA IN VIRTUAL ARRAYS

Only a portion of a virtual array is in core at any given time.
This data is transferred directly between the disk and an I/0 buf-
fer in the usar core area, created when the OPEN statement is exe-
cuted. This buffer must be 256 words (one segment) long, and
may not be specified as several segments with the RECORDSIZE option
in the OPEN statement. For each virtual array file, RSTS-11
notes (1) the segment of the file in the buffer, and (2) whether
the data in the buffer has been modified since it was read into

core.

After RSTS-11 translates a virtual array address into a file
address, it checks whether the segment containing the referenced
item is currently in the buffer. If the necessary segment is pre-
sent the reference proceeds; but if not, another portion of the
file is read into the buffer. If the current data in the buffer
has been altered, it is necessary to rewrite this data on the disk

prior to reading new data into the buffer.

The referencing algorithm, which minimizes the number of disk
memory accesses generated when handling virtual arrays, is flow-

charted in Figure E-2.

E.4 ALLOCATING DISK STORAGE TO VIRTUAL FILES

The dimensions indicated in a DIM# statement set maximum.allow=-
able values for subscripts, and are not used to compute the initial
size of the virtual file to be allocated on disk. 1Instead, the
file is created with an initial length of @ segments, and segments
are appended to the file, to accommodate the highest referenced file
address in the array. This permits a user to specify array dimen-
sions larger than required at the time the program is written; such
programs may eventually operate on larger arrays without modification,

and without tying up disk storage unnecessarily.

Areas of unallocated disk storage are found only at the end of
a file.

As segments are appended to a file, their contents are not
initialized to zero. The data previously recorded in a segment (when
it was part of another file) is available to the new owner of the
segment. Users whose files contain confidential information should
explicitly overwrite all data in such files, prior to file deletion,

in order to protect data contained therein.

E-8

Virtual Array
Reference

Translate Sub-
script into File

Yes

Current
egment Been

Altered
?

Rewrite Segment
in File

lear 'Modified'
Indicator

)
Read New
File Segment

eplac-
ing Element

in Buffer
?

No

Yes

Set 'Modified!'
Indicator

[
Proceed with
Operation

Figure E-2 Virtual Array Accessing Algorithm

E-9

If a user wishes to override the dynamic virtual array alloca-
tion, he should reference the last element in the virtual array file.
This causes all segments in the file, up to and including the last,
to be allocated. As noted above, the contents of these segments as
appended to the file is unknown. Using the MAT ZER command is
advisable if the program depends on array values being initialized
to a known (zero) quantity.

APPENDIX F

RSTS FLOATING-POINT AND INTEGER FORMATS

F.l1 FLOATING-POINT FORMATS

RSTS systems use two standard floating-point packages: the
single precision, two-word package or the double precision, four-word
package. The determination of which package will be used is made by
the system manager at the time the RSTS Monitor is built.

The single precision format provides economical storage, while
the double precision format is used for high accuracy. The single
precision format provides up to 24 bits or approximately seven decimal
digits of accuracy. The magnitude range lies between £.14 x 1¢_38
and 1.7 x l¢38. Double precision calculations have a precision of 56
bits or approximately fifteen decimal digits, with magnitudes in the

same range as for single precision format.

15 14 7 6 0
word: sign exponent high-order mantissa
word+2: low-order mantissa

SINGLE PRECISION FORMAT (2 WORD)

15 14 7 6 0
word: sign exponent high-order mantissa
word+2: low-order mantissa
word+4: lower~order mantissa
word+6: lowest-order mantissa

DOUBLE PRECISION FORMAT (4 WORD)

The exponent is stored in excess 128 (Zﬂﬂs) notation. Exponents
from -128 to +127 are represented by the binary equivalent
of # through 255 (g through 3778). Fractions are represented in sign
magnitude notation with the binary radix point to the left. Numbers
are assumed to be normalized and, therefore, the most significant bit
is not stored because it is redundant (this is called "hidden bit
normalization"); it is always a 1 unless the exponent is @§ (corre-

sponding to 2_128

) in which case it is assumed to be . The value §
is represented by two or four words of zeroes. For example: +1 would

be represented by:

word: gagagg
word+2: gogagg

in the 2-word format, or:

word: pgap2gg
word+2: gogagd
word+4: pgoggas
word+6: .5.3.5'4'§'}

in the 4-word format. -5 would be:

word: lageag
word+2: po0989

in the 2-word format, or:

word: 14g648
word+2: pogggg
word+4: geggee
word+6: gpeees

in the 4-word format.

While it is generally possible to run programs written on one
RSTS system on another RSTS system, certain restrictions apply if the
math packages are not the same. These are:

a. Programs depending on 4-word accuracy cannot be run
with the 2-word package.

b. .BAC compiled programs can not be interchanged.
The program source file must be recompiled.

c. Floating-point virtual core array file formats are
not compatible between math packages.

d. Programs using the RECORD I/0 functions CVTS$F and
CVTF$ are not compatible between math packages.

F.2 INTEGER FORMAT

15 14 [’}

word: sign

Integers are stored in a two's complement representation. Integer
values must be in the range -32768 to +32767. For example:

+22
-7

pEgR26,
1777718

As a rule, an integer value is assumed by RSTS only where a con-
stant or variable name is followed by a % character. Otherwise, con-

stants and variables are assumed to be floating-point values.

2.

3.

Basic

APPENDIX G

SELECTED BIBLIOGRAPHY

BASIC, An Introduction to Computer Programming in BASIC

Language

James S. Coan

Hayden Book Company, Inc.
New York, New York

1970, 256 pages

BASIC Programming, Second Edition

John G. Kemeny and Thomas E. Kurtz
John Wiley and Sons, Inc.

New York, New York

1971, 150 pages

BASIC, Sixth Edition

Stephen Waite and Diane Mather, Editors
University Press of New England
Hanover, New Hampshire

1971, 183 pages

Computer Methods in Mathematics

Teach

Robert L. Albrecht, Eric Lindberg, and Walter Mara
Addison-Wesley Publishing Company

Menlo Park, California

1969, 204 pages

Yourself BASIC, Volume 1, (self teaching workbook)

Teach

Robert L. Albrecht

Technica Education Corporation
San Carlos, California

1970, 64 pages

Yourself BASIC, Volume 2, (self teaching workbook)

CAMP,

Robert L. Albrecht

Technica Education Corporation
San Carlos, California

1970, 64 pages

Computer Assisted Math Program (grade school to high

school level)

David C. Johnson, project director
Scott Foresman and Company

10.

Fundamentals of Digital Computers (elementary and historical
information)

Donald D. Spencer

Howard W. Sams and Co., Inc.
Indianapolis, Indiana

1969, 256 pages

Computers, BASIC and Physics

Herbert D. Peckham
Addison Wesley
1971, 320 pages

Computer Programming in BASIC

Joseph P. Pavlovich and Thomas E. Tahan
Holden-Day
1971, 346 pages

Account numbers, see project-
programmer number

AND, 2-9, 3-14

Angle brackets (<>), 1-3

Approximately equal (==),

Arithmetic operators, 2-7
with matrices, 7-6

Array variables, 3-19,
character string, 5-3
default values, 3-21
virtual core, 9-17
zero elements, 3-21,
see also matrices

ASCII
conversions,
formatted 1/0,
table, 5-2

Assignable devices,

Asterisk (*), 10-9

2-9

3-20

7-51 7-7

5-5
9-11

9-7

BASIC

language and interpreter,
Backslash, 10-8
Backspace MAGTAPE function,
Blocks, disk, 9-9
Braces ({}), 1-3
Brackets, see angle brackets,

square brackets, braces

1-4

12-11

Calculations, immediate mode, 4-1
Card reader
carriage return/line feed, 12-15
EOF card, 12-15
illegal punches, 12-16
trailing blanks, 12-15
CHAIN statement, 9-16, 9-23
CHANGE statement, 5-5
Channel numbers
FIELD, 11-5
user terminal, 9-5, 9-11, 9-13,
9-15
virtual array, 9-17, 9-19
Character strings, 5-1
constants, 5-2
conversions to/from ASCII values,
5-5
functions, 5-11, 5-13
output by PRINT, 3-7, 3-8

relational operators, 5-4
size, 5-4
string input,
string output,
subscripted variables,
user-defined, 8-3
variables, 5-2
virtual core arrays,

5-8
5-11, 10-5
5-3

9-18

IND

EX

CLOSE statement, 9-15
file structured magtape,
non-file structured, 12-8
Record 1/0, 11-2
virtual array files,

CLUSTERSIZE option, 9-9,

Commands, 1-4

Commas
in MAT PRINT, 7-2
in PRINT, 3-7, 3-9, 10-6
in PRINT-USING, 10-11

Comments, 3-1
DATA statement, 3-5

Conditional FOR loops,

Conditions, 3-13
see also

and logical expressions

Conformable matrices, 7-6

CON function, 7-5

Constants,
character string,
integer, 6-~1
numeric, 2-5

CONT command, 4-1,

Control variable,

Conventions, manual,

COUNT option, 11-4

CRT display terminals,

CTRL/Z, 9-16

CVT conversion functions,

9-20
1-10

2-8, 8

5-2

4-2
3-17, 3-19
1-3

12-18

Data files, see files, data

Data pool, 10-1

DATA statement, 3-2, 3-33,
character strings in, 5-8,

10-1

comments, 3-5, 10-1
data pool storage,
immediate mode, 4-3
simplest form, 3-4

Debugging, 4-1, 4-2

DEF statement, 3-27
immediate mode, 4-3
multiple line, 8-1

Density and Parity, MAGTAPE

function, 12-11

Device buffer sizes, default,

Device designator, 9-2

Devices, assignable, 9-7

DIM statement, 3-21
immediate mode, 4-3
placement on line, 3-22
placement in program, 3-22

DIM# statement, 9-17

Disks, 12-1
blocks, 9-9
UPDATE, 12-2
virtual core,

10-1

9-17, E-1

85—

12-7

=15

relational expressions

11-9

9, 10-1
5-9,

9-7

Display terminals, 12-18
Dollar sign character ($),
10-11
DOS-11
DECtape interchange,
magtape interchange,
12-6
Dummy variables or arguments,
variables

9—3'

9-3
9-3, 12-5,

see

E format numbers, 2-6
END statement, 3-33, 3-34
EOF (end-of-file), 9-16,
punched card, 12-15
write EOF MAGTAPE function,
EQV, 2-10, 3-14
ERL variable, 8-11
ERR variable, 8-6
values, 8-7 through 8-9
Errors
disabling error control,
ERL variable, 8-11
magtape, 12-14
ON ERROR GOTO, 8-5
program control of, 8-5
user recoverable, 8-7
Example BASIC program, 2-1
Exclamation mark (!), 3-1,
Exponential format output,
Expressions, 2-5
arithmetic, 2-5
logical, 2-5
relational, 2-9
Extension format,

12-4, 12-5

12-10

8-10

10-7
10-10

9-2

FALSE, 6-3, 6-4

FIELD statement, 11-5

Filename format, 9-2

Filename specification, complete,

9-1, 9-12
Files, data, 9-1
formatted data, 9-11, 11-1
random access, 9-16, 11-1

Record 1/0, 11-1
see also virtual array files

Files, DECtape, 9-2
Files, disk
extending, 11-13
improving throughput, 9-8, 9-11
locked, 12-3
[proj,progl, 9-3
simultaneous multiple uses, 12-2
UNLOCK, 12-3
UPDATE mode, 12-2
virtual core arrays, 9-17
Files, magtape, 12-4
CLOSE, 12-7
file label, 12-6
file structured, 12-5
MODE option, 11-1
non-file structured, 9-8, 12-6
OPEN, 12-5, 12-7
[proj,prog]l, 9-3

9-12
9-2,

File-structured devices,
RECOUNT variable, 9-1,
9-5
FNEND statement, 8-1
immediate mode, 4-3
Formatted ASCII I/O,
EOF, 9-16
Form feed, line printer,
12-17, 12-18
FOR modifier, 8-19
FOR statement, 3-16
conditional loops, 2-8
conditional termination,
immediate mode, 4-3
nesting loops, 3-18
test condition, 3-16
Functions
conversion,
mathematical,
matrix, 7-5,
print, 10-14
recursive, 8-2
string, 5-11,
user-defined,
8-1
XLATE,

9-3,

9-11

12-16,

8-15

11-9
3-22,
7-7

3-23

5-13

3-27, 5-11, 6-3,

11-12
11-2

3-33
4-3

GET statement,

GOSUB statement,
immediate mode,

GOTO statement
conditional branch,
immediate mode, 4-3
unconditional branch,

3-12

3-11

IDN function, 7-5
IF clause, 2-8
IF-GOTO statement,

placement on line,

3-12
3-15

transfer path, 3-15
IF modifier, 8-18
IF-THEN-ELSE statemen t, 8-12
placement on line, 8-14
statements following, 8-14
IF-THEN statement, 2-8, 3-12
placement on line, 3-15

transfer path, 3-15

Immediate mode, 4-1
multiple statements per line, 4-2
restrictions, 4-3

IMP, 2-10, 3-14
Implicit dimensions, 7-1
In-core file window, 9-10
Input
character strings, 5-8
integers, 6-2
matrices, 7-2, 7-3
see also READ, INPUT, and
INPUT LINE
INPUT LINE statement, 5-9, 10-4
message output, 5-10

9-11, 10-3
5-9

INPUT statement, 3-9,
character string input,
from data files, 9-11

from non-terminal devices, 9-11
message output, 3-11
simplest form, 3-9

Integer
arithmetic, 6-1
constants, 6-1
user-defined functions, 8-3
variables, 6-1

Internal file designators, 9-5, 9-11
FIELD, 1l1-5
user terminal, 9-13, 9-14
virtual array, 9-17, 9-19

Intrinsic functions, see functions
INT(X) function, 3-24
Inversion of matrices, 7-7
I/0, basic operations, 3-3
complete discussion, Part III
see also individual entries

Italics, 1-3

KILL statement, 9-22, 12-15
LET statement, 3-2
cautions, 11-8
multiple variables, 3-3
omitting LET, 3-3
placement on line, 3-3

Line, 1-4
multiple statements on single, 2-3
single statement on multiple, 2-3

Line number, 1-3, 2-1
Line printer
LPFORM option, 12-16

MODE option, 11-1
special characters,
Line terminators, 5-10

Locked file, 12-3

Logical
expressions,
operators,
variables, 6-3

Loops, 3-13, 3-15
conditional termination of,
nested, 3-18

LPFORM option,

LSET statement,

12-16

2-9, 2-10, 3-13
2-9, 6-3
8-15

12-1e,
11-7,

12-17, 12-18
11-8

Magnetic tape,
Magtape

see magtape

error handling, 12-14

file labels, 12-6

file-structured, 12-4, 12-5, 12-6
MODE, 12-3, 12-8

non-file structured, 12-4

status word, 12-13
MAGTAPE function,12-9 through 12-13

X-3

Mathematical functions, 3-22, 3-23
Mathematical operators, 2-7
MAT INPUT statement, 7-3, 10-4
MAT PRINT statement, 7-2, 10-13
MAT READ statement, 7-2, 10-2
Matrices, 7-1
calculations, 7-
conformable, 7-6
functions, 7-7
implicit dimensions,
initialization, 7-5
MAT INPUT, 7-3, 10-4
MAT PRINT, 7-2, 10-13
MAT READ, 7-2, 10-2
redimensioning, 7-4
square, 7-7
storage, 7-1
virtual core, 9-17
Memory, conserving,
Message output
by INPUT, 3-11
by PRINT, 3-8
Minus sign (=), 10-10
MODE option, 11-1, 12-3, 12-8
Modifiers, see statement modifiers
Modules, arithmetic example, 3-29
Multiple lines per statement, 2-3
immediate mode, 4-2
Multiple statement modifiers,

7-1

see programs

8-22

NAME-AS statement,
9-23, 12-15
Nesting
functions,
loops, 3-18
subroutines,
NEXT statement,
immediate mode, 4-3
9-track magtape, 12-8, 12-12
Non-file structured devices,
9-3, 9-5, 9-12
RECOUNT variable,
NOT, 2~-9, 3-14
Number format, output by PRINT
statement, 3-6
Numbers, 2-5
E format, 2-6
Number sign (#).,

9-4, 9-21,

8-1

3-34
3-17

9-2,

11-3

10-8

Off-line MAGTAPE function, 12-9

OLD command, 3-34

ON ERROR GOTO statement,
disabling error routine,
ON ERROR GOTO g, 8-10
RESUME, 8-9

ON-GOSUB statement,

ON-GOTO statement,

OPEN statement, 9-5, 9-6
CLUSTERSIZE option, 9-9
file-structured magtape,
FOR INPUT, 9-6, 9-7

8-5
8-10

8-4
8-3

12-5

OPEN statement (cont.)
FOR OUTPUT, 9-6, 9-7
MODE option, 11-1, 12-3, 12-8
non-file structured magtape,
Record 1/0, 11-1, 11-3, 11-4
RECORDSIZE option, 9-7
user terminal, 9-13
virtual array file,

Operators,
logical, 2-9
mathematical, 2-7
matrix, 7-6
relational, 2-8

OR, 209, 3-14

Output,
character strings,
integers, 6-2
matrices, 7-2
see also PRINT

9-19

5-11

Pack cluster size, 9-10
Parentheses, 2-8
Parity, 12-8
magtape error, 12-14
set density and parity MAGTAPE
function, 12-11
Percent sign (%), 6-1,
Pound sign (#), 10-8
Precedence rules
complete, 3-14
mathematical,
PRINT functions,
PRINT statement,

9-9,

10-11

2-7, 2-8
10-14
3-6, 9-11,
comma, 10-6

message output, 3-8
number format, 3-6
output rules, . 10-6
performing calculations,
semicolon, 10-6

simplest form, 3-6

3-6

10-5
character string format,3-8,10-5

Question mark (?), printed by
INPUT, 3-11

12-7

Random access files, see virtual
array files

RANDOM statement, 3-26

RANDOMIZE statement, 3-26
READ statement, 10-1
simplest form, 3-4
Record I/0 options, 11-1
CLOSE, 1ll1l-2
example, 12-4
FIELD, 11-5
LPFORM, 12-16
LSET, 11-7, 11-8
RSET, 11-7, 11-8
translation function, 11-12
UPDATE, 11-1, 12-2
RECORD option, 11-2, 11-4
RECORDSIZE option, 9-7, 9-8,
11i-1, 11-3, 11-4, 11-5, 12-3
default device buffer sizer, 9-7
RECOUNT variable, 11-3
Relational
expressions, 2-9, 2-10, 8-12,
8-18 through 8-21
operators, 2-8
operators with character
strings, 5-4
REMARK statement, 3-1
RSET statement, 11-7, 11-8
RESTORE statement, 3-5, 10-2
RESUME statement, 8-9
RETURN statement, 3-33, 8-4

immediate mode, 4-3
Rewind and unload MAGTAPE function
12-9
Rewind MAGTAPE function,
RND function, 3-26
RND (X) function, 3-25

12-10

suppress carriage return/line feed,

3-9

to data files, 9-11

to non-terminal devices,

without arguments, 3-6
PRINT-USING statement, 10-7

punctuation, 10-12
Print zones, 3-7
Priorities, see precedence rules
Private disks, 9-2, 12-1
Programs, 1-4

9-14

conserving memory space, 3-22
debugging, 4-1, 4-2
line, 1-4

Project-programmer number, 9-3
Protection code, 9-3, 9-4, 9-6,
9-22, 9-23
Public disks,
PUT statement,

9-2, 12-1

11-2

SAVE command, 3-34
Scientific notation,
Semicolon

in MAT PRINT, 7-2

in PRINT, 3-8, 3-9
Set density and parity, MAGTAPE

function, 12-11

7-track magtape, 12-8,
SGN (X) function, 3-23
Single statement on multiple lines,2-3
Skip record MAGTAPE function, 12-10
SLEEP statement, 8-24
Space, conservation of,
Spaces, 2-4
Square brackets ([]), 1-3
Square matrix, 7-7

2-6

12-11

see programs

Statement modifiers, 8-18
FOR, 8-19
IF, 8-18
multiple, 8-22
UNLESS, 8-19
UNTIL, 8-21
WHILE, 8-20
Statements, 1-4, 2-3

multiple on single line, 2-3

single on multiple lines, 2-3
Status (tape) MAGTAPE function,

12-12

Status word, magtape,
STEP expression, 3-17, 8-15
STOP statement, 3-34, 4-1
String, see character string
Subroutines, 3-32

GOSuUB, 3-32

nesting, 3-32

ON-GOSUB, 8-4
Subscripts, 3-19, 3-20

character string variables,

default values, 3-21

zero elements, 3-21
Syntax, 2-1
System functions,

12-13

5-3

8-22, 8-23

Tabs, 2-4, 12-16

Tape Status MAGTAPE function,

Terminal input, see INPUT and
INPUT LINE

Terminals, 1-4

Time sharing, 1-2

Trailing minus sign, 10-10

Transposition of matrices,

TRUE, 6-3, 6-4

12-12

7-7

Truth tables, 2-10
UFD, 9-3, 9-9, 9-10
Unary operators,

minus, 2-7

plus, 2-7
Unconditional branch, 3-11
UNLESS modifier, 2-8, 8-19
UNLOCK statement, 12-3

UNTIL modifier, 2-8, 8-15, 8-21
Up-arrow (4), 10-10
UPDATE option, 9-7, 12-2

User-defined functions, 3-27
function names, 3-27
immediate mode, 4-3
integer, 6-3
multiple line,
string, 5-11

User File Directory,

8-1

see UFD

Variables
character string,
dummy, 3-28, 8-1
ERL, 8-11
ERR, 8-6
integer,
logical,
numeric, 2-6
RECOUNT, 11-3
subscripted, 3-19, 3-20, 5-3, 7-1
subscripted and unsubscripted in

5-2

6-1
6-3

same program, 3-9, 5-3
Virtual array files, 9-16
example, 9-20
extending file, 11-14
opening, 9-19

string storage, 9-18
see also Appendix E
Virtual data storage,
array files
VT@5 and VTP6 display terminals,

see virtual

12-18, 12-19
WAIT statement, 8-24
WHILE modifier, 2-8, 8-15, 8-20

Write end~of-file MAGTAPE function,

12-10
XLATE function, 11-12
XOR, 2-9, 3-14
ZER function, 7-5

PDP-11 BASIC-PLUS

Language Manual

DEC-11-ORBPA-A-D

‘October 1972
READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual .

Please comment on this manual's completeness, accuracy, organization, usability. and read-
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
Name: Organization:
Street: Department:

City: State: Zip or Country

——————————————— — FoldHere - - - - - - - - - — — — — - — — — = — —

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

I

Postage will be paid by:

digital equipment corporation

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	01-00
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	04-00
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-12
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	F-01
	F-02
	F-03
	G-01
	G-02
	X-01
	X-02
	X-03
	X-04
	X-05
	replyA
	replyB
	xBack

